aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nand/arm_io.c
blob: e319f9585241f95e2ee1781e4ed9335a92303bab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
/*
 * Copyright (C) 2009 by Marvell Semiconductors, Inc.
 * Written by Nicolas Pitre <nico at marvell.com>
 *
 * Copyright (C) 2009 by David Brownell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "core.h"
#include "arm_io.h"
#include <helper/binarybuffer.h>
#include <target/arm.h>
#include <target/armv7m.h>
#include <target/algorithm.h>

/**
 * Copies code to a working area.  This will allocate room for the code plus the
 * additional amount requested if the working area pointer is null.
 *
 * @param target Pointer to the target to copy code to
 * @param code Pointer to the code area to be copied
 * @param code_size Size of the code being copied
 * @param additional Size of the additional area to be allocated in addition to
 *                   code
 * @param area Pointer to a pointer to a working area to copy code to
 * @return Success or failure of the operation
 */
static int arm_code_to_working_area(struct target *target,
	const uint32_t *code, unsigned code_size,
	unsigned additional, struct working_area **area)
{
	uint8_t code_buf[code_size];
	int retval;
	unsigned size = code_size + additional;

	/* REVISIT this assumes size doesn't ever change.
	 * That's usually correct; but there are boards with
	 * both large and small page chips, where it won't be...
	 */

	/* make sure we have a working area */
	if (NULL == *area) {
		retval = target_alloc_working_area(target, size, area);
		if (retval != ERROR_OK) {
			LOG_DEBUG("%s: no %d byte buffer", __func__, (int) size);
			return ERROR_NAND_NO_BUFFER;
		}
	}

	/* buffer code in target endianness */
	target_buffer_set_u32_array(target, code_buf, code_size / 4, code);

	/* copy code to work area */
	retval = target_write_memory(target, (*area)->address,
			4, code_size / 4, code_buf);

	return retval;
}

/**
 * ARM-specific bulk write from buffer to address of 8-bit wide NAND.
 * For now this supports ARMv4,ARMv5 and ARMv7-M cores.
 *
 * Enhancements to target_run_algorithm() could enable:
 *   - ARMv6 and ARMv7 cores in ARM mode
 *
 * Different code fragments could handle:
 *   - 16-bit wide data (needs different setup)
 *
 * @param nand Pointer to the arm_nand_data struct that defines the I/O
 * @param data Pointer to the data to be copied to flash
 * @param size Size of the data being copied
 * @return Success or failure of the operation
 */
int arm_nandwrite(struct arm_nand_data *nand, uint8_t *data, int size)
{
	struct target *target = nand->target;
	struct arm_algorithm armv4_5_algo;
	struct armv7m_algorithm armv7m_algo;
	void *arm_algo;
	struct arm *arm = target->arch_info;
	struct reg_param reg_params[3];
	uint32_t target_buf;
	uint32_t exit_var = 0;
	int retval;

	/* Inputs:
	 *  r0	NAND data address (byte wide)
	 *  r1	buffer address
	 *  r2	buffer length
	 */
	static const uint32_t code_armv4_5[] = {
		0xe4d13001,	/* s: ldrb  r3, [r1], #1 */
		0xe5c03000,	/*    strb  r3, [r0]     */
		0xe2522001,	/*    subs  r2, r2, #1   */
		0x1afffffb,	/*    bne   s            */

		/* exit: ARMv4 needs hardware breakpoint */
		0xe1200070,	/* e: bkpt  #0           */
	};

	/* Inputs:
	 *  r0	NAND data address (byte wide)
	 *  r1	buffer address
	 *  r2	buffer length
	 *
	 * see contrib/loaders/flash/armv7m_io.s for src
	 */
	static const uint32_t code_armv7m[] = {
		0x3b01f811,
		0x3a017003,
		0xaffaf47f,
		0xbf00be00,
	};

	int target_code_size = 0;
	const uint32_t *target_code_src = NULL;

	/* set up algorithm */
	if (is_armv7m(target_to_armv7m(target))) {  /* armv7m target */
		armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
		armv7m_algo.core_mode = ARM_MODE_THREAD;
		arm_algo = &armv7m_algo;
		target_code_size = sizeof(code_armv7m);
		target_code_src = code_armv7m;
	} else {
		armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
		armv4_5_algo.core_mode = ARM_MODE_SVC;
		armv4_5_algo.core_state = ARM_STATE_ARM;
		arm_algo = &armv4_5_algo;
		target_code_size = sizeof(code_armv4_5);
		target_code_src = code_armv4_5;
	}

	if (nand->op != ARM_NAND_WRITE || !nand->copy_area) {
		retval = arm_code_to_working_area(target, target_code_src, target_code_size,
				nand->chunk_size, &nand->copy_area);
		if (retval != ERROR_OK)
			return retval;
	}

	nand->op = ARM_NAND_WRITE;

	/* copy data to work area */
	target_buf = nand->copy_area->address + target_code_size;
	retval = target_write_buffer(target, target_buf, size, data);
	if (retval != ERROR_OK)
		return retval;

	/* set up parameters */
	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
	init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
	init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);

	buf_set_u32(reg_params[0].value, 0, 32, nand->data);
	buf_set_u32(reg_params[1].value, 0, 32, target_buf);
	buf_set_u32(reg_params[2].value, 0, 32, size);

	/* armv4 must exit using a hardware breakpoint */
	if (arm->is_armv4)
		exit_var = nand->copy_area->address + target_code_size - 4;

	/* use alg to write data from work area to NAND chip */
	retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
			nand->copy_area->address, exit_var, 1000, arm_algo);
	if (retval != ERROR_OK)
		LOG_ERROR("error executing hosted NAND write");

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);

	return retval;
}

/**
 * Uses an on-chip algorithm for an ARM device to read from a NAND device and
 * store the data into the host machine's memory.
 *
 * @param nand Pointer to the arm_nand_data struct that defines the I/O
 * @param data Pointer to the data buffer to store the read data
 * @param size Amount of data to be stored to the buffer.
 * @return Success or failure of the operation
 */
int arm_nandread(struct arm_nand_data *nand, uint8_t *data, uint32_t size)
{
	struct target *target = nand->target;
	struct arm_algorithm armv4_5_algo;
	struct armv7m_algorithm armv7m_algo;
	void *arm_algo;
	struct arm *arm = target->arch_info;
	struct reg_param reg_params[3];
	uint32_t target_buf;
	uint32_t exit_var = 0;
	int retval;

	/* Inputs:
	 *  r0	buffer address
	 *  r1	NAND data address (byte wide)
	 *  r2	buffer length
	 */
	static const uint32_t code_armv4_5[] = {
		0xe5d13000,	/* s: ldrb  r3, [r1]     */
		0xe4c03001,	/*    strb  r3, [r0], #1 */
		0xe2522001,	/*    subs  r2, r2, #1   */
		0x1afffffb,	/*    bne   s            */

		/* exit: ARMv4 needs hardware breakpoint */
		0xe1200070,	/* e: bkpt  #0           */
	};

	/* Inputs:
	 *  r0	buffer address
	 *  r1	NAND data address (byte wide)
	 *  r2	buffer length
	 *
	 * see contrib/loaders/flash/armv7m_io.s for src
	 */
	static const uint32_t code_armv7m[] = {
		0xf800780b,
		0x3a013b01,
		0xaffaf47f,
		0xbf00be00,
	};

	int target_code_size = 0;
	const uint32_t *target_code_src = NULL;

	/* set up algorithm */
	if (is_armv7m(target_to_armv7m(target))) {  /* armv7m target */
		armv7m_algo.common_magic = ARMV7M_COMMON_MAGIC;
		armv7m_algo.core_mode = ARM_MODE_THREAD;
		arm_algo = &armv7m_algo;
		target_code_size = sizeof(code_armv7m);
		target_code_src = code_armv7m;
	} else {
		armv4_5_algo.common_magic = ARM_COMMON_MAGIC;
		armv4_5_algo.core_mode = ARM_MODE_SVC;
		armv4_5_algo.core_state = ARM_STATE_ARM;
		arm_algo = &armv4_5_algo;
		target_code_size = sizeof(code_armv4_5);
		target_code_src = code_armv4_5;
	}

	/* create the copy area if not yet available */
	if (nand->op != ARM_NAND_READ || !nand->copy_area) {
		retval = arm_code_to_working_area(target, target_code_src, target_code_size,
				nand->chunk_size, &nand->copy_area);
		if (retval != ERROR_OK)
			return retval;
	}

	nand->op = ARM_NAND_READ;
	target_buf = nand->copy_area->address + target_code_size;

	/* set up parameters */
	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN);
	init_reg_param(&reg_params[1], "r1", 32, PARAM_IN);
	init_reg_param(&reg_params[2], "r2", 32, PARAM_IN);

	buf_set_u32(reg_params[0].value, 0, 32, target_buf);
	buf_set_u32(reg_params[1].value, 0, 32, nand->data);
	buf_set_u32(reg_params[2].value, 0, 32, size);

	/* armv4 must exit using a hardware breakpoint */
	if (arm->is_armv4)
		exit_var = nand->copy_area->address + target_code_size - 4;

	/* use alg to write data from NAND chip to work area */
	retval = target_run_algorithm(target, 0, NULL, 3, reg_params,
			nand->copy_area->address, exit_var, 1000, arm_algo);
	if (retval != ERROR_OK)
		LOG_ERROR("error executing hosted NAND read");

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);

	/* read from work area to the host's memory */
	retval = target_read_buffer(target, target_buf, size, data);

	return retval;
}