aboutsummaryrefslogtreecommitdiff
path: root/model/riscv_vmem_sv32.sail
blob: 1a27072abd0e03e10dd345757e242ab3b967ffb4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/* Sv32 address translation for RV32. */

/* FIXME: paddr32 is 34-bits, but phys_mem accesses in riscv_mem take 32-bit (xlenbits) addresses.
 * Define a converter for now.
 */

function to_phys_addr(a : paddr32) -> xlenbits = a[31..0]

val walk32 : (vaddr32, AccessType(ext_access_type), Privilege, bool, bool, paddr32, nat, bool, ext_ptw) -> PTW_Result(paddr32, SV32_PTE) effect {rmem, rmemt, rreg, escape}
function walk32(vaddr, ac, priv, mxr, do_sum, ptb, level, global, ext_ptw) = {
  let va = Mk_SV32_Vaddr(vaddr);
  let pt_ofs : paddr32 = shiftl(EXTZ(shiftr(va.VPNi(), (level * SV32_LEVEL_BITS))[(SV32_LEVEL_BITS - 1) .. 0]),
                                PTE32_LOG_SIZE);
  let pte_addr = ptb + pt_ofs;
  match (mem_read(ac, to_phys_addr(pte_addr), 4, false, false, false)) {
    MemException(_) => {
/*    print("walk32(vaddr=" ^ BitStr(vaddr) ^ " level=" ^ string_of_int(level)
            ^ " pt_base=" ^ BitStr(to_phys_addr(ptb))
            ^ " pt_ofs=" ^ BitStr(to_phys_addr(pt_ofs))
            ^ " pte_addr=" ^ BitStr(to_phys_addr(pte_addr))
            ^ ": invalid pte address"); */
      PTW_Failure(PTW_Access(), ext_ptw)
    },
    MemValue(v) => {
      let pte = Mk_SV32_PTE(v);
      let pbits = pte.BITS();
      let ext_pte : extPte = zeros(); // no reserved bits for extensions
      let pattr = Mk_PTE_Bits(pbits);
      let is_global = global | (pattr.G() == 0b1);
/*    print("walk32(vaddr=" ^ BitStr(vaddr) ^ " level=" ^ string_of_int(level)
            ^ " pt_base=" ^ BitStr(to_phys_addr(ptb))
            ^ " pt_ofs=" ^ BitStr(to_phys_addr(pt_ofs))
            ^ " pte_addr=" ^ BitStr(to_phys_addr(pte_addr))
            ^ " pte=" ^ BitStr(v)); */
      if isInvalidPTE(pbits, ext_pte) then {
/*      print("walk32: invalid pte"); */
        PTW_Failure(PTW_Invalid_PTE(), ext_ptw)
      } else {
        if isPTEPtr(pbits, ext_pte) then {
          if level > 0 then {
            /* walk down the pointer to the next level */
            walk32(vaddr, ac, priv, mxr, do_sum, shiftl(EXTZ(pte.PPNi()), PAGESIZE_BITS), level - 1, is_global, ext_ptw)
          } else {
            /* last-level PTE contains a pointer instead of a leaf */
/*          print("walk32: last-level pte contains a ptr"); */
            PTW_Failure(PTW_Invalid_PTE(), ext_ptw)
          }
        } else { /* leaf PTE */
          match checkPTEPermission(ac, priv, mxr, do_sum, pattr, ext_pte, ext_ptw) {
            PTE_Check_Failure(ext_ptw) => {
/*            print("walk32: pte permission check failure"); */
              PTW_Failure(PTW_No_Permission(), ext_ptw)
            },
            PTE_Check_Success(ext_ptw) => {
              if level > 0 then { /* superpage */
                /* fixme hack: to get a mask of appropriate size */
                let mask = shiftl(pte.PPNi() ^ pte.PPNi() ^ EXTZ(0b1), level * SV32_LEVEL_BITS) - 1;
                if (pte.PPNi() & mask) != EXTZ(0b0) then {
                  /* misaligned superpage mapping */
/*                print("walk32: misaligned superpage mapping"); */
                  PTW_Failure(PTW_Misaligned(), ext_ptw)
                } else {
                  /* add the appropriate bits of the VPN to the superpage PPN */
                  let ppn = pte.PPNi() | (EXTZ(va.VPNi()) & mask);
/*                let res = append(ppn, va.PgOfs());
                  print("walk32: using superpage: pte.ppn=" ^ BitStr(pte.PPNi())
                        ^ " ppn=" ^ BitStr(ppn) ^ " res=" ^ BitStr(res)); */
                  PTW_Success(append(ppn, va.PgOfs()), pte, pte_addr, level, is_global, ext_ptw)
                }
              } else {
                /* normal leaf PTE */
/*              let res = append(pte.PPNi(), va.PgOfs());
                print("walk32: pte.ppn=" ^ BitStr(pte.PPNi()) ^ " ppn=" ^ BitStr(pte.PPNi()) ^ " res=" ^ BitStr(res)); */
                PTW_Success(append(pte.PPNi(), va.PgOfs()), pte, pte_addr, level, is_global, ext_ptw)
              }
            }
          }
        }
      }
    }
  }
}

/* TLB management: single entry for now */

// ideally we would use the below form:
// type TLB32_Entry = TLB_Entry(sizeof(asid32), sizeof(vaddr32), sizeof(paddr32), sizeof(pte32))
type TLB32_Entry = TLB_Entry(9, 32, 34, 32)
register tlb32 : option(TLB32_Entry)

val lookup_TLB32 : (asid32, vaddr32) -> option((nat, TLB32_Entry)) effect {rreg}
function lookup_TLB32(asid, vaddr) =
  match tlb32 {
    None()  => None(),
    Some(e) => if match_TLB_Entry(e, asid, vaddr) then Some((0, e)) else None()
  }

val add_to_TLB32 : (asid32, vaddr32, paddr32, SV32_PTE, paddr32, nat, bool) -> unit effect {wreg, rreg}
function add_to_TLB32(asid, vAddr, pAddr, pte, pteAddr, level, global) = {
  let ent : TLB32_Entry = make_TLB_Entry(asid, global, vAddr, pAddr, pte.bits(), level, pteAddr, SV32_LEVEL_BITS);
  tlb32 = Some(ent)
}

function write_TLB32(idx : nat, ent : TLB32_Entry) -> unit =
  tlb32 = Some(ent)

val flush_TLB32 : (option(asid32), option(vaddr32)) -> unit effect {rreg, wreg}
function flush_TLB32(asid, addr) =
  match (tlb32) {
    None()  => (),
    Some(e) => if   flush_TLB_Entry(e, asid, addr)
               then tlb32 = None()
               else ()
  }

/* address translation */

val translate32 : (asid32, paddr32, vaddr32, AccessType(ext_access_type), Privilege, bool, bool, nat, ext_ptw) -> TR_Result(paddr32, PTW_Error) effect {rreg, wreg, wmv, wmvt, escape, rmem, rmemt}
function translate32(asid, ptb, vAddr, ac, priv, mxr, do_sum, level, ext_ptw) = {
  match lookup_TLB32(asid, vAddr) {
    Some(idx, ent) => {
/*    print("translate32: TLB32 hit for " ^ BitStr(vAddr)); */
      let  pte = Mk_SV32_PTE(ent.pte);
      let  ext_pte : extPte = zeros(); // no reserved bits for extensions
      let  pteBits = Mk_PTE_Bits(pte.BITS());
      match checkPTEPermission(ac, priv, mxr, do_sum, pteBits, ext_pte, ext_ptw) {
        PTE_Check_Failure(ext_ptw) => { TR_Failure(PTW_No_Permission(), ext_ptw) },
        PTE_Check_Success(ext_ptw) => {
          match update_PTE_Bits(pteBits, ac, ext_pte) {
            None()           => TR_Address(ent.pAddr | EXTZ(vAddr & ent.vAddrMask), ext_ptw),
            Some(pbits, ext) => {
              if ~ (plat_enable_dirty_update ())
              then {
                /* pte needs dirty/accessed update but that is not enabled */
                TR_Failure(PTW_PTE_Update(), ext_ptw)
              } else {
                /* update PTE entry and TLB */
                n_pte = update_BITS(pte, pbits.bits());
                /* ext is unused since there are no reserved bits for extensions */
                n_ent : TLB32_Entry = ent;
                n_ent.pte = n_pte.bits();
                write_TLB32(idx, n_ent);
                /* update page table */
                match mem_write_value(to_phys_addr(EXTZ(ent.pteAddr)), 4, n_pte.bits(), false, false, false) {
                  MemValue(_)     => (),
                  MemException(e) => internal_error("invalid physical address in TLB")
                };
                TR_Address(ent.pAddr | EXTZ(vAddr & ent.vAddrMask), ext_ptw)
              }
            }
          }
        }
      }
    },
    None() => {
      match walk32(vAddr, ac, priv, mxr, do_sum, ptb, level, false, ext_ptw) {
        PTW_Failure(f, ext_ptw) => TR_Failure(f, ext_ptw),
        PTW_Success(pAddr, pte, pteAddr, level, global, ext_ptw) => {
          match update_PTE_Bits(Mk_PTE_Bits(pte.BITS()), ac, zeros()) {
            None() => {
              add_to_TLB32(asid, vAddr, pAddr, pte, pteAddr, level, global);
              TR_Address(pAddr, ext_ptw)
            },
            Some(pbits, ext) =>
              if ~ (plat_enable_dirty_update ())
              then {
                /* pte needs dirty/accessed update but that is not enabled */
                TR_Failure(PTW_PTE_Update(), ext_ptw)
              } else {
                w_pte : SV32_PTE = update_BITS(pte, pbits.bits());
                /* ext is unused since there are no reserved bits for extensions */
                match mem_write_value(to_phys_addr(pteAddr), 4, w_pte.bits(), false, false, false) {
                  MemValue(_) => {
                    add_to_TLB32(asid, vAddr, pAddr, w_pte, pteAddr, level, global);
                    TR_Address(pAddr, ext_ptw)
                  },
                  MemException(e) => {
                    /* pte is not in valid memory */
                    TR_Failure(PTW_Access(), ext_ptw)
                  }
                }
              }
          }
        }
      }
    }
  }
}

function init_vmem_sv32() -> unit = {
  tlb32 = None()
}