aboutsummaryrefslogtreecommitdiff
path: root/math/bits
AgeCommit message (Collapse)AuthorFilesLines
2025-01-03AArch64: Add vector tanpi routinesJoe Ramsay1-1/+1
Vector variant of the new C23 tanpi. New tests pass on AArch64.
2025-01-03AArch64: Add vector cospi routinesJoe Ramsay1-1/+1
Vector variant of the new C23 cospi. New tests pass on AArch64.
2025-01-03AArch64: Add vector sinpi to libmvecJoe Ramsay1-1/+1
Vector variant of the new C23 sinpi. New tests pass on AArch64.
2025-01-01Update copyright dates with scripts/update-copyrightsPaul Eggert5-5/+5
2024-12-12Implement C23 atan2piJoseph Myers1-0/+2
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the atan2pi functions (atan2(y,x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-12math: Remove __XXX math functions from installed math.h [BZ #32418]H.J. Lu1-0/+48
Since libm doesn't export __XXX math functions, don't declare them in the installed math.h by adding <bits/mathcalls-macros.h> to declare __XXX math functions internally for glibc build. This fixes BZ #32418. Signed-off-by: H.J. Lu <hjl.tools@gmail.com> Reviewed-by: Sam James <sam@gentoo.org>
2024-12-11Implement C23 atanpiJoseph Myers1-0/+2
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the atanpi functions (atan(x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-10Implement C23 asinpiJoseph Myers1-0/+2
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the asinpi functions (asin(x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-09Implement C23 acospiJoseph Myers1-0/+3
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the acospi functions (acos(x)/pi). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-05Implement C23 tanpiJoseph Myers1-0/+2
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the tanpi functions (tan(pi*x)). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-04Implement C23 sinpiJoseph Myers1-0/+2
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the sinpi functions (sin(pi*x)). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-12-04Implement C23 cospiJoseph Myers1-0/+5
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the cospi functions (cos(pi*x)). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-09-19AArch64: Add vector logp1 alias for log1pJoe Ramsay1-1/+1
This enables vectorisation of C23 logp1, which is an alias for log1p. There are no new tests or ulp entries because the new symbols are simply aliases. Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
2024-06-17Implement C23 exp2m1, exp10m1Joseph Myers1-0/+6
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the exp2m1 and exp10m1 functions (exp2(x)-1 and exp10(x)-1, like expm1). As with other such functions, these use type-generic templates that could be replaced with faster and more accurate type-specific implementations in future. Test inputs are copied from those for expm1, plus some additions close to the overflow threshold (copied from exp2 and exp10) and also some near the underflow threshold. exp2m1 has the unusual property of having an input (M_MAX_EXP) where whether the function overflows (under IEEE semantics) depends on the rounding mode. Although these could reasonably be XFAILed in the testsuite (as we do in some cases for arguments very close to a function's overflow threshold when an error of a few ulps in the implementation can result in the implementation not agreeing with an ideal one on whether overflow takes place - the testsuite isn't smart enough to handle this automatically), since these functions aren't required to be correctly rounding, I made the implementation check for and handle this case specially. The Makefile ordering expected by lint-makefiles for the new functions is a bit peculiar, but I implemented it in this patch so that the test passes; I don't know why log2 also needed moving in one Makefile variable setting when it didn't in my previous patches, but the failure showed a different place was expected for that function as well. The powerpc64le IFUNC setup seems not to be as self-contained as one might hope; it shouldn't be necessary to add IFUNCs for new functions such as these simply to get them building, but without setting up IFUNCs for the new functions, there were undefined references to __GI___expm1f128 (that IFUNC machinery results in no such function being defined, but doesn't stop include/math.h from doing the redirection resulting in the exp2m1f128 and exp10m1f128 implementations expecting to call it). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17Implement C23 log10p1Joseph Myers1-0/+3
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the log10p1 functions (log10(1+x): like log1p, but for base-10 logarithms). This is directly analogous to the log2p1 implementation (except that whereas log2p1 has a smaller underflow range than log1p, log10p1 has a larger underflow range). The test inputs are copied from those for log1p and log2p1, plus a few more inputs in that wider underflow range. Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-06-17Implement C23 logp1Joseph Myers1-0/+3
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the logp1 functions (aliases for log1p functions - the name is intended to be more consistent with the new log2p1 and log10p1, where clearly it would have been very confusing to name those functions log21p and log101p). As aliases rather than new functions, the content of this patch is somewhat different from those actually adding new functions. Tests are shared with log1p, so this patch *does* mechanically update all affected libm-test-ulps files to expect the same errors for both functions. The vector versions of log1p on aarch64 and x86_64 are *not* updated to have logp1 aliases (and thus there are no corresponding header, tests, abilist or ulps changes for vector functions either). It would be reasonable for such vector aliases and corresponding changes to other files to be made separately. For now, the log1p tests instead avoid testing logp1 in the vector case (a Makefile change is needed to avoid problems with grep, used in generating the .c files for vector function tests, matching more than one ALL_RM_TEST line in a file testing multiple functions with the same inputs, when it assumes that the .inc file only has a single such line). Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-05-20Implement C23 log2p1Joseph Myers1-0/+3
C23 adds various <math.h> function families originally defined in TS 18661-4. Add the log2p1 functions (log2(1+x): like log1p, but for base-2 logarithms). This illustrates the intended structure of implementations of all these function families: define them initially with a type-generic template implementation. If someone wishes to add type-specific implementations, it is likely such implementations can be both faster and more accurate than the type-generic one and can then override it for types for which they are implemented (adding benchmarks would be desirable in such cases to demonstrate that a new implementation is indeed faster). The test inputs are copied from those for log1p. Note that these changes make gen-auto-libm-tests depend on MPFR 4.2 (or later). The bulk of the changes are fairly generic for any such new function. (sysdeps/powerpc/nofpu/Makefile only needs changing for those type-generic templates that use fabs.) Tested for x86_64 and x86, and with build-many-glibcs.py.
2024-02-01Refer to C23 in place of C2X in glibcJoseph Myers1-7/+7
WG14 decided to use the name C23 as the informal name of the next revision of the C standard (notwithstanding the publication date in 2024). Update references to C2X in glibc to use the C23 name. This is intended to update everything *except* where it involves renaming files (the changes involving renaming tests are intended to be done separately). In the case of the _ISOC2X_SOURCE feature test macro - the only user-visible interface involved - support for that macro is kept for backwards compatibility, while adding _ISOC23_SOURCE. Tested for x86_64.
2024-01-01Update copyright dates with scripts/update-copyrightsPaul Eggert4-4/+4
2023-06-02Fix all the remaining misspellings -- BZ 25337Paul Pluzhnikov1-1/+1
2023-01-06Update copyright dates with scripts/update-copyrightsJoseph Myers4-4/+4
2022-01-01Update copyright dates with scripts/update-copyrightsPaul Eggert4-4/+4
I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 7061 files FOO. I then removed trailing white space from math/tgmath.h, support/tst-support-open-dev-null-range.c, and sysdeps/x86_64/multiarch/strlen-vec.S, to work around the following obscure pre-commit check failure diagnostics from Savannah. I don't know why I run into these diagnostics whereas others evidently do not. remote: *** 912-#endif remote: *** 913: remote: *** 914- remote: *** error: lines with trailing whitespace found ... remote: *** error: sysdeps/unix/sysv/linux/statx_cp.c: trailing lines
2021-12-30x86-64: Add vector tan/tanf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized tan/tanf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector tan/tanf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-30x86-64: Add vector erfc/erfcf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized erfc/erfcf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector erfc/erfcf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector asinh/asinhf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized asinh/asinhf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector asinh/asinhf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector tanh/tanhf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized tanh/tanhf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector tanh/tanhf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector erf/erff implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized erf/erff containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector erf/erff with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector acosh/acoshf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized acosh/acoshf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector acosh/acoshf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector atanh/atanhf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized atanh/atanhf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector atanh/atanhf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector log1p/log1pf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized log1p/log1pf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector log1p/log1pf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector log2/log2f implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized log2/log2f containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector log2/log2f with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector log10/log10f implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized log10/log10f containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector log10/log10f with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector atan2/atan2f implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized atan2/atan2f containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector atan2/atan2f with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector cbrt/cbrtf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized cbrt/cbrtf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector cbrt/cbrtf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector sinh/sinhf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized sinh/sinhf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector sinh/sinhf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector expm1/expm1f implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized expm1/expm1f containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector expm1/expm1f with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector cosh/coshf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized cosh/coshf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector cosh/coshf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector exp10/exp10f implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized exp10/exp10f containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector exp10/exp10f with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector exp2/exp2f implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized exp2/exp2f containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector exp2/exp2f with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector hypot/hypotf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized hypot/hypotf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector hypot/hypotf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector asin/asinf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized asin/asinf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector asin/asinf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-29x86-64: Add vector atan/atanf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized atan/atanf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector atan/atanf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-12-22x86-64: Add vector acos/acosf implementation to libmvecSunil K Pandey1-1/+1
Implement vectorized acos/acosf containing SSE, AVX, AVX2 and AVX512 versions for libmvec as per vector ABI. It also contains accuracy and ABI tests for vector acos/acosf with regenerated ulps. Reviewed-by: H.J. Lu <hjl.tools@gmail.com>
2021-09-29Do not declare fmax, fmin _FloatN, _FloatNx versions for C2XJoseph Myers1-0/+2
At the last WG14 meeting, <http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2711.htm> was accepted, which places more emphasis on the new fmaximum / fminimum functions and less on the old fmax / fmin functions. Some of the changes are to examples, notes or otherwise don't require implementation changes. However, the changes include removing the _FloatN / _FloatNx versions of the fmax and fmin functions that came from TS 18661-3. Thus, those function versions should only be declared under similar conditions to the _FloatN / _FloatNx versions of fmaxmag and fminmag: for _GNU_SOURCE and pre-C2X use of __STDC_WANT_IEC_60559_TYPES_EXT__, but not for C2X without _GNU_SOURCE. In turn this requires a tgmath.h change so that the corresponding tgmath.h macros, for C2X with __STDC_WANT_IEC_60559_TYPES_EXT__ but without _GNU_SOURCE, don't try to use function variants that aren't declared. (That issue doesn't arise for the tgmath.h macros for fmaxmag and fminmag, because those aren't defined at all in those circumstances unless __STDC_WANT_IEC_60559_BFP_EXT__ (from TS 18661-1 and not specified at all by C2X) is also defined, and in that case the _FloatN / _FloatNx versions of fmaxmag and fminmag get declared - this is only ever an issue when it's possible for some functions corresponding to a type-generic-macro to be declared, and for _FloatN / _FloatNx functions in general to be declared, but without the _FloatN / _FloatNx functions corresponding to that particular macro being declared.) Tested for x86_64.
2021-09-28Add fmaximum, fminimum functionsJoseph Myers1-0/+26
C2X adds new <math.h> functions for floating-point maximum and minimum, corresponding to the new operations that were added in IEEE 754-2019 because of concerns about the old operations not being associative in the presence of signaling NaNs. fmaximum and fminimum handle NaNs like most <math.h> functions (any NaN argument means the result is a quiet NaN). fmaximum_num and fminimum_num handle both quiet and signaling NaNs the way fmax and fmin handle quiet NaNs (if one argument is a number and the other is a NaN, return the number), but still raise "invalid" for a signaling NaN argument, making them exceptions to the normal rule that a function with a floating-point result raising "invalid" also returns a quiet NaN. fmaximum_mag, fminimum_mag, fmaximum_mag_num and fminimum_mag_num are corresponding functions returning the argument with greatest or least absolute value. All these functions also treat +0 as greater than -0. There are also corresponding <tgmath.h> type-generic macros. Add these functions to glibc. The implementations use type-generic templates based on those for fmax, fmin, fmaxmag and fminmag, and test inputs are based on those for those functions with appropriate adjustments to the expected results. The RISC-V maintainers might wish to add optimized versions of fmaximum_num and fminimum_num (for float and double), since RISC-V (F extension version 2.2 and later) provides instructions corresponding to those functions - though it might be at least as useful to add architecture-independent built-in functions to GCC and teach the RISC-V back end to expand those functions inline, which is what you generally want for functions that can be implemented with a single instruction. Tested for x86_64 and x86, and with build-many-glibcs.py.
2021-09-22Add narrowing fma functionsJoseph Myers1-0/+3
This patch adds the narrowing fused multiply-add functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: ffma, ffmal, dfmal, f32fmaf64, f32fmaf32x, f32xfmaf64 for all configurations; f32fmaf64x, f32fmaf128, f64fmaf64x, f64fmaf128, f32xfmaf64x, f32xfmaf128, f64xfmaf128 for configurations with _Float64x and _Float128; __f32fmaieee128 and __f64fmaieee128 aliases in the powerpc64le case (for calls to ffmal and dfmal when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, especially that for sqrt, so the description of those generally applies to this patch as well. As with sqrt, I reused the same test inputs in auto-libm-test-in as for non-narrowing fma rather than adding extra or separate inputs for narrowing fma. The tests in libm-test-narrow-fma.inc also follow those for non-narrowing fma. The non-narrowing fma has a known bug (bug 6801) that it does not set errno on errors (overflow, underflow, Inf * 0, Inf - Inf). Rather than fixing this or having narrowing fma check for errors when non-narrowing does not (complicating the cases when narrowing fma can otherwise be an alias for a non-narrowing function), this patch does not attempt to check for errors from narrowing fma and set errno; the CHECK_NARROW_FMA macro is still present, but as a placeholder that does nothing, and this missing errno setting is considered to be covered by the existing bug rather than needing a separate open bug. missing-errno annotations are duly added to many of the auto-libm-test-in test inputs for fma. This completes adding all the new functions from TS 18661-1 to glibc, so will be followed by corresponding stdc-predef.h changes to define __STDC_IEC_60559_BFP__ and __STDC_IEC_60559_COMPLEX__, as the support for TS 18661-1 will be at a similar level to that for C standard floating-point facilities up to C11 (pragmas not implemented, but library functions done). (There are still further changes to be done to implement changes to the types of fromfp functions from N2548.) Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-09-10Add narrowing square root functionsJoseph Myers1-0/+3
This patch adds the narrowing square root functions from TS 18661-1 / TS 18661-3 / C2X to glibc's libm: fsqrt, fsqrtl, dsqrtl, f32sqrtf64, f32sqrtf32x, f32xsqrtf64 for all configurations; f32sqrtf64x, f32sqrtf128, f64sqrtf64x, f64sqrtf128, f32xsqrtf64x, f32xsqrtf128, f64xsqrtf128 for configurations with _Float64x and _Float128; __f32sqrtieee128 and __f64sqrtieee128 aliases in the powerpc64le case (for calls to fsqrtl and dsqrtl when long double is IEEE binary128). Corresponding tgmath.h macro support is also added. The changes are mostly similar to those for the other narrowing functions previously added, so the description of those generally applies to this patch as well. However, the not-actually-narrowing cases (where the two types involved in the function have the same floating-point format) are aliased to sqrt, sqrtl or sqrtf128 rather than needing a separately built not-actually-narrowing function such as was needed for add / sub / mul / div. Thus, there is no __nldbl_dsqrtl name for ldbl-opt because no such name was needed (whereas the other functions needed such a name since the only other name for that entry point was e.g. f32xaddf64, not reserved by TS 18661-1); the headers are made to arrange for sqrt to be called in that case instead. The DIAG_* calls in sysdeps/ieee754/soft-fp/s_dsqrtl.c are because they were observed to be needed in GCC 7 testing of riscv32-linux-gnu-rv32imac-ilp32. The other sysdeps/ieee754/soft-fp/ files added didn't need such DIAG_* in any configuration I tested with build-many-glibcs.py, but if they do turn out to be needed in more files with some other configuration / GCC version, they can always be added there. I reused the same test inputs in auto-libm-test-in as for non-narrowing sqrt rather than adding extra or separate inputs for narrowing sqrt. The tests in libm-test-narrow-sqrt.inc also follow those for non-narrowing sqrt. Tested as followed: natively with the full glibc testsuite for x86_64 (GCC 11, 7, 6) and x86 (GCC 11); with build-many-glibcs.py with GCC 11, 7 and 6; cross testing of math/ tests for powerpc64le, powerpc32 hard float, mips64 (all three ABIs, both hard and soft float). The different GCC versions are to cover the different cases in tgmath.h and tgmath.h tests properly (GCC 6 has _Float* only as typedefs in glibc headers, GCC 7 has proper _Float* support, GCC 8 adds __builtin_tgmath).
2021-06-01Update floating-point feature test macro handling for C2XJoseph Myers1-4/+8
ISO C2X has made some changes to the handling of feature test macros related to features from the floating-point TSes, and to exactly what such features are present in what headers, that require corresponding changes in glibc. * For the few features that were controlled by __STDC_WANT_IEC_60559_BFP_EXT__ (and the corresponding DFP macro) in C2X, there is now instead a new feature test macro __STDC_WANT_IEC_60559_EXT__ covering both binary and decimal FP. This controls CR_DECIMAL_DIG in <float.h> (provided by GCC; I implemented support for the new feature test macro for GCC 11) and the totalorder and payload functions in <math.h>. C2X no longer says anything about __STDC_WANT_IEC_60559_BFP_EXT__ (so it's appropriate for that macro to continue to enable exactly the features from TS 18661-1). * The SNAN macros for each floating-point type have moved to <float.h> (and been renamed in the process). Thus, the copies in <math.h> should only be defined for __STDC_WANT_IEC_60559_BFP_EXT__, not for C2X. * The fmaxmag and fminmag functions have been removed (replaced by new functions for the new min/max operations in IEEE 754-2019). Thus those should also only be declared for __STDC_WANT_IEC_60559_BFP_EXT__. * The _FloatN / _FloatNx handling for the last two points in glibc is trickier, since __STDC_WANT_IEC_60559_TYPES_EXT__ is still in C2X (the integration of TS 18661-3 as an Annex, that is, which hasn't yet been merged into the C standard git repository but has been accepted by WG14), so C2X with that macro should not declare some things that are declared for older standards with that macro. The approach taken here is to provide the declarations (when __STDC_WANT_IEC_60559_TYPES_EXT__ is enabled) only when (defined __USE_GNU || !__GLIBC_USE (ISOC2X)), so if C2X features are enabled then those declarations (that are only in TS 18661-3 and not in C2X) will only be provided if _GNU_SOURCE is defined as well. Thus _GNU_SOURCE remains a superset of the TS features as well as of C2X. Some other somewhat related changes in C2X are not addressed here. There's an open proposal not to include the fmin and fmax functions for the _FloatN / _FloatNx types, given the new min/max operations, which could be handled like the previous point if adopted. And the fromfp functions have been changed to return a result in floating type rather than intmax_t / uintmax_t; my inclination there is to treat that like that change of totalorder type (new symbol versions etc. for the ABI change; old versions become compat symbols and are no longer supported as an API). Tested for x86_64 and x86.
2021-01-02Update copyright dates with scripts/update-copyrightsPaul Eggert4-4/+4
I used these shell commands: ../glibc/scripts/update-copyrights $PWD/../gnulib/build-aux/update-copyright (cd ../glibc && git commit -am"[this commit message]") and then ignored the output, which consisted lines saying "FOO: warning: copyright statement not found" for each of 6694 files FOO. I then removed trailing white space from benchtests/bench-pthread-locks.c and iconvdata/tst-iconv-big5-hkscs-to-2ucs4.c, to work around this diagnostic from Savannah: remote: *** pre-commit check failed ... remote: *** error: lines with trailing whitespace found remote: error: hook declined to update refs/heads/master
2020-02-28ldbl-128ibm-compat: Redirect long double functions to f128/ieee128 functionsTulio Magno Quites Machado Filho2-11/+16
Modify the headers to redirect long double functions to global __*f128 symbols or to __*ieee128 otherwise. Most of the functions in math.h benefit from the infrastructure already available for __LDBL_COMPAT. The only exceptions are nexttowardf and nexttoward that need especial treatment. Both math/bits/mathcalls-helper-functions.h and math/bits/mathcalls.h were modified in order to provide alternative redirection destinations that are essential to support functions that should not be redirected to the same name pattern of the rest of the functions, i.e.: __fpclassify, __signbit, __iseqsig, __issignaling, isinf, finite and isnan, which will be redirected to __*f128 instead of __*ieee128 used for the rest.