aboutsummaryrefslogtreecommitdiff
path: root/prover_snapshots/coq/lib/sail/State_monad.v
diff options
context:
space:
mode:
Diffstat (limited to 'prover_snapshots/coq/lib/sail/State_monad.v')
-rw-r--r--prover_snapshots/coq/lib/sail/State_monad.v327
1 files changed, 327 insertions, 0 deletions
diff --git a/prover_snapshots/coq/lib/sail/State_monad.v b/prover_snapshots/coq/lib/sail/State_monad.v
new file mode 100644
index 0000000..fb68bd3
--- /dev/null
+++ b/prover_snapshots/coq/lib/sail/State_monad.v
@@ -0,0 +1,327 @@
+Require Import Sail.Instr_kinds.
+Require Import Sail.Values.
+Require FMapList.
+Require Import OrderedType.
+Require OrderedTypeEx.
+Require Import List.
+Require bbv.Word.
+Import ListNotations.
+Local Open Scope Z.
+
+(* TODO: revisit choice of FMapList *)
+Module NatMap := FMapList.Make(OrderedTypeEx.Nat_as_OT).
+
+Definition Memstate : Type := NatMap.t memory_byte.
+Definition Tagstate : Type := NatMap.t bitU.
+(* type regstate = map string (vector bitU) *)
+
+(* We deviate from the Lem library and prefix the fields with ss_ to avoid
+ name clashes. *)
+Record sequential_state {Regs} :=
+ { ss_regstate : Regs;
+ ss_memstate : Memstate;
+ ss_tagstate : Tagstate }.
+Arguments sequential_state : clear implicits.
+
+(*val init_state : forall 'regs. 'regs -> sequential_state 'regs*)
+Definition init_state {Regs} regs : sequential_state Regs :=
+ {| ss_regstate := regs;
+ ss_memstate := NatMap.empty _;
+ ss_tagstate := NatMap.empty _ |}.
+
+Inductive ex E :=
+ | Failure : string -> ex E
+ | Throw : E -> ex E.
+Arguments Failure {E} _.
+Arguments Throw {E} _.
+
+Inductive result A E :=
+ | Value : A -> result A E
+ | Ex : ex E -> result A E.
+Arguments Value {A} {E} _.
+Arguments Ex {A} {E} _.
+
+(* State, nondeterminism and exception monad with result value type 'a
+ and exception type 'e. *)
+(* TODO: the list was originally a set, can we reasonably go back to a set? *)
+Definition monadS Regs a e : Type :=
+ sequential_state Regs -> list (result a e * sequential_state Regs).
+
+(*val returnS : forall 'regs 'a 'e. 'a -> monadS 'regs 'a 'e*)
+Definition returnS {Regs A E} (a:A) : monadS Regs A E := fun s => [(Value a,s)].
+
+(*val bindS : forall 'regs 'a 'b 'e. monadS 'regs 'a 'e -> ('a -> monadS 'regs 'b 'e) -> monadS 'regs 'b 'e*)
+Definition bindS {Regs A B E} (m : monadS Regs A E) (f : A -> monadS Regs B E) : monadS Regs B E :=
+ fun (s : sequential_state Regs) =>
+ List.flat_map (fun v => match v with
+ | (Value a, s') => f a s'
+ | (Ex e, s') => [(Ex e, s')]
+ end) (m s).
+
+(*val seqS: forall 'regs 'b 'e. monadS 'regs unit 'e -> monadS 'regs 'b 'e -> monadS 'regs 'b 'e*)
+Definition seqS {Regs B E} (m : monadS Regs unit E) (n : monadS Regs B E) : monadS Regs B E :=
+ bindS m (fun (_ : unit) => n).
+(*
+let inline (>>$=) = bindS
+let inline (>>$) = seqS
+*)
+Notation "m >>$= f" := (bindS m f) (at level 50, left associativity).
+Notation "m >>$ n" := (seqS m n) (at level 50, left associativity).
+
+(*val chooseS : forall 'regs 'a 'e. SetType 'a => list 'a -> monadS 'regs 'a 'e*)
+Definition chooseS {Regs A E} (xs : list A) : monadS Regs A E :=
+ fun s => (List.map (fun x => (Value x, s)) xs).
+
+(*val readS : forall 'regs 'a 'e. (sequential_state 'regs -> 'a) -> monadS 'regs 'a 'e*)
+Definition readS {Regs A E} (f : sequential_state Regs -> A) : monadS Regs A E :=
+ (fun s => returnS (f s) s).
+
+(*val updateS : forall 'regs 'e. (sequential_state 'regs -> sequential_state 'regs) -> monadS 'regs unit 'e*)
+Definition updateS {Regs E} (f : sequential_state Regs -> sequential_state Regs) : monadS Regs unit E :=
+ (fun s => returnS tt (f s)).
+
+(*val failS : forall 'regs 'a 'e. string -> monadS 'regs 'a 'e*)
+Definition failS {Regs A E} msg : monadS Regs A E :=
+ fun s => [(Ex (Failure msg), s)].
+
+(*val choose_boolS : forall 'regval 'regs 'a 'e. unit -> monadS 'regs bool 'e*)
+Definition choose_boolS {Regs E} (_:unit) : monadS Regs bool E :=
+ chooseS [false; true].
+Definition undefined_boolS {Regs E} := @choose_boolS Regs E.
+
+(*val exitS : forall 'regs 'e 'a. unit -> monadS 'regs 'a 'e*)
+Definition exitS {Regs A E} (_:unit) : monadS Regs A E := failS "exit".
+
+(*val throwS : forall 'regs 'a 'e. 'e -> monadS 'regs 'a 'e*)
+Definition throwS {Regs A E} (e : E) :monadS Regs A E :=
+ fun s => [(Ex (Throw e), s)].
+
+(*val try_catchS : forall 'regs 'a 'e1 'e2. monadS 'regs 'a 'e1 -> ('e1 -> monadS 'regs 'a 'e2) -> monadS 'regs 'a 'e2*)
+Definition try_catchS {Regs A E1 E2} (m : monadS Regs A E1) (h : E1 -> monadS Regs A E2) : monadS Regs A E2 :=
+fun s =>
+ List.flat_map (fun v => match v with
+ | (Value a, s') => returnS a s'
+ | (Ex (Throw e), s') => h e s'
+ | (Ex (Failure msg), s') => [(Ex (Failure msg), s')]
+ end) (m s).
+
+(*val assert_expS : forall 'regs 'e. bool -> string -> monadS 'regs unit 'e*)
+Definition assert_expS {Regs E} (exp : bool) (msg : string) : monadS Regs unit E :=
+ if exp then returnS tt else failS msg.
+
+Definition assert_expS' {Regs E} (exp : bool) (msg : string) : monadS Regs (exp = true) E :=
+ if exp return monadS Regs (exp = true) E then returnS eq_refl else failS msg.
+
+(* For early return, we abuse exceptions by throwing and catching
+ the return value. The exception type is "either 'r 'e", where "Right e"
+ represents a proper exception and "Left r" an early return of value "r". *)
+Definition monadRS Regs A R E := monadS Regs A (sum R E).
+
+(*val early_returnS : forall 'regs 'a 'r 'e. 'r -> monadRS 'regs 'a 'r 'e*)
+Definition early_returnS {Regs A R E} (r : R) : monadRS Regs A R E := throwS (inl r).
+
+(*val catch_early_returnS : forall 'regs 'a 'e. monadRS 'regs 'a 'a 'e -> monadS 'regs 'a 'e*)
+Definition catch_early_returnS {Regs A E} (m : monadRS Regs A A E) : monadS Regs A E :=
+ try_catchS m
+ (fun v => match v with
+ | inl a => returnS a
+ | inr e => throwS e
+ end).
+
+(* Lift to monad with early return by wrapping exceptions *)
+(*val liftRS : forall 'a 'r 'regs 'e. monadS 'regs 'a 'e -> monadRS 'regs 'a 'r 'e*)
+Definition liftRS {A R Regs E} (m : monadS Regs A E) : monadRS Regs A R E :=
+ try_catchS m (fun e => throwS (inr e)).
+
+(* Catch exceptions in the presence of early returns *)
+(*val try_catchRS : forall 'regs 'a 'r 'e1 'e2. monadRS 'regs 'a 'r 'e1 -> ('e1 -> monadRS 'regs 'a 'r 'e2) -> monadRS 'regs 'a 'r 'e2*)
+Definition try_catchRS {Regs A R E1 E2} (m : monadRS Regs A R E1) (h : E1 -> monadRS Regs A R E2) : monadRS Regs A R E2 :=
+ try_catchS m
+ (fun v => match v with
+ | inl r => throwS (inl r)
+ | inr e => h e
+ end).
+
+(*val maybe_failS : forall 'regs 'a 'e. string -> maybe 'a -> monadS 'regs 'a 'e*)
+Definition maybe_failS {Regs A E} msg (v : option A) : monadS Regs A E :=
+match v with
+ | Some a => returnS a
+ | None => failS msg
+end.
+
+(*val read_tagS : forall 'regs 'a 'e. Bitvector 'a => 'a -> monadS 'regs bitU 'e*)
+Definition read_tagS {Regs A E} (addr : mword A) : monadS Regs bitU E :=
+ let addr := Word.wordToNat (get_word addr) in
+ readS (fun s => opt_def B0 (NatMap.find addr s.(ss_tagstate))).
+
+Fixpoint genlist_acc {A:Type} (f : nat -> A) n acc : list A :=
+ match n with
+ | O => acc
+ | S n' => genlist_acc f n' (f n' :: acc)
+ end.
+Definition genlist {A} f n := @genlist_acc A f n [].
+
+
+(* Read bytes from memory and return in little endian order *)
+(*val get_mem_bytes : forall 'regs. nat -> nat -> sequential_state 'regs -> maybe (list memory_byte * bitU)*)
+Definition get_mem_bytes {Regs} addr sz (s : sequential_state Regs) : option (list memory_byte * bitU) :=
+ let addrs := genlist (fun n => addr + n)%nat sz in
+ let read_byte s addr := NatMap.find addr s.(ss_memstate) in
+ let read_tag s addr := opt_def B0 (NatMap.find addr s.(ss_tagstate)) in
+ option_map
+ (fun mem_val => (mem_val, List.fold_left and_bit (List.map (read_tag s) addrs) B1))
+ (just_list (List.map (read_byte s) addrs)).
+
+(*val read_memt_bytesS : forall 'regs 'e. read_kind -> nat -> nat -> monadS 'regs (list memory_byte * bitU) 'e*)
+Definition read_memt_bytesS {Regs E} (_ : read_kind) addr sz : monadS Regs (list memory_byte * bitU) E :=
+ readS (get_mem_bytes addr sz) >>$=
+ maybe_failS "read_memS".
+
+(*val read_mem_bytesS : forall 'regs 'e. read_kind -> nat -> nat -> monadS 'regs (list memory_byte) 'e*)
+Definition read_mem_bytesS {Regs E} (rk : read_kind) addr sz : monadS Regs (list memory_byte) E :=
+ read_memt_bytesS rk addr sz >>$= (fun '(bytes, _) =>
+ returnS bytes).
+
+(*val read_memtS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monadS 'regs ('b * bitU) 'e*)
+Definition read_memtS {Regs E A B} (rk : read_kind) (a : mword A) sz `{ArithFact (B >=? 0)} : monadS Regs (mword B * bitU) E :=
+ let a := Word.wordToNat (get_word a) in
+ read_memt_bytesS rk a (Z.to_nat sz) >>$= (fun '(bytes, tag) =>
+ maybe_failS "bits_of_mem_bytes" (of_bits (bits_of_mem_bytes bytes)) >>$= (fun mem_val =>
+ returnS (mem_val, tag))).
+
+(*val read_memS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b => read_kind -> 'a -> integer -> monadS 'regs 'b 'e*)
+Definition read_memS {Regs E A B} rk (a : mword A) sz `{ArithFact (B >=? 0)} : monadS Regs (mword B) E :=
+ read_memtS rk a sz >>$= (fun '(bytes, _) =>
+ returnS bytes).
+
+(*val excl_resultS : forall 'regs 'e. unit -> monadS 'regs bool 'e*)
+Definition excl_resultS {Regs E} : unit -> monadS Regs bool E :=
+ (* TODO: This used to be more deterministic, checking a flag in the state
+ whether an exclusive load has occurred before. However, this does not
+ seem very precise; it might be safer to overapproximate the possible
+ behaviours by always making a nondeterministic choice. *)
+ @undefined_boolS Regs E.
+
+(* Write little-endian list of bytes to given address *)
+(*val put_mem_bytes : forall 'regs. nat -> nat -> list memory_byte -> bitU -> sequential_state 'regs -> sequential_state 'regs*)
+Definition put_mem_bytes {Regs} addr sz (v : list memory_byte) (tag : bitU) (s : sequential_state Regs) : sequential_state Regs :=
+ let addrs := genlist (fun n => addr + n)%nat sz in
+ let a_v := List.combine addrs v in
+ let write_byte mem '(addr, v) := NatMap.add addr v mem in
+ let write_tag mem addr := NatMap.add addr tag mem in
+ {| ss_regstate := s.(ss_regstate);
+ ss_memstate := List.fold_left write_byte a_v s.(ss_memstate);
+ ss_tagstate := List.fold_left write_tag addrs s.(ss_tagstate) |}.
+
+(*val write_memt_bytesS : forall 'regs 'e. write_kind -> nat -> nat -> list memory_byte -> bitU -> monadS 'regs bool 'e*)
+Definition write_memt_bytesS {Regs E} (_ : write_kind) addr sz (v : list memory_byte) (t : bitU) : monadS Regs bool E :=
+ updateS (put_mem_bytes addr sz v t) >>$
+ returnS true.
+
+(*val write_mem_bytesS : forall 'regs 'e. write_kind -> nat -> nat -> list memory_byte -> monadS 'regs bool 'e*)
+Definition write_mem_bytesS {Regs E} wk addr sz (v : list memory_byte) : monadS Regs bool E :=
+ write_memt_bytesS wk addr sz v B0.
+
+(*val write_memtS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b =>
+ write_kind -> 'a -> integer -> 'b -> bitU -> monadS 'regs bool 'e*)
+Definition write_memtS {Regs E A B} wk (addr : mword A) sz (v : mword B) (t : bitU) : monadS Regs bool E :=
+ match (Word.wordToNat (get_word addr), mem_bytes_of_bits v) with
+ | (addr, Some v) => write_memt_bytesS wk addr (Z.to_nat sz) v t
+ | _ => failS "write_mem"
+ end.
+
+(*val write_memS : forall 'regs 'e 'a 'b. Bitvector 'a, Bitvector 'b =>
+ write_kind -> 'a -> integer -> 'b -> monadS 'regs bool 'e*)
+Definition write_memS {Regs E A B} wk (addr : mword A) sz (v : mword B) : monadS Regs bool E :=
+ write_memtS wk addr sz v B0.
+
+(*val read_regS : forall 'regs 'rv 'a 'e. register_ref 'regs 'rv 'a -> monadS 'regs 'a 'e*)
+Definition read_regS {Regs RV A E} (reg : register_ref Regs RV A) : monadS Regs A E :=
+ readS (fun s => reg.(read_from) s.(ss_regstate)).
+
+(* TODO
+let read_reg_range reg i j state =
+ let v = slice (get_reg state (name_of_reg reg)) i j in
+ [(Value (vec_to_bvec v),state)]
+let read_reg_bit reg i state =
+ let v = access (get_reg state (name_of_reg reg)) i in
+ [(Value v,state)]
+let read_reg_field reg regfield =
+ let (i,j) = register_field_indices reg regfield in
+ read_reg_range reg i j
+let read_reg_bitfield reg regfield =
+ let (i,_) = register_field_indices reg regfield in
+ read_reg_bit reg i *)
+
+(*val read_regvalS : forall 'regs 'rv 'e.
+ register_accessors 'regs 'rv -> string -> monadS 'regs 'rv 'e*)
+Definition read_regvalS {Regs RV E} (acc : register_accessors Regs RV) reg : monadS Regs RV E :=
+ let '(read, _) := acc in
+ readS (fun s => read reg s.(ss_regstate)) >>$= (fun v => match v with
+ | Some v => returnS v
+ | None => failS ("read_regvalS " ++ reg)
+ end).
+
+(*val write_regvalS : forall 'regs 'rv 'e.
+ register_accessors 'regs 'rv -> string -> 'rv -> monadS 'regs unit 'e*)
+Definition write_regvalS {Regs RV E} (acc : register_accessors Regs RV) reg (v : RV) : monadS Regs unit E :=
+ let '(_, write) := acc in
+ readS (fun s => write reg v s.(ss_regstate)) >>$= (fun x => match x with
+ | Some rs' => updateS (fun s => {| ss_regstate := rs'; ss_memstate := s.(ss_memstate); ss_tagstate := s.(ss_tagstate) |})
+ | None => failS ("write_regvalS " ++ reg)
+ end).
+
+(*val write_regS : forall 'regs 'rv 'a 'e. register_ref 'regs 'rv 'a -> 'a -> monadS 'regs unit 'e*)
+Definition write_regS {Regs RV A E} (reg : register_ref Regs RV A) (v:A) : monadS Regs unit E :=
+ updateS (fun s => {| ss_regstate := reg.(write_to) v s.(ss_regstate); ss_memstate := s.(ss_memstate); ss_tagstate := s.(ss_tagstate) |}).
+
+(* TODO
+val update_reg : forall 'regs 'rv 'a 'b 'e. register_ref 'regs 'rv 'a -> ('a -> 'b -> 'a) -> 'b -> monadS 'regs unit 'e
+let update_reg reg f v state =
+ let current_value = get_reg state reg in
+ let new_value = f current_value v in
+ [(Value (), set_reg state reg new_value)]
+
+let write_reg_field reg regfield = update_reg reg regfield.set_field
+
+val update_reg_range : forall 'regs 'rv 'a 'b. Bitvector 'a, Bitvector 'b => register_ref 'regs 'rv 'a -> integer -> integer -> 'a -> 'b -> 'a
+let update_reg_range reg i j reg_val new_val = set_bits (reg.is_inc) reg_val i j (bits_of new_val)
+let write_reg_range reg i j = update_reg reg (update_reg_range reg i j)
+
+let update_reg_pos reg i reg_val x = update_list reg.is_inc reg_val i x
+let write_reg_pos reg i = update_reg reg (update_reg_pos reg i)
+
+let update_reg_bit reg i reg_val bit = set_bit (reg.is_inc) reg_val i (to_bitU bit)
+let write_reg_bit reg i = update_reg reg (update_reg_bit reg i)
+
+let update_reg_field_range regfield i j reg_val new_val =
+ let current_field_value = regfield.get_field reg_val in
+ let new_field_value = set_bits (regfield.field_is_inc) current_field_value i j (bits_of new_val) in
+ regfield.set_field reg_val new_field_value
+let write_reg_field_range reg regfield i j = update_reg reg (update_reg_field_range regfield i j)
+
+let update_reg_field_pos regfield i reg_val x =
+ let current_field_value = regfield.get_field reg_val in
+ let new_field_value = update_list regfield.field_is_inc current_field_value i x in
+ regfield.set_field reg_val new_field_value
+let write_reg_field_pos reg regfield i = update_reg reg (update_reg_field_pos regfield i)
+
+let update_reg_field_bit regfield i reg_val bit =
+ let current_field_value = regfield.get_field reg_val in
+ let new_field_value = set_bit (regfield.field_is_inc) current_field_value i (to_bitU bit) in
+ regfield.set_field reg_val new_field_value
+let write_reg_field_bit reg regfield i = update_reg reg (update_reg_field_bit regfield i)*)
+
+(* TODO Add Show typeclass for value and exception type *)
+(*val show_result : forall 'a 'e. result 'a 'e -> string*)
+Definition show_result {A E} (x : result A E) : string := match x with
+ | Value _ => "Value ()"
+ | Ex (Failure msg) => "Failure " ++ msg
+ | Ex (Throw _) => "Throw"
+end.
+
+(*val prerr_results : forall 'a 'e 's. SetType 's => set (result 'a 'e * 's) -> unit*)
+Definition prerr_results {A E S} (rs : list (result A E * S)) : unit := tt.
+(* let _ = Set.map (fun (r, _) -> let _ = prerr_endline (show_result r) in ()) rs in
+ ()*)
+