aboutsummaryrefslogtreecommitdiff
path: root/prover_snapshots/coq/duopod/riscv_duopod.v
blob: bedca97aa0af613bc48b00c56c11215fc8452977 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
(*Generated by Sail from riscv_duopod.*)
Require Import Sail.Base.
Require Import Sail.Real.
Require Import riscv_duopod_types.
Require Import mem_metadata.
Require Import riscv_extras.
Import ListNotations.
Open Scope string.
Open Scope bool.
Open Scope Z.


Definition is_none {a : Type} (opt : option a) : bool :=
   match opt with | Some _ => false | None => true end.

Definition is_some {a : Type} (opt : option a) : bool :=
   match opt with | Some _ => true | None => false end.

Definition eq_unit (_ : unit) (_ : unit) : {_bool : bool & ArithFact (_bool)} := build_ex (true).

Definition neq_int (x : Z) (y : Z) : {_bool : bool & ArithFact (Bool.eqb (negb (x =? y)) _bool)} :=
   build_ex (negb (Z.eqb x y)).

Definition neq_bool (x : bool) (y : bool) : bool := negb (Bool.eqb x y).

Definition __id (x : Z) : {_retval : Z & ArithFact (_retval =? x)} := build_ex (x).

Definition _shl_int_general (m : Z) (n : Z) : Z :=
   if sumbool_of_bool (Z.geb n 0) then shl_int m n else shr_int m (Z.opp n).

Definition _shr_int_general (m : Z) (n : Z) : Z :=
   if sumbool_of_bool (Z.geb n 0) then shr_int m n else shl_int m (Z.opp n).

Definition fdiv_int (n : Z) (m : Z) : Z :=
   if sumbool_of_bool (andb (Z.ltb n 0) (Z.gtb m 0)) then Z.sub (Z.quot (Z.add n 1) m) 1
   else if sumbool_of_bool (andb (Z.gtb n 0) (Z.ltb m 0)) then Z.sub (Z.quot (Z.sub n 1) m) 1
   else Z.quot n m.

Definition fmod_int (n : Z) (m : Z) : Z := Z.sub n (Z.mul m (fdiv_int n m)).

Definition concat_str_bits {n : Z} (str : string) (x : mword n) : string :=
   String.append str (string_of_bits x).

Definition concat_str_dec (str : string) (x : Z) : string := String.append str (dec_str x).



Definition sail_mask {v0 : Z} (len : Z) (v : mword v0) `{ArithFact ((len >=? 0) && (v0 >=? 0))}
: mword len :=
   if sumbool_of_bool (Z.leb len (length_mword v)) then vector_truncate v len else zero_extend v len.

Definition sail_ones (n : Z) `{ArithFact (n >=? 0)} : mword n := not_vec (zeros n).

Definition slice_mask (n : Z) (i : Z) (l : Z) `{ArithFact (n >=? 0)} : mword n :=
   if sumbool_of_bool (Z.geb l n) then shiftl (sail_ones n) i
   else
     let one : bits n := sail_mask n ('b"1"  : bits 1) in
     shiftl (sub_vec (shiftl one l) one) i.

Definition read_kind_of_num (arg_ : Z) `{ArithFact ((0 <=? arg_) && (arg_ <=? 11))} : read_kind :=
   let l__33 := arg_ in
   if sumbool_of_bool (Z.eqb l__33 0) then Read_plain
   else if sumbool_of_bool (Z.eqb l__33 1) then Read_reserve
   else if sumbool_of_bool (Z.eqb l__33 2) then Read_acquire
   else if sumbool_of_bool (Z.eqb l__33 3) then Read_exclusive
   else if sumbool_of_bool (Z.eqb l__33 4) then Read_exclusive_acquire
   else if sumbool_of_bool (Z.eqb l__33 5) then Read_stream
   else if sumbool_of_bool (Z.eqb l__33 6) then Read_RISCV_acquire
   else if sumbool_of_bool (Z.eqb l__33 7) then Read_RISCV_strong_acquire
   else if sumbool_of_bool (Z.eqb l__33 8) then Read_RISCV_reserved
   else if sumbool_of_bool (Z.eqb l__33 9) then Read_RISCV_reserved_acquire
   else if sumbool_of_bool (Z.eqb l__33 10) then Read_RISCV_reserved_strong_acquire
   else Read_X86_locked.

Definition num_of_read_kind (arg_ : read_kind) : {e : Z & ArithFact ((0 <=? e) && (e <=? 11))} :=
   build_ex (
      match arg_ with
      | Read_plain => 0
      | Read_reserve => 1
      | Read_acquire => 2
      | Read_exclusive => 3
      | Read_exclusive_acquire => 4
      | Read_stream => 5
      | Read_RISCV_acquire => 6
      | Read_RISCV_strong_acquire => 7
      | Read_RISCV_reserved => 8
      | Read_RISCV_reserved_acquire => 9
      | Read_RISCV_reserved_strong_acquire => 10
      | Read_X86_locked => 11
      end
   ).

Definition write_kind_of_num (arg_ : Z) `{ArithFact ((0 <=? arg_) && (arg_ <=? 10))} : write_kind :=
   let l__23 := arg_ in
   if sumbool_of_bool (Z.eqb l__23 0) then Write_plain
   else if sumbool_of_bool (Z.eqb l__23 1) then Write_conditional
   else if sumbool_of_bool (Z.eqb l__23 2) then Write_release
   else if sumbool_of_bool (Z.eqb l__23 3) then Write_exclusive
   else if sumbool_of_bool (Z.eqb l__23 4) then Write_exclusive_release
   else if sumbool_of_bool (Z.eqb l__23 5) then Write_RISCV_release
   else if sumbool_of_bool (Z.eqb l__23 6) then Write_RISCV_strong_release
   else if sumbool_of_bool (Z.eqb l__23 7) then Write_RISCV_conditional
   else if sumbool_of_bool (Z.eqb l__23 8) then Write_RISCV_conditional_release
   else if sumbool_of_bool (Z.eqb l__23 9) then Write_RISCV_conditional_strong_release
   else Write_X86_locked.

Definition num_of_write_kind (arg_ : write_kind) : {e : Z & ArithFact ((0 <=? e) && (e <=? 10))} :=
   build_ex (
      match arg_ with
      | Write_plain => 0
      | Write_conditional => 1
      | Write_release => 2
      | Write_exclusive => 3
      | Write_exclusive_release => 4
      | Write_RISCV_release => 5
      | Write_RISCV_strong_release => 6
      | Write_RISCV_conditional => 7
      | Write_RISCV_conditional_release => 8
      | Write_RISCV_conditional_strong_release => 9
      | Write_X86_locked => 10
      end
   ).

Definition a64_barrier_domain_of_num (arg_ : Z) `{ArithFact ((0 <=? arg_) && (arg_ <=? 3))}
: a64_barrier_domain :=
   let l__20 := arg_ in
   if sumbool_of_bool (Z.eqb l__20 0) then A64_FullShare
   else if sumbool_of_bool (Z.eqb l__20 1) then A64_InnerShare
   else if sumbool_of_bool (Z.eqb l__20 2) then A64_OuterShare
   else A64_NonShare.

Definition num_of_a64_barrier_domain (arg_ : a64_barrier_domain)
: {e : Z & ArithFact ((0 <=? e) && (e <=? 3))} :=
   build_ex (
      match arg_ with
      | A64_FullShare => 0
      | A64_InnerShare => 1
      | A64_OuterShare => 2
      | A64_NonShare => 3
      end
   ).

Definition a64_barrier_type_of_num (arg_ : Z) `{ArithFact ((0 <=? arg_) && (arg_ <=? 2))}
: a64_barrier_type :=
   let l__18 := arg_ in
   if sumbool_of_bool (Z.eqb l__18 0) then A64_barrier_all
   else if sumbool_of_bool (Z.eqb l__18 1) then A64_barrier_LD
   else A64_barrier_ST.

Definition num_of_a64_barrier_type (arg_ : a64_barrier_type)
: {e : Z & ArithFact ((0 <=? e) && (e <=? 2))} :=
   build_ex (match arg_ with | A64_barrier_all => 0 | A64_barrier_LD => 1 | A64_barrier_ST => 2 end).

Definition trans_kind_of_num (arg_ : Z) `{ArithFact ((0 <=? arg_) && (arg_ <=? 2))} : trans_kind :=
   let l__16 := arg_ in
   if sumbool_of_bool (Z.eqb l__16 0) then Transaction_start
   else if sumbool_of_bool (Z.eqb l__16 1) then Transaction_commit
   else Transaction_abort.

Definition num_of_trans_kind (arg_ : trans_kind) : {e : Z & ArithFact ((0 <=? e) && (e <=? 2))} :=
   build_ex (
      match arg_ with
      | Transaction_start => 0
      | Transaction_commit => 1
      | Transaction_abort => 2
      end
   ).

Definition cache_op_kind_of_num (arg_ : Z) `{ArithFact ((0 <=? arg_) && (arg_ <=? 10))}
: cache_op_kind :=
   let l__6 := arg_ in
   if sumbool_of_bool (Z.eqb l__6 0) then Cache_op_D_IVAC
   else if sumbool_of_bool (Z.eqb l__6 1) then Cache_op_D_ISW
   else if sumbool_of_bool (Z.eqb l__6 2) then Cache_op_D_CSW
   else if sumbool_of_bool (Z.eqb l__6 3) then Cache_op_D_CISW
   else if sumbool_of_bool (Z.eqb l__6 4) then Cache_op_D_ZVA
   else if sumbool_of_bool (Z.eqb l__6 5) then Cache_op_D_CVAC
   else if sumbool_of_bool (Z.eqb l__6 6) then Cache_op_D_CVAU
   else if sumbool_of_bool (Z.eqb l__6 7) then Cache_op_D_CIVAC
   else if sumbool_of_bool (Z.eqb l__6 8) then Cache_op_I_IALLUIS
   else if sumbool_of_bool (Z.eqb l__6 9) then Cache_op_I_IALLU
   else Cache_op_I_IVAU.

Definition num_of_cache_op_kind (arg_ : cache_op_kind)
: {e : Z & ArithFact ((0 <=? e) && (e <=? 10))} :=
   build_ex (
      match arg_ with
      | Cache_op_D_IVAC => 0
      | Cache_op_D_ISW => 1
      | Cache_op_D_CSW => 2
      | Cache_op_D_CISW => 3
      | Cache_op_D_ZVA => 4
      | Cache_op_D_CVAC => 5
      | Cache_op_D_CVAU => 6
      | Cache_op_D_CIVAC => 7
      | Cache_op_I_IALLUIS => 8
      | Cache_op_I_IALLU => 9
      | Cache_op_I_IVAU => 10
      end
   ).

Definition not_bit (b : bitU) : bitU := if eq_bit b B1 then B0 else B1.

Definition neq_vec {n : Z} (x : mword n) (y : mword n) : bool := negb (eq_vec x y).



Definition string_of_bit (b : bitU) : M (string) :=
   (match b with | B0 => returnm "0b0" | B1 => returnm "0b1" | _ => exit tt  : M (string) end)
    : M (string).

Definition get_config_print_instr '(tt : unit) : bool := false.

Definition get_config_print_reg '(tt : unit) : bool := false.

Definition get_config_print_mem '(tt : unit) : bool := false.

Definition get_config_print_platform '(tt : unit) : bool := false.

Definition EXTS {n : Z} (m : Z) (v : mword n) `{ArithFact (m >=? n)} : mword m := sign_extend v m.

Definition EXTZ {n : Z} (m : Z) (v : mword n) `{ArithFact (m >=? n)} : mword m := zero_extend v m.

Definition zeros_implicit (n : Z) `{ArithFact (n >=? 0)} : mword n := zeros n.

Definition zeros (n : Z) `{ArithFact (n >=? 0)} : mword n :=
   autocast (replicate_bits ('b"0"  : mword 1) n).

Definition ones (n : Z) `{ArithFact (n >=? 0)} : mword n := sail_ones n.

Definition bool_to_bits (x : bool) : mword 1 :=
   if sumbool_of_bool x then 'b"1"  : mword 1 else 'b"0"  : mword 1.

Definition bit_to_bool (b : bitU) : M (bool) :=
   (match b with | B1 => returnm true | B0 => returnm false | _ => exit tt  : M (bool) end)
    : M (bool).

Definition to_bits (l : Z) (n : Z) `{ArithFact (l >=? 0)} : mword l := get_slice_int l n 0.

Definition zopz0zI_s {n : Z} (x : mword n) (y : mword n) `{ArithFact (n >? 0)} : bool :=
   Z.ltb (projT1 (sint x)) (projT1 (sint y)).

Definition zopz0zKzJ_s {n : Z} (x : mword n) (y : mword n) `{ArithFact (n >? 0)} : bool :=
   Z.geb (projT1 (sint x)) (projT1 (sint y)).

Definition zopz0zI_u {n : Z} (x : mword n) (y : mword n) : bool :=
   Z.ltb (projT1 (uint x)) (projT1 (uint y)).

Definition zopz0zKzJ_u {n : Z} (x : mword n) (y : mword n) : bool :=
   Z.geb (projT1 (uint x)) (projT1 (uint y)).

Definition zopz0zIzJ_u {n : Z} (x : mword n) (y : mword n) : bool :=
   Z.leb (projT1 (uint x)) (projT1 (uint y)).

Definition shift_right_arith64 (v : mword 64) (shift : mword 6) : mword 64 :=
   let v128 : bits 128 := EXTS 128 v in
   subrange_vec_dec (shift_bits_right v128 shift) 63 0.

Definition shift_right_arith32 (v : mword 32) (shift : mword 5) : mword 32 :=
   let v64 : bits 64 := EXTS 64 v in
   subrange_vec_dec (shift_bits_right v64 shift) 31 0.

Axiom spc_forwards_matches : forall  (_ : unit) , bool.

Axiom spc_backwards_matches : forall  (_ : string) , bool.

Axiom opt_spc_forwards_matches : forall  (_ : unit) , bool.

Axiom opt_spc_backwards_matches : forall  (_ : string) , bool.

Axiom def_spc_forwards_matches : forall  (_ : unit) , bool.

Axiom def_spc_backwards_matches : forall  (_ : string) , bool.

Axiom hex_bits_forwards : forall {n : Z} (_ : (Z * mword n)) , string.

Axiom hex_bits_backwards : forall {n : Z} (_ : string) , (Z * mword n).

Axiom hex_bits_forwards_matches : forall {n : Z} (_ : (Z * mword n)) , bool.

Axiom hex_bits_backwards_matches : forall  (_ : string) , bool.

Axiom hex_bits_matches_prefix : forall
{n : Z}
(_ : string)
,
option (((Z * mword n) * {n : Z & ArithFact (n >=? 0)})).

Fixpoint _rec_n_leading_spaces (s : string) (_reclimit : Z) (_acc : Acc (Zwf 0) _reclimit)
{struct _acc} : M ({n : Z & ArithFact (n >=? 0)}).
exact (
   assert_exp' (Z.geb _reclimit 0) "recursion limit reached" >>= fun _ =>
   let p0_ := s in
   (if generic_eq p0_ "" then returnm (build_ex 0)
    else
      let p0_ := string_take s 1 in
      (if generic_eq p0_ " " then
         (_rec_n_leading_spaces (string_drop s 1) (Z.sub _reclimit 1) (_limit_reduces _acc)) >>= fun '(existT _ w__0 _ : {n : Z & ArithFact (n >=?
           0)}) =>
         returnm (build_ex (Z.add 1 w__0))
       else returnm (build_ex 0))
       : M ({n : Z & ArithFact (n >=? 0)}))
    : M ({n : Z & ArithFact (n >=? 0)})
).
Defined.


Definition n_leading_spaces (s : string) : M ({n : Z & ArithFact (n >=? 0)}) :=
   (_rec_n_leading_spaces s ((projT1 (string_length s))  : Z) (Zwf_guarded _))
    : M ({n : Z & ArithFact (n >=? 0)}).

Definition spc_forwards '(tt : unit) : string := " ".

Definition spc_backwards (s : string) : unit := tt.

Definition spc_matches_prefix (s : string) : M (option ((unit * {n : Z & ArithFact (n >=? 0)}))) :=
   (n_leading_spaces s) >>= fun '(existT _ n _) =>
   let l__5 := n in
   returnm (if sumbool_of_bool (Z.eqb l__5 0) then None else Some (tt, build_ex n)).

Definition opt_spc_forwards '(tt : unit) : string := "".

Definition opt_spc_backwards (s : string) : unit := tt.

Definition opt_spc_matches_prefix (s : string) : M (option ((unit * {n : Z & ArithFact (n >=? 0)}))) :=
   (n_leading_spaces s) >>= fun '(existT _ w__0 _ : {n : Z & ArithFact (n >=? 0)}) =>
   returnm (Some (tt, build_ex w__0)).

Definition def_spc_forwards '(tt : unit) : string := " ".

Definition def_spc_backwards (s : string) : unit := tt.

Definition def_spc_matches_prefix (s : string) : M (option ((unit * {n : Z & ArithFact (n >=? 0)}))) :=
   (opt_spc_matches_prefix s)  : M (option ((unit * {n : Z & ArithFact (n >=? 0)}))).

Definition rX (r : mword 5) : M (mword 64) :=
   let b__0 := r in
   (if eq_vec b__0 ('b"00000"  : mword 5) then returnm (EXTZ 64 (Ox"0"  : mword 4))
    else
      read_reg Xs_ref >>= fun w__0 : vec (mword 64) 32 =>
      returnm (vec_access_dec w__0 (projT1 (uint r))))
    : M (mword 64).

Definition wX (r : mword 5) (v : mword 64) : M (unit) :=
   (if neq_vec r ('b"00000"  : mword 5) then
      read_reg Xs_ref >>= fun w__0 : vec (mword 64) 32 =>
      write_reg Xs_ref (vec_update_dec w__0 (projT1 (uint r)) v)
       : M (unit)
    else returnm tt)
    : M (unit).

Definition read_mem (addr : mword 64) (width : Z) `{ArithFact (width >=? 0)} : M (mword (8 * width)) :=
   (MEMr 64 width (EXTZ 64 (Ox"0"  : mword 4)) addr)  : M (mword (8 * width)).

Definition iop_of_num (arg_ : Z) `{ArithFact ((0 <=? arg_) && (arg_ <=? 5))} : iop :=
   let l__0 := arg_ in
   if sumbool_of_bool (Z.eqb l__0 0) then RISCV_ADDI
   else if sumbool_of_bool (Z.eqb l__0 1) then RISCV_SLTI
   else if sumbool_of_bool (Z.eqb l__0 2) then RISCV_SLTIU
   else if sumbool_of_bool (Z.eqb l__0 3) then RISCV_XORI
   else if sumbool_of_bool (Z.eqb l__0 4) then RISCV_ORI
   else RISCV_ANDI.

Definition num_of_iop (arg_ : iop) : {e : Z & ArithFact ((0 <=? e) && (e <=? 5))} :=
   build_ex (
      match arg_ with
      | RISCV_ADDI => 0
      | RISCV_SLTI => 1
      | RISCV_SLTIU => 2
      | RISCV_XORI => 3
      | RISCV_ORI => 4
      | RISCV_ANDI => 5
      end
   ).

Definition execute_LOAD (imm : mword 12) (rs1 : mword 5) (rd : mword 5) : M (unit) :=
   (rX rs1) >>= fun w__0 : mword 64 =>
   let addr : xlenbits := add_vec w__0 (EXTS 64 imm) in
   (read_mem addr 8) >>= fun result : xlenbits => (wX rd result)  : M (unit).

Definition execute_ITYPE (arg0 : mword 12) (arg1 : mword 5) (arg2 : mword 5) (arg3 : iop) : M (unit) :=
   let merge_var := (arg0, arg1, arg2, arg3) in
   (match merge_var with
    | (imm, rs1, rd, RISCV_ADDI) =>
       (rX rs1) >>= fun rs1_val =>
       let imm_ext : xlenbits := EXTS 64 imm in
       let result := add_vec rs1_val imm_ext in
       (wX rd result)
        : M (unit)
    | _ => exit tt  : M (unit)
    end)
    : M (unit).

Definition execute (merge_var : ast) : M (unit) :=
   (match merge_var with
    | ITYPE (imm, rs1, rd, arg3) => (execute_ITYPE imm rs1 rd arg3)  : M (unit)
    | LOAD (imm, rs1, rd) => (execute_LOAD imm rs1 rd)  : M (unit)
    end)
    : M (unit).

Definition decode (v__0 : mword 32) : option ast :=
   if andb (eq_vec (subrange_vec_dec v__0 14 12) ('b"000"  : mword (14 - 12 + 1)))
        (eq_vec (subrange_vec_dec v__0 6 0) ('b"0010011"  : mword (6 - 0 + 1))) then
     let imm : bits 12 := subrange_vec_dec v__0 31 20 in
     let rs1 : regbits := subrange_vec_dec v__0 19 15 in
     let rd : regbits := subrange_vec_dec v__0 11 7 in
     let imm : bits 12 := subrange_vec_dec v__0 31 20 in
     Some (ITYPE (imm, rs1, rd, RISCV_ADDI))
   else if andb (eq_vec (subrange_vec_dec v__0 14 12) ('b"011"  : mword (14 - 12 + 1)))
             (eq_vec (subrange_vec_dec v__0 6 0) ('b"0000011"  : mword (6 - 0 + 1))) then
     let imm : bits 12 := subrange_vec_dec v__0 31 20 in
     let rs1 : regbits := subrange_vec_dec v__0 19 15 in
     let rd : regbits := subrange_vec_dec v__0 11 7 in
     let imm : bits 12 := subrange_vec_dec v__0 31 20 in
     Some (LOAD (imm, rs1, rd))
   else None.

Definition initial_regstate : regstate :=
{| Xs :=
     (vec_of_list_len [Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64;Ox"0000000000000000"  : mword 64;
                       Ox"0000000000000000"
                        : mword 64;Ox"0000000000000000"  : mword 64]); 
   nextPC := (Ox"0000000000000000"  : mword 64); 
   PC := (Ox"0000000000000000"  : mword 64) |}.
Hint Unfold initial_regstate : sail.