aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nor/stm32l4x.c
blob: 4414cf539608574f7f1de8c3897ff4bc9446234b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
// SPDX-License-Identifier: GPL-2.0-or-later

/***************************************************************************
 *   Copyright (C) 2015 by Uwe Bonnes                                      *
 *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
 *                                                                         *
 *   Copyright (C) 2019 by Tarek Bochkati for STMicroelectronics           *
 *   tarek.bouchkati@gmail.com                                             *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include <helper/align.h>
#include <helper/binarybuffer.h>
#include <helper/bits.h>
#include <target/algorithm.h>
#include <target/arm_adi_v5.h>
#include <target/cortex_m.h>
#include "stm32l4x.h"

/* STM32L4xxx series for reference.
 *
 * RM0351 (STM32L4x5/STM32L4x6)
 * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
 *
 * RM0394 (STM32L43x/44x/45x/46x)
 * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
 *
 * RM0432 (STM32L4R/4Sxx)
 * http://www.st.com/resource/en/reference_manual/dm00310109.pdf
 *
 * STM32L476RG Datasheet (for erase timing)
 * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
 *
 * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
 * an option byte is available to map all sectors to the first bank.
 * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
 * handlers do!
 *
 * RM0394 devices have a single bank only.
 *
 * RM0432 devices have single and dual bank operating modes.
 *  - for STM32L4R/Sxx the FLASH size is 2Mbyte or 1Mbyte.
 *  - for STM32L4P/Q5x the FLASH size is 1Mbyte or 512Kbyte.
 * Bank page (sector) size is 4Kbyte (dual mode) or 8Kbyte (single mode).
 *
 * Bank mode is controlled by two different bits in option bytes register.
 *  - for STM32L4R/Sxx
 *    In 2M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
 *    In 1M FLASH devices bit 21 (DB1M) controls Dual Bank mode.
 *  - for STM32L4P5/Q5x
 *    In 1M FLASH devices bit 22 (DBANK) controls Dual Bank mode.
 *    In 512K FLASH devices bit 21 (DB512K) controls Dual Bank mode.
 */

/* STM32WBxxx series for reference.
 *
 * RM0434 (STM32WB55/WB35x)
 * http://www.st.com/resource/en/reference_manual/dm00318631.pdf
 *
 * RM0471 (STM32WB50/WB30x)
 * http://www.st.com/resource/en/reference_manual/dm00622834.pdf
 *
 * RM0473 (STM32WB15x)
 * http://www.st.com/resource/en/reference_manual/dm00649196.pdf
 *
 * RM0478 (STM32WB10x)
 * http://www.st.com/resource/en/reference_manual/dm00689203.pdf
 */

/* STM32WLxxx series for reference.
 *
 * RM0461 (STM32WLEx)
 * http://www.st.com/resource/en/reference_manual/dm00530369.pdf
 *
 * RM0453 (STM32WL5x)
 * http://www.st.com/resource/en/reference_manual/dm00451556.pdf
 */

/* STM32C0xxx series for reference.
 *
 * RM0490 (STM32C0x1)
 * http://www.st.com/resource/en/reference_manual/dm00781702.pdf
 */

/* STM32G0xxx series for reference.
 *
 * RM0444 (STM32G0x1)
 * http://www.st.com/resource/en/reference_manual/dm00371828.pdf
 *
 * RM0454 (STM32G0x0)
 * http://www.st.com/resource/en/reference_manual/dm00463896.pdf
 */

/* STM32G4xxx series for reference.
 *
 * RM0440 (STM32G43x/44x/47x/48x/49x/4Ax)
 * http://www.st.com/resource/en/reference_manual/dm00355726.pdf
 *
 * Cat. 2 devices have single bank only, page size is 2kByte.
 *
 * Cat. 3 devices have single and dual bank operating modes,
 * Page size is 2kByte (dual mode) or 4kByte (single mode).
 *
 * Bank mode is controlled by bit 22 (DBANK) in option bytes register.
 * Both banks are treated as a single OpenOCD bank.
 *
 * Cat. 4 devices have single bank only, page size is 2kByte.
 */

/* STM32L5xxx series for reference.
 *
 * RM0428 (STM32L552xx/STM32L562xx)
 * http://www.st.com/resource/en/reference_manual/dm00346336.pdf
 */

/* Erase time can be as high as 25ms, 10x this and assume it's toast... */

#define FLASH_ERASE_TIMEOUT 250
#define FLASH_WRITE_TIMEOUT 50


/* relevant STM32L4 flags ****************************************************/
#define F_NONE              0
/* this flag indicates if the device flash is with dual bank architecture */
#define F_HAS_DUAL_BANK     BIT(0)
/* this flags is used for dual bank devices only, it indicates if the
 * 4 WRPxx are usable if the device is configured in single-bank mode */
#define F_USE_ALL_WRPXX     BIT(1)
/* this flag indicates if the device embeds a TrustZone security feature */
#define F_HAS_TZ            BIT(2)
/* this flag indicates if the device has the same flash registers as STM32L5 */
#define F_HAS_L5_FLASH_REGS BIT(3)
/* this flag indicates that programming should be done in quad-word
 * the default programming word size is double-word */
#define F_QUAD_WORD_PROG    BIT(4)
/* end of STM32L4 flags ******************************************************/


enum stm32l4_flash_reg_index {
	STM32_FLASH_ACR_INDEX,
	STM32_FLASH_KEYR_INDEX,
	STM32_FLASH_OPTKEYR_INDEX,
	STM32_FLASH_SR_INDEX,
	STM32_FLASH_CR_INDEX,
	/* for some devices like STM32WL5x, the CPU2 have a dedicated C2CR register w/o LOCKs,
	 * so it uses the C2CR for flash operations and CR for checking locks and locking */
	STM32_FLASH_CR_WLK_INDEX, /* FLASH_CR_WITH_LOCK */
	STM32_FLASH_OPTR_INDEX,
	STM32_FLASH_WRP1AR_INDEX,
	STM32_FLASH_WRP1BR_INDEX,
	STM32_FLASH_WRP2AR_INDEX,
	STM32_FLASH_WRP2BR_INDEX,
	STM32_FLASH_REG_INDEX_NUM,
};

enum stm32l4_rdp {
	RDP_LEVEL_0   = 0xAA,
	RDP_LEVEL_0_5 = 0x55, /* for devices with TrustZone enabled */
	RDP_LEVEL_1   = 0x00,
	RDP_LEVEL_2   = 0xCC
};

static const uint32_t stm32l4_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
	[STM32_FLASH_ACR_INDEX]      = 0x000,
	[STM32_FLASH_KEYR_INDEX]     = 0x008,
	[STM32_FLASH_OPTKEYR_INDEX]  = 0x00C,
	[STM32_FLASH_SR_INDEX]       = 0x010,
	[STM32_FLASH_CR_INDEX]       = 0x014,
	[STM32_FLASH_OPTR_INDEX]     = 0x020,
	[STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
	[STM32_FLASH_WRP1BR_INDEX]   = 0x030,
	[STM32_FLASH_WRP2AR_INDEX]   = 0x04C,
	[STM32_FLASH_WRP2BR_INDEX]   = 0x050,
};

static const uint32_t stm32wl_cpu2_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
	[STM32_FLASH_ACR_INDEX]      = 0x000,
	[STM32_FLASH_KEYR_INDEX]     = 0x008,
	[STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
	[STM32_FLASH_SR_INDEX]       = 0x060,
	[STM32_FLASH_CR_INDEX]       = 0x064,
	[STM32_FLASH_CR_WLK_INDEX]   = 0x014,
	[STM32_FLASH_OPTR_INDEX]     = 0x020,
	[STM32_FLASH_WRP1AR_INDEX]   = 0x02C,
	[STM32_FLASH_WRP1BR_INDEX]   = 0x030,
};

static const uint32_t stm32l5_ns_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
	[STM32_FLASH_ACR_INDEX]      = 0x000,
	[STM32_FLASH_KEYR_INDEX]     = 0x008, /* NSKEYR */
	[STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
	[STM32_FLASH_SR_INDEX]       = 0x020, /* NSSR */
	[STM32_FLASH_CR_INDEX]       = 0x028, /* NSCR */
	[STM32_FLASH_OPTR_INDEX]     = 0x040,
	[STM32_FLASH_WRP1AR_INDEX]   = 0x058,
	[STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
	[STM32_FLASH_WRP2AR_INDEX]   = 0x068,
	[STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
};

static const uint32_t stm32l5_s_flash_regs[STM32_FLASH_REG_INDEX_NUM] = {
	[STM32_FLASH_ACR_INDEX]      = 0x000,
	[STM32_FLASH_KEYR_INDEX]     = 0x00C, /* SECKEYR */
	[STM32_FLASH_OPTKEYR_INDEX]  = 0x010,
	[STM32_FLASH_SR_INDEX]       = 0x024, /* SECSR */
	[STM32_FLASH_CR_INDEX]       = 0x02C, /* SECCR */
	[STM32_FLASH_OPTR_INDEX]     = 0x040,
	[STM32_FLASH_WRP1AR_INDEX]   = 0x058,
	[STM32_FLASH_WRP1BR_INDEX]   = 0x05C,
	[STM32_FLASH_WRP2AR_INDEX]   = 0x068,
	[STM32_FLASH_WRP2BR_INDEX]   = 0x06C,
};

struct stm32l4_rev {
	const uint16_t rev;
	const char *str;
};

struct stm32l4_part_info {
	uint16_t id;
	const char *device_str;
	const struct stm32l4_rev *revs;
	const size_t num_revs;
	const uint16_t max_flash_size_kb;
	const uint32_t flags; /* one bit per feature, see STM32L4 flags: macros F_XXX */
	const uint32_t flash_regs_base;
	const uint32_t fsize_addr;
	const uint32_t otp_base;
	const uint32_t otp_size;
};

struct stm32l4_flash_bank {
	bool probed;
	uint32_t idcode;
	unsigned int bank1_sectors;
	bool dual_bank_mode;
	int hole_sectors;
	uint32_t user_bank_size;
	uint32_t data_width;
	uint32_t cr_bker_mask;
	uint32_t sr_bsy_mask;
	uint32_t wrpxxr_mask;
	const struct stm32l4_part_info *part_info;
	uint32_t flash_regs_base;
	const uint32_t *flash_regs;
	bool otp_enabled;
	enum stm32l4_rdp rdp;
	bool tzen;
	uint32_t optr;
};

enum stm32_bank_id {
	STM32_BANK1,
	STM32_BANK2,
	STM32_ALL_BANKS
};

struct stm32l4_wrp {
	enum stm32l4_flash_reg_index reg_idx;
	uint32_t value;
	bool used;
	int first;
	int last;
	int offset;
};

/* human readable list of families this drivers supports (sorted alphabetically) */
static const char *device_families = "STM32C0/G0/G4/L4/L4+/L5/U5/WB/WL";

static const struct stm32l4_rev stm32l47_l48xx_revs[] = {
	{ 0x1000, "1" }, { 0x1001, "2" }, { 0x1003, "3" }, { 0x1007, "4" }
};

static const struct stm32l4_rev stm32l43_l44xx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};


static const struct stm32l4_rev stm32c01xx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" },
};

static const struct stm32l4_rev stm32c03xx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" },
};

static const struct stm32l4_rev stm32g05_g06xx_revs[] = {
	{ 0x1000, "A" },
};

static const struct stm32l4_rev stm32_g07_g08xx_revs[] = {
	{ 0x1000, "A/Z" } /* A and Z, no typo in RM! */, { 0x2000, "B" },
};

static const struct stm32l4_rev stm32l49_l4axx_revs[] = {
	{ 0x1000, "A" }, { 0x2000, "B" },
};

static const struct stm32l4_rev stm32l45_l46xx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};

static const struct stm32l4_rev stm32l41_l42xx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2001, "Y" },
};

static const struct stm32l4_rev stm32g03_g04xx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x2000, "B" },
};

static const struct stm32l4_rev stm32g0b_g0cxx_revs[] = {
	{ 0x1000, "A" },
};

static const struct stm32l4_rev stm32g43_g44xx_revs[] = {
	{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
};

static const struct stm32l4_rev stm32g47_g48xx_revs[] = {
	{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
};

static const struct stm32l4_rev stm32l4r_l4sxx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x100F, "W" },
	{ 0x101F, "V" },
};

static const struct stm32l4_rev stm32l4p_l4qxx_revs[] = {
	{ 0x1001, "Z" },
};

static const struct stm32l4_rev stm32l55_l56xx_revs[] = {
	{ 0x1000, "A" }, { 0x2000, "B" }, { 0x2001, "Z" },
};

static const struct stm32l4_rev stm32g49_g4axx_revs[] = {
	{ 0x1000, "A" },
};

static const struct stm32l4_rev stm32u57_u58xx_revs[] = {
	{ 0x1000, "A" }, { 0x1001, "Z" }, { 0x1003, "Y" }, { 0x2000, "B" },
	{ 0x2001, "X" }, { 0x3000, "C" },
};

static const struct stm32l4_rev stm32wb1xx_revs[] = {
	{ 0x1000, "A" }, { 0x2000, "B" },
};

static const struct stm32l4_rev stm32wb5xx_revs[] = {
	{ 0x2001, "2.1" },
};

static const struct stm32l4_rev stm32wb3xx_revs[] = {
	{ 0x1000, "A" },
};

static const struct stm32l4_rev stm32wle_wl5xx_revs[] = {
	{ 0x1000, "1.0" },
};

static const struct stm32l4_part_info stm32l4_parts[] = {
	{
	  .id                    = DEVID_STM32L47_L48XX,
	  .revs                  = stm32l47_l48xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l47_l48xx_revs),
	  .device_str            = "STM32L47/L48xx",
	  .max_flash_size_kb     = 1024,
	  .flags                 = F_HAS_DUAL_BANK,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32L43_L44XX,
	  .revs                  = stm32l43_l44xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l43_l44xx_revs),
	  .device_str            = "STM32L43/L44xx",
	  .max_flash_size_kb     = 256,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32C01XX,
	  .revs                  = stm32c01xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32c01xx_revs),
	  .device_str            = "STM32C01xx",
	  .max_flash_size_kb     = 32,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75A0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32C03XX,
	  .revs                  = stm32c03xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32c03xx_revs),
	  .device_str            = "STM32C03xx",
	  .max_flash_size_kb     = 32,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75A0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32G05_G06XX,
	  .revs                  = stm32g05_g06xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32g05_g06xx_revs),
	  .device_str            = "STM32G05/G06xx",
	  .max_flash_size_kb     = 64,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32G07_G08XX,
	  .revs                  = stm32_g07_g08xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32_g07_g08xx_revs),
	  .device_str            = "STM32G07/G08xx",
	  .max_flash_size_kb     = 128,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32L49_L4AXX,
	  .revs                  = stm32l49_l4axx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l49_l4axx_revs),
	  .device_str            = "STM32L49/L4Axx",
	  .max_flash_size_kb     = 1024,
	  .flags                 = F_HAS_DUAL_BANK,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32L45_L46XX,
	  .revs                  = stm32l45_l46xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l45_l46xx_revs),
	  .device_str            = "STM32L45/L46xx",
	  .max_flash_size_kb     = 512,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32L41_L42XX,
	  .revs                  = stm32l41_l42xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l41_l42xx_revs),
	  .device_str            = "STM32L41/L42xx",
	  .max_flash_size_kb     = 128,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32G03_G04XX,
	  .revs                  = stm32g03_g04xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32g03_g04xx_revs),
	  .device_str            = "STM32G03x/G04xx",
	  .max_flash_size_kb     = 64,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32G0B_G0CXX,
	  .revs                  = stm32g0b_g0cxx_revs,
	  .num_revs              = ARRAY_SIZE(stm32g0b_g0cxx_revs),
	  .device_str            = "STM32G0B/G0Cx",
	  .max_flash_size_kb     = 512,
	  .flags                 = F_HAS_DUAL_BANK,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32G43_G44XX,
	  .revs                  = stm32g43_g44xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32g43_g44xx_revs),
	  .device_str            = "STM32G43/G44xx",
	  .max_flash_size_kb     = 128,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32G47_G48XX,
	  .revs                  = stm32g47_g48xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32g47_g48xx_revs),
	  .device_str            = "STM32G47/G48xx",
	  .max_flash_size_kb     = 512,
	  .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32L4R_L4SXX,
	  .revs                  = stm32l4r_l4sxx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l4r_l4sxx_revs),
	  .device_str            = "STM32L4R/L4Sxx",
	  .max_flash_size_kb     = 2048,
	  .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32L4P_L4QXX,
	  .revs                  = stm32l4p_l4qxx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l4p_l4qxx_revs),
	  .device_str            = "STM32L4P/L4Qxx",
	  .max_flash_size_kb     = 1024,
	  .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32L55_L56XX,
	  .revs                  = stm32l55_l56xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32l55_l56xx_revs),
	  .device_str            = "STM32L55/L56xx",
	  .max_flash_size_kb     = 512,
	  .flags                 = F_HAS_DUAL_BANK | F_USE_ALL_WRPXX | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x0BFA05E0,
	  .otp_base              = 0x0BFA0000,
	  .otp_size              = 512,
	},
	{
	  .id                    = DEVID_STM32G49_G4AXX,
	  .revs                  = stm32g49_g4axx_revs,
	  .num_revs              = ARRAY_SIZE(stm32g49_g4axx_revs),
	  .device_str            = "STM32G49/G4Axx",
	  .max_flash_size_kb     = 512,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32U57_U58XX,
	  .revs                  = stm32u57_u58xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32u57_u58xx_revs),
	  .device_str            = "STM32U57/U58xx",
	  .max_flash_size_kb     = 2048,
	  .flags                 = F_HAS_DUAL_BANK | F_QUAD_WORD_PROG | F_HAS_TZ | F_HAS_L5_FLASH_REGS,
	  .flash_regs_base       = 0x40022000,
	  .fsize_addr            = 0x0BFA07A0,
	  .otp_base              = 0x0BFA0000,
	  .otp_size              = 512,
	},
	{
	  .id                    = DEVID_STM32WB1XX,
	  .revs                  = stm32wb1xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32wb1xx_revs),
	  .device_str            = "STM32WB1x",
	  .max_flash_size_kb     = 320,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x58004000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32WB5XX,
	  .revs                  = stm32wb5xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32wb5xx_revs),
	  .device_str            = "STM32WB5x",
	  .max_flash_size_kb     = 1024,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x58004000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32WB3XX,
	  .revs                  = stm32wb3xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32wb3xx_revs),
	  .device_str            = "STM32WB3x",
	  .max_flash_size_kb     = 512,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x58004000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
	{
	  .id                    = DEVID_STM32WLE_WL5XX,
	  .revs                  = stm32wle_wl5xx_revs,
	  .num_revs              = ARRAY_SIZE(stm32wle_wl5xx_revs),
	  .device_str            = "STM32WLE/WL5x",
	  .max_flash_size_kb     = 256,
	  .flags                 = F_NONE,
	  .flash_regs_base       = 0x58004000,
	  .fsize_addr            = 0x1FFF75E0,
	  .otp_base              = 0x1FFF7000,
	  .otp_size              = 1024,
	},
};

/* flash bank stm32l4x <base> <size> 0 0 <target#> */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
	struct stm32l4_flash_bank *stm32l4_info;

	if (CMD_ARGC < 6)
		return ERROR_COMMAND_SYNTAX_ERROR;

	/* fix-up bank base address: 0 is used for normal flash memory */
	if (bank->base == 0)
		bank->base = STM32_FLASH_BANK_BASE;

	stm32l4_info = calloc(1, sizeof(struct stm32l4_flash_bank));
	if (!stm32l4_info)
		return ERROR_FAIL; /* Checkme: What better error to use?*/
	bank->driver_priv = stm32l4_info;

	stm32l4_info->probed = false;
	stm32l4_info->otp_enabled = false;
	stm32l4_info->user_bank_size = bank->size;

	return ERROR_OK;
}

/* bitmap helper extension */
struct range {
	unsigned int start;
	unsigned int end;
};

static void bitmap_to_ranges(unsigned long *bitmap, unsigned int nbits,
		struct range *ranges, unsigned int *ranges_count) {
	*ranges_count = 0;
	bool last_bit = 0, cur_bit;
	for (unsigned int i = 0; i < nbits; i++) {
		cur_bit = test_bit(i, bitmap);

		if (cur_bit && !last_bit) {
			(*ranges_count)++;
			ranges[*ranges_count - 1].start = i;
			ranges[*ranges_count - 1].end = i;
		} else if (cur_bit && last_bit) {
			/* update (increment) the end this range */
			ranges[*ranges_count - 1].end = i;
		}

		last_bit = cur_bit;
	}
}

static inline int range_print_one(struct range *range, char *str)
{
	if (range->start == range->end)
		return sprintf(str, "[%d]", range->start);

	return sprintf(str, "[%d,%d]", range->start, range->end);
}

static char *range_print_alloc(struct range *ranges, unsigned int ranges_count)
{
	/* each range will be printed like the following: [start,end]
	 * start and end, both are unsigned int, an unsigned int takes 10 characters max
	 * plus 3 characters for '[', ',' and ']'
	 * thus means each range can take maximum 23 character
	 * after each range we add a ' ' as separator and finally we need the '\0'
	 * if the ranges_count is zero we reserve one char for '\0' to return an empty string */
	char *str = calloc(1, ranges_count * (24 * sizeof(char)) + 1);
	char *ptr = str;

	for (unsigned int i = 0; i < ranges_count; i++) {
		ptr += range_print_one(&(ranges[i]), ptr);

		if (i < ranges_count - 1)
			*(ptr++) = ' ';
	}

	return str;
}

/* end of bitmap helper extension */

static inline bool stm32l4_is_otp(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return bank->base == stm32l4_info->part_info->otp_base;
}

static int stm32l4_otp_enable(struct flash_bank *bank, bool enable)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	if (!stm32l4_is_otp(bank))
		return ERROR_FAIL;

	char *op_str = enable ? "enabled" : "disabled";

	LOG_INFO("OTP memory (bank #%d) is %s%s for write commands",
			bank->bank_number,
			stm32l4_info->otp_enabled == enable ? "already " : "",
			op_str);

	stm32l4_info->otp_enabled = enable;

	return ERROR_OK;
}

static inline bool stm32l4_otp_is_enabled(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return stm32l4_info->otp_enabled;
}

static void stm32l4_sync_rdp_tzen(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	bool tzen = false;

	if (stm32l4_info->part_info->flags & F_HAS_TZ)
		tzen = (stm32l4_info->optr & FLASH_TZEN) != 0;

	uint32_t rdp = stm32l4_info->optr & FLASH_RDP_MASK;

	/* for devices without TrustZone:
	 *   RDP level 0 and 2 values are to 0xAA and 0xCC
	 *   Any other value corresponds to RDP level 1
	 * for devices with TrusZone:
	 *   RDP level 0 and 2 values are 0xAA and 0xCC
	 *   RDP level 0.5 value is 0x55 only if TZEN = 1
	 *   Any other value corresponds to RDP level 1, including 0x55 if TZEN = 0
	 */

	if (rdp != RDP_LEVEL_0 && rdp != RDP_LEVEL_2) {
		if (!tzen || (tzen && rdp != RDP_LEVEL_0_5))
			rdp = RDP_LEVEL_1;
	}

	stm32l4_info->tzen = tzen;
	stm32l4_info->rdp = rdp;
}

static inline uint32_t stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg_offset)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return stm32l4_info->flash_regs_base + reg_offset;
}

static inline uint32_t stm32l4_get_flash_reg_by_index(struct flash_bank *bank,
	enum stm32l4_flash_reg_index reg_index)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return stm32l4_get_flash_reg(bank, stm32l4_info->flash_regs[reg_index]);
}

static inline int stm32l4_read_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t *value)
{
	return target_read_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}

static inline int stm32l4_read_flash_reg_by_index(struct flash_bank *bank,
	enum stm32l4_flash_reg_index reg_index, uint32_t *value)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return stm32l4_read_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}

static inline int stm32l4_write_flash_reg(struct flash_bank *bank, uint32_t reg_offset, uint32_t value)
{
	return target_write_u32(bank->target, stm32l4_get_flash_reg(bank, reg_offset), value);
}

static inline int stm32l4_write_flash_reg_by_index(struct flash_bank *bank,
	enum stm32l4_flash_reg_index reg_index, uint32_t value)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return stm32l4_write_flash_reg(bank, stm32l4_info->flash_regs[reg_index], value);
}

static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	uint32_t status;
	int retval = ERROR_OK;

	/* wait for busy to clear */
	for (;;) {
		retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &status);
		if (retval != ERROR_OK)
			return retval;
		LOG_DEBUG("status: 0x%" PRIx32 "", status);
		if ((status & stm32l4_info->sr_bsy_mask) == 0)
			break;
		if (timeout-- <= 0) {
			LOG_ERROR("timed out waiting for flash");
			return ERROR_FAIL;
		}
		alive_sleep(1);
	}

	if (status & FLASH_WRPERR) {
		LOG_ERROR("stm32x device protected");
		retval = ERROR_FAIL;
	}

	/* Clear but report errors */
	if (status & FLASH_ERROR) {
		if (retval == ERROR_OK)
			retval = ERROR_FAIL;
		/* If this operation fails, we ignore it and report the original
		 * retval
		 */
		stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, status & FLASH_ERROR);
	}

	return retval;
}

/** set all FLASH_SECBB registers to the same value */
static int stm32l4_set_secbb(struct flash_bank *bank, uint32_t value)
{
	/* This function should be used only with device with TrustZone, do just a security check */
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	assert(stm32l4_info->part_info->flags & F_HAS_TZ);

	/* based on RM0438 Rev6 for STM32L5x devices:
	 * to modify a page block-based security attribution, it is recommended to
	 *  1- check that no flash operation is ongoing on the related page
	 *  2- add ISB instruction after modifying the page security attribute in SECBBxRy
	 *     this step is not need in case of JTAG direct access
	 */
	int retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
	if (retval != ERROR_OK)
		return retval;

	/* write SECBBxRy registers */
	LOG_DEBUG("setting secure block-based areas registers (SECBBxRy) to 0x%08x", value);

	const uint8_t secbb_regs[] = {
			FLASH_SECBB1(1), FLASH_SECBB1(2), FLASH_SECBB1(3), FLASH_SECBB1(4), /* bank 1 SECBB register offsets */
			FLASH_SECBB2(1), FLASH_SECBB2(2), FLASH_SECBB2(3), FLASH_SECBB2(4)  /* bank 2 SECBB register offsets */
	};


	unsigned int num_secbb_regs = ARRAY_SIZE(secbb_regs);

	/* in single bank mode, it's useless to modify FLASH_SECBB2Rx registers
	 * then consider only the first half of secbb_regs
	 */
	if (!stm32l4_info->dual_bank_mode)
		num_secbb_regs /= 2;

	for (unsigned int i = 0; i < num_secbb_regs; i++) {
		retval = stm32l4_write_flash_reg(bank, secbb_regs[i], value);
		if (retval != ERROR_OK)
			return retval;
	}

	return ERROR_OK;
}

static inline int stm32l4_get_flash_cr_with_lock_index(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	return (stm32l4_info->flash_regs[STM32_FLASH_CR_WLK_INDEX]) ?
		STM32_FLASH_CR_WLK_INDEX : STM32_FLASH_CR_INDEX;
}

static int stm32l4_unlock_reg(struct flash_bank *bank)
{
	const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
	uint32_t ctrl;

	/* first check if not already unlocked
	 * otherwise writing on STM32_FLASH_KEYR will fail
	 */
	int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & FLASH_LOCK) == 0)
		return ERROR_OK;

	/* unlock flash registers */
	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_KEYR_INDEX, KEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & FLASH_LOCK) {
		LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}

	return ERROR_OK;
}

static int stm32l4_unlock_option_reg(struct flash_bank *bank)
{
	const uint32_t flash_cr_index = stm32l4_get_flash_cr_with_lock_index(bank);
	uint32_t ctrl;

	int retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & FLASH_OPTLOCK) == 0)
		return ERROR_OK;

	/* unlock option registers */
	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_OPTKEYR_INDEX, OPTKEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_read_flash_reg_by_index(bank, flash_cr_index, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & FLASH_OPTLOCK) {
		LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}

	return ERROR_OK;
}

static int stm32l4_perform_obl_launch(struct flash_bank *bank)
{
	int retval, retval2;

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_unlock_option_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	/* Set OBL_LAUNCH bit in CR -> system reset and option bytes reload,
	 * but the RMs explicitly do *NOT* list this as power-on reset cause, and:
	 * "Note: If the read protection is set while the debugger is still
	 * connected through JTAG/SWD, apply a POR (power-on reset) instead of a system reset."
	 */

	/* "Setting OBL_LAUNCH generates a reset so the option byte loading is performed under system reset" */
	/* Due to this reset ST-Link reports an SWD_DP_ERROR, despite the write was successful,
	 * then just ignore the returned value */
	stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OBL_LAUNCH);

	/* Need to re-probe after change */
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	stm32l4_info->probed = false;

err_lock:
	retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
			FLASH_LOCK | FLASH_OPTLOCK);

	if (retval != ERROR_OK)
		return retval;

	return retval2;
}

static int stm32l4_write_option(struct flash_bank *bank, uint32_t reg_offset,
	uint32_t value, uint32_t mask)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	uint32_t optiondata;
	int retval, retval2;

	retval = stm32l4_read_flash_reg(bank, reg_offset, &optiondata);
	if (retval != ERROR_OK)
		return retval;

	/* for STM32L5 and similar devices, use always non-secure
	 * registers for option bytes programming */
	const uint32_t *saved_flash_regs = stm32l4_info->flash_regs;
	if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
		stm32l4_info->flash_regs = stm32l5_ns_flash_regs;

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_unlock_option_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	optiondata = (optiondata & ~mask) | (value & mask);

	retval = stm32l4_write_flash_reg(bank, reg_offset, optiondata);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_OPTSTRT);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);

err_lock:
	retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank),
			FLASH_LOCK | FLASH_OPTLOCK);
	stm32l4_info->flash_regs = saved_flash_regs;

	if (retval != ERROR_OK)
		return retval;

	return retval2;
}

static int stm32l4_get_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy,
		enum stm32l4_flash_reg_index reg_idx, int offset)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	int ret;

	wrpxy->reg_idx = reg_idx;
	wrpxy->offset = offset;

	ret = stm32l4_read_flash_reg_by_index(bank, wrpxy->reg_idx , &wrpxy->value);
	if (ret != ERROR_OK)
		return ret;

	wrpxy->first = (wrpxy->value & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
	wrpxy->last = ((wrpxy->value >> 16) & stm32l4_info->wrpxxr_mask) + wrpxy->offset;
	wrpxy->used = wrpxy->first <= wrpxy->last;

	return ERROR_OK;
}

static int stm32l4_get_all_wrpxy(struct flash_bank *bank, enum stm32_bank_id dev_bank_id,
		struct stm32l4_wrp *wrpxy, unsigned int *n_wrp)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	int ret;

	*n_wrp = 0;

	/* for single bank devices there is 2 WRP regions.
	 * for dual bank devices there is 2 WRP regions per bank,
	 *   if configured as single bank only 2 WRP are usable
	 *   except for STM32L4R/S/P/Q, G4 cat3, L5 ... all 4 WRP are usable
	 * note: this should be revised, if a device will have the SWAP banks option
	 */

	int wrp2y_sectors_offset = -1; /* -1 : unused */

	/* if bank_id is BANK1 or ALL_BANKS */
	if (dev_bank_id != STM32_BANK2) {
		/* get FLASH_WRP1AR */
		ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1AR_INDEX, 0);
		if (ret != ERROR_OK)
			return ret;

		/* get WRP1BR */
		ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP1BR_INDEX, 0);
		if (ret != ERROR_OK)
			return ret;

		/* for some devices (like STM32L4R/S) in single-bank mode, the 4 WRPxx are usable */
		if ((stm32l4_info->part_info->flags & F_USE_ALL_WRPXX) && !stm32l4_info->dual_bank_mode)
			wrp2y_sectors_offset = 0;
	}

	/* if bank_id is BANK2 or ALL_BANKS */
	if (dev_bank_id != STM32_BANK1 && stm32l4_info->dual_bank_mode)
		wrp2y_sectors_offset = stm32l4_info->bank1_sectors;

	if (wrp2y_sectors_offset >= 0) {
		/* get WRP2AR */
		ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2AR_INDEX, wrp2y_sectors_offset);
		if (ret != ERROR_OK)
			return ret;

		/* get WRP2BR */
		ret = stm32l4_get_one_wrpxy(bank, &wrpxy[(*n_wrp)++], STM32_FLASH_WRP2BR_INDEX, wrp2y_sectors_offset);
		if (ret != ERROR_OK)
			return ret;
	}

	return ERROR_OK;
}

static int stm32l4_write_one_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	int wrp_start = wrpxy->first - wrpxy->offset;
	int wrp_end = wrpxy->last - wrpxy->offset;

	uint32_t wrp_value = (wrp_start & stm32l4_info->wrpxxr_mask) | ((wrp_end & stm32l4_info->wrpxxr_mask) << 16);

	return stm32l4_write_option(bank, stm32l4_info->flash_regs[wrpxy->reg_idx], wrp_value, 0xffffffff);
}

static int stm32l4_write_all_wrpxy(struct flash_bank *bank, struct stm32l4_wrp *wrpxy, unsigned int n_wrp)
{
	int ret;

	for (unsigned int i = 0; i < n_wrp; i++) {
		ret = stm32l4_write_one_wrpxy(bank, &wrpxy[i]);
		if (ret != ERROR_OK)
			return ret;
	}

	return ERROR_OK;
}

static int stm32l4_protect_check(struct flash_bank *bank)
{
	unsigned int n_wrp;
	struct stm32l4_wrp wrpxy[4];

	int ret = stm32l4_get_all_wrpxy(bank, STM32_ALL_BANKS, wrpxy, &n_wrp);
	if (ret != ERROR_OK)
		return ret;

	/* initialize all sectors as unprotected */
	for (unsigned int i = 0; i < bank->num_sectors; i++)
		bank->sectors[i].is_protected = 0;

	/* now check WRPxy and mark the protected sectors */
	for (unsigned int i = 0; i < n_wrp; i++) {
		if (wrpxy[i].used) {
			for (int s = wrpxy[i].first; s <= wrpxy[i].last; s++)
				bank->sectors[s].is_protected = 1;
		}
	}

	return ERROR_OK;
}

static int stm32l4_erase(struct flash_bank *bank, unsigned int first,
		unsigned int last)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	int retval, retval2;

	assert((first <= last) && (last < bank->num_sectors));

	if (stm32l4_is_otp(bank)) {
		LOG_ERROR("cannot erase OTP memory");
		return ERROR_FLASH_OPER_UNSUPPORTED;
	}

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
		/* set all FLASH pages as secure */
		retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
		if (retval != ERROR_OK) {
			/* restore all FLASH pages as non-secure */
			stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
			return retval;
		}
	}

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	/*
	Sector Erase
	To erase a sector, follow the procedure below:
	1. Check that no Flash memory operation is ongoing by
	   checking the BSY bit in the FLASH_SR register
	2. Set the PER bit and select the page and bank
	   you wish to erase in the FLASH_CR register
	3. Set the STRT bit in the FLASH_CR register
	4. Wait for the BSY bit to be cleared
	 */

	for (unsigned int i = first; i <= last; i++) {
		uint32_t erase_flags;
		erase_flags = FLASH_PER | FLASH_STRT;

		if (i >= stm32l4_info->bank1_sectors) {
			uint8_t snb;
			snb = i - stm32l4_info->bank1_sectors;
			erase_flags |= snb << FLASH_PAGE_SHIFT | stm32l4_info->cr_bker_mask;
		} else
			erase_flags |= i << FLASH_PAGE_SHIFT;
		retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, erase_flags);
		if (retval != ERROR_OK)
			break;

		retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
		if (retval != ERROR_OK)
			break;
	}

err_lock:
	retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);

	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
		/* restore all FLASH pages as non-secure */
		int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
		if (retval3 != ERROR_OK)
			return retval3;
	}

	if (retval != ERROR_OK)
		return retval;

	return retval2;
}

static int stm32l4_protect_same_bank(struct flash_bank *bank, enum stm32_bank_id bank_id, int set,
		unsigned int first, unsigned int last)
{
	unsigned int i;

	/* check if the desired protection is already configured */
	for (i = first; i <= last; i++) {
		if (bank->sectors[i].is_protected != set)
			break;
		else if (i == last) {
			LOG_INFO("The specified sectors are already %s", set ? "protected" : "unprotected");
			return ERROR_OK;
		}
	}

	/* all sectors from first to last (or part of them) could have different
	 * protection other than the requested */
	unsigned int n_wrp;
	struct stm32l4_wrp wrpxy[4];

	int ret = stm32l4_get_all_wrpxy(bank, bank_id, wrpxy, &n_wrp);
	if (ret != ERROR_OK)
		return ret;

	/* use bitmap and range helpers to optimize the WRP usage */
	DECLARE_BITMAP(pages, bank->num_sectors);
	bitmap_zero(pages, bank->num_sectors);

	for (i = 0; i < n_wrp; i++) {
		if (wrpxy[i].used) {
			for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
				set_bit(p, pages);
		}
	}

	/* we have at most 'n_wrp' WRP areas
	 * add one range if the user is trying to protect a fifth range */
	struct range ranges[n_wrp + 1];
	unsigned int ranges_count = 0;

	bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);

	/* pretty-print the currently protected ranges */
	if (ranges_count > 0) {
		char *ranges_str = range_print_alloc(ranges, ranges_count);
		LOG_DEBUG("current protected areas: %s", ranges_str);
		free(ranges_str);
	} else
		LOG_DEBUG("current protected areas: none");

	if (set) { /* flash protect */
		for (i = first; i <= last; i++)
			set_bit(i, pages);
	} else { /* flash unprotect */
		for (i = first; i <= last; i++)
			clear_bit(i, pages);
	}

	/* check the ranges_count after the user request */
	bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);

	/* pretty-print the requested areas for protection */
	if (ranges_count > 0) {
		char *ranges_str = range_print_alloc(ranges, ranges_count);
		LOG_DEBUG("requested areas for protection: %s", ranges_str);
		free(ranges_str);
	} else
		LOG_DEBUG("requested areas for protection: none");

	if (ranges_count > n_wrp) {
		LOG_ERROR("cannot set the requested protection "
				"(only %u write protection areas are available)" , n_wrp);
		return ERROR_FAIL;
	}

	/* re-init all WRPxy as disabled (first > last)*/
	for (i = 0; i < n_wrp; i++) {
		wrpxy[i].first = wrpxy[i].offset + 1;
		wrpxy[i].last = wrpxy[i].offset;
	}

	/* then configure WRPxy areas */
	for (i = 0; i < ranges_count; i++) {
		wrpxy[i].first = ranges[i].start;
		wrpxy[i].last = ranges[i].end;
	}

	/* finally write WRPxy registers */
	return stm32l4_write_all_wrpxy(bank, wrpxy, n_wrp);
}

static int stm32l4_protect(struct flash_bank *bank, int set, unsigned int first, unsigned int last)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	if (stm32l4_is_otp(bank)) {
		LOG_ERROR("cannot protect/unprotect OTP memory");
		return ERROR_FLASH_OPER_UNSUPPORTED;
	}

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* refresh the sectors' protection */
	int ret = stm32l4_protect_check(bank);
	if (ret != ERROR_OK)
		return ret;

	/* the requested sectors could be located into bank1 and/or bank2 */
	if (last < stm32l4_info->bank1_sectors) {
		return stm32l4_protect_same_bank(bank, STM32_BANK1, set, first, last);
	} else if (first >= stm32l4_info->bank1_sectors) {
		return stm32l4_protect_same_bank(bank, STM32_BANK2, set, first, last);
	} else {
		ret = stm32l4_protect_same_bank(bank, STM32_BANK1, set, first, stm32l4_info->bank1_sectors - 1);
		if (ret != ERROR_OK)
			return ret;

		return stm32l4_protect_same_bank(bank, STM32_BANK2, set, stm32l4_info->bank1_sectors, last);
	}
}

/* count is the size divided by stm32l4_info->data_width */
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
	uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	struct working_area *write_algorithm;
	struct working_area *source;
	uint32_t address = bank->base + offset;
	struct reg_param reg_params[5];
	struct armv7m_algorithm armv7m_info;
	int retval = ERROR_OK;

	static const uint8_t stm32l4_flash_write_code[] = {
#include "../../../contrib/loaders/flash/stm32/stm32l4x.inc"
	};

	if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
			&write_algorithm) != ERROR_OK) {
		LOG_WARNING("no working area available, can't do block memory writes");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	retval = target_write_buffer(target, write_algorithm->address,
			sizeof(stm32l4_flash_write_code),
			stm32l4_flash_write_code);
	if (retval != ERROR_OK) {
		target_free_working_area(target, write_algorithm);
		return retval;
	}

	/* data_width should be multiple of double-word */
	assert(stm32l4_info->data_width % 8 == 0);
	const size_t extra_size = sizeof(struct stm32l4_work_area);
	uint32_t buffer_size = target_get_working_area_avail(target) - extra_size;
	/* buffer_size should be multiple of stm32l4_info->data_width */
	buffer_size &= ~(stm32l4_info->data_width - 1);

	if (buffer_size < 256) {
		LOG_WARNING("large enough working area not available, can't do block memory writes");
		target_free_working_area(target, write_algorithm);
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	} else if (buffer_size > 16384) {
		/* probably won't benefit from more than 16k ... */
		buffer_size = 16384;
	}

	if (target_alloc_working_area_try(target, buffer_size + extra_size, &source) != ERROR_OK) {
		LOG_ERROR("allocating working area failed");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
	armv7m_info.core_mode = ARM_MODE_THREAD;

	/* contrib/loaders/flash/stm32/stm32l4x.c:write() arguments */
	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);	/* stm32l4_work_area ptr , status (out) */
	init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);	/* buffer end */
	init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);	/* target address */
	init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);	/* count (of stm32l4_info->data_width) */

	buf_set_u32(reg_params[0].value, 0, 32, source->address);
	buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
	buf_set_u32(reg_params[2].value, 0, 32, address);
	buf_set_u32(reg_params[3].value, 0, 32, count);

	/* write algo stack pointer */
	init_reg_param(&reg_params[4], "sp", 32, PARAM_OUT);
	buf_set_u32(reg_params[4].value, 0, 32, source->address +
			offsetof(struct stm32l4_work_area, stack) + LDR_STACK_SIZE);

	struct stm32l4_loader_params loader_extra_params;

	target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_addr,
			stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX));
	target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_cr_addr,
			stm32l4_get_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX));
	target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_word_size,
			stm32l4_info->data_width);
	target_buffer_set_u32(target, (uint8_t *) &loader_extra_params.flash_sr_bsy_mask,
			stm32l4_info->sr_bsy_mask);

	retval = target_write_buffer(target, source->address, sizeof(loader_extra_params),
			(uint8_t *) &loader_extra_params);
	if (retval != ERROR_OK)
		return retval;

	retval = target_run_flash_async_algorithm(target, buffer, count, stm32l4_info->data_width,
			0, NULL,
			ARRAY_SIZE(reg_params), reg_params,
			source->address + offsetof(struct stm32l4_work_area, fifo),
			source->size - offsetof(struct stm32l4_work_area, fifo),
			write_algorithm->address, 0,
			&armv7m_info);

	if (retval == ERROR_FLASH_OPERATION_FAILED) {
		LOG_ERROR("error executing stm32l4 flash write algorithm");

		uint32_t error;
		stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, &error);
		error &= FLASH_ERROR;

		if (error & FLASH_WRPERR)
			LOG_ERROR("flash memory write protected");

		if (error != 0) {
			LOG_ERROR("flash write failed = %08" PRIx32, error);
			/* Clear but report errors */
			stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_SR_INDEX, error);
			retval = ERROR_FAIL;
		}
	}

	target_free_working_area(target, source);
	target_free_working_area(target, write_algorithm);

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);
	destroy_reg_param(&reg_params[3]);
	destroy_reg_param(&reg_params[4]);

	return retval;
}

/* count is the size divided by stm32l4_info->data_width */
static int stm32l4_write_block_without_loader(struct flash_bank *bank, const uint8_t *buffer,
				uint32_t offset, uint32_t count)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	struct target *target = bank->target;
	uint32_t address = bank->base + offset;
	int retval = ERROR_OK;

	/* wait for BSY bit */
	retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
	if (retval != ERROR_OK)
		return retval;

	/* set PG in FLASH_CR */
	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, FLASH_PG);
	if (retval != ERROR_OK)
		return retval;


	/* write directly to flash memory */
	const uint8_t *src = buffer;
	const uint32_t data_width_in_words = stm32l4_info->data_width / 4;
	while (count--) {
		retval = target_write_memory(target, address, 4, data_width_in_words, src);
		if (retval != ERROR_OK)
			return retval;

		/* wait for BSY bit */
		retval = stm32l4_wait_status_busy(bank, FLASH_WRITE_TIMEOUT);
		if (retval != ERROR_OK)
			return retval;

		src += stm32l4_info->data_width;
		address += stm32l4_info->data_width;
	}

	/* reset PG in FLASH_CR */
	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, 0);
	if (retval != ERROR_OK)
		return retval;

	return retval;
}

static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
	uint32_t offset, uint32_t count)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	int retval = ERROR_OK, retval2;

	if (stm32l4_is_otp(bank) && !stm32l4_otp_is_enabled(bank)) {
		LOG_ERROR("OTP memory is disabled for write commands");
		return ERROR_FAIL;
	}

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* ensure that stm32l4_info->data_width is 'at least' a multiple of dword */
	assert(stm32l4_info->data_width % 8 == 0);

	/* The flash write must be aligned to the 'stm32l4_info->data_width' boundary.
	 * The flash infrastructure ensures it, do just a security check */
	assert(offset % stm32l4_info->data_width == 0);
	assert(count % stm32l4_info->data_width == 0);

	/* STM32G4xxx Cat. 3 devices may have gaps between banks, check whether
	 * data to be written does not go into a gap:
	 * suppose buffer is fully contained in bank from sector 0 to sector
	 * num->sectors - 1 and sectors are ordered according to offset
	 */
	struct flash_sector *head = &bank->sectors[0];
	struct flash_sector *tail = &bank->sectors[bank->num_sectors - 1];

	while ((head < tail) && (offset >= (head + 1)->offset)) {
		/* buffer does not intersect head nor gap behind head */
		head++;
	}

	while ((head < tail) && (offset + count <= (tail - 1)->offset + (tail - 1)->size)) {
		/* buffer does not intersect tail nor gap before tail */
		--tail;
	}

	LOG_DEBUG("data: 0x%08" PRIx32 " - 0x%08" PRIx32 ", sectors: 0x%08" PRIx32 " - 0x%08" PRIx32,
		offset, offset + count - 1, head->offset, tail->offset + tail->size - 1);

	/* Now check that there is no gap from head to tail, this should work
	 * even for multiple or non-symmetric gaps
	 */
	while (head < tail) {
		if (head->offset + head->size != (head + 1)->offset) {
			LOG_ERROR("write into gap from " TARGET_ADDR_FMT " to " TARGET_ADDR_FMT,
				bank->base + head->offset + head->size,
				bank->base + (head + 1)->offset - 1);
			retval = ERROR_FLASH_DST_OUT_OF_BANK;
		}
		head++;
	}

	if (retval != ERROR_OK)
		return retval;

	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
		/* set all FLASH pages as secure */
		retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
		if (retval != ERROR_OK) {
			/* restore all FLASH pages as non-secure */
			stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
			return retval;
		}
	}

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;


	/* For TrustZone enabled devices, when TZEN is set and RDP level is 0.5,
	 * the debug is possible only in non-secure state.
	 * Thus means the flashloader will run in non-secure mode,
	 * and the workarea need to be in non-secure RAM */
	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0_5))
		LOG_WARNING("RDP = 0x55, the work-area should be in non-secure RAM (check SAU partitioning)");

	/* first try to write using the loader, for better performance */
	retval = stm32l4_write_block(bank, buffer, offset,
			count / stm32l4_info->data_width);

	/* if resources are not available write without a loader */
	if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
		LOG_WARNING("falling back to programming without a flash loader (slower)");
		retval = stm32l4_write_block_without_loader(bank, buffer, offset,
				count / stm32l4_info->data_width);
	}

err_lock:
	retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);

	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
		/* restore all FLASH pages as non-secure */
		int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
		if (retval3 != ERROR_OK)
			return retval3;
	}

	if (retval != ERROR_OK) {
		LOG_ERROR("block write failed");
		return retval;
	}
	return retval2;
}

static int stm32l4_read_idcode(struct flash_bank *bank, uint32_t *id)
{
	int retval = ERROR_OK;
	struct target *target = bank->target;

	/* try reading possible IDCODE registers, in the following order */
	uint32_t dbgmcu_idcode[] = {DBGMCU_IDCODE_L4_G4, DBGMCU_IDCODE_G0, DBGMCU_IDCODE_L5};

	for (unsigned int i = 0; i < ARRAY_SIZE(dbgmcu_idcode); i++) {
		retval = target_read_u32(target, dbgmcu_idcode[i], id);
		if ((retval == ERROR_OK) && ((*id & 0xfff) != 0) && ((*id & 0xfff) != 0xfff))
			return ERROR_OK;
	}

	/* Workaround for STM32WL5x devices:
	 * DBGMCU_IDCODE cannot be read using CPU1 (Cortex-M0+) at AP1,
	 * to solve this read the UID64 (IEEE 64-bit unique device ID register) */

	struct armv7m_common *armv7m = target_to_armv7m_safe(target);
	if (!armv7m) {
		LOG_ERROR("Flash requires Cortex-M target");
		return ERROR_TARGET_INVALID;
	}

	/* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
	 * Using HLA adapters armv7m.debug_ap is null, and checking ap_num triggers a segfault */
	if (cortex_m_get_impl_part(target) == CORTEX_M0P_PARTNO &&
			armv7m->debug_ap && armv7m->debug_ap->ap_num == 1) {
		uint32_t uid64_ids;

		/* UID64 is contains
		 *  - Bits 63:32 : DEVNUM (unique device number, different for each individual device)
		 *  - Bits 31:08 : STID (company ID) = 0x0080E1
		 *  - Bits 07:00 : DEVID (device ID) = 0x15
		 *
		 *  read only the fixed values {STID,DEVID} from UID64_IDS to identify the device as STM32WLx
		 */
		retval = target_read_u32(target, UID64_IDS, &uid64_ids);
		if (retval == ERROR_OK && uid64_ids == UID64_IDS_STM32WL) {
			/* force the DEV_ID to DEVID_STM32WLE_WL5XX and the REV_ID to unknown */
			*id = DEVID_STM32WLE_WL5XX;
			return ERROR_OK;
		}
	}

	LOG_ERROR("can't get the device id");
	return (retval == ERROR_OK) ? ERROR_FAIL : retval;
}

static const char *get_stm32l4_rev_str(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	const struct stm32l4_part_info *part_info = stm32l4_info->part_info;
	assert(part_info);

	const uint16_t rev_id = stm32l4_info->idcode >> 16;
	for (unsigned int i = 0; i < part_info->num_revs; i++) {
		if (rev_id == part_info->revs[i].rev)
			return part_info->revs[i].str;
	}
	return "'unknown'";
}

static const char *get_stm32l4_bank_type_str(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	assert(stm32l4_info->part_info);
	return stm32l4_is_otp(bank) ? "OTP" :
			stm32l4_info->dual_bank_mode ? "Flash dual" :
			"Flash single";
}

static int stm32l4_probe(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	const struct stm32l4_part_info *part_info;
	uint16_t flash_size_kb = 0xffff;

	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_TARGET_NOT_EXAMINED;
	}

	struct armv7m_common *armv7m = target_to_armv7m_safe(target);
	if (!armv7m) {
		LOG_ERROR("Flash requires Cortex-M target");
		return ERROR_TARGET_INVALID;
	}

	stm32l4_info->probed = false;

	/* read stm32 device id registers */
	int retval = stm32l4_read_idcode(bank, &stm32l4_info->idcode);
	if (retval != ERROR_OK)
		return retval;

	const uint32_t device_id = stm32l4_info->idcode & 0xFFF;

	for (unsigned int n = 0; n < ARRAY_SIZE(stm32l4_parts); n++) {
		if (device_id == stm32l4_parts[n].id) {
			stm32l4_info->part_info = &stm32l4_parts[n];
			break;
		}
	}

	if (!stm32l4_info->part_info) {
		LOG_WARNING("Cannot identify target as an %s family device.", device_families);
		return ERROR_FAIL;
	}

	part_info = stm32l4_info->part_info;
	const char *rev_str = get_stm32l4_rev_str(bank);
	const uint16_t rev_id = stm32l4_info->idcode >> 16;

	LOG_INFO("device idcode = 0x%08" PRIx32 " (%s - Rev %s : 0x%04x)",
			stm32l4_info->idcode, part_info->device_str, rev_str, rev_id);

	stm32l4_info->flash_regs_base = stm32l4_info->part_info->flash_regs_base;
	stm32l4_info->data_width = (part_info->flags & F_QUAD_WORD_PROG) ? 16 : 8;
	stm32l4_info->cr_bker_mask = FLASH_BKER;
	stm32l4_info->sr_bsy_mask = FLASH_BSY;

	/* Set flash write alignment boundaries.
	 * Ask the flash infrastructure to ensure required alignment */
	bank->write_start_alignment = stm32l4_info->data_width;
	bank->write_end_alignment = stm32l4_info->data_width;

	/* Initialize the flash registers layout */
	if (part_info->flags & F_HAS_L5_FLASH_REGS)
		stm32l4_info->flash_regs = stm32l5_ns_flash_regs;
	else
		stm32l4_info->flash_regs = stm32l4_flash_regs;

	/* read flash option register */
	retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
	if (retval != ERROR_OK)
		return retval;

	stm32l4_sync_rdp_tzen(bank);

	/* for devices with TrustZone, use flash secure registers when TZEN=1 and RDP is LEVEL_0 */
	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
		if (part_info->flags & F_HAS_L5_FLASH_REGS) {
			stm32l4_info->flash_regs_base |= STM32L5_REGS_SEC_OFFSET;
			stm32l4_info->flash_regs = stm32l5_s_flash_regs;
		} else {
			LOG_ERROR("BUG: device supported incomplete");
			return ERROR_NOT_IMPLEMENTED;
		}
	}

	if (part_info->flags & F_HAS_TZ)
		LOG_INFO("TZEN = %d : TrustZone %s by option bytes",
				stm32l4_info->tzen,
				stm32l4_info->tzen ? "enabled" : "disabled");

	LOG_INFO("RDP level %s (0x%02X)",
			stm32l4_info->rdp == RDP_LEVEL_0 ? "0" : stm32l4_info->rdp == RDP_LEVEL_0_5 ? "0.5" : "1",
			stm32l4_info->rdp);

	if (stm32l4_is_otp(bank)) {
		bank->size = part_info->otp_size;

		LOG_INFO("OTP size is %d bytes, base address is " TARGET_ADDR_FMT, bank->size, bank->base);

		/* OTP memory is considered as one sector */
		free(bank->sectors);
		bank->num_sectors = 1;
		bank->sectors = alloc_block_array(0, part_info->otp_size, 1);

		if (!bank->sectors) {
			LOG_ERROR("failed to allocate bank sectors");
			return ERROR_FAIL;
		}

		stm32l4_info->probed = true;
		return ERROR_OK;
	} else if (bank->base != STM32_FLASH_BANK_BASE && bank->base != STM32_FLASH_S_BANK_BASE) {
		LOG_ERROR("invalid bank base address");
		return ERROR_FAIL;
	}

	/* get flash size from target. */
	retval = target_read_u16(target, part_info->fsize_addr, &flash_size_kb);

	/* failed reading flash size or flash size invalid (early silicon),
	 * default to max target family */
	if (retval != ERROR_OK || flash_size_kb == 0xffff || flash_size_kb == 0
			|| flash_size_kb > part_info->max_flash_size_kb) {
		LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
			part_info->max_flash_size_kb);
		flash_size_kb = part_info->max_flash_size_kb;
	}

	/* if the user sets the size manually then ignore the probed value
	 * this allows us to work around devices that have a invalid flash size register value */
	if (stm32l4_info->user_bank_size) {
		LOG_WARNING("overriding size register by configured bank size - MAY CAUSE TROUBLE");
		flash_size_kb = stm32l4_info->user_bank_size / 1024;
	}

	LOG_INFO("flash size = %d KiB", flash_size_kb);

	/* did we assign a flash size? */
	assert((flash_size_kb != 0xffff) && flash_size_kb);

	const bool is_max_flash_size = flash_size_kb == stm32l4_info->part_info->max_flash_size_kb;

	stm32l4_info->bank1_sectors = 0;
	stm32l4_info->hole_sectors = 0;

	int num_pages = 0;
	int page_size_kb = 0;

	stm32l4_info->dual_bank_mode = false;

	switch (device_id) {
	case DEVID_STM32L47_L48XX:
	case DEVID_STM32L49_L4AXX:
		/* if flash size is max (1M) the device is always dual bank
		 * STM32L47/L48xx: has variants with 512K
		 * STM32L49/L4Axx: has variants with 512 and 256
		 * for these variants:
		 *   if DUAL_BANK = 0 -> single bank
		 *   else -> dual bank without gap
		 * note: the page size is invariant
		 */
		page_size_kb = 2;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;

		/* check DUAL_BANK option bit if the flash is less than 1M */
		if (is_max_flash_size || (stm32l4_info->optr & FLASH_L4_DUAL_BANK)) {
			stm32l4_info->dual_bank_mode = true;
			stm32l4_info->bank1_sectors = num_pages / 2;
		}
		break;
	case DEVID_STM32L43_L44XX:
	case DEVID_STM32C01XX:
	case DEVID_STM32C03XX:
	case DEVID_STM32G05_G06XX:
	case DEVID_STM32G07_G08XX:
	case DEVID_STM32L45_L46XX:
	case DEVID_STM32L41_L42XX:
	case DEVID_STM32G03_G04XX:
	case DEVID_STM32G43_G44XX:
	case DEVID_STM32G49_G4AXX:
	case DEVID_STM32WB1XX:
		/* single bank flash */
		page_size_kb = 2;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;
		break;
	case DEVID_STM32G0B_G0CXX:
		/* single/dual bank depending on DUAL_BANK option bit */
		page_size_kb = 2;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;
		stm32l4_info->cr_bker_mask = FLASH_BKER_G0;

		/* check DUAL_BANK bit */
		if (stm32l4_info->optr & FLASH_G0_DUAL_BANK) {
			stm32l4_info->sr_bsy_mask = FLASH_BSY | FLASH_BSY2;
			stm32l4_info->dual_bank_mode = true;
			stm32l4_info->bank1_sectors = num_pages / 2;
		}
		break;
	case DEVID_STM32G47_G48XX:
		/* STM32G47/8 can be single/dual bank:
		 *   if DUAL_BANK = 0 -> single bank
		 *   else -> dual bank WITH gap
		 */
		page_size_kb = 4;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;
		if (stm32l4_info->optr & FLASH_G4_DUAL_BANK) {
			stm32l4_info->dual_bank_mode = true;
			page_size_kb = 2;
			num_pages = flash_size_kb / page_size_kb;
			stm32l4_info->bank1_sectors = num_pages / 2;

			/* for devices with trimmed flash, there is a gap between both banks */
			stm32l4_info->hole_sectors =
				(part_info->max_flash_size_kb - flash_size_kb) / (2 * page_size_kb);
		}
		break;
	case DEVID_STM32L4R_L4SXX:
	case DEVID_STM32L4P_L4QXX:
		/* STM32L4R/S can be single/dual bank:
		 *   if size = 2M check DBANK bit
		 *   if size = 1M check DB1M bit
		 * STM32L4P/Q can be single/dual bank
		 *   if size = 1M check DBANK bit
		 *   if size = 512K check DB512K bit (same as DB1M bit)
		 */
		page_size_kb = 8;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;
		if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L4R_DBANK)) ||
			(!is_max_flash_size && (stm32l4_info->optr & FLASH_LRR_DB1M))) {
			stm32l4_info->dual_bank_mode = true;
			page_size_kb = 4;
			num_pages = flash_size_kb / page_size_kb;
			stm32l4_info->bank1_sectors = num_pages / 2;
		}
		break;
	case DEVID_STM32L55_L56XX:
		/* STM32L55/L56xx can be single/dual bank:
		 *   if size = 512K check DBANK bit
		 *   if size = 256K check DB256K bit
		 *
		 * default page size is 4kb, if DBANK = 1, the page size is 2kb.
		 */

		page_size_kb = (stm32l4_info->optr & FLASH_L5_DBANK) ? 2 : 4;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;

		if ((is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DBANK)) ||
			(!is_max_flash_size && (stm32l4_info->optr & FLASH_L5_DB256))) {
			stm32l4_info->dual_bank_mode = true;
			stm32l4_info->bank1_sectors = num_pages / 2;
		}
		break;
	case DEVID_STM32U57_U58XX:
		/* if flash size is max (2M) the device is always dual bank
		 * otherwise check DUALBANK
		 */
		page_size_kb = 8;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;
		if (is_max_flash_size || (stm32l4_info->optr & FLASH_U5_DUALBANK)) {
			stm32l4_info->dual_bank_mode = true;
			stm32l4_info->bank1_sectors = num_pages / 2;
		}
		break;
	case DEVID_STM32WB5XX:
	case DEVID_STM32WB3XX:
		/* single bank flash */
		page_size_kb = 4;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;
		break;
	case DEVID_STM32WLE_WL5XX:
		/* single bank flash */
		page_size_kb = 2;
		num_pages = flash_size_kb / page_size_kb;
		stm32l4_info->bank1_sectors = num_pages;

		/* CPU2 (Cortex-M0+) is supported only with non-hla adapters because it is on AP1.
		 * Using HLA adapters armv7m->debug_ap is null, and checking ap_num triggers a segfault */
		if (armv7m->debug_ap && armv7m->debug_ap->ap_num == 1)
			stm32l4_info->flash_regs = stm32wl_cpu2_flash_regs;
		break;
	default:
		LOG_ERROR("unsupported device");
		return ERROR_FAIL;
	}

	/* ensure that at least there is 1 flash sector / page */
	if (num_pages == 0) {
		if (stm32l4_info->user_bank_size)
			LOG_ERROR("The specified flash size is less than page size");

		LOG_ERROR("Flash pages count cannot be zero");
		return ERROR_FAIL;
	}

	LOG_INFO("flash mode : %s-bank", stm32l4_info->dual_bank_mode ? "dual" : "single");

	const int gap_size_kb = stm32l4_info->hole_sectors * page_size_kb;

	if (gap_size_kb != 0) {
		LOG_INFO("gap detected from 0x%08x to 0x%08x",
			STM32_FLASH_BANK_BASE + stm32l4_info->bank1_sectors
				* page_size_kb * 1024,
			STM32_FLASH_BANK_BASE + (stm32l4_info->bank1_sectors
				* page_size_kb + gap_size_kb) * 1024 - 1);
	}

	/* number of significant bits in WRPxxR differs per device,
	 * always right adjusted, on some devices non-implemented
	 * bits read as '0', on others as '1' ...
	 * notably G4 Cat. 2 implement only 6 bits, contradicting the RM
	 */

	/* use *max_flash_size* instead of actual size as the trimmed versions
	 * certainly use the same number of bits
	 */
	uint32_t max_pages = stm32l4_info->part_info->max_flash_size_kb / page_size_kb;

	/* in dual bank mode number of pages is doubled, but extra bit is bank selection */
	stm32l4_info->wrpxxr_mask = ((max_pages >> (stm32l4_info->dual_bank_mode ? 1 : 0)) - 1);
	assert((stm32l4_info->wrpxxr_mask & 0xFFFF0000) == 0);
	LOG_DEBUG("WRPxxR mask 0x%04" PRIx16, (uint16_t)stm32l4_info->wrpxxr_mask);

	free(bank->sectors);

	bank->size = (flash_size_kb + gap_size_kb) * 1024;
	bank->num_sectors = num_pages;
	bank->sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
	if (!bank->sectors) {
		LOG_ERROR("failed to allocate bank sectors");
		return ERROR_FAIL;
	}

	for (unsigned int i = 0; i < bank->num_sectors; i++) {
		bank->sectors[i].offset = i * page_size_kb * 1024;
		/* in dual bank configuration, if there is a gap between banks
		 * we fix up the sector offset to consider this gap */
		if (i >= stm32l4_info->bank1_sectors && stm32l4_info->hole_sectors)
			bank->sectors[i].offset += gap_size_kb * 1024;
		bank->sectors[i].size = page_size_kb * 1024;
		bank->sectors[i].is_erased = -1;
		bank->sectors[i].is_protected = 1;
	}

	stm32l4_info->probed = true;
	return ERROR_OK;
}

static int stm32l4_auto_probe(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	if (stm32l4_info->probed) {
		uint32_t optr_cur;

		/* save flash_regs_base */
		uint32_t saved_flash_regs_base = stm32l4_info->flash_regs_base;

		/* for devices with TrustZone, use NS flash registers to read OPTR */
		if (stm32l4_info->part_info->flags & F_HAS_L5_FLASH_REGS)
			stm32l4_info->flash_regs_base &= ~STM32L5_REGS_SEC_OFFSET;

		/* read flash option register and re-probe if optr value is changed */
		int retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &optr_cur);

		/* restore saved flash_regs_base */
		stm32l4_info->flash_regs_base = saved_flash_regs_base;

		if (retval != ERROR_OK)
			return retval;

		if (stm32l4_info->optr == optr_cur)
			return ERROR_OK;
	}

	return stm32l4_probe(bank);
}

static int get_stm32l4_info(struct flash_bank *bank, struct command_invocation *cmd)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	const struct stm32l4_part_info *part_info = stm32l4_info->part_info;

	if (part_info) {
		const uint16_t rev_id = stm32l4_info->idcode >> 16;
		command_print_sameline(cmd, "%s - Rev %s : 0x%04x", part_info->device_str,
				get_stm32l4_rev_str(bank), rev_id);
		if (stm32l4_info->probed)
			command_print_sameline(cmd, " - %s-bank", get_stm32l4_bank_type_str(bank));
	} else {
		command_print_sameline(cmd, "Cannot identify target as an %s device", device_families);
	}

	return ERROR_OK;
}

static int stm32l4_mass_erase(struct flash_bank *bank)
{
	int retval, retval2;
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	if (stm32l4_is_otp(bank)) {
		LOG_ERROR("cannot erase OTP memory");
		return ERROR_FLASH_OPER_UNSUPPORTED;
	}

	uint32_t action = FLASH_MER1;

	if (stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)
		action |= FLASH_MER2;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
		/* set all FLASH pages as secure */
		retval = stm32l4_set_secbb(bank, FLASH_SECBB_SECURE);
		if (retval != ERROR_OK) {
			/* restore all FLASH pages as non-secure */
			stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE); /* ignore the return value */
			return retval;
		}
	}

	retval = stm32l4_unlock_reg(bank);
	if (retval != ERROR_OK)
		goto err_lock;

	/* mass erase flash memory */
	retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT / 10);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_write_flash_reg_by_index(bank, STM32_FLASH_CR_INDEX, action | FLASH_STRT);
	if (retval != ERROR_OK)
		goto err_lock;

	retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);

err_lock:
	retval2 = stm32l4_write_flash_reg_by_index(bank, stm32l4_get_flash_cr_with_lock_index(bank), FLASH_LOCK);

	if (stm32l4_info->tzen && (stm32l4_info->rdp == RDP_LEVEL_0)) {
		/* restore all FLASH pages as non-secure */
		int retval3 = stm32l4_set_secbb(bank, FLASH_SECBB_NON_SECURE);
		if (retval3 != ERROR_OK)
			return retval3;
	}

	if (retval != ERROR_OK)
		return retval;

	return retval2;
}

COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
	if (CMD_ARGC < 1) {
		command_print(CMD, "stm32l4x mass_erase <STM32L4 bank>");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_mass_erase(bank);
	if (retval == ERROR_OK)
		command_print(CMD, "stm32l4x mass erase complete");
	else
		command_print(CMD, "stm32l4x mass erase failed");

	return retval;
}

COMMAND_HANDLER(stm32l4_handle_option_read_command)
{
	if (CMD_ARGC < 2) {
		command_print(CMD, "stm32l4x option_read <STM32L4 bank> <option_reg offset>");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	uint32_t reg_offset, reg_addr;
	uint32_t value = 0;

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
	reg_addr = stm32l4_get_flash_reg(bank, reg_offset);

	retval = stm32l4_read_flash_reg(bank, reg_offset, &value);
	if (retval != ERROR_OK)
		return retval;

	command_print(CMD, "Option Register: <0x%" PRIx32 "> = 0x%" PRIx32 "", reg_addr, value);

	return retval;
}

COMMAND_HANDLER(stm32l4_handle_option_write_command)
{
	if (CMD_ARGC < 3) {
		command_print(CMD, "stm32l4x option_write <STM32L4 bank> <option_reg offset> <value> [mask]");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	uint32_t reg_offset;
	uint32_t value = 0;
	uint32_t mask = 0xFFFFFFFF;

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], reg_offset);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], value);

	if (CMD_ARGC > 3)
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], mask);

	command_print(CMD, "%s Option written.\n"
				"INFO: a reset or power cycle is required "
				"for the new settings to take effect.", bank->driver->name);

	retval = stm32l4_write_option(bank, reg_offset, value, mask);
	return retval;
}

COMMAND_HANDLER(stm32l4_handle_trustzone_command)
{
	if (CMD_ARGC < 1 || CMD_ARGC > 2)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	if (!(stm32l4_info->part_info->flags & F_HAS_TZ)) {
		LOG_ERROR("This device does not have a TrustZone");
		return ERROR_FAIL;
	}

	retval = stm32l4_read_flash_reg_by_index(bank, STM32_FLASH_OPTR_INDEX, &stm32l4_info->optr);
	if (retval != ERROR_OK)
		return retval;

	stm32l4_sync_rdp_tzen(bank);

	if (CMD_ARGC == 1) {
		/* only display the TZEN value */
		LOG_INFO("Global TrustZone Security is %s", stm32l4_info->tzen ? "enabled" : "disabled");
		return ERROR_OK;
	}

	bool new_tzen;
	COMMAND_PARSE_ENABLE(CMD_ARGV[1], new_tzen);

	if (new_tzen == stm32l4_info->tzen) {
		LOG_INFO("The requested TZEN is already programmed");
		return ERROR_OK;
	}

	if (new_tzen) {
		if (stm32l4_info->rdp != RDP_LEVEL_0) {
			LOG_ERROR("TZEN can be set only when RDP level is 0");
			return ERROR_FAIL;
		}
		retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
				FLASH_TZEN, FLASH_TZEN);
	} else {
		/* Deactivation of TZEN (from 1 to 0) is only possible when the RDP is
		 * changing to level 0 (from level 1 to level 0 or from level 0.5 to level 0). */
		if (stm32l4_info->rdp != RDP_LEVEL_1 && stm32l4_info->rdp != RDP_LEVEL_0_5) {
			LOG_ERROR("Deactivation of TZEN is only possible when the RDP is changing to level 0");
			return ERROR_FAIL;
		}

		retval = stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
				RDP_LEVEL_0, FLASH_RDP_MASK | FLASH_TZEN);
	}

	if (retval != ERROR_OK)
		return retval;

	return stm32l4_perform_obl_launch(bank);
}

COMMAND_HANDLER(stm32l4_handle_option_load_command)
{
	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_perform_obl_launch(bank);
	if (retval != ERROR_OK) {
		command_print(CMD, "stm32l4x option load failed");
		return retval;
	}


	command_print(CMD, "stm32l4x option load completed. Power-on reset might be required");

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_lock_command)
{
	struct target *target = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	if (stm32l4_is_otp(bank)) {
		LOG_ERROR("cannot lock/unlock OTP memory");
		return ERROR_FLASH_OPER_UNSUPPORTED;
	}

	target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* set readout protection level 1 by erasing the RDP option byte */
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
			RDP_LEVEL_1, FLASH_RDP_MASK) != ERROR_OK) {
		command_print(CMD, "%s failed to lock device", bank->driver->name);
		return ERROR_OK;
	}

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
	struct target *target = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	if (stm32l4_is_otp(bank)) {
		LOG_ERROR("cannot lock/unlock OTP memory");
		return ERROR_FLASH_OPER_UNSUPPORTED;
	}

	target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	if (stm32l4_write_option(bank, stm32l4_info->flash_regs[STM32_FLASH_OPTR_INDEX],
			RDP_LEVEL_0, FLASH_RDP_MASK) != ERROR_OK) {
		command_print(CMD, "%s failed to unlock device", bank->driver->name);
		return ERROR_OK;
	}

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_wrp_info_command)
{
	if (CMD_ARGC < 1 || CMD_ARGC > 2)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	if (stm32l4_is_otp(bank)) {
		LOG_ERROR("OTP memory does not have write protection areas");
		return ERROR_FLASH_OPER_UNSUPPORTED;
	}

	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	enum stm32_bank_id dev_bank_id = STM32_ALL_BANKS;
	if (CMD_ARGC == 2) {
		if (strcmp(CMD_ARGV[1], "bank1") == 0)
			dev_bank_id = STM32_BANK1;
		else if (strcmp(CMD_ARGV[1], "bank2") == 0)
			dev_bank_id = STM32_BANK2;
		else
			return ERROR_COMMAND_ARGUMENT_INVALID;
	}

	if (dev_bank_id == STM32_BANK2) {
		if (!(stm32l4_info->part_info->flags & F_HAS_DUAL_BANK)) {
			LOG_ERROR("this device has no second bank");
			return ERROR_FAIL;
		} else if (!stm32l4_info->dual_bank_mode) {
			LOG_ERROR("this device is configured in single bank mode");
			return ERROR_FAIL;
		}
	}

	int ret;
	unsigned int n_wrp, i;
	struct stm32l4_wrp wrpxy[4];

	ret = stm32l4_get_all_wrpxy(bank, dev_bank_id, wrpxy, &n_wrp);
	if (ret != ERROR_OK)
		return ret;

	/* use bitmap and range helpers to better describe protected areas */
	DECLARE_BITMAP(pages, bank->num_sectors);
	bitmap_zero(pages, bank->num_sectors);

	for (i = 0; i < n_wrp; i++) {
		if (wrpxy[i].used) {
			for (int p = wrpxy[i].first; p <= wrpxy[i].last; p++)
				set_bit(p, pages);
		}
	}

	/* we have at most 'n_wrp' WRP areas */
	struct range ranges[n_wrp];
	unsigned int ranges_count = 0;

	bitmap_to_ranges(pages, bank->num_sectors, ranges, &ranges_count);

	if (ranges_count > 0) {
		/* pretty-print the protected ranges */
		char *ranges_str = range_print_alloc(ranges, ranges_count);
		command_print(CMD, "protected areas: %s", ranges_str);
		free(ranges_str);
	} else
		command_print(CMD, "no protected areas");

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_otp_command)
{
	if (CMD_ARGC < 2)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (retval != ERROR_OK)
		return retval;

	if (!stm32l4_is_otp(bank)) {
		command_print(CMD, "the specified bank is not an OTP memory");
		return ERROR_FAIL;
	}
	if (strcmp(CMD_ARGV[1], "enable") == 0)
		stm32l4_otp_enable(bank, true);
	else if (strcmp(CMD_ARGV[1], "disable") == 0)
		stm32l4_otp_enable(bank, false);
	else if (strcmp(CMD_ARGV[1], "show") == 0)
		command_print(CMD, "OTP memory bank #%d is %s for write commands.",
				bank->bank_number, stm32l4_otp_is_enabled(bank) ? "enabled" : "disabled");
	else
		return ERROR_COMMAND_SYNTAX_ERROR;

	return ERROR_OK;
}

static const struct command_registration stm32l4_exec_command_handlers[] = {
	{
		.name = "lock",
		.handler = stm32l4_handle_lock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Lock entire flash device.",
	},
	{
		.name = "unlock",
		.handler = stm32l4_handle_unlock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Unlock entire protected flash device.",
	},
	{
		.name = "mass_erase",
		.handler = stm32l4_handle_mass_erase_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Erase entire flash device.",
	},
	{
		.name = "option_read",
		.handler = stm32l4_handle_option_read_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id reg_offset",
		.help = "Read & Display device option bytes.",
	},
	{
		.name = "option_write",
		.handler = stm32l4_handle_option_write_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id reg_offset value mask",
		.help = "Write device option bit fields with provided value.",
	},
	{
		.name = "trustzone",
		.handler = stm32l4_handle_trustzone_command,
		.mode = COMMAND_EXEC,
		.usage = "<bank_id> [enable|disable]",
		.help = "Configure TrustZone security",
	},
	{
		.name = "wrp_info",
		.handler = stm32l4_handle_wrp_info_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id [bank1|bank2]",
		.help = "list the protected areas using WRP",
	},
	{
		.name = "option_load",
		.handler = stm32l4_handle_option_load_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Force re-load of device options (will cause device reset).",
	},
	{
		.name = "otp",
		.handler = stm32l4_handle_otp_command,
		.mode = COMMAND_EXEC,
		.usage = "<bank_id> <enable|disable|show>",
		.help = "OTP (One Time Programmable) memory write enable/disable",
	},
	COMMAND_REGISTRATION_DONE
};

static const struct command_registration stm32l4_command_handlers[] = {
	{
		.name = "stm32l4x",
		.mode = COMMAND_ANY,
		.help = "stm32l4x flash command group",
		.usage = "",
		.chain = stm32l4_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

const struct flash_driver stm32l4x_flash = {
	.name = "stm32l4x",
	.commands = stm32l4_command_handlers,
	.flash_bank_command = stm32l4_flash_bank_command,
	.erase = stm32l4_erase,
	.protect = stm32l4_protect,
	.write = stm32l4_write,
	.read = default_flash_read,
	.probe = stm32l4_probe,
	.auto_probe = stm32l4_auto_probe,
	.erase_check = default_flash_blank_check,
	.protect_check = stm32l4_protect_check,
	.info = get_stm32l4_info,
	.free_driver_priv = default_flash_free_driver_priv,
};