aboutsummaryrefslogtreecommitdiff
path: root/src/target/riscv/riscv.c
blob: 174568fbe6be830a58dba3065f8b811576535d92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
/* SPDX-License-Identifier: GPL-2.0-or-later */

#include <assert.h>
#include <stdlib.h>
#include <time.h>

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <helper/log.h>
#include <helper/time_support.h>
#include "target/target.h"
#include "target/algorithm.h"
#include "target/target_type.h"
#include <target/smp.h>
#include "jtag/jtag.h"
#include "target/register.h"
#include "target/breakpoints.h"
#include "helper/base64.h"
#include "helper/time_support.h"
#include "riscv.h"
#include "gdb_regs.h"
#include "rtos/rtos.h"
#include "debug_defines.h"
#include <helper/bits.h>

#define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
#define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))

/* Constants for legacy SiFive hardware breakpoints. */
#define CSR_BPCONTROL_X			(1<<0)
#define CSR_BPCONTROL_W			(1<<1)
#define CSR_BPCONTROL_R			(1<<2)
#define CSR_BPCONTROL_U			(1<<3)
#define CSR_BPCONTROL_S			(1<<4)
#define CSR_BPCONTROL_H			(1<<5)
#define CSR_BPCONTROL_M			(1<<6)
#define CSR_BPCONTROL_BPMATCH	(0xf<<7)
#define CSR_BPCONTROL_BPACTION	(0xff<<11)

#define DEBUG_ROM_START         0x800
#define DEBUG_ROM_RESUME	(DEBUG_ROM_START + 4)
#define DEBUG_ROM_EXCEPTION	(DEBUG_ROM_START + 8)
#define DEBUG_RAM_START         0x400

#define SETHALTNOT				0x10c

/*** JTAG registers. ***/

#define DTMCONTROL					0x10
#define DTMCONTROL_DBUS_RESET		(1<<16)
#define DTMCONTROL_IDLE				(7<<10)
#define DTMCONTROL_ADDRBITS			(0xf<<4)
#define DTMCONTROL_VERSION			(0xf)

#define DBUS						0x11
#define DBUS_OP_START				0
#define DBUS_OP_SIZE				2
typedef enum {
	DBUS_OP_NOP = 0,
	DBUS_OP_READ = 1,
	DBUS_OP_WRITE = 2
} dbus_op_t;
typedef enum {
	DBUS_STATUS_SUCCESS = 0,
	DBUS_STATUS_FAILED = 2,
	DBUS_STATUS_BUSY = 3
} dbus_status_t;
#define DBUS_DATA_START				2
#define DBUS_DATA_SIZE				34
#define DBUS_ADDRESS_START			36

typedef enum slot {
	SLOT0,
	SLOT1,
	SLOT_LAST,
} slot_t;

/*** Debug Bus registers. ***/

#define DMCONTROL				0x10
#define DMCONTROL_INTERRUPT		(((uint64_t)1)<<33)
#define DMCONTROL_HALTNOT		(((uint64_t)1)<<32)
#define DMCONTROL_BUSERROR		(7<<19)
#define DMCONTROL_SERIAL		(3<<16)
#define DMCONTROL_AUTOINCREMENT	(1<<15)
#define DMCONTROL_ACCESS		(7<<12)
#define DMCONTROL_HARTID		(0x3ff<<2)
#define DMCONTROL_NDRESET		(1<<1)
#define DMCONTROL_FULLRESET		1

#define DMINFO					0x11
#define DMINFO_ABUSSIZE			(0x7fU<<25)
#define DMINFO_SERIALCOUNT		(0xf<<21)
#define DMINFO_ACCESS128		(1<<20)
#define DMINFO_ACCESS64			(1<<19)
#define DMINFO_ACCESS32			(1<<18)
#define DMINFO_ACCESS16			(1<<17)
#define DMINFO_ACCESS8			(1<<16)
#define DMINFO_DRAMSIZE			(0x3f<<10)
#define DMINFO_AUTHENTICATED	(1<<5)
#define DMINFO_AUTHBUSY			(1<<4)
#define DMINFO_AUTHTYPE			(3<<2)
#define DMINFO_VERSION			3

/*** Info about the core being debugged. ***/

#define DBUS_ADDRESS_UNKNOWN	0xffff

#define MAX_HWBPS			16
#define DRAM_CACHE_SIZE		16

uint8_t ir_dtmcontrol[4] = {DTMCONTROL};
struct scan_field select_dtmcontrol = {
	.in_value = NULL,
	.out_value = ir_dtmcontrol
};
uint8_t ir_dbus[4] = {DBUS};
struct scan_field select_dbus = {
	.in_value = NULL,
	.out_value = ir_dbus
};
uint8_t ir_idcode[4] = {0x1};
struct scan_field select_idcode = {
	.in_value = NULL,
	.out_value = ir_idcode
};

bscan_tunnel_type_t bscan_tunnel_type;
int bscan_tunnel_ir_width; /* if zero, then tunneling is not present/active */

static const uint8_t bscan_zero[4] = {0};
static const uint8_t bscan_one[4] = {1};

uint8_t ir_user4[4];
struct scan_field select_user4 = {
	.in_value = NULL,
	.out_value = ir_user4
};


uint8_t bscan_tunneled_ir_width[4] = {5};  /* overridden by assignment in riscv_init_target */
struct scan_field _bscan_tunnel_data_register_select_dmi[] = {
		{
			.num_bits = 3,
			.out_value = bscan_zero,
			.in_value = NULL,
		},
		{
			.num_bits = 5, /* initialized in riscv_init_target to ir width of DM */
			.out_value = ir_dbus,
			.in_value = NULL,
		},
		{
			.num_bits = 7,
			.out_value = bscan_tunneled_ir_width,
			.in_value = NULL,
		},
		{
			.num_bits = 1,
			.out_value = bscan_zero,
			.in_value = NULL,
		}
};

struct scan_field _bscan_tunnel_nested_tap_select_dmi[] = {
		{
			.num_bits = 1,
			.out_value = bscan_zero,
			.in_value = NULL,
		},
		{
			.num_bits = 7,
			.out_value = bscan_tunneled_ir_width,
			.in_value = NULL,
		},
		{
			.num_bits = 0, /* initialized in riscv_init_target to ir width of DM */
			.out_value = ir_dbus,
			.in_value = NULL,
		},
		{
			.num_bits = 3,
			.out_value = bscan_zero,
			.in_value = NULL,
		}
};
struct scan_field *bscan_tunnel_nested_tap_select_dmi = _bscan_tunnel_nested_tap_select_dmi;
uint32_t bscan_tunnel_nested_tap_select_dmi_num_fields = ARRAY_SIZE(_bscan_tunnel_nested_tap_select_dmi);

struct scan_field *bscan_tunnel_data_register_select_dmi = _bscan_tunnel_data_register_select_dmi;
uint32_t bscan_tunnel_data_register_select_dmi_num_fields = ARRAY_SIZE(_bscan_tunnel_data_register_select_dmi);

struct trigger {
	uint64_t address;
	uint32_t length;
	uint64_t mask;
	uint64_t value;
	bool read, write, execute;
	int unique_id;
};

/* Wall-clock timeout for a command/access. Settable via RISC-V Target commands.*/
int riscv_command_timeout_sec = DEFAULT_COMMAND_TIMEOUT_SEC;

/* Wall-clock timeout after reset. Settable via RISC-V Target commands.*/
int riscv_reset_timeout_sec = DEFAULT_RESET_TIMEOUT_SEC;

bool riscv_enable_virt2phys = true;
bool riscv_ebreakm = true;
bool riscv_ebreaks = true;
bool riscv_ebreaku = true;

bool riscv_enable_virtual;

static enum {
	RO_NORMAL,
	RO_REVERSED
} resume_order;

const virt2phys_info_t sv32 = {
	.name = "Sv32",
	.va_bits = 32,
	.level = 2,
	.pte_shift = 2,
	.vpn_shift = {12, 22},
	.vpn_mask = {0x3ff, 0x3ff},
	.pte_ppn_shift = {10, 20},
	.pte_ppn_mask = {0x3ff, 0xfff},
	.pa_ppn_shift = {12, 22},
	.pa_ppn_mask = {0x3ff, 0xfff},
};

const virt2phys_info_t sv39 = {
	.name = "Sv39",
	.va_bits = 39,
	.level = 3,
	.pte_shift = 3,
	.vpn_shift = {12, 21, 30},
	.vpn_mask = {0x1ff, 0x1ff, 0x1ff},
	.pte_ppn_shift = {10, 19, 28},
	.pte_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff},
	.pa_ppn_shift = {12, 21, 30},
	.pa_ppn_mask = {0x1ff, 0x1ff, 0x3ffffff},
};

const virt2phys_info_t sv48 = {
	.name = "Sv48",
	.va_bits = 48,
	.level = 4,
	.pte_shift = 3,
	.vpn_shift = {12, 21, 30, 39},
	.vpn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ff},
	.pte_ppn_shift = {10, 19, 28, 37},
	.pte_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff},
	.pa_ppn_shift = {12, 21, 30, 39},
	.pa_ppn_mask = {0x1ff, 0x1ff, 0x1ff, 0x1ffff},
};

void riscv_sample_buf_maybe_add_timestamp(struct target *target, bool before)
{
	RISCV_INFO(r);
	uint32_t now = timeval_ms() & 0xffffffff;
	if (r->sample_buf.used + 5 < r->sample_buf.size) {
		if (before)
			r->sample_buf.buf[r->sample_buf.used++] = RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE;
		else
			r->sample_buf.buf[r->sample_buf.used++] = RISCV_SAMPLE_BUF_TIMESTAMP_AFTER;
		r->sample_buf.buf[r->sample_buf.used++] = now & 0xff;
		r->sample_buf.buf[r->sample_buf.used++] = (now >> 8) & 0xff;
		r->sample_buf.buf[r->sample_buf.used++] = (now >> 16) & 0xff;
		r->sample_buf.buf[r->sample_buf.used++] = (now >> 24) & 0xff;
	}
}

static int riscv_resume_go_all_harts(struct target *target);

void select_dmi_via_bscan(struct target *target)
{
	jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE);
	if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER)
		jtag_add_dr_scan(target->tap, bscan_tunnel_data_register_select_dmi_num_fields,
										bscan_tunnel_data_register_select_dmi, TAP_IDLE);
	else /* BSCAN_TUNNEL_NESTED_TAP */
		jtag_add_dr_scan(target->tap, bscan_tunnel_nested_tap_select_dmi_num_fields,
										bscan_tunnel_nested_tap_select_dmi, TAP_IDLE);
}

uint32_t dtmcontrol_scan_via_bscan(struct target *target, uint32_t out)
{
	/* On BSCAN TAP: Select IR=USER4, issue tunneled IR scan via BSCAN TAP's DR */
	uint8_t tunneled_ir_width[4] = {bscan_tunnel_ir_width};
	uint8_t tunneled_dr_width[4] = {32};
	uint8_t out_value[5] = {0};
	uint8_t in_value[5] = {0};

	buf_set_u32(out_value, 0, 32, out);
	struct scan_field tunneled_ir[4] = {};
	struct scan_field tunneled_dr[4] = {};

	if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) {
		tunneled_ir[0].num_bits = 3;
		tunneled_ir[0].out_value = bscan_zero;
		tunneled_ir[0].in_value = NULL;
		tunneled_ir[1].num_bits = bscan_tunnel_ir_width;
		tunneled_ir[1].out_value = ir_dtmcontrol;
		tunneled_ir[1].in_value = NULL;
		tunneled_ir[2].num_bits = 7;
		tunneled_ir[2].out_value = tunneled_ir_width;
		tunneled_ir[2].in_value = NULL;
		tunneled_ir[3].num_bits = 1;
		tunneled_ir[3].out_value = bscan_zero;
		tunneled_ir[3].in_value = NULL;

		tunneled_dr[0].num_bits = 3;
		tunneled_dr[0].out_value = bscan_zero;
		tunneled_dr[0].in_value = NULL;
		tunneled_dr[1].num_bits = 32 + 1;
		tunneled_dr[1].out_value = out_value;
		tunneled_dr[1].in_value = in_value;
		tunneled_dr[2].num_bits = 7;
		tunneled_dr[2].out_value = tunneled_dr_width;
		tunneled_dr[2].in_value = NULL;
		tunneled_dr[3].num_bits = 1;
		tunneled_dr[3].out_value = bscan_one;
		tunneled_dr[3].in_value = NULL;
	} else {
		/* BSCAN_TUNNEL_NESTED_TAP */
		tunneled_ir[3].num_bits = 3;
		tunneled_ir[3].out_value = bscan_zero;
		tunneled_ir[3].in_value = NULL;
		tunneled_ir[2].num_bits = bscan_tunnel_ir_width;
		tunneled_ir[2].out_value = ir_dtmcontrol;
		tunneled_ir[1].in_value = NULL;
		tunneled_ir[1].num_bits = 7;
		tunneled_ir[1].out_value = tunneled_ir_width;
		tunneled_ir[2].in_value = NULL;
		tunneled_ir[0].num_bits = 1;
		tunneled_ir[0].out_value = bscan_zero;
		tunneled_ir[0].in_value = NULL;

		tunneled_dr[3].num_bits = 3;
		tunneled_dr[3].out_value = bscan_zero;
		tunneled_dr[3].in_value = NULL;
		tunneled_dr[2].num_bits = 32 + 1;
		tunneled_dr[2].out_value = out_value;
		tunneled_dr[2].in_value = in_value;
		tunneled_dr[1].num_bits = 7;
		tunneled_dr[1].out_value = tunneled_dr_width;
		tunneled_dr[1].in_value = NULL;
		tunneled_dr[0].num_bits = 1;
		tunneled_dr[0].out_value = bscan_one;
		tunneled_dr[0].in_value = NULL;
	}
	jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE);
	jtag_add_dr_scan(target->tap, ARRAY_SIZE(tunneled_ir), tunneled_ir, TAP_IDLE);
	jtag_add_dr_scan(target->tap, ARRAY_SIZE(tunneled_dr), tunneled_dr, TAP_IDLE);
	select_dmi_via_bscan(target);

	int retval = jtag_execute_queue();
	if (retval != ERROR_OK) {
		LOG_ERROR("failed jtag scan: %d", retval);
		return retval;
	}
	/* Note the starting offset is bit 1, not bit 0.  In BSCAN tunnel, there is a one-bit TCK skew between
	   output and input */
	uint32_t in = buf_get_u32(in_value, 1, 32);
	LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in);

	return in;
}

static uint32_t dtmcontrol_scan(struct target *target, uint32_t out)
{
	struct scan_field field;
	uint8_t in_value[4];
	uint8_t out_value[4] = { 0 };

	if (bscan_tunnel_ir_width != 0)
		return dtmcontrol_scan_via_bscan(target, out);


	buf_set_u32(out_value, 0, 32, out);

	jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);

	field.num_bits = 32;
	field.out_value = out_value;
	field.in_value = in_value;
	jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);

	/* Always return to dbus. */
	jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);

	int retval = jtag_execute_queue();
	if (retval != ERROR_OK) {
		LOG_ERROR("failed jtag scan: %d", retval);
		return retval;
	}

	uint32_t in = buf_get_u32(field.in_value, 0, 32);
	LOG_DEBUG("DTMCONTROL: 0x%x -> 0x%x", out, in);

	return in;
}

static struct target_type *get_target_type(struct target *target)
{
	riscv_info_t *info = (riscv_info_t *) target->arch_info;

	if (!info) {
		LOG_ERROR("Target has not been initialized");
		return NULL;
	}

	switch (info->dtm_version) {
		case 0:
			return &riscv011_target;
		case 1:
			return &riscv013_target;
		default:
			LOG_ERROR("[%s] Unsupported DTM version: %d",
					target_name(target), info->dtm_version);
			return NULL;
	}
}

static int riscv_create_target(struct target *target, Jim_Interp *interp)
{
	LOG_DEBUG("riscv_create_target()");
	target->arch_info = calloc(1, sizeof(riscv_info_t));
	if (!target->arch_info) {
		LOG_ERROR("Failed to allocate RISC-V target structure.");
		return ERROR_FAIL;
	}
	riscv_info_init(target, target->arch_info);
	return ERROR_OK;
}

static int riscv_init_target(struct command_context *cmd_ctx,
		struct target *target)
{
	LOG_DEBUG("riscv_init_target()");
	RISCV_INFO(info);
	info->cmd_ctx = cmd_ctx;

	select_dtmcontrol.num_bits = target->tap->ir_length;
	select_dbus.num_bits = target->tap->ir_length;
	select_idcode.num_bits = target->tap->ir_length;

	if (bscan_tunnel_ir_width != 0) {
		assert(target->tap->ir_length >= 6);
		uint32_t ir_user4_raw = 0x23 << (target->tap->ir_length - 6);
		ir_user4[0] = (uint8_t)ir_user4_raw;
		ir_user4[1] = (uint8_t)(ir_user4_raw >>= 8);
		ir_user4[2] = (uint8_t)(ir_user4_raw >>= 8);
		ir_user4[3] = (uint8_t)(ir_user4_raw >>= 8);
		select_user4.num_bits = target->tap->ir_length;
		bscan_tunneled_ir_width[0] = bscan_tunnel_ir_width;
		if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER)
			bscan_tunnel_data_register_select_dmi[1].num_bits = bscan_tunnel_ir_width;
		else /* BSCAN_TUNNEL_NESTED_TAP */
			bscan_tunnel_nested_tap_select_dmi[2].num_bits = bscan_tunnel_ir_width;
	}

	riscv_semihosting_init(target);

	target->debug_reason = DBG_REASON_DBGRQ;

	return ERROR_OK;
}

static void riscv_free_registers(struct target *target)
{
	/* Free the shared structure use for most registers. */
	if (target->reg_cache) {
		if (target->reg_cache->reg_list) {
			free(target->reg_cache->reg_list[0].arch_info);
			/* Free the ones we allocated separately. */
			for (unsigned i = GDB_REGNO_COUNT; i < target->reg_cache->num_regs; i++)
				free(target->reg_cache->reg_list[i].arch_info);
			for (unsigned int i = 0; i < target->reg_cache->num_regs; i++)
				free(target->reg_cache->reg_list[i].value);
			free(target->reg_cache->reg_list);
		}
		free(target->reg_cache);
	}
}

static void riscv_deinit_target(struct target *target)
{
	LOG_DEBUG("riscv_deinit_target()");

	riscv_info_t *info = target->arch_info;
	struct target_type *tt = get_target_type(target);

	if (riscv_flush_registers(target) != ERROR_OK)
		LOG_ERROR("[%s] Failed to flush registers. Ignoring this error.", target_name(target));

	if (tt && info->version_specific)
		tt->deinit_target(target);

	riscv_free_registers(target);

	range_list_t *entry, *tmp;
	list_for_each_entry_safe(entry, tmp, &info->expose_csr, list) {
		free(entry->name);
		free(entry);
	}

	list_for_each_entry_safe(entry, tmp, &info->expose_custom, list) {
		free(entry->name);
		free(entry);
	}

	free(info->reg_names);
	free(target->arch_info);

	target->arch_info = NULL;
}

static void trigger_from_breakpoint(struct trigger *trigger,
		const struct breakpoint *breakpoint)
{
	trigger->address = breakpoint->address;
	trigger->length = breakpoint->length;
	trigger->mask = ~0LL;
	trigger->read = false;
	trigger->write = false;
	trigger->execute = true;
	/* unique_id is unique across both breakpoints and watchpoints. */
	trigger->unique_id = breakpoint->unique_id;
}

static int maybe_add_trigger_t1(struct target *target,
		struct trigger *trigger, uint64_t tdata1)
{
	RISCV_INFO(r);

	const uint32_t bpcontrol_x = 1<<0;
	const uint32_t bpcontrol_w = 1<<1;
	const uint32_t bpcontrol_r = 1<<2;
	const uint32_t bpcontrol_u = 1<<3;
	const uint32_t bpcontrol_s = 1<<4;
	const uint32_t bpcontrol_h = 1<<5;
	const uint32_t bpcontrol_m = 1<<6;
	const uint32_t bpcontrol_bpmatch = 0xf << 7;
	const uint32_t bpcontrol_bpaction = 0xff << 11;

	if (tdata1 & (bpcontrol_r | bpcontrol_w | bpcontrol_x)) {
		/* Trigger is already in use, presumably by user code. */
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	tdata1 = set_field(tdata1, bpcontrol_r, trigger->read);
	tdata1 = set_field(tdata1, bpcontrol_w, trigger->write);
	tdata1 = set_field(tdata1, bpcontrol_x, trigger->execute);
	tdata1 = set_field(tdata1, bpcontrol_u,
			!!(r->misa & BIT('U' - 'A')));
	tdata1 = set_field(tdata1, bpcontrol_s,
			!!(r->misa & BIT('S' - 'A')));
	tdata1 = set_field(tdata1, bpcontrol_h,
			!!(r->misa & BIT('H' - 'A')));
	tdata1 |= bpcontrol_m;
	tdata1 = set_field(tdata1, bpcontrol_bpmatch, 0); /* exact match */
	tdata1 = set_field(tdata1, bpcontrol_bpaction, 0); /* cause bp exception */

	riscv_set_register(target, GDB_REGNO_TDATA1, tdata1);

	riscv_reg_t tdata1_rb;
	if (riscv_get_register(target, &tdata1_rb, GDB_REGNO_TDATA1) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("tdata1=0x%" PRIx64, tdata1_rb);

	if (tdata1 != tdata1_rb) {
		LOG_DEBUG("Trigger doesn't support what we need; After writing 0x%"
				PRIx64 " to tdata1 it contains 0x%" PRIx64,
				tdata1, tdata1_rb);
		riscv_set_register(target, GDB_REGNO_TDATA1, 0);
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	riscv_set_register(target, GDB_REGNO_TDATA2, trigger->address);

	return ERROR_OK;
}

static int maybe_add_trigger_t2(struct target *target,
		struct trigger *trigger, uint64_t tdata1)
{
	RISCV_INFO(r);

	/* tselect is already set */
	if (tdata1 & (MCONTROL_EXECUTE | MCONTROL_STORE | MCONTROL_LOAD)) {
		/* Trigger is already in use, presumably by user code. */
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	/* address/data match trigger */
	tdata1 |= MCONTROL_DMODE(riscv_xlen(target));
	tdata1 = set_field(tdata1, MCONTROL_ACTION,
			MCONTROL_ACTION_DEBUG_MODE);
	tdata1 = set_field(tdata1, MCONTROL_MATCH, MCONTROL_MATCH_EQUAL);
	tdata1 |= MCONTROL_M;
	if (r->misa & (1 << ('S' - 'A')))
		tdata1 |= MCONTROL_S;
	if (r->misa & (1 << ('U' - 'A')))
		tdata1 |= MCONTROL_U;

	if (trigger->execute)
		tdata1 |= MCONTROL_EXECUTE;
	if (trigger->read)
		tdata1 |= MCONTROL_LOAD;
	if (trigger->write)
		tdata1 |= MCONTROL_STORE;

	riscv_set_register(target, GDB_REGNO_TDATA1, tdata1);

	uint64_t tdata1_rb;
	int result = riscv_get_register(target, &tdata1_rb, GDB_REGNO_TDATA1);
	if (result != ERROR_OK)
		return result;
	LOG_DEBUG("tdata1=0x%" PRIx64, tdata1_rb);

	if (tdata1 != tdata1_rb) {
		LOG_DEBUG("Trigger doesn't support what we need; After writing 0x%"
				PRIx64 " to tdata1 it contains 0x%" PRIx64,
				tdata1, tdata1_rb);
		riscv_set_register(target, GDB_REGNO_TDATA1, 0);
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	riscv_set_register(target, GDB_REGNO_TDATA2, trigger->address);

	return ERROR_OK;
}

static int maybe_add_trigger_t6(struct target *target,
		struct trigger *trigger, uint64_t tdata1)
{
	RISCV_INFO(r);

	/* tselect is already set */
	if (tdata1 & (CSR_MCONTROL6_EXECUTE | CSR_MCONTROL6_STORE | CSR_MCONTROL6_LOAD)) {
		/* Trigger is already in use, presumably by user code. */
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	/* address/data match trigger */
	tdata1 |= MCONTROL_DMODE(riscv_xlen(target));
	tdata1 = set_field(tdata1, CSR_MCONTROL6_ACTION,
			MCONTROL_ACTION_DEBUG_MODE);
	tdata1 = set_field(tdata1, CSR_MCONTROL6_MATCH, MCONTROL_MATCH_EQUAL);
	tdata1 |= CSR_MCONTROL6_M;
	if (r->misa & (1 << ('H' - 'A')))
		tdata1 |= CSR_MCONTROL6_VS | CSR_MCONTROL6_VU;
	if (r->misa & (1 << ('S' - 'A')))
		tdata1 |= CSR_MCONTROL6_S;
	if (r->misa & (1 << ('U' - 'A')))
		tdata1 |= CSR_MCONTROL6_U;

	if (trigger->execute)
		tdata1 |= CSR_MCONTROL6_EXECUTE;
	if (trigger->read)
		tdata1 |= CSR_MCONTROL6_LOAD;
	if (trigger->write)
		tdata1 |= CSR_MCONTROL6_STORE;

	riscv_set_register(target, GDB_REGNO_TDATA1, tdata1);

	uint64_t tdata1_rb;
	int result = riscv_get_register(target, &tdata1_rb, GDB_REGNO_TDATA1);
	if (result != ERROR_OK)
		return result;
	LOG_DEBUG("tdata1=0x%" PRIx64, tdata1_rb);

	if (tdata1 != tdata1_rb) {
		LOG_DEBUG("Trigger doesn't support what we need; After writing 0x%"
				PRIx64 " to tdata1 it contains 0x%" PRIx64,
				tdata1, tdata1_rb);
		riscv_set_register(target, GDB_REGNO_TDATA1, 0);
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	riscv_set_register(target, GDB_REGNO_TDATA2, trigger->address);

	return ERROR_OK;
}

static int add_trigger(struct target *target, struct trigger *trigger)
{
	RISCV_INFO(r);

	if (riscv_enumerate_triggers(target) != ERROR_OK)
		return ERROR_FAIL;

	riscv_reg_t tselect;
	if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK)
		return ERROR_FAIL;

	unsigned int i;
	for (i = 0; i < r->trigger_count; i++) {
		if (r->trigger_unique_id[i] != -1)
			continue;

		riscv_set_register(target, GDB_REGNO_TSELECT, i);

		uint64_t tdata1;
		int result = riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1);
		if (result != ERROR_OK)
			return result;
		int type = get_field(tdata1, MCONTROL_TYPE(riscv_xlen(target)));

		result = ERROR_OK;
		switch (type) {
			case 1:
				result = maybe_add_trigger_t1(target, trigger, tdata1);
				break;
			case 2:
				result = maybe_add_trigger_t2(target, trigger, tdata1);
				break;
			case 6:
				result = maybe_add_trigger_t6(target, trigger, tdata1);
				break;
			default:
				LOG_DEBUG("trigger %d has unknown type %d", i, type);
				continue;
		}

		if (result != ERROR_OK)
			continue;

		LOG_DEBUG("[%d] Using trigger %d (type %d) for bp %d", target->coreid,
				i, type, trigger->unique_id);
		r->trigger_unique_id[i] = trigger->unique_id;
		break;
	}

	riscv_set_register(target, GDB_REGNO_TSELECT, tselect);

	if (i >= r->trigger_count) {
		LOG_ERROR("Couldn't find an available hardware trigger.");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	return ERROR_OK;
}

/**
 * Write one memory item of given "size". Use memory access of given "access_size".
 * Utilize read-modify-write, if needed.
 * */
static int write_by_given_size(struct target *target, target_addr_t address,
		uint32_t size, uint8_t *buffer, uint32_t access_size)
{
	assert(size == 1 || size == 2 || size == 4 || size == 8);
	assert(access_size == 1 || access_size == 2 || access_size == 4 || access_size == 8);

	if (access_size <= size && address % access_size == 0)
		/* Can do the memory access directly without a helper buffer. */
		return target_write_memory(target, address, access_size, size / access_size, buffer);

	unsigned int offset_head = address % access_size;
	unsigned int n_blocks = ((size + offset_head) <= access_size) ? 1 : 2;
	uint8_t helper_buf[n_blocks * access_size];

	/* Read from memory */
	if (target_read_memory(target, address - offset_head, access_size, n_blocks, helper_buf) != ERROR_OK)
		return ERROR_FAIL;

	/* Modify and write back */
	memcpy(helper_buf + offset_head, buffer, size);
	return target_write_memory(target, address - offset_head, access_size, n_blocks, helper_buf);
}

/**
 * Read one memory item of given "size". Use memory access of given "access_size".
 * Read larger section of memory and pick out the required portion, if needed.
 * */
static int read_by_given_size(struct target *target, target_addr_t address,
	uint32_t size, uint8_t *buffer, uint32_t access_size)
{
	assert(size == 1 || size == 2 || size == 4 || size == 8);
	assert(access_size == 1 || access_size == 2 || access_size == 4 || access_size == 8);

	if (access_size <= size && address % access_size == 0)
		/* Can do the memory access directly without a helper buffer. */
		return target_read_memory(target, address, access_size, size / access_size, buffer);

	unsigned int offset_head = address % access_size;
	unsigned int n_blocks = ((size + offset_head) <= access_size) ? 1 : 2;
	uint8_t helper_buf[n_blocks * access_size];

	/* Read from memory */
	if (target_read_memory(target, address - offset_head, access_size, n_blocks, helper_buf) != ERROR_OK)
		return ERROR_FAIL;

	/* Pick the requested portion from the buffer */
	memcpy(buffer, helper_buf + offset_head, size);
	return ERROR_OK;
}

/**
 * Write one memory item using any memory access size that will work.
 * Utilize read-modify-write, if needed.
 * */
int riscv_write_by_any_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
{
	assert(size == 1 || size == 2 ||  size == 4 || size == 8);

	/* Find access size that correspond to data size and the alignment. */
	unsigned int preferred_size = size;
	while (address % preferred_size != 0)
		preferred_size /= 2;

	/* First try the preferred (most natural) access size. */
	if (write_by_given_size(target, address, size, buffer, preferred_size) == ERROR_OK)
		return ERROR_OK;

	/* On failure, try other access sizes.
	   Minimize the number of accesses by trying first the largest size. */
	for (unsigned int access_size = 8; access_size > 0; access_size /= 2) {
		if (access_size == preferred_size)
			/* Already tried this size. */
			continue;

		if (write_by_given_size(target, address, size, buffer, access_size) == ERROR_OK)
			return ERROR_OK;
	}

	/* No access attempt succeeded. */
	return ERROR_FAIL;
}

/**
 * Read one memory item using any memory access size that will work.
 * Read larger section of memory and pick out the required portion, if needed.
 * */
int riscv_read_by_any_size(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
{
	assert(size == 1 || size == 2 ||  size == 4 || size == 8);

	/* Find access size that correspond to data size and the alignment. */
	unsigned int preferred_size = size;
	while (address % preferred_size != 0)
		preferred_size /= 2;

	/* First try the preferred (most natural) access size. */
	if (read_by_given_size(target, address, size, buffer, preferred_size) == ERROR_OK)
		return ERROR_OK;

	/* On failure, try other access sizes.
	   Minimize the number of accesses by trying first the largest size. */
	for (unsigned int access_size = 8; access_size > 0; access_size /= 2) {
		if (access_size == preferred_size)
			/* Already tried this size. */
			continue;

		if (read_by_given_size(target, address, size, buffer, access_size) == ERROR_OK)
			return ERROR_OK;
	}

	/* No access attempt succeeded. */
	return ERROR_FAIL;
}

int riscv_add_breakpoint(struct target *target, struct breakpoint *breakpoint)
{
	LOG_DEBUG("[%d] @0x%" TARGET_PRIxADDR, target->coreid, breakpoint->address);
	assert(breakpoint);
	if (breakpoint->type == BKPT_SOFT) {
		/** @todo check RVC for size/alignment */
		if (!(breakpoint->length == 4 || breakpoint->length == 2)) {
			LOG_ERROR("Invalid breakpoint length %d", breakpoint->length);
			return ERROR_FAIL;
		}

		if (0 != (breakpoint->address % 2)) {
			LOG_ERROR("Invalid breakpoint alignment for address 0x%" TARGET_PRIxADDR, breakpoint->address);
			return ERROR_FAIL;
		}

		/* Read the original instruction. */
		if (riscv_read_by_any_size(
				target, breakpoint->address, breakpoint->length, breakpoint->orig_instr) != ERROR_OK) {
			LOG_ERROR("Failed to read original instruction at 0x%" TARGET_PRIxADDR,
					breakpoint->address);
			return ERROR_FAIL;
		}

		uint8_t buff[4] = { 0 };
		buf_set_u32(buff, 0, breakpoint->length * CHAR_BIT, breakpoint->length == 4 ? ebreak() : ebreak_c());
		/* Write the ebreak instruction. */
		if (riscv_write_by_any_size(target, breakpoint->address, breakpoint->length, buff) != ERROR_OK) {
			LOG_ERROR("Failed to write %d-byte breakpoint instruction at 0x%"
					TARGET_PRIxADDR, breakpoint->length, breakpoint->address);
			return ERROR_FAIL;
		}

	} else if (breakpoint->type == BKPT_HARD) {
		struct trigger trigger;
		trigger_from_breakpoint(&trigger, breakpoint);
		int const result = add_trigger(target, &trigger);
		if (result != ERROR_OK)
			return result;
	} else {
		LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	breakpoint->is_set = true;
	return ERROR_OK;
}

static int remove_trigger(struct target *target, struct trigger *trigger)
{
	RISCV_INFO(r);

	if (riscv_enumerate_triggers(target) != ERROR_OK)
		return ERROR_FAIL;

	unsigned int i;
	for (i = 0; i < r->trigger_count; i++) {
		if (r->trigger_unique_id[i] == trigger->unique_id)
			break;
	}
	if (i >= r->trigger_count) {
		LOG_ERROR("Couldn't find the hardware resources used by hardware "
				"trigger.");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}
	LOG_DEBUG("[%d] Stop using resource %d for bp %d", target->coreid, i,
			trigger->unique_id);

	riscv_reg_t tselect;
	int result = riscv_get_register(target, &tselect, GDB_REGNO_TSELECT);
	if (result != ERROR_OK)
		return result;
	riscv_set_register(target, GDB_REGNO_TSELECT, i);
	riscv_set_register(target, GDB_REGNO_TDATA1, 0);
	riscv_set_register(target, GDB_REGNO_TSELECT, tselect);
	r->trigger_unique_id[i] = -1;

	return ERROR_OK;
}

int riscv_remove_breakpoint(struct target *target,
		struct breakpoint *breakpoint)
{
	if (breakpoint->type == BKPT_SOFT) {
		/* Write the original instruction. */
		if (riscv_write_by_any_size(
				target, breakpoint->address, breakpoint->length, breakpoint->orig_instr) != ERROR_OK) {
			LOG_ERROR("Failed to restore instruction for %d-byte breakpoint at "
					"0x%" TARGET_PRIxADDR, breakpoint->length, breakpoint->address);
			return ERROR_FAIL;
		}

	} else if (breakpoint->type == BKPT_HARD) {
		struct trigger trigger;
		trigger_from_breakpoint(&trigger, breakpoint);
		int result = remove_trigger(target, &trigger);
		if (result != ERROR_OK)
			return result;

	} else {
		LOG_INFO("OpenOCD only supports hardware and software breakpoints.");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	breakpoint->is_set = false;

	return ERROR_OK;
}

static void trigger_from_watchpoint(struct trigger *trigger,
		const struct watchpoint *watchpoint)
{
	trigger->address = watchpoint->address;
	trigger->length = watchpoint->length;
	trigger->mask = watchpoint->mask;
	trigger->value = watchpoint->value;
	trigger->read = (watchpoint->rw == WPT_READ || watchpoint->rw == WPT_ACCESS);
	trigger->write = (watchpoint->rw == WPT_WRITE || watchpoint->rw == WPT_ACCESS);
	trigger->execute = false;
	/* unique_id is unique across both breakpoints and watchpoints. */
	trigger->unique_id = watchpoint->unique_id;
}

int riscv_add_watchpoint(struct target *target, struct watchpoint *watchpoint)
{
	struct trigger trigger;
	trigger_from_watchpoint(&trigger, watchpoint);

	int result = add_trigger(target, &trigger);
	if (result != ERROR_OK)
		return result;
	watchpoint->is_set = true;

	return ERROR_OK;
}

int riscv_remove_watchpoint(struct target *target,
		struct watchpoint *watchpoint)
{
	LOG_DEBUG("[%d] @0x%" TARGET_PRIxADDR, target->coreid, watchpoint->address);

	struct trigger trigger;
	trigger_from_watchpoint(&trigger, watchpoint);

	int result = remove_trigger(target, &trigger);
	if (result != ERROR_OK)
		return result;
	watchpoint->is_set = false;

	return ERROR_OK;
}

/* Sets *hit_watchpoint to the first watchpoint identified as causing the
 * current halt.
 *
 * The GDB server uses this information to tell GDB what data address has
 * been hit, which enables GDB to print the hit variable along with its old
 * and new value. */
int riscv_hit_watchpoint(struct target *target, struct watchpoint **hit_watchpoint)
{
	LOG_DEBUG("Current hartid = %d", riscv_current_hartid(target));

	/*TODO instead of disassembling the instruction that we think caused the
	 * trigger, check the hit bit of each watchpoint first. The hit bit is
	 * simpler and more reliable to check but as it is optional and relatively
	 * new, not all hardware will implement it  */
	riscv_reg_t dpc;
	riscv_get_register(target, &dpc, GDB_REGNO_DPC);
	const uint8_t length = 4;
	LOG_DEBUG("dpc is 0x%" PRIx64, dpc);

	/* fetch the instruction at dpc */
	uint8_t buffer[length];
	if (target_read_buffer(target, dpc, length, buffer) != ERROR_OK) {
		LOG_ERROR("Failed to read instruction at dpc 0x%" PRIx64, dpc);
		return ERROR_FAIL;
	}

	uint32_t instruction = 0;

	for (int i = 0; i < length; i++) {
		LOG_DEBUG("Next byte is %x", buffer[i]);
		instruction += (buffer[i] << 8 * i);
	}
	LOG_DEBUG("Full instruction is %x", instruction);

	/* find out which memory address is accessed by the instruction at dpc */
	/* opcode is first 7 bits of the instruction */
	uint8_t opcode = instruction & 0x7F;
	uint32_t rs1;
	int16_t imm;
	riscv_reg_t mem_addr;

	if (opcode == MATCH_LB || opcode == MATCH_SB) {
		rs1 = (instruction & 0xf8000) >> 15;
		riscv_get_register(target, &mem_addr, rs1);

		if (opcode == MATCH_SB) {
			LOG_DEBUG("%x is store instruction", instruction);
			imm = ((instruction & 0xf80) >> 7) | ((instruction & 0xfe000000) >> 20);
		} else {
			LOG_DEBUG("%x is load instruction", instruction);
			imm = (instruction & 0xfff00000) >> 20;
		}
		/* sign extend 12-bit imm to 16-bits */
		if (imm & (1 << 11))
			imm |= 0xf000;
		mem_addr += imm;
		LOG_DEBUG("memory address=0x%" PRIx64, mem_addr);
	} else {
		LOG_DEBUG("%x is not a RV32I load or store", instruction);
		return ERROR_FAIL;
	}

	struct watchpoint *wp = target->watchpoints;
	while (wp) {
		/*TODO support length/mask */
		if (wp->address == mem_addr) {
			*hit_watchpoint = wp;
			LOG_DEBUG("Hit address=%" TARGET_PRIxADDR, wp->address);
			return ERROR_OK;
		}
		wp = wp->next;
	}

	/* No match found - either we hit a watchpoint caused by an instruction that
	 * this function does not yet disassemble, or we hit a breakpoint.
	 *
	 * OpenOCD will behave as if this function had never been implemented i.e.
	 * report the halt to GDB with no address information. */
	return ERROR_FAIL;
}


static int oldriscv_step(struct target *target, int current, uint32_t address,
		int handle_breakpoints)
{
	struct target_type *tt = get_target_type(target);
	return tt->step(target, current, address, handle_breakpoints);
}

static int old_or_new_riscv_step(struct target *target, int current,
		target_addr_t address, int handle_breakpoints)
{
	RISCV_INFO(r);
	LOG_DEBUG("handle_breakpoints=%d", handle_breakpoints);
	if (!r->is_halted)
		return oldriscv_step(target, current, address, handle_breakpoints);
	else
		return riscv_openocd_step(target, current, address, handle_breakpoints);
}

static int riscv_examine(struct target *target)
{
	LOG_DEBUG("[%s]", target_name(target));
	if (target_was_examined(target)) {
		LOG_DEBUG("Target was already examined.");
		return ERROR_OK;
	}

	/* Don't need to select dbus, since the first thing we do is read dtmcontrol. */

	RISCV_INFO(info);
	uint32_t dtmcontrol = dtmcontrol_scan(target, 0);
	LOG_DEBUG("dtmcontrol=0x%x", dtmcontrol);
	info->dtm_version = get_field(dtmcontrol, DTMCONTROL_VERSION);
	LOG_DEBUG("  version=0x%x", info->dtm_version);

	struct target_type *tt = get_target_type(target);
	if (!tt)
		return ERROR_FAIL;

	int result = tt->init_target(info->cmd_ctx, target);
	if (result != ERROR_OK)
		return result;

	return tt->examine(target);
}

static int oldriscv_poll(struct target *target)
{
	struct target_type *tt = get_target_type(target);
	return tt->poll(target);
}

static int old_or_new_riscv_poll(struct target *target)
{
	RISCV_INFO(r);
	if (!r->is_halted)
		return oldriscv_poll(target);
	else
		return riscv_openocd_poll(target);
}

int riscv_select_current_hart(struct target *target)
{
	return riscv_set_current_hartid(target, target->coreid);
}

int riscv_flush_registers(struct target *target)
{
	RISCV_INFO(r);

	if (!target->reg_cache)
		return ERROR_OK;

	LOG_DEBUG("[%s]", target_name(target));

	for (uint32_t number = 0; number < target->reg_cache->num_regs; number++) {
		struct reg *reg = &target->reg_cache->reg_list[number];
		if (reg->valid && reg->dirty) {
			uint64_t value = buf_get_u64(reg->value, 0, reg->size);
			LOG_DEBUG("[%s] %s is dirty; write back 0x%" PRIx64,
				  target_name(target), reg->name, value);
			int result = r->set_register(target, number, value);
			if (result != ERROR_OK)
				return ERROR_FAIL;
			reg->dirty = false;
		}
	}

	return ERROR_OK;
}

/* Convert: RISC-V hart's halt reason --> OpenOCD's generic debug reason */
int set_debug_reason(struct target *target, enum riscv_halt_reason halt_reason)
{
	switch (halt_reason) {
		case RISCV_HALT_BREAKPOINT:
			target->debug_reason = DBG_REASON_BREAKPOINT;
			break;
		case RISCV_HALT_TRIGGER:
			target->debug_reason = DBG_REASON_WATCHPOINT;
			break;
		case RISCV_HALT_INTERRUPT:
		case RISCV_HALT_GROUP:
			target->debug_reason = DBG_REASON_DBGRQ;
			break;
		case RISCV_HALT_SINGLESTEP:
			target->debug_reason = DBG_REASON_SINGLESTEP;
			break;
		case RISCV_HALT_UNKNOWN:
			target->debug_reason = DBG_REASON_UNDEFINED;
			break;
		case RISCV_HALT_ERROR:
			return ERROR_FAIL;
	}
	LOG_DEBUG("[%s] debug_reason=%d", target_name(target), target->debug_reason);

	return ERROR_OK;
}

int halt_prep(struct target *target)
{
	RISCV_INFO(r);

	LOG_DEBUG("[%s] prep hart, debug_reason=%d", target_name(target),
				target->debug_reason);
	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_is_halted(target)) {
		LOG_DEBUG("[%s] Hart is already halted (debug_reason=%d).",
				target_name(target), target->debug_reason);
		if (target->debug_reason == DBG_REASON_NOTHALTED) {
			enum riscv_halt_reason halt_reason =
				riscv_halt_reason(target, r->current_hartid);
			if (set_debug_reason(target, halt_reason) != ERROR_OK)
				return ERROR_FAIL;
		}
	} else {
		if (r->halt_prep(target) != ERROR_OK)
			return ERROR_FAIL;
		r->prepped = true;
	}

	return ERROR_OK;
}

int riscv_halt_go_all_harts(struct target *target)
{
	RISCV_INFO(r);

	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_is_halted(target)) {
		LOG_DEBUG("[%s] Hart is already halted.", target_name(target));
	} else {
		if (r->halt_go(target) != ERROR_OK)
			return ERROR_FAIL;

		riscv_invalidate_register_cache(target);
	}

	return ERROR_OK;
}

int halt_go(struct target *target)
{
	riscv_info_t *r = riscv_info(target);
	int result;
	if (!r->is_halted) {
		struct target_type *tt = get_target_type(target);
		result = tt->halt(target);
	} else {
		result = riscv_halt_go_all_harts(target);
	}
	target->state = TARGET_HALTED;
	if (target->debug_reason == DBG_REASON_NOTHALTED)
		target->debug_reason = DBG_REASON_DBGRQ;

	return result;
}

static int halt_finish(struct target *target)
{
	return target_call_event_callbacks(target, TARGET_EVENT_HALTED);
}

int riscv_halt(struct target *target)
{
	RISCV_INFO(r);

	if (!r->is_halted) {
		struct target_type *tt = get_target_type(target);
		return tt->halt(target);
	}

	LOG_DEBUG("[%d] halting all harts", target->coreid);

	int result = ERROR_OK;
	if (target->smp) {
		struct target_list *tlist;
		foreach_smp_target(tlist, target->smp_targets) {
			struct target *t = tlist->target;
			if (halt_prep(t) != ERROR_OK)
				result = ERROR_FAIL;
		}

		foreach_smp_target(tlist, target->smp_targets) {
			struct target *t = tlist->target;
			riscv_info_t *i = riscv_info(t);
			if (i->prepped) {
				if (halt_go(t) != ERROR_OK)
					result = ERROR_FAIL;
			}
		}

		foreach_smp_target(tlist, target->smp_targets) {
			struct target *t = tlist->target;
			if (halt_finish(t) != ERROR_OK)
				return ERROR_FAIL;
		}

	} else {
		if (halt_prep(target) != ERROR_OK)
			result = ERROR_FAIL;
		if (halt_go(target) != ERROR_OK)
			result = ERROR_FAIL;
		if (halt_finish(target) != ERROR_OK)
			return ERROR_FAIL;
	}

	return result;
}

static int riscv_assert_reset(struct target *target)
{
	LOG_DEBUG("[%d]", target->coreid);
	struct target_type *tt = get_target_type(target);
	riscv_invalidate_register_cache(target);
	return tt->assert_reset(target);
}

static int riscv_deassert_reset(struct target *target)
{
	LOG_DEBUG("[%d]", target->coreid);
	struct target_type *tt = get_target_type(target);
	return tt->deassert_reset(target);
}

/* state must be riscv_reg_t state[RISCV_MAX_HWBPS] = {0}; */
static int disable_triggers(struct target *target, riscv_reg_t *state)
{
	RISCV_INFO(r);

	LOG_DEBUG("deal with triggers");

	if (riscv_enumerate_triggers(target) != ERROR_OK)
		return ERROR_FAIL;

	if (r->manual_hwbp_set) {
		/* Look at every trigger that may have been set. */
		riscv_reg_t tselect;
		if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK)
			return ERROR_FAIL;
		for (unsigned int t = 0; t < r->trigger_count; t++) {
			if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK)
				return ERROR_FAIL;
			riscv_reg_t tdata1;
			if (riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1) != ERROR_OK)
				return ERROR_FAIL;
			if (tdata1 & MCONTROL_DMODE(riscv_xlen(target))) {
				state[t] = tdata1;
				if (riscv_set_register(target, GDB_REGNO_TDATA1, 0) != ERROR_OK)
					return ERROR_FAIL;
			}
		}
		if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK)
			return ERROR_FAIL;

	} else {
		/* Just go through the triggers we manage. */
		struct watchpoint *watchpoint = target->watchpoints;
		int i = 0;
		while (watchpoint) {
			LOG_DEBUG("watchpoint %d: set=%d", i, watchpoint->is_set);
			state[i] = watchpoint->is_set;
			if (watchpoint->is_set) {
				if (riscv_remove_watchpoint(target, watchpoint) != ERROR_OK)
					return ERROR_FAIL;
			}
			watchpoint = watchpoint->next;
			i++;
		}
	}

	return ERROR_OK;
}

static int enable_triggers(struct target *target, riscv_reg_t *state)
{
	RISCV_INFO(r);

	if (r->manual_hwbp_set) {
		/* Look at every trigger that may have been set. */
		riscv_reg_t tselect;
		if (riscv_get_register(target, &tselect, GDB_REGNO_TSELECT) != ERROR_OK)
			return ERROR_FAIL;
		for (unsigned int t = 0; t < r->trigger_count; t++) {
			if (state[t] != 0) {
				if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK)
					return ERROR_FAIL;
				if (riscv_set_register(target, GDB_REGNO_TDATA1, state[t]) != ERROR_OK)
					return ERROR_FAIL;
			}
		}
		if (riscv_set_register(target, GDB_REGNO_TSELECT, tselect) != ERROR_OK)
			return ERROR_FAIL;

	} else {
		struct watchpoint *watchpoint = target->watchpoints;
		int i = 0;
		while (watchpoint) {
			LOG_DEBUG("watchpoint %d: cleared=%" PRId64, i, state[i]);
			if (state[i]) {
				if (riscv_add_watchpoint(target, watchpoint) != ERROR_OK)
					return ERROR_FAIL;
			}
			watchpoint = watchpoint->next;
			i++;
		}
	}

	return ERROR_OK;
}

/**
 * Get everything ready to resume.
 */
static int resume_prep(struct target *target, int current,
		target_addr_t address, int handle_breakpoints, int debug_execution)
{
	RISCV_INFO(r);
	LOG_DEBUG("[%d]", target->coreid);

	if (!current)
		riscv_set_register(target, GDB_REGNO_PC, address);

	if (target->debug_reason == DBG_REASON_WATCHPOINT) {
		/* To be able to run off a trigger, disable all the triggers, step, and
		 * then resume as usual. */
		riscv_reg_t trigger_state[RISCV_MAX_HWBPS] = {0};

		if (disable_triggers(target, trigger_state) != ERROR_OK)
			return ERROR_FAIL;

		if (old_or_new_riscv_step(target, true, 0, false) != ERROR_OK)
			return ERROR_FAIL;

		if (enable_triggers(target, trigger_state) != ERROR_OK)
			return ERROR_FAIL;
	}

	if (r->is_halted) {
		if (riscv_select_current_hart(target) != ERROR_OK)
			return ERROR_FAIL;
		if (r->resume_prep(target) != ERROR_OK)
			return ERROR_FAIL;
	}

	LOG_DEBUG("[%d] mark as prepped", target->coreid);
	r->prepped = true;

	return ERROR_OK;
}

/**
 * Resume all the harts that have been prepped, as close to instantaneous as
 * possible.
 */
static int resume_go(struct target *target, int current,
		target_addr_t address, int handle_breakpoints, int debug_execution)
{
	riscv_info_t *r = riscv_info(target);
	int result;
	if (!r->is_halted) {
		struct target_type *tt = get_target_type(target);
		result = tt->resume(target, current, address, handle_breakpoints,
				debug_execution);
	} else {
		result = riscv_resume_go_all_harts(target);
	}

	return result;
}

static int resume_finish(struct target *target, int debug_execution)
{
	register_cache_invalidate(target->reg_cache);

	target->state = debug_execution ? TARGET_DEBUG_RUNNING : TARGET_RUNNING;
	target->debug_reason = DBG_REASON_NOTHALTED;
	return target_call_event_callbacks(target,
		debug_execution ? TARGET_EVENT_DEBUG_RESUMED : TARGET_EVENT_RESUMED);
}

/**
 * @par single_hart When true, only resume a single hart even if SMP is
 * configured.  This is used to run algorithms on just one hart.
 */
int riscv_resume(
		struct target *target,
		int current,
		target_addr_t address,
		int handle_breakpoints,
		int debug_execution,
		bool single_hart)
{
	LOG_DEBUG("handle_breakpoints=%d", handle_breakpoints);
	int result = ERROR_OK;
	if (target->smp && !single_hart) {
		struct target_list *tlist;
		foreach_smp_target_direction(resume_order == RO_NORMAL,
									 tlist, target->smp_targets) {
			struct target *t = tlist->target;
			if (resume_prep(t, current, address, handle_breakpoints,
						debug_execution) != ERROR_OK)
				result = ERROR_FAIL;
		}

		foreach_smp_target_direction(resume_order == RO_NORMAL,
									 tlist, target->smp_targets) {
			struct target *t = tlist->target;
			riscv_info_t *i = riscv_info(t);
			if (i->prepped) {
				if (resume_go(t, current, address, handle_breakpoints,
							debug_execution) != ERROR_OK)
					result = ERROR_FAIL;
			}
		}

		foreach_smp_target_direction(resume_order == RO_NORMAL,
									 tlist, target->smp_targets) {
			struct target *t = tlist->target;
			if (resume_finish(t, debug_execution) != ERROR_OK)
				result = ERROR_FAIL;
		}

	} else {
		if (resume_prep(target, current, address, handle_breakpoints,
					debug_execution) != ERROR_OK)
			result = ERROR_FAIL;
		if (resume_go(target, current, address, handle_breakpoints,
					debug_execution) != ERROR_OK)
			result = ERROR_FAIL;
		if (resume_finish(target, debug_execution) != ERROR_OK)
			return ERROR_FAIL;
	}

	return result;
}

static int riscv_target_resume(struct target *target, int current, target_addr_t address,
		int handle_breakpoints, int debug_execution)
{
	return riscv_resume(target, current, address, handle_breakpoints,
			debug_execution, false);
}

static int riscv_mmu(struct target *target, int *enabled)
{
	if (!riscv_enable_virt2phys) {
		*enabled = 0;
		return ERROR_OK;
	}

	/* Don't use MMU in explicit or effective M (machine) mode */
	riscv_reg_t priv;
	if (riscv_get_register(target, &priv, GDB_REGNO_PRIV) != ERROR_OK) {
		LOG_ERROR("Failed to read priv register.");
		return ERROR_FAIL;
	}

	riscv_reg_t mstatus;
	if (riscv_get_register(target, &mstatus, GDB_REGNO_MSTATUS) != ERROR_OK) {
		LOG_ERROR("Failed to read mstatus register.");
		return ERROR_FAIL;
	}

	if ((get_field(mstatus, MSTATUS_MPRV) ? get_field(mstatus, MSTATUS_MPP) : priv) == PRV_M) {
		LOG_DEBUG("SATP/MMU ignored in Machine mode (mstatus=0x%" PRIx64 ").", mstatus);
		*enabled = 0;
		return ERROR_OK;
	}

	riscv_reg_t satp;
	if (riscv_get_register(target, &satp, GDB_REGNO_SATP) != ERROR_OK) {
		LOG_DEBUG("Couldn't read SATP.");
		/* If we can't read SATP, then there must not be an MMU. */
		*enabled = 0;
		return ERROR_OK;
	}

	if (get_field(satp, RISCV_SATP_MODE(riscv_xlen(target))) == SATP_MODE_OFF) {
		LOG_DEBUG("MMU is disabled.");
		*enabled = 0;
	} else {
		LOG_DEBUG("MMU is enabled.");
		*enabled = 1;
	}

	return ERROR_OK;
}

static int riscv_address_translate(struct target *target,
		target_addr_t virtual, target_addr_t *physical)
{
	RISCV_INFO(r);
	riscv_reg_t satp_value;
	int mode;
	uint64_t ppn_value;
	target_addr_t table_address;
	const virt2phys_info_t *info;
	uint64_t pte = 0;
	int i;

	int result = riscv_get_register(target, &satp_value, GDB_REGNO_SATP);
	if (result != ERROR_OK)
		return result;

	unsigned xlen = riscv_xlen(target);
	mode = get_field(satp_value, RISCV_SATP_MODE(xlen));
	switch (mode) {
		case SATP_MODE_SV32:
			info = &sv32;
			break;
		case SATP_MODE_SV39:
			info = &sv39;
			break;
		case SATP_MODE_SV48:
			info = &sv48;
			break;
		case SATP_MODE_OFF:
			LOG_ERROR("No translation or protection." \
				      " (satp: 0x%" PRIx64 ")", satp_value);
			return ERROR_FAIL;
		default:
			LOG_ERROR("The translation mode is not supported." \
				      " (satp: 0x%" PRIx64 ")", satp_value);
			return ERROR_FAIL;
	}
	LOG_DEBUG("virtual=0x%" TARGET_PRIxADDR "; mode=%s", virtual, info->name);

	/* verify bits xlen-1:va_bits-1 are all equal */
	target_addr_t mask = ((target_addr_t)1 << (xlen - (info->va_bits - 1))) - 1;
	target_addr_t masked_msbs = (virtual >> (info->va_bits - 1)) & mask;
	if (masked_msbs != 0 && masked_msbs != mask) {
		LOG_ERROR("Virtual address 0x%" TARGET_PRIxADDR " is not sign-extended "
				"for %s mode.", virtual, info->name);
		return ERROR_FAIL;
	}

	ppn_value = get_field(satp_value, RISCV_SATP_PPN(xlen));
	table_address = ppn_value << RISCV_PGSHIFT;
	i = info->level - 1;
	while (i >= 0) {
		uint64_t vpn = virtual >> info->vpn_shift[i];
		vpn &= info->vpn_mask[i];
		target_addr_t pte_address = table_address +
									(vpn << info->pte_shift);
		uint8_t buffer[8];
		assert(info->pte_shift <= 3);
		int retval = r->read_memory(target, pte_address,
				4, (1 << info->pte_shift) / 4, buffer, 4);
		if (retval != ERROR_OK)
			return ERROR_FAIL;

		if (info->pte_shift == 2)
			pte = buf_get_u32(buffer, 0, 32);
		else
			pte = buf_get_u64(buffer, 0, 64);

		LOG_DEBUG("i=%d; PTE @0x%" TARGET_PRIxADDR " = 0x%" PRIx64, i,
				pte_address, pte);

		if (!(pte & PTE_V) || (!(pte & PTE_R) && (pte & PTE_W)))
			return ERROR_FAIL;

		if ((pte & PTE_R) || (pte & PTE_X)) /* Found leaf PTE. */
			break;

		i--;
		if (i < 0)
			break;
		ppn_value = pte >> PTE_PPN_SHIFT;
		table_address = ppn_value << RISCV_PGSHIFT;
	}

	if (i < 0) {
		LOG_ERROR("Couldn't find the PTE.");
		return ERROR_FAIL;
	}

	/* Make sure to clear out the high bits that may be set. */
	*physical = virtual & (((target_addr_t)1 << info->va_bits) - 1);

	while (i < info->level) {
		ppn_value = pte >> info->pte_ppn_shift[i];
		ppn_value &= info->pte_ppn_mask[i];
		*physical &= ~(((target_addr_t)info->pa_ppn_mask[i]) <<
				info->pa_ppn_shift[i]);
		*physical |= (ppn_value << info->pa_ppn_shift[i]);
		i++;
	}
	LOG_DEBUG("0x%" TARGET_PRIxADDR " -> 0x%" TARGET_PRIxADDR, virtual,
			*physical);

	return ERROR_OK;
}

static int riscv_virt2phys(struct target *target, target_addr_t virtual, target_addr_t *physical)
{
	int enabled;
	if (riscv_mmu(target, &enabled) == ERROR_OK) {
		if (!enabled)
			return ERROR_FAIL;

		if (riscv_address_translate(target, virtual, physical) == ERROR_OK)
			return ERROR_OK;
	}

	return ERROR_FAIL;
}

static int riscv_read_phys_memory(struct target *target, target_addr_t phys_address,
			uint32_t size, uint32_t count, uint8_t *buffer)
{
	RISCV_INFO(r);
	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;
	return r->read_memory(target, phys_address, size, count, buffer, size);
}

static int riscv_read_memory(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, uint8_t *buffer)
{
	if (count == 0) {
		LOG_WARNING("0-length read from 0x%" TARGET_PRIxADDR, address);
		return ERROR_OK;
	}

	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;

	target_addr_t physical_addr;
	if (target->type->virt2phys(target, address, &physical_addr) == ERROR_OK)
		address = physical_addr;

	RISCV_INFO(r);
	return r->read_memory(target, address, size, count, buffer, size);
}

static int riscv_write_phys_memory(struct target *target, target_addr_t phys_address,
			uint32_t size, uint32_t count, const uint8_t *buffer)
{
	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;
	struct target_type *tt = get_target_type(target);
	return tt->write_memory(target, phys_address, size, count, buffer);
}

static int riscv_write_memory(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, const uint8_t *buffer)
{
	if (count == 0) {
		LOG_WARNING("0-length write to 0x%" TARGET_PRIxADDR, address);
		return ERROR_OK;
	}

	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;

	target_addr_t physical_addr;
	if (target->type->virt2phys(target, address, &physical_addr) == ERROR_OK)
		address = physical_addr;

	struct target_type *tt = get_target_type(target);
	return tt->write_memory(target, address, size, count, buffer);
}

const char *riscv_get_gdb_arch(struct target *target)
{
	switch (riscv_xlen(target)) {
		case 32:
			return "riscv:rv32";
		case 64:
			return "riscv:rv64";
	}
	LOG_ERROR("Unsupported xlen: %d", riscv_xlen(target));
	return NULL;
}

static int riscv_get_gdb_reg_list_internal(struct target *target,
		struct reg **reg_list[], int *reg_list_size,
		enum target_register_class reg_class, bool read)
{
	RISCV_INFO(r);
	LOG_DEBUG("[%s] {%d} reg_class=%d, read=%d",
			target_name(target), r->current_hartid, reg_class, read);

	if (!target->reg_cache) {
		LOG_ERROR("Target not initialized. Return ERROR_FAIL.");
		return ERROR_FAIL;
	}

	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;

	switch (reg_class) {
		case REG_CLASS_GENERAL:
			*reg_list_size = 33;
			break;
		case REG_CLASS_ALL:
			*reg_list_size = target->reg_cache->num_regs;
			break;
		default:
			LOG_ERROR("Unsupported reg_class: %d", reg_class);
			return ERROR_FAIL;
	}

	*reg_list = calloc(*reg_list_size, sizeof(struct reg *));
	if (!*reg_list)
		return ERROR_FAIL;

	for (int i = 0; i < *reg_list_size; i++) {
		assert(!target->reg_cache->reg_list[i].valid ||
				target->reg_cache->reg_list[i].size > 0);
		(*reg_list)[i] = &target->reg_cache->reg_list[i];
		if (read &&
				target->reg_cache->reg_list[i].exist &&
				!target->reg_cache->reg_list[i].valid) {
			if (target->reg_cache->reg_list[i].type->get(
						&target->reg_cache->reg_list[i]) != ERROR_OK)
				return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

static int riscv_get_gdb_reg_list_noread(struct target *target,
		struct reg **reg_list[], int *reg_list_size,
		enum target_register_class reg_class)
{
	return riscv_get_gdb_reg_list_internal(target, reg_list, reg_list_size,
			reg_class, false);
}

static int riscv_get_gdb_reg_list(struct target *target,
		struct reg **reg_list[], int *reg_list_size,
		enum target_register_class reg_class)
{
	return riscv_get_gdb_reg_list_internal(target, reg_list, reg_list_size,
			reg_class, true);
}

static int riscv_arch_state(struct target *target)
{
	struct target_type *tt = get_target_type(target);
	return tt->arch_state(target);
}

/* Algorithm must end with a software breakpoint instruction. */
static int riscv_run_algorithm(struct target *target, int num_mem_params,
		struct mem_param *mem_params, int num_reg_params,
		struct reg_param *reg_params, target_addr_t entry_point,
		target_addr_t exit_point, int timeout_ms, void *arch_info)
{
	RISCV_INFO(info);

	if (num_mem_params > 0) {
		LOG_ERROR("Memory parameters are not supported for RISC-V algorithms.");
		return ERROR_FAIL;
	}

	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* Save registers */
	struct reg *reg_pc = register_get_by_name(target->reg_cache, "pc", true);
	if (!reg_pc || reg_pc->type->get(reg_pc) != ERROR_OK)
		return ERROR_FAIL;
	uint64_t saved_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size);
	LOG_DEBUG("saved_pc=0x%" PRIx64, saved_pc);

	uint64_t saved_regs[32];
	for (int i = 0; i < num_reg_params; i++) {
		LOG_DEBUG("save %s", reg_params[i].reg_name);
		struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false);
		if (!r) {
			LOG_ERROR("Couldn't find register named '%s'", reg_params[i].reg_name);
			return ERROR_FAIL;
		}

		if (r->size != reg_params[i].size) {
			LOG_ERROR("Register %s is %d bits instead of %d bits.",
					reg_params[i].reg_name, r->size, reg_params[i].size);
			return ERROR_FAIL;
		}

		if (r->number > GDB_REGNO_XPR31) {
			LOG_ERROR("Only GPRs can be use as argument registers.");
			return ERROR_FAIL;
		}

		if (r->type->get(r) != ERROR_OK)
			return ERROR_FAIL;
		saved_regs[r->number] = buf_get_u64(r->value, 0, r->size);

		if (reg_params[i].direction == PARAM_OUT || reg_params[i].direction == PARAM_IN_OUT) {
			if (r->type->set(r, reg_params[i].value) != ERROR_OK)
				return ERROR_FAIL;
		}
	}

	/* Disable Interrupts before attempting to run the algorithm. */
	uint64_t current_mstatus;
	uint64_t irq_disabled_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE;
	if (riscv_interrupts_disable(target, irq_disabled_mask, &current_mstatus) != ERROR_OK)
		return ERROR_FAIL;

	/* Run algorithm */
	LOG_DEBUG("resume at 0x%" TARGET_PRIxADDR, entry_point);
	if (riscv_resume(target, 0, entry_point, 0, 1, true) != ERROR_OK)
		return ERROR_FAIL;

	int64_t start = timeval_ms();
	while (target->state != TARGET_HALTED) {
		LOG_DEBUG("poll()");
		int64_t now = timeval_ms();
		if (now - start > timeout_ms) {
			LOG_ERROR("Algorithm timed out after %" PRId64 " ms.", now - start);
			riscv_halt(target);
			old_or_new_riscv_poll(target);
			enum gdb_regno regnums[] = {
				GDB_REGNO_RA, GDB_REGNO_SP, GDB_REGNO_GP, GDB_REGNO_TP,
				GDB_REGNO_T0, GDB_REGNO_T1, GDB_REGNO_T2, GDB_REGNO_FP,
				GDB_REGNO_S1, GDB_REGNO_A0, GDB_REGNO_A1, GDB_REGNO_A2,
				GDB_REGNO_A3, GDB_REGNO_A4, GDB_REGNO_A5, GDB_REGNO_A6,
				GDB_REGNO_A7, GDB_REGNO_S2, GDB_REGNO_S3, GDB_REGNO_S4,
				GDB_REGNO_S5, GDB_REGNO_S6, GDB_REGNO_S7, GDB_REGNO_S8,
				GDB_REGNO_S9, GDB_REGNO_S10, GDB_REGNO_S11, GDB_REGNO_T3,
				GDB_REGNO_T4, GDB_REGNO_T5, GDB_REGNO_T6,
				GDB_REGNO_PC,
				GDB_REGNO_MSTATUS, GDB_REGNO_MEPC, GDB_REGNO_MCAUSE,
			};
			for (unsigned i = 0; i < ARRAY_SIZE(regnums); i++) {
				enum gdb_regno regno = regnums[i];
				riscv_reg_t reg_value;
				if (riscv_get_register(target, &reg_value, regno) != ERROR_OK)
					break;
				LOG_ERROR("%s = 0x%" PRIx64, gdb_regno_name(regno), reg_value);
			}
			return ERROR_TARGET_TIMEOUT;
		}

		int result = old_or_new_riscv_poll(target);
		if (result != ERROR_OK)
			return result;
	}

	/* The current hart id might have been changed in poll(). */
	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;

	if (reg_pc->type->get(reg_pc) != ERROR_OK)
		return ERROR_FAIL;
	uint64_t final_pc = buf_get_u64(reg_pc->value, 0, reg_pc->size);
	if (exit_point && final_pc != exit_point) {
		LOG_ERROR("PC ended up at 0x%" PRIx64 " instead of 0x%"
				TARGET_PRIxADDR, final_pc, exit_point);
		return ERROR_FAIL;
	}

	/* Restore Interrupts */
	if (riscv_interrupts_restore(target, current_mstatus) != ERROR_OK)
		return ERROR_FAIL;

	/* Restore registers */
	uint8_t buf[8] = { 0 };
	buf_set_u64(buf, 0, info->xlen, saved_pc);
	if (reg_pc->type->set(reg_pc, buf) != ERROR_OK)
		return ERROR_FAIL;

	for (int i = 0; i < num_reg_params; i++) {
		if (reg_params[i].direction == PARAM_IN ||
				reg_params[i].direction == PARAM_IN_OUT) {
			struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false);
			if (r->type->get(r) != ERROR_OK) {
				LOG_ERROR("get(%s) failed", r->name);
				return ERROR_FAIL;
			}
			buf_cpy(r->value, reg_params[i].value, reg_params[i].size);
		}
		LOG_DEBUG("restore %s", reg_params[i].reg_name);
		struct reg *r = register_get_by_name(target->reg_cache, reg_params[i].reg_name, false);
		buf_set_u64(buf, 0, info->xlen, saved_regs[r->number]);
		if (r->type->set(r, buf) != ERROR_OK) {
			LOG_ERROR("set(%s) failed", r->name);
			return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

static int riscv_checksum_memory(struct target *target,
		target_addr_t address, uint32_t count,
		uint32_t *checksum)
{
	struct working_area *crc_algorithm;
	struct reg_param reg_params[2];
	int retval;

	LOG_DEBUG("address=0x%" TARGET_PRIxADDR "; count=0x%" PRIx32, address, count);

	static const uint8_t riscv32_crc_code[] = {
#include "../../../contrib/loaders/checksum/riscv32_crc.inc"
	};
	static const uint8_t riscv64_crc_code[] = {
#include "../../../contrib/loaders/checksum/riscv64_crc.inc"
	};

	static const uint8_t *crc_code;

	unsigned xlen = riscv_xlen(target);
	unsigned crc_code_size;
	if (xlen == 32) {
		crc_code = riscv32_crc_code;
		crc_code_size = sizeof(riscv32_crc_code);
	} else {
		crc_code = riscv64_crc_code;
		crc_code_size = sizeof(riscv64_crc_code);
	}

	if (count < crc_code_size * 4) {
		/* Don't use the algorithm for relatively small buffers. It's faster
		 * just to read the memory.  target_checksum_memory() will take care of
		 * that if we fail. */
		return ERROR_FAIL;
	}

	retval = target_alloc_working_area(target, crc_code_size, &crc_algorithm);
	if (retval != ERROR_OK)
		return retval;

	if (crc_algorithm->address + crc_algorithm->size > address &&
			crc_algorithm->address < address + count) {
		/* Region to checksum overlaps with the work area we've been assigned.
		 * Bail. (Would be better to manually checksum what we read there, and
		 * use the algorithm for the rest.) */
		target_free_working_area(target, crc_algorithm);
		return ERROR_FAIL;
	}

	retval = target_write_buffer(target, crc_algorithm->address, crc_code_size,
			crc_code);
	if (retval != ERROR_OK) {
		LOG_ERROR("Failed to write code to " TARGET_ADDR_FMT ": %d",
				crc_algorithm->address, retval);
		target_free_working_area(target, crc_algorithm);
		return retval;
	}

	init_reg_param(&reg_params[0], "a0", xlen, PARAM_IN_OUT);
	init_reg_param(&reg_params[1], "a1", xlen, PARAM_OUT);
	buf_set_u64(reg_params[0].value, 0, xlen, address);
	buf_set_u64(reg_params[1].value, 0, xlen, count);

	/* 20 second timeout/megabyte */
	int timeout = 20000 * (1 + (count / (1024 * 1024)));

	retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
			crc_algorithm->address,
			0,	/* Leave exit point unspecified because we don't know. */
			timeout, NULL);

	if (retval == ERROR_OK)
		*checksum = buf_get_u32(reg_params[0].value, 0, 32);
	else
		LOG_ERROR("error executing RISC-V CRC algorithm");

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);

	target_free_working_area(target, crc_algorithm);

	LOG_DEBUG("checksum=0x%" PRIx32 ", result=%d", *checksum, retval);

	return retval;
}

/*** OpenOCD Helper Functions ***/

enum riscv_poll_hart {
	RPH_NO_CHANGE,
	RPH_DISCOVERED_HALTED,
	RPH_DISCOVERED_RUNNING,
	RPH_ERROR
};
static enum riscv_poll_hart riscv_poll_hart(struct target *target, int hartid)
{
	RISCV_INFO(r);
	if (riscv_set_current_hartid(target, hartid) != ERROR_OK)
		return RPH_ERROR;

	LOG_DEBUG("[%s] polling hart %d, target->state=%d", target_name(target),
			hartid, target->state);

	/* If OpenOCD thinks we're running but this hart is halted then it's time
	 * to raise an event. */
	bool halted = riscv_is_halted(target);

	if (halted && timeval_ms() - r->last_activity > 100) {
		/* If we've been idle for a while, flush the register cache. Just in case
		 * OpenOCD is going to be disconnected without shutting down cleanly. */
		if (riscv_flush_registers(target) != ERROR_OK)
			return ERROR_FAIL;
	}

	if (target->state != TARGET_HALTED && halted) {
		LOG_DEBUG("  triggered a halt");
		r->on_halt(target);
		return RPH_DISCOVERED_HALTED;
	} else if (target->state != TARGET_RUNNING && target->state != TARGET_DEBUG_RUNNING && !halted) {
		LOG_DEBUG("  triggered running");
		target->state = TARGET_RUNNING;
		target->debug_reason = DBG_REASON_NOTHALTED;
		return RPH_DISCOVERED_RUNNING;
	}

	return RPH_NO_CHANGE;
}

int sample_memory(struct target *target)
{
	RISCV_INFO(r);

	if (!r->sample_buf.buf || !r->sample_config.enabled)
		return ERROR_OK;

	LOG_DEBUG("buf used/size: %d/%d", r->sample_buf.used, r->sample_buf.size);

	uint64_t start = timeval_ms();
	riscv_sample_buf_maybe_add_timestamp(target, true);
	int result = ERROR_OK;
	if (r->sample_memory) {
		result = r->sample_memory(target, &r->sample_buf, &r->sample_config,
									  start + TARGET_DEFAULT_POLLING_INTERVAL);
		if (result != ERROR_NOT_IMPLEMENTED)
			goto exit;
	}

	/* Default slow path. */
	while (timeval_ms() - start < TARGET_DEFAULT_POLLING_INTERVAL) {
		for (unsigned int i = 0; i < ARRAY_SIZE(r->sample_config.bucket); i++) {
			if (r->sample_config.bucket[i].enabled &&
					r->sample_buf.used + 1 + r->sample_config.bucket[i].size_bytes < r->sample_buf.size) {
				assert(i < RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE);
				r->sample_buf.buf[r->sample_buf.used] = i;
				result = riscv_read_phys_memory(
					target, r->sample_config.bucket[i].address,
					r->sample_config.bucket[i].size_bytes, 1,
					r->sample_buf.buf + r->sample_buf.used + 1);
				if (result == ERROR_OK)
					r->sample_buf.used += 1 + r->sample_config.bucket[i].size_bytes;
				else
					goto exit;
			}
		}
	}

exit:
	riscv_sample_buf_maybe_add_timestamp(target, false);
	if (result != ERROR_OK) {
		LOG_INFO("Turning off memory sampling because it failed.");
		r->sample_config.enabled = false;
	}
	return result;
}

/*** OpenOCD Interface ***/
int riscv_openocd_poll(struct target *target)
{
	LOG_DEBUG("polling all harts");
	int halted_hart = -1;
	enum target_state old_state = target->state;

	if (target->smp) {
		unsigned halts_discovered = 0;
		unsigned should_remain_halted = 0;
		unsigned should_resume = 0;
		struct target_list *list;
		foreach_smp_target(list, target->smp_targets) {
			struct target *t = list->target;
			if (!target_was_examined(t))
				continue;
			riscv_info_t *r = riscv_info(t);
			enum riscv_poll_hart out = riscv_poll_hart(t, r->current_hartid);
			switch (out) {
			case RPH_NO_CHANGE:
				break;
			case RPH_DISCOVERED_RUNNING:
				t->state = TARGET_RUNNING;
				t->debug_reason = DBG_REASON_NOTHALTED;
				break;
			case RPH_DISCOVERED_HALTED:
				halts_discovered++;
				t->state = TARGET_HALTED;
				enum riscv_halt_reason halt_reason =
					riscv_halt_reason(t, r->current_hartid);
				if (set_debug_reason(t, halt_reason) != ERROR_OK)
					return ERROR_FAIL;

				if (halt_reason == RISCV_HALT_BREAKPOINT) {
					int retval;
					switch (riscv_semihosting(t, &retval)) {
					case SEMI_NONE:
					case SEMI_WAITING:
						/* This hart should remain halted. */
						should_remain_halted++;
						break;
					case SEMI_HANDLED:
						/* This hart should be resumed, along with any other
							 * harts that halted due to haltgroups. */
						should_resume++;
						break;
					case SEMI_ERROR:
						return retval;
					}
				} else if (halt_reason != RISCV_HALT_GROUP) {
					should_remain_halted++;
				}
				break;

			case RPH_ERROR:
				return ERROR_FAIL;
			}
		}

		LOG_DEBUG("should_remain_halted=%d, should_resume=%d",
				  should_remain_halted, should_resume);
		if (should_remain_halted && should_resume) {
			LOG_WARNING("%d harts should remain halted, and %d should resume.",
						should_remain_halted, should_resume);
		}
		if (should_remain_halted) {
			LOG_DEBUG("halt all");
			riscv_halt(target);
		} else if (should_resume) {
			LOG_DEBUG("resume all");
			riscv_resume(target, true, 0, 0, 0, false);
		}

		/* Sample memory if any target is running. */
		foreach_smp_target(list, target->smp_targets) {
			struct target *t = list->target;
			if (t->state == TARGET_RUNNING) {
				sample_memory(target);
				break;
			}
		}

		return ERROR_OK;

	} else {
		enum riscv_poll_hart out = riscv_poll_hart(target,
				riscv_current_hartid(target));
		if (out == RPH_NO_CHANGE || out == RPH_DISCOVERED_RUNNING) {
			if (target->state == TARGET_RUNNING)
				sample_memory(target);
			return ERROR_OK;
		} else if (out == RPH_ERROR) {
			return ERROR_FAIL;
		}

		halted_hart = riscv_current_hartid(target);
		LOG_DEBUG("  hart %d halted", halted_hart);

		enum riscv_halt_reason halt_reason = riscv_halt_reason(target, halted_hart);
		if (set_debug_reason(target, halt_reason) != ERROR_OK)
			return ERROR_FAIL;
		target->state = TARGET_HALTED;
	}

	if (target->debug_reason == DBG_REASON_BREAKPOINT) {
		int retval;
		switch (riscv_semihosting(target, &retval)) {
			case SEMI_NONE:
			case SEMI_WAITING:
				target_call_event_callbacks(target, TARGET_EVENT_HALTED);
				break;
			case SEMI_HANDLED:
				if (riscv_resume(target, true, 0, 0, 0, false) != ERROR_OK)
					return ERROR_FAIL;
				break;
			case SEMI_ERROR:
				return retval;
		}
	} else {
		if (old_state == TARGET_DEBUG_RUNNING)
			target_call_event_callbacks(target, TARGET_EVENT_DEBUG_HALTED);
		else
			target_call_event_callbacks(target, TARGET_EVENT_HALTED);
	}

	return ERROR_OK;
}

int riscv_openocd_step(struct target *target, int current,
	target_addr_t address, int handle_breakpoints)
{
	LOG_DEBUG("stepping rtos hart");

	if (!current)
		riscv_set_register(target, GDB_REGNO_PC, address);

	riscv_reg_t trigger_state[RISCV_MAX_HWBPS] = {0};
	if (disable_triggers(target, trigger_state) != ERROR_OK)
		return ERROR_FAIL;

	bool success = true;
	uint64_t current_mstatus;
	RISCV_INFO(info);

	if (info->isrmask_mode == RISCV_ISRMASK_STEPONLY) {
		/* Disable Interrupts before stepping. */
		uint64_t irq_disabled_mask = MSTATUS_MIE | MSTATUS_HIE | MSTATUS_SIE | MSTATUS_UIE;
		if (riscv_interrupts_disable(target, irq_disabled_mask,
				&current_mstatus) != ERROR_OK) {
			success = false;
			LOG_ERROR("unable to disable interrupts");
			goto _exit;
		}
	}

	if (riscv_step_rtos_hart(target) != ERROR_OK) {
		success = false;
		LOG_ERROR("unable to step rtos hart");
	}

	register_cache_invalidate(target->reg_cache);

	if (info->isrmask_mode == RISCV_ISRMASK_STEPONLY)
		if (riscv_interrupts_restore(target, current_mstatus) != ERROR_OK) {
			success = false;
			LOG_ERROR("unable to restore interrupts");
		}

_exit:
	if (enable_triggers(target, trigger_state) != ERROR_OK) {
		success = false;
		LOG_ERROR("unable to enable triggers");
	}

	if (success) {
		target->state = TARGET_RUNNING;
		target_call_event_callbacks(target, TARGET_EVENT_RESUMED);
		target->state = TARGET_HALTED;
		target->debug_reason = DBG_REASON_SINGLESTEP;
		target_call_event_callbacks(target, TARGET_EVENT_HALTED);
	}
	return success ? ERROR_OK : ERROR_FAIL;
}

/* Command Handlers */
COMMAND_HANDLER(riscv_set_command_timeout_sec)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	int timeout = atoi(CMD_ARGV[0]);
	if (timeout <= 0) {
		LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
		return ERROR_FAIL;
	}

	riscv_command_timeout_sec = timeout;

	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_reset_timeout_sec)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	int timeout = atoi(CMD_ARGV[0]);
	if (timeout <= 0) {
		LOG_ERROR("%s is not a valid integer argument for command.", CMD_ARGV[0]);
		return ERROR_FAIL;
	}

	riscv_reset_timeout_sec = timeout;
	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_prefer_sba)
{
	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);
	bool prefer_sba;
	LOG_WARNING("`riscv set_prefer_sba` is deprecated. Please use `riscv set_mem_access` instead.");
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	COMMAND_PARSE_ON_OFF(CMD_ARGV[0], prefer_sba);
	if (prefer_sba) {
		/* Use system bus with highest priority */
		r->mem_access_methods[0] = RISCV_MEM_ACCESS_SYSBUS;
		r->mem_access_methods[1] = RISCV_MEM_ACCESS_PROGBUF;
		r->mem_access_methods[2] = RISCV_MEM_ACCESS_ABSTRACT;
	} else {
		/* Use progbuf with highest priority */
		r->mem_access_methods[0] = RISCV_MEM_ACCESS_PROGBUF;
		r->mem_access_methods[1] = RISCV_MEM_ACCESS_SYSBUS;
		r->mem_access_methods[2] = RISCV_MEM_ACCESS_ABSTRACT;
	}

	/* Reset warning flags */
	r->mem_access_progbuf_warn = true;
	r->mem_access_sysbus_warn = true;
	r->mem_access_abstract_warn = true;

	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_mem_access)
{
	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);
	int progbuf_cnt = 0;
	int sysbus_cnt = 0;
	int abstract_cnt = 0;

	if (CMD_ARGC < 1 || CMD_ARGC > RISCV_NUM_MEM_ACCESS_METHODS) {
		LOG_ERROR("Command takes 1 to %d parameters", RISCV_NUM_MEM_ACCESS_METHODS);
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	/* Check argument validity */
	for (unsigned int i = 0; i < CMD_ARGC; i++) {
		if (strcmp("progbuf", CMD_ARGV[i]) == 0) {
			progbuf_cnt++;
		} else if (strcmp("sysbus", CMD_ARGV[i]) == 0) {
			sysbus_cnt++;
		} else if (strcmp("abstract", CMD_ARGV[i]) == 0) {
			abstract_cnt++;
		} else {
			LOG_ERROR("Unknown argument '%s'. "
				"Must be one of: 'progbuf', 'sysbus' or 'abstract'.", CMD_ARGV[i]);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
	}
	if (progbuf_cnt > 1 || sysbus_cnt > 1 || abstract_cnt > 1) {
		LOG_ERROR("Syntax error - duplicate arguments to `riscv set_mem_access`.");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	/* Args are valid, store them */
	for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++)
		r->mem_access_methods[i] = RISCV_MEM_ACCESS_UNSPECIFIED;
	for (unsigned int i = 0; i < CMD_ARGC; i++) {
		if (strcmp("progbuf", CMD_ARGV[i]) == 0)
			r->mem_access_methods[i] = RISCV_MEM_ACCESS_PROGBUF;
		else if (strcmp("sysbus", CMD_ARGV[i]) == 0)
			r->mem_access_methods[i] = RISCV_MEM_ACCESS_SYSBUS;
		else if (strcmp("abstract", CMD_ARGV[i]) == 0)
			r->mem_access_methods[i] = RISCV_MEM_ACCESS_ABSTRACT;
	}

	/* Reset warning flags */
	r->mem_access_progbuf_warn = true;
	r->mem_access_sysbus_warn = true;
	r->mem_access_abstract_warn = true;

	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_enable_virtual)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_enable_virtual);
	return ERROR_OK;
}

int parse_ranges(struct list_head *ranges, const char *tcl_arg, const char *reg_type, unsigned int max_val)
{
	char *args = strdup(tcl_arg);
	if (!args)
		return ERROR_FAIL;

	/* For backward compatibility, allow multiple parameters within one TCL argument, separated by ',' */
	char *arg = strtok(args, ",");
	while (arg) {
		unsigned low = 0;
		unsigned high = 0;
		char *name = NULL;

		char *dash = strchr(arg, '-');
		char *equals = strchr(arg, '=');
		unsigned int pos;

		if (!dash && !equals) {
			/* Expecting single register number. */
			if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) {
				LOG_ERROR("Failed to parse single register number from '%s'.", arg);
				free(args);
				return ERROR_COMMAND_SYNTAX_ERROR;
			}
		} else if (dash && !equals) {
			/* Expecting register range - two numbers separated by a dash: ##-## */
			*dash = 0;
			dash++;
			if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) {
				LOG_ERROR("Failed to parse single register number from '%s'.", arg);
				free(args);
				return ERROR_COMMAND_SYNTAX_ERROR;
			}
			if (sscanf(dash, "%u%n", &high, &pos) != 1 || pos != strlen(dash)) {
				LOG_ERROR("Failed to parse single register number from '%s'.", dash);
				free(args);
				return ERROR_COMMAND_SYNTAX_ERROR;
			}
			if (high < low) {
				LOG_ERROR("Incorrect range encountered [%u, %u].", low, high);
				free(args);
				return ERROR_FAIL;
			}
		} else if (!dash && equals) {
			/* Expecting single register number with textual name specified: ##=name */
			*equals = 0;
			equals++;
			if (sscanf(arg, "%u%n", &low, &pos) != 1 || pos != strlen(arg)) {
				LOG_ERROR("Failed to parse single register number from '%s'.", arg);
				free(args);
				return ERROR_COMMAND_SYNTAX_ERROR;
			}

			name = calloc(1, strlen(equals) + strlen(reg_type) + 2);
			if (!name) {
				LOG_ERROR("Failed to allocate register name.");
				free(args);
				return ERROR_FAIL;
			}

			/* Register prefix: "csr_" or "custom_" */
			strcpy(name, reg_type);
			name[strlen(reg_type)] = '_';

			if (sscanf(equals, "%[_a-zA-Z0-9]%n", name + strlen(reg_type) + 1, &pos) != 1 || pos != strlen(equals)) {
				LOG_ERROR("Failed to parse register name from '%s'.", equals);
				free(args);
				free(name);
				return ERROR_COMMAND_SYNTAX_ERROR;
			}
		} else {
			LOG_ERROR("Invalid argument '%s'.", arg);
			free(args);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}

		high = high > low ? high : low;

		if (high > max_val) {
			LOG_ERROR("Cannot expose %s register number %u, maximum allowed value is %u.", reg_type, high, max_val);
			free(name);
			free(args);
			return ERROR_FAIL;
		}

		/* Check for overlap, name uniqueness. */
		range_list_t *entry;
		list_for_each_entry(entry, ranges, list) {
			if ((entry->low <= high) && (low <= entry->high)) {
				if (low == high)
					LOG_WARNING("Duplicate %s register number - "
							"Register %u has already been exposed previously", reg_type, low);
				else
					LOG_WARNING("Overlapping register ranges - Register range starting from %u overlaps "
							"with already exposed register/range at %u.", low, entry->low);
			}

			if (entry->name && name && (strcasecmp(entry->name, name) == 0)) {
				LOG_ERROR("Duplicate register name \"%s\" found.", name);
				free(name);
				free(args);
				return ERROR_FAIL;
			}
		}

		range_list_t *range = calloc(1, sizeof(range_list_t));
		if (!range) {
			LOG_ERROR("Failed to allocate range list.");
			free(name);
			free(args);
			return ERROR_FAIL;
		}

		range->low = low;
		range->high = high;
		range->name = name;
		list_add(&range->list, ranges);

		arg = strtok(NULL, ",");
	}

	free(args);
	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_expose_csrs)
{
	if (CMD_ARGC == 0) {
		LOG_ERROR("Command expects parameters");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(info);
	int ret = ERROR_OK;

	for (unsigned int i = 0; i < CMD_ARGC; i++) {
		ret = parse_ranges(&info->expose_csr, CMD_ARGV[i], "csr", 0xfff);
		if (ret != ERROR_OK)
			break;
	}

	return ret;
}

COMMAND_HANDLER(riscv_set_expose_custom)
{
	if (CMD_ARGC == 0) {
		LOG_ERROR("Command expects parameters");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(info);
	int ret = ERROR_OK;

	for (unsigned int i = 0; i < CMD_ARGC; i++) {
		ret = parse_ranges(&info->expose_custom, CMD_ARGV[i], "custom", 0x3fff);
		if (ret != ERROR_OK)
			break;
	}

	return ret;
}

COMMAND_HANDLER(riscv_authdata_read)
{
	unsigned int index = 0;
	if (CMD_ARGC == 0) {
		/* nop */
	} else if (CMD_ARGC == 1) {
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], index);
	} else {
		LOG_ERROR("Command takes at most one parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	if (!target) {
		LOG_ERROR("target is NULL!");
		return ERROR_FAIL;
	}

	RISCV_INFO(r);
	if (!r) {
		LOG_ERROR("riscv_info is NULL!");
		return ERROR_FAIL;
	}

	if (r->authdata_read) {
		uint32_t value;
		if (r->authdata_read(target, &value, index) != ERROR_OK)
			return ERROR_FAIL;
		command_print_sameline(CMD, "0x%08" PRIx32, value);
		return ERROR_OK;
	} else {
		LOG_ERROR("authdata_read is not implemented for this target.");
		return ERROR_FAIL;
	}
}

COMMAND_HANDLER(riscv_authdata_write)
{
	uint32_t value;
	unsigned int index = 0;

	if (CMD_ARGC == 0) {
		/* nop */
	} else if (CMD_ARGC == 1) {
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], value);
	} else if (CMD_ARGC == 2) {
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], index);
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);
	} else {
		LOG_ERROR("Command takes at most 2 arguments");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);

	if (r->authdata_write) {
		return r->authdata_write(target, value, index);
	} else {
		LOG_ERROR("authdata_write is not implemented for this target.");
		return ERROR_FAIL;
	}
}

COMMAND_HANDLER(riscv_dmi_read)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	if (!target) {
		LOG_ERROR("target is NULL!");
		return ERROR_FAIL;
	}

	RISCV_INFO(r);
	if (!r) {
		LOG_ERROR("riscv_info is NULL!");
		return ERROR_FAIL;
	}

	if (r->dmi_read) {
		uint32_t address, value;
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
		if (r->dmi_read(target, &value, address) != ERROR_OK)
			return ERROR_FAIL;
		command_print(CMD, "0x%" PRIx32, value);
		return ERROR_OK;
	} else {
		LOG_ERROR("dmi_read is not implemented for this target.");
		return ERROR_FAIL;
	}
}


COMMAND_HANDLER(riscv_dmi_write)
{
	if (CMD_ARGC != 2) {
		LOG_ERROR("Command takes exactly 2 arguments");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);

	uint32_t address, value;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], address);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);

	if (r->dmi_write) {
		/* Perform the DMI write */
		int retval = r->dmi_write(target, address, value);

		/* Invalidate our cached progbuf copy:
		   - if the user tinkered directly with a progbuf register
		   - if debug module was reset, in which case progbuf registers
		     may not retain their value.
		*/
		bool progbufTouched = (address >= DM_PROGBUF0 && address <= DM_PROGBUF15);
		bool dmDeactivated = (address == DM_DMCONTROL && (value & DM_DMCONTROL_DMACTIVE) == 0);
		if (progbufTouched || dmDeactivated) {
			if (r->invalidate_cached_debug_buffer)
				r->invalidate_cached_debug_buffer(target);
		}

		return retval;
	}

	LOG_ERROR("dmi_write is not implemented for this target.");
	return ERROR_FAIL;
}

COMMAND_HANDLER(riscv_test_sba_config_reg)
{
	if (CMD_ARGC != 4) {
		LOG_ERROR("Command takes exactly 4 arguments");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);

	target_addr_t legal_address;
	uint32_t num_words;
	target_addr_t illegal_address;
	bool run_sbbusyerror_test;

	COMMAND_PARSE_NUMBER(target_addr, CMD_ARGV[0], legal_address);
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], num_words);
	COMMAND_PARSE_NUMBER(target_addr, CMD_ARGV[2], illegal_address);
	COMMAND_PARSE_ON_OFF(CMD_ARGV[3], run_sbbusyerror_test);

	if (r->test_sba_config_reg) {
		return r->test_sba_config_reg(target, legal_address, num_words,
				illegal_address, run_sbbusyerror_test);
	} else {
		LOG_ERROR("test_sba_config_reg is not implemented for this target.");
		return ERROR_FAIL;
	}
}

COMMAND_HANDLER(riscv_reset_delays)
{
	int wait = 0;

	if (CMD_ARGC > 1) {
		LOG_ERROR("Command takes at most one argument");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	if (CMD_ARGC == 1)
		COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], wait);

	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);
	r->reset_delays_wait = wait;
	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_ir)
{
	if (CMD_ARGC != 2) {
		LOG_ERROR("Command takes exactly 2 arguments");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	uint32_t value;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], value);

	if (!strcmp(CMD_ARGV[0], "idcode"))
		buf_set_u32(ir_idcode, 0, 32, value);
	else if (!strcmp(CMD_ARGV[0], "dtmcs"))
		buf_set_u32(ir_dtmcontrol, 0, 32, value);
	else if (!strcmp(CMD_ARGV[0], "dmi"))
		buf_set_u32(ir_dbus, 0, 32, value);
	else
		return ERROR_FAIL;

	return ERROR_OK;
}

COMMAND_HANDLER(riscv_resume_order)
{
	if (CMD_ARGC > 1) {
		LOG_ERROR("Command takes at most one argument");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	if (!strcmp(CMD_ARGV[0], "normal")) {
		resume_order = RO_NORMAL;
	} else if (!strcmp(CMD_ARGV[0], "reversed")) {
		resume_order = RO_REVERSED;
	} else {
		LOG_ERROR("Unsupported resume order: %s", CMD_ARGV[0]);
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

COMMAND_HANDLER(riscv_use_bscan_tunnel)
{
	int irwidth = 0;
	int tunnel_type = BSCAN_TUNNEL_NESTED_TAP;

	if (CMD_ARGC > 2) {
		LOG_ERROR("Command takes at most two arguments");
		return ERROR_COMMAND_SYNTAX_ERROR;
	} else if (CMD_ARGC == 1) {
		COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], irwidth);
	} else if (CMD_ARGC == 2) {
		COMMAND_PARSE_NUMBER(int, CMD_ARGV[0], irwidth);
		COMMAND_PARSE_NUMBER(int, CMD_ARGV[1], tunnel_type);
	}
	if (tunnel_type == BSCAN_TUNNEL_NESTED_TAP)
		LOG_INFO("Nested Tap based Bscan Tunnel Selected");
	else if (tunnel_type == BSCAN_TUNNEL_DATA_REGISTER)
		LOG_INFO("Simple Register based Bscan Tunnel Selected");
	else
		LOG_INFO("Invalid Tunnel type selected ! : selecting default Nested Tap Type");

	bscan_tunnel_type = tunnel_type;
	bscan_tunnel_ir_width = irwidth;
	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_maskisr)
{
	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(info);

	static const struct jim_nvp nvp_maskisr_modes[] = {
		{ .name = "off", .value = RISCV_ISRMASK_OFF },
		{ .name = "steponly", .value = RISCV_ISRMASK_STEPONLY },
		{ .name = NULL, .value = -1 },
	};
	const struct jim_nvp *n;

	if (CMD_ARGC > 0) {
		n = jim_nvp_name2value_simple(nvp_maskisr_modes, CMD_ARGV[0]);
		if (!n->name)
			return ERROR_COMMAND_SYNTAX_ERROR;
		info->isrmask_mode = n->value;
	} else {
		n = jim_nvp_value2name_simple(nvp_maskisr_modes, info->isrmask_mode);
		command_print(CMD, "riscv interrupt mask %s", n->name);
	}

	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_enable_virt2phys)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_enable_virt2phys);
	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_ebreakm)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_ebreakm);
	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_ebreaks)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_ebreaks);
	return ERROR_OK;
}

COMMAND_HANDLER(riscv_set_ebreaku)
{
	if (CMD_ARGC != 1) {
		LOG_ERROR("Command takes exactly 1 parameter");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	COMMAND_PARSE_ON_OFF(CMD_ARGV[0], riscv_ebreaku);
	return ERROR_OK;
}

COMMAND_HANDLER(handle_repeat_read)
{
	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);

	if (CMD_ARGC < 2) {
		LOG_ERROR("Command requires at least count and address arguments.");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	if (CMD_ARGC > 3) {
		LOG_ERROR("Command takes at most 3 arguments.");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	uint32_t count;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], count);
	target_addr_t address;
	COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
	uint32_t size = 4;
	if (CMD_ARGC > 2)
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], size);

	if (count == 0)
		return ERROR_OK;

	uint8_t *buffer = malloc(size * count);
	if (!buffer) {
		LOG_ERROR("malloc failed");
		return ERROR_FAIL;
	}
	int result = r->read_memory(target, address, size, count, buffer, 0);
	if (result == ERROR_OK) {
		target_handle_md_output(cmd, target, address, size, count, buffer,
			false);
	}
	free(buffer);
	return result;
}

COMMAND_HANDLER(handle_memory_sample_command)
{
	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);

	if (CMD_ARGC == 0) {
		command_print(CMD, "Memory sample configuration for %s:", target_name(target));
		for (unsigned i = 0; i < ARRAY_SIZE(r->sample_config.bucket); i++) {
			if (r->sample_config.bucket[i].enabled) {
				command_print(CMD, "bucket %d; address=0x%" TARGET_PRIxADDR "; size=%d", i,
							  r->sample_config.bucket[i].address,
							  r->sample_config.bucket[i].size_bytes);
			} else {
				command_print(CMD, "bucket %d; disabled", i);
			}
		}
		return ERROR_OK;
	}

	if (CMD_ARGC < 2) {
		LOG_ERROR("Command requires at least bucket and address arguments.");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	uint32_t bucket;
	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], bucket);
	if (bucket > ARRAY_SIZE(r->sample_config.bucket)) {
		LOG_ERROR("Max bucket number is %d.", (unsigned) ARRAY_SIZE(r->sample_config.bucket));
		return ERROR_COMMAND_ARGUMENT_INVALID;
	}

	if (!strcmp(CMD_ARGV[1], "clear")) {
		r->sample_config.bucket[bucket].enabled = false;
	} else {
		COMMAND_PARSE_ADDRESS(CMD_ARGV[1], r->sample_config.bucket[bucket].address);

		if (CMD_ARGC > 2) {
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], r->sample_config.bucket[bucket].size_bytes);
			if (r->sample_config.bucket[bucket].size_bytes != 4 &&
					r->sample_config.bucket[bucket].size_bytes != 8) {
				LOG_ERROR("Only 4-byte and 8-byte sizes are supported.");
				return ERROR_COMMAND_ARGUMENT_INVALID;
			}
		} else {
			r->sample_config.bucket[bucket].size_bytes = 4;
		}

		r->sample_config.bucket[bucket].enabled = true;
	}

	if (!r->sample_buf.buf) {
		r->sample_buf.size = 1024 * 1024;
		r->sample_buf.buf = malloc(r->sample_buf.size);
	}

	/* Clear the buffer when the configuration is changed. */
	r->sample_buf.used = 0;

	r->sample_config.enabled = true;

	return ERROR_OK;
}

COMMAND_HANDLER(handle_dump_sample_buf_command)
{
	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);

	if (CMD_ARGC > 1) {
		LOG_ERROR("Command takes at most 1 arguments.");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}
	bool base64 = false;
	if (CMD_ARGC > 0) {
		if (!strcmp(CMD_ARGV[0], "base64")) {
			base64 = true;
		} else {
			LOG_ERROR("Unknown argument: %s", CMD_ARGV[0]);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
	}

	int result = ERROR_OK;
	if (base64) {
		unsigned char *encoded = base64_encode(r->sample_buf.buf,
									  r->sample_buf.used, NULL);
		if (!encoded) {
			LOG_ERROR("Failed base64 encode!");
			result = ERROR_FAIL;
			goto error;
		}
		command_print(CMD, "%s", encoded);
		free(encoded);
	} else {
		unsigned i = 0;
		while (i < r->sample_buf.used) {
			uint8_t command = r->sample_buf.buf[i++];
			if (command == RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE) {
				uint32_t timestamp = buf_get_u32(r->sample_buf.buf + i, 0, 32);
				i += 4;
				command_print(CMD, "timestamp before: %u", timestamp);
			} else if (command == RISCV_SAMPLE_BUF_TIMESTAMP_AFTER) {
				uint32_t timestamp = buf_get_u32(r->sample_buf.buf + i, 0, 32);
				i += 4;
				command_print(CMD, "timestamp after: %u", timestamp);
			} else if (command < ARRAY_SIZE(r->sample_config.bucket)) {
				command_print_sameline(CMD, "0x%" TARGET_PRIxADDR ": ",
									   r->sample_config.bucket[command].address);
				if (r->sample_config.bucket[command].size_bytes == 4) {
					uint32_t value = buf_get_u32(r->sample_buf.buf + i, 0, 32);
					i += 4;
					command_print(CMD, "0x%08" PRIx32, value);
				} else if (r->sample_config.bucket[command].size_bytes == 8) {
					uint64_t value = buf_get_u64(r->sample_buf.buf + i, 0, 64);
					i += 8;
					command_print(CMD, "0x%016" PRIx64, value);
				} else {
					LOG_ERROR("Found invalid size in bucket %d: %d", command,
							  r->sample_config.bucket[command].size_bytes);
					result = ERROR_FAIL;
					goto error;
				}
			} else {
				LOG_ERROR("Found invalid command byte in sample buf: 0x%2x at offset 0x%x",
					command, i - 1);
				result = ERROR_FAIL;
				goto error;
			}
		}
	}

error:
	/* Clear the sample buffer even when there was an error. */
	r->sample_buf.used = 0;
	return result;
}

COMMAND_HELPER(riscv_print_info_line, const char *section, const char *key,
			   unsigned value)
{
	char full_key[80];
	snprintf(full_key, sizeof(full_key), "%s.%s", section, key);
	command_print(CMD, "%-21s %3d", full_key, value);
	return 0;
}

COMMAND_HANDLER(handle_info)
{
	struct target *target = get_current_target(CMD_CTX);
	RISCV_INFO(r);

	/* This output format can be fed directly into TCL's "array set". */

	riscv_print_info_line(CMD, "hart", "xlen", riscv_xlen(target));
	riscv_enumerate_triggers(target);
	riscv_print_info_line(CMD, "hart", "trigger_count",
						  r->trigger_count);

	if (r->print_info)
		return CALL_COMMAND_HANDLER(r->print_info, target);

	return 0;
}

static const struct command_registration riscv_exec_command_handlers[] = {
	{
		.name = "dump_sample_buf",
		.handler = handle_dump_sample_buf_command,
		.mode = COMMAND_ANY,
		.usage = "[base64]",
		.help = "Print the contents of the sample buffer, and clear the buffer."
	},
	{
		.name = "info",
		.handler = handle_info,
		.mode = COMMAND_ANY,
		.usage = "",
		.help = "Displays some information OpenOCD detected about the target."
	},
	{
		.name = "memory_sample",
		.handler = handle_memory_sample_command,
		.mode = COMMAND_ANY,
		.usage = "bucket address|clear [size=4]",
		.help = "Causes OpenOCD to frequently read size bytes at the given address."
	},
	{
		.name = "repeat_read",
		.handler = handle_repeat_read,
		.mode = COMMAND_ANY,
		.usage = "count address [size=4]",
		.help = "Repeatedly read the value at address."
	},
	{
		.name = "set_command_timeout_sec",
		.handler = riscv_set_command_timeout_sec,
		.mode = COMMAND_ANY,
		.usage = "[sec]",
		.help = "Set the wall-clock timeout (in seconds) for individual commands"
	},
	{
		.name = "set_reset_timeout_sec",
		.handler = riscv_set_reset_timeout_sec,
		.mode = COMMAND_ANY,
		.usage = "[sec]",
		.help = "Set the wall-clock timeout (in seconds) after reset is deasserted"
	},
	{
		.name = "set_prefer_sba",
		.handler = riscv_set_prefer_sba,
		.mode = COMMAND_ANY,
		.usage = "on|off",
		.help = "When on, prefer to use System Bus Access to access memory. "
			"When off (default), prefer to use the Program Buffer to access memory."
	},
	{
		.name = "set_mem_access",
		.handler = riscv_set_mem_access,
		.mode = COMMAND_ANY,
		.usage = "method1 [method2] [method3]",
		.help = "Set which memory access methods shall be used and in which order "
			"of priority. Method can be one of: 'progbuf', 'sysbus' or 'abstract'."
	},
	{
		.name = "set_enable_virtual",
		.handler = riscv_set_enable_virtual,
		.mode = COMMAND_ANY,
		.usage = "on|off",
		.help = "When on, memory accesses are performed on physical or virtual "
				"memory depending on the current system configuration. "
				"When off (default), all memory accessses are performed on physical memory."
	},
	{
		.name = "expose_csrs",
		.handler = riscv_set_expose_csrs,
		.mode = COMMAND_CONFIG,
		.usage = "n0[-m0|=name0][,n1[-m1|=name1]]...",
		.help = "Configure a list of inclusive ranges for CSRs to expose in "
				"addition to the standard ones. This must be executed before "
				"`init`."
	},
	{
		.name = "expose_custom",
		.handler = riscv_set_expose_custom,
		.mode = COMMAND_CONFIG,
		.usage = "n0[-m0|=name0][,n1[-m1|=name1]]...",
		.help = "Configure a list of inclusive ranges for custom registers to "
			"expose. custom0 is accessed as abstract register number 0xc000, "
			"etc. This must be executed before `init`."
	},
	{
		.name = "authdata_read",
		.handler = riscv_authdata_read,
		.usage = "[index]",
		.mode = COMMAND_ANY,
		.help = "Return the 32-bit value read from authdata or authdata0 "
				"(index=0), or authdata1 (index=1)."
	},
	{
		.name = "authdata_write",
		.handler = riscv_authdata_write,
		.mode = COMMAND_ANY,
		.usage = "[index] value",
		.help = "Write the 32-bit value to authdata or authdata0 (index=0), "
				"or authdata1 (index=1)."
	},
	{
		.name = "dmi_read",
		.handler = riscv_dmi_read,
		.mode = COMMAND_ANY,
		.usage = "address",
		.help = "Perform a 32-bit DMI read at address, returning the value."
	},
	{
		.name = "dmi_write",
		.handler = riscv_dmi_write,
		.mode = COMMAND_ANY,
		.usage = "address value",
		.help = "Perform a 32-bit DMI write of value at address."
	},
	{
		.name = "test_sba_config_reg",
		.handler = riscv_test_sba_config_reg,
		.mode = COMMAND_ANY,
		.usage = "legal_address num_words "
			"illegal_address run_sbbusyerror_test[on/off]",
		.help = "Perform a series of tests on the SBCS register. "
			"Inputs are a legal, 128-byte aligned address and a number of words to "
			"read/write starting at that address (i.e., address range [legal address, "
			"legal_address+word_size*num_words) must be legally readable/writable), "
			"an illegal, 128-byte aligned address for error flag/handling cases, "
			"and whether sbbusyerror test should be run."
	},
	{
		.name = "reset_delays",
		.handler = riscv_reset_delays,
		.mode = COMMAND_ANY,
		.usage = "[wait]",
		.help = "OpenOCD learns how many Run-Test/Idle cycles are required "
			"between scans to avoid encountering the target being busy. This "
			"command resets those learned values after `wait` scans. It's only "
			"useful for testing OpenOCD itself."
	},
	{
		.name = "resume_order",
		.handler = riscv_resume_order,
		.mode = COMMAND_ANY,
		.usage = "normal|reversed",
		.help = "Choose the order that harts are resumed in when `hasel` is not "
			"supported. Normal order is from lowest hart index to highest. "
			"Reversed order is from highest hart index to lowest."
	},
	{
		.name = "set_ir",
		.handler = riscv_set_ir,
		.mode = COMMAND_ANY,
		.usage = "[idcode|dtmcs|dmi] value",
		.help = "Set IR value for specified JTAG register."
	},
	{
		.name = "use_bscan_tunnel",
		.handler = riscv_use_bscan_tunnel,
		.mode = COMMAND_ANY,
		.usage = "value [type]",
		.help = "Enable or disable use of a BSCAN tunnel to reach DM.  Supply "
			"the width of the DM transport TAP's instruction register to "
			"enable.  Supply a value of 0 to disable. Pass A second argument "
			"(optional) to indicate Bscan Tunnel Type {0:(default) NESTED_TAP , "
			"1: DATA_REGISTER}"
	},
	{
		.name = "set_maskisr",
		.handler = riscv_set_maskisr,
		.mode = COMMAND_EXEC,
		.help = "mask riscv interrupts",
		.usage = "['off'|'steponly']",
	},
	{
		.name = "set_enable_virt2phys",
		.handler = riscv_set_enable_virt2phys,
		.mode = COMMAND_ANY,
		.usage = "on|off",
		.help = "When on (default), enable translation from virtual address to "
			"physical address."
	},
	{
		.name = "set_ebreakm",
		.handler = riscv_set_ebreakm,
		.mode = COMMAND_ANY,
		.usage = "on|off",
		.help = "Control dcsr.ebreakm. When off, M-mode ebreak instructions "
			"don't trap to OpenOCD. Defaults to on."
	},
	{
		.name = "set_ebreaks",
		.handler = riscv_set_ebreaks,
		.mode = COMMAND_ANY,
		.usage = "on|off",
		.help = "Control dcsr.ebreaks. When off, S-mode ebreak instructions "
			"don't trap to OpenOCD. Defaults to on."
	},
	{
		.name = "set_ebreaku",
		.handler = riscv_set_ebreaku,
		.mode = COMMAND_ANY,
		.usage = "on|off",
		.help = "Control dcsr.ebreaku. When off, U-mode ebreak instructions "
			"don't trap to OpenOCD. Defaults to on."
	},
	COMMAND_REGISTRATION_DONE
};

/*
 * To be noted that RISC-V targets use the same semihosting commands as
 * ARM targets.
 *
 * The main reason is compatibility with existing tools. For example the
 * Eclipse OpenOCD/SEGGER J-Link/QEMU plug-ins have several widgets to
 * configure semihosting, which generate commands like `arm semihosting
 * enable`.
 * A secondary reason is the fact that the protocol used is exactly the
 * one specified by ARM. If RISC-V will ever define its own semihosting
 * protocol, then a command like `riscv semihosting enable` will make
 * sense, but for now all semihosting commands are prefixed with `arm`.
 */
extern const struct command_registration semihosting_common_handlers[];

const struct command_registration riscv_command_handlers[] = {
	{
		.name = "riscv",
		.mode = COMMAND_ANY,
		.help = "RISC-V Command Group",
		.usage = "",
		.chain = riscv_exec_command_handlers
	},
	{
		.name = "arm",
		.mode = COMMAND_ANY,
		.help = "ARM Command Group",
		.usage = "",
		.chain = semihosting_common_handlers
	},
	COMMAND_REGISTRATION_DONE
};

static unsigned riscv_xlen_nonconst(struct target *target)
{
	return riscv_xlen(target);
}

static unsigned int riscv_data_bits(struct target *target)
{
	RISCV_INFO(r);
	if (r->data_bits)
		return r->data_bits(target);
	return riscv_xlen(target);
}

struct target_type riscv_target = {
	.name = "riscv",

	.target_create = riscv_create_target,
	.init_target = riscv_init_target,
	.deinit_target = riscv_deinit_target,
	.examine = riscv_examine,

	/* poll current target status */
	.poll = old_or_new_riscv_poll,

	.halt = riscv_halt,
	.resume = riscv_target_resume,
	.step = old_or_new_riscv_step,

	.assert_reset = riscv_assert_reset,
	.deassert_reset = riscv_deassert_reset,

	.read_memory = riscv_read_memory,
	.write_memory = riscv_write_memory,
	.read_phys_memory = riscv_read_phys_memory,
	.write_phys_memory = riscv_write_phys_memory,

	.checksum_memory = riscv_checksum_memory,

	.mmu = riscv_mmu,
	.virt2phys = riscv_virt2phys,

	.get_gdb_arch = riscv_get_gdb_arch,
	.get_gdb_reg_list = riscv_get_gdb_reg_list,
	.get_gdb_reg_list_noread = riscv_get_gdb_reg_list_noread,

	.add_breakpoint = riscv_add_breakpoint,
	.remove_breakpoint = riscv_remove_breakpoint,

	.add_watchpoint = riscv_add_watchpoint,
	.remove_watchpoint = riscv_remove_watchpoint,
	.hit_watchpoint = riscv_hit_watchpoint,

	.arch_state = riscv_arch_state,

	.run_algorithm = riscv_run_algorithm,

	.commands = riscv_command_handlers,

	.address_bits = riscv_xlen_nonconst,
	.data_bits = riscv_data_bits
};

/*** RISC-V Interface ***/

void riscv_info_init(struct target *target, riscv_info_t *r)
{
	memset(r, 0, sizeof(*r));
	r->dtm_version = 1;
	r->registers_initialized = false;
	r->current_hartid = target->coreid;
	r->version_specific = NULL;

	memset(r->trigger_unique_id, 0xff, sizeof(r->trigger_unique_id));

	r->xlen = -1;

	r->isrmask_mode = RISCV_ISRMASK_OFF;

	r->mem_access_methods[0] = RISCV_MEM_ACCESS_PROGBUF;
	r->mem_access_methods[1] = RISCV_MEM_ACCESS_SYSBUS;
	r->mem_access_methods[2] = RISCV_MEM_ACCESS_ABSTRACT;

	r->mem_access_progbuf_warn = true;
	r->mem_access_sysbus_warn = true;
	r->mem_access_abstract_warn = true;

	INIT_LIST_HEAD(&r->expose_csr);
	INIT_LIST_HEAD(&r->expose_custom);
}

static int riscv_resume_go_all_harts(struct target *target)
{
	RISCV_INFO(r);

	LOG_DEBUG("[%s] resuming hart", target_name(target));
	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_is_halted(target)) {
		if (r->resume_go(target) != ERROR_OK)
			return ERROR_FAIL;
	} else {
		LOG_DEBUG("[%s] hart requested resume, but was already resumed",
				target_name(target));
	}

	riscv_invalidate_register_cache(target);
	return ERROR_OK;
}

int riscv_interrupts_disable(struct target *target, uint64_t irq_mask, uint64_t *old_mstatus)
{
	LOG_DEBUG("Disabling Interrupts");
	struct reg *reg_mstatus = register_get_by_name(target->reg_cache,
			"mstatus", true);
	if (!reg_mstatus) {
		LOG_ERROR("Couldn't find mstatus!");
		return ERROR_FAIL;
	}

	int retval = reg_mstatus->type->get(reg_mstatus);
	if (retval != ERROR_OK)
		return retval;

	RISCV_INFO(info);
	uint8_t mstatus_bytes[8] = { 0 };
	uint64_t current_mstatus = buf_get_u64(reg_mstatus->value, 0, reg_mstatus->size);
	buf_set_u64(mstatus_bytes, 0, info->xlen, set_field(current_mstatus,
				irq_mask, 0));

	retval = reg_mstatus->type->set(reg_mstatus, mstatus_bytes);
	if (retval != ERROR_OK)
		return retval;

	if (old_mstatus)
		*old_mstatus = current_mstatus;

	return ERROR_OK;
}

int riscv_interrupts_restore(struct target *target, uint64_t old_mstatus)
{
	LOG_DEBUG("Restore Interrupts");
	struct reg *reg_mstatus = register_get_by_name(target->reg_cache,
			"mstatus", true);
	if (!reg_mstatus) {
		LOG_ERROR("Couldn't find mstatus!");
		return ERROR_FAIL;
	}

	RISCV_INFO(info);
	uint8_t mstatus_bytes[8];
	buf_set_u64(mstatus_bytes, 0, info->xlen, old_mstatus);
	return reg_mstatus->type->set(reg_mstatus, mstatus_bytes);
}

int riscv_step_rtos_hart(struct target *target)
{
	RISCV_INFO(r);
	if (riscv_select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("[%s] stepping", target_name(target));

	if (!riscv_is_halted(target)) {
		LOG_ERROR("Hart isn't halted before single step!");
		return ERROR_FAIL;
	}
	r->on_step(target);
	if (r->step_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;
	r->on_halt(target);
	if (!riscv_is_halted(target)) {
		LOG_ERROR("Hart was not halted after single step!");
		return ERROR_FAIL;
	}
	return ERROR_OK;
}

bool riscv_supports_extension(struct target *target, char letter)
{
	RISCV_INFO(r);
	unsigned num;
	if (letter >= 'a' && letter <= 'z')
		num = letter - 'a';
	else if (letter >= 'A' && letter <= 'Z')
		num = letter - 'A';
	else
		return false;
	return r->misa & BIT(num);
}

unsigned riscv_xlen(const struct target *target)
{
	RISCV_INFO(r);
	return r->xlen;
}

int riscv_set_current_hartid(struct target *target, int hartid)
{
	RISCV_INFO(r);
	if (!r->select_current_hart)
		return ERROR_OK;

	int previous_hartid = riscv_current_hartid(target);
	r->current_hartid = hartid;
	LOG_DEBUG("setting hartid to %d, was %d", hartid, previous_hartid);
	if (r->select_current_hart(target) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

void riscv_invalidate_register_cache(struct target *target)
{
	RISCV_INFO(r);

	LOG_DEBUG("[%d]", target->coreid);
	register_cache_invalidate(target->reg_cache);
	for (size_t i = 0; i < target->reg_cache->num_regs; ++i) {
		struct reg *reg = &target->reg_cache->reg_list[i];
		reg->valid = false;
	}

	r->registers_initialized = true;
}

int riscv_current_hartid(const struct target *target)
{
	RISCV_INFO(r);
	return r->current_hartid;
}

int riscv_count_harts(struct target *target)
{
	if (!target)
		return 1;
	RISCV_INFO(r);
	if (!r || !r->hart_count)
		return 1;
	return r->hart_count(target);
}

/**
 * If write is true:
 *   return true iff we are guaranteed that the register will contain exactly
 *       the value we just wrote when it's read.
 * If write is false:
 *   return true iff we are guaranteed that the register will read the same
 *       value in the future as the value we just read.
 */
static bool gdb_regno_cacheable(enum gdb_regno regno, bool write)
{
	/* GPRs, FPRs, vector registers are just normal data stores. */
	if (regno <= GDB_REGNO_XPR31 ||
			(regno >= GDB_REGNO_FPR0 && regno <= GDB_REGNO_FPR31) ||
			(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31))
		return true;

	/* Most CSRs won't change value on us, but we can't assume it about arbitrary
	 * CSRs. */
	switch (regno) {
		case GDB_REGNO_DPC:
			return true;

		case GDB_REGNO_VSTART:
		case GDB_REGNO_VXSAT:
		case GDB_REGNO_VXRM:
		case GDB_REGNO_VLENB:
		case GDB_REGNO_VL:
		case GDB_REGNO_VTYPE:
		case GDB_REGNO_MISA:
		case GDB_REGNO_DCSR:
		case GDB_REGNO_DSCRATCH0:
		case GDB_REGNO_MSTATUS:
		case GDB_REGNO_MEPC:
		case GDB_REGNO_MCAUSE:
		case GDB_REGNO_SATP:
			/*
			 * WARL registers might not contain the value we just wrote, but
			 * these ones won't spontaneously change their value either. *
			 */
			return !write;

		case GDB_REGNO_TSELECT:	/* I think this should be above, but then it doesn't work. */
		case GDB_REGNO_TDATA1:	/* Changes value when tselect is changed. */
		case GDB_REGNO_TDATA2:  /* Changse value when tselect is changed. */
		default:
			return false;
	}
}

/**
 * This function is called when the debug user wants to change the value of a
 * register. The new value may be cached, and may not be written until the hart
 * is resumed. */
int riscv_set_register(struct target *target, enum gdb_regno regid, riscv_reg_t value)
{
	RISCV_INFO(r);
	LOG_DEBUG("[%s] %s <- %" PRIx64, target_name(target), gdb_regno_name(regid), value);
	assert(r->set_register);

	keep_alive();

	/* TODO: Hack to deal with gdb that thinks these registers still exist. */
	if (regid > GDB_REGNO_XPR15 && regid <= GDB_REGNO_XPR31 && value == 0 &&
			riscv_supports_extension(target, 'E'))
		return ERROR_OK;

	struct reg *reg = &target->reg_cache->reg_list[regid];
	buf_set_u64(reg->value, 0, reg->size, value);

	if (gdb_regno_cacheable(regid, true)) {
		reg->valid = true;
		reg->dirty = true;
	} else {
		if (r->set_register(target, regid, value) != ERROR_OK)
			return ERROR_FAIL;
	}

	LOG_DEBUG("[%s] wrote 0x%" PRIx64 " to %s valid=%d",
			  target_name(target), value, reg->name, reg->valid);
	return ERROR_OK;
}

int riscv_get_register(struct target *target, riscv_reg_t *value,
		enum gdb_regno regid)
{
	RISCV_INFO(r);

	keep_alive();

	struct reg *reg = &target->reg_cache->reg_list[regid];
	if (!reg->exist) {
		LOG_DEBUG("[%s] %s does not exist.",
				  target_name(target), gdb_regno_name(regid));
		return ERROR_FAIL;
	}

	if (reg && reg->valid) {
		*value = buf_get_u64(reg->value, 0, reg->size);
		LOG_DEBUG("[%s] %s: %" PRIx64 " (cached)", target_name(target),
				  gdb_regno_name(regid), *value);
		return ERROR_OK;
	}

	/* TODO: Hack to deal with gdb that thinks these registers still exist. */
	if (regid > GDB_REGNO_XPR15 && regid <= GDB_REGNO_XPR31 &&
			riscv_supports_extension(target, 'E')) {
		*value = 0;
		return ERROR_OK;
	}

	int result = r->get_register(target, value, regid);

	if (result == ERROR_OK) {
		/* Update the cache in case we're called from
		 * riscv_save_register(). */
		buf_set_u64(reg->value, 0, reg->size, *value);
		reg->valid = gdb_regno_cacheable(regid, false);
	}

	LOG_DEBUG("[%s] %s: %" PRIx64, target_name(target),
			gdb_regno_name(regid), *value);
	return result;
}

int riscv_save_register(struct target *target, enum gdb_regno regid)
{
	RISCV_INFO(r);
	riscv_reg_t value;
	if (!target->reg_cache) {
		assert(!target_was_examined(target));
		return ERROR_OK;
	}

	struct reg *reg = &target->reg_cache->reg_list[regid];
	LOG_DEBUG("[%s] save %s", target_name(target), reg->name);
	if (riscv_get_register(target, &value, regid) != ERROR_OK)
		return ERROR_FAIL;

	if (!reg->valid)
		return ERROR_FAIL;
	/* Mark the register dirty. We assume that this function is called
	 * because the caller is about to mess with the underlying value of the
	 * register. */
	reg->dirty = true;

	r->last_activity = timeval_ms();

	return ERROR_OK;
}

bool riscv_is_halted(struct target *target)
{
	RISCV_INFO(r);
	assert(r->is_halted);
	return r->is_halted(target);
}

enum riscv_halt_reason riscv_halt_reason(struct target *target, int hartid)
{
	RISCV_INFO(r);
	if (riscv_set_current_hartid(target, hartid) != ERROR_OK)
		return RISCV_HALT_ERROR;
	if (!riscv_is_halted(target)) {
		LOG_ERROR("Hart is not halted!");
		return RISCV_HALT_UNKNOWN;
	}
	return r->halt_reason(target);
}

size_t riscv_debug_buffer_size(struct target *target)
{
	RISCV_INFO(r);
	return r->debug_buffer_size;
}

int riscv_write_debug_buffer(struct target *target, int index, riscv_insn_t insn)
{
	RISCV_INFO(r);
	r->write_debug_buffer(target, index, insn);
	return ERROR_OK;
}

riscv_insn_t riscv_read_debug_buffer(struct target *target, int index)
{
	RISCV_INFO(r);
	return r->read_debug_buffer(target, index);
}

int riscv_execute_debug_buffer(struct target *target)
{
	RISCV_INFO(r);
	return r->execute_debug_buffer(target);
}

void riscv_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d)
{
	RISCV_INFO(r);
	r->fill_dmi_write_u64(target, buf, a, d);
}

void riscv_fill_dmi_read_u64(struct target *target, char *buf, int a)
{
	RISCV_INFO(r);
	r->fill_dmi_read_u64(target, buf, a);
}

void riscv_fill_dmi_nop_u64(struct target *target, char *buf)
{
	RISCV_INFO(r);
	r->fill_dmi_nop_u64(target, buf);
}

int riscv_dmi_write_u64_bits(struct target *target)
{
	RISCV_INFO(r);
	return r->dmi_write_u64_bits(target);
}

/**
 * Count triggers, and initialize trigger_count for each hart.
 * trigger_count is initialized even if this function fails to discover
 * something.
 * Disable any hardware triggers that have dmode set. We can't have set them
 * ourselves. Maybe they're left over from some killed debug session.
 * */
int riscv_enumerate_triggers(struct target *target)
{
	RISCV_INFO(r);

	if (r->triggers_enumerated)
		return ERROR_OK;

	r->triggers_enumerated = true;	/* At the very least we tried. */

	riscv_reg_t tselect;
	int result = riscv_get_register(target, &tselect, GDB_REGNO_TSELECT);
	/* If tselect is not readable, the trigger module is likely not
		* implemented. There are no triggers to enumerate then and no error
		* should be thrown. */
	if (result != ERROR_OK) {
		LOG_DEBUG("[%s] Cannot access tselect register. "
				"Assuming that triggers are not implemented.", target_name(target));
		r->trigger_count = 0;
		return ERROR_OK;
	}

	for (unsigned int t = 0; t < RISCV_MAX_TRIGGERS; ++t) {
		r->trigger_count = t;

		/* If we can't write tselect, then this hart does not support triggers. */
		if (riscv_set_register(target, GDB_REGNO_TSELECT, t) != ERROR_OK)
			break;
		uint64_t tselect_rb;
		result = riscv_get_register(target, &tselect_rb, GDB_REGNO_TSELECT);
		if (result != ERROR_OK)
			return result;
		/* Mask off the top bit, which is used as tdrmode in old
			* implementations. */
		tselect_rb &= ~(1ULL << (riscv_xlen(target) - 1));
		if (tselect_rb != t)
			break;
		uint64_t tdata1;
		result = riscv_get_register(target, &tdata1, GDB_REGNO_TDATA1);
		if (result != ERROR_OK)
			return result;

		int type = get_field(tdata1, MCONTROL_TYPE(riscv_xlen(target)));
		if (type == 0)
			break;
		switch (type) {
			case 1:
				/* On these older cores we don't support software using
					* triggers. */
				riscv_set_register(target, GDB_REGNO_TDATA1, 0);
				break;
			case 2:
				if (tdata1 & MCONTROL_DMODE(riscv_xlen(target)))
					riscv_set_register(target, GDB_REGNO_TDATA1, 0);
				break;
			case 6:
				if (tdata1 & MCONTROL_DMODE(riscv_xlen(target)))
					riscv_set_register(target, GDB_REGNO_TDATA1, 0);
				break;
		}
	}

	riscv_set_register(target, GDB_REGNO_TSELECT, tselect);

	LOG_INFO("[%s] Found %d triggers", target_name(target), r->trigger_count);

	return ERROR_OK;
}

const char *gdb_regno_name(enum gdb_regno regno)
{
	static char buf[32];

	switch (regno) {
		case GDB_REGNO_ZERO:
			return "zero";
		case GDB_REGNO_RA:
			return "ra";
		case GDB_REGNO_SP:
			return "sp";
		case GDB_REGNO_GP:
			return "gp";
		case GDB_REGNO_TP:
			return "tp";
		case GDB_REGNO_T0:
			return "t0";
		case GDB_REGNO_T1:
			return "t1";
		case GDB_REGNO_T2:
			return "t2";
		case GDB_REGNO_S0:
			return "s0";
		case GDB_REGNO_S1:
			return "s1";
		case GDB_REGNO_A0:
			return "a0";
		case GDB_REGNO_A1:
			return "a1";
		case GDB_REGNO_A2:
			return "a2";
		case GDB_REGNO_A3:
			return "a3";
		case GDB_REGNO_A4:
			return "a4";
		case GDB_REGNO_A5:
			return "a5";
		case GDB_REGNO_A6:
			return "a6";
		case GDB_REGNO_A7:
			return "a7";
		case GDB_REGNO_S2:
			return "s2";
		case GDB_REGNO_S3:
			return "s3";
		case GDB_REGNO_S4:
			return "s4";
		case GDB_REGNO_S5:
			return "s5";
		case GDB_REGNO_S6:
			return "s6";
		case GDB_REGNO_S7:
			return "s7";
		case GDB_REGNO_S8:
			return "s8";
		case GDB_REGNO_S9:
			return "s9";
		case GDB_REGNO_S10:
			return "s10";
		case GDB_REGNO_S11:
			return "s11";
		case GDB_REGNO_T3:
			return "t3";
		case GDB_REGNO_T4:
			return "t4";
		case GDB_REGNO_T5:
			return "t5";
		case GDB_REGNO_T6:
			return "t6";
		case GDB_REGNO_PC:
			return "pc";
		case GDB_REGNO_FPR0:
			return "fpr0";
		case GDB_REGNO_FPR31:
			return "fpr31";
		case GDB_REGNO_CSR0:
			return "csr0";
		case GDB_REGNO_TSELECT:
			return "tselect";
		case GDB_REGNO_TDATA1:
			return "tdata1";
		case GDB_REGNO_TDATA2:
			return "tdata2";
		case GDB_REGNO_MISA:
			return "misa";
		case GDB_REGNO_DPC:
			return "dpc";
		case GDB_REGNO_DCSR:
			return "dcsr";
		case GDB_REGNO_DSCRATCH0:
			return "dscratch0";
		case GDB_REGNO_MSTATUS:
			return "mstatus";
		case GDB_REGNO_MEPC:
			return "mepc";
		case GDB_REGNO_MCAUSE:
			return "mcause";
		case GDB_REGNO_PRIV:
			return "priv";
		case GDB_REGNO_SATP:
			return "satp";
		case GDB_REGNO_VTYPE:
			return "vtype";
		case GDB_REGNO_VL:
			return "vl";
		case GDB_REGNO_V0:
			return "v0";
		case GDB_REGNO_V1:
			return "v1";
		case GDB_REGNO_V2:
			return "v2";
		case GDB_REGNO_V3:
			return "v3";
		case GDB_REGNO_V4:
			return "v4";
		case GDB_REGNO_V5:
			return "v5";
		case GDB_REGNO_V6:
			return "v6";
		case GDB_REGNO_V7:
			return "v7";
		case GDB_REGNO_V8:
			return "v8";
		case GDB_REGNO_V9:
			return "v9";
		case GDB_REGNO_V10:
			return "v10";
		case GDB_REGNO_V11:
			return "v11";
		case GDB_REGNO_V12:
			return "v12";
		case GDB_REGNO_V13:
			return "v13";
		case GDB_REGNO_V14:
			return "v14";
		case GDB_REGNO_V15:
			return "v15";
		case GDB_REGNO_V16:
			return "v16";
		case GDB_REGNO_V17:
			return "v17";
		case GDB_REGNO_V18:
			return "v18";
		case GDB_REGNO_V19:
			return "v19";
		case GDB_REGNO_V20:
			return "v20";
		case GDB_REGNO_V21:
			return "v21";
		case GDB_REGNO_V22:
			return "v22";
		case GDB_REGNO_V23:
			return "v23";
		case GDB_REGNO_V24:
			return "v24";
		case GDB_REGNO_V25:
			return "v25";
		case GDB_REGNO_V26:
			return "v26";
		case GDB_REGNO_V27:
			return "v27";
		case GDB_REGNO_V28:
			return "v28";
		case GDB_REGNO_V29:
			return "v29";
		case GDB_REGNO_V30:
			return "v30";
		case GDB_REGNO_V31:
			return "v31";
		default:
			if (regno <= GDB_REGNO_XPR31)
				sprintf(buf, "x%d", regno - GDB_REGNO_ZERO);
			else if (regno >= GDB_REGNO_CSR0 && regno <= GDB_REGNO_CSR4095)
				sprintf(buf, "csr%d", regno - GDB_REGNO_CSR0);
			else if (regno >= GDB_REGNO_FPR0 && regno <= GDB_REGNO_FPR31)
				sprintf(buf, "f%d", regno - GDB_REGNO_FPR0);
			else
				sprintf(buf, "gdb_regno_%d", regno);
			return buf;
	}
}

static int register_get(struct reg *reg)
{
	riscv_reg_info_t *reg_info = reg->arch_info;
	struct target *target = reg_info->target;
	RISCV_INFO(r);

	if (reg->number >= GDB_REGNO_V0 && reg->number <= GDB_REGNO_V31) {
		if (!r->get_register_buf) {
			LOG_ERROR("Reading register %s not supported on this RISC-V target.",
					gdb_regno_name(reg->number));
			return ERROR_FAIL;
		}

		if (r->get_register_buf(target, reg->value, reg->number) != ERROR_OK)
			return ERROR_FAIL;
	} else {
		uint64_t value;
		int result = riscv_get_register(target, &value, reg->number);
		if (result != ERROR_OK)
			return result;
		buf_set_u64(reg->value, 0, reg->size, value);
	}
	reg->valid = gdb_regno_cacheable(reg->number, false);
	char *str = buf_to_hex_str(reg->value, reg->size);
	LOG_DEBUG("[%s] read 0x%s from %s (valid=%d)", target_name(target),
			str, reg->name, reg->valid);
	free(str);
	return ERROR_OK;
}

static int register_set(struct reg *reg, uint8_t *buf)
{
	riscv_reg_info_t *reg_info = reg->arch_info;
	struct target *target = reg_info->target;
	RISCV_INFO(r);

	char *str = buf_to_hex_str(buf, reg->size);
	LOG_DEBUG("[%s] write 0x%s to %s (valid=%d)", target_name(target),
			str, reg->name, reg->valid);
	free(str);

	/* Exit early for writing x0, which on the hardware would be ignored, and we
	 * don't want to update our cache. */
	if (reg->number == GDB_REGNO_ZERO)
		return ERROR_OK;

	memcpy(reg->value, buf, DIV_ROUND_UP(reg->size, 8));
	reg->valid = gdb_regno_cacheable(reg->number, true);

	if (reg->number == GDB_REGNO_TDATA1 ||
			reg->number == GDB_REGNO_TDATA2) {
		r->manual_hwbp_set = true;
		/* When enumerating triggers, we clear any triggers with DMODE set,
		 * assuming they were left over from a previous debug session. So make
		 * sure that is done before a user might be setting their own triggers.
		 */
		if (riscv_enumerate_triggers(target) != ERROR_OK)
			return ERROR_FAIL;
	}

	if (reg->number >= GDB_REGNO_V0 && reg->number <= GDB_REGNO_V31) {
		if (!r->set_register_buf) {
			LOG_ERROR("Writing register %s not supported on this RISC-V target.",
					gdb_regno_name(reg->number));
			return ERROR_FAIL;
		}

		if (r->set_register_buf(target, reg->number, reg->value) != ERROR_OK)
			return ERROR_FAIL;
	} else {
		uint64_t value = buf_get_u64(buf, 0, reg->size);
		if (riscv_set_register(target, reg->number, value) != ERROR_OK)
			return ERROR_FAIL;
	}

	return ERROR_OK;
}

static struct reg_arch_type riscv_reg_arch_type = {
	.get = register_get,
	.set = register_set
};

struct csr_info {
	unsigned number;
	const char *name;
};

static int cmp_csr_info(const void *p1, const void *p2)
{
	return (int) (((struct csr_info *)p1)->number) - (int) (((struct csr_info *)p2)->number);
}

int riscv_init_registers(struct target *target)
{
	RISCV_INFO(info);

	riscv_free_registers(target);

	target->reg_cache = calloc(1, sizeof(*target->reg_cache));
	if (!target->reg_cache)
		return ERROR_FAIL;
	target->reg_cache->name = "RISC-V Registers";
	target->reg_cache->num_regs = GDB_REGNO_COUNT;

	if (!list_empty(&info->expose_custom)) {
		range_list_t *entry;
		list_for_each_entry(entry, &info->expose_custom, list)
			target->reg_cache->num_regs += entry->high - entry->low + 1;
	}

	LOG_DEBUG("[%s] create register cache for %d registers",
			target_name(target), target->reg_cache->num_regs);

	target->reg_cache->reg_list =
		calloc(target->reg_cache->num_regs, sizeof(struct reg));
	if (!target->reg_cache->reg_list)
		return ERROR_FAIL;

	const unsigned int max_reg_name_len = 12;
	free(info->reg_names);
	info->reg_names =
		calloc(target->reg_cache->num_regs, max_reg_name_len);
	if (!info->reg_names)
		return ERROR_FAIL;
	char *reg_name = info->reg_names;

	static struct reg_feature feature_cpu = {
		.name = "org.gnu.gdb.riscv.cpu"
	};
	static struct reg_feature feature_fpu = {
		.name = "org.gnu.gdb.riscv.fpu"
	};
	static struct reg_feature feature_csr = {
		.name = "org.gnu.gdb.riscv.csr"
	};
	static struct reg_feature feature_vector = {
		.name = "org.gnu.gdb.riscv.vector"
	};
	static struct reg_feature feature_virtual = {
		.name = "org.gnu.gdb.riscv.virtual"
	};
	static struct reg_feature feature_custom = {
		.name = "org.gnu.gdb.riscv.custom"
	};

	/* These types are built into gdb. */
	static struct reg_data_type type_ieee_single = { .type = REG_TYPE_IEEE_SINGLE, .id = "ieee_single" };
	static struct reg_data_type type_ieee_double = { .type = REG_TYPE_IEEE_DOUBLE, .id = "ieee_double" };
	static struct reg_data_type_union_field single_double_fields[] = {
		{"float", &type_ieee_single, single_double_fields + 1},
		{"double", &type_ieee_double, NULL},
	};
	static struct reg_data_type_union single_double_union = {
		.fields = single_double_fields
	};
	static struct reg_data_type type_ieee_single_double = {
		.type = REG_TYPE_ARCH_DEFINED,
		.id = "FPU_FD",
		.type_class = REG_TYPE_CLASS_UNION,
		.reg_type_union = &single_double_union
	};
	static struct reg_data_type type_uint8 = { .type = REG_TYPE_UINT8, .id = "uint8" };
	static struct reg_data_type type_uint16 = { .type = REG_TYPE_UINT16, .id = "uint16" };
	static struct reg_data_type type_uint32 = { .type = REG_TYPE_UINT32, .id = "uint32" };
	static struct reg_data_type type_uint64 = { .type = REG_TYPE_UINT64, .id = "uint64" };
	static struct reg_data_type type_uint128 = { .type = REG_TYPE_UINT128, .id = "uint128" };

	/* This is roughly the XML we want:
	 * <vector id="bytes" type="uint8" count="16"/>
	 * <vector id="shorts" type="uint16" count="8"/>
	 * <vector id="words" type="uint32" count="4"/>
	 * <vector id="longs" type="uint64" count="2"/>
	 * <vector id="quads" type="uint128" count="1"/>
	 * <union id="riscv_vector_type">
	 *   <field name="b" type="bytes"/>
	 *   <field name="s" type="shorts"/>
	 *   <field name="w" type="words"/>
	 *   <field name="l" type="longs"/>
	 *   <field name="q" type="quads"/>
	 * </union>
	 */

	info->vector_uint8.type = &type_uint8;
	info->vector_uint8.count = info->vlenb;
	info->type_uint8_vector.type = REG_TYPE_ARCH_DEFINED;
	info->type_uint8_vector.id = "bytes";
	info->type_uint8_vector.type_class = REG_TYPE_CLASS_VECTOR;
	info->type_uint8_vector.reg_type_vector = &info->vector_uint8;

	info->vector_uint16.type = &type_uint16;
	info->vector_uint16.count = info->vlenb / 2;
	info->type_uint16_vector.type = REG_TYPE_ARCH_DEFINED;
	info->type_uint16_vector.id = "shorts";
	info->type_uint16_vector.type_class = REG_TYPE_CLASS_VECTOR;
	info->type_uint16_vector.reg_type_vector = &info->vector_uint16;

	info->vector_uint32.type = &type_uint32;
	info->vector_uint32.count = info->vlenb / 4;
	info->type_uint32_vector.type = REG_TYPE_ARCH_DEFINED;
	info->type_uint32_vector.id = "words";
	info->type_uint32_vector.type_class = REG_TYPE_CLASS_VECTOR;
	info->type_uint32_vector.reg_type_vector = &info->vector_uint32;

	info->vector_uint64.type = &type_uint64;
	info->vector_uint64.count = info->vlenb / 8;
	info->type_uint64_vector.type = REG_TYPE_ARCH_DEFINED;
	info->type_uint64_vector.id = "longs";
	info->type_uint64_vector.type_class = REG_TYPE_CLASS_VECTOR;
	info->type_uint64_vector.reg_type_vector = &info->vector_uint64;

	info->vector_uint128.type = &type_uint128;
	info->vector_uint128.count = info->vlenb / 16;
	info->type_uint128_vector.type = REG_TYPE_ARCH_DEFINED;
	info->type_uint128_vector.id = "quads";
	info->type_uint128_vector.type_class = REG_TYPE_CLASS_VECTOR;
	info->type_uint128_vector.reg_type_vector = &info->vector_uint128;

	info->vector_fields[0].name = "b";
	info->vector_fields[0].type = &info->type_uint8_vector;
	if (info->vlenb >= 2) {
		info->vector_fields[0].next = info->vector_fields + 1;
		info->vector_fields[1].name = "s";
		info->vector_fields[1].type = &info->type_uint16_vector;
	} else {
		info->vector_fields[0].next = NULL;
	}
	if (info->vlenb >= 4) {
		info->vector_fields[1].next = info->vector_fields + 2;
		info->vector_fields[2].name = "w";
		info->vector_fields[2].type = &info->type_uint32_vector;
	} else {
		info->vector_fields[1].next = NULL;
	}
	if (info->vlenb >= 8) {
		info->vector_fields[2].next = info->vector_fields + 3;
		info->vector_fields[3].name = "l";
		info->vector_fields[3].type = &info->type_uint64_vector;
	} else {
		info->vector_fields[2].next = NULL;
	}
	if (info->vlenb >= 16) {
		info->vector_fields[3].next = info->vector_fields + 4;
		info->vector_fields[4].name = "q";
		info->vector_fields[4].type = &info->type_uint128_vector;
	} else {
		info->vector_fields[3].next = NULL;
	}
	info->vector_fields[4].next = NULL;

	info->vector_union.fields = info->vector_fields;

	info->type_vector.type = REG_TYPE_ARCH_DEFINED;
	info->type_vector.id = "riscv_vector";
	info->type_vector.type_class = REG_TYPE_CLASS_UNION;
	info->type_vector.reg_type_union = &info->vector_union;

	struct csr_info csr_info[] = {
#define DECLARE_CSR(name, number) { number, #name },
#include "encoding.h"
#undef DECLARE_CSR
	};
	/* encoding.h does not contain the registers in sorted order. */
	qsort(csr_info, ARRAY_SIZE(csr_info), sizeof(*csr_info), cmp_csr_info);
	unsigned csr_info_index = 0;

	int custom_within_range = 0;

	riscv_reg_info_t *shared_reg_info = calloc(1, sizeof(riscv_reg_info_t));
	if (!shared_reg_info)
		return ERROR_FAIL;
	shared_reg_info->target = target;

	/* When gdb requests register N, gdb_get_register_packet() assumes that this
	 * is register at index N in reg_list. So if there are certain registers
	 * that don't exist, we need to leave holes in the list (or renumber, but
	 * it would be nice not to have yet another set of numbers to translate
	 * between). */
	for (uint32_t number = 0; number < target->reg_cache->num_regs; number++) {
		struct reg *r = &target->reg_cache->reg_list[number];
		r->dirty = false;
		r->valid = false;
		r->exist = true;
		r->type = &riscv_reg_arch_type;
		r->arch_info = shared_reg_info;
		r->number = number;
		r->size = riscv_xlen(target);
		/* r->size is set in riscv_invalidate_register_cache, maybe because the
		 * target is in theory allowed to change XLEN on us. But I expect a lot
		 * of other things to break in that case as well. */
		if (number <= GDB_REGNO_XPR31) {
			r->exist = number <= GDB_REGNO_XPR15 ||
				!riscv_supports_extension(target, 'E');
			/* TODO: For now we fake that all GPRs exist because otherwise gdb
			 * doesn't work. */
			r->exist = true;
			r->caller_save = true;
			switch (number) {
				case GDB_REGNO_ZERO:
					r->name = "zero";
					break;
				case GDB_REGNO_RA:
					r->name = "ra";
					break;
				case GDB_REGNO_SP:
					r->name = "sp";
					break;
				case GDB_REGNO_GP:
					r->name = "gp";
					break;
				case GDB_REGNO_TP:
					r->name = "tp";
					break;
				case GDB_REGNO_T0:
					r->name = "t0";
					break;
				case GDB_REGNO_T1:
					r->name = "t1";
					break;
				case GDB_REGNO_T2:
					r->name = "t2";
					break;
				case GDB_REGNO_FP:
					r->name = "fp";
					break;
				case GDB_REGNO_S1:
					r->name = "s1";
					break;
				case GDB_REGNO_A0:
					r->name = "a0";
					break;
				case GDB_REGNO_A1:
					r->name = "a1";
					break;
				case GDB_REGNO_A2:
					r->name = "a2";
					break;
				case GDB_REGNO_A3:
					r->name = "a3";
					break;
				case GDB_REGNO_A4:
					r->name = "a4";
					break;
				case GDB_REGNO_A5:
					r->name = "a5";
					break;
				case GDB_REGNO_A6:
					r->name = "a6";
					break;
				case GDB_REGNO_A7:
					r->name = "a7";
					break;
				case GDB_REGNO_S2:
					r->name = "s2";
					break;
				case GDB_REGNO_S3:
					r->name = "s3";
					break;
				case GDB_REGNO_S4:
					r->name = "s4";
					break;
				case GDB_REGNO_S5:
					r->name = "s5";
					break;
				case GDB_REGNO_S6:
					r->name = "s6";
					break;
				case GDB_REGNO_S7:
					r->name = "s7";
					break;
				case GDB_REGNO_S8:
					r->name = "s8";
					break;
				case GDB_REGNO_S9:
					r->name = "s9";
					break;
				case GDB_REGNO_S10:
					r->name = "s10";
					break;
				case GDB_REGNO_S11:
					r->name = "s11";
					break;
				case GDB_REGNO_T3:
					r->name = "t3";
					break;
				case GDB_REGNO_T4:
					r->name = "t4";
					break;
				case GDB_REGNO_T5:
					r->name = "t5";
					break;
				case GDB_REGNO_T6:
					r->name = "t6";
					break;
			}
			r->group = "general";
			r->feature = &feature_cpu;
		} else if (number == GDB_REGNO_PC) {
			r->caller_save = true;
			sprintf(reg_name, "pc");
			r->group = "general";
			r->feature = &feature_cpu;
		} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
			r->caller_save = true;
			if (riscv_supports_extension(target, 'D')) {
				r->size = 64;
				if (riscv_supports_extension(target, 'F'))
					r->reg_data_type = &type_ieee_single_double;
				else
					r->reg_data_type = &type_ieee_double;
			} else if (riscv_supports_extension(target, 'F')) {
				r->reg_data_type = &type_ieee_single;
				r->size = 32;
			} else {
				r->exist = false;
			}
			switch (number) {
				case GDB_REGNO_FT0:
					r->name = "ft0";
					break;
				case GDB_REGNO_FT1:
					r->name = "ft1";
					break;
				case GDB_REGNO_FT2:
					r->name = "ft2";
					break;
				case GDB_REGNO_FT3:
					r->name = "ft3";
					break;
				case GDB_REGNO_FT4:
					r->name = "ft4";
					break;
				case GDB_REGNO_FT5:
					r->name = "ft5";
					break;
				case GDB_REGNO_FT6:
					r->name = "ft6";
					break;
				case GDB_REGNO_FT7:
					r->name = "ft7";
					break;
				case GDB_REGNO_FS0:
					r->name = "fs0";
					break;
				case GDB_REGNO_FS1:
					r->name = "fs1";
					break;
				case GDB_REGNO_FA0:
					r->name = "fa0";
					break;
				case GDB_REGNO_FA1:
					r->name = "fa1";
					break;
				case GDB_REGNO_FA2:
					r->name = "fa2";
					break;
				case GDB_REGNO_FA3:
					r->name = "fa3";
					break;
				case GDB_REGNO_FA4:
					r->name = "fa4";
					break;
				case GDB_REGNO_FA5:
					r->name = "fa5";
					break;
				case GDB_REGNO_FA6:
					r->name = "fa6";
					break;
				case GDB_REGNO_FA7:
					r->name = "fa7";
					break;
				case GDB_REGNO_FS2:
					r->name = "fs2";
					break;
				case GDB_REGNO_FS3:
					r->name = "fs3";
					break;
				case GDB_REGNO_FS4:
					r->name = "fs4";
					break;
				case GDB_REGNO_FS5:
					r->name = "fs5";
					break;
				case GDB_REGNO_FS6:
					r->name = "fs6";
					break;
				case GDB_REGNO_FS7:
					r->name = "fs7";
					break;
				case GDB_REGNO_FS8:
					r->name = "fs8";
					break;
				case GDB_REGNO_FS9:
					r->name = "fs9";
					break;
				case GDB_REGNO_FS10:
					r->name = "fs10";
					break;
				case GDB_REGNO_FS11:
					r->name = "fs11";
					break;
				case GDB_REGNO_FT8:
					r->name = "ft8";
					break;
				case GDB_REGNO_FT9:
					r->name = "ft9";
					break;
				case GDB_REGNO_FT10:
					r->name = "ft10";
					break;
				case GDB_REGNO_FT11:
					r->name = "ft11";
					break;
			}
			r->group = "float";
			r->feature = &feature_fpu;
		} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
			r->group = "csr";
			r->feature = &feature_csr;
			unsigned csr_number = number - GDB_REGNO_CSR0;

			while (csr_info[csr_info_index].number < csr_number &&
					csr_info_index < ARRAY_SIZE(csr_info) - 1) {
				csr_info_index++;
			}
			if (csr_info[csr_info_index].number == csr_number) {
				r->name = csr_info[csr_info_index].name;
			} else {
				sprintf(reg_name, "csr%d", csr_number);
				/* Assume unnamed registers don't exist, unless we have some
				 * configuration that tells us otherwise. That's important
				 * because eg. Eclipse crashes if a target has too many
				 * registers, and apparently has no way of only showing a
				 * subset of registers in any case. */
				r->exist = false;
			}

			switch (csr_number) {
				case CSR_FFLAGS:
				case CSR_FRM:
				case CSR_FCSR:
					r->exist = riscv_supports_extension(target, 'F');
					r->group = "float";
					r->feature = &feature_fpu;
					break;
				case CSR_SSTATUS:
				case CSR_STVEC:
				case CSR_SIP:
				case CSR_SIE:
				case CSR_SCOUNTEREN:
				case CSR_SSCRATCH:
				case CSR_SEPC:
				case CSR_SCAUSE:
				case CSR_STVAL:
				case CSR_SATP:
					r->exist = riscv_supports_extension(target, 'S');
					break;
				case CSR_MEDELEG:
				case CSR_MIDELEG:
					/* "In systems with only M-mode, or with both M-mode and
					 * U-mode but without U-mode trap support, the medeleg and
					 * mideleg registers should not exist." */
					r->exist = riscv_supports_extension(target, 'S') ||
						riscv_supports_extension(target, 'N');
					break;

				case CSR_PMPCFG1:
				case CSR_PMPCFG3:
				case CSR_CYCLEH:
				case CSR_TIMEH:
				case CSR_INSTRETH:
				case CSR_HPMCOUNTER3H:
				case CSR_HPMCOUNTER4H:
				case CSR_HPMCOUNTER5H:
				case CSR_HPMCOUNTER6H:
				case CSR_HPMCOUNTER7H:
				case CSR_HPMCOUNTER8H:
				case CSR_HPMCOUNTER9H:
				case CSR_HPMCOUNTER10H:
				case CSR_HPMCOUNTER11H:
				case CSR_HPMCOUNTER12H:
				case CSR_HPMCOUNTER13H:
				case CSR_HPMCOUNTER14H:
				case CSR_HPMCOUNTER15H:
				case CSR_HPMCOUNTER16H:
				case CSR_HPMCOUNTER17H:
				case CSR_HPMCOUNTER18H:
				case CSR_HPMCOUNTER19H:
				case CSR_HPMCOUNTER20H:
				case CSR_HPMCOUNTER21H:
				case CSR_HPMCOUNTER22H:
				case CSR_HPMCOUNTER23H:
				case CSR_HPMCOUNTER24H:
				case CSR_HPMCOUNTER25H:
				case CSR_HPMCOUNTER26H:
				case CSR_HPMCOUNTER27H:
				case CSR_HPMCOUNTER28H:
				case CSR_HPMCOUNTER29H:
				case CSR_HPMCOUNTER30H:
				case CSR_HPMCOUNTER31H:
				case CSR_MCYCLEH:
				case CSR_MINSTRETH:
				case CSR_MHPMCOUNTER3H:
				case CSR_MHPMCOUNTER4H:
				case CSR_MHPMCOUNTER5H:
				case CSR_MHPMCOUNTER6H:
				case CSR_MHPMCOUNTER7H:
				case CSR_MHPMCOUNTER8H:
				case CSR_MHPMCOUNTER9H:
				case CSR_MHPMCOUNTER10H:
				case CSR_MHPMCOUNTER11H:
				case CSR_MHPMCOUNTER12H:
				case CSR_MHPMCOUNTER13H:
				case CSR_MHPMCOUNTER14H:
				case CSR_MHPMCOUNTER15H:
				case CSR_MHPMCOUNTER16H:
				case CSR_MHPMCOUNTER17H:
				case CSR_MHPMCOUNTER18H:
				case CSR_MHPMCOUNTER19H:
				case CSR_MHPMCOUNTER20H:
				case CSR_MHPMCOUNTER21H:
				case CSR_MHPMCOUNTER22H:
				case CSR_MHPMCOUNTER23H:
				case CSR_MHPMCOUNTER24H:
				case CSR_MHPMCOUNTER25H:
				case CSR_MHPMCOUNTER26H:
				case CSR_MHPMCOUNTER27H:
				case CSR_MHPMCOUNTER28H:
				case CSR_MHPMCOUNTER29H:
				case CSR_MHPMCOUNTER30H:
				case CSR_MHPMCOUNTER31H:
					r->exist = riscv_xlen(target) == 32;
					break;

				case CSR_VSTART:
				case CSR_VXSAT:
				case CSR_VXRM:
				case CSR_VL:
				case CSR_VTYPE:
				case CSR_VLENB:
					r->exist = riscv_supports_extension(target, 'V');
					break;
			}

			if (!r->exist && !list_empty(&info->expose_csr)) {
				range_list_t *entry;
				list_for_each_entry(entry, &info->expose_csr, list)
					if ((entry->low <= csr_number) && (csr_number <= entry->high)) {
						if (entry->name) {
							*reg_name = 0;
							r->name = entry->name;
						}

						LOG_DEBUG("Exposing additional CSR %d (name=%s)",
								csr_number, entry->name ? entry->name : reg_name);

						r->exist = true;
						break;
					}
			}

		} else if (number == GDB_REGNO_PRIV) {
			sprintf(reg_name, "priv");
			r->group = "general";
			r->feature = &feature_virtual;
			r->size = 8;

		} else if (number >= GDB_REGNO_V0 && number <= GDB_REGNO_V31) {
			r->caller_save = false;
			r->exist = riscv_supports_extension(target, 'V') && info->vlenb;
			r->size = info->vlenb * 8;
			sprintf(reg_name, "v%d", number - GDB_REGNO_V0);
			r->group = "vector";
			r->feature = &feature_vector;
			r->reg_data_type = &info->type_vector;

		} else if (number >= GDB_REGNO_COUNT) {
			/* Custom registers. */
			assert(!list_empty(&info->expose_custom));

			range_list_t *range = list_first_entry(&info->expose_custom, range_list_t, list);

			unsigned custom_number = range->low + custom_within_range;

			r->group = "custom";
			r->feature = &feature_custom;
			r->arch_info = calloc(1, sizeof(riscv_reg_info_t));
			if (!r->arch_info)
				return ERROR_FAIL;
			((riscv_reg_info_t *) r->arch_info)->target = target;
			((riscv_reg_info_t *) r->arch_info)->custom_number = custom_number;
			sprintf(reg_name, "custom%d", custom_number);

			if (range->name) {
				*reg_name = 0;
				r->name = range->name;
			}

			LOG_DEBUG("Exposing additional custom register %d (name=%s)",
					number, range->name ? range->name : reg_name);

			custom_within_range++;
			if (custom_within_range > range->high - range->low) {
				custom_within_range = 0;
				list_rotate_left(&info->expose_custom);
			}
		}

		if (reg_name[0]) {
			r->name = reg_name;
			reg_name += strlen(reg_name) + 1;
			assert(reg_name < info->reg_names + target->reg_cache->num_regs *
					max_reg_name_len);
		}
		r->value = calloc(1, DIV_ROUND_UP(r->size, 8));
	}

	return ERROR_OK;
}


void riscv_add_bscan_tunneled_scan(struct target *target, struct scan_field *field,
					riscv_bscan_tunneled_scan_context_t *ctxt)
{
	jtag_add_ir_scan(target->tap, &select_user4, TAP_IDLE);

	memset(ctxt->tunneled_dr, 0, sizeof(ctxt->tunneled_dr));
	if (bscan_tunnel_type == BSCAN_TUNNEL_DATA_REGISTER) {
		ctxt->tunneled_dr[3].num_bits = 1;
		ctxt->tunneled_dr[3].out_value = bscan_one;
		ctxt->tunneled_dr[2].num_bits = 7;
		ctxt->tunneled_dr_width = field->num_bits;
		ctxt->tunneled_dr[2].out_value = &ctxt->tunneled_dr_width;
		/* for BSCAN tunnel, there is a one-TCK skew between shift in and shift out, so
		   scanning num_bits + 1, and then will right shift the input field after executing the queues */

		ctxt->tunneled_dr[1].num_bits = field->num_bits + 1;
		ctxt->tunneled_dr[1].out_value = field->out_value;
		ctxt->tunneled_dr[1].in_value = field->in_value;

		ctxt->tunneled_dr[0].num_bits = 3;
		ctxt->tunneled_dr[0].out_value = bscan_zero;
	} else {
		/* BSCAN_TUNNEL_NESTED_TAP */
		ctxt->tunneled_dr[0].num_bits = 1;
		ctxt->tunneled_dr[0].out_value = bscan_one;
		ctxt->tunneled_dr[1].num_bits = 7;
		ctxt->tunneled_dr_width = field->num_bits;
		ctxt->tunneled_dr[1].out_value = &ctxt->tunneled_dr_width;
		/* for BSCAN tunnel, there is a one-TCK skew between shift in and shift out, so
		   scanning num_bits + 1, and then will right shift the input field after executing the queues */
		ctxt->tunneled_dr[2].num_bits = field->num_bits + 1;
		ctxt->tunneled_dr[2].out_value = field->out_value;
		ctxt->tunneled_dr[2].in_value = field->in_value;
		ctxt->tunneled_dr[3].num_bits = 3;
		ctxt->tunneled_dr[3].out_value = bscan_zero;
	}
	jtag_add_dr_scan(target->tap, ARRAY_SIZE(ctxt->tunneled_dr), ctxt->tunneled_dr, TAP_IDLE);
}