aboutsummaryrefslogtreecommitdiff
path: root/model/riscv_vmem.sail
blob: 2d1e5d1628f21ae7a201aedc4c24f72e64ea7a73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/*=======================================================================================*/
/*  This Sail RISC-V architecture model, comprising all files and                        */
/*  directories except where otherwise noted is subject the BSD                          */
/*  two-clause license in the LICENSE file.                                              */
/*                                                                                       */
/*  SPDX-License-Identifier: BSD-2-Clause                                                */
/*=======================================================================================*/

// ****************************************************************
// Virtual memory address translation and memory protection,
// including PTWs (Page Table Walks) and TLBs (Translation Look-aside Buffers)
// Supported VM modes: Sv32, Sv39, Sv48.  TODO: Sv57

// STYLE NOTES:
//   PRIVATE items are used only within this VM code.
//   PUBLIC  items are invoked from other parts of sail-riscv.

// TLB NOTE:
// TLBs are not part of the RISC-V architecture specification.
// However, we model a simple TLB so that
// (1) we can meaningfully test SFENCE.VMA which is a no-op wihout TLBs;
// (2) we can greatly speed up simulation speed
//     (e.g., from 10s or minutes to few minutes for Linux boot)
// The TLB implementation is in a separate file: riscv_vmem_tlb.sail
// The code in this file is structured and commented so you can easily
// ignore TLB functionality at first reading.

// ****************************************************************
// Fields of virtual addresses

// PRIVATE: Extract full VPN field from VA
function vpns_of_va(sv_params : SV_Params,
                    va        : bits(64)) -> bits(64) = {
  let mask : bits(64) = zero_extend(ones(sv_params.va_size_bits));
  (va & mask) >> pagesize_bits
}

// PRIVATE: Extract VPN[level] from  VA
function vpn_j_of_va(sv_params : SV_Params,
                     va        : bits(64),
                     level     : PTW_Level) -> bits(64) = {
  let lsb  : range(0,63) = pagesize_bits + level * sv_params.vpn_size_bits;
  assert (lsb < sizeof(xlen));
  let mask : bits(64) = zero_extend(ones(sv_params.vpn_size_bits));
  ((va >> lsb) & mask)
}

// PRIVATE: Extract offset within page from VA
function offset_of_va(va : bits(64)) -> bits(PAGESIZE_BITS) = va[pagesize_bits - 1 .. 0]

// Valid xlen-wide values containing virtual addrs must have upper
// bits equal to the MSB of the virtual address.
// Virtual address widths depend on the virtual memory mode.
// PRIVATE
function is_valid_vAddr(struct { va_size_bits, _ } : SV_Params,
                        vAddr                      : bits(64)) -> bool =
 vAddr == sign_extend(vAddr[va_size_bits - 1 .. 0])

// ****************************************************************
// Results of Page Table Walk (PTW)

// PRIVATE
union PTW_Result = {
  PTW_Success: (bits(64), bits(64), bits(64), nat, bool, ext_ptw),
  PTW_Failure: (PTW_Error, ext_ptw)
}

// ****************************************************************
// Page Table Walk (PTW)

// Note: 'pt_walk()' is recursive => needs separate 'val' decls

// PRIVATE
val pt_walk : (SV_Params,
               bits(64),                     // virtual addr
               AccessType(ext_access_type),  // Read/Write/ReadWrite/Execute
               Privilege,                    // User/Supervisor/Machine
               bool,                         // mstatus.MXR
               bool,                         // do_sum
               bits(64),                     // PT base addr
               PTW_Level,                    // tree level for this recursive call
               bool,                         // global translation,
               ext_ptw)                      // ext_ptw
              -> PTW_Result

function pt_walk(sv_params,
                 va,
                 ac,
                 priv,
                 mxr,
                 do_sum,
                 pt_base,
                 level,
                 global,
                 ext_ptw) = {
  let vpn_j      = vpn_j_of_va(sv_params, va, level);
  let pte_offset = vpn_j << sv_params.log_pte_size_bytes;
  let pte_addr   = pt_base + pte_offset;

  // In Sv32, physical addrs are actually 34 bits, not XLEN(=32) bits.
  // Below, 'pte_phys_addr' is XLEN bits because it's an arg to
  // 'mem_read_priv()' [riscv_mem.sail] where it's declared as xlenbits.
  // That def and this use need to be fixed together (TODO)
  let pte_phys_addr : xlenbits = pte_addr[(sizeof(xlen) - 1) .. 0];

  // Read this-level PTE from mem
  let mem_result = mem_read_priv(Read(Data),              // AccessType
                                 Supervisor,              // Privilege
                                 pte_phys_addr,
                                 8,                       // atom (8)
                                 false,                   // aq
                                 false,                   // rl
                                 false);                  // res

  match mem_result {
    MemException(_) => PTW_Failure(PTW_Access(), ext_ptw),
    MemValue(pte)   => {
      let pte_flags = Mk_PTE_Flags(pte[7 .. 0]);
      if pte_is_invalid(pte_flags) then
        PTW_Failure(PTW_Invalid_PTE(), ext_ptw)
      else {
        let ppns : bits(64) = PPNs_of_PTE(sv_params, pte);
        let global'         = global | (pte_flags[G] == 0b1);
        if pte_is_ptr(pte_flags) then {
          // Non-Leaf PTE
          if level > 0 then {
            // follow the pointer to walk next level
            let pt_base' : bits(64) = ppns << pagesize_bits;
            let level'              = level - 1;
            pt_walk(sv_params, va, ac, priv, mxr, do_sum,
                    pt_base', level', global', ext_ptw)
          }
          else
            // level 0 PTE, but contains a pointer instead of a leaf
            PTW_Failure(PTW_Invalid_PTE(), ext_ptw)
        }
        else {
          // Leaf PTE
          let ext_pte   = msbs_of_PTE(sv_params, pte);
          let pte_check = check_PTE_permission(ac, priv, mxr, do_sum, pte_flags,
                                               ext_pte, ext_ptw);
          match pte_check {
            PTE_Check_Failure(ext_ptw, ext_ptw_fail) =>
              PTW_Failure(ext_get_ptw_error(ext_ptw_fail), ext_ptw),
            PTE_Check_Success(ext_ptw) =>
              if level > 0 then {
                // Superpage; construct mask for lower-level PPNs from the PTE
                let mask_bits = level * sv_params.pte_PPN_j_size_bits;
                // Clear the lowest `mask_bits` bits.
                let ppns_masked = (ppns >> mask_bits) << mask_bits;
                if not(ppns == ppns_masked) then
                  // misaligned superpage mapping
                  PTW_Failure(PTW_Misaligned(), ext_ptw)
                else {
                  // Compose final PA in superpage:
                  // Superpage PPN + lower VPNs + pagesize_bits page-offset
                  let mask : bits(64) = ~ (ones() << mask_bits);
                  let ppn = ppns | (vpns_of_va(sv_params, va) & mask);
                  let pa  = (ppn << pagesize_bits) | zero_extend(offset_of_va(va));
                  PTW_Success(pa, pte, pte_addr, level, global', ext_ptw)
                }
              }
              else {
                let pa = (ppns << pagesize_bits) | zero_extend(offset_of_va(va));
                PTW_Success(pa, pte, pte_addr, level, global', ext_ptw)
              }
          }
        }
      }
    }
  }
}

// ****************************************************************
// Architectural SATP CSR

// PUBLIC: see also riscv_insts_zicsr.sail and other CSR-related files
register satp : xlenbits

// See riscv_sys_regs.sail for legalize_satp{32,64}().
// WARNING: those functions legalize Mode but not ASID?
// PUBLIC: invoked from writeCSR() to fixup WARL fields
function legalize_satp(a : Architecture,
                       o : xlenbits,        // previous value of satp
                       v : xlenbits)        // proposed new value of satp
                      -> xlenbits = {       // new legal value of satp
  if sizeof(xlen) == 32 then {
    // The slice and extend ops below are no-ops when xlen==32,
    // but appease the type-checker when xlen==64 (when this code is not executed!)
    let o32      : bits(32) = o[31 .. 0];
    let v32      : bits(32) = v[31 .. 0];
    let new_satp : bits(32) = legalize_satp32(a, o32, v32);
    zero_extend(new_satp);
  } else if sizeof(xlen) == 64 then {
    // The extend and truncate ops below are no-ops when xlen==64,
    // but appease the type-checker when xlen==32 (when this code is not executed!)
    let o64      : bits(64) = zero_extend(o);
    let v64      : bits(64) = zero_extend(v);
    let new_satp : bits(64) = legalize_satp64(a, o64, v64);
    truncate(new_satp, sizeof(xlen))
  } else
    internal_error(__FILE__, __LINE__, "Unsupported xlen" ^ dec_str(sizeof(xlen)))
}

// ----------------
// Fields of SATP

// ASID is 9b in Sv32, 16b in Sv39/Sv48/Sv57: we use 16b for both
// PRIVATE
function satp_to_asid(satp_val : xlenbits) -> asidbits =
   if      sizeof(xlen) == 32 then zero_extend(Mk_Satp32(satp_val)[Asid])
   else if sizeof(xlen) == 64 then Mk_Satp64(satp_val)[Asid]
   else internal_error(__FILE__, __LINE__,
                       "Unsupported xlen" ^ dec_str(sizeof(xlen)))

// Result is 64b to cover both RV32 and RV64 addrs
// PRIVATE
function satp_to_PT_base(satp_val : xlenbits) -> bits(64) = {
  let ppn = if      sizeof(xlen) == 32 then zero_extend (64, Mk_Satp32(satp_val)[PPN])
            else if sizeof(xlen) == 64 then zero_extend (64, Mk_Satp64(satp_val)[PPN])
            else internal_error(__FILE__, __LINE__,
                                "Unsupported xlen" ^ dec_str(sizeof(xlen)));
  ppn << pagesize_bits
}

// Compute address translation mode from SATP register
// PRIVATE
function translationMode(priv : Privilege) -> SATPMode = {
  if priv == Machine then
    Sbare
  else if sizeof(xlen) == 32 then
    match Mk_Satp32(satp)[Mode] {
      0b0 => Sbare,
      0b1  => Sv32
    }
  else if sizeof(xlen) == 64 then {
    // Translation mode is based on mstatus.SXL, which could be RV32 when xlen==64
    let arch = architecture(get_mstatus_SXL(mstatus));
    match arch {
      Some(RV64) => { let mbits : bits(4) = satp[63 .. 60];
                      match satp64Mode_of_bits(RV64, mbits) {    // see riscv_types.sail
                        Some(m) => m,
                        None()  => internal_error(__FILE__, __LINE__,
                                                  "invalid RV64 translation mode in satp")
                      }
                    },
      Some(RV32) => match Mk_Satp32(satp[31 .. 0])[Mode] {    // Note: satp is 64bits here
                      // When xlen is 64, mstatus.SXL (for S privilege) can be RV32
                      0b0 => Sbare,
                      0b1  => Sv32
                    },
      _    => internal_error(__FILE__, __LINE__, "unsupported address translation arch")
    }
  }
  else
    internal_error(__FILE__, __LINE__, "unsupported xlen")
}

// ****************************************************************
// VA to PA translation

// Result of address translation

// PUBLIC
union TR_Result('paddr : Type, 'failure : Type) = {
  TR_Address : ('paddr, ext_ptw),
  TR_Failure : ('failure, ext_ptw)
}

// This function can be ignored on first reading since TLBs are not
// part of RISC-V architecture spec (see TLB_NOTE above).
// PRIVATE: translate on TLB hit, and maintenance of PTE in TLB
function translate_TLB_hit(sv_params : SV_Params,
                           asid      : asidbits,
                           ptb       : bits(64),
                           vAddr     : bits(64),
                           ac        : AccessType(ext_access_type),
                           priv      : Privilege,
                           mxr       : bool,
                           do_sum    : bool,
                           ext_ptw   : ext_ptw,
                           tlb_index : nat,
                           ent       : TLB_Entry)
                          -> TR_Result(bits(64), PTW_Error) = {
  let pte       = ent.pte;
  let ext_pte   = msbs_of_PTE(sv_params, pte);
  let pte_flags = Mk_PTE_Flags(pte[7 .. 0]);
  let pte_check = check_PTE_permission(ac, priv, mxr, do_sum, pte_flags,
                                       ext_pte,
                                       ext_ptw);
  match pte_check {
    PTE_Check_Failure(ext_ptw, ext_ptw_fail) =>
      TR_Failure(ext_get_ptw_error(ext_ptw_fail), ext_ptw),
    PTE_Check_Success(ext_ptw) =>
      match update_PTE_Bits(sv_params, pte, ac) {
        None()     => TR_Address(ent.pAddr | (vAddr & ent.vAddrMask), ext_ptw),
        Some(pte') =>
          // See riscv_platform.sail
          if not(plat_enable_dirty_update()) then
            // pte needs dirty/accessed update but that is not enabled
            TR_Failure(PTW_PTE_Update(), ext_ptw)
          else {
            // Writeback the PTE (which has new A/D bits)
            let n_ent = {ent with pte=pte'};
            write_TLB(tlb_index, n_ent);
            let pte_phys_addr = ent.pteAddr[(sizeof(xlen) - 1) .. 0];
            let mv = mem_write_value_priv(pte_phys_addr,
                                          8,
                                          pte',
                                          Supervisor,
                                          false,
                                          false,
                                          false);
            match mv {
              MemValue(_)     => (),
              MemException(e) => internal_error(__FILE__, __LINE__,
                                                "invalid physical address in TLB")
            };
            TR_Address(ent.pAddr | (vAddr & ent.vAddrMask), ext_ptw)
          }
      }
  }
}

// PRIVATE: translate on TLB miss (do a page-table walk)
function translate_TLB_miss(sv_params : SV_Params,
                            asid      : asidbits,
                            ptb       : bits(64),
                            vAddr     : bits(64),
                            ac        : AccessType(ext_access_type),
                            priv      : Privilege,
                            mxr       : bool,
                            do_sum    : bool,
                            ext_ptw   : ext_ptw) -> TR_Result(bits(64), PTW_Error) = {
  let initial_level = sv_params.levels - 1;
  let ptw_result    = pt_walk(sv_params, vAddr, ac, priv, mxr, do_sum,
                              ptb, initial_level, false, ext_ptw);
  match ptw_result {
    PTW_Failure(f, ext_ptw) => TR_Failure(f, ext_ptw),
    PTW_Success(pAddr, pte, pteAddr, level, global, ext_ptw) => {
      let ext_pte   = msbs_of_PTE(sv_params, pte);
      // Without TLBs, this 'match' expression can be replaced simply
      // by: 'TR_Address(pAddr, ext_ptw)'    (see TLB_NOTE above)
      match update_PTE_Bits(sv_params, pte, ac) {
        None() => {
          add_to_TLB(asid, vAddr, pAddr, pte, pteAddr, level, global,
                     sv_params.vpn_size_bits,
                     pagesize_bits);
          TR_Address(pAddr, ext_ptw)
        },
        Some(pte') =>
          // See riscv_platform.sail
          if not(plat_enable_dirty_update()) then
            // pte needs dirty/accessed update but that is not enabled
            TR_Failure(PTW_PTE_Update(), ext_ptw)
          else {
            // Writeback the PTE (which has new A/D bits)
            let pte_phys_addr = pteAddr[(sizeof(xlen) - 1) .. 0];
            let mv = mem_write_value_priv(pte_phys_addr, // pteAddr,
                                          8,
                                          pte',
                                          Supervisor,
                                          false,
                                          false,
                                          false);
            match mv {
              MemValue(_) => {
                add_to_TLB(asid, vAddr, pAddr, pte', pteAddr, level, global,
                           sv_params.vpn_size_bits,
                           pagesize_bits);
                TR_Address(pAddr, ext_ptw)
              },
              MemException(e) =>
                TR_Failure(PTW_Access(), ext_ptw)
            }
          }
        }
      }
    }
}

// PRIVATE
function translate(sv_params : SV_Params,
                   asid      : asidbits,
                   ptb       : bits(64),
                   vAddr_arg : bits(64),
                   ac        : AccessType(ext_access_type),
                   priv      : Privilege,
                   mxr       : bool,
                   do_sum    : bool,
                   ext_ptw   : ext_ptw)
                  -> TR_Result(bits(64), PTW_Error) = {
  let va_mask : bits(64) = zero_extend(ones(sv_params.va_size_bits));
  let vAddr              = (vAddr_arg & va_mask);

  // On first reading, assume lookup_TLB returns None(), since TLBs
  // are not part of RISC-V archticture spec (see TLB_NOTE above)
  match lookup_TLB(asid, vAddr) {
    Some(index, ent) => translate_TLB_hit(sv_params, asid, ptb, vAddr, ac, priv,
                                          mxr, do_sum, ext_ptw, index, ent),
    None()           => translate_TLB_miss(sv_params, asid, ptb, vAddr, ac, priv,
                                           mxr, do_sum, ext_ptw)
  }
}

// Top-level addr-translation function
// PUBLIC: invoked from instr-fetch and load/store/amo
function translateAddr(vAddr   : xlenbits,
                       ac      : AccessType(ext_access_type))
                      -> TR_Result(xlenbits, ExceptionType) = {
  // Internally the vmem code works with 64-bit values, whether xlen==32 or xlen==64
  // This 'extend' is a no-op when xlen==64 and extends when xlen==32
  let vAddr_64b : bits(64) = zero_extend(vAddr);
  // Effective privilege takes into account mstatus.PRV, mstatus.MPP
  // See riscv_sys_regs.sail for effectivePrivilege() and cur_privilege
  let effPriv   : Privilege = effectivePrivilege(ac, mstatus, cur_privilege);
  let mode      : SATPMode  = translationMode(effPriv);
  let (valid_va, sv_params) : (bool, SV_Params) = match mode {
    Sbare => return TR_Address(vAddr, init_ext_ptw),
    Sv32  => (true,                                 sv32_params),
    Sv39  => (is_valid_vAddr(sv39_params, vAddr_64b), sv39_params),
    Sv48  => (is_valid_vAddr(sv48_params, vAddr_64b), sv48_params),
    // Sv57 => (is_valid_vAddr(sv57_params, vAddr_64b), sv57_params),    // TODO
  };
  if not(valid_va) then
    TR_Failure(translationException(ac, PTW_Invalid_Addr()), init_ext_ptw)
  else {
    let mxr               = mstatus.MXR() == 0b1;
    let do_sum            = mstatus.SUM() == 0b1;
    let asid   : asidbits = satp_to_asid(satp);
    let ptb    : bits(64) = satp_to_PT_base(satp);
    let tr_result1 = translate(sv_params,
                               asid,
                               ptb,
                               vAddr_64b,
                               ac, effPriv, mxr, do_sum,
                               init_ext_ptw);
    // Fixup result PA or exception
    match tr_result1 {
      TR_Address(pa, ext_ptw) => TR_Address(truncate(pa, sizeof(xlen)), ext_ptw),
      TR_Failure(f, ext_ptw)  => TR_Failure(translationException(ac, f), ext_ptw)
    }
  }
}

// ****************************************************************
// Initialize Virtual Memory state

// PUBLIC: invoked from init_model()
function init_vmem() -> unit = init_TLB()

// ****************************************************************