aboutsummaryrefslogtreecommitdiff
path: root/debug/gdbserver.py
blob: ebc591c197ba27aa9926ea89712a93a8c477460b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
#!/usr/bin/env python3

import argparse
import binascii
import random
import struct
import sys
import tempfile
import time
import os
import re
import itertools

import targets
import testlib
from testlib import assertEqual, assertNotEqual
from testlib import assertIn, assertNotIn
from testlib import assertGreater, assertRegex, assertLess
from testlib import GdbTest, GdbSingleHartTest, TestFailed
from testlib import TestNotApplicable, CompileError
from testlib import UnknownThread
from testlib import CouldNotReadRegisters, CommandException
from testlib import ThreadTerminated

MSTATUS_UIE = 0x00000001
MSTATUS_SIE = 0x00000002
MSTATUS_HIE = 0x00000004
MSTATUS_MIE = 0x00000008
MSTATUS_UPIE = 0x00000010
MSTATUS_SPIE = 0x00000020
MSTATUS_HPIE = 0x00000040
MSTATUS_MPIE = 0x00000080
MSTATUS_SPP = 0x00000100
MSTATUS_HPP = 0x00000600
MSTATUS_MPP = 0x00001800
MSTATUS_FS = 0x00006000
MSTATUS_XS = 0x00018000
MSTATUS_MPRV = 0x00020000
MSTATUS_PUM = 0x00040000
MSTATUS_MXR = 0x00080000
MSTATUS_VM = 0x1F000000
MSTATUS32_SD = 0x80000000
MSTATUS64_SD = 0x8000000000000000

# pylint: disable=abstract-method

def ihex_line(address, record_type, data):
    assert len(data) < 128
    line = f":{len(data):02X}{address:04X}{record_type:02X}"
    check = len(data)
    check += address % 256
    check += address >> 8
    check += record_type
    for char in data:
        value = ord(char)
        check += value
        line += f"{value:02X}"
    line += f"{(256 - check) % 256:02X}\n"
    return line

def srec_parse(line):
    assert line.startswith(b'S')
    typ = line[:2]
    count = int(line[2:4], 16)
    data = ""
    if typ == b'S0':
        # header
        return 0, 0, 0
    elif typ == b'S3':
        # data with 32-bit address
        # Any higher bits were chopped off.
        address = int(line[4:12], 16)
        for i in range(6, count+1):
            data += f"{int(line[2 * i:2 * i + 2], 16):c}"
        # Ignore the checksum.
        return 3, address, data
    elif typ == b'S7':
        # ignore execution start field
        return 7, 0, 0
    else:
        raise TestFailed(f"Unsupported SREC type {typ!r}.")

def readable_binary_string(s):
    return "".join(f"{ord(c):02x}" for c in s)

class InfoTest(GdbTest):
    def test(self):
        output = self.gdb.command("monitor riscv info")
        info = {}
        for line in output.splitlines():
            if re.search(r"Found \d+ triggers", line):
                continue
            if re.search(r"Disabling abstract command writes to CSRs.", line):
                continue
            if re.search(
                    r"keep_alive.. was not invoked in the \d+ ms timelimit.",
                    line):
                continue
            k, v = line.strip().split()
            info[k] = v
        assertEqual(int(info.get("hart.xlen")), self.hart.xlen)

class SimpleRegisterTest(GdbTest):
    def check_reg(self, name, alias):
        a = random.randrange(1<<self.hart.xlen)
        b = random.randrange(1<<self.hart.xlen)
        self.gdb.p(f"${name}=0x{a:x}")
        assertEqual(self.gdb.p(f"${alias}"), a)
        self.gdb.stepi()
        assertEqual(self.gdb.p(f"${name}"), a)
        assertEqual(self.gdb.p(f"${alias}"), a)
        self.gdb.p(f"${alias}=0x{b:x}")
        assertEqual(self.gdb.p(f"${name}"), b)
        self.gdb.stepi()
        assertEqual(self.gdb.p(f"${name}"), b)
        assertEqual(self.gdb.p(f"${alias}"), b)

    def setup(self):
        self.write_nop_program(5)

class SimpleS0Test(SimpleRegisterTest):
    def test(self):
        self.check_reg("s0", "x8")

class SimpleS1Test(SimpleRegisterTest):
    def test(self):
        self.check_reg("s1", "x9")

class SimpleT0Test(SimpleRegisterTest):
    def test(self):
        self.check_reg("t0", "x5")

class SimpleT1Test(SimpleRegisterTest):
    def test(self):
        self.check_reg("t1", "x6")

class SimpleV13Test(SimpleRegisterTest):
    def test(self):
        if self.hart.extensionSupported('V'):
            vlenb = self.gdb.p("$vlenb")
            # Can't write quadwords, because gdb won't parse a 128-bit hex
            # value.
            written = {}
            for name, byte_count in (('b', 1), ('s', 2), ('w', 4), ('l', 8)):
                written[name] = {}
                for i in range(vlenb // byte_count):
                    written[name][i] = random.randrange(256 ** byte_count)
                    self.gdb.p(f"$v13.{name}[{i}]=0x{written[name][i]:x}")
                self.gdb.stepi()
                self.gdb.p("$v13")
                for i in range(vlenb // byte_count):
                    assertEqual(self.gdb.p(f"$v13.{name}[{i}]"),
                            written[name][i])
        else:
            output = self.gdb.p_raw("$v13")
            assertRegex(output, r"void|Could not fetch register.*")

class SimpleF18Test(SimpleRegisterTest):
    def check_reg(self, name, alias):
        if self.hart.extensionSupported('F'):
            mstatus_fs = 0x00006000
            self.gdb.p(f"$mstatus=$mstatus|0x{mstatus_fs:x}")
            self.gdb.stepi()
            a = random.random()
            b = random.random()
            self.gdb.p_fpr(f"${name}={a:f}")
            assertLess(abs((self.gdb.p_fpr(f"${alias}")) - a), .001)
            self.gdb.stepi()
            assertLess(abs((self.gdb.p_fpr(f"${name}")) - a), .001)
            assertLess(abs((self.gdb.p_fpr(f"${alias}")) - a), .001)
            self.gdb.p_fpr(f"${alias}={b:f}")
            assertLess(abs((self.gdb.p_fpr(f"${name}")) - b), .001)
            self.gdb.stepi()
            assertLess(abs((self.gdb.p_fpr(f"${name}")) - b), .001)
            assertLess(abs((self.gdb.p_fpr(f"${alias}")) - b), .001)

            size = self.gdb.p(f"sizeof(${name})")
            if self.hart.extensionSupported('D'):
                assertEqual(size, 8)
            else:
                assertEqual(size, 4)
        else:
            output = self.gdb.p_raw("$" + name)
            assertRegex(output, r"void|Could not fetch register.*")
            output = self.gdb.p_raw("$" + alias)
            assertRegex(output, r"void|Could not fetch register.*")

    def test(self):
        self.check_reg("f18", "fs2")

class CustomRegisterTest(SimpleRegisterTest):
    def early_applicable(self):
        return self.target.implements_custom_test

    def check_custom(self, magic):
        regs = {k: v for k, v in self.gdb.info_registers("all", ops=20).items()
                if k.startswith("custom")}
        assertEqual(set(regs.keys()),
                set(("custom1",
                    "custom12345",
                    "custom12346",
                    "custom12347",
                    "custom12348")))
        for name, value in regs.items():
            number = int(name[6:])
            if number % 2:
                expect = number + magic
                assertIn(value, (expect, expect + (1<<32)))
            else:
                assertIn("Could not fetch register", value)

    def test(self):
        self.check_custom(0)

        # Now test writing
        magic = 6667
        self.gdb.p(f"$custom12345={12345 + magic}")
        self.gdb.stepi()

        self.check_custom(magic)

class SimpleNoExistTest(GdbTest):
    def test(self):
        nonexist_csr = self.hart.nonexist_csr
        try:
            self.gdb.p(f"${nonexist_csr}")
            assert False, f"Reading the ${nonexist_csr} should have failed"
        except testlib.CouldNotFetch:
            pass
        try:
            self.gdb.p(f"${nonexist_csr}=5")
            assert False, f"Writing the ${nonexist_csr} should have failed"
        except testlib.CouldNotFetch:
            pass

class SimpleMemoryTest(GdbTest):
    def access_test(self, size, data_type):
        assertEqual(self.gdb.p(f"sizeof({data_type})"), size)
        a = 0x86753095555aaaa & ((1<<(size*8))-1)
        b = 0xdeadbeef12345678 & ((1<<(size*8))-1)
        addrA = self.hart.ram
        addrB = self.hart.ram + self.hart.ram_size - size
        self.gdb.p(f"*(({data_type}*)0x{addrA:x}) = 0x{a:x}")
        self.gdb.p(f"*(({data_type}*)0x{addrB:x}) = 0x{b:x}")
        assertEqual(self.gdb.p(f"*(({data_type}*)0x{addrA:x})"), a)
        assertEqual(self.gdb.p(f"*(({data_type}*)0x{addrB:x})"), b)

class MemTest8(SimpleMemoryTest):
    def test(self):
        self.access_test(1, 'char')

class MemTest16(SimpleMemoryTest):
    def test(self):
        self.access_test(2, 'short')

class MemTest32(SimpleMemoryTest):
    def test(self):
        self.access_test(4, 'int')

class MemTest64(SimpleMemoryTest):
    def test(self):
        self.access_test(8, 'long long')

class MemTestReadInvalid(SimpleMemoryTest):
    def test(self):
        bad_address = self.hart.bad_address
        good_address = self.hart.ram + 0x80

        self.write_nop_program(2)
        self.gdb.p("$s0=0x12345678")
        self.gdb.p(f"*((int*)0x{good_address:x})=0xabcdef")
        # This test relies on 'gdb_report_data_abort enable' being executed in
        # the openocd.cfg file.
        try:
            self.gdb.p(f"*((int*)0x{bad_address:x})")
            assert False, "Read should have failed."
        except testlib.CannotAccess as e:
            assertEqual(e.address, bad_address)
        self.gdb.stepi()    # Don't let gdb cache register read
        assertEqual(self.gdb.p(f"*((int*)0x{good_address:x})"), 0xabcdef)
        assertEqual(self.gdb.p("$s0"), 0x12345678)

#class MemTestWriteInvalid(SimpleMemoryTest):
#    def test(self):
#        # This test relies on 'gdb_report_data_abort enable' being executed in
#        # the openocd.cfg file.
#        try:
#            self.gdb.p("*((int*)0xdeadbeef)=8675309")
#            assert False, "Write should have failed."
#        except testlib.CannotAccess as e:
#            assertEqual(e.address, 0xdeadbeef)
#        self.gdb.p("*((int*)0x%x)=6874742" % self.hart.ram)

class MemTestBlockReadInvalid(GdbTest):
    zero_values = "00 00 00 00 00 00 00 00"
    real_values = "EF BE AD DE 78 56 34 12"

    def early_applicable(self):
        return self.target.invalid_memory_returns_zero

    def test(self):
        self.gdb.p(f"*((int*)0x{self.hart.ram + 0:x}) = 0xdeadbeef")
        self.gdb.p(f"*((int*)0x{self.hart.ram + 4:x}) = 0x12345678")

        # read before start of memory
        self.memory_test(self.hart.ram - 8,
                         self.hart.ram,
                         self.zero_values)

        # read across start of memory
        self.memory_test(self.hart.ram - 8,
                         self.hart.ram + 8,
                         self.zero_values + " " + self.real_values)

        # read after start of memory
        self.memory_test(self.hart.ram,
                         self.hart.ram + 8,
                         self.real_values)

        self.gdb.p(f"*((int*)0x{self.hart.ram + self.hart.ram_size - 8:x}) = "
                   "0xdeadbeef")
        self.gdb.p(f"*((int*)0x{self.hart.ram + self.hart.ram_size - 4:x}) = "
                   "0x12345678")

        # read before end of memory
        self.memory_test(self.hart.ram + self.hart.ram_size - 8,
                         self.hart.ram + self.hart.ram_size,
                         self.real_values)

        # read across end of memory
        self.memory_test(self.hart.ram + self.hart.ram_size - 8,
                         self.hart.ram + self.hart.ram_size + 8,
                         self.real_values + " " + self.zero_values)

        # read after end of memory
        self.memory_test(self.hart.ram + self.hart.ram_size,
                         self.hart.ram + self.hart.ram_size + 8,
                         self.zero_values)

    def memory_test(self, start_addr, end_addr, expected_values):
        with tempfile.NamedTemporaryFile(suffix=".simdata") as dump:
            self.gdb.command(f"dump verilog memory {dump.name} "
                             f"0x{start_addr:x} 0x{end_addr:x}")
            self.gdb.command(f"shell cat {dump.name}")
            line = dump.readline()
            line = dump.readline()
        assertEqual(line.strip(), expected_values)

class MemTestBlock(GdbTest):
    length = 1024
    line_length = 16

    def write(self, temporary_file):
        data = ""
        for i in range(self.length // self.line_length):
            line_data = "".join([f"{random.randrange(256):c}"
                for _ in range(self.line_length)])
            data += line_data
            temporary_file.write(ihex_line(i * self.line_length, 0,
                line_data).encode())
        temporary_file.flush()
        return data

    def spot_check_memory(self, data):
        increment = 19 * 4
        for offset in list(range(0, self.length, increment)) + [self.length-4]:
            value = self.gdb.p(f"*((int*)0x{self.hart.ram + offset:x})")
            written = ord(data[offset]) | \
                    (ord(data[offset+1]) << 8) | \
                    (ord(data[offset+2]) << 16) | \
                    (ord(data[offset+3]) << 24)
            assertEqual(value, written)

    def test_block(self, extra_delay):
        with tempfile.NamedTemporaryFile(suffix=".ihex") as a:
            data = self.write(a)

            self.gdb.command(f"shell cat {a.name}")
            self.gdb.command(f"restore {a.name} 0x{self.hart.ram:x}",
                    reset_delays=50 + extra_delay)
        self.spot_check_memory(data)

        with tempfile.NamedTemporaryFile(suffix=".srec") as b:
            self.gdb.command(f"dump srec memory {b.name} 0x{self.hart.ram:x} "
                             f"0x{self.hart.ram + self.length:x}",
                             ops=self.length / 32,
                             reset_delays=100 + extra_delay)
            self.gdb.command(f"shell cat {b.name}")
            highest_seen = 0
            for line in b:
                record_type, address, line_data = srec_parse(line)
                if record_type == 3:
                    offset = address - (self.hart.ram & 0xffffffff)
                    written_data = data[offset:offset+len(line_data)]
                    highest_seen += len(line_data)
                    if line_data != written_data:
                        raise TestFailed(
                            f"Data mismatch at 0x{self.hart.ram + offset:x} "
                            f"(offset 0x{offset:x}); "
                            f"wrote {readable_binary_string(written_data)} but "
                            f"read {readable_binary_string(line_data)}")
        assertEqual(highest_seen, self.length)

# Run memory block tests with different reset delays, so hopefully we hit busy
# at every possible relevant time.
class MemTestBlock0(MemTestBlock):
    def test(self):
        return self.test_block(0)

class MemTestBlock1(MemTestBlock):
    def test(self):
        return self.test_block(1)

class MemTestBlock2(MemTestBlock):
    def test(self):
        return self.test_block(2)

class DisconnectTest(GdbTest):
    def test(self):
        old_values = self.gdb.info_registers("all", ops=20)
        self.gdb.disconnect()
        self.gdb.connect()
        self.gdb.select_hart(self.hart)
        new_values = self.gdb.info_registers("all", ops=20)

        regnames = set(old_values.keys()).union(set(new_values.keys()))
        for regname in regnames:
            if regname in ("mcycle", "minstret", "instret", "cycle", "mip",
                    "time"):
                continue
            assertEqual(old_values[regname], new_values[regname],
                    f"Register {regname} didn't match")

class InstantHaltTest(GdbTest):
    def test(self):
        """Assert that reset is really resetting what it should."""
        self.gdb.command("monitor reset halt")
        self.gdb.command("maintenance flush register-cache")
        threads = self.gdb.threads()
        pcs = []
        for t in threads:
            self.gdb.thread(t)
            pcs.append(self.gdb.p("$pc"))
        for pc in pcs:
            assertIn(pc, self.hart.reset_vectors)
        # mcycle and minstret have no defined reset value.
        mstatus = self.gdb.p("$mstatus")
        assertEqual(mstatus & (MSTATUS_MIE | MSTATUS_MPRV |
            MSTATUS_VM), 0)

class InstantChangePc(GdbTest):
    def test(self):
        """Change the PC right as we come out of reset."""
        # 0x13 is nop
        self.gdb.command("monitor reset halt")
        self.gdb.command("maintenance flush register-cache")
        self.gdb.command(f"p *((int*) 0x{self.hart.ram:x})=0x13")
        self.gdb.command(f"p *((int*) 0x{self.hart.ram + 4:x})=0x13")
        self.gdb.command(f"p *((int*) 0x{self.hart.ram + 8:x})=0x13")
        self.gdb.p(f"$pc=0x{self.hart.ram:x}")
        self.gdb.stepi()
        assertEqual((self.hart.ram + 4), self.gdb.p("$pc"))
        self.gdb.stepi()
        assertEqual((self.hart.ram + 8), self.gdb.p("$pc"))

class ProgramTest(GdbSingleHartTest):
    # Include malloc so that gdb can make function calls. I suspect this malloc
    # will silently blow through the memory set aside for it, so be careful.
    compile_args = ("programs/counting_loop.c", "-DDEFINE_MALLOC",
            "-DDEFINE_FREE")

    def setup(self):
        self.gdb.load()

class ProgramHwWatchpoint(ProgramTest):
    def test(self):
        mainbp = self.gdb.b("main")
        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("main", output)
        self.gdb.command(f"delete {mainbp}")
        self.gdb.watch("counter == 5")
        # Watchpoint hits when counter becomes 5.
        output = self.gdb.c()
        assertEqual(self.gdb.p("counter"), 5)
        # Watchpoint hits when counter no longer is 5.
        output = self.gdb.c()
        assertEqual(self.gdb.p("counter"), 6)
        # The watchpoint is going out of scope
        output = self.gdb.c()
        assertIn("Watchpoint", output)
        assertIn("deleted", output)
        self.exit()

class ProgramSwWatchpoint(ProgramTest):
    def test(self):
        self.gdb.b("main")
        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("main", output)
        self.gdb.swatch("counter == 5")
        # The watchpoint is triggered when the expression changes
        output = self.gdb.c()
        assertIn("Watchpoint", output)
        assertIn("counter == 5", output)
        output = self.gdb.p_raw("counter")
        assertIn("5", output)
        output = self.gdb.c()
        assertIn("Watchpoint", output)
        assertIn("counter == 5", output)
        output = self.gdb.p_raw("counter")
        assertIn("6", output)
        output = self.gdb.c()
        # The watchpoint is going out of scope
        assertIn("Watchpoint", output)
        assertIn("deleted", output)
        self.exit()

class DebugTest(GdbSingleHartTest):
    # Include malloc so that gdb can make function calls. I suspect this malloc
    # will silently blow through the memory set aside for it, so be careful.
    compile_args = ("programs/debug.c", "programs/checksum.c",
            "programs/tiny-malloc.c", "-DDEFINE_MALLOC", "-DDEFINE_FREE")

    def setup(self):
        self.gdb.load()
        self.gdb.b("_exit")

    def exit(self, expected_result=0xc86455d4):
        super().exit(expected_result)

class DebugCompareSections(DebugTest):
    def test(self):
        output = self.gdb.command("compare-sections", ops=10)
        matched = 0
        for line in output.splitlines():
            if line.startswith("Section"):
                assert line.endswith("matched.")
                matched += 1
        assertGreater(matched, 1)

class DebugFunctionCall(DebugTest):
    def test(self):
        self.gdb.b("main:start")
        self.gdb.c()
        assertEqual(self.gdb.p('fib(6)', ops=10), 8)
        assertEqual(self.gdb.p('fib(7)', ops=10), 13)
        self.exit()

class DebugChangeString(DebugTest):
    def test(self):
        text = "This little piggy went to the market."
        self.gdb.b("main:start")
        self.gdb.c()
        self.gdb.p(f'fox = "{text}"')
        self.exit(0x43b497b8)

class DebugTurbostep(DebugTest):
    def test(self):
        """Single step a bunch of times."""
        self.gdb.b("main:start")
        self.gdb.c()
        self.gdb.command("p i=0")
        last_pc = None
        advances = 0
        jumps = 0
        start = time.time()
        count = 10
        for _ in range(count):
            self.gdb.stepi()
            pc = self.gdb.p("$pc")
            assertNotEqual(last_pc, pc)
            if last_pc and pc > last_pc and pc - last_pc <= 4:
                advances += 1
            else:
                jumps += 1
            last_pc = pc
        end = time.time()
        print(f"{(end - start) / count:.2f} seconds/step")
        # Some basic sanity that we're not running between breakpoints or
        # something.
        assertGreater(jumps, 1)
        assertGreater(advances, 5)

class DebugExit(DebugTest):
    def test(self):
        self.exit()

class DebugSymbols(DebugTest):
    def test(self):
        bp = self.gdb.b("main")
        output = self.gdb.c()
        assertIn(", main ", output)
        self.gdb.command(f"delete {bp}")
        bp = self.gdb.b("rot13")
        output = self.gdb.c()
        assertIn(", rot13 ", output)
        self.gdb.command(f"delete {bp}")

class DebugBreakpoint(DebugTest):
    def test(self):
        self.gdb.b("rot13")
        # The breakpoint should be hit exactly 2 times.
        for _ in range(2):
            output = self.gdb.c()
            self.gdb.p("$pc")
            assertIn("Breakpoint ", output)
            assertIn("rot13 ", output)
        self.exit()

class Hwbp1(DebugTest):
    def early_applicable(self):
        return self.hart.instruction_hardware_breakpoint_count > 0

    def test(self):
        if not self.hart.honors_tdata1_hmode:
            # Run to main before setting the breakpoint, because startup code
            # will otherwise clear the trigger that we set.
            self.gdb.b("main")
            self.gdb.c()

        self.gdb.command("delete")
        self.gdb.hbreak("rot13")
        # The breakpoint should be hit exactly 2 times.
        for _ in range(2):
            output = self.gdb.c()
            self.gdb.p("$pc")
            assertRegex(output, r"[bB]reakpoint")
            assertIn("rot13 ", output)
        self.gdb.b("_exit")
        self.exit()

def MCONTROL_TYPE(xlen):
    return 0xf<<((xlen)-4)
def MCONTROL_DMODE(xlen):
    return 1<<((xlen)-5)
def MCONTROL_MASKMAX(xlen):
    return 0x3<<((xlen)-11)

MCONTROL_SELECT = 1<<19
MCONTROL_TIMING = 1<<18
MCONTROL_ACTION = 0x3f<<12
MCONTROL_CHAIN = 1<<11
MCONTROL_MATCH = 0xf<<7
MCONTROL_M = 1<<6
MCONTROL_H = 1<<5
MCONTROL_S = 1<<4
MCONTROL_U = 1<<3
MCONTROL_EXECUTE = 1<<2
MCONTROL_STORE = 1<<1
MCONTROL_LOAD = 1<<0

MCONTROL_TYPE_NONE = 0
MCONTROL_TYPE_MATCH = 2

MCONTROL_ACTION_DEBUG_EXCEPTION = 0
MCONTROL_ACTION_DEBUG_MODE = 1
MCONTROL_ACTION_TRACE_START = 2
MCONTROL_ACTION_TRACE_STOP = 3
MCONTROL_ACTION_TRACE_EMIT = 4

MCONTROL_MATCH_EQUAL = 0
MCONTROL_MATCH_NAPOT = 1
MCONTROL_MATCH_GE = 2
MCONTROL_MATCH_LT = 3
MCONTROL_MATCH_MASK_LOW = 4
MCONTROL_MATCH_MASK_HIGH = 5

def set_field(reg, mask, val):
    return ((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask))

class HwbpManual(DebugTest):
    """Make sure OpenOCD behaves "normal" when the user sets a trigger by
    writing the trigger registers themselves directly."""
    def early_applicable(self):
        return self.target.support_manual_hwbp and \
            self.hart.instruction_hardware_breakpoint_count >= 1

    def test(self):
        if not self.hart.honors_tdata1_hmode:
            # Run to main before setting the breakpoint, because startup code
            # will otherwise clear the trigger that we set.
            self.gdb.b("main")
            self.gdb.c()

        self.gdb.command("delete")
        #self.gdb.hbreak("rot13")
        tdata1 = MCONTROL_DMODE(self.hart.xlen)
        tdata1 = set_field(tdata1, MCONTROL_ACTION, MCONTROL_ACTION_DEBUG_MODE)
        tdata1 = set_field(tdata1, MCONTROL_MATCH, MCONTROL_MATCH_EQUAL)
        tdata1 |= MCONTROL_M | MCONTROL_S | MCONTROL_U | MCONTROL_EXECUTE

        tselect = 0
        while True:
            self.gdb.p(f"$tselect={tselect}")
            value = self.gdb.p("$tselect")
            if value != tselect:
                raise TestNotApplicable
            self.gdb.p(f"$tdata1=0x{tdata1:x}")
            value = self.gdb.p("$tselect")
            if value == tdata1:
                break
            self.gdb.p("$tdata1=0")
            tselect += 1

        self.gdb.p("$tdata2=&rot13")
        # The breakpoint should be hit exactly 2 times.
        for _ in range(2):
            output = self.gdb.c(ops=2)
            self.gdb.p("$pc")
            assertRegex(output, r"[bB]reakpoint")
            assertIn("rot13 ", output)
        self.gdb.p("$tdata2=&crc32a")
        self.gdb.c()
        before = self.gdb.p("$pc")
        assertEqual(before, self.gdb.p("&crc32a"))
        self.gdb.stepi()
        after = self.gdb.p("$pc")
        assertNotEqual(before, after)

        self.gdb.b("_exit")
        self.exit()


class Hwbp2(DebugTest):
    def early_applicable(self):
        return self.hart.instruction_hardware_breakpoint_count >= 2

    def test(self):
        self.gdb.command("delete")
        self.gdb.hbreak("main")
        self.gdb.hbreak("rot13")
        # We should hit 3 breakpoints.
        for expected in ("main", "rot13", "rot13"):
            output = self.gdb.c()
            self.gdb.p("$pc")
            assertRegex(output, r"[bB]reakpoint")
            assertIn(f"{expected} ", output)
        self.gdb.command("delete")
        self.gdb.b("_exit")
        self.exit()

class TooManyHwbp(DebugTest):
    def test(self):
        for i in range(30):
            self.gdb.hbreak(f"*rot13 + {i * 4}")

        output = self.gdb.c(checkOutput=False)
        assertIn("Cannot insert hardware breakpoint", output)
        # There used to be a bug where this would fail if done twice in a row.
        output = self.gdb.c(checkOutput=False)
        assertIn("Cannot insert hardware breakpoint", output)
        # Clean up, otherwise the hardware breakpoints stay set and future
        # tests may fail.
        self.gdb.command("delete")
        self.gdb.b("_exit")
        self.exit()

class Registers(DebugTest):
    def test(self):
        # Get to a point in the code where some registers have actually been
        # used.
        self.gdb.b("rot13")
        self.gdb.c()
        self.gdb.c()
        # Try both forms to test gdb.
        for cmd in ("info all-registers", "info registers all"):
            output = self.gdb.command(cmd, ops=20)
            for reg in ('zero', 'ra', 'sp', 'gp', 'tp'):
                assertIn(reg, output)
            for line in output.splitlines():
                assertRegex(line, r"^\S")

        #TODO
        # mcpuid is one of the few registers that should have the high bit set
        # (for rv64).
        # Leave this commented out until gdb and spike agree on the encoding of
        # mcpuid (which is going to be renamed to misa in any case).
        #assertRegex(output, ".*mcpuid *0x80")

        #TODO:
        # The instret register should always be changing.
        #last_instret = None
        #for _ in range(5):
        #    instret = self.gdb.p("$instret")
        #    assertNotEqual(instret, last_instret)
        #    last_instret = instret
        #    self.gdb.stepi()

        self.exit()

class UserInterrupt(DebugTest):
    def test(self):
        """Sending gdb ^C while the program is running should cause it to
        halt."""
        self.gdb.b("main:start")
        self.gdb.c()
        self.gdb.p("i=123")
        self.gdb.c(wait=False)
        time.sleep(2)
        output = self.gdb.interrupt()
        assert "main" in output
        assertGreater(self.gdb.p("j"), 10)
        self.gdb.p("i=0")
        self.exit()

class GdbServerError(Exception):
    pass

class MemorySampleTest(DebugTest):
    def early_applicable(self):
        return self.target.support_memory_sampling

    def setup(self):
        DebugTest.setup(self)
        self.gdb.b("main:start")
        self.gdb.c()
        self.gdb.p("i=123")

    @staticmethod
    def check_incrementing_samples(raw_samples, check_addr,
                                   tolerance=0x200000):
        first_timestamp = None
        end = None
        total_samples = 0
        previous_value = None
        for line in raw_samples.splitlines():
            m = re.match(r"^timestamp \w+: (\d+)", line)
            if m:
                timestamp = int(m.group(1))
                if not first_timestamp:
                    first_timestamp = timestamp
                else:
                    end = (timestamp, total_samples)
            else:
                assertRegex(line, r"^0x[0-f]+: 0x[0-f]+$")
                address, value = line.split(': ')
                address = int(address, 16)
                if address == check_addr:
                    value = int(value, 16)
                    if not previous_value is None:
                        # TODO: what if the counter wraps?
                        assertGreater(value, previous_value)
                        assertLess(value, previous_value + tolerance)
                    previous_value = value
                total_samples += 1
        if end and total_samples > 0:
            samples_per_second = 1000 * end[1] / (end[0] - first_timestamp)
            print(f"{samples_per_second} samples/second")
        else:
            raise GdbServerError("No samples collected.")

    @staticmethod
    def check_samples_equal(raw_samples, check_addr, check_value):
        total_samples = 0
        for line in raw_samples.splitlines():
            if not line.startswith("timestamp "):
                address, value = line.split(': ')
                address = int(address, 16)
                if address == check_addr:
                    value = int(value, 16)
                    assertEqual(value, check_value)
                    total_samples += 1
        assertGreater(total_samples, 0)

    def collect_samples(self):
        self.gdb.c(wait=False)
        time.sleep(5)
        output = self.gdb.interrupt()
        assert "main" in output
        return self.gdb.command("monitor riscv dump_sample_buf", ops=5)

class MemorySampleSingle(MemorySampleTest):
    def test(self):
        addr = self.gdb.p("&j")
        sizeof_j = self.gdb.p("sizeof(j)")
        self.gdb.command(f"monitor riscv memory_sample 0 0x{addr:x} {sizeof_j}")

        raw_samples = self.collect_samples()
        self.check_incrementing_samples(raw_samples, addr, tolerance=0x500000)

        # Buffer should have been emptied by dumping.
        raw_samples = self.gdb.command("monitor riscv dump_sample_buf", ops=5)
        assertEqual(len(raw_samples), 0)

class MemorySampleMixed(MemorySampleTest):
    def test(self):
        addr = {}
        test_vars = ["j", "i32"]
        if self.hart.xlen >= 64:
            test_vars.append("i64")
        for i, name in enumerate(test_vars):
            addr[name] = self.gdb.p(f"&{name}")
            sizeof = self.gdb.p(f"sizeof({name})")
            self.gdb.command(f"monitor riscv memory_sample {i} "
                             f"0x{addr[name]:x} {sizeof}")

        raw_samples = self.collect_samples()
        self.check_incrementing_samples(raw_samples, addr["j"],
                                        tolerance=0x500000)
        self.check_samples_equal(raw_samples, addr["i32"], 0xdeadbeef)
        if self.hart.xlen >= 64:
            self.check_samples_equal(raw_samples, addr["i64"],
                                     0x1122334455667788)

class RepeatReadTest(DebugTest):
    def early_applicable(self):
        return self.target.supports_clint_mtime

    warning_re = re.compile(r"\[(?P<target_name>[^\]]+)\] Re-reading memory "
            r"from addresses 0x(?P<addr>[\da-f]+) and 0x(?P=addr)\.")

    def test(self):
        self.gdb.b("main:start")
        self.gdb.c()
        mtime_addr = self.target.clint_addr + 0xbff8
        count = 1024
        output = self.gdb.command(
            f"monitor riscv repeat_read {count} 0x{mtime_addr:x} 4")
        values = []
        def is_valid_warning(line):
            match = self.warning_re.match(line)
            if match is None:
                return False
            assertEqual(int(match["addr"], 16), mtime_addr,
                    "The repeat read is reading from the wrong address")
            return True

        for line in itertools.dropwhile(is_valid_warning, output.splitlines()):
            # This `if` is to be removed after
            # https://github.com/riscv/riscv-openocd/pull/871 is merged.
            if line.startswith("Batch memory"):
                continue
            for v in line.split():
                values.append(int(v, 16))

        assertEqual(len(values), count)
        # mtime should only ever increase, unless it wraps
        slop = 0x100000
        for i in range(1, len(values)):
            if values[i] < values[i-1]:
                # wrapped
                assertLess(values[i], slop)
            else:
                assertGreater(values[i], values[i-1])
                assertLess(values[i], values[i-1] + slop)

        output = self.gdb.command(
            f"monitor riscv repeat_read 0 0x{mtime_addr:x} 4")
        assertEqual(output, "")

class Semihosting(GdbSingleHartTest):
    # Include malloc so that gdb can assign a string.
    compile_args = ("programs/semihosting.c", "programs/tiny-malloc.c",
                    "-DDEFINE_MALLOC", "-DDEFINE_FREE")

    def early_applicable(self):
        return self.target.test_semihosting

    def setup(self):
        self.gdb.load()
        self.parkOtherHarts()
        self.gdb.b("_exit")

    def test(self):
        with tempfile.NamedTemporaryFile(suffix=".data") as temp:
            self.gdb.b("main:begin")
            self.gdb.c()
            self.gdb.p(f'filename="{temp.name}"', ops=3)
            self.exit()

            with open(temp.name, "r", encoding='utf-8') as fd:
                contents = fd.readlines()

        assertIn("Hello, world!\n", contents)

        # stdout should end up in the OpenOCD log
        with open(self.server.logname, "r", encoding='utf-8') as fd:
            log = fd.read()
        assertIn("Do re mi fa so la ti do!", log)

class SemihostingFileio(Semihosting):
    def early_applicable(self):
        # Semihosting file i/o doesn't work right when there are multiple harts
        # in SMP mode, and the semihosting call comes from a hart other than the
        # first one.
        # The problem is that semihosting_common_fileio_info() is called only
        # for the first target in an SMP list. Either the caller needs to be
        # made aware of SMP targets, or that function needs to walk the list
        # itself. (Or maybe we need to make a separate function just for RISC-V
        # that does that.)
        return len(self.target.harts) == 1

    def setup(self):
        self.gdb.command("monitor foreach t [target names] { "
            "targets $t; arm semihosting_fileio enable }")
        super().setup()

    def test(self):
        with tempfile.NamedTemporaryFile(suffix=".data") as temp:
            self.gdb.b("main:begin")
            self.gdb.c()
            self.gdb.p(f'filename="{temp.name}"', ops=3)
            output = self.exit()
            # stdout should end up in gdb's CLI
            assertIn("Do re mi fa so la ti do!", output)

            with open(temp.name, "r", encoding='utf-8') as fd:
                contents = fd.readlines()
        assertIn("Hello, world!\n", contents)

class InterruptTest(GdbSingleHartTest):
    compile_args = ("programs/interrupt.c",)

    def early_applicable(self):
        return self.target.supports_clint_mtime

    def setup(self):
        self.gdb.load()

    def test(self):
        self.gdb.b("main")
        output = self.gdb.c()
        assertIn(" main ", output)
        self.gdb.b("trap_entry")
        output = self.gdb.c()
        assertIn(" trap_entry ", output)
        assertEqual(self.gdb.p("$mip") & 0x80, 0x80)
        assertEqual(self.gdb.p("interrupt_count"), 0)
        # You'd expect local to still be 0, but it looks like spike doesn't
        # jump to the interrupt handler immediately after the write to
        # mtimecmp.
        assertLess(self.gdb.p("local"), 1000)
        self.gdb.command("delete breakpoints")
        for _ in range(10):
            self.gdb.c(wait=False)
            time.sleep(2)
            self.gdb.interrupt()
            interrupt_count = self.gdb.p("interrupt_count")
            local = self.gdb.p("local")
            if interrupt_count > 1000 and \
                    local > 1000:
                self.disable_timer()
                return

        self.disable_timer()
        assertGreater(interrupt_count, 1000)
        assertGreater(local, 1000)

    def postMortem(self):
        GdbSingleHartTest.postMortem(self)
        self.gdb.p(f"*((long long*) 0x{self.target.clint_addr + 0xbff8:x})")
        self.gdb.p(f"*((long long*) 0x{self.target.clint_addr + 0x4000:x})")
        self.gdb.p("interrupt_count")
        self.gdb.p("local")

class MulticoreRegTest(GdbTest):
    compile_args = ("programs/infinite_loop.S", "-DMULTICORE")

    def early_applicable(self):
        return len(self.target.harts) > 1

    def setup(self):
        self.gdb.load()
        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            self.gdb.p("$pc=_start")

    def test(self):
        # We use time instead of breakpoints, because otherwise we can't
        # guarantee that every hart runs all the way through the loop. (The
        # problem is that we can't guarantee resuming at the same time, so the
        # first hart that is resumed will hit a breakpoint at the end of the
        # loop before another hart has executed the whole loop.)

        # Run through the whole loop.
        self.gdb.c_all(wait=False)
        time.sleep(1)
        self.gdb.interrupt_all()

        hart_ids = set()
        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            assertIn("main_end", self.gdb.where())
            # Check register values.
            x1 = self.gdb.p("$x1")
            hart_id = self.gdb.p("$mhartid")
            assertEqual(x1, hart_id << 8)
            assertNotIn((hart.system, hart_id), hart_ids)
            hart_ids.add((hart.system, hart_id))
            for n in range(2, 32):
                value = self.gdb.p(f"$x{n}")
                assertEqual(value, (hart_id << 8) + n - 1)

        # Confirmed that we read different register values for different harts.
        # Write a new value to x1, and run through the add sequence again.

        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            self.gdb.p(f"$x1=0x{hart.index * 4096:x}")
            self.gdb.p("$pc=main_post_csrr")

        # Run through the whole loop.
        self.gdb.c_all(wait=False)
        time.sleep(1)
        self.gdb.interrupt_all()

        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            assertIn("main_end", self.gdb.where())
            # Check register values.
            for n in range(1, 32):
                value = self.gdb.p(f"$x{n}")
                assertEqual(value, hart.index * 0x1000 + n - 1)

#class MulticoreRunHaltStepiTest(GdbTest):
#    compile_args = ("programs/multicore.c", "-DMULTICORE")
#
#    def early_applicable(self):
#        return len(self.target.harts) > 1
#
#    def setup(self):
#        self.gdb.load()
#        for hart in self.target.harts:
#            self.gdb.select_hart(hart)
#            self.gdb.p("$mhartid")
#            self.gdb.p("$pc=_start")
#
#    def test(self):
#        previous_hart_count = [0 for h in self.target.harts]
#        previous_interrupt_count = [0 for h in self.target.harts]
#        # Check 10 times
#        for i in range(10):
#            # 3 attempts for each time we want the check to pass
#            for attempt in range(3):
#                self.gdb.global_command("echo round %d attempt %d\\n" % (i,
#                    attempt))
#                self.gdb.c_all(wait=False)
#                time.sleep(2)
#                self.gdb.interrupt_all()
#                hart_count = self.gdb.p("hart_count")
#                interrupt_count = self.gdb.p("interrupt_count")
#                ok = True
#                for i, h in enumerate(self.target.harts):
#                    if hart_count[i] <= previous_hart_count[i]:
#                        ok = False
#                        break
#                    if interrupt_count[i] <= previous_interrupt_count[i]:
#                        ok = False
#                        break
#                    self.gdb.p("$mie")
#                    self.gdb.p("$mip")
#                    self.gdb.p("$mstatus")
#                    self.gdb.p("$priv")
#                    self.gdb.p("buf", fmt="")
#                    self.gdb.select_hart(h)
#                    pc = self.gdb.p("$pc")
#                    self.gdb.stepi()
#                    stepped_pc = self.gdb.p("$pc")
#                    assertNotEqual(pc, stepped_pc)
#                previous_hart_count = hart_count
#                previous_interrupt_count = interrupt_count
#                if ok:
#                    break
#            else:
#                assert False, \
#                        "hart count or interrupt didn't increment as expected"

class MulticoreRunAllHaltOne(GdbTest):
    compile_args = ("programs/multicore.c", "-DMULTICORE")

    def early_applicable(self):
        return len(self.target.harts) > 1

    def setup(self):
        self.gdb.select_hart(self.target.harts[0])
        self.gdb.load()
        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            self.gdb.p("$pc=_start")

    def test(self):
        if not self.gdb.one_hart_per_gdb():
            raise TestNotApplicable

        # Run harts in reverse order
        for h in reversed(self.target.harts):
            self.gdb.select_hart(h)
            self.gdb.c(wait=False)

        self.gdb.interrupt()
        # Give OpenOCD time to call poll() on both harts, which is what causes
        # the bug.
        time.sleep(1)
        self.gdb.p("buf", fmt="")

        self.disable_timer(interrupt=True)

class MulticoreRtosSwitchActiveHartTest(GdbTest):
    compile_args = ("programs/multicore.c", "-DMULTICORE")

    def early_applicable(self):
        return len(self.target.harts) > 1

    def setup(self):
        self.gdb.select_hart(self.target.harts[0])
        self.gdb.load()
        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            self.gdb.p("$pc=_start")

    def test(self):
        if self.gdb.one_hart_per_gdb():
            raise TestNotApplicable

        # Set breakpoint near '_start' label to increase the chances of a
        # situation when all harts hit breakpoint immediately and
        # simultaneously.
        self.gdb.b("set_trap_handler")

        # Check that all harts hit breakpoint one by one.
        for _ in range(len(self.target.harts)):
            output = self.gdb.c()
            assertIn("hit Breakpoint", output)
            assertIn("set_trap_handler", output)
            assertNotIn("received signal SIGTRAP", output)

        self.disable_timer()

class SmpSimultaneousRunHalt(GdbTest):
    compile_args = ("programs/run_halt_timing.S", "-DMULTICORE")

    def early_applicable(self):
        return len(self.target.harts) > 1 and self.target.support_hasel

    def setup(self):
        self.gdb.select_hart(self.target.harts[0])
        self.gdb.load()
        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            self.gdb.p("$pc=_start")

    def test(self):
        if self.gdb.one_hart_per_gdb() or not self.server.smp():
            raise TestNotApplicable

        old_mtime = set()
        for _ in range(5):
            self.gdb.c_all(wait=False)
            time.sleep(2)
            self.gdb.interrupt_all()

            mtime_value = []
            counter = []
            for hart in self.target.harts:
                self.gdb.select_hart(hart)
                mv = self.gdb.p("$s2")
                assertNotIn(mv, old_mtime,
                        "mtime doesn't appear to be changing at all")
                mtime_value.append(mv)
                c = self.gdb.p("$s0")
                assertNotEqual(c, 0,
                        "counter didn't increment; code didn't run?")
                counter.append(c)
                # Reset the counter for the next round.
                self.gdb.p("$s0=0")

            old_mtime.update(mtime_value)

            mtime_spread = max(mtime_value) - min(mtime_value)
            print("mtime_spread:", mtime_spread)
            counter_spread = max(counter) - min(counter)
            print("counter_spread:", counter_spread)

            assertLess(mtime_spread, 101 * (len(self.target.harts) - 1),
                    "Harts don't halt around the same time.")
            # spike executes normal code 5000 instructions at a time, so we
            # expect 5k instructions to be executed on one hart before the
            # other gets to go. Our loop (unoptimized) is quite a few
            # instructions, but allow for 5k anyway.
            assertLess(counter_spread, 5001 * (len(self.target.harts) - 1),
                    "Harts don't resume around the same time.")

class StepTest(GdbSingleHartTest):
    compile_args = ("programs/step.S", )

    def setup(self):
        self.gdb.load()
        self.gdb.b("main")
        self.gdb.c()

    def test(self):
        main_address = self.gdb.p("$pc")
        if self.hart.extensionSupported("c"):
            sequence = (4, 8, 0xc, 0xe, 0x14, 0x18, 0x22, 0x1c, 0x24, 0x24)
        else:
            sequence = (4, 8, 0xc, 0x10, 0x18, 0x1c, 0x28, 0x20, 0x2c, 0x2c)
        for expected in sequence:
            self.gdb.stepi()
            pc = self.gdb.p("$pc")
            assertEqual(f"{pc - main_address:x}", f"{expected:x}")

class JumpHbreak(GdbSingleHartTest):
    """'jump' resumes execution at location. Execution stops again immediately
    if there is a breakpoint there.
    That second line can be trouble."""
    compile_args = ("programs/trigger.S", )

    def early_applicable(self):
        return self.hart.instruction_hardware_breakpoint_count >= 1

    def setup(self):
        self.gdb.load()
        self.gdb.hbreak("main")
        self.gdb.c()
        self.gdb.command("delete 1")

    def test(self):
        self.gdb.b("read_loop")
        self.gdb.command("hbreak just_before_read_loop")
        output = self.gdb.command("jump just_before_read_loop")
        assertRegex(output, r"Breakpoint \d, just_before_read_loop ")
        output = self.gdb.c()
        assertRegex(output, r"Breakpoint \d, read_loop ")

class TriggerTest(GdbSingleHartTest):
    compile_args = ("programs/trigger.S", )
    def setup(self):
        self.gdb.load()
        self.gdb.b("main")
        self.gdb.c()
        self.gdb.command("delete")

class TriggerExecuteInstant(TriggerTest):
    """Test an execute breakpoint on the first instruction executed out of
    debug mode."""
    def test(self):
        main_address = self.gdb.p("$pc")
        self.gdb.command(f"hbreak *0x{main_address + 4:x}")
        self.gdb.c()
        assertEqual(self.gdb.p("$pc"), main_address+4)

# FIXME: Triggers aren't quite working yet
#class TriggerLoadAddress(TriggerTest):
#    def test(self):
#        self.gdb.command("rwatch *((&data)+1)")
#        output = self.gdb.c()
#        assertIn("read_loop", output)
#        assertEqual(self.gdb.p("$a0"),
#                self.gdb.p("(&data)+1"))
#        self.exit()

class TriggerLoadAddressInstant(TriggerTest):
    """Test a load address breakpoint on the first instruction executed out of
    debug mode."""
    def test(self):
        self.gdb.command("b just_before_read_loop")
        self.gdb.c()
        read_loop = self.gdb.p("&read_loop")
        read_again = self.gdb.p("&read_again")
        data = self.gdb.p("&data")
        self.gdb.command(f"rwatch *0x{data:x}")
        self.gdb.c()
        # Accept hitting the breakpoint before or after the load instruction.
        assertIn(self.gdb.p("$pc"), [read_loop, read_loop + 4])
        assertEqual(self.gdb.p("$a0"), self.gdb.p("&data"))

        self.gdb.c()
        assertIn(self.gdb.p("$pc"), [read_again, read_again + 4])
        assertEqual(self.gdb.p("$a0"), self.gdb.p("&data"))

# FIXME: Triggers aren't quite working yet
#class TriggerStoreAddress(TriggerTest):
#    def test(self):
#        self.gdb.command("watch *((&data)+3)")
#        output = self.gdb.c()
#        assertIn("write_loop", output)
#        assertEqual(self.gdb.p("$a0"),
#                self.gdb.p("(&data)+3"))
#        self.exit()

class TriggerStoreAddressInstant(TriggerTest):
    def test(self):
        """Test a store address breakpoint on the first instruction executed out
        of debug mode."""
        self.gdb.command("b just_before_write_loop")
        self.gdb.c()
        write_loop = self.gdb.p("&write_loop")
        data = self.gdb.p("&data")
        self.gdb.command(f"watch *0x{data:x}")
        self.gdb.c()

        # Accept hitting the breakpoint before or after the store instruction.
        assertIn(self.gdb.p("$pc"), [write_loop, write_loop + 4])
        assertEqual(self.gdb.p("$a0"), self.gdb.p("&data"))

class TriggerDmode(TriggerTest):
    def early_applicable(self):
        return self.hart.honors_tdata1_hmode and \
                self.hart.instruction_hardware_breakpoint_count > 0

    def check_triggers(self, tdata1_lsbs, tdata2):
        dmode = 1 << (self.hart.xlen-5)

        triggers = []

        if self.hart.xlen == 32:
            xlen_type = 'int'
        elif self.hart.xlen == 64:
            xlen_type = 'long long'
        else:
            raise NotImplementedError

        dmode_count = 0
        i = 0
        for i in range(16):
            tdata1 = self.gdb.p(f"(({xlen_type} *)&data)[{2*i}]")
            if (tdata1 == 0) or (tdata1 >> (self.hart.xlen-4) == 15):
                break
            tdata2 = self.gdb.p(f"(({xlen_type} *)&data)[{2*i+1}]")

            if tdata1 & dmode:
                dmode_count += 1
            else:
                assertEqual(tdata1 & 0xffff, tdata1_lsbs)
                assertEqual(tdata2, tdata2)

        assertGreater(i, 1)
        assertEqual(dmode_count, 1)

        return triggers

    def test(self):
        # If we want this test to run from flash, we can't have any software
        # breakpoints set.

        self.gdb.command("hbreak write_load_trigger")
        self.gdb.p("$pc=write_store_trigger")
        output = self.gdb.c()
        assertIn("write_load_trigger", output)
        self.check_triggers((1<<6) | (1<<1), 0xdeadbee0)
        self.gdb.command("delete")
        self.gdb.command("hbreak clear_triggers")
        output = self.gdb.c()
        assertIn("clear_triggers", output)
        self.check_triggers((1<<6) | (1<<0), 0xfeedac00)
        self.gdb.command("delete")
        self.exit()

class RegsTest(GdbSingleHartTest):
    compile_args = ("programs/regs.S", )
    def setup(self):
        self.gdb.load()
        main_bp = self.gdb.b("main")
        output = self.gdb.c()
        assertIn("Breakpoint ", output)
        assertIn("main", output)
        self.gdb.command(f"delete {main_bp}")
        self.gdb.b("handle_trap")

class WriteGprs(RegsTest):
    def test(self):
        if self.hart.extensionSupported('E'):
            regs = [(f"x{n}") for n in range(2, 16)]
        else:
            regs = [(f"x{n}") for n in range(2, 32)]

        self.gdb.p("$pc=write_regs")
        for i, r in enumerate(regs):
            self.gdb.p(f"${r}={(0xdeadbeef<<i)+17}")
        self.gdb.p("$x1=&data")
        self.gdb.command("b all_done")
        output = self.gdb.c()
        assertIn("Breakpoint ", output)

        # Just to get this data in the log.
        self.gdb.command("x/30gx &data")
        self.gdb.command("info registers")
        for n in range(len(regs)):
            assertEqual(self.gdb.x(f"(char*)(&data)+{8*n}", 'g'),
                    ((0xdeadbeef<<n)+17) & ((1<<self.hart.xlen)-1))

class WriteCsrs(RegsTest):
    def test(self):
        # As much a test of gdb as of the simulator.
        self.gdb.p("$mscratch=0")
        self.gdb.stepi()
        assertEqual(self.gdb.p("$mscratch"), 0)
        self.gdb.p("$mscratch=123")
        self.gdb.stepi()
        assertEqual(self.gdb.p("$mscratch"), 123)

        self.gdb.p("$pc=write_regs")
        self.gdb.p("$x1=&data")
        self.gdb.command("b all_done")
        self.gdb.command("c")

        assertEqual(123, self.gdb.p("$mscratch"))
        assertEqual(123, self.gdb.p("$x1"))
        assertEqual(123, self.gdb.p("$csr832"))

class DownloadTest(GdbTest):
    compile_args = ("programs/infinite_loop.S", )

    def setup(self):
        # pylint: disable=attribute-defined-outside-init
        length = min(2**18, max(2**10, self.hart.ram_size - 2048))
        # TODO: remove the next line so we get a bit more code to download. The
        # line above that allows for more data runs into some error I don't
        # have time to track down right now.
        #length = min(2**14, max(2**10, self.hart.ram_size - 2048))
        # pylint: disable-next=consider-using-with
        self.download_c = tempfile.NamedTemporaryFile(prefix="download_",
                suffix=".c", delete=False)
        self.download_c.write(b"#include <stdint.h>\n")
        self.download_c.write(
                b"unsigned int crc32a(uint8_t *message, unsigned int size);\n")
        self.download_c.write(b"const uint32_t length = %d;\n" % length)
        self.download_c.write(b"const uint8_t d[%d] = {\n" % length)
        self.crc = 0
        assert length % 16 == 0
        for i in range(length // 16):
            self.download_c.write(f"  /* 0x{i * 16:04x} */ ".encode())
            for _ in range(16):
                value = random.randrange(1<<8)
                self.download_c.write(f"0x{value:02x}, ".encode())
                self.crc = binascii.crc32(struct.pack("B", value), self.crc)
            self.download_c.write(b"\n")
        self.download_c.write(b"};\n")
        self.download_c.write(b"uint8_t *data = &d[0];\n")
        self.download_c.write(
                b"uint32_t main() { return crc32a(data, length); }\n")
        self.download_c.flush()

        if self.crc < 0:
            self.crc += 2**32

        compiled = {}
        for hart in self.target.harts:
            key = hart.system
            if key not in compiled:
                compiled[key] = self.target.compile(hart, self.download_c.name,
                        "programs/checksum.c")
            self.gdb.select_hart(hart)
            self.gdb.command(f"file {compiled.get(key)}")

        self.gdb.select_hart(self.hart)

    def test(self):
        self.gdb.load()
        self.parkOtherHarts()
        self.gdb.command("b _exit")
        #self.gdb.c(ops=100)
        self.gdb.c()
        assertEqual(self.gdb.p("status"), self.crc)
        os.unlink(self.download_c.name)

#class MprvTest(GdbSingleHartTest):
#    compile_args = ("programs/mprv.S", )
#    def setup(self):
#        self.gdb.load()
#
#    def test(self):
#        """Test that the debugger can access memory when MPRV is set."""
#        self.gdb.c(wait=False)
#        time.sleep(0.5)
#        self.gdb.interrupt()
#        output = self.gdb.command("p/x *(int*)(((char*)&data)-0x80000000)")
#        assertIn("0xbead", output)

class PrivTest(GdbSingleHartTest):
    """Base class for a few tests that change privilege levels."""
    compile_args = ("programs/priv.S", )
    def setup(self):
        # pylint: disable=attribute-defined-outside-init
        self.gdb.load()

        misa = self.hart.misa
        self.supported = set()
        if misa & (1<<20):
            self.supported.add(0)
        if misa & (1<<18):
            self.supported.add(1)
        if misa & (1<<7):
            self.supported.add(2)
        self.supported.add(3)

        self.disable_pmp()

        # Ensure Virtual Memory is disabled if applicable (SATP register is not
        # reset)
        try:
            self.gdb.p("$satp=0")
        except testlib.CouldNotFetch:
            # SATP only exists if you have S mode.
            pass

class PrivRw(PrivTest):
    """Test reading/writing priv."""
    def test(self):
        self.write_nop_program(4)
        for privilege in range(4):
            self.gdb.p(f"$priv={privilege}")
            self.gdb.stepi()
            actual = self.gdb.p("$priv")
            assertIn(actual, self.supported)
            if privilege in self.supported:
                assertEqual(actual, privilege)

class PrivChange(PrivTest):
    """Test that the core's privilege level actually changes when the debugger
    writes it."""
    def test(self):
        if 0 not in self.supported:
            raise TestNotApplicable

        self.gdb.b("main")
        self.gdb.c()

        # Machine mode
        self.gdb.p("$priv=3")
        main_address = self.gdb.p("$pc")
        self.gdb.stepi()
        assertEqual(f"{self.gdb.p('$pc'):x}", f"{main_address + 4:x}")

        # User mode
        self.gdb.p("$priv=0")
        self.gdb.stepi()
        # Should have taken an exception, so be at trap_entry
        pc = self.gdb.p("$pc")
        trap_entry = self.gdb.p("&trap_entry")
        assertEqual(pc, trap_entry)

class CheckMisa(GdbTest):
    """Make sure the misa we're using is actually what the target exposes."""
    def test(self):
        for hart in self.target.harts:
            self.gdb.select_hart(hart)
            misa = self.gdb.p("$misa")
            assertEqual(misa, hart.misa)

class TranslateTest(GdbSingleHartTest):
    compile_args = ("programs/translate.c", )

    def early_applicable(self):
        return self.hart.ram_size >= 32 * 1024

    def setup(self):
        self.disable_pmp()

        self.gdb.load()
        self.gdb.b("main")
        output = self.gdb.c()
        assertRegex(output, r"\bmain\b")

    def check_satp(self, mode):
        if self.hart.xlen == 32:
            satp = mode << 31
        else:
            satp = mode << 60
        try:
            self.gdb.p(f"$satp=0x{satp:x}")
        except testlib.CouldNotFetch as cnf:
            raise TestNotApplicable from cnf
        readback = self.gdb.p("$satp")
        self.gdb.p("$satp=0")
        if readback != satp:
            raise TestNotApplicable

    def test_translation(self):
        self.gdb.b("error")
        self.gdb.b("handle_trap")
        self.gdb.b("main:active")

        output = self.gdb.c()
        assertRegex(output, r"\bmain\b")
        assertEqual(0xdeadbeef, self.gdb.p("physical[0]"))
        assertEqual(0x55667788, self.gdb.p("physical[1]"))
        assertEqual(0xdeadbeef, self.gdb.p("virtual[0]"))
        assertEqual(0x55667788, self.gdb.p("virtual[1]"))

SATP_MODE_OFF = 0
SATP_MODE_SV32 = 1
SATP_MODE_SV39 = 8
SATP_MODE_SV48 = 9
SATP_MODE_SV57 = 10
SATP_MODE_SV64 = 11

class Sv32Test(TranslateTest):
    def early_applicable(self):
        return TranslateTest.early_applicable(self) and self.hart.xlen == 32

    def test(self):
        self.check_satp(SATP_MODE_SV32)
        self.gdb.p("vms=&sv32")
        self.test_translation()

class Sv39Test(TranslateTest):
    def early_applicable(self):
        return TranslateTest.early_applicable(self) and self.hart.xlen > 32

    def test(self):
        self.check_satp(SATP_MODE_SV39)
        self.gdb.p("vms=&sv39")
        self.test_translation()

class Sv48Test(TranslateTest):
    def early_applicable(self):
        return TranslateTest.early_applicable(self) and self.hart.xlen > 32

    def test(self):
        self.check_satp(SATP_MODE_SV48)
        self.gdb.p("vms=&sv48")
        self.test_translation()

class VectorTest(GdbSingleHartTest):
    compile_args = ("programs/vectors.S", )

    def early_applicable(self):
        if not self.hart.extensionSupported('V'):
            return False
        # If the compiler can't build this test, say it's not applicable. At
        # some time all compilers will support the V extension, but we're not
        # there yet.
        try:
            self.compile()
        except CompileError as e:
            if b"Error: unknown CSR `vlenb'" in e.stderr:
                return False
        return True

    def setup(self):
        self.gdb.load()
        self.gdb.b("main")
        self.gdb.c()

    def test(self):
        vlenb = self.gdb.p("$vlenb")
        self.gdb.command("delete")
        self.gdb.b("_exit")
        self.gdb.b("trap_entry")

        self.gdb.b("test0")

        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("test0", output)

        # I'm not convinced that writing 0 is supported on every vector
        # implementation. If this test fails, that might be why.
        for regname in ('$vl', '$vtype'):
            value = self.gdb.p(regname)
            assertNotEqual(value, 0)
            self.gdb.p(f"{regname}=0")
            self.gdb.command("maintenance flush register-cache")
            assertEqual(self.gdb.p(regname), 0)
            self.gdb.p(f"{regname}=0x{value:x}")
            self.gdb.command("maintenance flush register-cache")
            assertEqual(self.gdb.p(regname), value)

        assertEqual(self.gdb.p("$a0"), 0)
        a = self.gdb.x("&a", 'b', vlenb)
        b = self.gdb.x("&b", 'b', vlenb)
        v4 = self.gdb.p("$v4")
        assertEqual(a, b)
        assertEqual(b, v4["b"])
        assertEqual(0, self.gdb.p("$a0"))

        self.gdb.b("test1")

        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("test1", output)

        assertEqual(self.gdb.p("$a0"), 0)
        b = self.gdb.x("&b", 'b', vlenb)
        c = self.gdb.x("&c", 'b', vlenb)
        v4 = self.gdb.p("$v4")
        assertEqual(b, c)
        assertEqual(c, v4["b"])
        assertEqual(0, self.gdb.p("$a0"))

        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("_exit", output)
        assertEqual(self.gdb.p("status"), 0)

class EbreakTest(GdbSingleHartTest):
    """Test that we work correctly when somebody puts an ebreak directly into
    their code."""
    compile_args = ("programs/ebreak.c", )

    def setup(self):
        self.gdb.load()
        self.gdb.b("_exit")

    def test(self):
        # Should hit ebreak in the code.
        output = self.gdb.c()
        assertIn("ebreak", output)
        ebreak_pc = self.gdb.p("$pc")

        # Simple resume, we should hit the same ebreak again.
        output = self.gdb.c()
        assertIn("ebreak", output)
        assertEqual(ebreak_pc, self.gdb.p("$pc"))

        # Test getting past the ebreak by changing the PC.
        for _ in range(2):
            self.gdb.p("$pc=$pc+4")
            output = self.gdb.c()
            assertIn("ebreak", output)
            assertEqual(ebreak_pc, self.gdb.p("$pc"))

        self.gdb.p("$pc=$pc+4")
        output = self.gdb.c()
        assertIn("_exit", output)

class UnavailableMultiTest(GdbTest):
    """Test that we work correctly when a hart becomes unavailable (e.g. because
    it's powered down)."""
    compile_args = ("programs/counting_loop.c", "-DDEFINE_MALLOC",
            "-DDEFINE_FREE")

    def early_applicable(self):
        return (self.hart.support_cease or
                self.target.support_unavailable_control) \
            and len(self.target.harts) > 1

    def setup(self):
        ProgramTest.setup(self)
        self.parkOtherHarts()

    def test(self):
        # Run all the way to the infinite loop in exit
        self.gdb.c_all(wait=False)
        # Other hart should have become unavailable.
        if self.target.support_unavailable_control:
            self.server.wait_until_running(self.target.harts)
            self.server.set_available([self.hart])
        self.gdb.expect(r"\S+ became unavailable.")
        self.gdb.interrupt()

        for hart in self.target.harts:
            # Try to read misa on the ceased harts
            if hart != self.hart:
                try:
                    self.gdb.select_hart(hart)
                    self.gdb.p("$misa")
                    assert False, \
                        "Shouldn't be able to access unavailable hart."
                except (UnknownThread, CommandException):
                    pass

        # Check that the main hart can still be debugged.
        self.gdb.select_hart(self.hart)
        main_addr = self.gdb.p("$pc=main")
        self.gdb.stepi()
        # Assume the first instruction of main is not a jump.
        pc = self.gdb.p("$pc")
        assertGreater(pc, main_addr)
        assertLess(pc, main_addr + 8)

        self.gdb.p("$pc=_start")

        self.exit()

class CeaseStepiTest(ProgramTest):
    """Test that we work correctly when the hart we're debugging ceases to
    respond."""
    def early_applicable(self):
        return self.hart.support_cease

    def test(self):
        self.gdb.b("main")
        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("main", output)

        self.gdb.p("$pc=cease")
        self.gdb.stepi(wait=False)
        self.gdb.expect(r"\S+ became unavailable.")
        self.gdb.interrupt()
        try:
            self.gdb.p("$pc")
            assert False, ("Registers shouldn't be accessible when the hart is "
                           "unavailable.")
        except CouldNotReadRegisters:
            pass

class UnavailableRunTest(ProgramTest):
    """Test that we work correctly when the hart we're debugging ceases to
    respond."""
    def early_applicable(self):
        return self.hart.support_cease or \
            self.target.support_unavailable_control

    def test(self):
        self.gdb.b("main")
        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("main", output)

        if self.target.support_unavailable_control:
            self.gdb.p("$pc=loop_forever")
        else:
            self.gdb.p("$pc=cease")
        self.gdb.c(wait=False)
        if self.target.support_unavailable_control:
            self.server.wait_until_running([self.hart])
            self.server.set_available(
                [h for h in self.target.harts if h != self.hart])
        self.gdb.expect(r"\S+ became unavailable.")
        self.gdb.interrupt()
        # gdb might automatically switch to the available hart.
        try:
            self.gdb.select_hart(self.hart)
        except ThreadTerminated:
            # GDB sees that the thread is gone. Count this as success.
            return
        try:
            self.gdb.p("$pc")
            assert False, ("Registers shouldn't be accessible when the hart is "
                           "unavailable.")
        except CouldNotReadRegisters:
            pass

class UnavailableCycleTest(ProgramTest):
    """Test that harts can be debugged after becoming temporarily
    unavailable."""
    def early_applicable(self):
        return self.target.support_unavailable_control

    def test(self):
        self.gdb.b("main")
        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("main", output)

        self.gdb.p("$pc=loop_forever")
        self.gdb.c(wait=False)
        self.server.wait_until_running([self.hart])
        self.server.set_available(
                [h for h in self.target.harts if h != self.hart])
        self.gdb.expect(r"\S+ became unavailable.")

        # Now send a DMI command through OpenOCD to make the hart available
        # again.

        self.server.set_available(self.target.harts)
        self.gdb.expect(r"\S+ became available")
        self.gdb.interrupt()
        self.gdb.p("$pc")

class UnavailableHaltedTest(ProgramTest):
    """Test behavior when the current hart becomes unavailable while halted."""
    def early_applicable(self):
        return self.target.support_unavailable_control

    def test_resume(self, c_expect=None):
        # Confirm things don't completely fall apart on `c`
        self.gdb.c(wait=False)
        if c_expect:
            self.gdb.expect(c_expect)
        else:
            time.sleep(1)

        # Now send a DMI command through OpenOCD to make the hart available
        # again.
        self.server.set_available(self.target.harts)

        # The hart will show up as halted. That's just how spike behaves when we
        # make a hart unavailable while it's halted.

        self.gdb.expect("became available")
        self.gdb.p("$minstret")

    def test(self):
        self.gdb.b("main")
        output = self.gdb.c()
        assertIn("Breakpoint", output)
        assertIn("main", output)

        self.server.set_available(
                [h for h in self.target.harts if h != self.hart])
        self.gdb.command(f"# disabled hart {self.hart.id}")
        # gdb won't show that the hart became unavailable, because it thinks
        # nothing can changed on a halted Linux thread.
        try:
            # We can't try this with something reasonable like $pc, because gdb
            # has cached it, and it assumes the target can't change while it's
            # halted.
            self.gdb.p("$minstret")
            assert False, ("Registers shouldn't be accessible when the hart is "
                           "unavailable.")
        except testlib.CouldNotFetch:
            pass

        # There's a breakpoint set, so gdb will single step. You can't single
        # step an unavailable target, so gdb should get a message to that
        # effect.
        self.test_resume(c_expect="unavailable")

        # Delete breakpoints
        self.gdb.command("delete")
        self.server.set_available(
                [h for h in self.target.harts if h != self.hart])

        # Resume again. With breakpoints cleared, gdb will send vCont;c instead
        # of step. There should be no error this time, since there is no
        # observable difference between an unavailable thread and a running
        # thread.
        self.test_resume()

class FreeRtosTest(GdbTest):
    def early_applicable(self):
        return self.target.freertos_binary

    def freertos(self):
        return True

    def test(self):
        self.gdb.command(f"file {self.target.freertos_binary}")
        self.gdb.load()

        output = self.gdb.command("monitor riscv_freertos_stacking mainline")

        # Turn off htif, which doesn't work when the file is loaded into spike
        # through gdb. It only works when spike loads the ELF file itself.
        bp = self.gdb.b("main")
        self.gdb.c()
        self.gdb.command(f"delete {bp}")
        self.gdb.p("*((int*) &use_htif) = 0")
        # Need this, otherwise gdb complains that there is no current active
        # thread.
        self.gdb.threads()

        # fake 'Current Execution' thread is created.
        threads = self.gdb.threads()
        assertEqual(len(threads), 1)
        assertIn("Current Execution", threads[0])

        bp = self.gdb.b("vTaskStartScheduler")
        self.gdb.c()
        self.gdb.command(f"delete {bp}")
        # 'Current Execution' is still there before the scheduler has been
        # started.  Now there are 3 threads: Current Execution, Rx, Tx.
        threads = self.gdb.threads()
        assertEqual(len(threads), 3)

        bp = self.gdb.b("prvQueueReceiveTask")
        self.gdb.c()
        self.gdb.command(f"delete {bp}")

        bp = self.gdb.b("prvQueueSendTask")
        self.gdb.c()
        self.gdb.command(f"delete {bp}")

        # no more fake 'Current Execution' thread.
        # Now there are 4 threads: Rx, Tx, IDLE, Tmr Svc.
        threads = self.gdb.threads()
        assertEqual(len(threads), 4)

        values = {}
        for thread in threads:
            assertNotIn("No Name", thread[1])
            self.gdb.thread(thread)
            assertEqual(self.gdb.p("$zero"), 0)
            output = self.gdb.command("info reg sp")
            assertIn("ucHeap", output)
            self.gdb.command("info reg mstatus")
            values[thread.id] = self.gdb.p("$s11")
            self.gdb.p(f"$s11=0x{values[thread.id] ^ int(thread.id):x}")

        # Test that writing worked
        self.gdb.stepi()
        for thread in self.gdb.threads():
            self.gdb.thread(thread)
            assertEqual(self.gdb.p("$s11"), values[thread.id] ^ int(thread.id))

class StepThread2Test(GdbTest):
    # Check that we can do stepi on thread 2 without GDB switching to thread 1.
    # There was a bug where this could happen, because OpenOCD was mistakenly
    # omitting a thread ID in its stop reply.  This was addressed in OpenOCD,
    # but if there is a regression in the future, this test should catch it)

    def early_applicable(self):
        return len(self.target.harts) > 1

    def test(self):
        output = self.gdb.command("thread 2")
        if "Unknown thread" in output:
            raise TestNotApplicable
        before = self.gdb.command("thread")
        self.gdb.stepi()
        after = self.gdb.command("thread")
        # make sure that single-step doesn't alter
        # GDB's conception of the current thread
        assertEqual(before, after)

class EtriggerTest(DebugTest):
    def setup(self):
        DebugTest.setup(self)
        self.gdb.b("main:start")
        self.gdb.c()
        self.gdb.b("handle_trap")

    def test(self):
        # Set trigger on Load access fault
        self.gdb.command("monitor riscv etrigger set m 0x20")
        # Set fox to a null pointer so we'll get a load access exception later.
        self.gdb.p("fox=(char*)0")
        output = self.gdb.c()
        # We should not be at handle_trap
        assertNotIn("handle_trap", output)
        # Instead, we should have hit a breakpoint at trap_entry, which is the
        # actual exception handler.
        assertIn("breakpoint", output)
        assertIn("trap_entry", self.gdb.where())

class IcountTest(DebugTest):
    compile_args = ("programs/infinite_loop.S", )

    def setup(self):
        DebugTest.setup(self)
        self.gdb.b("main")
        self.gdb.c()

    def test(self):
        # Execute 2 instructions.
        output = self.gdb.command("monitor riscv icount set m 2")
        if self.target.icount_limit > 1:
            assertNotIn("Failed", output)
        else:
            assertIn("Failed", output)
            self.gdb.b("main_post_csrr")
        output = self.gdb.c()
        assertIn("main_post_csrr", output)
        main_post_csrr = self.gdb.p("&main_post_csrr")
        assertEqual(self.gdb.p("$pc"), main_post_csrr)

        self.gdb.command("monitor riscv icount clear")

        # Execute 1 instruction.
        output = self.gdb.command("monitor riscv icount set m 1")
        assertNotIn("Failed", output)
        output = self.gdb.c()
        assertIn("breakpoint", output)
        assertEqual(self.gdb.p("$pc"), main_post_csrr + 4)

class ItriggerTest(GdbSingleHartTest):
    compile_args = ("programs/interrupt.c",)

    def early_applicable(self):
        return self.target.supports_clint_mtime

    def setup(self):
        self.gdb.load()

    def test(self):
        output = self.gdb.command("monitor riscv itrigger set 0x80")
        assertIn("Doesn't make sense", output)
        output = self.gdb.command("monitor riscv itrigger set m 0")
        assertIn("Doesn't make sense", output)
        output = self.gdb.command("monitor riscv itrigger clear")
        assertIn("No itrigger is set", output)
        self.gdb.command("monitor riscv itrigger set m 0x80")

        self.gdb.c()
        assertIn("trap_entry", self.gdb.where())

        self.gdb.command("monitor riscv itrigger clear")
        self.gdb.p("keep_running=0")
        self.exit()

parsed = None
def main():
    parser = argparse.ArgumentParser(
            description="Test that gdb can talk to a RISC-V target.",
            epilog="""
            Example command line from the real world:
            Run all RegsTest cases against a physical FPGA, with custom openocd command:
            ./gdbserver.py --freedom-e300 --server_cmd "$HOME/SiFive/openocd/src/openocd -s $HOME/SiFive/openocd/tcl -d" Simple
            """)
    targets.add_target_options(parser)

    testlib.add_test_run_options(parser)

    # TODO: remove global
    global parsed   # pylint: disable=global-statement
    parsed = parser.parse_args()
    target = targets.target(parsed)
    testlib.print_log_names = parsed.print_log_names

    module = sys.modules[__name__]

    return testlib.run_all_tests(module, target, parsed)

# TROUBLESHOOTING TIPS
# If a particular test fails, run just that one test, eg.:
# ./gdbserver.py MprvTest.test_mprv
# Then inspect gdb.log and spike.log to see what happened in more detail.

if __name__ == '__main__':
    sys.exit(main())