aboutsummaryrefslogtreecommitdiff
path: root/model/riscv_mem.sail
blob: 25065ab5fc5ba112718c61298277ae6c4858a7ee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
/* Physical memory model.
 *
 * This assumes that the platform memory map has been defined, so that accesses
 * to MMIO regions can be dispatched.
 *
 * The implementation below supports the reading and writing of memory
 * metadata in addition to raw memory data.
 *
 * The external API for this module is
 *   {mem_read, mem_read_meta, mem_write_ea, mem_write_value_meta, mem_write_value}
 * where mem_write_value is a special case of mem_write_value_meta that uses
 * a default value of the metadata.
 *
 * The internal implementation first performs a PMP check (if PMP is
 * enabled), and then dispatches to MMIO regions or physical memory as
 * per the platform memory map.
 */

function is_aligned_addr forall 'n. (addr : xlenbits, width : atom('n)) -> bool =
  unsigned(addr) % width == 0

function read_kind_of_flags (aq : bool, rl : bool, res : bool) -> option(read_kind) =
  match (aq, rl, res) {
    (false, false, false) => Some(Read_plain),
    (true, false, false)  => Some(Read_RISCV_acquire),
    (true, true, false)   => Some(Read_RISCV_strong_acquire),
    (false, false, true)  => Some(Read_RISCV_reserved),
    (true, false, true)   => Some(Read_RISCV_reserved_acquire),
    (true, true, true)    => Some(Read_RISCV_reserved_strong_acquire),
    (false, true, false)  => None(), /* should these be instead throwing error_not_implemented as below? */
    (false, true, true)   => None()
  }

// only used for actual memory regions, to avoid MMIO effects
function phys_mem_read forall 'n, 0 < 'n <= max_mem_access . (t : AccessType(ext_access_type), paddr : xlenbits, width : atom('n), aq : bool, rl: bool, res : bool, meta : bool) -> MemoryOpResult((bits(8 * 'n), mem_meta)) = {
  let result = (match read_kind_of_flags(aq, rl, res) {
    Some(rk) => Some(read_ram(rk, paddr, width, meta)),
    None()   => None()
  }) : option((bits(8 * 'n), mem_meta));
  match (t, result) {
    (Execute(),  None()) => MemException(E_Fetch_Access_Fault()),
    (Read(Data), None()) => MemException(E_Load_Access_Fault()),
    (_,          None()) => MemException(E_SAMO_Access_Fault()),
    (_,      Some(v, m)) => { if   get_config_print_mem()
                              then print_mem("mem[" ^ to_str(t) ^ "," ^ BitStr(paddr) ^ "] -> " ^ BitStr(v));
                              MemValue(v, m) }
  }
}

/* dispatches to MMIO regions or physical memory regions depending on physical memory map */
function checked_mem_read forall 'n, 0 < 'n <= max_mem_access . (t : AccessType(ext_access_type), paddr : xlenbits, width : atom('n), aq : bool, rl : bool, res: bool, meta : bool) -> MemoryOpResult((bits(8 * 'n), mem_meta)) =
  if   within_mmio_readable(paddr, width)
  then MemoryOpResult_add_meta(mmio_read(t, paddr, width), default_meta)
  else if within_phys_mem(paddr, width)
  then phys_mem_read(t, paddr, width, aq, rl, res, meta)
  else match t {
    Execute()  => MemException(E_Fetch_Access_Fault()),
    Read(Data) => MemException(E_Load_Access_Fault()),
    _          => MemException(E_SAMO_Access_Fault())
  }

/* PMP checks if enabled */
function pmp_mem_read forall 'n, 0 < 'n <= max_mem_access . (t : AccessType(ext_access_type), paddr : xlenbits, width : atom('n), aq : bool, rl : bool, res: bool, meta : bool) -> MemoryOpResult((bits(8 * 'n), mem_meta)) =
  if   (~ (plat_enable_pmp ()))
  then checked_mem_read(t, paddr, width, aq, rl, res, meta)
  else {
    match pmpCheck(paddr, width, t, effectivePrivilege(mstatus, cur_privilege)) {
      None()  => checked_mem_read(t, paddr, width, aq, rl, res, meta),
      Some(e) => MemException(e)
    }
  }

/* Atomic accesses can be done to MMIO regions, e.g. in kernel access to device registers. */

$ifdef RVFI_DII
val rvfi_read : forall 'n, 'n > 0. (xlenbits, atom('n), MemoryOpResult(bits(8 * 'n))) -> unit effect {wreg}
function rvfi_read (addr, width, result) = {
  rvfi_exec->rvfi_mem_addr() = EXTZ(addr);
  match result {
    MemValue(v) => if   width <= 8
                   then { rvfi_exec->rvfi_mem_rdata() = sail_zero_extend(v,64);
                          rvfi_exec->rvfi_mem_rmask() = rvfi_encode_width_mask(width) }
                   else (),
    MemException(_) => ()
  };
}
$else
val rvfi_read : forall 'n, 'n > 0. (xlenbits, atom('n), MemoryOpResult(bits(8 * 'n))) -> unit
function rvfi_read (addr, width, value) = ()
$endif

/* NOTE: The rreg effect is due to MMIO. */
$ifdef RVFI_DII
val mem_read      : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult(bits(8 * 'n))             effect {wreg, rmem, rmemt, rreg, escape}
val mem_read_meta : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult((bits(8 * 'n), mem_meta)) effect {wreg, rmem, rmemt, rreg, escape}
$else
val mem_read      : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult(bits(8 * 'n))             effect {rmem, rmemt, rreg, escape}
val mem_read_meta : forall 'n, 0 < 'n <= max_mem_access . (AccessType(ext_access_type), xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult((bits(8 * 'n), mem_meta)) effect {rmem, rmemt, rreg, escape}
$endif

function mem_read (typ, paddr, width, aq, rl, res) = {
 let result : MemoryOpResult(bits(8 * 'n)) =
  if (aq | res) & (~ (is_aligned_addr(paddr, width)))
  then MemException(E_Load_Addr_Align())
  else match (aq, rl, res) {
    (false, true,  false) => throw(Error_not_implemented("load.rl")),
    (false, true,  true)  => throw(Error_not_implemented("lr.rl")),
    (_, _, _)             => MemoryOpResult_drop_meta(pmp_mem_read(typ, paddr, width, aq, rl, res, false))
  };
 rvfi_read(paddr, width, result);
 result
}

function mem_read_meta (typ, addr, width, aq, rl, res) = {
 let result : MemoryOpResult((bits(8 * 'n), mem_meta)) =
  if (aq | res) & (~ (is_aligned_addr(addr, width)))
  then MemException(E_Load_Addr_Align())
  else match (aq, rl, res) {
    (false, true,  false) => throw(Error_not_implemented("load.rl")),
    (false, true,  true)  => throw(Error_not_implemented("lr.rl")),
    (_, _, _)             => pmp_mem_read(typ, addr, width, aq, rl, res, true)
  };
 rvfi_read(addr, width, MemoryOpResult_drop_meta(result));
 result
}

val mem_write_ea : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, atom('n), bool, bool, bool) -> MemoryOpResult(unit) effect {eamem, escape}

function mem_write_ea (addr, width, aq, rl, con) = {
  if (rl | con) & (~ (is_aligned_addr(addr, width)))
  then MemException(E_SAMO_Addr_Align())
  else match (aq, rl, con) {
    (false, false, false) => MemValue(write_ram_ea(Write_plain, addr, width)),
    (false, true,  false) => MemValue(write_ram_ea(Write_RISCV_release, addr, width)),
    (false, false, true)  => MemValue(write_ram_ea(Write_RISCV_conditional, addr, width)),
    (false, true , true)  => MemValue(write_ram_ea(Write_RISCV_conditional_release, addr, width)),
    (true,  false, false) => throw(Error_not_implemented("store.aq")),
    (true,  true,  false) => MemValue(write_ram_ea(Write_RISCV_strong_release, addr, width)),
    (true,  false, true)  => throw(Error_not_implemented("sc.aq")),
    (true,  true , true)  => MemValue(write_ram_ea(Write_RISCV_conditional_strong_release, addr, width))
  }
}

$ifdef RVFI_DII
val rvfi_write : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, atom('n), bits(8 * 'n)) -> unit effect {wreg}
function rvfi_write (addr, width, value) = {
  rvfi_exec->rvfi_mem_addr() = EXTZ(addr);
  if width <= 8 then {
    rvfi_exec->rvfi_mem_wdata() = sail_zero_extend(value,64);
    rvfi_exec->rvfi_mem_wmask() = rvfi_encode_width_mask(width);
  }
}
$else
val rvfi_write : forall 'n, 'n > 0. (xlenbits, atom('n), bits(8 * 'n)) -> unit
function rvfi_write (addr, width, value) = ()
$endif

// only used for actual memory regions, to avoid MMIO effects
function phys_mem_write forall 'n, 0 < 'n <= max_mem_access . (wk : write_kind, paddr : xlenbits, width : atom('n), data : bits(8 * 'n), meta : mem_meta) -> MemoryOpResult(bool) = {
  rvfi_write(paddr, width, data);
  let result = MemValue(write_ram(wk, paddr, width, data, meta));
  if   get_config_print_mem()
  then print_mem("mem[" ^ BitStr(paddr) ^ "] <- " ^ BitStr(data));
  result
}

/* dispatches to MMIO regions or physical memory regions depending on physical memory map */
function checked_mem_write forall 'n, 0 < 'n <= max_mem_access . (wk : write_kind, paddr : xlenbits, width : atom('n), data: bits(8 * 'n), meta: mem_meta) -> MemoryOpResult(bool) =
  if   within_mmio_writable(paddr, width)
  then mmio_write(paddr, width, data)
  else if within_phys_mem(paddr, width)
  then phys_mem_write(wk, paddr, width, data, meta)
  else MemException(E_SAMO_Access_Fault())

/* PMP checks if enabled */
function pmp_mem_write forall 'n, 0 < 'n <= max_mem_access . (wk: write_kind, paddr : xlenbits, width : atom('n), data: bits(8 * 'n), ext_acc: ext_access_type, meta: mem_meta) -> MemoryOpResult(bool) =
  if   (~ (plat_enable_pmp ()))
  then checked_mem_write(wk, paddr, width, data, meta)
  else match pmpCheck(paddr, width, Write(ext_acc), effectivePrivilege(mstatus, cur_privilege)) {
         None()  => checked_mem_write(wk, paddr, width, data, meta),
         Some(e) => MemException(e)
  }

/* Atomic accesses can be done to MMIO regions, e.g. in kernel access to device registers. */

/* Memory write with an explicit metadata value.  Metadata writes are
 * currently assumed to have the same alignment constraints as their
 * data.
 * NOTE: The wreg effect is due to MMIO, the rreg is due to checking mtime.
 */
val mem_write_value_meta : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, atom('n), bits(8 * 'n), ext_access_type, mem_meta, bool, bool, bool) -> MemoryOpResult(bool) effect {wmv, wmvt, rreg, wreg, escape}
function mem_write_value_meta (paddr, width, value, ext_acc, meta, aq, rl, con) = {
  rvfi_write(paddr, width, value);
  if (rl | con) & (~ (is_aligned_addr(paddr, width)))
  then MemException(E_SAMO_Addr_Align())
  else match (aq, rl, con) {
    (false, false, false) => pmp_mem_write(Write_plain, paddr, width, value, ext_acc, meta),
    (false, true,  false) => pmp_mem_write(Write_RISCV_release, paddr, width, value, ext_acc, meta),
    (false, false, true)  => pmp_mem_write(Write_RISCV_conditional, paddr, width, value, ext_acc, meta),
    (false, true , true)  => pmp_mem_write(Write_RISCV_conditional_release, paddr, width, value, ext_acc, meta),
    (true,  true,  false) => pmp_mem_write(Write_RISCV_strong_release, paddr, width, value, ext_acc, meta),
    (true,  true , true)  => pmp_mem_write(Write_RISCV_conditional_strong_release, paddr, width, value, ext_acc, meta),
    // throw an illegal instruction here?
    (true,  false, false) => throw(Error_not_implemented("store.aq")),
    (true,  false, true)  => throw(Error_not_implemented("sc.aq"))
  }
}

/* Memory write with a default metadata value. */
val mem_write_value : forall 'n, 0 < 'n <= max_mem_access . (xlenbits, atom('n), bits(8 * 'n), bool, bool, bool) -> MemoryOpResult(bool) effect {wmv, wmvt, rreg, wreg, escape}
function mem_write_value (paddr, width, value, aq, rl, con) =
  mem_write_value_meta(paddr, width, value, default_write_acc, default_meta, aq, rl, con)