1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
(*=======================================================================================*)
(* RISCV Sail Model *)
(* *)
(* This Sail RISC-V architecture model, comprising all files and *)
(* directories except for the snapshots of the Lem and Sail libraries *)
(* in the prover_snapshots directory (which include copies of their *)
(* licences), is subject to the BSD two-clause licence below. *)
(* *)
(* Copyright (c) 2017-2023 *)
(* Prashanth Mundkur *)
(* Rishiyur S. Nikhil and Bluespec, Inc. *)
(* Jon French *)
(* Brian Campbell *)
(* Robert Norton-Wright *)
(* Alasdair Armstrong *)
(* Thomas Bauereiss *)
(* Shaked Flur *)
(* Christopher Pulte *)
(* Peter Sewell *)
(* Alexander Richardson *)
(* Hesham Almatary *)
(* Jessica Clarke *)
(* Microsoft, for contributions by Robert Norton-Wright and Nathaniel Wesley Filardo *)
(* Peter Rugg *)
(* Aril Computer Corp., for contributions by Scott Johnson *)
(* Philipp Tomsich *)
(* VRULL GmbH, for contributions by its employees *)
(* *)
(* All rights reserved. *)
(* *)
(* This software was developed by the above within the Rigorous *)
(* Engineering of Mainstream Systems (REMS) project, partly funded by *)
(* EPSRC grant EP/K008528/1, at the Universities of Cambridge and *)
(* Edinburgh. *)
(* *)
(* This software was developed by SRI International and the University of *)
(* Cambridge Computer Laboratory (Department of Computer Science and *)
(* Technology) under DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and *)
(* under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA *)
(* SSITH research programme. *)
(* *)
(* This project has received funding from the European Research Council *)
(* (ERC) under the European Union’s Horizon 2020 research and innovation *)
(* programme (grant agreement 789108, ELVER). *)
(* *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in *)
(* the documentation and/or other materials provided with the *)
(* distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
(* SUCH DAMAGE. *)
(*=======================================================================================*)
Require Import Sail.Base.
Require Import String.
Require Import List.
Require Import Lia.
Import List.ListNotations.
Open Scope Z.
Definition MEM_fence_rw_rw {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_rw_rw tt).
Definition MEM_fence_r_rw {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_r_rw tt).
Definition MEM_fence_r_r {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_r_r tt).
Definition MEM_fence_rw_w {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_rw_w tt).
Definition MEM_fence_w_w {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_w_w tt).
Definition MEM_fence_w_rw {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_w_rw tt).
Definition MEM_fence_rw_r {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_rw_r tt).
Definition MEM_fence_r_w {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_r_w tt).
Definition MEM_fence_w_r {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_w_r tt).
Definition MEM_fence_tso {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_tso tt).
Definition MEM_fence_i {rv e} (_:unit) : monad rv unit e := barrier (Barrier_RISCV_i tt).
(*
val MEMea : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_strong_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_conditional : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_conditional_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
val MEMea_conditional_strong_release : forall 'rv 'a 'e. Size 'a => bitvector 'a -> integer -> monad 'rv unit 'e
*)
Definition MEMea {rv a e} addrsize (addr : mword a) size : monad rv unit e := write_mem_ea Write_plain addrsize addr size.
Definition MEMea_release {rv a e} addrsize (addr : mword a) size : monad rv unit e := write_mem_ea Write_RISCV_release addrsize addr size.
Definition MEMea_strong_release {rv a e} addrsize (addr : mword a) size : monad rv unit e := write_mem_ea Write_RISCV_strong_release addrsize addr size.
Definition MEMea_conditional {rv a e} addrsize (addr : mword a) size : monad rv unit e := write_mem_ea Write_RISCV_conditional addrsize addr size.
Definition MEMea_conditional_release {rv a e} addrsize (addr : mword a) size : monad rv unit e := write_mem_ea Write_RISCV_conditional_release addrsize addr size.
Definition MEMea_conditional_strong_release {rv a e} addrsize (addr : mword a) size : monad rv unit e
:= write_mem_ea Write_RISCV_conditional_strong_release addrsize addr size.
(*
val MEMr : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_strong_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_reserved : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_reserved_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
val MEMr_reserved_strong_acquire : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> monad 'rv (bitvector 'b) 'e
*)
Definition MEMr {rv e} addrsize size (hexRAM addr : mword addrsize) `{ArithFact (size >=? 0)} : monad rv (mword (8 * size)) e := read_mem Read_plain addrsize addr size.
Definition MEMr_acquire {rv e} addrsize size (hexRAM addr : mword addrsize) `{ArithFact (size >=? 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_acquire addrsize addr size.
Definition MEMr_strong_acquire {rv e} addrsize size (hexRAM addr : mword addrsize) `{ArithFact (size >=? 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_strong_acquire addrsize addr size.
Definition MEMr_reserved {rv e} addrsize size (hexRAM addr : mword addrsize) `{ArithFact (size >=? 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_reserved addrsize addr size.
Definition MEMr_reserved_acquire {rv e} addrsize size (hexRAM addr : mword addrsize) `{ArithFact (size >=? 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_reserved_acquire addrsize addr size.
Definition MEMr_reserved_strong_acquire {rv e} addrsize size (hexRAM addr : mword addrsize) `{ArithFact (size >=? 0)} : monad rv (mword (8 * size)) e := read_mem Read_RISCV_reserved_strong_acquire addrsize addr size.
(*
val MEMw : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_strong_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_conditional : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_conditional_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
val MEMw_conditional_strong_release : forall 'rv 'a 'b 'e. Size 'a, Size 'b => integer -> integer -> bitvector 'a -> bitvector 'a -> bitvector 'b -> monad 'rv bool 'e
*)
Definition MEMw {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size)) : monad rv bool e := write_mem Write_plain addrsize addr size v.
Definition MEMw_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size)) : monad rv bool e := write_mem Write_RISCV_release addrsize addr size v.
Definition MEMw_strong_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size)) : monad rv bool e := write_mem Write_RISCV_strong_release addrsize addr size v.
Definition MEMw_conditional {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size)) : monad rv bool e := write_mem Write_RISCV_conditional addrsize addr size v.
Definition MEMw_conditional_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size)) : monad rv bool e := write_mem Write_RISCV_conditional_release addrsize addr size v.
Definition MEMw_conditional_strong_release {rv e} addrsize size (hexRAM addr : mword addrsize) (v : mword (8 * size)) : monad rv bool e := write_mem Write_RISCV_conditional_strong_release addrsize addr size v.
Definition shift_bits_left {a b} (v : mword a) (n : mword b) : mword a :=
shiftl v (int_of_mword false n).
Definition shift_bits_right {a b} (v : mword a) (n : mword b) : mword a :=
shiftr v (int_of_mword false n).
Definition shift_bits_right_arith {a b} (v : mword a) (n : mword b) : mword a :=
arith_shiftr v (int_of_mword false n).
(* Use constants for undefined values for now *)
Definition internal_pick {rv a e} (vs : list a) : monad rv a e :=
match vs with
| (h::_) => returnm h
| _ => Fail "empty list in internal_pick"
end.
Definition skip {rv e} (_:unit) : monad rv unit e := returnm tt.
(*val elf_entry : unit -> integer*)
Definition elf_entry (_:unit) : Z := 0.
(*declare ocaml target_rep function elf_entry := `Elf_loader.elf_entry`*)
Definition print_bits {n} msg (bs : mword n) := prerr_endline (msg ++ (string_of_bits bs)).
(*val get_time_ns : unit -> integer*)
Definition get_time_ns (_:unit) : Z := 0.
(*declare ocaml target_rep function get_time_ns := `(fun () -> Big_int.of_int (int_of_float (1e9 *. Unix.gettimeofday ())))`*)
Definition eq_bit (x : bitU) (y : bitU) : bool :=
match x, y with
| B0, B0 => true
| B1, B1 => true
| BU, BU => true
| _,_ => false
end.
Require Import Zeuclid.
Definition euclid_modulo (m n : Z) `{ArithFact (n >? 0)} : {z : Z & ArithFact (0 <=? z <=? n-1)}.
apply existT with (x := ZEuclid.modulo m n).
constructor.
destruct H.
unbool_comparisons.
unbool_comparisons_goal.
assert (Z.abs n = n). { rewrite Z.abs_eq; auto with zarith. }
rewrite <- H at 3.
lapply (ZEuclid.mod_always_pos m n); lia.
Qed.
(* Override the more general version *)
Definition mults_vec {n} (l : mword n) (r : mword n) : mword (2 * n) := mults_vec l r.
Definition mult_vec {n} (l : mword n) (r : mword n) : mword (2 * n) := mult_vec l r.
Definition print_endline (_:string) : unit := tt.
Definition prerr_endline (_:string) : unit := tt.
Definition prerr_string (_:string) : unit := tt.
Definition putchar {T} (_:T) : unit := tt.
Require DecimalString.
Definition string_of_int z := DecimalString.NilZero.string_of_int (Z.to_int z).
Axiom sys_enable_writable_misa : unit -> bool.
Axiom sys_enable_rvc : unit -> bool.
Axiom sys_enable_fdext : unit -> bool.
Axiom sys_enable_next : unit -> bool.
Axiom sys_enable_zfinx : unit -> bool.
Axiom sys_enable_writable_fiom : unit -> bool.
(* The constraint solver can do this itself, but a Coq bug puts
anonymous_subproof into the term instead of an actual subproof. *)
Lemma n_leading_spaces_fact {w__0} :
w__0 >= 0 -> exists ex17629_ : Z, 1 + w__0 = 1 + ex17629_ /\ 0 <= ex17629_.
intro.
exists w__0.
lia.
Qed.
#[export] Hint Resolve n_leading_spaces_fact : sail.
|