aboutsummaryrefslogtreecommitdiff
path: root/src/target/x86_32_common.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/target/x86_32_common.c')
-rw-r--r--src/target/x86_32_common.c1443
1 files changed, 1443 insertions, 0 deletions
diff --git a/src/target/x86_32_common.c b/src/target/x86_32_common.c
new file mode 100644
index 0000000..34da39b
--- /dev/null
+++ b/src/target/x86_32_common.c
@@ -0,0 +1,1443 @@
+/*
+ * Copyright(c) 2013 Intel Corporation.
+ *
+ * Adrian Burns (adrian.burns@intel.com)
+ * Thomas Faust (thomas.faust@intel.com)
+ * Ivan De Cesaris (ivan.de.cesaris@intel.com)
+ * Julien Carreno (julien.carreno@intel.com)
+ * Jeffrey Maxwell (jeffrey.r.maxwell@intel.com)
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of version 2 of the GNU General Public License as
+ * published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ * Contact Information:
+ * Intel Corporation
+ */
+
+/*
+ * @file
+ * This implements generic x86 32 bit memory and breakpoint operations.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <helper/log.h>
+
+#include "target.h"
+#include "target_type.h"
+#include "register.h"
+#include "breakpoints.h"
+#include "x86_32_common.h"
+
+static int set_debug_regs(struct target *t, uint32_t address,
+ uint8_t bp_num, uint8_t bp_type, uint8_t bp_length);
+static int unset_debug_regs(struct target *t, uint8_t bp_num);
+static int read_mem(struct target *t, uint32_t size,
+ uint32_t addr, uint8_t *buf);
+static int write_mem(struct target *t, uint32_t size,
+ uint32_t addr, const uint8_t *buf);
+static int calcaddr_pyhsfromlin(struct target *t, uint32_t addr,
+ uint32_t *physaddr);
+static int read_phys_mem(struct target *t, uint32_t phys_address,
+ uint32_t size, uint32_t count, uint8_t *buffer);
+static int write_phys_mem(struct target *t, uint32_t phys_address,
+ uint32_t size, uint32_t count, const uint8_t *buffer);
+static int set_breakpoint(struct target *target,
+ struct breakpoint *breakpoint);
+static int unset_breakpoint(struct target *target,
+ struct breakpoint *breakpoint);
+static int set_watchpoint(struct target *target,
+ struct watchpoint *watchpoint);
+static int unset_watchpoint(struct target *target,
+ struct watchpoint *watchpoint);
+static int read_hw_reg_to_cache(struct target *t, int num);
+static int write_hw_reg_from_cache(struct target *t, int num);
+
+int x86_32_get_gdb_reg_list(struct target *t,
+ struct reg **reg_list[], int *reg_list_size,
+ enum target_register_class reg_class)
+{
+
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ int i;
+ *reg_list_size = x86_32->cache->num_regs;
+ LOG_DEBUG("num_regs=%d, reg_class=%d", (*reg_list_size), reg_class);
+ *reg_list = malloc(sizeof(struct reg *) * (*reg_list_size));
+ if (*reg_list == NULL) {
+ LOG_ERROR("%s out of memory", __func__);
+ return ERROR_FAIL;
+ }
+ /* this will copy the values from our reg list to gdbs */
+ for (i = 0; i < (*reg_list_size); i++) {
+ (*reg_list)[i] = &x86_32->cache->reg_list[i];
+ LOG_DEBUG("value %s = %08" PRIx32, x86_32->cache->reg_list[i].name,
+ buf_get_u32(x86_32->cache->reg_list[i].value, 0, 32));
+ }
+ return ERROR_OK;
+}
+
+int x86_32_common_init_arch_info(struct target *t, struct x86_32_common *x86_32)
+{
+ t->arch_info = x86_32;
+ x86_32->common_magic = X86_32_COMMON_MAGIC;
+ x86_32->num_hw_bpoints = MAX_DEBUG_REGS;
+ x86_32->hw_break_list = calloc(x86_32->num_hw_bpoints,
+ sizeof(struct x86_32_dbg_reg));
+ if (x86_32->hw_break_list == NULL) {
+ LOG_ERROR("%s out of memory", __func__);
+ return ERROR_FAIL;
+ }
+ x86_32->curr_tap = t->tap;
+ x86_32->fast_data_area = NULL;
+ x86_32->flush = 1;
+ x86_32->read_hw_reg_to_cache = read_hw_reg_to_cache;
+ x86_32->write_hw_reg_from_cache = write_hw_reg_from_cache;
+ return ERROR_OK;
+}
+
+int x86_32_common_mmu(struct target *t, int *enabled)
+{
+ *enabled = true;
+ return ERROR_OK;
+}
+
+int x86_32_common_virt2phys(struct target *t, uint32_t address, uint32_t *physical)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+
+ /*
+ * We need to ignore 'segmentation' for now, as OpenOCD can't handle
+ * segmented addresses.
+ * In protected mode that is almost OK, as (almost) any known OS is using
+ * flat segmentation. In real mode we use use the base of the DS segment,
+ * as we don't know better ...
+ */
+
+ uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
+ if (!(cr0 & CR0_PG)) {
+ /* target halted in real mode */
+ /* TODO: needs validation !!! */
+ uint32_t dsb = buf_get_u32(x86_32->cache->reg_list[DSB].value, 0, 32);
+ *physical = dsb + address;
+
+ } else {
+ /* target halted in protected mode */
+ if (calcaddr_pyhsfromlin(t, address, physical) != ERROR_OK) {
+ LOG_ERROR("%s failed to calculate physical address from 0x%08" PRIx32,
+ __func__, address);
+ return ERROR_FAIL;
+ }
+ }
+ return ERROR_OK;
+}
+
+int x86_32_common_read_phys_mem(struct target *t, uint32_t phys_address,
+ uint32_t size, uint32_t count, uint8_t *buffer)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ int error;
+
+ error = read_phys_mem(t, phys_address, size, count, buffer);
+ if (error != ERROR_OK)
+ return error;
+
+ /* After reading memory from target, we must replace software breakpoints
+ * with the original instructions again.
+ */
+ struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
+ while (iter != NULL) {
+ if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
+ uint32_t offset = iter->physaddr - phys_address;
+ buffer[offset] = iter->orig_byte;
+ }
+ iter = iter->next;
+ }
+ return ERROR_OK;
+}
+
+static int read_phys_mem(struct target *t, uint32_t phys_address,
+ uint32_t size, uint32_t count, uint8_t *buffer)
+{
+ int retval = ERROR_OK;
+ bool pg_disabled = false;
+ LOG_DEBUG("addr=%08" PRIx32 ", size=%d, count=%d, buf=%p",
+ phys_address, size, count, buffer);
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+
+ if (check_not_halted(t))
+ return ERROR_TARGET_NOT_HALTED;
+ if (!count || !buffer || !phys_address) {
+ LOG_ERROR("%s invalid params count=%d, buf=%p, addr=%08" PRIx32,
+ __func__, count, buffer, phys_address);
+ return ERROR_COMMAND_ARGUMENT_INVALID;
+ }
+
+ /* to access physical memory, switch off the CR0.PG bit */
+ if (x86_32->is_paging_enabled(t)) {
+ retval = x86_32->disable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ pg_disabled = true;
+ }
+
+ for (uint32_t i = 0; i < count; i++) {
+ switch (size) {
+ case BYTE:
+ retval = read_mem(t, size, phys_address + i, buffer + i);
+ break;
+ case WORD:
+ retval = read_mem(t, size, phys_address + i * 2, buffer + i * 2);
+ break;
+ case DWORD:
+ retval = read_mem(t, size, phys_address + i * 4, buffer + i * 4);
+ break;
+ default:
+ LOG_ERROR("%s invalid read size", __func__);
+ break;
+ }
+ }
+ /* restore CR0.PG bit if needed (regardless of retval) */
+ if (pg_disabled) {
+ retval = x86_32->enable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ pg_disabled = true;
+ }
+ /* TODO: After reading memory from target, we must replace
+ * software breakpoints with the original instructions again.
+ * Solve this with the breakpoint fix
+ */
+ return retval;
+}
+
+int x86_32_common_write_phys_mem(struct target *t, uint32_t phys_address,
+ uint32_t size, uint32_t count, const uint8_t *buffer)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ int error = ERROR_OK;
+ uint8_t *newbuffer = NULL;
+
+ check_not_halted(t);
+ if (!count || !buffer || !phys_address) {
+ LOG_ERROR("%s invalid params count=%d, buf=%p, addr=%08" PRIx32,
+ __func__, count, buffer, phys_address);
+ return ERROR_COMMAND_ARGUMENT_INVALID;
+ }
+ /* Before writing memory to target, we must update software breakpoints
+ * with the new instructions and patch the memory buffer with the
+ * breakpoint instruction.
+ */
+ newbuffer = malloc(size*count);
+ if (newbuffer == NULL) {
+ LOG_ERROR("%s out of memory", __func__);
+ return ERROR_FAIL;
+ }
+ memcpy(newbuffer, buffer, size*count);
+ struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
+ while (iter != NULL) {
+ if (iter->physaddr >= phys_address && iter->physaddr < phys_address+(size*count)) {
+ uint32_t offset = iter->physaddr - phys_address;
+ newbuffer[offset] = SW_BP_OPCODE;
+
+ /* update the breakpoint */
+ struct breakpoint *pbiter = t->breakpoints;
+ while (pbiter != NULL && pbiter->unique_id != iter->swbp_unique_id)
+ pbiter = pbiter->next;
+ if (pbiter)
+ pbiter->orig_instr[0] = buffer[offset];
+ }
+ iter = iter->next;
+ }
+
+ error = write_phys_mem(t, phys_address, size, count, newbuffer);
+ free(newbuffer);
+ return error;
+}
+
+static int write_phys_mem(struct target *t, uint32_t phys_address,
+ uint32_t size, uint32_t count, const uint8_t *buffer)
+{
+ int retval = ERROR_OK;
+ bool pg_disabled = false;
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("addr=%08" PRIx32 ", size=%d, count=%d, buf=%p",
+ phys_address, size, count, buffer);
+
+ check_not_halted(t);
+ if (!count || !buffer || !phys_address) {
+ LOG_ERROR("%s invalid params count=%d, buf=%p, addr=%08" PRIx32,
+ __func__, count, buffer, phys_address);
+ return ERROR_COMMAND_ARGUMENT_INVALID;
+ }
+ /* TODO: Before writing memory to target, we must update
+ * software breakpoints with the new instructions and
+ * patch the memory buffer with the breakpoint instruction.
+ * Solve this with the breakpoint fix
+ */
+
+ /* to access physical memory, switch off the CR0.PG bit */
+ if (x86_32->is_paging_enabled(t)) {
+ retval = x86_32->disable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ pg_disabled = true;
+ }
+ for (uint32_t i = 0; i < count; i++) {
+ switch (size) {
+ case BYTE:
+ retval = write_mem(t, size, phys_address + i, buffer + i);
+ break;
+ case WORD:
+ retval = write_mem(t, size, phys_address + i * 2, buffer + i * 2);
+ break;
+ case DWORD:
+ retval = write_mem(t, size, phys_address + i * 4, buffer + i * 4);
+ break;
+ default:
+ LOG_DEBUG("invalid read size");
+ break;
+ }
+ }
+ /* restore CR0.PG bit if needed (regardless of retval) */
+ if (pg_disabled) {
+ retval = x86_32->enable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ }
+ return retval;
+}
+
+static int read_mem(struct target *t, uint32_t size,
+ uint32_t addr, uint8_t *buf)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+
+ /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
+ bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
+ int retval = x86_32->write_hw_reg(t, EAX, addr, 0);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error write EAX", __func__);
+ return retval;
+ }
+
+ switch (size) {
+ case BYTE:
+ if (use32)
+ retval = x86_32->submit_instruction(t, MEMRDB32);
+ else
+ retval = x86_32->submit_instruction(t, MEMRDB16);
+ break;
+ case WORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, MEMRDH32);
+ else
+ retval = x86_32->submit_instruction(t, MEMRDH16);
+ break;
+ case DWORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, MEMRDW32);
+ else
+ retval = x86_32->submit_instruction(t, MEMRDW16);
+ break;
+ default:
+ LOG_ERROR("%s invalid read mem size", __func__);
+ break;
+ }
+
+ /* read_hw_reg() will write to 4 bytes (uint32_t)
+ * Watch out, the buffer passed into read_mem() might be 1 or 2 bytes.
+ */
+ uint32_t regval;
+ retval = x86_32->read_hw_reg(t, EDX, &regval, 0);
+
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error read EDX", __func__);
+ return retval;
+ }
+ for (uint8_t i = 0; i < size; i++)
+ buf[i] = (regval >> (i*8)) & 0x000000FF;
+
+ retval = x86_32->transaction_status(t);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error on mem read", __func__);
+ return retval;
+ }
+ return retval;
+}
+
+static int write_mem(struct target *t, uint32_t size,
+ uint32_t addr, const uint8_t *buf)
+{
+ uint32_t i = 0;
+ uint32_t buf4bytes = 0;
+ int retval = ERROR_OK;
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+
+ for (i = 0; i < size; ++i) {
+ buf4bytes = buf4bytes << 8; /* first time we only shift 0s */
+ buf4bytes += buf[(size-1)-i]; /* it was hard to write, should be hard to read! */
+ }
+ /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
+ bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
+ retval = x86_32->write_hw_reg(t, EAX, addr, 0);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error write EAX", __func__);
+ return retval;
+ }
+
+ /* write_hw_reg() will write to 4 bytes (uint32_t)
+ * Watch out, the buffer passed into write_mem() might be 1 or 2 bytes.
+ */
+ retval = x86_32->write_hw_reg(t, EDX, buf4bytes, 0);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error write EDX", __func__);
+ return retval;
+ }
+ switch (size) {
+ case BYTE:
+ if (use32)
+ retval = x86_32->submit_instruction(t, MEMWRB32);
+ else
+ retval = x86_32->submit_instruction(t, MEMWRB16);
+ break;
+ case WORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, MEMWRH32);
+ else
+ retval = x86_32->submit_instruction(t, MEMWRH16);
+ break;
+ case DWORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, MEMWRW32);
+ else
+ retval = x86_32->submit_instruction(t, MEMWRW16);
+ break;
+ default:
+ LOG_ERROR("%s invalid write mem size", __func__);
+ return ERROR_FAIL;
+ }
+ retval = x86_32->transaction_status(t);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error on mem write", __func__);
+ return retval;
+ }
+ return retval;
+}
+
+int calcaddr_pyhsfromlin(struct target *t, uint32_t addr, uint32_t *physaddr)
+{
+ uint8_t entry_buffer[8];
+
+ if (physaddr == NULL || t == NULL)
+ return ERROR_FAIL;
+
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+
+ /* The 'user-visible' CR0.PG should be set - otherwise the function shouldn't be called
+ * (Don't check the CR0.PG on the target, this might be temporally disabled at this point)
+ */
+ uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);
+ if (!(cr0 & CR0_PG)) {
+ /* you are wrong in this function, never mind */
+ *physaddr = addr;
+ return ERROR_OK;
+ }
+
+ uint32_t cr4 = buf_get_u32(x86_32->cache->reg_list[CR4].value, 0, 32);
+ bool isPAE = cr4 & 0x00000020; /* PAE - Physical Address Extension */
+
+ uint32_t cr3 = buf_get_u32(x86_32->cache->reg_list[CR3].value, 0, 32);
+ if (isPAE) {
+ uint32_t pdpt_base = cr3 & 0xFFFFF000; /* lower 12 bits of CR3 must always be 0 */
+ uint32_t pdpt_index = (addr & 0xC0000000) >> 30; /* A[31:30] index to PDPT */
+ uint32_t pdpt_addr = pdpt_base + (8 * pdpt_index);
+ if (x86_32_common_read_phys_mem(t, pdpt_addr, 4, 2, entry_buffer) != ERROR_OK) {
+ LOG_ERROR("%s couldn't read page directory pointer table entry at 0x%08" PRIx32,
+ __func__, pdpt_addr);
+ return ERROR_FAIL;
+ }
+ uint64_t pdpt_entry = target_buffer_get_u64(t, entry_buffer);
+ if (!(pdpt_entry & 0x0000000000000001)) {
+ LOG_ERROR("%s page directory pointer table entry at 0x%08" PRIx32 " is not present",
+ __func__, pdpt_addr);
+ return ERROR_FAIL;
+ }
+
+ uint32_t pd_base = pdpt_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
+ uint32_t pd_index = (addr & 0x3FE00000) >> 21; /* A[29:21] index to PD entry with PAE */
+ uint32_t pd_addr = pd_base + (8 * pd_index);
+ if (x86_32_common_read_phys_mem(t, pd_addr, 4, 2, entry_buffer) != ERROR_OK) {
+ LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32,
+ __func__, pd_addr);
+ return ERROR_FAIL;
+ }
+ uint64_t pd_entry = target_buffer_get_u64(t, entry_buffer);
+ if (!(pd_entry & 0x0000000000000001)) {
+ LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present",
+ __func__, pd_addr);
+ return ERROR_FAIL;
+ }
+
+ /* PS bit in PD entry is indicating 4KB or 2MB page size */
+ if (pd_entry & 0x0000000000000080) {
+
+ uint32_t page_base = (uint32_t)(pd_entry & 0x00000000FFE00000); /* [31:21] */
+ uint32_t offset = addr & 0x001FFFFF; /* [20:0] */
+ *physaddr = page_base + offset;
+ return ERROR_OK;
+
+ } else {
+
+ uint32_t pt_base = (uint32_t)(pd_entry & 0x00000000FFFFF000); /*[31:12]*/
+ uint32_t pt_index = (addr & 0x001FF000) >> 12; /*[20:12]*/
+ uint32_t pt_addr = pt_base + (8 * pt_index);
+ if (x86_32_common_read_phys_mem(t, pt_addr, 4, 2, entry_buffer) != ERROR_OK) {
+ LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
+ return ERROR_FAIL;
+ }
+ uint64_t pt_entry = target_buffer_get_u64(t, entry_buffer);
+ if (!(pt_entry & 0x0000000000000001)) {
+ LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
+ return ERROR_FAIL;
+ }
+
+ uint32_t page_base = (uint32_t)(pt_entry & 0x00000000FFFFF000); /*[31:12]*/
+ uint32_t offset = addr & 0x00000FFF; /*[11:0]*/
+ *physaddr = page_base + offset;
+ return ERROR_OK;
+ }
+ } else {
+ uint32_t pd_base = cr3 & 0xFFFFF000; /* lower 12 bits of CR3 must always be 0 */
+ uint32_t pd_index = (addr & 0xFFC00000) >> 22; /* A[31:22] index to PD entry */
+ uint32_t pd_addr = pd_base + (4 * pd_index);
+ if (x86_32_common_read_phys_mem(t, pd_addr, 4, 1, entry_buffer) != ERROR_OK) {
+ LOG_ERROR("%s couldn't read page directory entry at 0x%08" PRIx32, __func__, pd_addr);
+ return ERROR_FAIL;
+ }
+ uint32_t pd_entry = target_buffer_get_u32(t, entry_buffer);
+ if (!(pd_entry & 0x00000001)) {
+ LOG_ERROR("%s page directory entry at 0x%08" PRIx32 " is not present", __func__, pd_addr);
+ return ERROR_FAIL;
+ }
+
+ /* Bit 7 in page directory entry is page size.
+ */
+ if (pd_entry & 0x00000080) {
+ /* 4MB pages */
+ uint32_t page_base = pd_entry & 0xFFC00000;
+ *physaddr = page_base + (addr & 0x003FFFFF);
+
+ } else {
+ /* 4KB pages */
+ uint32_t pt_base = pd_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
+ uint32_t pt_index = (addr & 0x003FF000) >> 12; /* A[21:12] index to page table entry */
+ uint32_t pt_addr = pt_base + (4 * pt_index);
+ if (x86_32_common_read_phys_mem(t, pt_addr, 4, 1, entry_buffer) != ERROR_OK) {
+ LOG_ERROR("%s couldn't read page table entry at 0x%08" PRIx32, __func__, pt_addr);
+ return ERROR_FAIL;
+ }
+ uint32_t pt_entry = target_buffer_get_u32(t, entry_buffer);
+ if (!(pt_entry & 0x00000001)) {
+ LOG_ERROR("%s page table entry at 0x%08" PRIx32 " is not present", __func__, pt_addr);
+ return ERROR_FAIL;
+ }
+ uint32_t page_base = pt_entry & 0xFFFFF000; /* A[31:12] is PageTable/Page Base Address */
+ *physaddr = page_base + (addr & 0x00000FFF); /* A[11:0] offset to 4KB page in linear address */
+ }
+ }
+ return ERROR_OK;
+}
+
+int x86_32_common_read_memory(struct target *t, uint32_t addr,
+ uint32_t size, uint32_t count, uint8_t *buf)
+{
+ int retval = ERROR_OK;
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("addr=%08" PRIx32 ", size=%d, count=%d, buf=%p",
+ addr, size, count, buf);
+ check_not_halted(t);
+ if (!count || !buf || !addr) {
+ LOG_ERROR("%s invalid params count=%d, buf=%p, addr=%08" PRIx32,
+ __func__, count, buf, addr);
+ return ERROR_COMMAND_ARGUMENT_INVALID;
+ }
+
+ if (x86_32->is_paging_enabled(t)) {
+ /* all memory accesses from debugger must be physical (CR0.PG == 0)
+ * conversion to physical address space needed
+ */
+ retval = x86_32->disable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ uint32_t physaddr = 0;
+ if (calcaddr_pyhsfromlin(t, addr, &physaddr) != ERROR_OK) {
+ LOG_ERROR("%s failed to calculate physical address from 0x%08" PRIx32, __func__, addr);
+ retval = ERROR_FAIL;
+ }
+ /* TODO: !!! Watch out for page boundaries
+ * for every 4kB, the physical address has to be re-calculated
+ * This should be fixed together with bulk memory reads
+ */
+
+ if (retval == ERROR_OK
+ && x86_32_common_read_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
+ LOG_ERROR("%s failed to read memory from physical address 0x%08" PRIx32, __func__, physaddr);
+ retval = ERROR_FAIL;
+ }
+ /* restore PG bit if it was cleared prior (regardless of retval) */
+ retval = x86_32->enable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ } else {
+ /* paging is off - linear address is physical address */
+ if (x86_32_common_read_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
+ LOG_ERROR("%s failed to read memory from address 0%08" PRIx32, __func__, addr);
+ retval = ERROR_FAIL;
+ }
+ }
+
+ return retval;
+}
+
+int x86_32_common_write_memory(struct target *t, uint32_t addr,
+ uint32_t size, uint32_t count, const uint8_t *buf)
+{
+ int retval = ERROR_OK;
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("addr=%08" PRIx32 ", size=%d, count=%d, buf=%p",
+ addr, size, count, buf);
+ check_not_halted(t);
+ if (!count || !buf || !addr) {
+ LOG_ERROR("%s invalid params count=%d, buf=%p, addr=%08" PRIx32,
+ __func__, count, buf, addr);
+ return ERROR_COMMAND_ARGUMENT_INVALID;
+ }
+ if (x86_32->is_paging_enabled(t)) {
+ /* all memory accesses from debugger must be physical (CR0.PG == 0)
+ * conversion to physical address space needed
+ */
+ retval = x86_32->disable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ uint32_t physaddr = 0;
+ if (calcaddr_pyhsfromlin(t, addr, &physaddr) != ERROR_OK) {
+ LOG_ERROR("%s failed to calculate physical address from 0x%08" PRIx32,
+ __func__, addr);
+ retval = ERROR_FAIL;
+ }
+ /* TODO: !!! Watch out for page boundaries
+ * for every 4kB, the physical address has to be re-calculated
+ * This should be fixed together with bulk memory reads
+ */
+ if (retval == ERROR_OK
+ && x86_32_common_write_phys_mem(t, physaddr, size, count, buf) != ERROR_OK) {
+ LOG_ERROR("%s failed to write memory to physical address 0x%08" PRIx32,
+ __func__, physaddr);
+ retval = ERROR_FAIL;
+ }
+ /* restore PG bit if it was cleared prior (regardless of retval) */
+ retval = x86_32->enable_paging(t);
+ if (retval != ERROR_OK)
+ return retval;
+ } else {
+
+ /* paging is off - linear address is physical address */
+ if (x86_32_common_write_phys_mem(t, addr, size, count, buf) != ERROR_OK) {
+ LOG_ERROR("%s failed to write memory to address 0x%08" PRIx32,
+ __func__, addr);
+ retval = ERROR_FAIL;
+ }
+ }
+ return retval;
+}
+
+int x86_32_common_read_io(struct target *t, uint32_t addr,
+ uint32_t size, uint8_t *buf)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
+ bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
+ int retval = ERROR_FAIL;
+ LOG_DEBUG("addr=%08" PRIx32 ", size=%d, buf=%p", addr, size, buf);
+ check_not_halted(t);
+ if (!buf || !addr) {
+ LOG_ERROR("%s invalid params buf=%p, addr=%08" PRIx32, __func__, buf, addr);
+ return retval;
+ }
+ retval = x86_32->write_hw_reg(t, EDX, addr, 0);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error EDX write", __func__);
+ return retval;
+ }
+ switch (size) {
+ case BYTE:
+ if (use32)
+ retval = x86_32->submit_instruction(t, IORDB32);
+ else
+ retval = x86_32->submit_instruction(t, IORDB16);
+ break;
+ case WORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, IORDH32);
+ else
+ retval = x86_32->submit_instruction(t, IORDH16);
+ break;
+ case DWORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, IORDW32);
+ else
+ retval = x86_32->submit_instruction(t, IORDW16);
+ break;
+ default:
+ LOG_ERROR("%s invalid read io size", __func__);
+ return ERROR_FAIL;
+ }
+ uint32_t regval = 0;
+ retval = x86_32->read_hw_reg(t, EAX, &regval, 0);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error on read EAX", __func__);
+ return retval;
+ }
+ for (uint8_t i = 0; i < size; i++)
+ buf[i] = (regval >> (i*8)) & 0x000000FF;
+ retval = x86_32->transaction_status(t);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error on io read", __func__);
+ return retval;
+ }
+ return retval;
+}
+
+int x86_32_common_write_io(struct target *t, uint32_t addr,
+ uint32_t size, const uint8_t *buf)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ /* if CS.D bit=1 then its a 32 bit code segment, else 16 */
+ bool use32 = (buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32)) & CSAR_D;
+ LOG_DEBUG("addr=%08" PRIx32 ", size=%d, buf=%p", addr, size, buf);
+ check_not_halted(t);
+ int retval = ERROR_FAIL;
+ if (!buf || !addr) {
+ LOG_ERROR("%s invalid params buf=%p, addr=%08" PRIx32, __func__, buf, addr);
+ return retval;
+ }
+ /* no do the write */
+ retval = x86_32->write_hw_reg(t, EDX, addr, 0);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error on EDX write", __func__);
+ return retval;
+ }
+ uint32_t regval = 0;
+ for (uint8_t i = 0; i < size; i++)
+ regval += (buf[i] << (i*8));
+ retval = x86_32->write_hw_reg(t, EAX, regval, 0);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error on EAX write", __func__);
+ return retval;
+ }
+ switch (size) {
+ case BYTE:
+ if (use32)
+ retval = x86_32->submit_instruction(t, IOWRB32);
+ else
+ retval = x86_32->submit_instruction(t, IOWRB16);
+ break;
+ case WORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, IOWRH32);
+ else
+ retval = x86_32->submit_instruction(t, IOWRH16);
+ break;
+ case DWORD:
+ if (use32)
+ retval = x86_32->submit_instruction(t, IOWRW32);
+ else
+ retval = x86_32->submit_instruction(t, IOWRW16);
+ break;
+ default:
+ LOG_ERROR("%s invalid write io size", __func__);
+ return ERROR_FAIL;
+ }
+ retval = x86_32->transaction_status(t);
+ if (retval != ERROR_OK) {
+ LOG_ERROR("%s error on io write", __func__);
+ return retval;
+ }
+ return retval;
+}
+
+int x86_32_common_add_watchpoint(struct target *t, struct watchpoint *wp)
+{
+ check_not_halted(t);
+ /* set_watchpoint() will return ERROR_TARGET_RESOURCE_NOT_AVAILABLE if all
+ * hardware registers are gone
+ */
+ return set_watchpoint(t, wp);
+}
+
+int x86_32_common_remove_watchpoint(struct target *t, struct watchpoint *wp)
+{
+ if (check_not_halted(t))
+ return ERROR_TARGET_NOT_HALTED;
+ if (wp->set)
+ unset_watchpoint(t, wp);
+ return ERROR_OK;
+}
+
+int x86_32_common_add_breakpoint(struct target *t, struct breakpoint *bp)
+{
+ LOG_DEBUG("type=%d, addr=%08" PRIx32, bp->type, bp->address);
+ if (check_not_halted(t))
+ return ERROR_TARGET_NOT_HALTED;
+ /* set_breakpoint() will return ERROR_TARGET_RESOURCE_NOT_AVAILABLE if all
+ * hardware registers are gone (for hardware breakpoints)
+ */
+ return set_breakpoint(t, bp);
+}
+
+int x86_32_common_remove_breakpoint(struct target *t, struct breakpoint *bp)
+{
+ LOG_DEBUG("type=%d, addr=%08" PRIx32, bp->type, bp->address);
+ if (check_not_halted(t))
+ return ERROR_TARGET_NOT_HALTED;
+ if (bp->set)
+ unset_breakpoint(t, bp);
+
+ return ERROR_OK;
+}
+
+static int set_debug_regs(struct target *t, uint32_t address,
+ uint8_t bp_num, uint8_t bp_type, uint8_t bp_length)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("addr=%08" PRIx32 ", bp_num=%d, bp_type=%d, pb_length=%d",
+ address, bp_num, bp_type, bp_length);
+
+ /* DR7 - set global enable */
+ uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
+
+ if (bp_length != 1 && bp_length != 2 && bp_length != 4)
+ return ERROR_FAIL;
+
+ if (DR7_BP_FREE(dr7, bp_num))
+ DR7_GLOBAL_ENABLE(dr7, bp_num);
+ else {
+ LOG_ERROR("%s dr7 error, already enabled, val=%08" PRIx32, __func__, dr7);
+ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+ }
+
+ switch (bp_type) {
+ case 0:
+ /* 00 - only on instruction execution */
+ DR7_SET_EXE(dr7, bp_num);
+ DR7_SET_LENGTH(dr7, bp_num, bp_length);
+ break;
+ case 1:
+ /* 01 - only on data writes */
+ DR7_SET_WRITE(dr7, bp_num);
+ DR7_SET_LENGTH(dr7, bp_num, bp_length);
+ break;
+ case 2:
+ /* 10 UNSUPPORTED - an I/O read and I/O write */
+ LOG_ERROR("%s unsupported feature bp_type=%d", __func__, bp_type);
+ return ERROR_FAIL;
+ break;
+ case 3:
+ /* on data read or data write */
+ DR7_SET_ACCESS(dr7, bp_num);
+ DR7_SET_LENGTH(dr7, bp_num, bp_length);
+ break;
+ default:
+ LOG_ERROR("%s invalid request [only 0-3] bp_type=%d", __func__, bp_type);
+ return ERROR_FAIL;
+ }
+
+ /* update regs in the reg cache ready to be written to hardware
+ * when we exit PM
+ */
+ buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, address);
+ x86_32->cache->reg_list[bp_num+DR0].dirty = 1;
+ x86_32->cache->reg_list[bp_num+DR0].valid = 1;
+ buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
+ x86_32->cache->reg_list[DR6].dirty = 1;
+ x86_32->cache->reg_list[DR6].valid = 1;
+ buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
+ x86_32->cache->reg_list[DR7].dirty = 1;
+ x86_32->cache->reg_list[DR7].valid = 1;
+ return ERROR_OK;
+}
+
+static int unset_debug_regs(struct target *t, uint8_t bp_num)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("bp_num=%d", bp_num);
+
+ uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
+
+ if (!(DR7_BP_FREE(dr7, bp_num))) {
+ DR7_GLOBAL_DISABLE(dr7, bp_num);
+ } else {
+ LOG_ERROR("%s dr7 error, not enabled, val=%08" PRIx32, __func__, dr7);
+ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+ }
+ /* this will clear rw and len bits */
+ DR7_RESET_RWLEN_BITS(dr7, bp_num);
+
+ /* update regs in the reg cache ready to be written to hardware
+ * when we exit PM
+ */
+ buf_set_u32(x86_32->cache->reg_list[bp_num+DR0].value, 0, 32, 0);
+ x86_32->cache->reg_list[bp_num+DR0].dirty = 1;
+ x86_32->cache->reg_list[bp_num+DR0].valid = 1;
+ buf_set_u32(x86_32->cache->reg_list[DR6].value, 0, 32, PM_DR6);
+ x86_32->cache->reg_list[DR6].dirty = 1;
+ x86_32->cache->reg_list[DR6].valid = 1;
+ buf_set_u32(x86_32->cache->reg_list[DR7].value, 0, 32, dr7);
+ x86_32->cache->reg_list[DR7].dirty = 1;
+ x86_32->cache->reg_list[DR7].valid = 1;
+ return ERROR_OK;
+}
+
+static int set_hwbp(struct target *t, struct breakpoint *bp)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
+ uint8_t hwbp_num = 0;
+
+ while (debug_reg_list[hwbp_num].used && (hwbp_num < x86_32->num_hw_bpoints))
+ hwbp_num++;
+ if (hwbp_num >= x86_32->num_hw_bpoints) {
+ LOG_ERROR("%s no free hw breakpoint bpid=%d", __func__, bp->unique_id);
+ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+ }
+ if (set_debug_regs(t, bp->address, hwbp_num, DR7_BP_EXECUTE, 1) != ERROR_OK)
+ return ERROR_FAIL;
+ bp->set = hwbp_num + 1;
+ debug_reg_list[hwbp_num].used = 1;
+ debug_reg_list[hwbp_num].bp_value = bp->address;
+ LOG_USER("%s hardware breakpoint %d set at 0x%08" PRIx32 " (hwreg=%d)", __func__,
+ bp->unique_id, debug_reg_list[hwbp_num].bp_value, hwbp_num);
+ return ERROR_OK;
+}
+
+static int unset_hwbp(struct target *t, struct breakpoint *bp)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
+ int hwbp_num = bp->set - 1;
+
+ if ((hwbp_num < 0) || (hwbp_num >= x86_32->num_hw_bpoints)) {
+ LOG_ERROR("%s invalid breakpoint number=%d, bpid=%d",
+ __func__, hwbp_num, bp->unique_id);
+ return ERROR_OK;
+ }
+
+ if (unset_debug_regs(t, hwbp_num) != ERROR_OK)
+ return ERROR_FAIL;
+ debug_reg_list[hwbp_num].used = 0;
+ debug_reg_list[hwbp_num].bp_value = 0;
+
+ LOG_USER("%s hardware breakpoint %d removed from 0x%08" PRIx32 " (hwreg=%d)",
+ __func__, bp->unique_id, bp->address, hwbp_num);
+ return ERROR_OK;
+}
+
+static int set_swbp(struct target *t, struct breakpoint *bp)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("id %d", bp->unique_id);
+ uint32_t physaddr;
+ uint8_t opcode = SW_BP_OPCODE;
+ uint8_t readback;
+
+ if (calcaddr_pyhsfromlin(t, bp->address, &physaddr) != ERROR_OK)
+ return ERROR_FAIL;
+ if (read_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
+ return ERROR_FAIL;
+
+ LOG_DEBUG("set software breakpoint - orig byte=%02" PRIx8 "", *bp->orig_instr);
+
+ /* just write the instruction trap byte */
+ if (write_phys_mem(t, physaddr, 1, 1, &opcode))
+ return ERROR_FAIL;
+
+ /* verify that this is not invalid/read-only memory */
+ if (read_phys_mem(t, physaddr, 1, 1, &readback))
+ return ERROR_FAIL;
+
+ if (readback != SW_BP_OPCODE) {
+ LOG_ERROR("%s software breakpoint error at 0x%08" PRIx32 ", check memory",
+ __func__, bp->address);
+ LOG_ERROR("%s readback=%02" PRIx8 " orig=%02" PRIx8 "",
+ __func__, readback, *bp->orig_instr);
+ return ERROR_FAIL;
+ }
+ bp->set = SW_BP_OPCODE; /* just non 0 */
+
+ /* add the memory patch */
+ struct swbp_mem_patch *new_patch = malloc(sizeof(struct swbp_mem_patch));
+ if (new_patch == NULL) {
+ LOG_ERROR("%s out of memory", __func__);
+ return ERROR_FAIL;
+ }
+ new_patch->next = NULL;
+ new_patch->orig_byte = *bp->orig_instr;
+ new_patch->physaddr = physaddr;
+ new_patch->swbp_unique_id = bp->unique_id;
+
+ struct swbp_mem_patch *addto = x86_32->swbbp_mem_patch_list;
+ if (addto == NULL)
+ x86_32->swbbp_mem_patch_list = new_patch;
+ else {
+ while (addto->next != NULL)
+ addto = addto->next;
+ addto->next = new_patch;
+ }
+ LOG_USER("%s software breakpoint %d set at 0x%08" PRIx32,
+ __func__, bp->unique_id, bp->address);
+ return ERROR_OK;
+}
+
+static int unset_swbp(struct target *t, struct breakpoint *bp)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("id %d", bp->unique_id);
+ uint32_t physaddr;
+ uint8_t current_instr;
+
+ /* check that user program has not modified breakpoint instruction */
+ if (calcaddr_pyhsfromlin(t, bp->address, &physaddr) != ERROR_OK)
+ return ERROR_FAIL;
+ if (read_phys_mem(t, physaddr, 1, 1, &current_instr))
+ return ERROR_FAIL;
+
+ if (current_instr == SW_BP_OPCODE) {
+ if (write_phys_mem(t, physaddr, 1, 1, bp->orig_instr))
+ return ERROR_FAIL;
+ } else {
+ LOG_ERROR("%s software breakpoint remove error at 0x%08" PRIx32 ", check memory",
+ __func__, bp->address);
+ LOG_ERROR("%s current=%02" PRIx8 " orig=%02" PRIx8 "",
+ __func__, current_instr, *bp->orig_instr);
+ return ERROR_FAIL;
+ }
+
+ /* remove from patch */
+ struct swbp_mem_patch *iter = x86_32->swbbp_mem_patch_list;
+ if (iter != NULL) {
+ if (iter->swbp_unique_id == bp->unique_id) {
+ /* it's the first item */
+ x86_32->swbbp_mem_patch_list = iter->next;
+ free(iter);
+ } else {
+ while (iter->next != NULL && iter->next->swbp_unique_id != bp->unique_id)
+ iter = iter->next;
+ if (iter->next != NULL) {
+ /* it's the next one */
+ struct swbp_mem_patch *freeme = iter->next;
+ iter->next = iter->next->next;
+ free(freeme);
+ }
+ }
+ }
+
+ LOG_USER("%s software breakpoint %d removed from 0x%08" PRIx32,
+ __func__, bp->unique_id, bp->address);
+ return ERROR_OK;
+}
+
+static int set_breakpoint(struct target *t, struct breakpoint *bp)
+{
+ int error = ERROR_OK;
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ LOG_DEBUG("type=%d, addr=%08" PRIx32, bp->type, bp->address);
+ if (bp->set) {
+ LOG_ERROR("breakpoint already set");
+ return error;
+ }
+ if (bp->type == BKPT_HARD) {
+ error = set_hwbp(t, bp);
+ if (error != ERROR_OK) {
+ LOG_ERROR("%s error setting hardware breakpoint at 0x%08" PRIx32,
+ __func__, bp->address);
+ return error;
+ }
+ } else {
+ if (x86_32->sw_bpts_supported(t)) {
+ error = set_swbp(t, bp);
+ if (error != ERROR_OK) {
+ LOG_ERROR("%s error setting software breakpoint at 0x%08" PRIx32,
+ __func__, bp->address);
+ return error;
+ }
+ } else {
+ LOG_ERROR("%s core doesn't support SW breakpoints", __func__);
+ error = ERROR_FAIL;
+ return ERROR_FAIL;
+ }
+ }
+ return error;
+}
+
+static int unset_breakpoint(struct target *t, struct breakpoint *bp)
+{
+ LOG_DEBUG("type=%d, addr=%08" PRIx32, bp->type, bp->address);
+ if (!bp->set) {
+ LOG_WARNING("breakpoint not set");
+ return ERROR_OK;
+ }
+
+ if (bp->type == BKPT_HARD) {
+ if (unset_hwbp(t, bp) != ERROR_OK) {
+ LOG_ERROR("%s error removing hardware breakpoint at 0x%08" PRIx32,
+ __func__, bp->address);
+ return ERROR_FAIL;
+ }
+ } else {
+ if (unset_swbp(t, bp) != ERROR_OK) {
+ LOG_ERROR("%s error removing software breakpoint at 0x%08" PRIx32,
+ __func__, bp->address);
+ return ERROR_FAIL;
+ }
+ }
+ bp->set = 0;
+ return ERROR_OK;
+}
+
+static int set_watchpoint(struct target *t, struct watchpoint *wp)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
+ int wp_num = 0;
+ LOG_DEBUG("type=%d, addr=%08" PRIx32, wp->rw, wp->address);
+
+ if (wp->set) {
+ LOG_ERROR("%s watchpoint already set", __func__);
+ return ERROR_OK;
+ }
+
+ if (wp->rw == WPT_READ) {
+ LOG_ERROR("%s no support for 'read' watchpoints, use 'access' or 'write'"
+ , __func__);
+ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+ }
+
+ while (debug_reg_list[wp_num].used && (wp_num < x86_32->num_hw_bpoints))
+ wp_num++;
+ if (wp_num >= x86_32->num_hw_bpoints) {
+ LOG_ERROR("%s no debug registers left", __func__);
+ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+ }
+
+ if (wp->length != 4 && wp->length != 2 && wp->length != 1) {
+ LOG_ERROR("%s only watchpoints of length 1, 2 or 4 are supported", __func__);
+ return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
+ }
+
+ switch (wp->rw) {
+ case WPT_WRITE:
+ if (set_debug_regs(t, wp->address, wp_num,
+ DR7_BP_WRITE, wp->length) != ERROR_OK) {
+ return ERROR_FAIL;
+ }
+ break;
+ case WPT_ACCESS:
+ if (set_debug_regs(t, wp->address, wp_num, DR7_BP_READWRITE,
+ wp->length) != ERROR_OK) {
+ return ERROR_FAIL;
+ }
+ break;
+ default:
+ LOG_ERROR("%s only 'access' or 'write' watchpoints are supported", __func__);
+ break;
+ }
+ wp->set = wp_num + 1;
+ debug_reg_list[wp_num].used = 1;
+ debug_reg_list[wp_num].bp_value = wp->address;
+ LOG_USER("'%s' watchpoint %d set at 0x%08" PRIx32 " with length %d (hwreg=%d)",
+ wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
+ "write" : wp->rw == WPT_ACCESS ? "access" : "?",
+ wp->unique_id, wp->address, wp->length, wp_num);
+ return ERROR_OK;
+}
+
+static int unset_watchpoint(struct target *t, struct watchpoint *wp)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ struct x86_32_dbg_reg *debug_reg_list = x86_32->hw_break_list;
+ LOG_DEBUG("type=%d, addr=%08" PRIx32, wp->rw, wp->address);
+ if (!wp->set) {
+ LOG_WARNING("watchpoint not set");
+ return ERROR_OK;
+ }
+
+ int wp_num = wp->set - 1;
+ if ((wp_num < 0) || (wp_num >= x86_32->num_hw_bpoints)) {
+ LOG_DEBUG("Invalid FP Comparator number in watchpoint");
+ return ERROR_OK;
+ }
+ if (unset_debug_regs(t, wp_num) != ERROR_OK)
+ return ERROR_FAIL;
+
+ debug_reg_list[wp_num].used = 0;
+ debug_reg_list[wp_num].bp_value = 0;
+ wp->set = 0;
+
+ LOG_USER("'%s' watchpoint %d removed from 0x%08" PRIx32 " with length %d (hwreg=%d)",
+ wp->rw == WPT_READ ? "read" : wp->rw == WPT_WRITE ?
+ "write" : wp->rw == WPT_ACCESS ? "access" : "?",
+ wp->unique_id, wp->address, wp->length, wp_num);
+
+ return ERROR_OK;
+}
+
+static int read_hw_reg_to_cache(struct target *t, int num)
+{
+ uint32_t reg_value;
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+
+ if (check_not_halted(t))
+ return ERROR_TARGET_NOT_HALTED;
+ if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ if (x86_32->read_hw_reg(t, num, &reg_value, 1) != ERROR_OK) {
+ LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
+ return ERROR_FAIL;
+ }
+ LOG_DEBUG("reg %s value 0x%08" PRIx32,
+ x86_32->cache->reg_list[num].name, reg_value);
+ return ERROR_OK;
+}
+
+static int write_hw_reg_from_cache(struct target *t, int num)
+{
+ struct x86_32_common *x86_32 = target_to_x86_32(t);
+ if (check_not_halted(t))
+ return ERROR_TARGET_NOT_HALTED;
+ if ((num < 0) || (num >= x86_32->get_num_user_regs(t)))
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ if (x86_32->write_hw_reg(t, num, 0, 1) != ERROR_OK) {
+ LOG_ERROR("%s fail for %s", x86_32->cache->reg_list[num].name, __func__);
+ return ERROR_FAIL;
+ }
+ LOG_DEBUG("reg %s value 0x%08" PRIx32, x86_32->cache->reg_list[num].name,
+ buf_get_u32(x86_32->cache->reg_list[num].value, 0, 32));
+ return ERROR_OK;
+}
+
+/* x86 32 commands */
+static void handle_iod_output(struct command_context *cmd_ctx,
+ struct target *target, uint32_t address, unsigned size,
+ unsigned count, const uint8_t *buffer)
+{
+ const unsigned line_bytecnt = 32;
+ unsigned line_modulo = line_bytecnt / size;
+
+ char output[line_bytecnt * 4 + 1];
+ unsigned output_len = 0;
+
+ const char *value_fmt;
+ switch (size) {
+ case 4:
+ value_fmt = "%8.8x ";
+ break;
+ case 2:
+ value_fmt = "%4.4x ";
+ break;
+ case 1:
+ value_fmt = "%2.2x ";
+ break;
+ default:
+ /* "can't happen", caller checked */
+ LOG_ERROR("%s invalid memory read size: %u", __func__, size);
+ return;
+ }
+
+ for (unsigned i = 0; i < count; i++) {
+ if (i % line_modulo == 0) {
+ output_len += snprintf(output + output_len,
+ sizeof(output) - output_len,
+ "0x%8.8x: ",
+ (unsigned)(address + (i*size)));
+ }
+
+ uint32_t value = 0;
+ const uint8_t *value_ptr = buffer + i * size;
+ switch (size) {
+ case 4:
+ value = target_buffer_get_u32(target, value_ptr);
+ break;
+ case 2:
+ value = target_buffer_get_u16(target, value_ptr);
+ break;
+ case 1:
+ value = *value_ptr;
+ }
+ output_len += snprintf(output + output_len,
+ sizeof(output) - output_len,
+ value_fmt, value);
+
+ if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
+ command_print(cmd_ctx, "%s", output);
+ output_len = 0;
+ }
+ }
+}
+
+COMMAND_HANDLER(handle_iod_command)
+{
+ if (CMD_ARGC != 1)
+ return ERROR_COMMAND_SYNTAX_ERROR;
+
+ uint32_t address;
+ COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
+ if (address > 0xffff) {
+ LOG_ERROR("%s IA-32 I/O space is 2^16, %08" PRIx32 " exceeds max", __func__, address);
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+
+ unsigned size = 0;
+ switch (CMD_NAME[2]) {
+ case 'w':
+ size = 4;
+ break;
+ case 'h':
+ size = 2;
+ break;
+ case 'b':
+ size = 1;
+ break;
+ default:
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+ unsigned count = 1;
+ uint8_t *buffer = calloc(count, size);
+ struct target *target = get_current_target(CMD_CTX);
+ int retval = x86_32_common_read_io(target, address, size, buffer);
+ if (ERROR_OK == retval)
+ handle_iod_output(CMD_CTX, target, address, size, count, buffer);
+ free(buffer);
+ return retval;
+}
+
+static int target_fill_io(struct target *target,
+ uint32_t address,
+ unsigned data_size,
+ /* value */
+ uint32_t b)
+{
+ LOG_DEBUG("address=%08X, data_size=%d, b=%08X",
+ address, data_size, b);
+ uint8_t target_buf[data_size];
+ switch (data_size) {
+ case 4:
+ target_buffer_set_u32(target, target_buf, b);
+ break;
+ case 2:
+ target_buffer_set_u16(target, target_buf, b);
+ break;
+ case 1:
+ target_buf[0] = (b & 0x0ff);
+ break;
+ default:
+ exit(-1);
+ }
+ return x86_32_common_write_io(target, address, data_size, target_buf);
+}
+
+COMMAND_HANDLER(handle_iow_command)
+{
+ if (CMD_ARGC != 2)
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ uint32_t address;
+ COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
+ uint32_t value;
+ COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
+ struct target *target = get_current_target(CMD_CTX);
+
+ unsigned wordsize;
+ switch (CMD_NAME[2]) {
+ case 'w':
+ wordsize = 4;
+ break;
+ case 'h':
+ wordsize = 2;
+ break;
+ case 'b':
+ wordsize = 1;
+ break;
+ default:
+ return ERROR_COMMAND_SYNTAX_ERROR;
+ }
+ return target_fill_io(target, address, wordsize, value);
+}
+
+static const struct command_registration x86_32_exec_command_handlers[] = {
+ {
+ .name = "iww",
+ .mode = COMMAND_EXEC,
+ .handler = handle_iow_command,
+ .help = "write I/O port word",
+ .usage = "port data[word]",
+ },
+ {
+ .name = "iwh",
+ .mode = COMMAND_EXEC,
+ .handler = handle_iow_command,
+ .help = "write I/O port halfword",
+ .usage = "port data[halfword]",
+ },
+ {
+ .name = "iwb",
+ .mode = COMMAND_EXEC,
+ .handler = handle_iow_command,
+ .help = "write I/O port byte",
+ .usage = "port data[byte]",
+ },
+ {
+ .name = "idw",
+ .mode = COMMAND_EXEC,
+ .handler = handle_iod_command,
+ .help = "display I/O port word",
+ .usage = "port",
+ },
+ {
+ .name = "idh",
+ .mode = COMMAND_EXEC,
+ .handler = handle_iod_command,
+ .help = "display I/O port halfword",
+ .usage = "port",
+ },
+ {
+ .name = "idb",
+ .mode = COMMAND_EXEC,
+ .handler = handle_iod_command,
+ .help = "display I/O port byte",
+ .usage = "port",
+ },
+
+ COMMAND_REGISTRATION_DONE
+};
+
+const struct command_registration x86_32_command_handlers[] = {
+ {
+ .name = "x86_32",
+ .mode = COMMAND_ANY,
+ .help = "x86_32 target commands",
+ .usage = "",
+ .chain = x86_32_exec_command_handlers,
+ },
+ COMMAND_REGISTRATION_DONE
+};