aboutsummaryrefslogtreecommitdiff
path: root/src/jtag/jtag.h
blob: 5dfbbdce42ff527bdc219eeaa666c058325ad93b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
/***************************************************************************
*   Copyright (C) 2005 by Dominic Rath                                    *
*   Dominic.Rath@gmx.de                                                   *
*                                                                         *
*   Copyright (C) 2007,2008 Øyvind Harboe                                 *
*   oyvind.harboe@zylin.com                                               *
*                                                                         *
*   This program is free software; you can redistribute it and/or modify  *
*   it under the terms of the GNU General Public License as published by  *
*   the Free Software Foundation; either version 2 of the License, or     *
*   (at your option) any later version.                                   *
*                                                                         *
*   This program is distributed in the hope that it will be useful,       *
*   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
*   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
*   GNU General Public License for more details.                          *
*                                                                         *
*   You should have received a copy of the GNU General Public License     *
*   along with this program; if not, write to the                         *
*   Free Software Foundation, Inc.,                                       *
*   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
***************************************************************************/
#ifndef JTAG_H
#define JTAG_H

#include "types.h"
#include "binarybuffer.h"
#include "log.h"

#include "command.h"


#ifdef _DEBUG_JTAG_IO_
#define DEBUG_JTAG_IO(expr ...)		LOG_DEBUG(expr)
#else
#define DEBUG_JTAG_IO(expr ...)
#endif

#ifndef DEBUG_JTAG_IOZ
#define DEBUG_JTAG_IOZ 64
#endif

/*-----<Macros>--------------------------------------------------*/

/** When given an array, compute its DIMension, i.e. number of elements in the array */
#define DIM(x)					(sizeof(x)/sizeof((x)[0]))

/** Calculate the number of bytes required to hold @a n TAP scan bits */
#define TAP_SCAN_BYTES(n)		CEIL(n, 8)

/*-----</Macros>-------------------------------------------------*/



/*
 * Tap states from ARM7TDMI-S Technical reference manual.
 * Also, validated against several other ARM core technical manuals.
 *
 * N.B. tap_get_tms_path() was changed to reflect this corrected
 * numbering and ordering of the TAP states.
 *
 * DANGER!!!! some interfaces care about the actual numbers used
 * as they are handed off directly to hardware implementations.
 */

typedef enum tap_state
{
#if BUILD_ECOSBOARD
/* These are the old numbers. Leave as-is for now... */
	TAP_RESET    = 0, TAP_IDLE = 8,
	TAP_DRSELECT = 1, TAP_DRCAPTURE = 2, TAP_DRSHIFT = 3, TAP_DREXIT1 = 4,
	TAP_DRPAUSE  = 5, TAP_DREXIT2 = 6, TAP_DRUPDATE = 7,
	TAP_IRSELECT = 9, TAP_IRCAPTURE = 10, TAP_IRSHIFT = 11, TAP_IREXIT1 = 12,
	TAP_IRPAUSE  = 13, TAP_IREXIT2 = 14, TAP_IRUPDATE = 15,

	TAP_NUM_STATES = 16, TAP_INVALID = -1,
#else
	/* Proper ARM recommended numbers */
	TAP_DREXIT2 = 0x0,
	TAP_DREXIT1 = 0x1,
	TAP_DRSHIFT = 0x2,
	TAP_DRPAUSE = 0x3,
	TAP_IRSELECT = 0x4,
	TAP_DRUPDATE = 0x5,
	TAP_DRCAPTURE = 0x6,
	TAP_DRSELECT = 0x7,
	TAP_IREXIT2 = 0x8,
	TAP_IREXIT1 = 0x9,
	TAP_IRSHIFT = 0xa,
	TAP_IRPAUSE = 0xb,
	TAP_IDLE = 0xc,
	TAP_IRUPDATE = 0xd,
	TAP_IRCAPTURE = 0xe,
	TAP_RESET = 0x0f,

	TAP_NUM_STATES = 0x10,

	TAP_INVALID = -1,
#endif
} tap_state_t;

typedef struct tap_transition_s
{
	tap_state_t high;
	tap_state_t low;
} tap_transition_t;

//extern tap_transition_t tap_transitions[16];    /* describe the TAP state diagram */


/*-----<Cable Helper API>-------------------------------------------*/

/* The "Cable Helper API" is what the cable drivers can use to help implement
 * their "Cable API".  So a Cable Helper API is a set of helper functions used by
 * cable drivers, and this is different from a Cable API.  A "Cable API" is what
 * higher level code used to talk to a cable.
 */


/** implementation of wrapper function tap_set_state() */
void tap_set_state_impl(tap_state_t new_state);

/**
 * Function tap_set_state
 * sets the state of a "state follower" which tracks the state of the TAPs connected to the
 * cable.  The state follower is hopefully always in the same state as the actual
 * TAPs in the jtag chain, and will be so if there are no bugs in the tracking logic within that
 * cable driver. All the cable drivers call this function to indicate the state they think
 * the TAPs attached to their cables are in.  Because this function can also log transitions,
 * it will be helpful to call this function with every transition that the TAPs being manipulated
 * are expected to traverse, not just end points of a multi-step state path.
 * @param new_state is the state we think the TAPs are currently in or are about to enter.
 */
#if defined(_DEBUG_JTAG_IO_)
#define tap_set_state(new_state) \
	do { \
		LOG_DEBUG( "tap_set_state(%s)", tap_state_name(new_state) ); \
		tap_set_state_impl(new_state); \
	} while (0)
#else
static inline void tap_set_state(tap_state_t new_state)
{
	tap_set_state_impl(new_state);
}

#endif

/**
 * Function tap_get_state
 * gets the state of the "state follower" which tracks the state of the TAPs connected to
 * the cable.
 * @see tap_set_state
 * @return tap_state_t - The state the TAPs are in now.
 */
tap_state_t tap_get_state(void);

/**
 * Function tap_set_end_state
 * sets the state of an "end state follower" which tracks the state that any cable driver
 * thinks will be the end (resultant) state of the current TAP SIR or SDR operation.  At completion
 * of that TAP operation this value is copied into the state follower via tap_set_state().
 * @param new_end_state is that state the TAPs should enter at completion of a pending TAP operation.
 */
void        tap_set_end_state(tap_state_t new_end_state);

/**
 * Function tap_get_end_state
 * @see tap_set_end_state
 * @return tap_state_t - The state the TAPs should be in at completion of the current TAP operation.
 */
tap_state_t tap_get_end_state(void);

/**
 * Function tap_get_tms_path
 * returns a 7 bit long "bit sequence" indicating what has to be done with TMS
 * during a sequence of seven TAP clock cycles in order to get from
 * state \a "from" to state \a "to".
 * @param from is the starting state
 * @param to is the resultant or final state
 * @return int - a 7 bit sequence, with the first bit in the sequence at bit 0.
 */
int tap_get_tms_path(tap_state_t from, tap_state_t to);


/**
 * Function int tap_get_tms_path_len
 * returns the total number of bits that represents a TMS path
 * transition as given by the function tap_get_tms_path().
 *
 * For at least one interface (JLink) it's not OK to simply "pad" TMS sequences
 * to fit a whole byte.  (I suspect this is a general TAP problem within OOCD.)
 * Padding TMS causes all manner of instability that's not easily
 * discovered.  Using this routine we can apply EXACTLY the state transitions
 * required to make something work - no more - no less.
 *
 * @param from is the starting state
 * @param to is the resultant or final state
 * @return int - the total number of bits in a transition.
 */
int tap_get_tms_path_len(tap_state_t from, tap_state_t to);


/**
 * Function tap_move_ndx
 * when given a stable state, returns an index from 0-5.  The index corresponds to a
 * sequence of stable states which are given in this order: <p>
 * { TAP_RESET, TAP_IDLE, TAP_DRSHIFT, TAP_DRPAUSE, TAP_IRSHIFT, TAP_IRPAUSE }
 * <p>
 * This sequence corresponds to look up tables which are used in some of the
 * cable drivers.
 * @param astate is the stable state to find in the sequence.  If a non stable
 *  state is passed, this may cause the program to output an error message
 *  and terminate.
 * @return int - the array (or sequence) index as described above
 */
int tap_move_ndx(tap_state_t astate);

/**
 * Function tap_is_state_stable
 * returns true if the \a astate is stable.
 */
bool tap_is_state_stable(tap_state_t astate);

/**
 * Function tap_state_transition
 * takes a current TAP state and returns the next state according to the tms value.
 * @param current_state is the state of a TAP currently.
 * @param tms is either zero or non-zero, just like a real TMS line in a jtag interface.
 * @return tap_state_t - the next state a TAP would enter.
 */
tap_state_t tap_state_transition(tap_state_t current_state, bool tms);

/**
 * Function tap_state_name
 * Returns a string suitable for display representing the JTAG tap_state
 */
const char* tap_state_name(tap_state_t state);

#ifdef _DEBUG_JTAG_IO_
/**
 * @brief Prints verbose TAP state transitions for the given TMS/TDI buffers.
 * @param tms_buf must points to a buffer containing the TMS bitstream.
 * @param tdi_buf must points to a buffer containing the TDI bitstream.
 * @param tap_len must specify the length of the TMS/TDI bitstreams.
 * @param start_tap_state must specify the current TAP state.
 * @returns the final TAP state; pass as @a start_tap_state in following call.
 */
tap_state_t jtag_debug_state_machine(const void *tms_buf, const void *tdi_buf,
		unsigned tap_len, tap_state_t start_tap_state);
#else
static inline tap_state_t jtag_debug_state_machine(const void *tms_buf,
		const void *tdi_buf, unsigned tap_len, tap_state_t start_tap_state)
{
	return start_tap_state;
}
#endif // _DEBUG_JTAG_IO_

/*-----</Cable Helper API>------------------------------------------*/


extern tap_state_t cmd_queue_end_state;         /* finish DR scans in dr_end_state */
extern tap_state_t cmd_queue_cur_state;         /* current TAP state */

typedef void* error_handler_t;  /* Later on we can delete error_handler_t, but keep it for now to make patches more readable */

struct scan_field_s;
typedef int (*in_handler_t)(u8* in_value, void* priv, struct scan_field_s* field);

typedef struct scan_field_s
{
	jtag_tap_t* tap;                /* tap pointer this instruction refers to */
	int         num_bits;           /* number of bits this field specifies (up to 32) */
	u8*         out_value;          /* value to be scanned into the device */
	u8*         out_mask;           /* only masked bits care */
	u8*         in_value;           /* pointer to a 32-bit memory location to take data scanned out */
	/* in_check_value/mask, in_handler_error_handler, in_handler_priv can be used by the in handler, otherwise they contain garbage  */
	u8*          in_check_value;    /* used to validate scan results */
	u8*          in_check_mask;     /* check specified bits against check_value */
	in_handler_t in_handler;        /* process received buffer using this handler */
	void*        in_handler_priv;   /* additional information for the in_handler */
} scan_field_t;

enum scan_type {
	/* IN: from device to host, OUT: from host to device */
	SCAN_IN = 1, SCAN_OUT = 2, SCAN_IO = 3
};

typedef struct scan_command_s
{
	int           ir_scan;      /* instruction/not data scan */
	int           num_fields;   /* number of fields in *fields array */
	scan_field_t* fields;       /* pointer to an array of data scan fields */
	tap_state_t   end_state;    /* TAP state in which JTAG commands should finish */
} scan_command_t;

typedef struct statemove_command_s
{
	tap_state_t end_state;   /* TAP state in which JTAG commands should finish */
} statemove_command_t;

typedef struct pathmove_command_s
{
	int          num_states;    /* number of states in *path */
	tap_state_t* path;          /* states that have to be passed */
} pathmove_command_t;

typedef struct runtest_command_s
{
	int         num_cycles;     /* number of cycles that should be spent in Run-Test/Idle */
	tap_state_t end_state;      /* TAP state in which JTAG commands should finish */
} runtest_command_t;


typedef struct stableclocks_command_s
{
	int num_cycles;             /* number of clock cycles that should be sent */
} stableclocks_command_t;


typedef struct reset_command_s
{
	int trst;           /* trst/srst 0: deassert, 1: assert, -1: don't change */
	int srst;
} reset_command_t;

typedef struct end_state_command_s
{
	tap_state_t end_state;   /* TAP state in which JTAG commands should finish */
} end_state_command_t;

typedef struct sleep_command_s
{
	u32 us;     /* number of microseconds to sleep */
} sleep_command_t;

typedef union jtag_command_container_u
{
	scan_command_t*         scan;
	statemove_command_t*    statemove;
	pathmove_command_t*     pathmove;
	runtest_command_t*      runtest;
	stableclocks_command_t* stableclocks;
	reset_command_t*        reset;
	end_state_command_t*    end_state;
	sleep_command_t* sleep;
} jtag_command_container_t;

enum jtag_command_type {
	JTAG_SCAN         = 1,
	JTAG_STATEMOVE    = 2,
	JTAG_RUNTEST      = 3,
	JTAG_RESET        = 4,
	JTAG_END_STATE    = 5,
	JTAG_PATHMOVE     = 6,
	JTAG_SLEEP        = 7,
	JTAG_STABLECLOCKS = 8
};

typedef struct jtag_command_s
{
	jtag_command_container_t cmd;
	enum jtag_command_type   type;
	struct jtag_command_s*   next;
} jtag_command_t;

extern jtag_command_t* jtag_command_queue;

/* forward declaration */
typedef struct jtag_tap_event_action_s jtag_tap_event_action_t;

/* this is really: typedef jtag_tap_t */
/* But - the typedef is done in "types.h" */
/* due to "forward decloration reasons" */
struct jtag_tap_s
{
	const char* chip;
	const char* tapname;
	const char* dotted_name;
	int         abs_chain_position;
	int         enabled;
	int         ir_length;          /* size of instruction register */
	u32         ir_capture_value;
	u8*         expected;           /* Capture-IR expected value */
	u32         ir_capture_mask;
	u8*         expected_mask;      /* Capture-IR expected mask */
	u32         idcode;             /* device identification code */
	u32*        expected_ids;       /* Array of expected identification codes */
	u8          expected_ids_cnt;   /* Number of expected identification codes */
	u8*         cur_instr;          /* current instruction */
	int         bypass;             /* bypass register selected */

	jtag_tap_event_action_t* event_action;

	jtag_tap_t* next_tap;
};
extern jtag_tap_t* jtag_AllTaps(void);
extern jtag_tap_t* jtag_TapByPosition(int n);
extern jtag_tap_t* jtag_TapByString(const char* dotted_name);
extern jtag_tap_t* jtag_TapByJimObj(Jim_Interp* interp, Jim_Obj* obj);
extern jtag_tap_t* jtag_TapByAbsPosition(int abs_position);
extern int         jtag_NumEnabledTaps(void);
extern int         jtag_NumTotalTaps(void);

static __inline__ jtag_tap_t* jtag_NextEnabledTap(jtag_tap_t* p)
{
	if (p == NULL)
	{
		/* start at the head of list */
		p = jtag_AllTaps();
	}
	else
	{
		/* start *after* this one */
		p = p->next_tap;
	}
	while (p)
	{
		if (p->enabled)
		{
			break;
		}
		else
		{
			p = p->next_tap;
		}
	}

	return p;
}


enum reset_line_mode {
	LINE_OPEN_DRAIN = 0x0,
	LINE_PUSH_PULL  = 0x1,
};

typedef struct jtag_interface_s
{
	char* name;

	/* queued command execution
	 */
	int (*execute_queue)(void);

	/* interface initalization
	 */
	int (*speed)(int speed);
	int (*register_commands)(struct command_context_s* cmd_ctx);
	int (*init)(void);
	int (*quit)(void);

	/* returns JTAG maxium speed for KHz. 0=RTCK. The function returns
	 *  a failure if it can't support the KHz/RTCK.
	 *
	 *  WARNING!!!! if RTCK is *slow* then think carefully about
	 *  whether you actually want to support this in the driver.
	 *  Many target scripts are written to handle the absence of RTCK
	 *  and use a fallback kHz TCK.
	 */
	int (*khz)(int khz, int* jtag_speed);

	/* returns the KHz for the provided JTAG speed. 0=RTCK. The function returns
	 *  a failure if it can't support the KHz/RTCK. */
	int (*speed_div)(int speed, int* khz);

	/* Read and clear the power dropout flag. Note that a power dropout
	 *  can be transitionary, easily much less than a ms.
	 *
	 *  So to find out if the power is *currently* on, you must invoke
	 *  this method twice. Once to clear the power dropout flag and a
	 *  second time to read the current state.
	 *
	 *  Currently the default implementation is never to detect power dropout.
	 */
	int (*power_dropout)(int* power_dropout);

	/* Read and clear the srst asserted detection flag.
	 *
	 * NB!!!! like power_dropout this does *not* read the current
	 * state. srst assertion is transitionary and *can* be much
	 * less than 1ms.
	 */
	int (*srst_asserted)(int* srst_asserted);
} jtag_interface_t;

enum jtag_event {
	JTAG_TRST_ASSERTED
};

extern char* jtag_event_strings[];

enum jtag_tap_event {
	JTAG_TAP_EVENT_ENABLE,
	JTAG_TAP_EVENT_DISABLE
};

extern const Jim_Nvp nvp_jtag_tap_event[];

struct jtag_tap_event_action_s
{
	enum jtag_tap_event      event;
	Jim_Obj*                 body;
	jtag_tap_event_action_t* next;
};

extern int jtag_trst;
extern int jtag_srst;

typedef struct jtag_event_callback_s
{
	int (*callback)(enum jtag_event event, void* priv);
	void*                         priv;
	struct jtag_event_callback_s* next;
} jtag_event_callback_t;

extern jtag_event_callback_t* jtag_event_callbacks;

extern jtag_interface_t*      jtag; /* global pointer to configured JTAG interface */

extern int jtag_speed;
extern int jtag_speed_post_reset;

enum reset_types {
	RESET_NONE            = 0x0,
	RESET_HAS_TRST        = 0x1,
	RESET_HAS_SRST        = 0x2,
	RESET_TRST_AND_SRST   = 0x3,
	RESET_SRST_PULLS_TRST = 0x4,
	RESET_TRST_PULLS_SRST = 0x8,
	RESET_TRST_OPEN_DRAIN = 0x10,
	RESET_SRST_PUSH_PULL  = 0x20,
};

extern enum reset_types jtag_reset_config;

/* initialize interface upon startup. A successful no-op
 * upon subsequent invocations
 */
extern int  jtag_interface_init(struct command_context_s* cmd_ctx);

/* initialize JTAG chain using only a RESET reset. If init fails,
 * try reset + init.
 */
extern int  jtag_init(struct command_context_s* cmd_ctx);

/* reset, then initialize JTAG chain */
extern int  jtag_init_reset(struct command_context_s* cmd_ctx);
extern int  jtag_register_commands(struct command_context_s* cmd_ctx);

/* JTAG interface, can be implemented with a software or hardware fifo
 *
 * TAP_DRSHIFT and TAP_IRSHIFT are illegal end states. TAP_DRSHIFT/IRSHIFT as end states
 * can be emulated by using a larger scan.
 *
 * Code that is relatively insensitive to the path(as long
 * as it is JTAG compliant) taken through state machine can use
 * endstate for jtag_add_xxx_scan(). Otherwise the pause state must be
 * specified as end state and a subsequent jtag_add_pathmove() must
 * be issued.
 *
 */
extern void jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
extern int  interface_jtag_add_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
extern void jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
extern int  interface_jtag_add_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
extern void jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
extern int  interface_jtag_add_plain_ir_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
extern void jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);
extern int  interface_jtag_add_plain_dr_scan(int num_fields, scan_field_t* fields, tap_state_t endstate);

/* run a TAP_RESET reset. End state is TAP_RESET, regardless
 * of start state.
 */
extern void jtag_add_tlr(void);
extern int  interface_jtag_add_tlr(void);

/* Application code *must* assume that interfaces will
 * implement transitions between states with different
 * paths and path lengths through the state diagram. The
 * path will vary across interface and also across versions
 * of the same interface over time. Even if the OpenOCD code
 * is unchanged, the actual path taken may vary over time
 * and versions of interface firmware or PCB revisions.
 * 
 * Use jtag_add_pathmove() when specific transition sequences
 * are required.
 * 
 * Do not use jtag_add_pathmove() unless you need to, but do use it
 * if you have to.
 *
 * DANGER! If the target is dependent upon a particular sequence
 * of transitions for things to work correctly(e.g. as a workaround
 * for an errata that contradicts the JTAG standard), then pathmove
 * must be used, even if some jtag interfaces happen to use the
 * desired path. Worse, the jtag interface used for testing a
 * particular implementation, could happen to use the "desired"
 * path when transitioning to/from end
 * state.
 *
 * A list of unambigious single clock state transitions, not
 * all drivers can support this, but it is required for e.g.
 * XScale and Xilinx support
 *
 * Note! TAP_RESET must not be used in the path!
 *
 * Note that the first on the list must be reachable
 * via a single transition from the current state.
 *
 * All drivers are required to implement jtag_add_pathmove().
 * However, if the pathmove sequence can not be precisely
 * executed, an interface_jtag_add_pathmove() or jtag_execute_queue()
 * must return an error. It is legal, but not recommended, that
 * a driver returns an error in all cases for a pathmove if it
 * can only implement a few transitions and therefore
 * a partial implementation of pathmove would have little practical
 * application.
 */
extern void jtag_add_pathmove(int num_states, tap_state_t* path);
extern int  interface_jtag_add_pathmove(int num_states, tap_state_t* path);

/* go to TAP_IDLE, if we're not already there and cycle
 * precisely num_cycles in the TAP_IDLE after which move
 * to the end state, if it is != TAP_IDLE
 *
 * nb! num_cycles can be 0, in which case the fn will navigate
 * to endstate via TAP_IDLE
 */
extern void jtag_add_runtest(int num_cycles, tap_state_t endstate);
extern int  interface_jtag_add_runtest(int num_cycles, tap_state_t endstate);

/* A reset of the TAP state machine can be requested.
 *
 * Whether tms or trst reset is used depends on the capabilities of
 * the target and jtag interface(reset_config  command configures this).
 *
 * srst can driver a reset of the TAP state machine and vice
 * versa
 *
 * Application code may need to examine value of jtag_reset_config
 * to determine the proper codepath
 *
 * DANGER! Even though srst drives trst, trst might not be connected to
 * the interface, and it might actually be *harmful* to assert trst in this case.
 *
 * This is why combinations such as "reset_config srst_only srst_pulls_trst"
 * are supported.
 *
 * only req_tlr_or_trst and srst can have a transition for a
 * call as the effects of transitioning both at the "same time"
 * are undefined, but when srst_pulls_trst or vice versa,
 * then trst & srst *must* be asserted together.
 */
extern void jtag_add_reset(int req_tlr_or_trst, int srst);

/* this drives the actual srst and trst pins. srst will always be 0
 * if jtag_reset_config & RESET_SRST_PULLS_TRST != 0 and ditto for
 * trst.
 *
 * the higher level jtag_add_reset will invoke jtag_add_tlr() if
 * approperiate
 */
extern int  interface_jtag_add_reset(int trst, int srst);
extern void jtag_add_end_state(tap_state_t endstate);
extern int  interface_jtag_add_end_state(tap_state_t endstate);
extern void jtag_add_sleep(u32 us);
extern int  interface_jtag_add_sleep(u32 us);


/**
 * Function jtag_add_stable_clocks
 * first checks that the state in which the clocks are to be issued is
 * stable, then queues up clock_count clocks for transmission.
 */
void jtag_add_clocks(int num_cycles);
int  interface_jtag_add_clocks(int num_cycles);


/*
 * For software FIFO implementations, the queued commands can be executed
 * during this call or earlier. A sw queue might decide to push out
 * some of the jtag_add_xxx() operations once the queue is "big enough".
 *
 * This fn will return an error code if any of the prior jtag_add_xxx()
 * calls caused a failure, e.g. check failure. Note that it does not
 * matter if the operation was executed *before* jtag_execute_queue(),
 * jtag_execute_queue() will still return an error code.
 *
 * All jtag_add_xxx() calls that have in_handler!=NULL will have been
 * executed when this fn returns, but if what has been queued only
 * clocks data out, without reading anything back, then JTAG could
 * be running *after* jtag_execute_queue() returns. The API does
 * not define a way to flush a hw FIFO that runs *after*
 * jtag_execute_queue() returns.
 *
 * jtag_add_xxx() commands can either be executed immediately or
 * at some time between the jtag_add_xxx() fn call and jtag_execute_queue().
 */
extern int            jtag_execute_queue(void);

/* can be implemented by hw+sw */
extern int            interface_jtag_execute_queue(void);
extern int            jtag_power_dropout(int* dropout);
extern int            jtag_srst_asserted(int* srst_asserted);

/* JTAG support functions */
extern void           jtag_set_check_value(scan_field_t* field, u8* value, u8* mask, error_handler_t* in_error_handler);
extern enum scan_type jtag_scan_type(scan_command_t* cmd);
extern int            jtag_scan_size(scan_command_t* cmd);
extern int            jtag_read_buffer(u8* buffer, scan_command_t* cmd);
extern int            jtag_build_buffer(scan_command_t* cmd, u8** buffer);

extern void           jtag_sleep(u32 us);
extern int            jtag_call_event_callbacks(enum jtag_event event);
extern int            jtag_register_event_callback(int (* callback)(enum jtag_event event, void* priv), void* priv);

extern int jtag_verify_capture_ir;

void jtag_tap_handle_event(jtag_tap_t* tap, enum jtag_tap_event e);

/* error codes
 * JTAG subsystem uses codes between -100 and -199 */

#define ERROR_JTAG_INIT_FAILED       (-100)
#define ERROR_JTAG_INVALID_INTERFACE (-101)
#define ERROR_JTAG_NOT_IMPLEMENTED   (-102)
#define ERROR_JTAG_TRST_ASSERTED     (-103)
#define ERROR_JTAG_QUEUE_FAILED      (-104)
#define ERROR_JTAG_NOT_STABLE_STATE  (-105)
#define ERROR_JTAG_DEVICE_ERROR      (-107)


/* this allows JTAG devices to implement the entire jtag_xxx() layer in hw/sw */
#ifdef HAVE_JTAG_MINIDRIVER_H
/* Here a #define MINIDRIVER() and an inline version of hw fifo interface_jtag_add_dr_out can be defined */
#include "jtag_minidriver.h"
#define MINIDRIVER(a) notused ## a
#else
#define MINIDRIVER(a) a

/* jtag_add_dr_out() is a faster version of jtag_add_dr_scan()
 *
 * Current or end_state can not be TAP_RESET. end_state can be TAP_INVALID
 *
 * num_bits[i] is the number of bits to clock out from value[i] LSB first.
 *
 * If the device is in bypass, then that is an error condition in
 * the caller code that is not detected by this fn, whereas jtag_add_dr_scan()
 * does detect it. Similarly if the device is not in bypass, data must
 * be passed to it.
 *
 * If anything fails, then jtag_error will be set and jtag_execute() will
 * return an error. There is no way to determine if there was a failure
 * during this function call.
 *
 * Note that this jtag_add_dr_out can be defined as an inline function.
 */
extern void interface_jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
		tap_state_t end_state);

#endif

static __inline__ void jtag_add_dr_out(jtag_tap_t* tap, int num_fields, const int* num_bits, const u32* value,
		tap_state_t end_state)
{
	if (end_state != TAP_INVALID)
		cmd_queue_end_state = end_state;
	cmd_queue_cur_state = cmd_queue_end_state;
	interface_jtag_add_dr_out(tap, num_fields, num_bits, value, cmd_queue_end_state);
}


#endif /* JTAG_H */