aboutsummaryrefslogtreecommitdiff
path: root/handwritten_support/riscv_extras.v
blob: 84f6761015caa5252c8d7636f035508a730723ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
Require Import Sail2_instr_kinds.
Require Import Sail2_values.
Require Import Sail2_operators_mwords.
Require Import Sail2_prompt_monad.
Require Import Sail2_prompt.
Require Import String.
Require Import List.
Import List.ListNotations.

Axiom real : Type.

Definition MEM_fence_rw_rw {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_rw_rw tt).
Definition MEM_fence_r_rw  {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_r_rw tt).
Definition MEM_fence_r_r   {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_r_r tt).
Definition MEM_fence_rw_w  {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_rw_w tt).
Definition MEM_fence_w_w   {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_w_w tt).
Definition MEM_fence_w_rw  {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_w_rw tt).
Definition MEM_fence_rw_r  {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_rw_r tt).
Definition MEM_fence_r_w   {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_r_w tt).
Definition MEM_fence_w_r   {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_w_r tt).
Definition MEM_fence_tso   {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_tso tt).
Definition MEM_fence_i     {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_i tt).
(*
val MEMea                            : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_release                    : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_strong_release             : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_conditional                : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_conditional_release        : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_conditional_strong_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
*)
Definition MEMea {rv a e} addrsize (addr : mword a) size                     : monad rv unit e := write_mem_ea Write_plain addrsize addr size.
Definition MEMea_release {rv a e} addrsize (addr : mword a) size             : monad rv unit e := write_mem_ea Write_RISCV_release addrsize addr size.
Definition MEMea_strong_release {rv a e} addrsize (addr : mword a) size      : monad rv unit e := write_mem_ea Write_RISCV_strong_release addrsize addr size.
Definition MEMea_conditional {rv a e} addrsize (addr : mword a) size         : monad rv unit e := write_mem_ea Write_RISCV_conditional addrsize addr size.
Definition MEMea_conditional_release {rv a e} addrsize (addr : mword a) size : monad rv unit e := write_mem_ea Write_RISCV_conditional_release addrsize addr size.
Definition MEMea_conditional_strong_release {rv a e} addrsize (addr : mword a) size : monad rv unit e
                                          := write_mem_ea Write_RISCV_conditional_strong_release addrsize addr size.

(*
val MEMr                         : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_acquire                 : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_strong_acquire          : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_reserved                : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_reserved_acquire        : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_reserved_strong_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
*)

Definition MEMr {rv e} addrsize size (hexRAM addr : mword addrsize)                         `{ArithFact (size >= 0)} : monad rv (mword (8 * size)) e := read_mem Read_plain addrsize addr size.
Definition MEMr_acquire {rv e} addrsize size (hexRAM addr : mword addrsize)                 `{ArithFact (size >= 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_acquire addrsize addr size.
Definition MEMr_strong_acquire {rv e} addrsize size (hexRAM addr : mword addrsize)          `{ArithFact (size >= 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_strong_acquire addrsize addr size.
Definition MEMr_reserved {rv e} addrsize size (hexRAM addr : mword addrsize)                `{ArithFact (size >= 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_reserved addrsize addr size.
Definition MEMr_reserved_acquire {rv e} addrsize size (hexRAM addr : mword addrsize)        `{ArithFact (size >= 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_reserved_acquire addrsize addr size.
Definition MEMr_reserved_strong_acquire {rv e} addrsize size (hexRAM addr : mword addrsize) `{ArithFact (size >= 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_reserved_strong_acquire addrsize addr size.

(*
val MEMw                            : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_release                    : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_strong_release             : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_conditional                : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_conditional_release        : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_conditional_strong_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
*)

Definition MEMw {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size))                            : monad rv bool e := write_mem Write_plain addrsize addr size v.
Definition MEMw_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size))                    : monad rv bool e := write_mem Write_RISCV_release addrsize addr size v.
Definition MEMw_strong_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size))             : monad rv bool e := write_mem Write_RISCV_strong_release addrsize addr size v.
Definition MEMw_conditional {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size))                : monad rv bool e := write_mem Write_RISCV_conditional addrsize addr size v.
Definition MEMw_conditional_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size))        : monad rv bool e := write_mem Write_RISCV_conditional_release addrsize addr size v.
Definition MEMw_conditional_strong_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size)) : monad rv bool e := write_mem Write_RISCV_conditional_strong_release addrsize addr size v.

Definition shift_bits_left {a b} (v : mword a) (n : mword b) : mword a :=
  shiftl v (int_of_mword false n).

Definition shift_bits_right {a b} (v : mword a) (n : mword b) : mword a :=
  shiftr v (int_of_mword false n).

Definition shift_bits_right_arith {a b} (v : mword a) (n : mword b) : mword a :=
  arith_shiftr v (int_of_mword false n).

(* Use constants for undefined values for now *)
Definition internal_pick {rv a e} (vs : list a) : monad rv a e :=
match vs with
| (h::_) => returnm h
| _ => Fail "empty list in internal_pick"
end.
Definition undefined_string {rv e} (_:unit) : monad rv string e := returnm ""%string.
Definition undefined_unit {rv e} (_:unit) : monad rv unit e := returnm tt.
Definition undefined_int {rv e} (_:unit) : monad rv Z e := returnm (0:ii).
(*val undefined_vector : forall 'rv 'a 'e. integer -> 'a -> monad 'rv (list 'a) 'e*)
Definition undefined_vector {rv a e} len (u : a) `{ArithFact (len >= 0)} : monad rv (vec a len) e := returnm (vec_init u len).
(*val undefined_bitvector : forall 'rv 'a 'e. Bitvector 'a => integer -> monad 'rv 'a 'e*)
Definition undefined_bitvector {rv e} len `{ArithFact (len >= 0)} : monad rv (mword len) e := returnm (mword_of_int 0).
(*val undefined_bits : forall 'rv 'a 'e. Bitvector 'a => integer -> monad 'rv 'a 'e*)
Definition undefined_bits {rv e} := @undefined_bitvector rv e.
Definition undefined_bit {rv e} (_:unit) : monad rv bitU e := returnm BU.
(*Definition undefined_real {rv e} (_:unit) : monad rv real e := returnm (realFromFrac 0 1).*)
Definition undefined_range {rv e} i j `{ArithFact (i <= j)} : monad rv {z : Z & ArithFact (i <= z /\ z <= j)} e := returnm (build_ex i).
Definition undefined_atom {rv e} i : monad rv Z e := returnm i.
Definition undefined_nat {rv e} (_:unit) : monad rv Z e := returnm (0:ii).

Definition skip {rv e} (_:unit) : monad rv unit e := returnm tt.

(*val elf_entry : unit -> integer*)
Definition elf_entry (_:unit) : Z := 0.
(*declare ocaml target_rep function elf_entry := `Elf_loader.elf_entry`*)

Definition print_bits {n} msg (bs : mword n) := prerr_endline (msg ++ (string_of_bits bs)).

(*val get_time_ns : unit -> integer*)
Definition get_time_ns (_:unit) : Z := 0.
(*declare ocaml target_rep function get_time_ns := `(fun () -> Big_int.of_int (int_of_float (1e9 *. Unix.gettimeofday ())))`*)

Definition eq_bit (x : bitU) (y : bitU) : bool :=
  match x, y with
  | B0, B0 => true
  | B1, B1 => true
  | BU, BU => true
  | _,_ => false
  end.

Require Import Zeuclid.
Definition euclid_modulo (m n : Z) `{ArithFact (n > 0)} : {z : Z & ArithFact (0 <= z <= n-1)}.
apply existT with (x := ZEuclid.modulo m n).
constructor.
destruct H.
assert (Z.abs n = n). { rewrite Z.abs_eq; auto with zarith. }
rewrite <- H at 3.
lapply (ZEuclid.mod_always_pos m n); omega.
Qed.

(* Override the more general version *)

Definition mults_vec {n} (l : mword n) (r : mword n) : mword (2 * n) := mults_vec l r.
Definition mult_vec {n} (l : mword n) (r : mword n) : mword (2 * n) := mult_vec l r.


Definition print_endline (_:string) : unit := tt.
Definition prerr_endline (_:string) : unit := tt.
Definition prerr_string (_:string) : unit := tt.
Definition putchar {T} (_:T) : unit := tt.
Require DecimalString.
Definition string_of_int z := DecimalString.NilZero.string_of_int (Z.to_int z).

Axiom sys_enable_writable_misa : unit -> bool.
Axiom sys_enable_rvc : unit -> bool.

(* The constraint solver can do this itself, but a Coq bug puts
   anonymous_subproof into the term instead of an actual subproof. *)
Lemma n_leading_spaces_fact {w__0} :
  w__0 >= 0 -> exists ex17629_ : Z, 1 + w__0 = 1 + ex17629_ /\ 0 <= ex17629_.
intro.
exists w__0.
omega.
Qed.
Hint Resolve n_leading_spaces_fact : sail.