1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
|
(*=======================================================================================*)
(* RISCV Sail Model *)
(* *)
(* This Sail RISC-V architecture model, comprising all files and *)
(* directories except for the snapshots of the Lem and Sail libraries *)
(* in the prover_snapshots directory (which include copies of their *)
(* licences), is subject to the BSD two-clause licence below. *)
(* *)
(* Copyright (c) 2017-2023 *)
(* Prashanth Mundkur *)
(* Rishiyur S. Nikhil and Bluespec, Inc. *)
(* Jon French *)
(* Brian Campbell *)
(* Robert Norton-Wright *)
(* Alasdair Armstrong *)
(* Thomas Bauereiss *)
(* Shaked Flur *)
(* Christopher Pulte *)
(* Peter Sewell *)
(* Alexander Richardson *)
(* Hesham Almatary *)
(* Jessica Clarke *)
(* Microsoft, for contributions by Robert Norton-Wright and Nathaniel Wesley Filardo *)
(* Peter Rugg *)
(* Aril Computer Corp., for contributions by Scott Johnson *)
(* Philipp Tomsich *)
(* VRULL GmbH, for contributions by its employees *)
(* *)
(* All rights reserved. *)
(* *)
(* This software was developed by the above within the Rigorous *)
(* Engineering of Mainstream Systems (REMS) project, partly funded by *)
(* EPSRC grant EP/K008528/1, at the Universities of Cambridge and *)
(* Edinburgh. *)
(* *)
(* This software was developed by SRI International and the University of *)
(* Cambridge Computer Laboratory (Department of Computer Science and *)
(* Technology) under DARPA/AFRL contract FA8650-18-C-7809 ("CIFV"), and *)
(* under DARPA contract HR0011-18-C-0016 ("ECATS") as part of the DARPA *)
(* SSITH research programme. *)
(* *)
(* This project has received funding from the European Research Council *)
(* (ERC) under the European Union’s Horizon 2020 research and innovation *)
(* programme (grant agreement 789108, ELVER). *)
(* *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in *)
(* the documentation and/or other materials provided with the *)
(* distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' *)
(* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED *)
(* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A *)
(* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR *)
(* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, *)
(* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT *)
(* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF *)
(* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, *)
(* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT *)
(* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF *)
(* SUCH DAMAGE. *)
(*=======================================================================================*)
open import Pervasives
open import Pervasives_extra
open import Sail2_instr_kinds
open import Sail2_values
open import Sail2_operators_bitlists
open import Sail2_prompt_monad
open import Sail2_prompt
type bitvector = list Sail2_values.bitU
let MEM_fence_rw_rw () = barrier (Barrier_RISCV_rw_rw ())
let MEM_fence_r_rw () = barrier (Barrier_RISCV_r_rw ())
let MEM_fence_r_r () = barrier (Barrier_RISCV_r_r ())
let MEM_fence_rw_w () = barrier (Barrier_RISCV_rw_w ())
let MEM_fence_w_w () = barrier (Barrier_RISCV_w_w ())
let MEM_fence_w_rw () = barrier (Barrier_RISCV_w_rw ())
let MEM_fence_rw_r () = barrier (Barrier_RISCV_rw_r ())
let MEM_fence_r_w () = barrier (Barrier_RISCV_r_w ())
let MEM_fence_w_r () = barrier (Barrier_RISCV_w_r ())
let MEM_fence_tso () = barrier (Barrier_RISCV_tso ())
let MEM_fence_i () = barrier (Barrier_RISCV_i ())
val MEMea : forall 'rv 'e. bitvector -> integer -> monad 'rv unit 'e
val MEMea_release : forall 'rv 'e. bitvector -> integer -> monad 'rv unit 'e
val MEMea_strong_release : forall 'rv 'e. bitvector -> integer -> monad 'rv unit 'e
val MEMea_conditional : forall 'rv 'e. bitvector -> integer -> monad 'rv unit 'e
val MEMea_conditional_release : forall 'rv 'e. bitvector -> integer -> monad 'rv unit 'e
val MEMea_conditional_strong_release : forall 'rv 'e. bitvector -> integer -> monad 'rv unit 'e
let MEMea addr size = write_mem_ea Write_plain () addr size
let MEMea_release addr size = write_mem_ea Write_RISCV_release () addr size
let MEMea_strong_release addr size = write_mem_ea Write_RISCV_strong_release () addr size
let MEMea_conditional addr size = write_mem_ea Write_RISCV_conditional () addr size
let MEMea_conditional_release addr size = write_mem_ea Write_RISCV_conditional_release () addr size
let MEMea_conditional_strong_release addr size
= write_mem_ea Write_RISCV_conditional_strong_release () addr size
val MEMr : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> monad 'rv bitvector 'e
val MEMr_acquire : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> monad 'rv bitvector 'e
val MEMr_strong_acquire : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> monad 'rv bitvector 'e
val MEMr_reserved : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> monad 'rv bitvector 'e
val MEMr_reserved_acquire : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> monad 'rv bitvector 'e
val MEMr_reserved_strong_acquire : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> monad 'rv bitvector 'e
let MEMr addrsize size hexRAM addr = read_mem Read_plain addrsize addr size
let MEMr_acquire addrsize size hexRAM addr = read_mem Read_RISCV_acquire addrsize addr size
let MEMr_strong_acquire addrsize size hexRAM addr = read_mem Read_RISCV_strong_acquire addrsize addr size
let MEMr_reserved addrsize size hexRAM addr = read_mem Read_RISCV_reserved addrsize addr size
let MEMr_reserved_acquire addrsize size hexRAM addr = read_mem Read_RISCV_reserved_acquire addrsize addr size
let MEMr_reserved_strong_acquire addrsize size hexRAM addr = read_mem Read_RISCV_reserved_strong_acquire addrsize addr size
val MEMw : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> bitvector -> monad 'rv bool 'e
val MEMw_release : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> bitvector -> monad 'rv bool 'e
val MEMw_strong_release : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> bitvector -> monad 'rv bool 'e
val MEMw_conditional : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> bitvector -> monad 'rv bool 'e
val MEMw_conditional_release : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> bitvector -> monad 'rv bool 'e
val MEMw_conditional_strong_release : forall 'rv 'a 'b 'e. integer -> integer -> bitvector -> bitvector -> bitvector -> monad 'rv bool 'e
let MEMw addrsize size hexRAM addr = write_mem Write_plain addrsize addr size
let MEMw_release addrsize size hexRAM addr = write_mem Write_RISCV_release addrsize addr size
let MEMw_strong_release addrsize size hexRAM addr = write_mem Write_RISCV_strong_release addrsize addr size
let MEMw_conditional addrsize size hexRAM addr = write_mem Write_RISCV_conditional addrsize addr size
let MEMw_conditional_release addrsize size hexRAM addr = write_mem Write_RISCV_conditional_release addrsize addr size
let MEMw_conditional_strong_release addrsize size hexRAM addr = write_mem Write_RISCV_conditional_strong_release addrsize addr size
val load_reservation : bitvector -> unit
let load_reservation addr = ()
let speculate_conditional_success () = excl_result ()
let match_reservation _ = true
let cancel_reservation () = ()
val sys_enable_writable_misa : unit -> bool
let sys_enable_writable_misa () = true
declare ocaml target_rep function sys_enable_writable_misa = `Platform.enable_writable_misa`
val sys_enable_rvc : unit -> bool
let sys_enable_rvc () = true
declare ocaml target_rep function sys_enable_rvc = `Platform.enable_rvc`
val sys_enable_next : unit -> bool
let sys_enable_next () = true
declare ocaml target_rep function sys_enable_next = `Platform.enable_next`
val sys_enable_fdext : unit -> bool
let sys_enable_fdext () = true
declare ocaml target_rep function sys_enable_fdext = `Platform.enable_fdext`
val sys_enable_zfinx : unit -> bool
let sys_enable_zfinx () = false
declare ocaml target_rep function sys_enable_zfinx = `Platform.enable_zfinx`
val sys_enable_vext : unit -> bool
let sys_enable_vext () = true
declare ocaml target_rep function sys_enable_vext = `Platform.enable_vext`
val sys_enable_writable_fiom : unit -> bool
let sys_enable_writable_fiom () = true
declare ocaml target_rep function sys_enable_writable_fiom = `Platform.enable_writable_fiom`
val sys_pmp_grain : unit -> integer
let sys_pmp_grain () = 0
declare ocaml target_rep function sys_pmp_grain = `Platform.sys_pmp_grain`
val sys_pmp_count : unit -> integer
let sys_pmp_count () = 0
declare ocaml target_rep function sys_pmp_count = `Platform.sys_pmp_count`
val plat_ram_base : unit -> bitvector
let plat_ram_base () = []
declare ocaml target_rep function plat_ram_base = `Platform.dram_base`
val plat_ram_size : unit -> bitvector
let plat_ram_size () = []
declare ocaml target_rep function plat_ram_size = `Platform.dram_size`
val plat_rom_base : unit -> bitvector
let plat_rom_base () = []
declare ocaml target_rep function plat_rom_base = `Platform.rom_base`
val plat_rom_size : unit -> bitvector
let plat_rom_size () = []
declare ocaml target_rep function plat_rom_size = `Platform.rom_size`
val plat_cache_block_size_exp : unit -> bitvector
let plat_cache_block_size_exp () = []
declare ocaml target_rep function plat_cache_block_size_exp = `Platform.cache_block_size_exp`
val plat_clint_base : unit -> bitvector
let plat_clint_base () = []
declare ocaml target_rep function plat_clint_base = `Platform.clint_base`
val plat_clint_size : unit -> bitvector
let plat_clint_size () = []
declare ocaml target_rep function plat_clint_size = `Platform.clint_size`
val plat_enable_dirty_update : unit -> bool
let plat_enable_dirty_update () = false
declare ocaml target_rep function plat_enable_dirty_update = `Platform.enable_dirty_update`
val plat_enable_misaligned_access : unit -> bool
let plat_enable_misaligned_access () = false
declare ocaml target_rep function plat_enable_misaligned_access = `Platform.enable_misaligned_access`
val plat_mtval_has_illegal_inst_bits : unit -> bool
let plat_mtval_has_illegal_inst_bits () = false
declare ocaml target_rep function plat_mtval_has_illegal_inst_bits = `Platform.mtval_has_illegal_inst_bits`
val plat_insns_per_tick : unit -> integer
let plat_insns_per_tick () = 1
declare ocaml target_rep function plat_insns_per_tick = `Platform.insns_per_tick`
val plat_htif_tohost : unit -> bitvector
let plat_htif_tohost () = []
declare ocaml target_rep function plat_htif_tohost = `Platform.htif_tohost`
val plat_term_write : bitvector -> unit
let plat_term_write _ = ()
declare ocaml target_rep function plat_term_write = `Platform.term_write`
val plat_term_read : unit -> bitvector
let plat_term_read () = []
declare ocaml target_rep function plat_term_read = `Platform.term_read`
val plat_get_16_random_bits : unit -> bitvector
let plat_get_16_random_bits () = []
declare ocaml target_rep function plat_get_16_random_bits = `Platform.get_16_random_bits`
val shift_bits_right : bitvector -> bitvector -> bitvector
let shift_bits_right v m = shiftr v (uint m)
val shift_bits_left : bitvector -> bitvector -> bitvector
let shift_bits_left v m = shiftl v (uint m)
val print_string : string -> string -> unit
let print_string msg s = () (* print_endline (msg ^ s) *)
val prerr_string : string -> string -> unit
let prerr_string msg s = prerr_endline (msg ^ s)
val prerr_bits : string -> bitvector -> unit
let prerr_bits msg bs = prerr_endline (msg ^ (show_bitlist (bits_of bs)))
val print_bits : string -> bitvector -> unit
let print_bits msg bs = print_endline (msg ^ (show_bitlist (bits_of bs)))
val print_dbg : string -> unit
let print_dbg msg = ()
|