aboutsummaryrefslogtreecommitdiff
path: root/model/riscv_mem.sail
blob: ccf4d2fa9886980462dc52235d2d2b3a449ca578 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*=======================================================================================*/
/*  This Sail RISC-V architecture model, comprising all files and                        */
/*  directories except where otherwise noted is subject the BSD                          */
/*  two-clause license in the LICENSE file.                                              */
/*                                                                                       */
/*  SPDX-License-Identifier: BSD-2-Clause                                                */
/*=======================================================================================*/

/* Physical memory model.
 *
 * This assumes that the platform memory map has been defined, so that accesses
 * to MMIO regions can be dispatched.
 *
 * The implementation below supports the reading and writing of memory
 * metadata in addition to raw memory data.
 *
 * The external API for this module is composed of three central functions
 *
 *   mem_read_priv_meta
 *   mem_write_ea
 *   mem_write_value_priv_meta
 *
 * and some special cases which partially apply these functions:
 *
 *   mem_read_priv - strips metadata from reads
 *   mem_read_meta - uses effectivePrivilege
 *   mem_read      - both of the above partial applications
 *
 *   mem_write_value_meta - uses effectivePrivilege
 *   mem_write_value_priv - uses a default value for metadata
 *   mem_write_value      - both of the above partial applications
 *
 * The internal implementation first performs a PMP check (if PMP is
 * enabled), and then dispatches to MMIO regions or physical memory as
 * per the platform memory map.
 */

function is_aligned_addr forall 'n. (addr : xlenbits, width : int('n)) -> bool =
  unsigned(addr) % width == 0

function read_kind_of_flags (aq : bool, rl : bool, res : bool) -> option(read_kind) =
  match (aq, rl, res) {
    (false, false, false) => Some(Read_plain),
    (true, false, false)  => Some(Read_RISCV_acquire),
    (true, true, false)   => Some(Read_RISCV_strong_acquire),
    (false, false, true)  => Some(Read_RISCV_reserved),
    (true, false, true)   => Some(Read_RISCV_reserved_acquire),
    (true, true, true)    => Some(Read_RISCV_reserved_strong_acquire),
    (false, true, false)  => None(), /* should these be instead throwing error_not_implemented as below? */
    (false, true, true)   => None()
  }

function write_kind_of_flags (aq : bool, rl : bool, con : bool) -> write_kind =
  match (aq, rl, con) {
    (false, false, false) => Write_plain,
    (false, true,  false) => Write_RISCV_release,
    (false, false, true)  => Write_RISCV_conditional,
    (false, true , true)  => Write_RISCV_conditional_release,
    (true,  true,  false) => Write_RISCV_strong_release,
    (true,  true , true)  => Write_RISCV_conditional_strong_release,
    // throw an illegal instruction here?
    (true,  false, false) => throw(Error_not_implemented("store.aq")),
    (true,  false, true)  => throw(Error_not_implemented("sc.aq"))
  }

// only used for actual memory regions, to avoid MMIO effects
function phys_mem_read forall 'n, 0 < 'n <= max_mem_access . (t : AccessType(ext_access_type), paddr : xlenbits, width : int('n), aq : bool, rl: bool, res : bool, meta : bool) -> MemoryOpResult((bits(8 * 'n), mem_meta)) = {
  let result = (match read_kind_of_flags(aq, rl, res) {
    Some(rk) => Some(read_ram(rk, paddr, width, meta)),
    None()   => None()
  }) : option((bits(8 * 'n), mem_meta));
  match (t, result) {
    (Execute(),  None()) => MemException(E_Fetch_Access_Fault()),
    (Read(Data), None()) => MemException(E_Load_Access_Fault()),
    (_,          None()) => MemException(E_SAMO_Access_Fault()),
    (_,      Some(v, m)) => { if   get_config_print_mem()
                              then print_mem("mem[" ^ to_str(t) ^ "," ^ BitStr(paddr) ^ "] -> " ^ BitStr(v));
                              MemValue(v, m) }
  }
}

// Check if access is permitted according to PMPs and PMAs.
val phys_access_check : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), Privilege, xlenbits, int('n)) -> option(ExceptionType)
function phys_access_check (t, p, paddr, width) = {
  let pmpError : option(ExceptionType) = if sys_pmp_count() == 0 then None() else pmpCheck(paddr, width, t, p);
  // TODO: Also check PMAs and select the highest priority fault.
  pmpError
}

/* dispatches to MMIO regions or physical memory regions depending on physical memory map */
function checked_mem_read forall 'n, 0 < 'n <= max_mem_access . (
  t : AccessType(ext_access_type),
  priv : Privilege,
  paddr : xlenbits,
  width : int('n),
  aq : bool,
  rl : bool,
  res: bool,
  meta : bool,
) -> MemoryOpResult((bits(8 * 'n), mem_meta)) =
  match phys_access_check(t, priv, paddr, width) {
    Some(e) => MemException(e),
    None() => {
      if   within_mmio_readable(paddr, width)
      then MemoryOpResult_add_meta(mmio_read(t, paddr, width), default_meta)
      else if within_phys_mem(paddr, width)
      then match ext_check_phys_mem_read(t, paddr, width, aq, rl, res, meta) {
        Ext_PhysAddr_OK()     => phys_mem_read(t, paddr, width, aq, rl, res, meta),
        Ext_PhysAddr_Error(e) => MemException(e)
      } else match t {
        Execute()  => MemException(E_Fetch_Access_Fault()),
        Read(Data) => MemException(E_Load_Access_Fault()),
        _          => MemException(E_SAMO_Access_Fault())
      }
    }
  }

/* Atomic accesses can be done to MMIO regions, e.g. in kernel access to device registers. */

$ifdef RVFI_DII
val rvfi_read : forall 'n, 'n > 0. (xlenbits, int('n), MemoryOpResult((bits(8 * 'n), mem_meta))) -> unit
function rvfi_read (addr, width, result) = {
  rvfi_mem_data[rvfi_mem_addr] = zero_extend(addr);
  rvfi_mem_data_present = true;
  match result {
    /* TODO: report tag bit for capability writes and extend mask by one bit. */
    MemValue(v, _) => if width <= 16
                       then { rvfi_mem_data[rvfi_mem_rdata] = sail_zero_extend(v, 256);
                              rvfi_mem_data[rvfi_mem_rmask] = rvfi_encode_width_mask(width) }
                       else { internal_error(__FILE__, __LINE__, "Expected at most 16 bytes here!") },
    MemException(_) => ()
  };
}
$else
val rvfi_read : forall 'n, 'n > 0. (xlenbits, int('n), MemoryOpResult((bits(8 * 'n), mem_meta))) -> unit
function rvfi_read (addr, width, result) = ()
$endif

/* NOTE: The rreg effect is due to MMIO. */
$ifdef RVFI_DII
val mem_read      : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, int('n), bool, bool, bool)       -> MemoryOpResult(bits(8 * 'n))
val mem_read_priv : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), Privilege, xlenbits, int('n), bool, bool, bool)       -> MemoryOpResult(bits(8 * 'n))
val mem_read_meta : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, int('n), bool, bool, bool, bool) -> MemoryOpResult((bits(8 * 'n), mem_meta))
val mem_read_priv_meta : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), Privilege, xlenbits, int('n), bool, bool, bool, bool) -> MemoryOpResult((bits(8 * 'n), mem_meta))
$else
val mem_read      : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, int('n), bool, bool, bool)       -> MemoryOpResult(bits(8 * 'n))
val mem_read_priv : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), Privilege, xlenbits, int('n), bool, bool, bool)       -> MemoryOpResult(bits(8 * 'n))
val mem_read_meta : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, int('n), bool, bool, bool, bool) -> MemoryOpResult((bits(8 * 'n), mem_meta))
val mem_read_priv_meta : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), Privilege, xlenbits, int('n), bool, bool, bool, bool) -> MemoryOpResult((bits(8 * 'n), mem_meta))
$endif

/* The most generic memory read operation */
function mem_read_priv_meta (typ, priv, paddr, width, aq, rl, res, meta) = {
  let result : MemoryOpResult((bits(8 * 'n), mem_meta)) =
    if (aq | res) & not(is_aligned_addr(paddr, width))
    then MemException(E_Load_Addr_Align())
    else match (aq, rl, res) {
      (false, true,  false) => throw(Error_not_implemented("load.rl")),
      (false, true,  true)  => throw(Error_not_implemented("lr.rl")),
      (_, _, _)             => checked_mem_read(typ, priv, paddr, width, aq, rl, res, meta)
    };
  rvfi_read(paddr, width, result);
  result
}

function mem_read_meta (typ, paddr, width, aq, rl, res, meta) =
  mem_read_priv_meta(typ, effectivePrivilege(typ, mstatus, cur_privilege), paddr, width, aq, rl, res, meta)

/* Specialized mem_read_meta that drops the metadata */
function mem_read_priv (typ, priv, paddr, width, aq, rl, res) =
  MemoryOpResult_drop_meta(mem_read_priv_meta(typ, priv, paddr, width, aq, rl, res, false))

/* Specialized mem_read_priv that operates at the default effective privilege */
function mem_read (typ, paddr, width, aq, rel, res) =
  mem_read_priv(typ, effectivePrivilege(typ, mstatus, cur_privilege), paddr, width, aq, rel, res)

val mem_write_ea : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, int('n), bool, bool, bool) -> MemoryOpResult(unit)
function mem_write_ea (addr, width, aq, rl, con) =
  if (rl | con) & not(is_aligned_addr(addr, width))
  then MemException(E_SAMO_Addr_Align())
  else MemValue(write_ram_ea(write_kind_of_flags(aq, rl, con), addr, width))

$ifdef RVFI_DII
val rvfi_write : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, int('n), bits(8 * 'n), mem_meta, MemoryOpResult(bool)) -> unit
function rvfi_write (addr, width, value, meta, result) = {
  rvfi_mem_data[rvfi_mem_addr] = zero_extend(addr);
  rvfi_mem_data_present = true;
  match result {
    /* Log only the memory address (without the value) if the write fails. */
    MemValue(_) => if width <= 16 then {
        /* TODO: report tag bit for capability writes and extend mask by one bit. */
        rvfi_mem_data[rvfi_mem_wdata] = sail_zero_extend(value,256);
        rvfi_mem_data[rvfi_mem_wmask] = rvfi_encode_width_mask(width);
      } else {
        internal_error(__FILE__, __LINE__, "Expected at most 16 bytes here!");
      },
    MemException(_) => ()
  }
}
$else
val rvfi_write : forall 'n, 'n > 0. (xlenbits, int('n), bits(8 * 'n), mem_meta, MemoryOpResult(bool)) -> unit
function rvfi_write (addr, width, value, meta, result) = ()
$endif

// only used for actual memory regions, to avoid MMIO effects
function phys_mem_write forall 'n, 0 < 'n <= max_mem_access . (wk : write_kind, paddr : xlenbits, width : int('n), data : bits(8 * 'n), meta : mem_meta) -> MemoryOpResult(bool) = {
  let result = MemValue(write_ram(wk, paddr, width, data, meta));
  if   get_config_print_mem()
  then print_mem("mem[" ^ BitStr(paddr) ^ "] <- " ^ BitStr(data));
  result
}

/* dispatches to MMIO regions or physical memory regions depending on physical memory map */
function checked_mem_write forall 'n, 0 < 'n <= max_mem_access . (
  paddr : xlenbits,
  width : int('n),
  data: bits(8 * 'n),
  typ : AccessType(ext_access_type),
  priv : Privilege,
  meta: mem_meta,
  aq : bool,
  rl : bool,
  con : bool,
) -> MemoryOpResult(bool) =
  match phys_access_check(typ, priv, paddr, width) {
    Some(e) => MemException(e),
    None() => {
      if   within_mmio_writable(paddr, width)
      then mmio_write(paddr, width, data)
      else if within_phys_mem(paddr, width)
      then {
        let wk = write_kind_of_flags(aq, rl, con);
        match ext_check_phys_mem_write (wk, paddr, width, data, meta) {
          Ext_PhysAddr_OK() => phys_mem_write(wk, paddr, width, data, meta),
          Ext_PhysAddr_Error(e)  => MemException(e),
        }
      } else MemException(E_SAMO_Access_Fault())
    }
  }

/* Atomic accesses can be done to MMIO regions, e.g. in kernel access to device registers. */

/* Memory write with an explicit metadata value.  Metadata writes are
 * currently assumed to have the same alignment constraints as their
 * data.
 * NOTE: The wreg effect is due to MMIO, the rreg is due to checking mtime.
 */
val mem_write_value_priv_meta : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, int('n), bits(8 * 'n), AccessType(ext_access_type), Privilege, mem_meta, bool, bool, bool) -> MemoryOpResult(bool)
function mem_write_value_priv_meta (paddr, width, value, typ, priv, meta, aq, rl, con) = {
  if (rl | con) & not(is_aligned_addr(paddr, width))
  then MemException(E_SAMO_Addr_Align())
  else {
    let result = checked_mem_write(paddr, width, value, typ, priv, meta, aq, rl, con);
    rvfi_write(paddr, width, value, meta, result);
    result
  }
}

/* Memory write with explicit Privilege, implicit AccessType and metadata */
val mem_write_value_priv : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, int('n), bits(8 * 'n), Privilege, bool, bool, bool) -> MemoryOpResult(bool)
function mem_write_value_priv (paddr, width, value, priv, aq, rl, con) =
  mem_write_value_priv_meta(paddr, width, value, Write(default_write_acc), priv, default_meta, aq, rl, con)

/* Memory write with explicit metadata and AccessType, implicit and Privilege */
val mem_write_value_meta : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, int('n), bits(8 * 'n), ext_access_type, mem_meta, bool, bool, bool) -> MemoryOpResult(bool)
function mem_write_value_meta (paddr, width, value, ext_acc, meta, aq, rl, con) = {
  let typ = Write(ext_acc);
  let ep = effectivePrivilege(typ, mstatus, cur_privilege);
  mem_write_value_priv_meta(paddr, width, value, typ, ep, meta, aq, rl, con)
}

/* Memory write with default AccessType, Privilege, and metadata */
val mem_write_value : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, int('n), bits(8 * 'n), bool, bool, bool) -> MemoryOpResult(bool)
function mem_write_value (paddr, width, value, aq, rl, con) = {
  mem_write_value_meta(paddr, width, value, default_write_acc, default_meta, aq, rl, con)
}