1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
|
/***************************************************************************
* Copyright (C) 2008 by Spencer Oliver *
* spen@spen-soft.co.uk *
* *
* Copyright (C) 2008 by David T.L. Wong *
* *
* Copyright (C) 2007,2008 Øyvind Harboe *
* oyvind.harboe@zylin.com *
* *
* Copyright (C) 2011 by Drasko DRASKOVIC *
* drasko.draskovic@gmail.com *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program. If not, see <http://www.gnu.org/licenses/>. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "mips32.h"
#include "breakpoints.h"
#include "algorithm.h"
#include "register.h"
static const char *mips_isa_strings[] = {
"MIPS32", "MIPS16", "", "MICRO MIPS32",
};
#define MIPS32_GDB_DUMMY_FP_REG 1
/*
* GDB registers
* based on gdb-7.6.2/gdb/features/mips-{fpu,cp0,cpu}.xml
*/
static const struct {
unsigned id;
const char *name;
enum reg_type type;
const char *group;
const char *feature;
int flag;
} mips32_regs[] = {
{ 0, "r0", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 1, "r1", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 2, "r2", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 3, "r3", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 4, "r4", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 5, "r5", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 6, "r6", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 7, "r7", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 8, "r8", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 9, "r9", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 10, "r10", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 11, "r11", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 12, "r12", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 13, "r13", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 14, "r14", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 15, "r15", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 16, "r16", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 17, "r17", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 18, "r18", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 19, "r19", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 20, "r20", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 21, "r21", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 22, "r22", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 23, "r23", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 24, "r24", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 25, "r25", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 26, "r26", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 27, "r27", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 28, "r28", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 29, "r29", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 30, "r30", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 31, "r31", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 32, "status", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
{ 33, "lo", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 34, "hi", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 35, "badvaddr", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
{ 36, "cause", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cp0", 0 },
{ 37, "pc", REG_TYPE_INT, NULL, "org.gnu.gdb.mips.cpu", 0 },
{ 38, "f0", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 39, "f1", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 40, "f2", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 41, "f3", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 42, "f4", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 43, "f5", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 44, "f6", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 45, "f7", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 46, "f8", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 47, "f9", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 48, "f10", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 49, "f11", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 50, "f12", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 51, "f13", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 52, "f14", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 53, "f15", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 54, "f16", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 55, "f17", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 56, "f18", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 57, "f19", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 58, "f20", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 59, "f21", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 60, "f22", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 61, "f23", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 62, "f24", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 63, "f25", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 64, "f26", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 65, "f27", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 66, "f28", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 67, "f29", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 68, "f30", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 69, "f31", REG_TYPE_IEEE_SINGLE, NULL,
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 70, "fcsr", REG_TYPE_INT, "float",
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
{ 71, "fir", REG_TYPE_INT, "float",
"org.gnu.gdb.mips.fpu", MIPS32_GDB_DUMMY_FP_REG },
};
#define MIPS32_NUM_REGS ARRAY_SIZE(mips32_regs)
static uint8_t mips32_gdb_dummy_fp_value[] = {0, 0, 0, 0};
static int mips32_get_core_reg(struct reg *reg)
{
int retval;
struct mips32_core_reg *mips32_reg = reg->arch_info;
struct target *target = mips32_reg->target;
struct mips32_common *mips32_target = target_to_mips32(target);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
retval = mips32_target->read_core_reg(target, mips32_reg->num);
return retval;
}
static int mips32_set_core_reg(struct reg *reg, uint8_t *buf)
{
struct mips32_core_reg *mips32_reg = reg->arch_info;
struct target *target = mips32_reg->target;
uint32_t value = buf_get_u32(buf, 0, 32);
if (target->state != TARGET_HALTED)
return ERROR_TARGET_NOT_HALTED;
buf_set_u32(reg->value, 0, 32, value);
reg->dirty = 1;
reg->valid = 1;
return ERROR_OK;
}
static int mips32_read_core_reg(struct target *target, unsigned int num)
{
uint32_t reg_value;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
if (num >= MIPS32_NUM_REGS)
return ERROR_COMMAND_SYNTAX_ERROR;
reg_value = mips32->core_regs[num];
buf_set_u32(mips32->core_cache->reg_list[num].value, 0, 32, reg_value);
mips32->core_cache->reg_list[num].valid = 1;
mips32->core_cache->reg_list[num].dirty = 0;
return ERROR_OK;
}
static int mips32_write_core_reg(struct target *target, unsigned int num)
{
uint32_t reg_value;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
if (num >= MIPS32_NUM_REGS)
return ERROR_COMMAND_SYNTAX_ERROR;
reg_value = buf_get_u32(mips32->core_cache->reg_list[num].value, 0, 32);
mips32->core_regs[num] = reg_value;
LOG_DEBUG("write core reg %i value 0x%" PRIx32 "", num , reg_value);
mips32->core_cache->reg_list[num].valid = 1;
mips32->core_cache->reg_list[num].dirty = 0;
return ERROR_OK;
}
int mips32_get_gdb_reg_list(struct target *target, struct reg **reg_list[],
int *reg_list_size, enum target_register_class reg_class)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
unsigned int i;
/* include floating point registers */
*reg_list_size = MIPS32_NUM_REGS;
*reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
for (i = 0; i < MIPS32_NUM_REGS; i++)
(*reg_list)[i] = &mips32->core_cache->reg_list[i];
return ERROR_OK;
}
int mips32_save_context(struct target *target)
{
unsigned int i;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
/* read core registers */
mips32_pracc_read_regs(ejtag_info, mips32->core_regs);
for (i = 0; i < MIPS32_NUM_REGS; i++) {
if (!mips32->core_cache->reg_list[i].valid)
mips32->read_core_reg(target, i);
}
return ERROR_OK;
}
int mips32_restore_context(struct target *target)
{
unsigned int i;
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
for (i = 0; i < MIPS32_NUM_REGS; i++) {
if (mips32->core_cache->reg_list[i].dirty)
mips32->write_core_reg(target, i);
}
/* write core regs */
mips32_pracc_write_regs(ejtag_info, mips32->core_regs);
return ERROR_OK;
}
int mips32_arch_state(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
LOG_USER("target halted in %s mode due to %s, pc: 0x%8.8" PRIx32 "",
mips_isa_strings[mips32->isa_mode],
debug_reason_name(target),
buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32));
return ERROR_OK;
}
static const struct reg_arch_type mips32_reg_type = {
.get = mips32_get_core_reg,
.set = mips32_set_core_reg,
};
struct reg_cache *mips32_build_reg_cache(struct target *target)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
int num_regs = MIPS32_NUM_REGS;
struct reg_cache **cache_p = register_get_last_cache_p(&target->reg_cache);
struct reg_cache *cache = malloc(sizeof(struct reg_cache));
struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
struct mips32_core_reg *arch_info = malloc(sizeof(struct mips32_core_reg) * num_regs);
struct reg_feature *feature;
int i;
/* Build the process context cache */
cache->name = "mips32 registers";
cache->next = NULL;
cache->reg_list = reg_list;
cache->num_regs = num_regs;
(*cache_p) = cache;
mips32->core_cache = cache;
for (i = 0; i < num_regs; i++) {
arch_info[i].num = mips32_regs[i].id;
arch_info[i].target = target;
arch_info[i].mips32_common = mips32;
reg_list[i].name = mips32_regs[i].name;
reg_list[i].size = 32;
if (mips32_regs[i].flag == MIPS32_GDB_DUMMY_FP_REG) {
reg_list[i].value = mips32_gdb_dummy_fp_value;
reg_list[i].valid = 1;
reg_list[i].arch_info = NULL;
register_init_dummy(®_list[i]);
} else {
reg_list[i].value = calloc(1, 4);
reg_list[i].valid = 0;
reg_list[i].type = &mips32_reg_type;
reg_list[i].arch_info = &arch_info[i];
reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
if (reg_list[i].reg_data_type)
reg_list[i].reg_data_type->type = mips32_regs[i].type;
else
LOG_ERROR("unable to allocate reg type list");
}
reg_list[i].dirty = 0;
reg_list[i].group = mips32_regs[i].group;
reg_list[i].number = i;
reg_list[i].exist = true;
reg_list[i].caller_save = true; /* gdb defaults to true */
feature = calloc(1, sizeof(struct reg_feature));
if (feature) {
feature->name = mips32_regs[i].feature;
reg_list[i].feature = feature;
} else
LOG_ERROR("unable to allocate feature list");
}
return cache;
}
int mips32_init_arch_info(struct target *target, struct mips32_common *mips32, struct jtag_tap *tap)
{
target->arch_info = mips32;
mips32->common_magic = MIPS32_COMMON_MAGIC;
mips32->fast_data_area = NULL;
mips32->isa_imp = MIPS32_ONLY; /* default */
/* has breakpoint/watchpoint unit been scanned */
mips32->bp_scanned = 0;
mips32->data_break_list = NULL;
mips32->ejtag_info.tap = tap;
mips32->read_core_reg = mips32_read_core_reg;
mips32->write_core_reg = mips32_write_core_reg;
/* if unknown endianness defaults to little endian, 1 */
mips32->ejtag_info.endianness = target->endianness == TARGET_BIG_ENDIAN ? 0 : 1;
mips32->ejtag_info.scan_delay = MIPS32_SCAN_DELAY_LEGACY_MODE;
mips32->ejtag_info.mode = 0; /* Initial default value */
mips32->ejtag_info.isa = 0; /* isa on debug mips32, updated by poll function */
mips32->ejtag_info.config_regs = 0; /* no config register read */
return ERROR_OK;
}
/* run to exit point. return error if exit point was not reached. */
static int mips32_run_and_wait(struct target *target, target_addr_t entry_point,
int timeout_ms, target_addr_t exit_point, struct mips32_common *mips32)
{
uint32_t pc;
int retval;
/* This code relies on the target specific resume() and poll()->debug_entry()
* sequence to write register values to the processor and the read them back */
retval = target_resume(target, 0, entry_point, 0, 1);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, timeout_ms);
/* If the target fails to halt due to the breakpoint, force a halt */
if (retval != ERROR_OK || target->state != TARGET_HALTED) {
retval = target_halt(target);
if (retval != ERROR_OK)
return retval;
retval = target_wait_state(target, TARGET_HALTED, 500);
if (retval != ERROR_OK)
return retval;
return ERROR_TARGET_TIMEOUT;
}
pc = buf_get_u32(mips32->core_cache->reg_list[MIPS32_PC].value, 0, 32);
if (exit_point && (pc != exit_point)) {
LOG_DEBUG("failed algorithm halted at 0x%" PRIx32 " ", pc);
return ERROR_TARGET_TIMEOUT;
}
return ERROR_OK;
}
int mips32_run_algorithm(struct target *target, int num_mem_params,
struct mem_param *mem_params, int num_reg_params,
struct reg_param *reg_params, target_addr_t entry_point,
target_addr_t exit_point, int timeout_ms, void *arch_info)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips32_algorithm *mips32_algorithm_info = arch_info;
enum mips32_isa_mode isa_mode = mips32->isa_mode;
uint32_t context[MIPS32_NUM_REGS];
int retval = ERROR_OK;
LOG_DEBUG("Running algorithm");
/* NOTE: mips32_run_algorithm requires that each algorithm uses a software breakpoint
* at the exit point */
if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
LOG_ERROR("current target isn't a MIPS32 target");
return ERROR_TARGET_INVALID;
}
if (target->state != TARGET_HALTED) {
LOG_WARNING("target not halted");
return ERROR_TARGET_NOT_HALTED;
}
/* refresh core register cache */
for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
if (!mips32->core_cache->reg_list[i].valid)
mips32->read_core_reg(target, i);
context[i] = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
}
for (int i = 0; i < num_mem_params; i++) {
retval = target_write_buffer(target, mem_params[i].address,
mem_params[i].size, mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
for (int i = 0; i < num_reg_params; i++) {
struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
mips32_set_core_reg(reg, reg_params[i].value);
}
mips32->isa_mode = mips32_algorithm_info->isa_mode;
retval = mips32_run_and_wait(target, entry_point, timeout_ms, exit_point, mips32);
if (retval != ERROR_OK)
return retval;
for (int i = 0; i < num_mem_params; i++) {
if (mem_params[i].direction != PARAM_OUT) {
retval = target_read_buffer(target, mem_params[i].address, mem_params[i].size,
mem_params[i].value);
if (retval != ERROR_OK)
return retval;
}
}
for (int i = 0; i < num_reg_params; i++) {
if (reg_params[i].direction != PARAM_OUT) {
struct reg *reg = register_get_by_name(mips32->core_cache, reg_params[i].reg_name, 0);
if (!reg) {
LOG_ERROR("BUG: register '%s' not found", reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
if (reg->size != reg_params[i].size) {
LOG_ERROR("BUG: register '%s' size doesn't match reg_params[i].size",
reg_params[i].reg_name);
return ERROR_COMMAND_SYNTAX_ERROR;
}
buf_set_u32(reg_params[i].value, 0, 32, buf_get_u32(reg->value, 0, 32));
}
}
/* restore everything we saved before */
for (unsigned int i = 0; i < MIPS32_NUM_REGS; i++) {
uint32_t regvalue;
regvalue = buf_get_u32(mips32->core_cache->reg_list[i].value, 0, 32);
if (regvalue != context[i]) {
LOG_DEBUG("restoring register %s with value 0x%8.8" PRIx32,
mips32->core_cache->reg_list[i].name, context[i]);
buf_set_u32(mips32->core_cache->reg_list[i].value,
0, 32, context[i]);
mips32->core_cache->reg_list[i].valid = 1;
mips32->core_cache->reg_list[i].dirty = 1;
}
}
mips32->isa_mode = isa_mode;
return ERROR_OK;
}
int mips32_examine(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
if (!target_was_examined(target)) {
target_set_examined(target);
/* we will configure later */
mips32->bp_scanned = 0;
mips32->num_inst_bpoints = 0;
mips32->num_data_bpoints = 0;
mips32->num_inst_bpoints_avail = 0;
mips32->num_data_bpoints_avail = 0;
}
return ERROR_OK;
}
static int mips32_configure_ibs(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int retval, i;
uint32_t bpinfo;
/* get number of inst breakpoints */
retval = target_read_u32(target, ejtag_info->ejtag_ibs_addr, &bpinfo);
if (retval != ERROR_OK)
return retval;
mips32->num_inst_bpoints = (bpinfo >> 24) & 0x0F;
mips32->num_inst_bpoints_avail = mips32->num_inst_bpoints;
mips32->inst_break_list = calloc(mips32->num_inst_bpoints,
sizeof(struct mips32_comparator));
for (i = 0; i < mips32->num_inst_bpoints; i++)
mips32->inst_break_list[i].reg_address =
ejtag_info->ejtag_iba0_addr +
(ejtag_info->ejtag_iba_step_size * i);
/* clear IBIS reg */
retval = target_write_u32(target, ejtag_info->ejtag_ibs_addr, 0);
return retval;
}
static int mips32_configure_dbs(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int retval, i;
uint32_t bpinfo;
/* get number of data breakpoints */
retval = target_read_u32(target, ejtag_info->ejtag_dbs_addr, &bpinfo);
if (retval != ERROR_OK)
return retval;
mips32->num_data_bpoints = (bpinfo >> 24) & 0x0F;
mips32->num_data_bpoints_avail = mips32->num_data_bpoints;
mips32->data_break_list = calloc(mips32->num_data_bpoints,
sizeof(struct mips32_comparator));
for (i = 0; i < mips32->num_data_bpoints; i++)
mips32->data_break_list[i].reg_address =
ejtag_info->ejtag_dba0_addr +
(ejtag_info->ejtag_dba_step_size * i);
/* clear DBIS reg */
retval = target_write_u32(target, ejtag_info->ejtag_dbs_addr, 0);
return retval;
}
int mips32_configure_break_unit(struct target *target)
{
/* get pointers to arch-specific information */
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
int retval;
uint32_t dcr;
if (mips32->bp_scanned)
return ERROR_OK;
/* get info about breakpoint support */
retval = target_read_u32(target, EJTAG_DCR, &dcr);
if (retval != ERROR_OK)
return retval;
/* EJTAG 2.0 defines IB and DB bits in IMP instead of DCR. */
if (ejtag_info->ejtag_version == EJTAG_VERSION_20) {
ejtag_info->debug_caps = dcr & EJTAG_DCR_ENM;
if (!(ejtag_info->impcode & EJTAG_V20_IMP_NOIB))
ejtag_info->debug_caps |= EJTAG_DCR_IB;
if (!(ejtag_info->impcode & EJTAG_V20_IMP_NODB))
ejtag_info->debug_caps |= EJTAG_DCR_DB;
} else
/* keep debug caps for later use */
ejtag_info->debug_caps = dcr & (EJTAG_DCR_ENM
| EJTAG_DCR_IB | EJTAG_DCR_DB);
if (ejtag_info->debug_caps & EJTAG_DCR_IB) {
retval = mips32_configure_ibs(target);
if (retval != ERROR_OK)
return retval;
}
if (ejtag_info->debug_caps & EJTAG_DCR_DB) {
retval = mips32_configure_dbs(target);
if (retval != ERROR_OK)
return retval;
}
/* check if target endianness settings matches debug control register */
if (((ejtag_info->debug_caps & EJTAG_DCR_ENM)
&& (target->endianness == TARGET_LITTLE_ENDIAN)) ||
(!(ejtag_info->debug_caps & EJTAG_DCR_ENM)
&& (target->endianness == TARGET_BIG_ENDIAN)))
LOG_WARNING("DCR endianness settings does not match target settings");
LOG_DEBUG("DCR 0x%" PRIx32 " numinst %i numdata %i", dcr, mips32->num_inst_bpoints,
mips32->num_data_bpoints);
mips32->bp_scanned = 1;
return ERROR_OK;
}
int mips32_enable_interrupts(struct target *target, int enable)
{
int retval;
int update = 0;
uint32_t dcr;
/* read debug control register */
retval = target_read_u32(target, EJTAG_DCR, &dcr);
if (retval != ERROR_OK)
return retval;
if (enable) {
if (!(dcr & EJTAG_DCR_INTE)) {
/* enable interrupts */
dcr |= EJTAG_DCR_INTE;
update = 1;
}
} else {
if (dcr & EJTAG_DCR_INTE) {
/* disable interrupts */
dcr &= ~EJTAG_DCR_INTE;
update = 1;
}
}
if (update) {
retval = target_write_u32(target, EJTAG_DCR, dcr);
if (retval != ERROR_OK)
return retval;
}
return ERROR_OK;
}
/* read config to config3 cp0 registers and log isa implementation */
int mips32_read_config_regs(struct target *target)
{
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
if (ejtag_info->config_regs == 0)
for (int i = 0; i != 4; i++) {
int retval = mips32_cp0_read(ejtag_info, &ejtag_info->config[i], 16, i);
if (retval != ERROR_OK) {
LOG_ERROR("isa info not available, failed to read cp0 config register: %" PRId32, i);
ejtag_info->config_regs = 0;
return retval;
}
ejtag_info->config_regs = i + 1;
if ((ejtag_info->config[i] & (1 << 31)) == 0)
break; /* no more config registers implemented */
}
else
return ERROR_OK; /* already succesfully read */
LOG_DEBUG("read %"PRId32" config registers", ejtag_info->config_regs);
if (ejtag_info->impcode & EJTAG_IMP_MIPS16) {
mips32->isa_imp = MIPS32_MIPS16;
LOG_USER("MIPS32 with MIPS16 support implemented");
} else if (ejtag_info->config_regs >= 4) { /* config3 implemented */
unsigned isa_imp = (ejtag_info->config[3] & MIPS32_CONFIG3_ISA_MASK) >> MIPS32_CONFIG3_ISA_SHIFT;
if (isa_imp == 1) {
mips32->isa_imp = MMIPS32_ONLY;
LOG_USER("MICRO MIPS32 only implemented");
} else if (isa_imp != 0) {
mips32->isa_imp = MIPS32_MMIPS32;
LOG_USER("MIPS32 and MICRO MIPS32 implemented");
}
}
if (mips32->isa_imp == MIPS32_ONLY) /* initial default value */
LOG_USER("MIPS32 only implemented");
return ERROR_OK;
}
int mips32_checksum_memory(struct target *target, target_addr_t address,
uint32_t count, uint32_t *checksum)
{
struct working_area *crc_algorithm;
struct reg_param reg_params[2];
struct mips32_algorithm mips32_info;
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
/* see contrib/loaders/checksum/mips32.s for src */
uint32_t isa = ejtag_info->isa ? 1 : 0;
uint32_t mips_crc_code[] = {
MIPS32_ADDIU(isa, 12, 4, 0), /* addiu $t4, $a0, 0 */
MIPS32_ADDIU(isa, 10, 5, 0), /* addiu $t2, $a1, 0 */
MIPS32_ADDIU(isa, 4, 0, 0xFFFF), /* addiu $a0, $zero, 0xffff */
MIPS32_BEQ(isa, 0, 0, 0x10 << isa), /* beq $zero, $zero, ncomp */
MIPS32_ADDIU(isa, 11, 0, 0), /* addiu $t3, $zero, 0 */
/* nbyte: */
MIPS32_LB(isa, 5, 0, 12), /* lb $a1, ($t4) */
MIPS32_ADDI(isa, 12, 12, 1), /* addi $t4, $t4, 1 */
MIPS32_SLL(isa, 5, 5, 24), /* sll $a1, $a1, 24 */
MIPS32_LUI(isa, 2, 0x04c1), /* lui $v0, 0x04c1 */
MIPS32_XOR(isa, 4, 4, 5), /* xor $a0, $a0, $a1 */
MIPS32_ORI(isa, 7, 2, 0x1db7), /* ori $a3, $v0, 0x1db7 */
MIPS32_ADDU(isa, 6, 0, 0), /* addu $a2, $zero, $zero */
/* loop */
MIPS32_SLL(isa, 8, 4, 1), /* sll $t0, $a0, 1 */
MIPS32_ADDIU(isa, 6, 6, 1), /* addiu $a2, $a2, 1 */
MIPS32_SLTI(isa, 4, 4, 0), /* slti $a0, $a0, 0 */
MIPS32_XOR(isa, 9, 8, 7), /* xor $t1, $t0, $a3 */
MIPS32_MOVN(isa, 8, 9, 4), /* movn $t0, $t1, $a0 */
MIPS32_SLTI(isa, 3, 6, 8), /* slti $v1, $a2, 8 */
MIPS32_BNE(isa, 3, 0, NEG16(7 << isa)), /* bne $v1, $zero, loop */
MIPS32_ADDU(isa, 4, 8, 0), /* addu $a0, $t0, $zero */
/* ncomp */
MIPS32_BNE(isa, 10, 11, NEG16(16 << isa)), /* bne $t2, $t3, nbyte */
MIPS32_ADDIU(isa, 11, 11, 1), /* addiu $t3, $t3, 1 */
MIPS32_SDBBP(isa),
};
/* make sure we have a working area */
if (target_alloc_working_area(target, sizeof(mips_crc_code), &crc_algorithm) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
pracc_swap16_array(ejtag_info, mips_crc_code, ARRAY_SIZE(mips_crc_code));
/* convert mips crc code into a buffer in target endianness */
uint8_t mips_crc_code_8[sizeof(mips_crc_code)];
target_buffer_set_u32_array(target, mips_crc_code_8,
ARRAY_SIZE(mips_crc_code), mips_crc_code);
int retval = target_write_buffer(target, crc_algorithm->address, sizeof(mips_crc_code), mips_crc_code_8);
if (retval != ERROR_OK)
return retval;
mips32_info.common_magic = MIPS32_COMMON_MAGIC;
mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32; /* run isa as in debug mode */
init_reg_param(®_params[0], "r4", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[0].value, 0, 32, address);
init_reg_param(®_params[1], "r5", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, count);
int timeout = 20000 * (1 + (count / (1024 * 1024)));
retval = target_run_algorithm(target, 0, NULL, 2, reg_params, crc_algorithm->address,
crc_algorithm->address + (sizeof(mips_crc_code) - 4), timeout, &mips32_info);
if (retval == ERROR_OK)
*checksum = buf_get_u32(reg_params[0].value, 0, 32);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
target_free_working_area(target, crc_algorithm);
return retval;
}
/** Checks whether a memory region is erased. */
int mips32_blank_check_memory(struct target *target,
struct target_memory_check_block *blocks, int num_blocks,
uint8_t erased_value)
{
struct working_area *erase_check_algorithm;
struct reg_param reg_params[3];
struct mips32_algorithm mips32_info;
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
if (erased_value != 0xff) {
LOG_ERROR("Erase value 0x%02" PRIx8 " not yet supported for MIPS32",
erased_value);
return ERROR_FAIL;
}
uint32_t isa = ejtag_info->isa ? 1 : 0;
uint32_t erase_check_code[] = {
/* nbyte: */
MIPS32_LB(isa, 8, 0, 4), /* lb $t0, ($a0) */
MIPS32_AND(isa, 6, 6, 8), /* and $a2, $a2, $t0 */
MIPS32_ADDIU(isa, 5, 5, NEG16(1)), /* addiu $a1, $a1, -1 */
MIPS32_BNE(isa, 5, 0, NEG16(4 << isa)), /* bne $a1, $zero, nbyte */
MIPS32_ADDIU(isa, 4, 4, 1), /* addiu $a0, $a0, 1 */
MIPS32_SDBBP(isa) /* sdbbp */
};
/* make sure we have a working area */
if (target_alloc_working_area(target, sizeof(erase_check_code), &erase_check_algorithm) != ERROR_OK)
return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
pracc_swap16_array(ejtag_info, erase_check_code, ARRAY_SIZE(erase_check_code));
/* convert erase check code into a buffer in target endianness */
uint8_t erase_check_code_8[sizeof(erase_check_code)];
target_buffer_set_u32_array(target, erase_check_code_8,
ARRAY_SIZE(erase_check_code), erase_check_code);
int retval = target_write_buffer(target, erase_check_algorithm->address,
sizeof(erase_check_code), erase_check_code_8);
if (retval != ERROR_OK)
goto cleanup;
mips32_info.common_magic = MIPS32_COMMON_MAGIC;
mips32_info.isa_mode = isa ? MIPS32_ISA_MMIPS32 : MIPS32_ISA_MIPS32;
init_reg_param(®_params[0], "r4", 32, PARAM_OUT);
buf_set_u32(reg_params[0].value, 0, 32, blocks[0].address);
init_reg_param(®_params[1], "r5", 32, PARAM_OUT);
buf_set_u32(reg_params[1].value, 0, 32, blocks[0].size);
init_reg_param(®_params[2], "r6", 32, PARAM_IN_OUT);
buf_set_u32(reg_params[2].value, 0, 32, erased_value);
retval = target_run_algorithm(target, 0, NULL, 3, reg_params, erase_check_algorithm->address,
erase_check_algorithm->address + (sizeof(erase_check_code) - 4), 10000, &mips32_info);
if (retval == ERROR_OK)
blocks[0].result = buf_get_u32(reg_params[2].value, 0, 32);
destroy_reg_param(®_params[0]);
destroy_reg_param(®_params[1]);
destroy_reg_param(®_params[2]);
cleanup:
target_free_working_area(target, erase_check_algorithm);
if (retval != ERROR_OK)
return retval;
return 1; /* only one block has been checked */
}
static int mips32_verify_pointer(struct command_context *cmd_ctx,
struct mips32_common *mips32)
{
if (mips32->common_magic != MIPS32_COMMON_MAGIC) {
command_print(cmd_ctx, "target is not an MIPS32");
return ERROR_TARGET_INVALID;
}
return ERROR_OK;
}
/**
* MIPS32 targets expose command interface
* to manipulate CP0 registers
*/
COMMAND_HANDLER(mips32_handle_cp0_command)
{
int retval;
struct target *target = get_current_target(CMD_CTX);
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
retval = mips32_verify_pointer(CMD_CTX, mips32);
if (retval != ERROR_OK)
return retval;
if (target->state != TARGET_HALTED) {
command_print(CMD_CTX, "target must be stopped for \"%s\" command", CMD_NAME);
return ERROR_OK;
}
/* two or more argument, access a single register/select (write if third argument is given) */
if (CMD_ARGC < 2)
return ERROR_COMMAND_SYNTAX_ERROR;
else {
uint32_t cp0_reg, cp0_sel;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], cp0_reg);
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], cp0_sel);
if (CMD_ARGC == 2) {
uint32_t value;
retval = mips32_cp0_read(ejtag_info, &value, cp0_reg, cp0_sel);
if (retval != ERROR_OK) {
command_print(CMD_CTX,
"couldn't access reg %" PRIi32,
cp0_reg);
return ERROR_OK;
}
command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
cp0_reg, cp0_sel, value);
} else if (CMD_ARGC == 3) {
uint32_t value;
COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);
retval = mips32_cp0_write(ejtag_info, value, cp0_reg, cp0_sel);
if (retval != ERROR_OK) {
command_print(CMD_CTX,
"couldn't access cp0 reg %" PRIi32 ", select %" PRIi32,
cp0_reg, cp0_sel);
return ERROR_OK;
}
command_print(CMD_CTX, "cp0 reg %" PRIi32 ", select %" PRIi32 ": %8.8" PRIx32,
cp0_reg, cp0_sel, value);
}
}
return ERROR_OK;
}
COMMAND_HANDLER(mips32_handle_scan_delay_command)
{
struct target *target = get_current_target(CMD_CTX);
struct mips32_common *mips32 = target_to_mips32(target);
struct mips_ejtag *ejtag_info = &mips32->ejtag_info;
if (CMD_ARGC == 1)
COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], ejtag_info->scan_delay);
else if (CMD_ARGC > 1)
return ERROR_COMMAND_SYNTAX_ERROR;
command_print(CMD_CTX, "scan delay: %d nsec", ejtag_info->scan_delay);
if (ejtag_info->scan_delay >= MIPS32_SCAN_DELAY_LEGACY_MODE) {
ejtag_info->mode = 0;
command_print(CMD_CTX, "running in legacy mode");
} else {
ejtag_info->mode = 1;
command_print(CMD_CTX, "running in fast queued mode");
}
return ERROR_OK;
}
static const struct command_registration mips32_exec_command_handlers[] = {
{
.name = "cp0",
.handler = mips32_handle_cp0_command,
.mode = COMMAND_EXEC,
.usage = "regnum select [value]",
.help = "display/modify cp0 register",
},
{
.name = "scan_delay",
.handler = mips32_handle_scan_delay_command,
.mode = COMMAND_ANY,
.help = "display/set scan delay in nano seconds",
.usage = "[value]",
},
COMMAND_REGISTRATION_DONE
};
const struct command_registration mips32_command_handlers[] = {
{
.name = "mips32",
.mode = COMMAND_ANY,
.help = "mips32 command group",
.usage = "",
.chain = mips32_exec_command_handlers,
},
COMMAND_REGISTRATION_DONE
};
|