aboutsummaryrefslogtreecommitdiff
path: root/prover_snapshots/coq/lib/sail/Sail2_state_monad_lemmas.v
diff options
context:
space:
mode:
Diffstat (limited to 'prover_snapshots/coq/lib/sail/Sail2_state_monad_lemmas.v')
-rw-r--r--prover_snapshots/coq/lib/sail/Sail2_state_monad_lemmas.v542
1 files changed, 542 insertions, 0 deletions
diff --git a/prover_snapshots/coq/lib/sail/Sail2_state_monad_lemmas.v b/prover_snapshots/coq/lib/sail/Sail2_state_monad_lemmas.v
new file mode 100644
index 0000000..99fef32
--- /dev/null
+++ b/prover_snapshots/coq/lib/sail/Sail2_state_monad_lemmas.v
@@ -0,0 +1,542 @@
+Require Import Sail2_state_monad.
+(*Require Import Sail2_values_lemmas.*)
+Require Export Setoid.
+Require Export Morphisms Equivalence.
+
+(* Ensure that pointwise equality on states is the preferred notion of
+ equivalence for the state monad. *)
+Local Open Scope equiv_scope.
+Instance monadS_equivalence {Regs A E} :
+ Equivalence (pointwise_relation (sequential_state Regs) (@eq (list (result A E * sequential_state Regs)))) | 9.
+split; apply _.
+Qed.
+
+Global Instance refl_eq_subrelation {A : Type} {R : A -> A -> Prop} `{Reflexive A R} : subrelation eq R.
+intros x y EQ. subst. reflexivity.
+Qed.
+
+Hint Extern 4 (_ === _) => reflexivity.
+Hint Extern 4 (_ === _) => symmetry.
+
+Lemma bindS_ext_cong (*[fundef_cong]:*) {Regs A B E}
+ {m1 m2 : monadS Regs A E} {f1 f2 : A -> monadS Regs B E} s :
+ m1 s = m2 s ->
+ (forall a s', List.In (Value a, s') (m2 s) -> f1 a s' = f2 a s') ->
+ bindS m1 f1 s = bindS m2 f2 s.
+intros.
+unfold bindS.
+rewrite H.
+rewrite !List.flat_map_concat_map.
+f_equal.
+apply List.map_ext_in.
+intros [[a|a] s'] H_in; auto.
+Qed.
+
+(* Weaker than the Isabelle version, but avoids talking about individual states *)
+Lemma bindS_cong (*[fundef_cong]:*) Regs A B E m1 m2 (f1 f2 : A -> monadS Regs B E) :
+ m1 === m2 ->
+ (forall a, f1 a === f2 a) ->
+ bindS m1 f1 === bindS m2 f2.
+intros M F s.
+apply bindS_ext_cong; intros; auto.
+apply F.
+Qed.
+
+Add Parametric Morphism {Regs A B E : Type} : (@bindS Regs A B E)
+ with signature equiv ==> equiv ==> equiv as bindS_morphism.
+auto using bindS_cong.
+Qed.
+
+Lemma bindS_returnS_left Regs A B E {x : A} {f : A -> monadS Regs B E} :
+ bindS (returnS x) f === f x.
+intro s.
+unfold returnS, bindS.
+simpl.
+auto using List.app_nil_r.
+Qed.
+Hint Rewrite bindS_returnS_left : state.
+
+Lemma bindS_returnS_right Regs A E {m : monadS Regs A E} :
+ bindS m returnS === m.
+intro s.
+unfold returnS, bindS.
+induction (m s) as [|[[a|a] s'] t]; auto;
+simpl;
+rewrite IHt;
+reflexivity.
+Qed.
+Hint Rewrite bindS_returnS_right : state.
+
+Lemma bindS_readS {Regs A E} {f} {m : A -> monadS Regs A E} {s} :
+ bindS (readS f) m s = m (f s) s.
+unfold readS, bindS.
+simpl.
+rewrite List.app_nil_r.
+reflexivity.
+Qed.
+
+Lemma bindS_updateS {Regs A E} {f : sequential_state Regs -> sequential_state Regs} {m : unit -> monadS Regs A E} {s} :
+ bindS (updateS f) m s = m tt (f s).
+unfold updateS, bindS.
+simpl.
+auto using List.app_nil_r.
+Qed.
+
+Lemma bindS_assertS_true Regs A E msg {f : unit -> monadS Regs A E} :
+ bindS (assert_expS true msg) f === f tt.
+intro s.
+unfold assert_expS, bindS.
+simpl.
+auto using List.app_nil_r.
+Qed.
+Hint Rewrite bindS_assertS_true : state.
+
+Lemma bindS_chooseS_returnS (*[simp]:*) Regs A B E {xs : list A} {f : A -> B} :
+ bindS (Regs := Regs) (E := E) (chooseS xs) (fun x => returnS (f x)) === chooseS (List.map f xs).
+intro s.
+unfold chooseS, bindS, returnS.
+induction xs; auto.
+simpl. rewrite IHxs.
+reflexivity.
+Qed.
+Hint Rewrite bindS_chooseS_returnS : state.
+
+Lemma result_cases : forall (A E : Type) (P : result A E -> Prop),
+ (forall a, P (Value a)) ->
+ (forall e, P (Ex (Throw e))) ->
+ (forall msg, P (Ex (Failure msg))) ->
+ forall r, P r.
+intros.
+destruct r; auto.
+destruct e; auto.
+Qed.
+
+Lemma result_state_cases {A E S} {P : result A E * S -> Prop} :
+ (forall a s, P (Value a, s)) ->
+ (forall e s, P (Ex (Throw e), s)) ->
+ (forall msg s, P (Ex (Failure msg), s)) ->
+ forall rs, P rs.
+intros.
+destruct rs as [[a|[e|msg]] s]; auto.
+Qed.
+
+(* TODO: needs sets, not lists
+Lemma monadS_ext_eqI {Regs A E} {m m' : monadS Regs A E} s :
+ (forall a s', List.In (Value a, s') (m s) <-> List.In (Value a, s') (m' s)) ->
+ (forall e s', List.In (Ex (Throw e), s') (m s) <-> List.In (Ex (Throw e), s') (m' s)) ->
+ (forall msg s', List.In (Ex (Failure msg), s') (m s) <-> List.In (Ex (Failure msg), s') (m' s)) ->
+ m s = m' s.
+proof (intro set_eqI)
+ fix x
+ show "x \<in> m s \<longleftrightarrow> x \<in> m' s" using assms by (cases x rule: result_state_cases) auto
+qed
+
+lemma monadS_eqI:
+ fixes m m' :: "('regs, 'a, 'e) monadS"
+ assumes "\<And>s a s'. (Value a, s') \<in> m s \<longleftrightarrow> (Value a, s') \<in> m' s"
+ and "\<And>s e s'. (Ex (Throw e), s') \<in> m s \<longleftrightarrow> (Ex (Throw e), s') \<in> m' s"
+ and "\<And>s msg s'. (Ex (Failure msg), s') \<in> m s \<longleftrightarrow> (Ex (Failure msg), s') \<in> m' s"
+ shows "m = m'"
+ using assms by (intro ext monadS_ext_eqI)
+*)
+
+Lemma bindS_cases {Regs A B E} {m} {f : A -> monadS Regs B E} {r s s'} :
+ List.In (r, s') (bindS m f s) ->
+ (exists a a' s'', r = Value a /\ List.In (Value a', s'') (m s) /\ List.In (Value a, s') (f a' s'')) \/
+ (exists e, r = Ex e /\ List.In (Ex e, s') (m s)) \/
+ (exists e a s'', r = Ex e /\ List.In (Value a, s'') (m s) /\ List.In (Ex e, s') (f a s'')).
+unfold bindS.
+intro IN.
+apply List.in_flat_map in IN.
+destruct IN as [[r' s''] [INr' INr]].
+destruct r' as [a'|e'].
+* destruct r as [a|e].
+ + left. eauto 10.
+ + right; right. eauto 10.
+* right; left. simpl in INr. destruct INr as [|[]]. inversion H. subst. eauto 10.
+Qed.
+
+Lemma bindS_intro_Value {Regs A B E} {m} {f : A -> monadS Regs B E} {s a s' a' s''} :
+ List.In (Value a', s'') (m s) -> List.In (Value a, s') (f a' s'') -> List.In (Value a, s') (bindS m f s).
+intros; unfold bindS.
+apply List.in_flat_map.
+eauto.
+Qed.
+Lemma bindS_intro_Ex_left {Regs A B E} {m} {f : A -> monadS Regs B E} {s e s'} :
+ List.In (Ex e, s') (m s) -> List.In (Ex e, s') (bindS m f s).
+intros; unfold bindS.
+apply List.in_flat_map.
+exists (Ex e, s').
+auto with datatypes.
+Qed.
+Lemma bindS_intro_Ex_right {Regs A B E} {m} {f : A -> monadS Regs B E} {s e s' a s''} :
+ List.In (Ex e, s') (f a s'') -> List.In (Value a, s'') (m s) -> List.In (Ex e, s') (bindS m f s).
+intros; unfold bindS.
+apply List.in_flat_map.
+eauto.
+Qed.
+Hint Resolve bindS_intro_Value bindS_intro_Ex_left bindS_intro_Ex_right : bindS_intros.
+
+Lemma bindS_assoc Regs A B C E {m} {f : A -> monadS Regs B E} {g : B -> monadS Regs C E} :
+ bindS (bindS m f) g === bindS m (fun x => bindS (f x) g).
+intro s.
+unfold bindS.
+induction (m s) as [ | [[a | e] t]].
+* reflexivity.
+* simpl. rewrite <- IHl.
+ rewrite !List.flat_map_concat_map.
+ rewrite List.map_app.
+ rewrite List.concat_app.
+ reflexivity.
+* simpl. rewrite IHl. reflexivity.
+Qed.
+Hint Rewrite bindS_assoc : state.
+
+Lemma bindS_failS Regs A B E {msg} {f : A -> monadS Regs B E} :
+ bindS (failS msg) f = failS msg.
+reflexivity.
+Qed.
+Hint Rewrite bindS_failS : state.
+
+Lemma bindS_throwS Regs A B E {e} {f : A -> monadS Regs B E} :
+ bindS (throwS e) f = throwS e.
+reflexivity.
+Qed.
+Hint Rewrite bindS_throwS : state.
+
+(*declare seqS_def[simp]*)
+Lemma seqS_def Regs A E m (m' : monadS Regs A E) :
+ m >>$ m' = m >>$= (fun _ => m').
+reflexivity.
+Qed.
+Hint Rewrite seqS_def : state.
+
+Lemma Value_bindS_elim {Regs A B E} {a m} {f : A -> monadS Regs B E} {s s'} :
+ List.In (Value a, s') (bindS m f s) ->
+ exists s'' a', List.In (Value a', s'') (m s) /\ List.In (Value a, s') (f a' s'').
+intro H.
+apply bindS_cases in H.
+destruct H as [(a0 & a' & s'' & [= <-] & [*]) | [(e & [= ] & _) | (_ & _ & _ & [= ] & _)]].
+eauto.
+Qed.
+
+Lemma Ex_bindS_elim {Regs A B E} {e m s s'} {f : A -> monadS Regs B E} :
+ List.In (Ex e, s') (bindS m f s) ->
+ List.In (Ex e, s') (m s) \/
+ exists s'' a', List.In (Value a', s'') (m s) /\ List.In (Ex e, s') (f a' s'').
+intro H.
+apply bindS_cases in H.
+destruct H as [(? & ? & ? & [= ] & _) | [(? & [= <-] & X) | (? & ? & ? & [= <-] & X)]];
+eauto.
+Qed.
+
+Lemma try_catchS_returnS Regs A E1 E2 {a} {h : E1 -> monadS Regs A E2}:
+ try_catchS (returnS a) h = returnS a.
+reflexivity.
+Qed.
+Hint Rewrite try_catchS_returnS : state.
+Lemma try_catchS_failS Regs A E1 E2 {msg} {h : E1 -> monadS Regs A E2}:
+ try_catchS (failS msg) h = failS msg.
+reflexivity.
+Qed.
+Hint Rewrite try_catchS_failS : state.
+Lemma try_catchS_throwS Regs A E1 E2 {e} {h : E1 -> monadS Regs A E2}:
+ try_catchS (throwS e) h === h e.
+intro s.
+unfold try_catchS, throwS.
+simpl.
+auto using List.app_nil_r.
+Qed.
+Hint Rewrite try_catchS_throwS : state.
+
+Lemma try_catchS_cong (*[cong]:*) {Regs A E1 E2 m1 m2} {h1 h2 : E1 -> monadS Regs A E2} :
+ m1 === m2 ->
+ (forall e, h1 e === h2 e) ->
+ try_catchS m1 h1 === try_catchS m2 h2.
+intros H1 H2 s.
+unfold try_catchS.
+rewrite H1.
+rewrite !List.flat_map_concat_map.
+f_equal.
+apply List.map_ext_in.
+intros [[a|[e|msg]] s'] H_in; auto. apply H2.
+Qed.
+
+Add Parametric Morphism {Regs A E1 E2 : Type} : (@try_catchS Regs A E1 E2)
+ with signature equiv ==> equiv ==> equiv as try_catchS_morphism.
+intros. auto using try_catchS_cong.
+Qed.
+
+Add Parametric Morphism {Regs A E : Type} : (@catch_early_returnS Regs A E)
+ with signature equiv ==> equiv as catch_early_returnS_morphism.
+intros.
+unfold catch_early_returnS.
+rewrite H.
+reflexivity.
+Qed.
+
+Lemma try_catchS_cases {Regs A E1 E2 m} {h : E1 -> monadS Regs A E2} {r s s'} :
+ List.In (r, s') (try_catchS m h s) ->
+ (exists a, r = Value a /\ List.In (Value a, s') (m s)) \/
+ (exists msg, r = Ex (Failure msg) /\ List.In (Ex (Failure msg), s') (m s)) \/
+ (exists e s'', List.In (Ex (Throw e), s'') (m s) /\ List.In (r, s') (h e s'')).
+unfold try_catchS.
+intro IN.
+apply List.in_flat_map in IN.
+destruct IN as [[r' s''] [INr' INr]].
+destruct r' as [a'|[e'|msg]].
+* left. simpl in INr. destruct INr as [[= <- <-] | []]. eauto 10.
+* simpl in INr. destruct INr as [[= <- <-] | []]. eauto 10.
+* eauto 10.
+Qed.
+
+Lemma try_catchS_intros {Regs A E1 E2} {m} {h : E1 -> monadS Regs A E2} :
+ (forall s a s', List.In (Value a, s') (m s) -> List.In (Value a, s') (try_catchS m h s)) /\
+ (forall s msg s', List.In (Ex (Failure msg), s') (m s) -> List.In (Ex (Failure msg), s') (try_catchS m h s)) /\
+ (forall s e s'' r s', List.In (Ex (Throw e), s'') (m s) -> List.In (r, s') (h e s'') -> List.In (r, s') (try_catchS m h s)).
+repeat split; unfold try_catchS; intros;
+apply List.in_flat_map.
+* eexists; split; [ apply H | ]. simpl. auto.
+* eexists; split; [ apply H | ]. simpl. auto.
+* eexists; split; [ apply H | ]. simpl. auto.
+Qed.
+
+Lemma no_Ex_basic_builtins (*[simp]:*) {Regs E} {s s' : sequential_state Regs} {e : ex E} :
+ (forall A (a:A), ~ List.In (Ex e, s') (returnS a s)) /\
+ (forall A (f : _ -> A), ~ List.In (Ex e, s') (readS f s)) /\
+ (forall f, ~ List.In (Ex e, s') (updateS f s)) /\
+ (forall A (xs : list A), ~ List.In (Ex e, s') (chooseS xs s)).
+repeat split; intros;
+unfold returnS, readS, updateS, chooseS; simpl;
+try intuition congruence.
+* intro H.
+ apply List.in_map_iff in H.
+ destruct H as [x [X _]].
+ congruence.
+Qed.
+
+Import List.ListNotations.
+Definition ignore_throw_aux {A E1 E2 S} (rs : result A E1 * S) : list (result A E2 * S) :=
+match rs with
+| (Value a, s') => [(Value a, s')]
+| (Ex (Throw e), s') => []
+| (Ex (Failure msg), s') => [(Ex (Failure msg), s')]
+end.
+Definition ignore_throw {A E1 E2 S} (m : S -> list (result A E1 * S)) s : list (result A E2 * S) :=
+ List.flat_map ignore_throw_aux (m s).
+
+Lemma ignore_throw_cong {Regs A E1 E2} {m1 m2 : monadS Regs A E1} :
+ m1 === m2 ->
+ ignore_throw (E2 := E2) m1 === ignore_throw m2.
+intros H s.
+unfold ignore_throw.
+rewrite H.
+reflexivity.
+Qed.
+
+Lemma ignore_throw_aux_member_simps (*[simp]:*) {A E1 E2 S} {s' : S} {ms} :
+ (forall a:A, List.In (Value a, s') (ignore_throw_aux (E1 := E1) (E2 := E2) ms) <-> ms = (Value a, s')) /\
+ (forall e, ~ List.In (Ex (E := E2) (Throw e), s') (ignore_throw_aux ms)) /\
+ (forall msg, List.In (Ex (E := E2) (Failure msg), s') (ignore_throw_aux ms) <-> ms = (Ex (Failure msg), s')).
+destruct ms as [[a' | [e' | msg']] s]; simpl;
+intuition congruence.
+Qed.
+
+Lemma ignore_throw_member_simps (*[simp]:*) {A E1 E2 S} {s s' : S} {m} :
+ (forall {a:A}, List.In (Value (E := E2) a, s') (ignore_throw m s) <-> List.In (Value (E := E1) a, s') (m s)) /\
+ (forall {a:A}, List.In (Value (E := E2) a, s') (ignore_throw m s) <-> List.In (Value a, s') (m s)) /\
+ (forall e, ~ List.In (Ex (E := E2) (Throw e), s') (ignore_throw m s)) /\
+ (forall {msg}, List.In (Ex (E := E2) (Failure msg), s') (ignore_throw m s) <-> List.In (Ex (Failure msg), s') (m s)).
+unfold ignore_throw.
+repeat apply conj; intros; try apply conj;
+rewrite ?List.in_flat_map;
+solve
+[ intros [x [H1 H2]]; apply ignore_throw_aux_member_simps in H2; congruence
+| intro H; eexists; split; [ apply H | apply ignore_throw_aux_member_simps; reflexivity] ].
+Qed.
+
+Lemma ignore_throw_cases {A E S} {m : S -> list (result A E * S)} {r s s'} :
+ ignore_throw m s = m s ->
+ List.In (r, s') (m s) ->
+ (exists a, r = Value a) \/
+ (exists msg, r = Ex (Failure msg)).
+destruct r as [a | [e | msg]]; eauto.
+* intros H1 H2. rewrite <- H1 in H2.
+ apply ignore_throw_member_simps in H2.
+ destruct H2.
+Qed.
+
+(* *** *)
+Lemma flat_map_app {A B} {f : A -> list B} {l1 l2} :
+ List.flat_map f (l1 ++ l2) = (List.flat_map f l1 ++ List.flat_map f l2)%list.
+rewrite !List.flat_map_concat_map.
+rewrite List.map_app, List.concat_app.
+reflexivity.
+Qed.
+
+Lemma ignore_throw_bindS (*[simp]:*) Regs A B E E2 {m} {f : A -> monadS Regs B E} :
+ ignore_throw (E2 := E2) (bindS m f) === bindS (ignore_throw m) (fun s => ignore_throw (f s)).
+intro s.
+unfold bindS, ignore_throw.
+induction (m s) as [ | [[a | [e | msg]] t]].
+* reflexivity.
+* simpl. rewrite <- IHl. rewrite flat_map_app. reflexivity.
+* simpl. rewrite <- IHl. reflexivity.
+* simpl. apply IHl.
+Qed.
+Hint Rewrite ignore_throw_bindS : ignore_throw.
+
+Lemma try_catchS_bindS_no_throw {Regs A B E1 E2} {m1 : monadS Regs A E1} {m2 : monadS Regs A E2} {f : A -> monadS Regs B _} {h} :
+ ignore_throw m1 === m1 ->
+ ignore_throw m1 === m2 ->
+ try_catchS (bindS m1 f) h === bindS m2 (fun a => try_catchS (f a) h).
+intros Ignore1 Ignore2.
+transitivity ((ignore_throw m1 >>$= (fun a => try_catchS (f a) h))).
+* intro s.
+ unfold bindS, try_catchS, ignore_throw.
+ specialize (Ignore1 s). revert Ignore1. unfold ignore_throw.
+ induction (m1 s) as [ | [[a | [e | msg]] t]]; auto.
+ + intro Ig. simpl. rewrite flat_map_app. rewrite IHl. auto. injection Ig. auto.
+ + intro Ig. simpl. rewrite IHl. reflexivity. injection Ig. auto.
+ + intro Ig. exfalso. clear -Ig.
+ assert (List.In (Ex (Throw msg), t) (List.flat_map ignore_throw_aux l)).
+ simpl in Ig. rewrite Ig. simpl. auto.
+ apply List.in_flat_map in H.
+ destruct H as [x [H1 H2]].
+ apply ignore_throw_aux_member_simps in H2.
+ assumption.
+* apply bindS_cong; auto.
+Qed.
+
+Lemma concat_map_singleton {A B} {f : A -> B} {a : list A} :
+ List.concat (List.map (fun x => [f x]%list) a) = List.map f a.
+induction a; simpl; try rewrite IHa; auto with datatypes.
+Qed.
+
+(*lemma no_throw_basic_builtins[simp]:*)
+Lemma no_throw_basic_builtins_1 Regs A E E2 {a : A} :
+ ignore_throw (E1 := E2) (returnS a) = @returnS Regs A E a.
+reflexivity. Qed.
+Lemma no_throw_basic_builtins_2 Regs A E E2 {f : sequential_state Regs -> A} :
+ ignore_throw (E1 := E) (E2 := E2) (readS f) = readS f.
+reflexivity. Qed.
+Lemma no_throw_basic_builtins_3 Regs E E2 {f : sequential_state Regs -> sequential_state Regs} :
+ ignore_throw (E1 := E) (E2 := E2) (updateS f) = updateS f.
+reflexivity. Qed.
+Lemma no_throw_basic_builtins_4 Regs A E1 E2 {xs : list A} :
+ ignore_throw (E1 := E1) (chooseS xs) === @chooseS Regs A E2 xs.
+intro s.
+unfold ignore_throw, chooseS.
+rewrite List.flat_map_concat_map, List.map_map. simpl.
+rewrite concat_map_singleton.
+reflexivity.
+Qed.
+Lemma no_throw_basic_builtins_5 Regs E1 E2 :
+ ignore_throw (E1 := E1) (choose_boolS tt) = @choose_boolS Regs E2 tt.
+reflexivity. Qed.
+Lemma no_throw_basic_builtins_6 Regs A E1 E2 msg :
+ ignore_throw (E1 := E1) (failS msg) = @failS Regs A E2 msg.
+reflexivity. Qed.
+Lemma no_throw_basic_builtins_7 Regs A E1 E2 msg x :
+ ignore_throw (E1 := E1) (maybe_failS msg x) = @maybe_failS Regs A E2 msg x.
+destruct x; reflexivity. Qed.
+
+Hint Rewrite no_throw_basic_builtins_1 no_throw_basic_builtins_2
+ no_throw_basic_builtins_3 no_throw_basic_builtins_4
+ no_throw_basic_builtins_5 no_throw_basic_builtins_6
+ no_throw_basic_builtins_7 : ignore_throw.
+
+Lemma ignore_throw_option_case_distrib_1 Regs B C E1 E2 (c : sequential_state Regs -> option B) s (n : monadS Regs C E1) (f : B -> monadS Regs C E1) :
+ ignore_throw (E2 := E2) (match c s with None => n | Some b => f b end) s =
+ match c s with None => ignore_throw n s | Some b => ignore_throw (f b) s end.
+destruct (c s); auto.
+Qed.
+Lemma ignore_throw_option_case_distrib_2 Regs B C E1 E2 (c : option B) (n : monadS Regs C E1) (f : B -> monadS Regs C E1) :
+ ignore_throw (E2 := E2) (match c with None => n | Some b => f b end) =
+ match c with None => ignore_throw n | Some b => ignore_throw (f b) end.
+destruct c; auto.
+Qed.
+
+Lemma ignore_throw_let_distrib Regs A B E1 E2 (y : A) (f : A -> monadS Regs B E1) :
+ ignore_throw (E2 := E2) (let x := y in f x) = (let x := y in ignore_throw (f x)).
+reflexivity.
+Qed.
+
+Lemma no_throw_mem_builtins_1 Regs E1 E2 rk a sz :
+ ignore_throw (E2 := E2) (@read_memt_bytesS Regs E1 rk a sz) === read_memt_bytesS rk a sz.
+unfold read_memt_bytesS. autorewrite with ignore_throw.
+apply bindS_cong; auto. intros. autorewrite with ignore_throw. reflexivity.
+Qed.
+Hint Rewrite no_throw_mem_builtins_1 : ignore_throw.
+Lemma no_throw_mem_builtins_2 Regs E1 E2 rk a sz :
+ ignore_throw (E2 := E2) (@read_mem_bytesS Regs E1 rk a sz) === read_mem_bytesS rk a sz.
+unfold read_mem_bytesS. autorewrite with ignore_throw.
+apply bindS_cong; intros; autorewrite with ignore_throw; auto.
+destruct a0; reflexivity.
+Qed.
+Hint Rewrite no_throw_mem_builtins_2 : ignore_throw.
+Lemma no_throw_mem_builtins_3 Regs A E1 E2 a :
+ ignore_throw (E2 := E2) (@read_tagS Regs A E1 a) === read_tagS a.
+reflexivity. Qed.
+Hint Rewrite no_throw_mem_builtins_3 : ignore_throw.
+Lemma no_throw_mem_builtins_4 Regs A V E1 E2 rk a sz H :
+ ignore_throw (E2 := E2) (@read_memtS Regs E1 A V rk a sz H) === read_memtS rk a sz.
+unfold read_memtS. autorewrite with ignore_throw.
+apply bindS_cong; intros; autorewrite with ignore_throw.
+reflexivity. destruct a0; simpl. autorewrite with ignore_throw.
+reflexivity.
+Qed.
+Hint Rewrite no_throw_mem_builtins_4 : ignore_throw.
+Lemma no_throw_mem_builtins_5 Regs A V E1 E2 rk a sz H :
+ ignore_throw (E2 := E2) (@read_memS Regs E1 A V rk a sz H) === read_memS rk a sz.
+unfold read_memS. autorewrite with ignore_throw.
+apply bindS_cong; intros; autorewrite with ignore_throw; auto.
+destruct a0; auto.
+Qed.
+Hint Rewrite no_throw_mem_builtins_5 : ignore_throw.
+Lemma no_throw_mem_builtins_6 Regs E1 E2 wk addr sz v t :
+ ignore_throw (E2 := E2) (@write_memt_bytesS Regs E1 wk addr sz v t) === write_memt_bytesS wk addr sz v t.
+unfold write_memt_bytesS. unfold seqS. autorewrite with ignore_throw.
+reflexivity.
+Qed.
+Hint Rewrite no_throw_mem_builtins_6 : ignore_throw.
+Lemma no_throw_mem_builtins_7 Regs E1 E2 wk addr sz v :
+ ignore_throw (E2 := E2) (@write_mem_bytesS Regs E1 wk addr sz v) === write_mem_bytesS wk addr sz v.
+unfold write_mem_bytesS. autorewrite with ignore_throw. reflexivity.
+Qed.
+Hint Rewrite no_throw_mem_builtins_7 : ignore_throw.
+Lemma no_throw_mem_builtins_8 Regs E1 E2 A B wk addr sz v t :
+ ignore_throw (E2 := E2) (@write_memtS Regs E1 A B wk addr sz v t) === write_memtS wk addr sz v t.
+unfold write_memtS. rewrite ignore_throw_option_case_distrib_2.
+destruct (Sail2_values.mem_bytes_of_bits v); autorewrite with ignore_throw; auto.
+Qed.
+Hint Rewrite no_throw_mem_builtins_8 : ignore_throw.
+Lemma no_throw_mem_builtins_9 Regs E1 E2 A B wk addr sz v :
+ ignore_throw (E2 := E2) (@write_memS Regs E1 A B wk addr sz v) === write_memS wk addr sz v.
+unfold write_memS. autorewrite with ignore_throw; auto.
+Qed.
+Hint Rewrite no_throw_mem_builtins_9 : ignore_throw.
+Lemma no_throw_mem_builtins_10 Regs E1 E2 :
+ ignore_throw (E2 := E2) (@excl_resultS Regs E1 tt) === excl_resultS tt.
+reflexivity. Qed.
+Hint Rewrite no_throw_mem_builtins_10 : ignore_throw.
+Lemma no_throw_mem_builtins_11 Regs E1 E2 :
+ ignore_throw (E2 := E2) (@undefined_boolS Regs E1 tt) === undefined_boolS tt.
+reflexivity. Qed.
+Hint Rewrite no_throw_mem_builtins_11 : ignore_throw.
+
+Lemma no_throw_read_regvalS Regs RV E1 E2 r reg_name :
+ ignore_throw (E2 := E2) (@read_regvalS Regs RV E1 r reg_name) === read_regvalS r reg_name.
+destruct r; simpl. autorewrite with ignore_throw.
+apply bindS_cong; intros; auto. rewrite ignore_throw_option_case_distrib_2.
+autorewrite with ignore_throw. reflexivity.
+Qed.
+Hint Rewrite no_throw_read_regvalS : ignore_throw.
+
+Lemma no_throw_write_regvalS Regs RV E1 E2 r reg_name v :
+ ignore_throw (E2 := E2) (@write_regvalS Regs RV E1 r reg_name v) === write_regvalS r reg_name v.
+destruct r; simpl. autorewrite with ignore_throw.
+apply bindS_cong; intros; auto. rewrite ignore_throw_option_case_distrib_2.
+autorewrite with ignore_throw. reflexivity.
+Qed.
+Hint Rewrite no_throw_write_regvalS : ignore_throw.