aboutsummaryrefslogtreecommitdiff
path: root/src/hypervisor.tex
blob: 47b90b2530fae8336e5a87f94b91a78996f89716 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
\chapter{Hypervisor Extension, Version 0.4}
\label{hypervisor}

{\bf Warning! This draft specification is likely to change before being
accepted as standard by the RISC-V Foundation.}

This chapter describes the RISC-V hypervisor extension, which virtualizes the
supervisor-level architecture to support the efficient hosting of guest
operating systems atop a type-1 or type-2 hypervisor.
The hypervisor extension changes supervisor mode into
{\em hypervisor-extended supervisor mode} (HS-mode, or {\em hypervisor
mode} for short), where a hypervisor or a hosting-capable operating system
runs.  The hypervisor extension also adds another level of address translation,
from {\em guest physical addresses} to supervisor physical addresses,
to virtualize the
memory and memory-mapped I/O subsystems for a guest operating system.  HS-mode
acts the same as S-mode, but with additional instructions and CSRs that control
the new level of address translation and support hosting a guest OS in virtual
S-mode (VS-mode).
Regular S-mode operating systems can execute without modification either in
HS-mode or as VS-mode guests.

In HS-mode, an OS or hypervisor interacts with the machine through the same
SBI as an OS normally does from S-mode.  An HS-mode hypervisor is expected to
implement the SBI for its VS-mode guest.

The hypervisor extension is enabled by setting bit 7 in the {\tt misa} CSR,
which corresponds to the letter H.  When {\tt misa}[7] is clear, the hart
behaves as though this extension were not implemented, and attempts to use
hypervisor CSRs or instructions raise an illegal instruction exception.
Implementations that include the hypervisor extension are encouraged
not to hardwire {\tt misa}[7], so that the extension may be disabled.

\begin{commentary}
This draft is based on earlier proposals by John Hauser and Paolo Bonzini.
\end{commentary}

\begin{commentary}
The baseline privileged architecture is designed to simplify the use of classic
virtualization techniques, where a guest OS is run at user-level, as
the few privileged instructions can be easily detected and trapped.
The hypervisor extension improves virtualization performance by
reducing the frequency of these traps.

The hypervisor extension has been designed to be efficiently
emulable on platforms that do not implement the extension, by running
the hypervisor in S-mode and trapping into M-mode for hypervisor CSR accesses
and to maintain shadow page tables.  The majority of CSR accesses for
type-2 hypervisors are valid S-mode accesses so need not be trapped.
Hypervisors can support nested virtualization analogously.
\end{commentary}

\section{Privilege Modes}

The current {\em virtualization mode}, denoted V, indicates whether the hart
is currently executing in a guest.
When V=1, the hart is either in virtual S-mode (VS-mode), or in virtual U-mode
(VU-mode) under a guest OS running in VS-mode.
When V=0, the hart is either in M-mode, in HS-mode, or in U-mode under an OS
running in HS-mode.
The virtualization mode also indicates whether two-level address translation
is active (V=1) or inactive (V=0).  Table~\ref{h-operating-modes} lists the
possible operating modes of a RISC-V hart with the hypervisor extension.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|c|c||l|l|l|}
  \hline
   Virtualization & Privilege & \multirow{2}{*}{Abbreviation} & \multirow{2}{*}{Name} & Two-Level \\
   Mode (V)       & Encoding  &                               &                       & Translation \\ \hline
   0              & 0         & U-mode  & User mode & Off \\
   0              & 1         & HS-mode & Hypervisor-extended supervisor mode & Off \\
   0              & 3         & M-mode  & Machine mode & Off \\
  \hline
   1              & 0         & VU-mode & Virtual user mode & On \\
   1              & 1         & VS-mode & Virtual supervisor mode & On \\
  \hline
 \end{tabular}
\end{center}
\caption{Operating modes with the hypervisor extension.}
\label{h-operating-modes}
\end{table*}

\section{Hypervisor and Virtual Supervisor CSRs}

An OS or hypervisor running in HS-mode uses the supervisor CSRs to interact with the exception,
interrupt, and address-translation subsystems.
Additional CSRs are provided to HS-mode, but not to VS-mode, to manage
two-level address translation and to control the behavior of a VS-mode guest:
{\tt hstatus}, {\tt hedeleg}, {\tt hideleg}, {\tt hcounteren}, and
{\tt hgatp}.

Furthermore, several {\em virtual supervisor} CSRs (VS CSRs) are replicas
of the normal supervisor CSRs.
For example, {\tt vsstatus} is the VS CSR that duplicates the usual
{\tt sstatus} CSR.

When V=1, the VS CSRs substitute for the corresponding supervisor CSRs,
taking over all functions of the usual supervisor CSRs except as specified
otherwise.
Instructions that normally read or modify a supervisor CSR shall instead
access the corresponding VS CSR.
In VS-mode, an attempt to read or write a VS CSR directly by its own
separate CSR address causes an illegal instruction exception.
The VS CSRs can be directly accessed only from M-mode or HS-mode.

While V=1, the normal HS-level supervisor CSRs retain their values but do
not affect the behavior of the machine unless specifically documented to
do so.
Conversely, when V=0, the VS CSRs do not ordinarily affect the behavior of
the machine other than being readable and writable by CSR instructions.

A few standard supervisor CSRs ({\tt scounteren} and, if the N extension
is implemented, {\tt sedeleg} and {\tt sideleg}) have no matching VS CSR.
These supervisor CSRs continue to have their usual function and
accessibility even when V=1, except with VS-mode and VU-mode substituting
for HS-mode and U-mode.
Hypervisor software is expected to manually swap the contents of these
registers as needed.

In this section, we use the term {\em HSXLEN} to refer to the effective XLEN
when executing in HS-mode, and {\em VSXLEN} to refer to the effective
XLEN when executing in VS-mode.

\subsection{Hypervisor Status Register ({\tt hstatus})}

The {\tt hstatus} register is an HSXLEN-bit read/write register
formatted as shown in Figure~\ref{hstatusreg-rv32} when HSXLEN=32 and
Figure~\ref{hstatusreg} when HSXLEN=64.
The {\tt hstatus}
register provides facilities analogous to the {\tt mstatus} register
that track and control the exception behavior of a VS-mode guest.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{YcccRcccccWc}
\\
\instbitrange{31}{23} &
\instbit{22} &
\instbit{21} &
\instbit{20} &
\instbitrange{19}{10} &
\instbit{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{VTSR} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{VTVM} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SP2V} &
\multicolumn{1}{c|}{SP2P} &
\multicolumn{1}{c|}{SPV} &
\multicolumn{1}{c|}{STL} &
\multicolumn{1}{c|}{VSBE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPRV} \\
\hline
9 & 1 & 1 & 1 & 10 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor-mode status register ({\tt hstatus}) for RV32.}
\label{hstatusreg-rv32}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{MFScccc}
\\
\instbitrange{HSXLEN-1}{34} &
\instbitrange{33}{32} &
\instbitrange{31}{23} &
\instbit{22} &
\instbit{21} &
\instbit{20} &
 \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{VSXL[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{VTSR} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{VTVM} &
 \\
\hline
HSXLEN-34 & 2 & 9 & 1 & 1 & 1 & \\
\end{tabular}
\begin{tabular}{cOcccccFc}
\\
&
\instbitrange{19}{10} &
\instbit{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{1} &
\instbit{0} \\
\hline
 &
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{SP2V} &
\multicolumn{1}{c|}{SP2P} &
\multicolumn{1}{c|}{SPV} &
\multicolumn{1}{c|}{STL} &
\multicolumn{1}{c|}{VSBE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPRV} \\
\hline
 & 10 & 1 & 1 & 1 & 1 & 1 & 4 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor-mode status register ({\tt hstatus}) for RV64.}
\label{hstatusreg}
\end{figure*}

The VSXL field controls the effective XLEN for VS-mode (known as VSXLEN),
which may differ from the XLEN for HS-mode (HSXLEN).
When HSXLEN=32, the VSXL field does not exist, and VSXLEN=32.
When HSXLEN=64, VSXL is a \warl\ field that is encoded the same as the
MXL field of {\tt misa}, shown in Table~\ref{misabase} on
page~\pageref{misabase}.
In particular, the implementation may hardwire VSXL so that VSXLEN=HSXLEN.

If HSXLEN is changed from 32 to a wider width, and if field VSXL is not
hardwired to a forced value, it gets the value corresponding to the
widest supported width not wider than the new HSXLEN.

The {\tt hstatus} fields VTSR and VTVM are defined analogously to the
{\tt mstatus} fields TSR and TVM, but affect the trapping behavior of the SRET
and virtual-memory management instructions only when V=1.

The SPV bit (Supervisor Previous Virtualization Mode) is written by the implementation
whenever a trap is taken into HS-mode.  Just as the SPP bit in {\tt sstatus} is set to the privilege
mode at the time of the trap, the SPV bit in {\tt hstatus} is set to the value of the virtualization
mode V at the time of the trap.  When an SRET instruction is executed when V=0,
V is set to SPV.

When a trap is taken into HS-mode, bits SP2V and SP2P are set to the values
that SPV and the HS-level SPP had before the trap.
When an SRET instruction is executed when V=0, the reverse assignments occur:
after SPV and {\tt sstatus}.SPP have supplied the new virtualization and
privilege modes, they are written with SP2V and SP2P, respectively.

The STL bit (Supervisor Translation Level), which indicates which address-translation level
caused an access-fault or page-fault exception, is also written by the implementation whenever a trap
is taken into HS-mode.
On an access or page fault due to guest physical address translation, STL is
set to 1.
For any other trap into HS-mode, STL is set to 0.

The VSBE bit is a \warl\ field that controls the endianness of explicit
memory accesses made from VS-mode.
If VSBE=0, explicit load and store memory accesses made from VS-mode are
little-endian, and if VSBE=1, they are big-endian.
An implementation may hardwire VSBE to specify always the same endianness
as for HS-mode.

The SPRV bit modifies the privilege with which loads and stores execute
in HS-mode.
When SPRV=0, translation and protection behave as normal.
When SPRV=1, load and store memory addresses are translated and protected, and
endianness is applied, as though the current virtualization mode were set to
{\tt hstatus}.SPV and the current privilege mode were set to the HS-level SPP.
Table~\ref{h-sprv} enumerates the cases.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|c|c|c||p{4.7in}|}
  \hline
   SPRV & SPV & SPP & Effect \\ \hline \hline
   0    & --  & --  & Normal access; current privilege and virtualization modes apply. \\ \hline
   1    & 0   & 0   & U-level access with HS-level translation and protection only. \\ \hline
   1    & 0   & 1   & HS-level access with HS-level translation and protection only. \\ \hline
   1    & 1   & 0   & VU-level access with two-level translation and protection. The HS-level MXR bit makes any executable page readable.  {\tt vsstatus}.MXR makes readable those pages marked executable at the VS translation level, but only if readable at the guest-physical translation level. \\ \hline
   1    & 1   & 1   & VS-level access with two-level translation and protection. The HS-level MXR bit makes any executable page readable.  {\tt vsstatus}.MXR makes readable those pages marked executable at the VS translation level, but only if readable at the guest-physical translation level.  {\tt vsstatus}.SUM applies instead of the HS-level SUM bit. \\ \hline
 \end{tabular}
\end{center}
\caption{Effect of SPRV on load and store translation and protection.}
\label{h-sprv}
\end{table*}

An MRET or SRET instruction that changes the operating mode to U-mode,
VS-mode, or VU-mode also sets SPRV=0.

\subsection{Hypervisor Trap Delegation Registers ({\tt hedeleg} and {\tt hideleg})}

By default, all traps at any privilege level are handled in M-mode, though
M-mode usually uses the {\tt medeleg} and {\tt mideleg} CSRs to delegate
some traps to HS-mode.  The {\tt hedeleg} and {\tt hideleg} CSRs allow these
traps to be further delegated to a VS-mode guest; their layout is the same
as {\tt medeleg} and {\tt mideleg}.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}U}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Synchronous Exceptions (\warl)} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor Exception Delegation Register {\tt hedeleg}.}
\label{hedelegreg}
\end{figure}

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}U}
\instbitrange{HSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupts (\warl)} \\
\hline
HSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor Interrupt Delegation Register {\tt hideleg}.}
\label{hidelegreg}
\end{figure}

The {\tt hedeleg} and {\tt hideleg} registers are only active when V=1.  When
V=1, a trap that has been delegated to HS-mode (using {\tt medeleg} or {\tt
mideleg}) is further delegated to VS-mode if the corresponding {\tt hedeleg} or
{\tt hideleg} bit is set.

When an access-fault or page-fault exception is caused by guest physical
address translation, the trap is not delegated beyond HS-mode, regardless of
the setting of {\tt hedeleg}.

\subsection{Hypervisor Counter-Enable Register ({\tt hcounteren})}

The counter-enable register {\tt hcounteren} is a 32-bit register that
controls the availability of the hardware performance monitoring counters
to the guest virtual machine.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{cccMcccccc}
\instbit{31} &
\instbit{30} &
\instbit{29} &
\instbitrange{28}{6} &
\instbit{5} &
\instbit{4} &
\instbit{3} &
\instbit{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{HPM31} &
\multicolumn{1}{c|}{HPM30} &
\multicolumn{1}{c|}{HPM29} &
\multicolumn{1}{c|}{...} &
\multicolumn{1}{c|}{HPM5} &
\multicolumn{1}{c|}{HPM4} &
\multicolumn{1}{c|}{HPM3} &
\multicolumn{1}{c|}{IR} &
\multicolumn{1}{c|}{TM} &
\multicolumn{1}{c|}{CY} \\
\hline
1 & 1 & 1 & 23 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor counter-enable register ({\tt hcounteren}).}
\label{hcounteren}
\end{figure*}

When the CY, TM, IR, or HPM{\em n} bit in the {\tt hcounteren} register
is clear, attempts to read the {\tt cycle}, {\tt time}, {\tt instret}, or
{\tt hpmcounter}{\em n} register while V=1 will cause an illegal
instruction exception.
When one of these bits is set, access to the corresponding register is
permitted when V=1, unless prevented for some other reason.
In VU-mode, a counter is not readable unless the applicable bits are set
in both {\tt hcounteren} and {\tt scounteren}.

{\tt hcounteren} must be implemented.
However, any of the bits may contain a hardwired value of zero,
indicating reads to the corresponding counter will cause an exception
when V=1.
Hence, they are effectively \warl\ fields.

\subsection{Hypervisor Time Delta Registers ({\tt htimedelta}, {\tt htimedeltah})}

The {\tt htimedelta} CSR is a read/write register that contains the delta
between the value of the {\tt time} CSR and the value returned in VS-mode or
VU-mode.
That is, reading the {\tt time} CSR in VS or VU mode returns the sum of the
contents of {\tt htimedelta} and the actual value of {\tt time}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{63}{0} \\
\hline
\multicolumn{1}{|c|}{\tt htimedelta} \\
\hline
64 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor time delta register, HSXLEN=64.}
\label{hdeltareg}
\end{figure*}

For HSXLEN=32 only, {\tt htimedelta} holds the lower 32 bits of the
delta, and {\tt htimedeltah} holds the upper 32 bits of the delta.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{31}{0} \\
\hline
\multicolumn{1}{|c|}{\tt htimedelta} \\
\hline
\multicolumn{1}{|c|}{\tt htimedeltah} \\
\hline
32 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Hypervisor time delta registers, HSXLEN=32.}
\label{hdeltahreg}
\end{figure*}

\subsection{Hypervisor Guest Address Translation and Protection Register ({\tt hgatp})}
\label{sec:hgatp}

The {\tt hgatp} register is an HSXLEN-bit read/write register, formatted as
shown in Figure~\ref{rv32hgatp} for HSXLEN=32 and Figure~\ref{rv64hgatp} for
HSXLEN=64, which controls guest physical address translation and protection.
Similar to CSR {\tt satp}, this register holds the physical page number (PPN)
of the guest-physical root page table; a virtual machine identifier (VMID),
which facilitates address-translation fences on a per-virtual-machine basis;
and the MODE field, which selects the address-translation scheme for guest
physical addresses.
When {\tt mstatus}.TVM=1, attempts to read or write {\tt hgatp} while executing
in HS-mode will raise an illegal instruction exception.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{cY@{}E@{}K}
\instbit{31} &
\instbitrange{30}{29} &
\instbitrange{28}{22} &
\instbitrange{21}{0} \\
\hline
\multicolumn{1}{|c|}{MODE} &
\multicolumn{1}{c|}{0 (\warl)} &
\multicolumn{1}{c|}{VMID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
1 & 2 & 7 & 22 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV32 Hypervisor guest address translation and protection register
{\tt hgatp}.}
\label{rv32hgatp}
\end{figure}

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}S@{}Y@{}E@{}K}
\instbitrange{63}{60} &
\instbitrange{59}{58} &
\instbitrange{57}{44} &
\instbitrange{43}{0} \\
\hline
\multicolumn{1}{|c|}{MODE (\warl)} &
\multicolumn{1}{c|}{0 (\warl)} &
\multicolumn{1}{c|}{VMID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
4 & 2 & 14 & 44 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV64 Hypervisor guest address translation and protection register
{\tt hgatp}, for MODE values Bare, Sv39x4, and Sv48x4.}
\label{rv64hgatp}
\end{figure}

Table~\ref{tab:hgatp-mode} shows the encodings of the MODE field for RV32 and
RV64.
When MODE=Bare, guest physical addresses are equal to supervisor physical
addresses, and there is no further memory protection for a guest virtual
machine beyond the physical memory protection scheme described in
Section~\ref{sec:pmp}.
In this case, the remaining fields in {\tt hgatp} have no effect.

For RV32, the only other valid setting for MODE is Sv32x4, which is a
modification of the usual Sv32 paged virtual-memory scheme, extended to support
34-bit guest physical addresses.
For RV64, modes Sv39x4 and Sv48x4 are defined as modifications of the Sv39 and
Sv48 paged virtual-memory schemes.
All of these paged virtual-memory schemes are described in
Section~\ref{sec:guest-addr-translation}.
An additional RV64 scheme, Sv57x4, may be defined in a later version of this
specification.

The remaining MODE settings for RV64 are reserved for future use and may define
different interpretations of the other fields in {\tt hgatp}.

\begin{table}[h]
\begin{center}
\begin{tabular}{|c|c|l|}
\hline
\multicolumn{3}{|c|}{RV32} \\
\hline
Value  & Name & Description \\
\hline
0      & Bare   & No translation or protection. \\
1      & Sv32x4 & Page-based 34-bit virtual addressing (2-bit extension of Sv32). \\
\hline \hline
\multicolumn{3}{|c|}{RV64} \\
\hline
Value  & Name & Description \\
\hline
0      & Bare   & No translation or protection. \\
1--7   & ---    & {\em Reserved} \\
8      & Sv39x4 & Page-based 41-bit virtual addressing (2-bit extension of Sv39). \\
9      & Sv48x4 & Page-based 50-bit virtual addressing (2-bit extension of Sv48). \\
10     & {\em Sv57x4} & {\em Reserved for page-based 59-bit virtual addressing.} \\
11--15 & ---    & {\em Reserved} \\
\hline
\end{tabular}
\end{center}
\caption{Encoding of {\tt hgatp} MODE field.}
\label{tab:hgatp-mode}
\end{table}

RV64 implementations are not required to support all defined RV64 MODE
settings.

A write to {\tt hgatp} with an unsupported MODE value is not ignored as it is
for {\tt satp}.
Instead, the fields of {\tt hgatp} are {\warl} in the normal way, when so
indicated.

As explained in Section~\ref{sec:guest-addr-translation}, for the paged
virtual-memory schemes (Sv32x4, Sv39x4, and Sv48x4), the root page table is
16~KiB and must be aligned to a 16-KiB boundary.
In these modes, the lowest two bits of the physical page number (PPN) in
{\tt hgatp} always read as zeros.
An implementation that supports only the defined paged virtual-memory schemes
and/or Bare may hardwire PPN[1:0] to zero.

The number of supervisor physical address bits is implementation-defined; any
unimplemented address bits are hardwired to zero in {\tt hgatp}.PPN.
The number of VMID bits is also implementation-defined and may be zero.
The number of implemented VMID bits, termed {\mbox {\em VMIDLEN}}, may be
determined by writing one to every bit position in the VMID field, then reading
back the value in {\tt hgatp} to see which bit positions in the VMID field hold
a one.
The least-significant bits of VMID are implemented first:
that is, if VMIDLEN~$>$~0, VMID[VMIDLEN-1:0] is writable.
The maximal value of VMIDLEN, termed VMIDMAX, is 7 for Sv32x4 or 14 for Sv39x4
and Sv48x4.

Note that writing {\tt hgatp} does not imply any ordering constraints between
page-table updates and subsequent guest physical address translations.
If the new virtual machine's guest physical page tables have been modified, it
may be necessary to execute an HFENCE.GVMA instruction
(see Section~\ref{sec:hfence.vma}) before or after writing {\tt hgatp}.

\subsection{Virtual Supervisor Status Register ({\tt vsstatus})}

The {\tt vsstatus} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sstatus}, formatted as
shown in Figure~\ref{vsstatusreg} when VSXLEN=32 and
Figure~\ref{vsstatusreg} when VSXLEN=64.
When V=1, {\tt vsstatus} substitutes for the usual {\tt sstatus}, so
instructions that normally read or modify {\tt sstatus} actually access
{\tt vsstatus} instead.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\scalebox{0.95}{
\begin{tabular}{cWcccccWccccWcc}
\\
\instbit{31} &
\instbitrange{30}{20} &
\instbit{19} &
\instbit{18} &
\instbit{17} &
\instbitrange{16}{15} &
\instbitrange{14}{13} &
\instbitrange{12}{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{SD} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MXR} &
\multicolumn{1}{c|}{SUM} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{XS[1:0]} &
\multicolumn{1}{c|}{FS[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPP} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{UBE} &
\multicolumn{1}{c|}{SPIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SIE}  &
\multicolumn{1}{c|}{\wpri} \\
\hline
1 & 11 & 1 & 1 & 1 & 2 & 2 & 4 & 1 & 1 & 1 & 1 & 3 & 1 & 1 \\
\end{tabular}}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor status register ({\tt vsstatus}) for RV32.}
\label{vsstatusreg-rv32}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{cMFScccc}
\\
\instbit{VSXLEN-1} &
\instbitrange{VSXLEN-2}{34} &
\instbitrange{33}{32} &
\instbitrange{31}{20} &
\instbit{19} &
\instbit{18} &
\instbit{17} &
 \\
\hline
\multicolumn{1}{|c|}{SD} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{UXL[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MXR} &
\multicolumn{1}{c|}{SUM} &
\multicolumn{1}{c|}{\wpri} &
 \\
\hline
1 & VSXLEN-35 & 2 & 12 & 1 & 1 & 1 & \\
\end{tabular}
\begin{tabular}{cWWFccccWcc}
\\
&
\instbitrange{16}{15} &
\instbitrange{14}{13} &
\instbitrange{12}{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
 &
\multicolumn{1}{|c|}{XS[1:0]} &
\multicolumn{1}{c|}{FS[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPP} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{UBE} &
\multicolumn{1}{c|}{SPIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SIE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
 & 2 & 2 & 4 & 1 & 1 & 1 & 1 & 3 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor status register ({\tt vsstatus}) for RV64.}
\label{vsstatusreg}
\end{figure*}

The UXL field controls the effective XLEN for VU-mode, which may differ
from the XLEN for VS-mode (VSXLEN).
When VSXLEN=32, the UXL field does not exist, and VU-mode XLEN=32.
When VSXLEN=64, UXL is a \warl\ field that is encoded the same as the MXL
field of {\tt misa}, shown in Table~\ref{misabase} on
page~\pageref{misabase}.
In particular, the implementation may hardwire field UXL so that VU-mode
XLEN=VSXLEN.

If VSXLEN is changed from 32 to a wider width, and if field UXL is not
hardwired to a forced value, it gets the value corresponding to the
widest supported width not wider than the new VSXLEN.

When V=1, both {\tt vsstatus}.FS and the HS-level {\tt sstatus}.FS are in
effect.  Attempts
to execute a floating-point instruction when either field is 0 (Off) raise an
illegal-instruction exception.  Modifying the floating-point state when V=1
causes both fields to be set to 3 (Dirty).

\begin{commentary}
For a hypervisor to benefit from the extension context status, it must
have its own copy in the HS-level {\tt sstatus}, maintained independently
of a guest OS running in VS-mode.
While a version of the extension context status obviously must exist in
{\tt vsstatus} for VS-mode, a hypervisor cannot rely on this version
being maintained correctly, given that VS-level software can change
{\tt vsstatus}.FS arbitrarily.
If the HS-level {\tt sstatus}.FS were not independently active and
maintained by the hardware in parallel with {\tt vsstatus}.FS while V=1,
hypervisors would always be forced to conservatively swap all
floating-point state when context-switching between virtual machines.
\end{commentary}

Read-only fields SD and XS summarize the extension context status as it
is visible to VS-mode only.
For example, the value of the HS-level {\tt sstatus}.FS does not affect
{\tt vsstatus}.SD.

When V=0, {\tt vsstatus} does not directly affect the behavior of the machine,
unless the MPRV feature in the {\tt mstatus} register or the SPRV feature
in the {\tt hstatus} register is used to execute a load or store
{\em as though} V=1.

\subsection{Virtual Supervisor Interrupt Registers ({\tt vsip} and {\tt vsie})}

The {\tt vsip} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sip}, formatted as shown
in Figure~\ref{vsipreg}.
The {\tt vsip} register indicates pending VS-level interrupts.

When V=1, {\tt vsip} substitutes for the usual {\tt sip}, so instructions
that normally read or modify {\tt sip} actually access {\tt vsip}
instead.
However, pending HS-level interrupts continue to be indicated in the
HS-level {\tt sip} register, not in {\tt vsip}.

\note{Need to describe how {\tt vsip}.SEIP interacts with PLIC.
Current thinking is that {\tt vsip}.SEIP should purely be a
read-write storage bit to emulate the PLIC for VS-mode; the PLIC should not be
wired into {\tt vsip}.SEIP.

A future revision of the PLIC is expected to provide direct support
for VS-level interrupts to reduce virtualization overhead.}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{KcFcFcc}
\instbitrange{VSXLEN-1}{10} &
\instbit{9} &
\instbitrange{8}{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{SEIP} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{STIP} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SSIP} &
\multicolumn{1}{c|}{\wpri} \\
\hline
VSXLEN-10 & 1 & 3 & 1 & 3 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor interrupt-pending register ({\tt vsip}).}
\label{vsipreg}
\end{figure*}

The {\tt vsie} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sie}, formatted as shown in
Figure~\ref{vsiereg}.
The {\tt vsie} register contains interrupt enable bits for VS-level
interrupts.

When V=1, {\tt vsie} substitutes for the usual {\tt sie}, so instructions
that normally read or modify {\tt sie} actually access {\tt vsie} instead.
However, the enables for HS-level interrupts continue to be provided by
the HS-level {\tt sie} register, not by {\tt vsie}.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{KcFcFcc}
\instbitrange{VSXLEN-1}{10} &
\instbit{9} &
\instbitrange{8}{6} &
\instbit{5} &
\instbitrange{4}{2} &
\instbit{1} &
\instbit{0} \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{SEIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{STIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SSIE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
VSXLEN-10 & 1 & 3 & 1 & 3 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor interrupt-enable register ({\tt vsie}).}
\label{vsiereg}
\end{figure*}

\subsection{Virtual Supervisor Trap Vector Base Address Register ({\tt vstvec})}

The {\tt vstvec} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt stvec}, formatted as shown
in Figure~\ref{vstvecreg}.
When V=1, {\tt vstvec} substitutes for the usual {\tt stvec}, so
instructions that normally read or modify {\tt stvec} actually access
{\tt vstvec} instead.
When V=0, {\tt vstvec} does not directly affect the behavior of the
machine.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{J@{}R}
\instbitrange{VSXLEN-1}{2} &
\instbitrange{1}{0} \\
\hline
\multicolumn{1}{|c|}{BASE[VSXLEN-1:2] (\warl)} &
\multicolumn{1}{c|}{MODE (\warl)} \\
\hline
VSXLEN-2 & 2 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor trap vector base address register ({\tt vstvec}).}
\label{vstvecreg}
\end{figure*}

\subsection{Virtual Supervisor Scratch Register ({\tt vsscratch})}

The {\tt vsscratch} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sscratch}, formatted as
shown in Figure~\ref{vsscratchreg}.
When V=1, {\tt vsscratch} substitutes for the usual {\tt sscratch}, so
instructions that normally read or modify {\tt sscratch} actually access
{\tt vsscratch} instead.
The contents of {\tt vsscratch} never directly affect the behavior of
the machine.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt vsscratch} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor scratch register ({\tt vsscratch}).}
\label{vsscratchreg}
\end{figure*}

\subsection{Virtual Supervisor Exception Program Counter ({\tt vsepc})}

The {\tt vsepc} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt sepc}, formatted as shown
in Figure~\ref{vsepcreg}.
When V=1, {\tt vsepc} substitutes for the usual {\tt sepc}, so
instructions that normally read or modify {\tt sepc} actually access
{\tt vsepc} instead.
When V=0, {\tt vsepc} does not directly affect the behavior of the
machine.

{\tt vsepc} is a \warl\ register that must be able to hold the same set of
values that {\tt sepc} can hold.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt vsepc} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor exception program counter ({\tt vsepc}).}
\label{vsepcreg}
\end{figure*}

\subsection{Virtual Supervisor Cause Register ({\tt vscause})}

The {\tt vscause} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt scause}, formatted as shown
in Figure~\ref{vscausereg}.
When V=1, {\tt vscause} substitutes for the usual {\tt scause}, so
instructions that normally read or modify {\tt scause} actually access
{\tt vscause} instead.
When V=0, {\tt vscause} does not directly affect the behavior of the
machine.

{\tt vscause} is a \wlrl\ register that must be able to hold the same set of
values that {\tt scause} can hold.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{c@{}U}
\instbit{VSXLEN-1} &
\instbitrange{VSXLEN-2}{0} \\
\hline
\multicolumn{1}{|c|}{Interrupt} &
\multicolumn{1}{c|}{Exception Code (\wlrl)} \\
\hline
1 & VSXLEN-1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor cause register ({\tt vscause}).}
\label{vscausereg}
\end{figure*}

\subsection{Virtual Supervisor Trap Value Register ({\tt vstval})}

The {\tt vstval} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt stval}, formatted as shown
in Figure~\ref{vstvalreg}.
When V=1, {\tt vstval} substitutes for the usual {\tt stval}, so
instructions that normally read or modify {\tt stval} actually access
{\tt vstval} instead.
When V=0, {\tt vstval} does not directly affect the behavior of the
machine.

{\tt vstval} is a \warl\ register that must be able to hold the same set of
values that {\tt stval} can hold.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}J}
\instbitrange{VSXLEN-1}{0} \\
\hline
\multicolumn{1}{|c|}{\tt vstval} \\
\hline
VSXLEN \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Virtual supervisor trap value register ({\tt vstval}).}
\label{vstvalreg}
\end{figure*}

\subsection{Virtual Supervisor Address Translation and Protection Register ({\tt vsatp})}

The {\tt vsatp} register is a VSXLEN-bit read/write register that is
VS-mode's version of supervisor register {\tt satp}, formatted as shown
in Figure~\ref{rv32vsatpreg} for VSXLEN=32 and Figure~\ref{rv64vsatpreg}
for VSXLEN=64.
When V=1, {\tt vsatp} substitutes for the usual {\tt satp}, so
instructions that normally read or modify {\tt satp} actually access
{\tt vsatp} instead.
{\tt vsatp} controls VS-level address translation, the first stage of
two-level translation for guest virtual addresses (see
Section~\ref{sec:two-level-translation}).

When V=0, a write to {\tt vsatp} with an unsupported MODE value is not
ignored as it is for {\tt satp}.
Instead, the fields of {\tt vsatp} are {\warl} in the normal way.

When V=0, {\tt vsatp} does not directly affect the behavior of the machine,
unless the MPRV feature in the {\tt mstatus} register or the SPRV feature
in the {\tt hstatus} register is used to execute a load or store
{\em as though} V=1.

\begin{figure}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{c@{}E@{}K}
\instbit{31} &
\instbitrange{30}{22} &
\instbitrange{21}{0} \\
\hline
\multicolumn{1}{|c|}{MODE (\warl)} &
\multicolumn{1}{c|}{ASID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
1 & 9 & 22 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV32 virtual supervisor address translation and protection register {\tt vsatp}.}
\label{rv32vsatpreg}
\end{figure}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}S@{}T@{}U}
\instbitrange{63}{60} &
\instbitrange{59}{44} &
\instbitrange{43}{0} \\
\hline
\multicolumn{1}{|c|}{MODE (\warl)} &
\multicolumn{1}{c|}{ASID (\warl)} &
\multicolumn{1}{c|}{PPN  (\warl)} \\
\hline
4 & 16 & 44 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{RV64 virtual supervisor address translation and protection register {\tt vsatp}, for MODE
values Bare, Sv39, and Sv48.}
\label{rv64vsatpreg}
\end{figure*}

\section{Hypervisor Instructions}

The hypervisor extension adds two new privileged fence instructions.

\subsection{Hypervisor Memory-Management Fence Instructions}
\label{sec:hfence.vma}

\vspace{-0.2in}
\begin{center}
\begin{tabular}{O@{}R@{}R@{}F@{}R@{}S}
\\
\instbitrange{31}{25} &
\instbitrange{24}{20} &
\instbitrange{19}{15} &
\instbitrange{14}{12} &
\instbitrange{11}{7} &
\instbitrange{6}{0} \\
\hline
\multicolumn{1}{|c|}{funct7} &
\multicolumn{1}{c|}{rs2} &
\multicolumn{1}{c|}{rs1} &
\multicolumn{1}{c|}{funct3} &
\multicolumn{1}{c|}{rd} &
\multicolumn{1}{c|}{opcode} \\
\hline
7 & 5 & 5 & 3 & 5 & 7 \\
HFENCE.GVMA & vmid & gaddr & PRIV & 0 & SYSTEM \\
HFENCE.VVMA & asid & vaddr & PRIV & 0 & SYSTEM \\
\end{tabular}
\end{center}

The hypervisor memory-management fence instructions, HFENCE.GVMA and
HFENCE.VVMA, are valid only in HS-mode when {\tt mstatus}.TVM=0, or in M-mode
(irrespective of {\tt mstatus}.TVM).
These instructions perform a function similar to SFENCE.VMA
(Section~\ref{sec:sfence.vma}), except applying to the guest-physical
memory-management data structures controlled by CSR {\tt hgatp} (HFENCE.GVMA)
or the VS-level memory-management data structures controlled by CSR {\tt vsatp}
(HFENCE.VVMA).
Instruction SFENCE.VMA applies only to the memory-management data structures
controlled by the current {\tt satp} (either the HS-level {\tt satp} when
V=0 or {\tt vsatp} when V=1).

If an HFENCE.VVMA instruction executes without trapping, its effect is much the
same as temporarily entering VS-mode and executing SFENCE.VMA.
Executing an HFENCE.VVMA guarantees that any previous stores already visible
to the current hart are ordered before all subsequent implicit reads by that
hart of the VS-level memory-management data structures, when those implicit
reads are for instructions that
\begin{compactitem}
\item
are subsequent to the HFENCE.VVMA, and
\item
execute when {\tt hgatp}.VMID has the same setting as it did when HFENCE.VVMA
executed.
\end{compactitem}
Implicit reads need not be ordered when {\tt hgatp}.VMID is different than at
the time HFENCE.VVMA executed.
If operand {\em rs1}$\neq${\tt x0}, it specifies a single guest virtual
address, and if operand {\em rs2}$\neq${\tt x0}, it specifies a single guest
address-space identifier
(ASID).

\begin{commentary}
An HFENCE.VVMA instruction applies only to a single virtual machine, identified
by the setting of {\tt hgatp}.VMID when HFENCE.VVMA executes.
\end{commentary}

When {\em rs2}$\neq${\tt x0}, bits XLEN-1:ASIDMAX of the value held in {\em
rs2} are reserved for future use and should be zeroed by software and ignored
by current implementations.
Furthermore, if ASIDLEN~$<$~ASIDMAX, the implementation shall ignore bits
ASIDMAX-1:ASIDLEN of the value held in {\em rs2}.

\begin{commentary}
Simpler implementations of HFENCE.VVMA can ignore the guest virtual address in
{\em rs1} and the guest ASID value in {\em rs2}, as well as {\tt hgatp}.VMID,
and always perform a global fence for the VS-level memory management of all
virtual machines, or even a global fence for all memory-management data
structures.
\end{commentary}

Executing an HFENCE.GVMA instruction guarantees that any previous stores
already visible to the current hart are ordered before all subsequent implicit
reads by that hart of guest-physical memory-management data structures done for instructions
that follow the HFENCE.GVMA.
If operand {\em rs1}$\neq${\tt x0}, it specifies a single guest physical
address, shifted right by 2~bits, and if operand {\em rs2}$\neq${\tt x0}, it
specifies a single virtual machine identifier (VMID).

\begin{commentary}
For HFENCE.GVMA, a guest physical address specified in {\em rs1} is shifted
right by 2~bits to accommodate addresses wider than the current XLEN.
For RV32, the hypervisor extension permits guest physical addresses as wide as
34 bits, and {\em rs1} specifies bits 33:2 of such an address.
This shift-by-2 encoding of guest physical addresses matches the encoding of
physical addresses in PMP address registers (Section~\ref{sec:pmp}) and in page
table entries (Sections \ref{sec:sv32}, \ref{sec:sv39}, and~\ref{sec:sv48}).
\end{commentary}

When {\em rs2}$\neq${\tt x0}, bits XLEN-1:VMIDMAX of the value held in {\em
rs2} are reserved for future use and should be zeroed by software and ignored
by current implementations.
Furthermore, if VMIDLEN~$<$~VMIDMAX, the implementation shall ignore bits
VMIDMAX-1:VMIDLEN of the value held in {\em rs2}.

\begin{commentary}
Simpler implementations of HFENCE.GVMA can ignore the guest physical address in
{\em rs1} and the VMID value in {\em rs2} and always perform a global fence for
the guest-physical memory management of all virtual machines, or even a global
fence for all memory-management data structures.
\end{commentary}

\section{Machine-Level CSRs}

The hypervisor extension augments machine status registers {\tt mstatus}
and (for RV32 only) {\tt mstatush}.

\subsection{Machine Status Registers ({\tt mstatus} and {\tt mstatush})}

The hypervisor extension adds two fields, MPV and MTL, to the
machine-level {\tt mstatus} or {\tt mstatush} CSR, and modifies the
behavior of several existing {\tt mstatus} fields.
Figure~\ref{hypervisor-mstatus} shows the modified {\tt mstatus} register
when the hypervisor extension is provided and MXLEN=64.
When MXLEN=32, the hypervisor extension adds fields not to {\tt mstatus}
but to {\tt mstatush}, which must exist.
Figure~\ref{hypervisor-mstatush} shows the {\tt mstatush} register when
the hypervisor extension is provided and MXLEN=32.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{cMccccFFc}
\\
\instbit{MXLEN-1} &
\instbitrange{MXLEN-2}{40} &
\instbit{39} &
\instbit{38} &
\instbit{37} &
\instbit{36} &
\instbitrange{35}{34} &
\instbitrange{33}{32} &
 \\
\hline
\multicolumn{1}{|c|}{SD} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MPV} &
\multicolumn{1}{c|}{MTL} &
\multicolumn{1}{c|}{MBE} &
\multicolumn{1}{c|}{SBE} &
\multicolumn{1}{c|}{SXL[1:0]} &
\multicolumn{1}{c|}{UXL[1:0]} &
 \\
\hline
1 & MXLEN-41 & 1 & 1 & 1 & 1 & 2 & 2 & \\
\end{tabular}
\begin{tabular}{cEccccccWWc}
\\
&
\instbitrange{31}{23} &
\instbit{22} &
\instbit{21} &
\instbit{20} &
\instbit{19} &
\instbit{18} &
\instbit{17} &
\instbitrange{16}{15} &
\instbitrange{14}{13} &
 \\
\hline
 &
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{TSR} &
\multicolumn{1}{c|}{TW} &
\multicolumn{1}{c|}{TVM} &
\multicolumn{1}{c|}{MXR} &
\multicolumn{1}{c|}{SUM} &
\multicolumn{1}{c|}{MPRV} &
\multicolumn{1}{c|}{XS[1:0]} &
\multicolumn{1}{c|}{FS[1:0]} &
 \\
\hline
 & 9 & 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 & \\
\end{tabular}
\begin{tabular}{cFWcccccccccc}
\\
&
\instbitrange{12}{11} &
\instbitrange{10}{9} &
\instbit{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbit{4} &
\instbit{3} &
\instbit{2} &
\instbit{1} &
\instbit{0} \\
\hline
 &
\multicolumn{1}{|c|}{MPP[1:0]} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SPP} &
\multicolumn{1}{c|}{MPIE} &
\multicolumn{1}{c|}{UBE} &
\multicolumn{1}{c|}{SPIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{MIE} &
\multicolumn{1}{c|}{\wpri} &
\multicolumn{1}{c|}{SIE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
 & 2 & 2 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Machine-mode status register ({\tt mstatus}) for RV64 when the hypervisor extension is provided.}
\label{hypervisor-mstatus}
\end{figure*}

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\setlength{\tabcolsep}{4pt}
\begin{tabular}{LccccF}
\\
\instbitrange{31}{8} &
\instbit{7} &
\instbit{6} &
\instbit{5} &
\instbit{4} &
\instbitrange{3}{0} \\
\hline
\multicolumn{1}{|c|}{\wpri} &
\multicolumn{1}{c|}{MPV} &
\multicolumn{1}{c|}{MTL} &
\multicolumn{1}{c|}{MBE} &
\multicolumn{1}{c|}{SBE} &
\multicolumn{1}{c|}{\wpri} \\
\hline
24 & 1 & 1 & 1 & 1 & 4 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Additional machine-mode status register ({\tt mstatush}) for RV32 when the hypervisor extension is provided.
The format of {\tt mstatus} is unchanged for RV32.}
\label{hypervisor-mstatush}
\end{figure*}

The MPV bit (Machine Previous Virtualization Mode) is written by the implementation
whenever a trap is taken into M-mode.  Just as the MPP bit is set to the privilege
mode at the time of the trap, the MPV bit is set to the value of the virtualization
mode V at the time of the trap.  When an MRET instruction is executed, the
virtualization mode V is set to MPV, unless MPP=3, in which case V remains 0.

The MTL bit (Machine Translation Level), which indicates which address-translation level
caused an access-fault or page-fault exception, is also written by the implementation whenever a trap
is taken into M-mode.
On an access or page fault due to guest physical address translation, MTL is
set to 1.
For any other trap into M-mode, MTL is set to 0.

The TSR and TVM fields of {\tt mstatus} affect execution only in HS-mode,
not in VS-mode.
The TW field affects execution in all modes except M-mode.

The hypervisor extension changes the behavior of the the Modify Privilege
field, MPRV, of {\tt mstatus}.
When MPRV=0, translation and protection behave as normal.  When
MPRV=1, loads and stores are translated and protected as though the current
privilege mode were set to MPP and the current virtualization mode were set to
MPV.  Table~\ref{h-mprv} enumerates the cases.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|c|c|c||p{4.5in}|}
  \hline
   MPRV & MPV & MPP & Effect \\ \hline \hline
   0    & --  & --  & Normal access; current privilege and virtualization modes apply. \\ \hline
   1    & 0   & 0   & U-level access with HS-level translation and protection only. \\ \hline
   1    & 0   & 1   & HS-level access with HS-level translation and protection only.  \\ \hline
   1    & --  & 3   & M-level access with no translation. \\ \hline
   1    & 1   & 0   & VU-level access with two-level translation and protection. The HS-level MXR bit makes any executable page readable.  {\tt vsstatus}.MXR makes readable those pages marked executable at the VS translation level, but only if readable at the guest-physical translation level. \\ \hline
   1    & 1   & 1   & VS-level access with two-level translation and protection. The HS-level MXR bit makes any executable page readable.  {\tt vsstatus}.MXR makes readable those pages marked executable at the VS translation level, but only if readable at the guest-physical translation level.  {\tt vsstatus}.SUM applies instead of the HS-level SUM bit. \\ \hline
 \end{tabular}
\end{center}
\caption{Effect of MPRV on load and store translation and protection.  When MPRV=1, MPP$\neq$3, and {\tt hstatus}.SPRV=1, the effective privilege is further modified: {\tt hstatus}.SPV applies instead of MPV, and the HS-level SPP applies instead of MPP.}
\label{h-mprv}
\end{table*}

The {\tt mstatus} register is a superset of the HS-level {\tt sstatus}
register but is not a superset of {\tt vsstatus}.

\section{Two-Level Address Translation}
\label{sec:two-level-translation}

Whenever the current virtualization mode V is 1 (and assuming
{\tt mstatus}.MPRV=0), two-level address translation and protection is in
effect.
For any virtual memory access, the original virtual address is first converted
by VS-level address translation, as controlled by the {\tt vsatp}
register, into a {\em guest physical address}.
The guest physical address is then converted by guest physical address
translation, as controlled by the {\tt hgatp} register, into a supervisor
physical address.
Although there is no option to disable two-level address translation when V=1,
either level of translation can be effectively disabled by zeroing the
corresponding {\tt vsatp} or {\tt hgatp} register.

The {\tt vsstatus} field MXR, which makes execute-only pages readable, only
overrides VS-level page protection.
Setting MXR at VS-level does not override guest-physical page protections.
Setting MXR at HS-level, however, overrides both VS-level and guest-physical
execute-only permissions.

When V=1, memory accesses that would normally bypass address translation are
subject to guest physical address translation alone.
This includes memory accesses made in support of VS-level address translation,
such as reads and writes of VS-level page tables.

Machine-level physical memory protection applies to supervisor physical
addresses and is in effect regardless of virtualization mode.

\subsection{Guest Physical Address Translation}
\label{sec:guest-addr-translation}

The mapping of guest physical addresses to supervisor physical addresses is
controlled by CSR {\tt hgatp} (Section~\ref{sec:hgatp}).

When the address translation scheme selected by the MODE field of {\tt hgatp}
is Bare, guest physical addresses are equal to supervisor physical addresses
without modification, and no memory protection applies in the trivial
translation of guest physical addresses to supervisor physical addresses.

When {\tt hgatp}.MODE specifies a translation scheme of Sv32x4, Sv39x4, or
Sv48x4, guest physical address translation is a variation on the usual
page-based virtual address translation scheme of Sv32, Sv39, or Sv48,
respectively.
In each case, the size of the incoming address is widened by 2~bits (to 34, 41,
or 50 bits).
To accommodate the 2~extra bits, the root page table (only) is expanded by a
factor of four to be 16~KiB instead of the usual 4~KiB.
Matching its larger size, the root page table also must be aligned to a 16~KiB
boundary instead of the usual 4~KiB page boundary.
Except as noted, all other aspects of Sv32, Sv39, or Sv48 are adopted unchanged
for guest physical address translation.
Non-root page tables and all page table entries (PTEs) have the same formats as
documented in Sections \ref{sec:sv32}, \ref{sec:sv39}, and~\ref{sec:sv48}.

For Sv32x4, an incoming guest physical address is partitioned into a virtual
page number (VPN) and page offset as shown in Figure~\ref{sv32x4va}.
This partitioning is identical to that for an Sv32 virtual address as depicted
in Figure~\ref{sv32va} (page~\pageref{sv32va}), except with 2 more bits at the
high end in VPN[1].
(Note that the fields of a partitioned guest physical address also correspond
one-for-one with the structure that Sv32 assigns to a physical address,
depicted in Figure~\ref{rv32va}.)

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}E@{}O@{}E}
\instbitrange{33}{22} &
\instbitrange{21}{12} &
\instbitrange{11}{0} \\
\hline
\multicolumn{1}{|c|}{VPN[1]} &
\multicolumn{1}{c|}{VPN[0]} &
\multicolumn{1}{c|}{page offset} \\
\hline
12 & 10 & 12 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Sv32x4 virtual address (guest physical address).}
\label{sv32x4va}
\end{figure*}

For Sv39x4, an incoming guest physical address is partitioned as shown in
Figure~\ref{sv39x4va}.
This partitioning is identical to that for an Sv39 virtual address as depicted
in Figure~\ref{sv39va} (page~\pageref{sv39va}), except with 2 more bits at the
high end in VPN[2].
Address bits 63:41 must all be zeros, or else a page-fault exception occurs,
attributed to guest physical address translation.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}E@{}O@{}O@{}O}
\instbitrange{40}{30} &
\instbitrange{29}{21} &
\instbitrange{20}{12} &
\instbitrange{11}{0} \\
\hline
\multicolumn{1}{|c|}{VPN[2]} &
\multicolumn{1}{c|}{VPN[1]} &
\multicolumn{1}{c|}{VPN[0]} &
\multicolumn{1}{c|}{page offset} \\
\hline
11 & 9 & 9 & 12 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Sv39x4 virtual address (guest physical address).}
\label{sv39x4va}
\end{figure*}

For Sv48x4, an incoming guest physical address is partitioned as shown in
Figure~\ref{sv48x4va}.
This partitioning is identical to that for an Sv48 virtual address as depicted
in Figure~\ref{sv48va} (page~\pageref{sv48va}), except with 2 more bits at the
high end in VPN[3].
Address bits 63:50 must all be zeros, or else a page-fault exception occurs,
attributed to guest physical address translation.

\begin{figure*}[h!]
{\footnotesize
\begin{center}
\begin{tabular}{@{}E@{}O@{}O@{}O@{}O}
\instbitrange{49}{39} &
\instbitrange{38}{30} &
\instbitrange{29}{21} &
\instbitrange{20}{12} &
\instbitrange{11}{0} \\
\hline
\multicolumn{1}{|c|}{VPN[3]} &
\multicolumn{1}{c|}{VPN[2]} &
\multicolumn{1}{c|}{VPN[1]} &
\multicolumn{1}{c|}{VPN[0]} &
\multicolumn{1}{c|}{page offset} \\
\hline
11 & 9 & 9 & 9 & 12 \\
\end{tabular}
\end{center}
}
\vspace{-0.1in}
\caption{Sv48x4 virtual address (guest physical address).}
\label{sv48x4va}
\end{figure*}

\begin{commentary}
The page-based guest physical address translation scheme for RV32, Sv32x4, is
defined to support a 34-bit guest physical address so that an RV32 hypervisor
need not be limited in its ability to virtualize real 32-bit RISC-V machines,
even those with 33-bit or 34-bit physical addresses.
This may include the possibility of a machine virtualizing itself, if it
happens to use 33-bit or 34-bit physical addresses.
Multiplying the size and alignment of the root page table by a factor of four
is the cheapest way to extend Sv32 to cover a 34-bit address.
The possible wastage of 12~KiB for an unnecessarily large root page table is
expected to be of negligible consequence for most (maybe all) real uses.

A consistent ability to virtualize machines having as much as four times the
physical address space as virtual address space is believed to be of some
utility also for RV64.
For a machine supporting 39-bit virtual addresses (Sv39), for example, this
allows the hypervisor extension to support up to a 41-bit guest physical
address space without either necessitating hardware support for 48-bit virtual
addresses (Sv48) or falling back to emulating the larger address space with
shadow page tables.
\end{commentary}

The conversion of an Sv32x4, Sv39x4, or Sv48x4 guest physical address is
accomplished with the same algorithm used for Sv32, Sv39, or Sv48, as presented
in Section~\ref{sv32algorithm}, except that:
\begin{compactitem}
\item
in step~1, $a = \mbox{{\tt hgatp}.PPN}\times\mbox{PAGESIZE}$; and
\item
the current privilege mode is always taken to be U-mode.
\end{compactitem}

For guest physical address translation, all memory accesses (including those
made to access data structures for VS-level address translation) are considered
to be user-level accesses, as though executed in U-mode.
Access type permissions---readable, writable, or executable---are checked
during guest physical address translation the same as for VS-level address
translation.
For a memory access made to support VS-level address translation (such as to
read/write a VS-level page table), permissions are checked as though for a load
or store, not for the original access type.
However, any exception is always reported for the original access type
(instruction, load, or store/AMO).

Access faults and page faults raised by guest physical address translation are
treated as HS-level exceptions for the purpose of exception delegation, so are
not delegated to VS-mode, regardless of the setting of the {\tt hedeleg}
register.

\subsection{Memory-Management Fences}

The behavior of the SFENCE.VMA instruction is affected by the current
virtualization mode V.  When V=0, the virtual-address argument is an HS-level
virtual address, and the ASID argument is an HS-level ASID.
The instruction orders stores only to HS-level address-translation structures
with subsequent HS-level address translations.

When V=1, the virtual-address argument to SFENCE.VMA is a guest virtual
address within the current virtual machine, and the ASID argument is a VS-level
ASID within the current virtual machine.
The current virtual machine is identified by the VMID field of CSR {\tt hgatp},
and the effective ASID can be considered to be the combination of this VMID
with the VS-level ASID.
The SFENCE.VMA instruction orders stores only to the VS-level
address-translation structures with subsequent VS-level address translations
for the same virtual machine, i.e., only when {\tt hgatp}.VMID is the same as
when the SFENCE.VMA executed.

Hypervisor instructions HFENCE.GVMA and HFENCE.VVMA provide additional
memory-management fences to complement SFENCE.VMA.
These instructions are described in Section~\ref{sec:hfence.vma}.

Section~\ref{pmp-vmem} discusses the intersection between physical memory
protection (PMP) and page-based address translation.
It is noted there that, when PMP settings are modified in a manner that affects
either the physical memory that holds page tables or the physical memory to
which page tables point, M-mode software must synchronize the PMP settings with
the virtual memory system.
For HS-level address translation, this is accomplished by executing in M-mode
an SFENCE.VMA instruction with {\em rs1}={\tt x0} and {\em rs2}={\tt x0}, after
the PMP CSRs are written.
If guest physical address translation is in use, synchronization with its data
structures is also needed.
When PMP settings are modified in a manner that affects either the physical
memory that holds guest-physical page tables or the physical memory to which
guest-physical page tables point, an HFENCE.GVMA instruction with
{\em rs1}={\tt x0} and {\em rs2}={\tt x0} must be executed in M-mode after the
PMP CSRs are written.
An HFENCE.VVMA instruction is not required.

\section{WFI in Virtual Operating Modes}

Executing instruction WFI in VS-mode or VU-mode causes an illegal instruction
exception, unless it completes within an implementation-specific, bounded time
limit.

\begin{commentary}
The behavior required of WFI in VS-mode and VU-mode is the same as required of
it in U-mode when S-mode exists.
\end{commentary}

\section{Traps}

The hypervisor extension augments the environment-call exception cause
encoding.  Environment calls from HS-mode use cause 9, whereas environment
calls from VS-mode use cause 10.  Table~\ref{hcauses} lists the
possible M-mode and HS-mode exception codes when the hypervisor extension is
present.

\begin{table*}[p]
\begin{center}
\begin{tabular}{|r|r|l|l|}

  \hline
  Interrupt & Exception Code  & Description \\
  \hline
  1         & 0               & {\em Reserved} \\
  1         & 1               & Supervisor software interrupt \\
  1         & 2               & {\em Reserved} \\
  1         & 3               & Machine software interrupt \\ \hline
  1         & 4               & {\em Reserved} \\
  1         & 5               & Supervisor timer interrupt \\
  1         & 6               & {\em Reserved} \\
  1         & 7               & Machine timer interrupt \\ \hline
  1         & 8               & {\em Reserved} \\
  1         & 9               & Supervisor external interrupt \\
  1         & 10              & {\em Reserved} \\
  1         & 11              & Machine external interrupt \\ \hline
  1         & 12--15          & {\em Reserved} \\
  1         & $\ge$16         & {\em Available for platform use} \\ \hline
  0         & 0               & Instruction address misaligned \\
  0         & 1               & Instruction access fault \\
  0         & 2               & Illegal instruction \\
  0         & 3               & Breakpoint \\
  0         & 4               & Load address misaligned \\
  0         & 5               & Load access fault \\
  0         & 6               & Store/AMO address misaligned \\
  0         & 7               & Store/AMO access fault \\
  0         & 8               & Environment call from U-mode or VU-mode \\
  0         & 9               & Environment call from HS-mode \\
  0         & 10              & Environment call from VS-mode \\
  0         & 11              & Environment call from M-mode \\
  0         & 12              & Instruction page fault \\
  0         & 13              & Load page fault \\
  0         & 14              & {\em Reserved} \\
  0         & 15              & Store/AMO page fault \\
  0         & 16--23          & {\em Reserved} \\
  0         & 24--31          & {\em Available for custom use} \\
  0         & 32--47          & {\em Reserved} \\
  0         & 48--63          & {\em Available for custom use} \\
  0         & $\ge$64         & {\em Reserved} \\
  \hline
\end{tabular}
\end{center}
\caption{Supervisor and machine cause register ({\tt scause} and {\tt mcause}) values when the hypervisor extension is enabled.}
\label{hcauses}
\end{table*}

\begin{commentary}
HS-mode and VS-mode ECALLs use different cause values so they can be delegated
separately.
\end{commentary}

When a trap occurs in HS-mode or U-mode, it goes to M-mode, unless
delegated by {\tt medeleg} or {\tt mideleg}, in which case it goes to HS-mode.
When a trap occurs in VS-mode or VU-mode, it goes to M-mode, unless
delegated by {\tt medeleg} or {\tt mideleg}, in which case it goes to HS-mode,
unless further delegated by {\tt hedeleg} or {\tt hideleg}, in which case it
goes to VS-mode.

When a trap is taken into M-mode, virtualization mode V gets set to~0,
and {\tt mstatus}.MPV and {\tt mstatus}.MPP are set according to
Table~\ref{h-mpp}.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|c|c|}
  \hline
  Previous Mode & MPV & MPP \\ \hline
  U-mode        & 0   & 0   \\
  HS-mode       & 0   & 1   \\
  M-mode        & 0   & 3   \\ \hline
  VU-mode       & 1   & 0   \\
  VS-mode       & 1   & 1   \\ \hline
\end{tabular}
\end{center}
\caption{Value of {\tt mstatus} fields MPV and MPP after a trap into M-mode.
Upon trap return, MPV is ignored when MPP=3.}
\label{h-mpp}
\end{table*}

When a trap is taken into HS-mode, virtualization mode V is first set
to~0,
then {\tt hstatus}.SP2V is set to {\tt hstatus}.SPV, {\tt hstatus}.SP2P is set
to {\tt sstatus}.SPP, and lastly {\tt hstatus}.SPV and {\tt sstatus}.SPP are
set according to Table~\ref{h-spp}.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|c|c|}
  \hline
  Previous Mode & SPV & SPP \\ \hline
  U-mode        & 0   & 0   \\
  HS-mode       & 0   & 1   \\ \hline
  VU-mode       & 1   & 0   \\
  VS-mode       & 1   & 1   \\ \hline
\end{tabular}
\end{center}
\caption{Value of {\tt hstatus} field SPV and {\tt sstatus} field SPP after a trap into HS-mode.}
\label{h-spp}
\end{table*}

When a trap is taken into VS-mode, {\tt vsstatus}.SPP is set according to
Table~\ref{h-vspp}.
Register {\tt hstatus} and the HS-level {\tt sstatus} are not modified,
and the virtualization mode V remains~1.

\begin{table*}[h!]
\begin{center}
\begin{tabular}{|l|c|c|}
  \hline
  Previous Mode & SPP \\ \hline
  VU-mode       & 0   \\
  VS-mode       & 1   \\ \hline
\end{tabular}
\end{center}
\caption{Value of {\tt vsstatus} field SPP after a trap into VS-mode.}
\label{h-vspp}
\end{table*}


\FloatBarrier

\section{Trap Return}

The MRET instruction is used to return from a trap taken into M-mode.
MRET first determines what the new operating mode will be according to
the values of MPP and MPV in {\tt mstatus}, as encoded in
Table~\ref{h-mpp}.
MRET then in {\tt mstatus} sets MPV=0, MPP=0, MIE=MPIE, and MPIE=1.
If the new operating mode will be U, VS, or VU, MRET also sets
{\tt hstatus}.SPRV=0.
Lastly, MRET sets the virtualization and privilege modes as previously
determined, and sets {\tt pc}={\tt mepc}.

The SRET instruction is used to return from a trap taken into HS-mode or
VS-mode.  Its behavior depends on the current virtualization mode.

When executed in M-mode or HS-mode (i.e., V=0), SRET first determines
what the new operating mode will be according to the values in
{\tt hstatus}.SPV and {\tt sstatus}.SPP, as encoded in Table~\ref{h-spp}.
SRET then sets {\tt hstatus}.SPV={\tt hstatus}.SP2V,
{\tt sstatus}.SPP={\tt hstatus}.SP2P, {\tt hstatus}.SP2V=0,
{\tt hstatus}.SP2P=0, {\tt sstatus}.SIE={\tt sstatus}.SPIE, and
{\tt sstatus}.SPIE=1.
If the new operating mode will be U, VS, or VU, SRET also sets
{\tt hstatus}.SPRV=0.
Lastly, SRET sets the virtualization and privilege modes as previously
determined, and sets {\tt pc}={\tt sepc}.

When executed in VS-mode (i.e., V=1), SRET sets the privilege mode according to
Table~\ref{h-vspp}, then in {\tt vsstatus} sets SPP=0, SIE=SPIE, and SPIE=1, and
lastly sets {\tt pc}={\tt vsepc}.