1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
|
/*=======================================================================================*/
/* This Sail RISC-V architecture model, comprising all files and */
/* directories except where otherwise noted is subject the BSD */
/* two-clause license in the LICENSE file. */
/* */
/* SPDX-License-Identifier: BSD-2-Clause */
/*=======================================================================================*/
/* ******************************************************************************* */
/* This file implements functions used by vector instructions. */
/* ******************************************************************************* */
/* Check for valid floating-point operation types
* 1. Valid element width of floating-point numbers
* 2. Valid floating-point rounding mode
*/
val valid_fp_op : ({8, 16, 32, 64}, bits(3)) -> bool
function valid_fp_op(SEW, rm_3b) = {
/* 128-bit floating-point values will be supported in future extensions */
let valid_sew = (SEW >= 16 & SEW <= 128);
let valid_rm = not(rm_3b == 0b101 | rm_3b == 0b110 | rm_3b == 0b111);
valid_sew & valid_rm
}
/* a. Normal check for floating-point instructions */
val illegal_fp_normal : (regidx, bits(1), {8, 16, 32, 64}, bits(3)) -> bool
function illegal_fp_normal(vd, vm, SEW, rm_3b) = {
not(valid_vtype()) | not(valid_rd_mask(vd, vm)) | not(valid_fp_op(SEW, rm_3b))
}
/* b. Masked check for floating-point instructions encoded with vm = 0 */
val illegal_fp_vd_masked : (regidx, {8, 16, 32, 64}, bits(3)) -> bool
function illegal_fp_vd_masked(vd, SEW, rm_3b) = {
not(valid_vtype()) | vd == 0b00000 | not(valid_fp_op(SEW, rm_3b))
}
/* c. Unmasked check for floating-point instructions encoded with vm = 1 */
val illegal_fp_vd_unmasked : ({8, 16, 32, 64}, bits(3)) -> bool
function illegal_fp_vd_unmasked(SEW, rm_3b) = {
not(valid_vtype()) | not(valid_fp_op(SEW, rm_3b))
}
/* d. Variable width check for floating-point widening/narrowing instructions */
val illegal_fp_variable_width : (regidx, bits(1), {8, 16, 32, 64}, bits(3), int, int) -> bool
function illegal_fp_variable_width(vd, vm, SEW, rm_3b, SEW_new, LMUL_pow_new) = {
not(valid_vtype()) | not(valid_rd_mask(vd, vm)) | not(valid_fp_op(SEW, rm_3b)) |
not(valid_eew_emul(SEW_new, LMUL_pow_new))
}
/* e. Normal check for floating-point reduction instructions */
val illegal_fp_reduction : ({8, 16, 32, 64}, bits(3)) -> bool
function illegal_fp_reduction(SEW, rm_3b) = {
not(valid_vtype()) | not(assert_vstart(0)) | not(valid_fp_op(SEW, rm_3b))
}
/* f. Variable width check for floating-point widening reduction instructions */
val illegal_fp_reduction_widen : ({8, 16, 32, 64}, bits(3), int, int) -> bool
function illegal_fp_reduction_widen(SEW, rm_3b, SEW_widen, LMUL_pow_widen) = {
not(valid_vtype()) | not(assert_vstart(0)) | not(valid_fp_op(SEW, rm_3b)) |
not(valid_eew_emul(SEW_widen, LMUL_pow_widen))
}
/* Floating point canonical NaN for 16-bit, 32-bit and 64-bit types */
val canonical_NaN : forall 'm, 'm in {16, 32, 64}. int('m) -> bits('m)
function canonical_NaN('m) = {
match 'm {
16 => canonical_NaN_H(),
32 => canonical_NaN_S(),
64 => canonical_NaN_D()
}
}
/* Floating point classification functions */
val f_is_neg_inf : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_neg_inf(xf) = {
match 'm {
16 => f_is_neg_inf_H(xf),
32 => f_is_neg_inf_S(xf),
64 => f_is_neg_inf_D(xf)
}
}
val f_is_neg_norm : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_neg_norm(xf) = {
match 'm {
16 => f_is_neg_norm_H(xf),
32 => f_is_neg_norm_S(xf),
64 => f_is_neg_norm_D(xf)
}
}
val f_is_neg_subnorm : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_neg_subnorm(xf) = {
match 'm {
16 => f_is_neg_subnorm_H(xf),
32 => f_is_neg_subnorm_S(xf),
64 => f_is_neg_subnorm_D(xf)
}
}
val f_is_neg_zero : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_neg_zero(xf) = {
match 'm {
16 => f_is_neg_zero_H(xf),
32 => f_is_neg_zero_S(xf),
64 => f_is_neg_zero_D(xf)
}
}
val f_is_pos_zero : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_pos_zero(xf) = {
match 'm {
16 => f_is_pos_zero_H(xf),
32 => f_is_pos_zero_S(xf),
64 => f_is_pos_zero_D(xf)
}
}
val f_is_pos_subnorm : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_pos_subnorm(xf) = {
match 'm {
16 => f_is_pos_subnorm_H(xf),
32 => f_is_pos_subnorm_S(xf),
64 => f_is_pos_subnorm_D(xf)
}
}
val f_is_pos_norm : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_pos_norm(xf) = {
match 'm {
16 => f_is_pos_norm_H(xf),
32 => f_is_pos_norm_S(xf),
64 => f_is_pos_norm_D(xf)
}
}
val f_is_pos_inf : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_pos_inf(xf) = {
match 'm {
16 => f_is_pos_inf_H(xf),
32 => f_is_pos_inf_S(xf),
64 => f_is_pos_inf_D(xf)
}
}
val f_is_SNaN : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_SNaN(xf) = {
match 'm {
16 => f_is_SNaN_H(xf),
32 => f_is_SNaN_S(xf),
64 => f_is_SNaN_D(xf)
}
}
val f_is_QNaN : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_QNaN(xf) = {
match 'm {
16 => f_is_QNaN_H(xf),
32 => f_is_QNaN_S(xf),
64 => f_is_QNaN_D(xf)
}
}
val f_is_NaN : forall 'm, 'm in {16, 32, 64}. bits('m) -> bool
function f_is_NaN(xf) = {
match 'm {
16 => f_is_NaN_H(xf),
32 => f_is_NaN_S(xf),
64 => f_is_NaN_D(xf)
}
}
/* Scalar register shaping for floating point operations */
val get_scalar_fp : forall 'n, 'n in {16, 32, 64}. (regidx, int('n)) -> bits('n)
function get_scalar_fp(rs1, SEW) = {
assert(sizeof(flen) >= SEW, "invalid vector floating-point type width: FLEN < SEW");
match SEW {
16 => F_H(rs1),
32 => F_S(rs1),
64 => F_D(rs1)
}
}
/* Get the floating point rounding mode from csr fcsr */
val get_fp_rounding_mode : unit -> rounding_mode
function get_fp_rounding_mode() = encdec_rounding_mode(fcsr[FRM])
/* Negate a floating point number */
val negate_fp : forall 'm, 'm in {16, 32, 64}. bits('m) -> bits('m)
function negate_fp(xf) = {
match 'm {
16 => negate_H(xf),
32 => negate_S(xf),
64 => negate_D(xf)
}
}
/* Floating point functions using softfloat interface */
val fp_add: forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m)) -> bits('m)
function fp_add(rm_3b, op1, op2) = {
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16Add(rm_3b, op1, op2),
32 => riscv_f32Add(rm_3b, op1, op2),
64 => riscv_f64Add(rm_3b, op1, op2)
};
accrue_fflags(fflags);
result_val
}
val fp_sub: forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m)) -> bits('m)
function fp_sub(rm_3b, op1, op2) = {
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16Sub(rm_3b, op1, op2),
32 => riscv_f32Sub(rm_3b, op1, op2),
64 => riscv_f64Sub(rm_3b, op1, op2)
};
accrue_fflags(fflags);
result_val
}
val fp_min : forall 'm, 'm in {16, 32, 64}. (bits('m), bits('m)) -> bits('m)
function fp_min(op1, op2) = {
let (fflags, op1_lt_op2) : (bits_fflags, bool) = match 'm {
16 => riscv_f16Lt_quiet(op1, op2),
32 => riscv_f32Lt_quiet(op1, op2),
64 => riscv_f64Lt_quiet(op1, op2)
};
let result_val = if (f_is_NaN(op1) & f_is_NaN(op2)) then canonical_NaN('m)
else if f_is_NaN(op1) then op2
else if f_is_NaN(op2) then op1
else if (f_is_neg_zero(op1) & f_is_pos_zero(op2)) then op1
else if (f_is_neg_zero(op2) & f_is_pos_zero(op1)) then op2
else if op1_lt_op2 then op1
else op2;
accrue_fflags(fflags);
result_val
}
val fp_max : forall 'm, 'm in {16, 32, 64}. (bits('m), bits('m)) -> bits('m)
function fp_max(op1, op2) = {
let (fflags, op1_lt_op2) : (bits_fflags, bool) = match 'm {
16 => riscv_f16Lt_quiet(op1, op2),
32 => riscv_f32Lt_quiet(op1, op2),
64 => riscv_f64Lt_quiet(op1, op2)
};
let result_val = if (f_is_NaN(op1) & f_is_NaN(op2)) then canonical_NaN('m)
else if f_is_NaN(op1) then op2
else if f_is_NaN(op2) then op1
else if (f_is_neg_zero(op1) & f_is_pos_zero(op2)) then op2
else if (f_is_neg_zero(op2) & f_is_pos_zero(op1)) then op1
else if op1_lt_op2 then op2
else op1;
accrue_fflags(fflags);
result_val
}
val fp_eq : forall 'm, 'm in {16, 32, 64}. (bits('m), bits('m)) -> bool
function fp_eq(op1, op2) = {
let (fflags, result_val) : (bits_fflags, bool) = match 'm {
16 => riscv_f16Eq(op1, op2),
32 => riscv_f32Eq(op1, op2),
64 => riscv_f64Eq(op1, op2)
};
accrue_fflags(fflags);
result_val
}
val fp_gt : forall 'm, 'm in {16, 32, 64}. (bits('m), bits('m)) -> bool
function fp_gt(op1, op2) = {
let (fflags, temp_val) : (bits_fflags, bool) = match 'm {
16 => riscv_f16Le(op1, op2),
32 => riscv_f32Le(op1, op2),
64 => riscv_f64Le(op1, op2)
};
let result_val = (if fflags == 0b10000 then false else not(temp_val));
accrue_fflags(fflags);
result_val
}
val fp_ge : forall 'm, 'm in {16, 32, 64}. (bits('m), bits('m)) -> bool
function fp_ge(op1, op2) = {
let (fflags, temp_val) : (bits_fflags, bool) = match 'm {
16 => riscv_f16Lt(op1, op2),
32 => riscv_f32Lt(op1, op2),
64 => riscv_f64Lt(op1, op2)
};
let result_val = (if fflags == 0b10000 then false else not(temp_val));
accrue_fflags(fflags);
result_val
}
val fp_lt : forall 'm, 'm in {16, 32, 64}. (bits('m), bits('m)) -> bool
function fp_lt(op1, op2) = {
let (fflags, result_val) : (bits_fflags, bool) = match 'm {
16 => riscv_f16Lt(op1, op2),
32 => riscv_f32Lt(op1, op2),
64 => riscv_f64Lt(op1, op2)
};
accrue_fflags(fflags);
result_val
}
val fp_le : forall 'm, 'm in {16, 32, 64}. (bits('m), bits('m)) -> bool
function fp_le(op1, op2) = {
let (fflags, result_val) : (bits_fflags, bool) = match 'm {
16 => riscv_f16Le(op1, op2),
32 => riscv_f32Le(op1, op2),
64 => riscv_f64Le(op1, op2)
};
accrue_fflags(fflags);
result_val
}
val fp_mul : forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m)) -> bits('m)
function fp_mul(rm_3b, op1, op2) = {
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16Mul(rm_3b, op1, op2),
32 => riscv_f32Mul(rm_3b, op1, op2),
64 => riscv_f64Mul(rm_3b, op1, op2)
};
accrue_fflags(fflags);
result_val
}
val fp_div : forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m)) -> bits('m)
function fp_div(rm_3b, op1, op2) = {
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16Div(rm_3b, op1, op2),
32 => riscv_f32Div(rm_3b, op1, op2),
64 => riscv_f64Div(rm_3b, op1, op2)
};
accrue_fflags(fflags);
result_val
}
val fp_muladd : forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m), bits('m)) -> bits('m)
function fp_muladd(rm_3b, op1, op2, opadd) = {
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16MulAdd(rm_3b, op1, op2, opadd),
32 => riscv_f32MulAdd(rm_3b, op1, op2, opadd),
64 => riscv_f64MulAdd(rm_3b, op1, op2, opadd)
};
accrue_fflags(fflags);
result_val
}
val fp_nmuladd : forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m), bits('m)) -> bits('m)
function fp_nmuladd(rm_3b, op1, op2, opadd) = {
let op1 = negate_fp(op1);
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16MulAdd(rm_3b, op1, op2, opadd),
32 => riscv_f32MulAdd(rm_3b, op1, op2, opadd),
64 => riscv_f64MulAdd(rm_3b, op1, op2, opadd)
};
accrue_fflags(fflags);
result_val
}
val fp_mulsub : forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m), bits('m)) -> bits('m)
function fp_mulsub(rm_3b, op1, op2, opsub) = {
let opsub = negate_fp(opsub);
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16MulAdd(rm_3b, op1, op2, opsub),
32 => riscv_f32MulAdd(rm_3b, op1, op2, opsub),
64 => riscv_f64MulAdd(rm_3b, op1, op2, opsub)
};
accrue_fflags(fflags);
result_val
}
val fp_nmulsub : forall 'm, 'm in {16, 32, 64}. (bits(3), bits('m), bits('m), bits('m)) -> bits('m)
function fp_nmulsub(rm_3b, op1, op2, opsub) = {
let opsub = negate_fp(opsub);
let op1 = negate_fp(op1);
let (fflags, result_val) : (bits_fflags, bits('m)) = match 'm {
16 => riscv_f16MulAdd(rm_3b, op1, op2, opsub),
32 => riscv_f32MulAdd(rm_3b, op1, op2, opsub),
64 => riscv_f64MulAdd(rm_3b, op1, op2, opsub)
};
accrue_fflags(fflags);
result_val
}
val fp_class : forall 'm, 'm in {16, 32, 64}. bits('m) -> bits('m)
function fp_class(xf) = {
let result_val_10b : bits(10) =
if f_is_neg_inf(xf) then 0b_00_0000_0001
else if f_is_neg_norm(xf) then 0b_00_0000_0010
else if f_is_neg_subnorm(xf) then 0b_00_0000_0100
else if f_is_neg_zero(xf) then 0b_00_0000_1000
else if f_is_pos_zero(xf) then 0b_00_0001_0000
else if f_is_pos_subnorm(xf) then 0b_00_0010_0000
else if f_is_pos_norm(xf) then 0b_00_0100_0000
else if f_is_pos_inf(xf) then 0b_00_1000_0000
else if f_is_SNaN(xf) then 0b_01_0000_0000
else if f_is_QNaN(xf) then 0b_10_0000_0000
else zeros();
zero_extend(result_val_10b)
}
val fp_widen : forall 'm, 'm in {16, 32}. bits('m) -> bits('m * 2)
function fp_widen(nval) = {
let rm_3b = fcsr[FRM];
let (fflags, wval) : (bits_fflags, bits('m * 2)) = match 'm {
16 => riscv_f16ToF32(rm_3b, nval),
32 => riscv_f32ToF64(rm_3b, nval)
};
accrue_fflags(fflags);
wval
}
/* Floating point functions without softfloat support */
val riscv_f16ToI16 : (bits_rm, bits_H) -> (bits_fflags, bits(16))
function riscv_f16ToI16 (rm, v) = {
let (_, sig32) = riscv_f16ToI32(rm, v);
if signed(sig32) > signed(0b0 @ ones(15)) then (nvFlag(), 0b0 @ ones(15))
else if signed(sig32) < signed(0b1 @ zeros(15)) then (nvFlag(), 0b1 @ zeros(15))
else (zeros(5), sig32[15 .. 0]);
}
val riscv_f16ToI8 : (bits_rm, bits_H) -> (bits_fflags, bits(8))
function riscv_f16ToI8 (rm, v) = {
let (_, sig32) = riscv_f16ToI32(rm, v);
if signed(sig32) > signed(0b0 @ ones(7)) then (nvFlag(), 0b0 @ ones(7))
else if signed(sig32) < signed(0b1 @ zeros(7)) then (nvFlag(), 0b1 @ zeros(7))
else (zeros(5), sig32[7 .. 0]);
}
val riscv_f32ToI16 : (bits_rm, bits_S) -> (bits_fflags, bits(16))
function riscv_f32ToI16 (rm, v) = {
let (_, sig32) = riscv_f32ToI32(rm, v);
if signed(sig32) > signed(0b0 @ ones(15)) then (nvFlag(), 0b0 @ ones(15))
else if signed(sig32) < signed(0b1 @ zeros(15)) then (nvFlag(), 0b1 @ zeros(15))
else (zeros(5), sig32[15 .. 0]);
}
val riscv_f16ToUi16 : (bits_rm, bits_H) -> (bits_fflags, bits(16))
function riscv_f16ToUi16 (rm, v) = {
let (_, sig32) = riscv_f16ToUi32(rm, v);
if unsigned(sig32) > unsigned(ones(16)) then (nvFlag(), ones(16))
else (zeros(5), sig32[15 .. 0]);
}
val riscv_f16ToUi8 : (bits_rm, bits_H) -> (bits_fflags, bits(8))
function riscv_f16ToUi8 (rm, v) = {
let (_, sig32) = riscv_f16ToUi32(rm, v);
if unsigned(sig32) > unsigned(ones(8)) then (nvFlag(), ones(8))
else (zeros(5), sig32[7 .. 0]);
}
val riscv_f32ToUi16 : (bits_rm, bits_S) -> (bits_fflags, bits(16))
function riscv_f32ToUi16 (rm, v) = {
let (_, sig32) = riscv_f32ToUi32(rm, v);
if unsigned(sig32) > unsigned(ones(16)) then (nvFlag(), ones(16))
else (zeros(5), sig32[15 .. 0]);
}
val rsqrt7 : forall 'm, 'm in {16, 32, 64}. (bits('m), bool) -> bits_D
function rsqrt7 (v, sub) = {
let (sig, exp, sign, e, s) : (bits(64), bits(64), bits(1), nat, nat) = match 'm {
16 => (zero_extend(64, v[9 .. 0]), zero_extend(64, v[14 .. 10]), [v[15]], 5, 10),
32 => (zero_extend(64, v[22 .. 0]), zero_extend(64, v[30 .. 23]), [v[31]], 8, 23),
64 => (zero_extend(64, v[51 .. 0]), zero_extend(64, v[62 .. 52]), [v[63]], 11, 52)
};
assert(s == 10 & e == 5 | s == 23 & e == 8 | s == 52 & e == 11);
let table : vector(128, dec, int) = [
52, 51, 50, 48, 47, 46, 44, 43,
42, 41, 40, 39, 38, 36, 35, 34,
33, 32, 31, 30, 30, 29, 28, 27,
26, 25, 24, 23, 23, 22, 21, 20,
19, 19, 18, 17, 16, 16, 15, 14,
14, 13, 12, 12, 11, 10, 10, 9,
9, 8, 7, 7, 6, 6, 5, 4,
4, 3, 3, 2, 2, 1, 1, 0,
127, 125, 123, 121, 119, 118, 116, 114,
113, 111, 109, 108, 106, 105, 103, 102,
100, 99, 97, 96, 95, 93, 92, 91,
90, 88, 87, 86, 85, 84, 83, 82,
80, 79, 78, 77, 76, 75, 74, 73,
72, 71, 70, 70, 69, 68, 67, 66,
65, 64, 63, 63, 62, 61, 60, 59,
59, 58, 57, 56, 56, 55, 54, 53];
let (normalized_exp, normalized_sig) =
if sub then {
let nr_leadingzeros = count_leadingzeros(sig, s);
assert(nr_leadingzeros >= 0);
(to_bits(64, (0 - nr_leadingzeros)), zero_extend(64, sig[(s - 1) .. 0] << (1 + nr_leadingzeros)))
} else {
(exp, sig)
};
let idx : nat = match 'm {
16 => unsigned([normalized_exp[0]] @ normalized_sig[9 .. 4]),
32 => unsigned([normalized_exp[0]] @ normalized_sig[22 .. 17]),
64 => unsigned([normalized_exp[0]] @ normalized_sig[51 .. 46])
};
assert(idx >= 0 & idx < 128);
let out_sig = to_bits(s, table[(127 - idx)]) << (s - 7);
let out_exp = to_bits(e, (3 * (2^(e - 1) - 1) - 1 - signed(normalized_exp)) / 2);
zero_extend(64, sign @ out_exp @ out_sig)
}
val riscv_f16Rsqrte7 : (bits_rm, bits_H) -> (bits_fflags, bits_H)
function riscv_f16Rsqrte7 (rm, v) = {
match fp_class(v) {
0x0001 => (nvFlag(), 0x7e00),
0x0002 => (nvFlag(), 0x7e00),
0x0004 => (nvFlag(), 0x7e00),
0x0100 => (nvFlag(), 0x7e00),
0x0200 => (zeros(5), 0x7e00),
0x0008 => (dzFlag(), 0xfc00),
0x0010 => (dzFlag(), 0x7c00),
0x0080 => (zeros(5), 0x0000),
0x0020 => (zeros(5), rsqrt7(v, true)[15 .. 0]),
_ => (zeros(5), rsqrt7(v, false)[15 .. 0])
}
}
val riscv_f32Rsqrte7 : (bits_rm, bits_S) -> (bits_fflags, bits_S)
function riscv_f32Rsqrte7 (rm, v) = {
match fp_class(v)[15 .. 0] {
0x0001 => (nvFlag(), 0x7fc00000),
0x0002 => (nvFlag(), 0x7fc00000),
0x0004 => (nvFlag(), 0x7fc00000),
0x0100 => (nvFlag(), 0x7fc00000),
0x0200 => (zeros(5), 0x7fc00000),
0x0008 => (dzFlag(), 0xff800000),
0x0010 => (dzFlag(), 0x7f800000),
0x0080 => (zeros(5), 0x00000000),
0x0020 => (zeros(5), rsqrt7(v, true)[31 .. 0]),
_ => (zeros(5), rsqrt7(v, false)[31 .. 0])
}
}
val riscv_f64Rsqrte7 : (bits_rm, bits_D) -> (bits_fflags, bits_D)
function riscv_f64Rsqrte7 (rm, v) = {
match fp_class(v)[15 .. 0] {
0x0001 => (nvFlag(), 0x7ff8000000000000),
0x0002 => (nvFlag(), 0x7ff8000000000000),
0x0004 => (nvFlag(), 0x7ff8000000000000),
0x0100 => (nvFlag(), 0x7ff8000000000000),
0x0200 => (zeros(5), 0x7ff8000000000000),
0x0008 => (dzFlag(), 0xfff0000000000000),
0x0010 => (dzFlag(), 0x7ff0000000000000),
0x0080 => (zeros(5), zeros(64)),
0x0020 => (zeros(5), rsqrt7(v, true)[63 .. 0]),
_ => (zeros(5), rsqrt7(v, false)[63 .. 0])
}
}
val recip7 : forall 'm, 'm in {16, 32, 64}. (bits('m), bits(3), bool) -> (bool, bits_D)
function recip7 (v, rm_3b, sub) = {
let (sig, exp, sign, e, s) : (bits(64), bits(64), bits(1), nat, nat) = match 'm {
16 => (zero_extend(64, v[9 .. 0]), zero_extend(64, v[14 .. 10]), [v[15]], 5, 10),
32 => (zero_extend(64, v[22 .. 0]), zero_extend(64, v[30 .. 23]), [v[31]], 8, 23),
64 => (zero_extend(64, v[51 .. 0]), zero_extend(64, v[62 .. 52]), [v[63]], 11, 52)
};
assert(s == 10 & e == 5 | s == 23 & e == 8 | s == 52 & e == 11);
let table : vector(128, dec, int) = [
127, 125, 123, 121, 119, 117, 116, 114,
112, 110, 109, 107, 105, 104, 102, 100,
99, 97, 96, 94, 93, 91, 90, 88,
87, 85, 84, 83, 81, 80, 79, 77,
76, 75, 74, 72, 71, 70, 69, 68,
66, 65, 64, 63, 62, 61, 60, 59,
58, 57, 56, 55, 54, 53, 52, 51,
50, 49, 48, 47, 46, 45, 44, 43,
42, 41, 40, 40, 39, 38, 37, 36,
35, 35, 34, 33, 32, 31, 31, 30,
29, 28, 28, 27, 26, 25, 25, 24,
23, 23, 22, 21, 21, 20, 19, 19,
18, 17, 17, 16, 15, 15, 14, 14,
13, 12, 12, 11, 11, 10, 9, 9,
8, 8, 7, 7, 6, 5, 5, 4,
4, 3, 3, 2, 2, 1, 1, 0];
let nr_leadingzeros = count_leadingzeros(sig, s);
assert(nr_leadingzeros >= 0);
let (normalized_exp, normalized_sig) =
if sub then {
(to_bits(64, (0 - nr_leadingzeros)), zero_extend(64, sig[(s - 1) .. 0] << (1 + nr_leadingzeros)))
} else {
(exp, sig)
};
let idx : nat = match 'm {
16 => unsigned(normalized_sig[9 .. 3]),
32 => unsigned(normalized_sig[22 .. 16]),
64 => unsigned(normalized_sig[51 .. 45])
};
assert(idx >= 0 & idx < 128);
let mid_exp = to_bits(e, 2 * (2^(e - 1) - 1) - 1 - signed(normalized_exp));
let mid_sig = to_bits(s, table[(127 - idx)]) << (s - 7);
let (out_exp, out_sig)=
if mid_exp == zeros(e) then {
(mid_exp, mid_sig >> 1 | 0b1 @ zeros(s - 1))
} else if mid_exp == ones(e) then {
(zeros(e), mid_sig >> 2 | 0b01 @ zeros(s - 2))
} else (mid_exp, mid_sig);
if sub & nr_leadingzeros > 1 then {
if (rm_3b == 0b001 | rm_3b == 0b010 & sign == 0b0 | rm_3b == 0b011 & sign == 0b1) then {
(true, zero_extend(64, sign @ ones(e - 1) @ 0b0 @ ones(s)))
}
else (true, zero_extend(64, sign @ ones(e) @ zeros(s)))
} else (false, zero_extend(64, sign @ out_exp @ out_sig))
}
val riscv_f16Recip7 : (bits_rm, bits_H) -> (bits_fflags, bits_H)
function riscv_f16Recip7 (rm, v) = {
let (round_abnormal_true, res_true) = recip7(v, rm, true);
let (round_abnormal_false, res_false) = recip7(v, rm, false);
match fp_class(v) {
0x0001 => (zeros(5), 0x8000),
0x0080 => (zeros(5), 0x0000),
0x0008 => (dzFlag(), 0xfc00),
0x0010 => (dzFlag(), 0x7c00),
0x0100 => (nvFlag(), 0x7e00),
0x0200 => (zeros(5), 0x7e00),
0x0004 => if round_abnormal_true then (nxFlag() | ofFlag(), res_true[15 .. 0]) else (zeros(5), res_true[15 .. 0]),
0x0020 => if round_abnormal_true then (nxFlag() | ofFlag(), res_true[15 .. 0]) else (zeros(5), res_true[15 .. 0]),
_ => if round_abnormal_false then (nxFlag() | ofFlag(), res_false[15 .. 0]) else (zeros(5), res_false[15 .. 0])
}
}
val riscv_f32Recip7 : (bits_rm, bits_S) -> (bits_fflags, bits_S)
function riscv_f32Recip7 (rm, v) = {
let (round_abnormal_true, res_true) = recip7(v, rm, true);
let (round_abnormal_false, res_false) = recip7(v, rm, false);
match fp_class(v)[15 .. 0] {
0x0001 => (zeros(5), 0x80000000),
0x0080 => (zeros(5), 0x00000000),
0x0008 => (dzFlag(), 0xff800000),
0x0010 => (dzFlag(), 0x7f800000),
0x0100 => (nvFlag(), 0x7fc00000),
0x0200 => (zeros(5), 0x7fc00000),
0x0004 => if round_abnormal_true then (nxFlag() | ofFlag(), res_true[31 .. 0]) else (zeros(5), res_true[31 .. 0]),
0x0020 => if round_abnormal_true then (nxFlag() | ofFlag(), res_true[31 .. 0]) else (zeros(5), res_true[31 .. 0]),
_ => if round_abnormal_false then (nxFlag() | ofFlag(), res_false[31 .. 0]) else (zeros(5), res_false[31 .. 0])
}
}
val riscv_f64Recip7 : (bits_rm, bits_D) -> (bits_fflags, bits_D)
function riscv_f64Recip7 (rm, v) = {
let (round_abnormal_true, res_true) = recip7(v, rm, true);
let (round_abnormal_false, res_false) = recip7(v, rm, false);
match fp_class(v)[15 .. 0] {
0x0001 => (zeros(5), 0x8000000000000000),
0x0080 => (zeros(5), 0x0000000000000000),
0x0008 => (dzFlag(), 0xfff0000000000000),
0x0010 => (dzFlag(), 0x7ff0000000000000),
0x0100 => (nvFlag(), 0x7ff8000000000000),
0x0200 => (zeros(5), 0x7ff8000000000000),
0x0004 => if round_abnormal_true then (nxFlag() | ofFlag(), res_true[63 .. 0]) else (zeros(5), res_true[63 .. 0]),
0x0020 => if round_abnormal_true then (nxFlag() | ofFlag(), res_true[63 .. 0]) else (zeros(5), res_true[63 .. 0]),
_ => if round_abnormal_false then (nxFlag() | ofFlag(), res_false[63 .. 0]) else (zeros(5), res_false[63 .. 0])
}
}
|