1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
//===-- Double-precision atan2 function -----------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "src/math/atan2.h"
#include "atan_utils.h"
#include "src/__support/FPUtil/FEnvImpl.h"
#include "src/__support/FPUtil/FPBits.h"
#include "src/__support/FPUtil/double_double.h"
#include "src/__support/FPUtil/multiply_add.h"
#include "src/__support/FPUtil/nearest_integer.h"
#include "src/__support/macros/config.h"
#include "src/__support/macros/optimization.h" // LIBC_UNLIKELY
namespace LIBC_NAMESPACE_DECL {
// There are several range reduction steps we can take for atan2(y, x) as
// follow:
// * Range reduction 1: signness
// atan2(y, x) will return a number between -PI and PI representing the angle
// forming by the 0x axis and the vector (x, y) on the 0xy-plane.
// In particular, we have that:
// atan2(y, x) = atan( y/x ) if x >= 0 and y >= 0 (I-quadrant)
// = pi + atan( y/x ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( y/x ) if x < 0 and y < 0 (III-quadrant)
// = atan( y/x ) if x >= 0 and y < 0 (IV-quadrant)
// Since atan function is odd, we can use the formula:
// atan(-u) = -atan(u)
// to adjust the above conditions a bit further:
// atan2(y, x) = atan( |y|/|x| ) if x >= 0 and y >= 0 (I-quadrant)
// = pi - atan( |y|/|x| ) if x < 0 and y >= 0 (II-quadrant)
// = -pi + atan( |y|/|x| ) if x < 0 and y < 0 (III-quadrant)
// = -atan( |y|/|x| ) if x >= 0 and y < 0 (IV-quadrant)
// Which can be simplified to:
// atan2(y, x) = sign(y) * atan( |y|/|x| ) if x >= 0
// = sign(y) * (pi - atan( |y|/|x| )) if x < 0
// * Range reduction 2: reciprocal
// Now that the argument inside atan is positive, we can use the formula:
// atan(1/x) = pi/2 - atan(x)
// to make the argument inside atan <= 1 as follow:
// atan2(y, x) = sign(y) * atan( |y|/|x|) if 0 <= |y| <= x
// = sign(y) * (pi/2 - atan( |x|/|y| ) if 0 <= x < |y|
// = sign(y) * (pi - atan( |y|/|x| )) if 0 <= |y| <= -x
// = sign(y) * (pi/2 + atan( |x|/|y| )) if 0 <= -x < |y|
// * Range reduction 3: look up table.
// After the previous two range reduction steps, we reduce the problem to
// compute atan(u) with 0 <= u <= 1, or to be precise:
// atan( n / d ) where n = min(|x|, |y|) and d = max(|x|, |y|).
// An accurate polynomial approximation for the whole [0, 1] input range will
// require a very large degree. To make it more efficient, we reduce the input
// range further by finding an integer idx such that:
// | n/d - idx/64 | <= 1/128.
// In particular,
// idx := round(2^6 * n/d)
// Then for the fast pass, we find a polynomial approximation for:
// atan( n/d ) ~ atan( idx/64 ) + (n/d - idx/64) * Q(n/d - idx/64)
// For the accurate pass, we use the addition formula:
// atan( n/d ) - atan( idx/64 ) = atan( (n/d - idx/64)/(1 + (n*idx)/(64*d)) )
// = atan( (n - d*(idx/64))/(d + n*(idx/64)) )
// And for the fast pass, we use degree-9 Taylor polynomial to compute the RHS:
// atan(u) ~ P(u) = u - u^3/3 + u^5/5 - u^7/7 + u^9/9
// with absolute errors bounded by:
// |atan(u) - P(u)| < |u|^11 / 11 < 2^-80
// and relative errors bounded by:
// |(atan(u) - P(u)) / P(u)| < u^10 / 11 < 2^-73.
LLVM_LIBC_FUNCTION(double, atan2, (double y, double x)) {
using FPBits = fputil::FPBits<double>;
constexpr double IS_NEG[2] = {1.0, -1.0};
constexpr DoubleDouble ZERO = {0.0, 0.0};
constexpr DoubleDouble MZERO = {-0.0, -0.0};
constexpr DoubleDouble PI = {0x1.1a62633145c07p-53, 0x1.921fb54442d18p+1};
constexpr DoubleDouble MPI = {-0x1.1a62633145c07p-53, -0x1.921fb54442d18p+1};
constexpr DoubleDouble PI_OVER_2 = {0x1.1a62633145c07p-54,
0x1.921fb54442d18p0};
constexpr DoubleDouble MPI_OVER_2 = {-0x1.1a62633145c07p-54,
-0x1.921fb54442d18p0};
constexpr DoubleDouble PI_OVER_4 = {0x1.1a62633145c07p-55,
0x1.921fb54442d18p-1};
constexpr DoubleDouble THREE_PI_OVER_4 = {0x1.a79394c9e8a0ap-54,
0x1.2d97c7f3321d2p+1};
// Adjustment for constant term:
// CONST_ADJ[x_sign][y_sign][recip]
constexpr DoubleDouble CONST_ADJ[2][2][2] = {
{{ZERO, MPI_OVER_2}, {MZERO, MPI_OVER_2}},
{{MPI, PI_OVER_2}, {MPI, PI_OVER_2}}};
FPBits x_bits(x), y_bits(y);
bool x_sign = x_bits.sign().is_neg();
bool y_sign = y_bits.sign().is_neg();
x_bits = x_bits.abs();
y_bits = y_bits.abs();
uint64_t x_abs = x_bits.uintval();
uint64_t y_abs = y_bits.uintval();
bool recip = x_abs < y_abs;
uint64_t min_abs = recip ? x_abs : y_abs;
uint64_t max_abs = !recip ? x_abs : y_abs;
unsigned min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
unsigned max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
double num = FPBits(min_abs).get_val();
double den = FPBits(max_abs).get_val();
// Check for exceptional cases, whether inputs are 0, inf, nan, or close to
// overflow, or close to underflow.
if (LIBC_UNLIKELY(max_exp > 0x7ffU - 128U || min_exp < 128U)) {
if (x_bits.is_nan() || y_bits.is_nan()) {
if (x_bits.is_signaling_nan() || y_bits.is_signaling_nan())
fputil::raise_except_if_required(FE_INVALID);
return FPBits::quiet_nan().get_val();
}
unsigned x_except = x == 0.0 ? 0 : (FPBits(x_abs).is_inf() ? 2 : 1);
unsigned y_except = y == 0.0 ? 0 : (FPBits(y_abs).is_inf() ? 2 : 1);
// Exceptional cases:
// EXCEPT[y_except][x_except][x_is_neg]
// with x_except & y_except:
// 0: zero
// 1: finite, non-zero
// 2: infinity
constexpr DoubleDouble EXCEPTS[3][3][2] = {
{{ZERO, PI}, {ZERO, PI}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2}, {ZERO, ZERO}, {ZERO, PI}},
{{PI_OVER_2, PI_OVER_2},
{PI_OVER_2, PI_OVER_2},
{PI_OVER_4, THREE_PI_OVER_4}},
};
if ((x_except != 1) || (y_except != 1)) {
DoubleDouble r = EXCEPTS[y_except][x_except][x_sign];
return fputil::multiply_add(IS_NEG[y_sign], r.hi, IS_NEG[y_sign] * r.lo);
}
bool scale_up = min_exp < 128U;
bool scale_down = max_exp > 0x7ffU - 128U;
// At least one input is denormal, multiply both numerator and denominator
// by some large enough power of 2 to normalize denormal inputs.
if (scale_up) {
num *= 0x1.0p64;
if (!scale_down)
den *= 0x1.0p64;
} else if (scale_down) {
den *= 0x1.0p-64;
if (!scale_up)
num *= 0x1.0p-64;
}
min_abs = FPBits(num).uintval();
max_abs = FPBits(den).uintval();
min_exp = static_cast<unsigned>(min_abs >> FPBits::FRACTION_LEN);
max_exp = static_cast<unsigned>(max_abs >> FPBits::FRACTION_LEN);
}
double final_sign = IS_NEG[(x_sign != y_sign) != recip];
DoubleDouble const_term = CONST_ADJ[x_sign][y_sign][recip];
unsigned exp_diff = max_exp - min_exp;
// We have the following bound for normalized n and d:
// 2^(-exp_diff - 1) < n/d < 2^(-exp_diff + 1).
if (LIBC_UNLIKELY(exp_diff > 54)) {
return fputil::multiply_add(final_sign, const_term.hi,
final_sign * (const_term.lo + num / den));
}
double k = fputil::nearest_integer(64.0 * num / den);
unsigned idx = static_cast<unsigned>(k);
// k = idx / 64
k *= 0x1.0p-6;
// Range reduction:
// atan(n/d) - atan(k/64) = atan((n/d - k/64) / (1 + (n/d) * (k/64)))
// = atan((n - d * k/64)) / (d + n * k/64))
DoubleDouble num_k = fputil::exact_mult(num, k);
DoubleDouble den_k = fputil::exact_mult(den, k);
// num_dd = n - d * k
DoubleDouble num_dd = fputil::exact_add(num - den_k.hi, -den_k.lo);
// den_dd = d + n * k
DoubleDouble den_dd = fputil::exact_add(den, num_k.hi);
den_dd.lo += num_k.lo;
// q = (n - d * k) / (d + n * k)
DoubleDouble q = fputil::div(num_dd, den_dd);
// p ~ atan(q)
DoubleDouble p = atan_eval(q);
DoubleDouble r = fputil::add(const_term, fputil::add(ATAN_I[idx], p));
r.hi *= final_sign;
r.lo *= final_sign;
return r.hi + r.lo;
}
} // namespace LIBC_NAMESPACE_DECL
|