1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
|
/*
* Support for RISC-V, debug version 0.13, which is currently (2/4/17) the
* latest draft.
*/
#include <assert.h>
#include <stdlib.h>
#include <time.h>
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include "target/target.h"
#include "target/algorithm.h"
#include "target/target_type.h"
#include "log.h"
#include "jtag/jtag.h"
#include "target/register.h"
#include "target/breakpoints.h"
#include "helper/time_support.h"
#include "helper/list.h"
#include "riscv.h"
#include "rtos/riscv_debug.h"
#include "debug_defines.h"
#include "rtos/rtos.h"
#include "program.h"
#include "asm.h"
#include "batch.h"
#define DMI_DATA1 (DMI_DATA0 + 1)
#define DMI_PROGBUF1 (DMI_PROGBUF0 + 1)
static int riscv013_on_step_or_resume(struct target *target, bool step);
static int riscv013_step_or_resume_current_hart(struct target *target, bool step);
static void riscv013_clear_abstract_error(struct target *target);
/* Implementations of the functions in riscv_info_t. */
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, int hid, int rid);
static int riscv013_set_register(struct target *target, int hartid, int regid, uint64_t value);
static int riscv013_select_current_hart(struct target *target);
static int riscv013_halt_current_hart(struct target *target);
static int riscv013_resume_current_hart(struct target *target);
static int riscv013_step_current_hart(struct target *target);
static int riscv013_on_halt(struct target *target);
static int riscv013_on_step(struct target *target);
static int riscv013_on_resume(struct target *target);
static bool riscv013_is_halted(struct target *target);
static enum riscv_halt_reason riscv013_halt_reason(struct target *target);
static int riscv013_write_debug_buffer(struct target *target, unsigned index,
riscv_insn_t d);
static riscv_insn_t riscv013_read_debug_buffer(struct target *target, unsigned
index);
static int riscv013_execute_debug_buffer(struct target *target);
static void riscv013_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d);
static void riscv013_fill_dmi_read_u64(struct target *target, char *buf, int a);
static int riscv013_dmi_write_u64_bits(struct target *target);
static void riscv013_fill_dmi_nop_u64(struct target *target, char *buf);
static int register_read(struct target *target, uint64_t *value, uint32_t number);
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number);
static int register_write_direct(struct target *target, unsigned number,
uint64_t value);
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer);
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer);
static int riscv013_test_sba_config_reg(struct target *target, target_addr_t legal_address,
uint32_t num_words, target_addr_t illegal_address, bool run_sbbusyerror_test);
void write_memory_sba_simple(struct target *target, target_addr_t addr, uint32_t* write_data,
uint32_t write_size, uint32_t sbcs);
void read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *rd_buf, uint32_t read_size, uint32_t sbcs);
static int riscv013_test_compliance(struct target *target);
/**
* Since almost everything can be accomplish by scanning the dbus register, all
* functions here assume dbus is already selected. The exception are functions
* called directly by OpenOCD, which can't assume anything about what's
* currently in IR. They should set IR to dbus explicitly.
*/
#define get_field(reg, mask) (((reg) & (mask)) / ((mask) & ~((mask) << 1)))
#define set_field(reg, mask, val) (((reg) & ~(mask)) | (((val) * ((mask) & ~((mask) << 1))) & (mask)))
#define DIM(x) (sizeof(x)/sizeof(*x))
#define CSR_DCSR_CAUSE_SWBP 1
#define CSR_DCSR_CAUSE_TRIGGER 2
#define CSR_DCSR_CAUSE_DEBUGINT 3
#define CSR_DCSR_CAUSE_STEP 4
#define CSR_DCSR_CAUSE_HALT 5
#define RISCV013_INFO(r) riscv013_info_t *r = get_info(target)
/*** JTAG registers. ***/
typedef enum {
DMI_OP_NOP = 0,
DMI_OP_READ = 1,
DMI_OP_WRITE = 2
} dmi_op_t;
typedef enum {
DMI_STATUS_SUCCESS = 0,
DMI_STATUS_FAILED = 2,
DMI_STATUS_BUSY = 3
} dmi_status_t;
typedef enum {
RE_OK,
RE_FAIL,
RE_AGAIN
} riscv_error_t;
typedef enum slot {
SLOT0,
SLOT1,
SLOT_LAST,
} slot_t;
/*** Debug Bus registers. ***/
#define CMDERR_NONE 0
#define CMDERR_BUSY 1
#define CMDERR_NOT_SUPPORTED 2
#define CMDERR_EXCEPTION 3
#define CMDERR_HALT_RESUME 4
#define CMDERR_OTHER 7
/*** Info about the core being debugged. ***/
struct trigger {
uint64_t address;
uint32_t length;
uint64_t mask;
uint64_t value;
bool read, write, execute;
int unique_id;
};
typedef enum {
YNM_MAYBE,
YNM_YES,
YNM_NO
} yes_no_maybe_t;
typedef struct {
struct list_head list;
int abs_chain_position;
/* Indicates we already reset this DM, so don't need to do it again. */
bool was_reset;
/* Targets that are connected to this DM. */
struct list_head target_list;
/* The currently selected hartid on this DM. */
int current_hartid;
} dm013_info_t;
typedef struct {
struct list_head list;
struct target *target;
} target_list_t;
typedef struct {
/* Number of address bits in the dbus register. */
unsigned abits;
/* Number of abstract command data registers. */
unsigned datacount;
/* Number of words in the Program Buffer. */
unsigned progbufsize;
/* We cache the read-only bits of sbcs here. */
uint32_t sbcs;
yes_no_maybe_t progbuf_writable;
/* We only need the address so that we know the alignment of the buffer. */
riscv_addr_t progbuf_address;
/* Number of run-test/idle cycles the target requests we do after each dbus
* access. */
unsigned int dtmcontrol_idle;
/* This value is incremented every time a dbus access comes back as "busy".
* It's used to determine how many run-test/idle cycles to feed the target
* in between accesses. */
unsigned int dmi_busy_delay;
/* Number of run-test/idle cycles to add between consecutive bus master
* reads/writes respectively. */
unsigned int bus_master_write_delay, bus_master_read_delay;
/* This value is increased every time we tried to execute two commands
* consecutively, and the second one failed because the previous hadn't
* completed yet. It's used to add extra run-test/idle cycles after
* starting a command, so we don't have to waste time checking for busy to
* go low. */
unsigned int ac_busy_delay;
bool abstract_read_csr_supported;
bool abstract_write_csr_supported;
bool abstract_read_fpr_supported;
bool abstract_write_fpr_supported;
/* When a function returns some error due to a failure indicated by the
* target in cmderr, the caller can look here to see what that error was.
* (Compare with errno.) */
uint8_t cmderr;
/* Some fields from hartinfo. */
uint8_t datasize;
uint8_t dataaccess;
int16_t dataaddr;
/* The width of the hartsel field. */
unsigned hartsellen;
/* DM that provides access to this target. */
dm013_info_t *dm;
} riscv013_info_t;
LIST_HEAD(dm_list);
static riscv013_info_t *get_info(const struct target *target)
{
riscv_info_t *info = (riscv_info_t *) target->arch_info;
return (riscv013_info_t *) info->version_specific;
}
/**
* Return the DM structure for this target. If there isn't one, find it in the
* global list of DMs. If it's not in there, then create one and initialize it
* to 0.
*/
static dm013_info_t *get_dm(struct target *target)
{
RISCV013_INFO(info);
if (info->dm)
return info->dm;
int abs_chain_position = target->tap->abs_chain_position;
dm013_info_t *entry;
dm013_info_t *dm = NULL;
list_for_each_entry(entry, &dm_list, list) {
if (entry->abs_chain_position == abs_chain_position) {
dm = entry;
break;
}
}
if (!dm) {
dm = calloc(1, sizeof(dm013_info_t));
dm->abs_chain_position = abs_chain_position;
dm->current_hartid = -1;
INIT_LIST_HEAD(&dm->target_list);
list_add(&dm->list, &dm_list);
}
info->dm = dm;
target_list_t *target_entry;
list_for_each_entry(target_entry, &dm->target_list, list) {
if (target_entry->target == target)
return dm;
}
target_entry = calloc(1, sizeof(*target_entry));
target_entry->target = target;
list_add(&target_entry->list, &dm->target_list);
return dm;
}
static uint32_t set_hartsel(uint32_t initial, uint32_t index)
{
initial &= ~DMI_DMCONTROL_HARTSELLO;
initial &= ~DMI_DMCONTROL_HARTSELHI;
uint32_t index_lo = index & ((1 << DMI_DMCONTROL_HARTSELLO_LENGTH) - 1);
initial |= index_lo << DMI_DMCONTROL_HARTSELLO_OFFSET;
uint32_t index_hi = index >> DMI_DMCONTROL_HARTSELLO_LENGTH;
assert(index_hi < 1 << DMI_DMCONTROL_HARTSELHI_LENGTH);
initial |= index_hi << DMI_DMCONTROL_HARTSELHI_OFFSET;
return initial;
}
static void decode_dmi(char *text, unsigned address, unsigned data)
{
static const struct {
unsigned address;
uint64_t mask;
const char *name;
} description[] = {
{ DMI_DMCONTROL, DMI_DMCONTROL_HALTREQ, "haltreq" },
{ DMI_DMCONTROL, DMI_DMCONTROL_RESUMEREQ, "resumereq" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HARTRESET, "hartreset" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HASEL, "hasel" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HARTSELHI, "hartselhi" },
{ DMI_DMCONTROL, DMI_DMCONTROL_HARTSELLO, "hartsello" },
{ DMI_DMCONTROL, DMI_DMCONTROL_NDMRESET, "ndmreset" },
{ DMI_DMCONTROL, DMI_DMCONTROL_DMACTIVE, "dmactive" },
{ DMI_DMCONTROL, DMI_DMCONTROL_ACKHAVERESET, "ackhavereset" },
{ DMI_DMSTATUS, DMI_DMSTATUS_IMPEBREAK, "impebreak" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLHAVERESET, "allhavereset" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYHAVERESET, "anyhavereset" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLRESUMEACK, "allresumeack" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYRESUMEACK, "anyresumeack" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLNONEXISTENT, "allnonexistent" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYNONEXISTENT, "anynonexistent" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLUNAVAIL, "allunavail" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYUNAVAIL, "anyunavail" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLRUNNING, "allrunning" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYRUNNING, "anyrunning" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ALLHALTED, "allhalted" },
{ DMI_DMSTATUS, DMI_DMSTATUS_ANYHALTED, "anyhalted" },
{ DMI_DMSTATUS, DMI_DMSTATUS_AUTHENTICATED, "authenticated" },
{ DMI_DMSTATUS, DMI_DMSTATUS_AUTHBUSY, "authbusy" },
{ DMI_DMSTATUS, DMI_DMSTATUS_DEVTREEVALID, "devtreevalid" },
{ DMI_DMSTATUS, DMI_DMSTATUS_VERSION, "version" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_PROGBUFSIZE, "progbufsize" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_BUSY, "busy" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR, "cmderr" },
{ DMI_ABSTRACTCS, DMI_ABSTRACTCS_DATACOUNT, "datacount" },
{ DMI_COMMAND, DMI_COMMAND_CMDTYPE, "cmdtype" },
{ DMI_SBCS, DMI_SBCS_SBREADONADDR, "sbreadonaddr" },
{ DMI_SBCS, DMI_SBCS_SBACCESS, "sbaccess" },
{ DMI_SBCS, DMI_SBCS_SBAUTOINCREMENT, "sbautoincrement" },
{ DMI_SBCS, DMI_SBCS_SBREADONDATA, "sbreadondata" },
{ DMI_SBCS, DMI_SBCS_SBERROR, "sberror" },
{ DMI_SBCS, DMI_SBCS_SBASIZE, "sbasize" },
{ DMI_SBCS, DMI_SBCS_SBACCESS128, "sbaccess128" },
{ DMI_SBCS, DMI_SBCS_SBACCESS64, "sbaccess64" },
{ DMI_SBCS, DMI_SBCS_SBACCESS32, "sbaccess32" },
{ DMI_SBCS, DMI_SBCS_SBACCESS16, "sbaccess16" },
{ DMI_SBCS, DMI_SBCS_SBACCESS8, "sbaccess8" },
};
text[0] = 0;
for (unsigned i = 0; i < DIM(description); i++) {
if (description[i].address == address) {
uint64_t mask = description[i].mask;
unsigned value = get_field(data, mask);
if (value) {
if (i > 0)
*(text++) = ' ';
if (mask & (mask >> 1)) {
/* If the field is more than 1 bit wide. */
sprintf(text, "%s=%d", description[i].name, value);
} else {
strcpy(text, description[i].name);
}
text += strlen(text);
}
}
}
}
static void dump_field(const struct scan_field *field)
{
static const char * const op_string[] = {"-", "r", "w", "?"};
static const char * const status_string[] = {"+", "?", "F", "b"};
if (debug_level < LOG_LVL_DEBUG)
return;
uint64_t out = buf_get_u64(field->out_value, 0, field->num_bits);
unsigned int out_op = get_field(out, DTM_DMI_OP);
unsigned int out_data = get_field(out, DTM_DMI_DATA);
unsigned int out_address = out >> DTM_DMI_ADDRESS_OFFSET;
uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits);
unsigned int in_op = get_field(in, DTM_DMI_OP);
unsigned int in_data = get_field(in, DTM_DMI_DATA);
unsigned int in_address = in >> DTM_DMI_ADDRESS_OFFSET;
log_printf_lf(LOG_LVL_DEBUG,
__FILE__, __LINE__, "scan",
"%db %s %08x @%02x -> %s %08x @%02x",
field->num_bits,
op_string[out_op], out_data, out_address,
status_string[in_op], in_data, in_address);
char out_text[500];
char in_text[500];
decode_dmi(out_text, out_address, out_data);
decode_dmi(in_text, in_address, in_data);
if (in_text[0] || out_text[0]) {
log_printf_lf(LOG_LVL_DEBUG, __FILE__, __LINE__, "scan", "%s -> %s",
out_text, in_text);
}
}
/*** Utility functions. ***/
static void select_dmi(struct target *target)
{
static uint8_t ir_dmi[1] = {DTM_DMI};
struct scan_field field = {
.num_bits = target->tap->ir_length,
.out_value = ir_dmi,
.in_value = NULL,
.check_value = NULL,
.check_mask = NULL
};
jtag_add_ir_scan(target->tap, &field, TAP_IDLE);
}
static uint32_t dtmcontrol_scan(struct target *target, uint32_t out)
{
struct scan_field field;
uint8_t in_value[4];
uint8_t out_value[4];
buf_set_u32(out_value, 0, 32, out);
jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);
field.num_bits = 32;
field.out_value = out_value;
field.in_value = in_value;
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
/* Always return to dmi. */
select_dmi(target);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("failed jtag scan: %d", retval);
return retval;
}
uint32_t in = buf_get_u32(field.in_value, 0, 32);
LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in);
return in;
}
static void increase_dmi_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->dmi_busy_delay += info->dmi_busy_delay / 10 + 1;
LOG_DEBUG("dtmcontrol_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcontrol_idle, info->dmi_busy_delay,
info->ac_busy_delay);
dtmcontrol_scan(target, DTM_DTMCS_DMIRESET);
}
/**
* exec: If this is set, assume the scan results in an execution, so more
* run-test/idle cycles may be required.
*/
static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
uint32_t *data_in, dmi_op_t op, uint32_t address_out, uint32_t data_out,
bool exec)
{
riscv013_info_t *info = get_info(target);
uint8_t in[8] = {0};
uint8_t out[8];
struct scan_field field = {
.num_bits = info->abits + DTM_DMI_OP_LENGTH + DTM_DMI_DATA_LENGTH,
.out_value = out,
.in_value = in
};
assert(info->abits != 0);
buf_set_u32(out, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, op);
buf_set_u32(out, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, data_out);
buf_set_u32(out, DTM_DMI_ADDRESS_OFFSET, info->abits, address_out);
/* Assume dbus is already selected. */
jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
int idle_count = info->dmi_busy_delay;
if (exec)
idle_count += info->ac_busy_delay;
if (idle_count)
jtag_add_runtest(idle_count, TAP_IDLE);
int retval = jtag_execute_queue();
if (retval != ERROR_OK) {
LOG_ERROR("dmi_scan failed jtag scan");
return DMI_STATUS_FAILED;
}
if (data_in)
*data_in = buf_get_u32(in, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH);
if (address_in)
*address_in = buf_get_u32(in, DTM_DMI_ADDRESS_OFFSET, info->abits);
dump_field(&field);
return buf_get_u32(in, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH);
}
static int dmi_op_timeout(struct target *target, uint32_t *data_in, int dmi_op,
uint32_t address, uint32_t data_out, int timeout_sec)
{
select_dmi(target);
dmi_status_t status;
uint32_t address_in;
const char *op_name;
switch (dmi_op) {
case DMI_OP_NOP:
op_name = "nop";
break;
case DMI_OP_READ:
op_name = "read";
break;
case DMI_OP_WRITE:
op_name = "write";
break;
default:
LOG_ERROR("Invalid DMI operation: %d", dmi_op);
return ERROR_FAIL;
}
time_t start = time(NULL);
/* This first loop performs the request. Note that if for some reason this
* stays busy, it is actually due to the previous access. */
while (1) {
status = dmi_scan(target, NULL, NULL, dmi_op, address, data_out,
false);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
LOG_ERROR("failed %s at 0x%x, status=%d", op_name, address, status);
return ERROR_FAIL;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
if (status != DMI_STATUS_SUCCESS) {
LOG_ERROR("Failed %s at 0x%x; status=%d", op_name, address, status);
return ERROR_FAIL;
}
/* This second loop ensures the request succeeded, and gets back data.
* Note that NOP can result in a 'busy' result as well, but that would be
* noticed on the next DMI access we do. */
while (1) {
status = dmi_scan(target, &address_in, data_in, DMI_OP_NOP, address, 0,
false);
if (status == DMI_STATUS_BUSY) {
increase_dmi_busy_delay(target);
} else if (status == DMI_STATUS_SUCCESS) {
break;
} else {
LOG_ERROR("failed %s (NOP) at 0x%x, status=%d", op_name, address,
status);
return ERROR_FAIL;
}
if (time(NULL) - start > timeout_sec)
return ERROR_TIMEOUT_REACHED;
}
if (status != DMI_STATUS_SUCCESS) {
if (status == DMI_STATUS_FAILED || !data_in) {
LOG_ERROR("Failed %s (NOP) at 0x%x; status=%d", op_name, address,
status);
} else {
LOG_ERROR("Failed %s (NOP) at 0x%x; value=0x%x, status=%d",
op_name, address, *data_in, status);
}
return ERROR_FAIL;
}
return ERROR_OK;
}
static int dmi_op(struct target *target, uint32_t *data_in, int dmi_op,
uint32_t address, uint32_t data_out)
{
int result = dmi_op_timeout(target, data_in, dmi_op, address, data_out,
riscv_command_timeout_sec);
if (result == ERROR_TIMEOUT_REACHED) {
LOG_ERROR("DMI operation didn't complete in %d seconds. The target is "
"either really slow or broken. You could increase the "
"timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec);
return ERROR_FAIL;
}
return result;
}
static int dmi_read(struct target *target, uint32_t *value, uint32_t address)
{
return dmi_op(target, value, DMI_OP_READ, address, 0);
}
static int dmi_write(struct target *target, uint32_t address, uint32_t value)
{
return dmi_op(target, NULL, DMI_OP_WRITE, address, value);
}
int dmstatus_read_timeout(struct target *target, uint32_t *dmstatus,
bool authenticated, unsigned timeout_sec)
{
int result = dmi_op_timeout(target, dmstatus, DMI_OP_READ, DMI_DMSTATUS, 0,
timeout_sec);
if (result != ERROR_OK)
return result;
if (authenticated && !get_field(*dmstatus, DMI_DMSTATUS_AUTHENTICATED)) {
LOG_ERROR("Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", *dmstatus);
return ERROR_FAIL;
}
return ERROR_OK;
}
int dmstatus_read(struct target *target, uint32_t *dmstatus,
bool authenticated)
{
return dmstatus_read_timeout(target, dmstatus, authenticated,
riscv_command_timeout_sec);
}
static void increase_ac_busy_delay(struct target *target)
{
riscv013_info_t *info = get_info(target);
info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
LOG_DEBUG("dtmcontrol_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
info->dtmcontrol_idle, info->dmi_busy_delay,
info->ac_busy_delay);
}
uint32_t abstract_register_size(unsigned width)
{
switch (width) {
case 32:
return set_field(0, AC_ACCESS_REGISTER_SIZE, 2);
case 64:
return set_field(0, AC_ACCESS_REGISTER_SIZE, 3);
break;
case 128:
return set_field(0, AC_ACCESS_REGISTER_SIZE, 4);
break;
default:
LOG_ERROR("Unsupported register width: %d", width);
return 0;
}
}
static int wait_for_idle(struct target *target, uint32_t *abstractcs)
{
RISCV013_INFO(info);
time_t start = time(NULL);
while (1) {
if (dmi_read(target, abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
if (get_field(*abstractcs, DMI_ABSTRACTCS_BUSY) == 0)
return ERROR_OK;
if (time(NULL) - start > riscv_command_timeout_sec) {
info->cmderr = get_field(*abstractcs, DMI_ABSTRACTCS_CMDERR);
if (info->cmderr != CMDERR_NONE) {
const char *errors[8] = {
"none",
"busy",
"not supported",
"exception",
"halt/resume",
"reserved",
"reserved",
"other" };
LOG_ERROR("Abstract command ended in error '%s' (abstractcs=0x%x)",
errors[info->cmderr], *abstractcs);
}
LOG_ERROR("Timed out after %ds waiting for busy to go low (abstractcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
*abstractcs);
return ERROR_FAIL;
}
}
}
static int execute_abstract_command(struct target *target, uint32_t command)
{
RISCV013_INFO(info);
LOG_DEBUG("command=0x%x", command);
dmi_write(target, DMI_COMMAND, command);
uint32_t abstractcs = 0;
wait_for_idle(target, &abstractcs);
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
if (info->cmderr != 0) {
LOG_DEBUG("command 0x%x failed; abstractcs=0x%x", command, abstractcs);
/* Clear the error. */
dmi_write(target, DMI_ABSTRACTCS, set_field(0, DMI_ABSTRACTCS_CMDERR,
info->cmderr));
return ERROR_FAIL;
}
return ERROR_OK;
}
static riscv_reg_t read_abstract_arg(struct target *target, unsigned index,
unsigned size_bits)
{
riscv_reg_t value = 0;
uint32_t v;
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_ERROR("Unsupported size: %d", size_bits);
return ~0;
case 64:
dmi_read(target, &v, DMI_DATA0 + offset + 1);
value |= ((uint64_t) v) << 32;
/* falls through */
case 32:
dmi_read(target, &v, DMI_DATA0 + offset);
value |= v;
}
return value;
}
static int write_abstract_arg(struct target *target, unsigned index,
riscv_reg_t value, unsigned size_bits)
{
unsigned offset = index * size_bits / 32;
switch (size_bits) {
default:
LOG_ERROR("Unsupported size: %d", size_bits);
return ERROR_FAIL;
case 64:
dmi_write(target, DMI_DATA0 + offset + 1, value >> 32);
/* falls through */
case 32:
dmi_write(target, DMI_DATA0 + offset, value);
}
return ERROR_OK;
}
/**
* @size in bits
*/
static uint32_t access_register_command(struct target *target, uint32_t number,
unsigned size, uint32_t flags)
{
uint32_t command = set_field(0, DMI_COMMAND_CMDTYPE, 0);
switch (size) {
case 32:
command = set_field(command, AC_ACCESS_REGISTER_SIZE, 2);
break;
case 64:
command = set_field(command, AC_ACCESS_REGISTER_SIZE, 3);
break;
default:
assert(0);
}
if (number <= GDB_REGNO_XPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1000 + number - GDB_REGNO_ZERO);
} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0x1020 + number - GDB_REGNO_FPR0);
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
number - GDB_REGNO_CSR0);
} else if (number >= GDB_REGNO_COUNT) {
/* Custom register. */
assert(target->reg_cache->reg_list[number].arch_info);
riscv_reg_info_t *reg_info = target->reg_cache->reg_list[number].arch_info;
assert(reg_info);
command = set_field(command, AC_ACCESS_REGISTER_REGNO,
0xc000 + reg_info->custom_number);
}
command |= flags;
return command;
}
static int register_read_abstract(struct target *target, uint64_t *value,
uint32_t number, unsigned size)
{
RISCV013_INFO(info);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_read_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_read_csr_supported)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER);
int result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
if (info->cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_read_fpr_supported = false;
LOG_INFO("Disabling abstract command reads from FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_read_csr_supported = false;
LOG_INFO("Disabling abstract command reads from CSRs.");
}
}
return result;
}
if (value)
*value = read_abstract_arg(target, 0, size);
return ERROR_OK;
}
static int register_write_abstract(struct target *target, uint32_t number,
uint64_t value, unsigned size)
{
RISCV013_INFO(info);
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
!info->abstract_write_fpr_supported)
return ERROR_FAIL;
if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
!info->abstract_write_csr_supported)
return ERROR_FAIL;
uint32_t command = access_register_command(target, number, size,
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
if (write_abstract_arg(target, 0, value, size) != ERROR_OK)
return ERROR_FAIL;
int result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
if (info->cmderr == CMDERR_NOT_SUPPORTED) {
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
info->abstract_write_fpr_supported = false;
LOG_INFO("Disabling abstract command writes to FPRs.");
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
info->abstract_write_csr_supported = false;
LOG_INFO("Disabling abstract command writes to CSRs.");
}
}
return result;
}
return ERROR_OK;
}
static int examine_progbuf(struct target *target)
{
riscv013_info_t *info = get_info(target);
if (info->progbuf_writable != YNM_MAYBE)
return ERROR_OK;
/* Figure out if progbuf is writable. */
if (info->progbufsize < 1) {
info->progbuf_writable = YNM_NO;
LOG_INFO("No program buffer present.");
return ERROR_OK;
}
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_insert(&program, auipc(S0));
if (riscv_program_exec(&program, target) != ERROR_OK)
return ERROR_FAIL;
if (register_read_direct(target, &info->progbuf_address, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
riscv_program_init(&program, target);
riscv_program_insert(&program, sw(S0, S0, 0));
int result = riscv_program_exec(&program, target);
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
if (result != ERROR_OK) {
/* This program might have failed if the program buffer is not
* writable. */
info->progbuf_writable = YNM_NO;
return ERROR_OK;
}
uint32_t written;
if (dmi_read(target, &written, DMI_PROGBUF0) != ERROR_OK)
return ERROR_FAIL;
if (written == (uint32_t) info->progbuf_address) {
LOG_INFO("progbuf is writable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_YES;
} else {
LOG_INFO("progbuf is not writeable at 0x%" PRIx64,
info->progbuf_address);
info->progbuf_writable = YNM_NO;
}
return ERROR_OK;
}
typedef enum {
SPACE_DMI_DATA,
SPACE_DMI_PROGBUF,
SPACE_DMI_RAM
} memory_space_t;
typedef struct {
/* How can the debugger access this memory? */
memory_space_t memory_space;
/* Memory address to access the scratch memory from the hart. */
riscv_addr_t hart_address;
/* Memory address to access the scratch memory from the debugger. */
riscv_addr_t debug_address;
struct working_area *area;
} scratch_mem_t;
/**
* Find some scratch memory to be used with the given program.
*/
static int scratch_reserve(struct target *target,
scratch_mem_t *scratch,
struct riscv_program *program,
unsigned size_bytes)
{
riscv_addr_t alignment = 1;
while (alignment < size_bytes)
alignment *= 2;
scratch->area = NULL;
riscv013_info_t *info = get_info(target);
if (info->dataaccess == 1) {
/* Sign extend dataaddr. */
scratch->hart_address = info->dataaddr;
if (info->dataaddr & (1<<11))
scratch->hart_address |= 0xfffffffffffff000ULL;
/* Align. */
scratch->hart_address = (scratch->hart_address + alignment - 1) & ~(alignment - 1);
if ((size_bytes + scratch->hart_address - info->dataaddr + 3) / 4 >=
info->datasize) {
scratch->memory_space = SPACE_DMI_DATA;
scratch->debug_address = (scratch->hart_address - info->dataaddr) / 4;
return ERROR_OK;
}
}
if (examine_progbuf(target) != ERROR_OK)
return ERROR_FAIL;
/* Allow for ebreak at the end of the program. */
unsigned program_size = (program->instruction_count + 1) * 4;
scratch->hart_address = (info->progbuf_address + program_size + alignment - 1) &
~(alignment - 1);
if ((size_bytes + scratch->hart_address - info->progbuf_address + 3) / 4 >=
info->progbufsize) {
scratch->memory_space = SPACE_DMI_PROGBUF;
scratch->debug_address = (scratch->hart_address - info->progbuf_address) / 4;
return ERROR_OK;
}
if (target_alloc_working_area(target, size_bytes + alignment - 1,
&scratch->area) == ERROR_OK) {
scratch->hart_address = (scratch->area->address + alignment - 1) &
~(alignment - 1);
scratch->memory_space = SPACE_DMI_RAM;
scratch->debug_address = scratch->hart_address;
return ERROR_OK;
}
LOG_ERROR("Couldn't find %d bytes of scratch RAM to use. Please configure "
"a work area with 'configure -work-area-phys'.", size_bytes);
return ERROR_FAIL;
}
static int scratch_release(struct target *target,
scratch_mem_t *scratch)
{
if (scratch->area)
return target_free_working_area(target, scratch->area);
return ERROR_OK;
}
static int scratch_read64(struct target *target, scratch_mem_t *scratch,
uint64_t *value)
{
uint32_t v;
switch (scratch->memory_space) {
case SPACE_DMI_DATA:
if (dmi_read(target, &v, DMI_DATA0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dmi_read(target, &v, DMI_DATA1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_PROGBUF:
if (dmi_read(target, &v, DMI_PROGBUF0 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value = v;
if (dmi_read(target, &v, DMI_PROGBUF1 + scratch->debug_address) != ERROR_OK)
return ERROR_FAIL;
*value |= ((uint64_t) v) << 32;
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8];
if (read_memory(target, scratch->debug_address, 4, 2, buffer) != ERROR_OK)
return ERROR_FAIL;
*value = buffer[0] |
(((uint64_t) buffer[1]) << 8) |
(((uint64_t) buffer[2]) << 16) |
(((uint64_t) buffer[3]) << 24) |
(((uint64_t) buffer[4]) << 32) |
(((uint64_t) buffer[5]) << 40) |
(((uint64_t) buffer[6]) << 48) |
(((uint64_t) buffer[7]) << 56);
}
break;
}
return ERROR_OK;
}
static int scratch_write64(struct target *target, scratch_mem_t *scratch,
uint64_t value)
{
switch (scratch->memory_space) {
case SPACE_DMI_DATA:
dmi_write(target, DMI_DATA0 + scratch->debug_address, value);
dmi_write(target, DMI_DATA1 + scratch->debug_address, value >> 32);
break;
case SPACE_DMI_PROGBUF:
dmi_write(target, DMI_PROGBUF0 + scratch->debug_address, value);
dmi_write(target, DMI_PROGBUF1 + scratch->debug_address, value >> 32);
break;
case SPACE_DMI_RAM:
{
uint8_t buffer[8] = {
value,
value >> 8,
value >> 16,
value >> 24,
value >> 32,
value >> 40,
value >> 48,
value >> 56
};
if (write_memory(target, scratch->debug_address, 4, 2, buffer) != ERROR_OK)
return ERROR_FAIL;
}
break;
}
return ERROR_OK;
}
/** Return register size in bits. */
static unsigned register_size(struct target *target, unsigned number)
{
/* If reg_cache hasn't been initialized yet, make a guess. We need this for
* when this function is called during examine(). */
if (target->reg_cache)
return target->reg_cache->reg_list[number].size;
else
return riscv_xlen(target);
}
/**
* Immediately write the new value to the requested register. This mechanism
* bypasses any caches.
*/
static int register_write_direct(struct target *target, unsigned number,
uint64_t value)
{
RISCV013_INFO(info);
RISCV_INFO(r);
LOG_DEBUG("[%d] reg[0x%x] <- 0x%" PRIx64, riscv_current_hartid(target),
number, value);
int result = register_write_abstract(target, number, value,
register_size(target, number));
if (result == ERROR_OK && target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, value);
reg->valid = true;
}
if (result == ERROR_OK || info->progbufsize + r->impebreak < 2 ||
!riscv_is_halted(target))
return result;
struct riscv_program program;
riscv_program_init(&program, target);
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
scratch_mem_t scratch;
bool use_scratch = false;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
riscv_supports_extension(target, riscv_current_hartid(target), 'D') &&
riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a register, so
* we need to use some scratch RAM. */
use_scratch = true;
riscv_program_insert(&program, fld(number - GDB_REGNO_FPR0, S0, 0));
if (scratch_reserve(target, &scratch, &program, 8) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, scratch.hart_address)
!= ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
if (scratch_write64(target, &scratch, value) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
} else {
if (register_write_direct(target, GDB_REGNO_S0, value) != ERROR_OK)
return ERROR_FAIL;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
if (riscv_supports_extension(target, riscv_current_hartid(target), 'D'))
riscv_program_insert(&program, fmv_d_x(number - GDB_REGNO_FPR0, S0));
else
riscv_program_insert(&program, fmv_w_x(number - GDB_REGNO_FPR0, S0));
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
riscv_program_csrw(&program, S0, number);
} else {
LOG_ERROR("Unsupported register (enum gdb_regno)(%d)", number);
return ERROR_FAIL;
}
}
int exec_out = riscv_program_exec(&program, target);
/* Don't message on error. Probably the register doesn't exist. */
if (exec_out == ERROR_OK && target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, value);
reg->valid = true;
}
if (use_scratch)
scratch_release(target, &scratch);
/* Restore S0. */
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
return exec_out;
}
/** Return the cached value, or read from the target if necessary. */
static int register_read(struct target *target, uint64_t *value, uint32_t number)
{
if (number == GDB_REGNO_ZERO) {
*value = 0;
return ERROR_OK;
}
if (target->reg_cache &&
(number <= GDB_REGNO_XPR31 ||
(number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31))) {
/* Only check the cache for registers that we know won't spontaneously
* change. */
struct reg *reg = &target->reg_cache->reg_list[number];
if (reg && reg->valid) {
*value = buf_get_u64(reg->value, 0, reg->size);
return ERROR_OK;
}
}
int result = register_read_direct(target, value, number);
if (result != ERROR_OK)
return ERROR_FAIL;
if (target->reg_cache) {
struct reg *reg = &target->reg_cache->reg_list[number];
buf_set_u64(reg->value, 0, reg->size, *value);
reg->valid = true;
}
return ERROR_OK;
}
/** Actually read registers from the target right now. */
static int register_read_direct(struct target *target, uint64_t *value, uint32_t number)
{
RISCV013_INFO(info);
RISCV_INFO(r);
int result = register_read_abstract(target, value, number,
register_size(target, number));
if (result != ERROR_OK &&
info->progbufsize + r->impebreak >= 2 &&
number > GDB_REGNO_XPR31) {
struct riscv_program program;
riscv_program_init(&program, target);
scratch_mem_t scratch;
bool use_scratch = false;
uint64_t s0;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
/* Write program to move data into s0. */
uint64_t mstatus;
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
if (register_read(target, &mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
return ERROR_FAIL;
if ((mstatus & MSTATUS_FS) == 0)
if (register_write_direct(target, GDB_REGNO_MSTATUS,
set_field(mstatus, MSTATUS_FS, 1)) != ERROR_OK)
return ERROR_FAIL;
if (riscv_supports_extension(target, riscv_current_hartid(target), 'D')
&& riscv_xlen(target) < 64) {
/* There are no instructions to move all the bits from a
* register, so we need to use some scratch RAM. */
riscv_program_insert(&program, fsd(number - GDB_REGNO_FPR0, S0,
0));
if (scratch_reserve(target, &scratch, &program, 8) != ERROR_OK)
return ERROR_FAIL;
use_scratch = true;
if (register_write_direct(target, GDB_REGNO_S0,
scratch.hart_address) != ERROR_OK) {
scratch_release(target, &scratch);
return ERROR_FAIL;
}
} else if (riscv_supports_extension(target,
riscv_current_hartid(target), 'D')) {
riscv_program_insert(&program, fmv_x_d(S0, number - GDB_REGNO_FPR0));
} else {
riscv_program_insert(&program, fmv_x_w(S0, number - GDB_REGNO_FPR0));
}
} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
riscv_program_csrr(&program, S0, number);
} else {
LOG_ERROR("Unsupported register (enum gdb_regno)(%d)", number);
return ERROR_FAIL;
}
/* Execute program. */
result = riscv_program_exec(&program, target);
/* Don't message on error. Probably the register doesn't exist. */
if (use_scratch) {
result = scratch_read64(target, &scratch, value);
scratch_release(target, &scratch);
if (result != ERROR_OK)
return result;
} else {
/* Read S0 */
if (register_read_direct(target, value, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
}
if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
(mstatus & MSTATUS_FS) == 0)
if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus) != ERROR_OK)
return ERROR_FAIL;
/* Restore S0. */
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
}
if (result == ERROR_OK) {
LOG_DEBUG("[%d] reg[0x%x] = 0x%" PRIx64, riscv_current_hartid(target),
number, *value);
}
return result;
}
int wait_for_authbusy(struct target *target, uint32_t *dmstatus)
{
time_t start = time(NULL);
while (1) {
uint32_t value;
if (dmstatus_read(target, &value, false) != ERROR_OK)
return ERROR_FAIL;
if (dmstatus)
*dmstatus = value;
if (!get_field(value, DMI_DMSTATUS_AUTHBUSY))
break;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("Timed out after %ds waiting for authbusy to go low (dmstatus=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec,
value);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
/*** OpenOCD target functions. ***/
static void deinit_target(struct target *target)
{
LOG_DEBUG("riscv_deinit_target()");
riscv_info_t *info = (riscv_info_t *) target->arch_info;
free(info->version_specific);
/* TODO: free register arch_info */
info->version_specific = NULL;
}
static int examine(struct target *target)
{
/* Don't need to select dbus, since the first thing we do is read dtmcontrol. */
uint32_t dtmcontrol = dtmcontrol_scan(target, 0);
LOG_DEBUG("dtmcontrol=0x%x", dtmcontrol);
LOG_DEBUG(" dmireset=%d", get_field(dtmcontrol, DTM_DTMCS_DMIRESET));
LOG_DEBUG(" idle=%d", get_field(dtmcontrol, DTM_DTMCS_IDLE));
LOG_DEBUG(" dmistat=%d", get_field(dtmcontrol, DTM_DTMCS_DMISTAT));
LOG_DEBUG(" abits=%d", get_field(dtmcontrol, DTM_DTMCS_ABITS));
LOG_DEBUG(" version=%d", get_field(dtmcontrol, DTM_DTMCS_VERSION));
if (dtmcontrol == 0) {
LOG_ERROR("dtmcontrol is 0. Check JTAG connectivity/board power.");
return ERROR_FAIL;
}
if (get_field(dtmcontrol, DTM_DTMCS_VERSION) != 1) {
LOG_ERROR("Unsupported DTM version %d. (dtmcontrol=0x%x)",
get_field(dtmcontrol, DTM_DTMCS_VERSION), dtmcontrol);
return ERROR_FAIL;
}
riscv013_info_t *info = get_info(target);
info->abits = get_field(dtmcontrol, DTM_DTMCS_ABITS);
info->dtmcontrol_idle = get_field(dtmcontrol, DTM_DTMCS_IDLE);
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, false) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("dmstatus: 0x%08x", dmstatus);
if (get_field(dmstatus, DMI_DMSTATUS_VERSION) != 2) {
LOG_ERROR("OpenOCD only supports Debug Module version 2, not %d "
"(dmstatus=0x%x)", get_field(dmstatus, DMI_DMSTATUS_VERSION), dmstatus);
return ERROR_FAIL;
}
/* Reset the Debug Module. */
dm013_info_t *dm = get_dm(target);
if (!dm->was_reset) {
dmi_write(target, DMI_DMCONTROL, 0);
dmi_write(target, DMI_DMCONTROL, DMI_DMCONTROL_DMACTIVE);
dm->was_reset = true;
}
dmi_write(target, DMI_DMCONTROL, DMI_DMCONTROL_HARTSELLO |
DMI_DMCONTROL_HARTSELHI | DMI_DMCONTROL_DMACTIVE);
uint32_t dmcontrol;
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(dmcontrol, DMI_DMCONTROL_DMACTIVE)) {
LOG_ERROR("Debug Module did not become active. dmcontrol=0x%x",
dmcontrol);
return ERROR_FAIL;
}
uint32_t hartsel =
(get_field(dmcontrol, DMI_DMCONTROL_HARTSELHI) <<
DMI_DMCONTROL_HARTSELLO_LENGTH) |
get_field(dmcontrol, DMI_DMCONTROL_HARTSELLO);
info->hartsellen = 0;
while (hartsel & 1) {
info->hartsellen++;
hartsel >>= 1;
}
LOG_DEBUG("hartsellen=%d", info->hartsellen);
uint32_t hartinfo;
if (dmi_read(target, &hartinfo, DMI_HARTINFO) != ERROR_OK)
return ERROR_FAIL;
info->datasize = get_field(hartinfo, DMI_HARTINFO_DATASIZE);
info->dataaccess = get_field(hartinfo, DMI_HARTINFO_DATAACCESS);
info->dataaddr = get_field(hartinfo, DMI_HARTINFO_DATAADDR);
if (!get_field(dmstatus, DMI_DMSTATUS_AUTHENTICATED)) {
LOG_ERROR("Debugger is not authenticated to target Debug Module. "
"(dmstatus=0x%x). Use `riscv authdata_read` and "
"`riscv authdata_write` commands to authenticate.", dmstatus);
/* If we return ERROR_FAIL here, then in a multicore setup the next
* core won't be examined, which means we won't set up the
* authentication commands for them, which means the config script
* needs to be a lot more complex. */
return ERROR_OK;
}
if (dmi_read(target, &info->sbcs, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* Check that abstract data registers are accessible. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->datacount = get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT);
info->progbufsize = get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE);
LOG_INFO("datacount=%d progbufsize=%d", info->datacount, info->progbufsize);
RISCV_INFO(r);
r->impebreak = get_field(dmstatus, DMI_DMSTATUS_IMPEBREAK);
if (info->progbufsize + r->impebreak < 2) {
LOG_WARNING("We won't be able to execute fence instructions on this "
"target. Memory may not always appear consistent. "
"(progbufsize=%d, impebreak=%d)", info->progbufsize,
r->impebreak);
}
/* Before doing anything else we must first enumerate the harts. */
/* Don't call any riscv_* functions until after we've counted the number of
* cores and initialized registers. */
for (int i = 0; i < MIN(RISCV_MAX_HARTS, 1 << info->hartsellen); ++i) {
if (!riscv_rtos_enabled(target) && i != target->coreid)
continue;
r->current_hartid = i;
if (riscv013_select_current_hart(target) != ERROR_OK)
return ERROR_FAIL;
uint32_t s;
if (dmstatus_read(target, &s, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(s, DMI_DMSTATUS_ANYNONEXISTENT))
break;
r->hart_count = i + 1;
if (get_field(s, DMI_DMSTATUS_ANYHAVERESET))
dmi_write(target, DMI_DMCONTROL,
set_hartsel(DMI_DMCONTROL_DMACTIVE | DMI_DMCONTROL_ACKHAVERESET, i));
if (!riscv_is_halted(target)) {
if (riscv013_halt_current_hart(target) != ERROR_OK) {
LOG_ERROR("Fatal: Hart %d failed to halt during examine()", i);
return ERROR_FAIL;
}
}
/* Without knowing anything else we can at least mess with the
* program buffer. */
r->debug_buffer_size[i] = info->progbufsize;
int result = register_read_abstract(target, NULL, GDB_REGNO_S0, 64);
if (result == ERROR_OK)
r->xlen[i] = 64;
else
r->xlen[i] = 32;
if (register_read(target, &r->misa[i], GDB_REGNO_MISA)) {
LOG_ERROR("Fatal: Failed to read MISA from hart %d.", i);
return ERROR_FAIL;
}
/* Now init registers based on what we discovered. */
if (riscv_init_registers(target) != ERROR_OK)
return ERROR_FAIL;
/* Display this as early as possible to help people who are using
* really slow simulators. */
LOG_DEBUG(" hart %d: XLEN=%d, misa=0x%" PRIx64, i, r->xlen[i],
r->misa[i]);
}
LOG_DEBUG("Enumerated %d harts", r->hart_count);
if (r->hart_count == 0) {
LOG_ERROR("No harts found!");
return ERROR_FAIL;
}
/* Resumes all the harts, so the debugger can later pause them. */
/* TODO: Only do this if the harts were halted to start with. */
riscv_resume_all_harts(target);
target->state = TARGET_RUNNING;
target_set_examined(target);
if (target->rtos)
riscv_update_threads(target->rtos);
/* Some regression suites rely on seeing 'Examined RISC-V core' to know
* when they can connect with gdb/telnet.
* We will need to update those suites if we want to change that text. */
LOG_INFO("Examined RISC-V core; found %d harts",
riscv_count_harts(target));
for (int i = 0; i < riscv_count_harts(target); ++i) {
if (riscv_hart_enabled(target, i)) {
LOG_INFO(" hart %d: XLEN=%d, misa=0x%" PRIx64, i, r->xlen[i],
r->misa[i]);
} else {
LOG_INFO(" hart %d: currently disabled", i);
}
}
return ERROR_OK;
}
int riscv013_authdata_read(struct target *target, uint32_t *value)
{
if (wait_for_authbusy(target, NULL) != ERROR_OK)
return ERROR_FAIL;
return dmi_read(target, value, DMI_AUTHDATA);
}
int riscv013_authdata_write(struct target *target, uint32_t value)
{
uint32_t before, after;
if (wait_for_authbusy(target, &before) != ERROR_OK)
return ERROR_FAIL;
dmi_write(target, DMI_AUTHDATA, value);
if (wait_for_authbusy(target, &after) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(before, DMI_DMSTATUS_AUTHENTICATED) &&
get_field(after, DMI_DMSTATUS_AUTHENTICATED)) {
LOG_INFO("authdata_write resulted in successful authentication");
int result = ERROR_OK;
dm013_info_t *dm = get_dm(target);
target_list_t *entry;
list_for_each_entry(entry, &dm->target_list, list) {
if (examine(entry->target) != ERROR_OK)
result = ERROR_FAIL;
}
return result;
}
return ERROR_OK;
}
static int init_target(struct command_context *cmd_ctx,
struct target *target)
{
LOG_DEBUG("init");
riscv_info_t *generic_info = (riscv_info_t *) target->arch_info;
generic_info->get_register = &riscv013_get_register;
generic_info->set_register = &riscv013_set_register;
generic_info->select_current_hart = &riscv013_select_current_hart;
generic_info->is_halted = &riscv013_is_halted;
generic_info->halt_current_hart = &riscv013_halt_current_hart;
generic_info->resume_current_hart = &riscv013_resume_current_hart;
generic_info->step_current_hart = &riscv013_step_current_hart;
generic_info->on_halt = &riscv013_on_halt;
generic_info->on_resume = &riscv013_on_resume;
generic_info->on_step = &riscv013_on_step;
generic_info->halt_reason = &riscv013_halt_reason;
generic_info->read_debug_buffer = &riscv013_read_debug_buffer;
generic_info->write_debug_buffer = &riscv013_write_debug_buffer;
generic_info->execute_debug_buffer = &riscv013_execute_debug_buffer;
generic_info->fill_dmi_write_u64 = &riscv013_fill_dmi_write_u64;
generic_info->fill_dmi_read_u64 = &riscv013_fill_dmi_read_u64;
generic_info->fill_dmi_nop_u64 = &riscv013_fill_dmi_nop_u64;
generic_info->dmi_write_u64_bits = &riscv013_dmi_write_u64_bits;
generic_info->authdata_read = &riscv013_authdata_read;
generic_info->authdata_write = &riscv013_authdata_write;
generic_info->dmi_read = &dmi_read;
generic_info->dmi_write = &dmi_write;
generic_info->test_sba_config_reg = &riscv013_test_sba_config_reg;
generic_info->test_compliance = &riscv013_test_compliance;
generic_info->version_specific = calloc(1, sizeof(riscv013_info_t));
if (!generic_info->version_specific)
return ERROR_FAIL;
riscv013_info_t *info = get_info(target);
info->progbufsize = -1;
info->dmi_busy_delay = 0;
info->bus_master_read_delay = 0;
info->bus_master_write_delay = 0;
info->ac_busy_delay = 0;
/* Assume all these abstract commands are supported until we learn
* otherwise.
* TODO: The spec allows eg. one CSR to be able to be accessed abstractly
* while another one isn't. We don't track that this closely here, but in
* the future we probably should. */
info->abstract_read_csr_supported = true;
info->abstract_write_csr_supported = true;
info->abstract_read_fpr_supported = true;
info->abstract_write_fpr_supported = true;
return ERROR_OK;
}
static int assert_reset(struct target *target)
{
RISCV_INFO(r);
select_dmi(target);
uint32_t control_base = set_field(0, DMI_DMCONTROL_DMACTIVE, 1);
if (target->rtos) {
/* There's only one target, and OpenOCD thinks each hart is a thread.
* We must reset them all. */
/* TODO: Try to use hasel in dmcontrol */
/* Set haltreq for each hart. */
uint32_t control = control_base;
for (int i = 0; i < riscv_count_harts(target); ++i) {
if (!riscv_hart_enabled(target, i))
continue;
control = set_hartsel(control_base, i);
control = set_field(control, DMI_DMCONTROL_HALTREQ,
target->reset_halt ? 1 : 0);
dmi_write(target, DMI_DMCONTROL, control);
}
/* Assert ndmreset */
control = set_field(control, DMI_DMCONTROL_NDMRESET, 1);
dmi_write(target, DMI_DMCONTROL, control);
} else {
/* Reset just this hart. */
uint32_t control = set_hartsel(control_base, r->current_hartid);
control = set_field(control, DMI_DMCONTROL_HALTREQ,
target->reset_halt ? 1 : 0);
control = set_field(control, DMI_DMCONTROL_NDMRESET, 1);
dmi_write(target, DMI_DMCONTROL, control);
}
target->state = TARGET_RESET;
return ERROR_OK;
}
static int deassert_reset(struct target *target)
{
RISCV_INFO(r);
RISCV013_INFO(info);
select_dmi(target);
/* Clear the reset, but make sure haltreq is still set */
uint32_t control = 0;
control = set_field(control, DMI_DMCONTROL_HALTREQ, target->reset_halt ? 1 : 0);
control = set_field(control, DMI_DMCONTROL_DMACTIVE, 1);
dmi_write(target, DMI_DMCONTROL,
set_hartsel(control, r->current_hartid));
uint32_t dmstatus;
int dmi_busy_delay = info->dmi_busy_delay;
time_t start = time(NULL);
for (int i = 0; i < riscv_count_harts(target); ++i) {
int index = i;
if (target->rtos) {
if (!riscv_hart_enabled(target, index))
continue;
dmi_write(target, DMI_DMCONTROL,
set_hartsel(control, index));
} else {
index = r->current_hartid;
}
char *operation;
uint32_t expected_field;
if (target->reset_halt) {
operation = "halt";
expected_field = DMI_DMSTATUS_ALLHALTED;
} else {
operation = "run";
expected_field = DMI_DMSTATUS_ALLRUNNING;
}
LOG_DEBUG("Waiting for hart %d to %s out of reset.", index, operation);
while (1) {
int result = dmstatus_read_timeout(target, &dmstatus, true,
riscv_reset_timeout_sec);
if (result == ERROR_TIMEOUT_REACHED)
LOG_ERROR("Hart %d didn't complete a DMI read coming out of "
"reset in %ds; Increase the timeout with riscv "
"set_reset_timeout_sec.",
index, riscv_reset_timeout_sec);
if (result != ERROR_OK)
return result;
if (get_field(dmstatus, expected_field))
break;
if (time(NULL) - start > riscv_reset_timeout_sec) {
LOG_ERROR("Hart %d didn't %s coming out of reset in %ds; "
"dmstatus=0x%x; "
"Increase the timeout with riscv set_reset_timeout_sec.",
index, operation, riscv_reset_timeout_sec, dmstatus);
return ERROR_FAIL;
}
}
target->state = TARGET_HALTED;
if (get_field(dmstatus, DMI_DMSTATUS_ALLHAVERESET)) {
/* Ack reset. */
dmi_write(target, DMI_DMCONTROL,
set_hartsel(control, index) |
DMI_DMCONTROL_ACKHAVERESET);
}
if (!target->rtos)
break;
}
info->dmi_busy_delay = dmi_busy_delay;
return ERROR_OK;
}
/**
* @size in bytes
*/
static void write_to_buf(uint8_t *buffer, uint64_t value, unsigned size)
{
switch (size) {
case 8:
buffer[7] = value >> 56;
buffer[6] = value >> 48;
buffer[5] = value >> 40;
buffer[4] = value >> 32;
/* falls through */
case 4:
buffer[3] = value >> 24;
buffer[2] = value >> 16;
/* falls through */
case 2:
buffer[1] = value >> 8;
/* falls through */
case 1:
buffer[0] = value;
break;
default:
assert(false);
}
}
static int execute_fence(struct target *target)
{
struct riscv_program program;
riscv_program_init(&program, target);
riscv_program_fence(&program);
int result = riscv_program_exec(&program, target);
if (result != ERROR_OK)
LOG_ERROR("Unable to execute fence");
return result;
}
static void log_memory_access(target_addr_t address, uint64_t value,
unsigned size_bytes, bool read)
{
if (debug_level < LOG_LVL_DEBUG)
return;
char fmt[80];
sprintf(fmt, "M[0x%" TARGET_PRIxADDR "] %ss 0x%%0%d" PRIx64,
address, read ? "read" : "write", size_bytes * 2);
value &= (((uint64_t) 0x1) << (size_bytes * 8)) - 1;
LOG_DEBUG(fmt, value);
}
/* Read the relevant sbdata regs depending on size, and put the results into
* buffer. */
static int read_memory_bus_word(struct target *target, target_addr_t address,
uint32_t size, uint8_t *buffer)
{
uint32_t value;
if (size > 12) {
if (dmi_read(target, &value, DMI_SBDATA3) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer + 12, value, 4);
log_memory_access(address + 12, value, 4, true);
}
if (size > 8) {
if (dmi_read(target, &value, DMI_SBDATA2) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer + 8, value, 4);
log_memory_access(address + 8, value, 4, true);
}
if (size > 4) {
if (dmi_read(target, &value, DMI_SBDATA1) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer + 4, value, 4);
log_memory_access(address + 4, value, 4, true);
}
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(buffer, value, MIN(size, 4));
log_memory_access(address, value, MIN(size, 4), true);
return ERROR_OK;
}
static uint32_t sb_sbaccess(unsigned size_bytes)
{
switch (size_bytes) {
case 1:
return set_field(0, DMI_SBCS_SBACCESS, 0);
case 2:
return set_field(0, DMI_SBCS_SBACCESS, 1);
case 4:
return set_field(0, DMI_SBCS_SBACCESS, 2);
case 8:
return set_field(0, DMI_SBCS_SBACCESS, 3);
case 16:
return set_field(0, DMI_SBCS_SBACCESS, 4);
}
assert(0);
return 0; /* Make mingw happy. */
}
static target_addr_t sb_read_address(struct target *target)
{
RISCV013_INFO(info);
unsigned sbasize = get_field(info->sbcs, DMI_SBCS_SBASIZE);
target_addr_t address = 0;
uint32_t v;
if (sbasize > 32) {
#if BUILD_TARGET64
dmi_read(target, &v, DMI_SBADDRESS1);
address |= v;
address <<= 32;
#endif
}
dmi_read(target, &v, DMI_SBADDRESS0);
address |= v;
return address;
}
static int sb_write_address(struct target *target, target_addr_t address)
{
RISCV013_INFO(info);
unsigned sbasize = get_field(info->sbcs, DMI_SBCS_SBASIZE);
/* There currently is no support for >64-bit addresses in OpenOCD. */
if (sbasize > 96)
dmi_write(target, DMI_SBADDRESS3, 0);
if (sbasize > 64)
dmi_write(target, DMI_SBADDRESS2, 0);
if (sbasize > 32)
#if BUILD_TARGET64
dmi_write(target, DMI_SBADDRESS1, address >> 32);
#else
dmi_write(target, DMI_SBADDRESS1, 0);
#endif
return dmi_write(target, DMI_SBADDRESS0, address);
}
static int read_sbcs_nonbusy(struct target *target, uint32_t *sbcs)
{
time_t start = time(NULL);
while (1) {
if (dmi_read(target, sbcs, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
if (!get_field(*sbcs, DMI_SBCS_SBBUSY))
return ERROR_OK;
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
"Increase the timeout with riscv set_command_timeout_sec.",
riscv_command_timeout_sec, *sbcs);
return ERROR_FAIL;
}
}
}
static int read_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
LOG_DEBUG("System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
uint8_t *t_buffer = buffer;
riscv_addr_t cur_addr = address;
riscv_addr_t fin_addr = address + (count * size);
uint32_t access = 0;
const int DMI_SBCS_SBSINGLEREAD_OFFSET = 20;
const uint32_t DMI_SBCS_SBSINGLEREAD = (0x1U << DMI_SBCS_SBSINGLEREAD_OFFSET);
const int DMI_SBCS_SBAUTOREAD_OFFSET = 15;
const uint32_t DMI_SBCS_SBAUTOREAD = (0x1U << DMI_SBCS_SBAUTOREAD_OFFSET);
/* ww favorise one off reading if there is an issue */
if (count == 1) {
for (uint32_t i = 0; i < count; i++) {
if (dmi_read(target, &access, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
dmi_write(target, DMI_SBADDRESS0, cur_addr);
/* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
access = set_field(access, DMI_SBCS_SBSINGLEREAD, 1);
LOG_DEBUG("\r\nread_memory: sab: access: 0x%08x", access);
dmi_write(target, DMI_SBCS, access);
/* 3) read */
uint32_t value;
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
LOG_DEBUG("\r\nread_memory: sab: value: 0x%08x", value);
write_to_buf(t_buffer, value, size);
t_buffer += size;
cur_addr += size;
}
return ERROR_OK;
}
/* has to be the same size if we want to read a block */
LOG_DEBUG("reading block until final address 0x%" PRIx64, fin_addr);
if (dmi_read(target, &access, DMI_SBCS) != ERROR_OK)
return ERROR_FAIL;
/* set current address */
dmi_write(target, DMI_SBADDRESS0, cur_addr);
/* 2) write sbaccess=2, sbsingleread,sbautoread,sbautoincrement
* size/2 matching the bit access of the spec 0.13 */
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
access = set_field(access, DMI_SBCS_SBAUTOREAD, 1);
access = set_field(access, DMI_SBCS_SBSINGLEREAD, 1);
access = set_field(access, DMI_SBCS_SBAUTOINCREMENT, 1);
LOG_DEBUG("\r\naccess: 0x%08x", access);
dmi_write(target, DMI_SBCS, access);
while (cur_addr < fin_addr) {
LOG_DEBUG("\r\nsab:autoincrement: \r\n size: %d\tcount:%d\taddress: 0x%08"
PRIx64, size, count, cur_addr);
/* read */
uint32_t value;
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(t_buffer, value, size);
cur_addr += size;
t_buffer += size;
/* if we are reaching last address, we must clear autoread */
if (cur_addr == fin_addr && count != 1) {
dmi_write(target, DMI_SBCS, 0);
if (dmi_read(target, &value, DMI_SBDATA0) != ERROR_OK)
return ERROR_FAIL;
write_to_buf(t_buffer, value, size);
}
}
return ERROR_OK;
}
/**
* Read the requested memory using the system bus interface.
*/
static int read_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
RISCV013_INFO(info);
target_addr_t next_address = address;
target_addr_t end_address = address + count * size;
while (next_address < end_address) {
uint32_t sbcs = set_field(0, DMI_SBCS_SBREADONADDR, 1);
sbcs |= sb_sbaccess(size);
sbcs = set_field(sbcs, DMI_SBCS_SBAUTOINCREMENT, 1);
sbcs = set_field(sbcs, DMI_SBCS_SBREADONDATA, count > 1);
dmi_write(target, DMI_SBCS, sbcs);
/* This address write will trigger the first read. */
sb_write_address(target, next_address);
if (info->bus_master_read_delay) {
jtag_add_runtest(info->bus_master_read_delay, TAP_IDLE);
if (jtag_execute_queue() != ERROR_OK) {
LOG_ERROR("Failed to scan idle sequence");
return ERROR_FAIL;
}
}
for (uint32_t i = (next_address - address) / size; i < count - 1; i++) {
read_memory_bus_word(target, address + i * size, size,
buffer + i * size);
}
sbcs = set_field(sbcs, DMI_SBCS_SBREADONDATA, 0);
dmi_write(target, DMI_SBCS, sbcs);
read_memory_bus_word(target, address + (count - 1) * size, size,
buffer + (count - 1) * size);
if (read_sbcs_nonbusy(target, &sbcs) != ERROR_OK)
return ERROR_FAIL;
if (get_field(sbcs, DMI_SBCS_SBBUSYERROR)) {
/* We read while the target was busy. Slow down and try again. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBBUSYERROR);
next_address = sb_read_address(target);
info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
continue;
}
unsigned error = get_field(sbcs, DMI_SBCS_SBERROR);
if (error == 0) {
next_address = end_address;
} else {
/* Some error indicating the bus access failed, but not because of
* something we did wrong. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBERROR);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
/**
* Read the requested memory, taking care to execute every read exactly once,
* even if cmderr=busy is encountered.
*/
static int read_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
RISCV013_INFO(info);
int result = ERROR_OK;
LOG_DEBUG("reading %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
size, address);
select_dmi(target);
/* s0 holds the next address to write to
* s1 holds the next data value to write
*/
uint64_t s0, s1;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_read(target, &s1, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
/* Write the program (load, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
switch (size) {
case 1:
riscv_program_lbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_lhr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_lwr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
return ERROR_FAIL;
}
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size);
if (riscv_program_ebreak(&program) != ERROR_OK)
return ERROR_FAIL;
riscv_program_write(&program);
/* Write address to S0, and execute buffer. */
result = register_write_direct(target, GDB_REGNO_S0, address);
if (result != ERROR_OK)
goto error;
uint32_t command = access_register_command(target, GDB_REGNO_S1,
riscv_xlen(target),
AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
result = execute_abstract_command(target, command);
if (result != ERROR_OK)
goto error;
/* First read has just triggered. Result is in s1. */
dmi_write(target, DMI_ABSTRACTAUTO,
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
/* read_addr is the next address that the hart will read from, which is the
* value in s0. */
riscv_addr_t read_addr = address + size;
/* The next address that we need to receive data for. */
riscv_addr_t receive_addr = address;
riscv_addr_t fin_addr = address + (count * size);
unsigned skip = 1;
while (read_addr < fin_addr) {
LOG_DEBUG("read_addr=0x%" PRIx64 ", receive_addr=0x%" PRIx64
", fin_addr=0x%" PRIx64, read_addr, receive_addr, fin_addr);
/* The pipeline looks like this:
* memory -> s1 -> dm_data0 -> debugger
* It advances every time the debugger reads dmdata0.
* So at any time the debugger has just read mem[s0 - 3*size],
* dm_data0 contains mem[s0 - 2*size]
* s1 contains mem[s0-size] */
LOG_DEBUG("creating burst to read from 0x%" PRIx64
" up to 0x%" PRIx64, read_addr, fin_addr);
assert(read_addr >= address && read_addr < fin_addr);
struct riscv_batch *batch = riscv_batch_alloc(target, 32,
info->dmi_busy_delay + info->ac_busy_delay);
size_t reads = 0;
for (riscv_addr_t addr = read_addr; addr < fin_addr; addr += size) {
riscv_batch_add_dmi_read(batch, DMI_DATA0);
reads++;
if (riscv_batch_full(batch))
break;
}
riscv_batch_run(batch);
/* Wait for the target to finish performing the last abstract command,
* and update our copy of cmderr. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY))
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
unsigned cmderr = info->cmderr;
riscv_addr_t next_read_addr;
uint32_t dmi_data0 = -1;
switch (info->cmderr) {
case CMDERR_NONE:
LOG_DEBUG("successful (partial?) memory read");
next_read_addr = read_addr + reads * size;
break;
case CMDERR_BUSY:
LOG_DEBUG("memory read resulted in busy response");
/*
* If you want to exercise this code path, apply the following patch to spike:
--- a/riscv/debug_module.cc
+++ b/riscv/debug_module.cc
@@ -1,3 +1,5 @@
+#include <unistd.h>
+
#include <cassert>
#include "debug_module.h"
@@ -398,6 +400,15 @@ bool debug_module_t::perform_abstract_command()
// Since the next instruction is what we will use, just use nother NOP
// to get there.
write32(debug_abstract, 1, addi(ZERO, ZERO, 0));
+
+ if (abstractauto.autoexecdata &&
+ program_buffer[0] == 0x83 &&
+ program_buffer[1] == 0x24 &&
+ program_buffer[2] == 0x04 &&
+ program_buffer[3] == 0 &&
+ rand() < RAND_MAX / 10) {
+ usleep(1000000);
+ }
} else {
write32(debug_abstract, 1, ebreak());
}
*/
increase_ac_busy_delay(target);
riscv013_clear_abstract_error(target);
dmi_write(target, DMI_ABSTRACTAUTO, 0);
/* This is definitely a good version of the value that we
* attempted to read when we discovered that the target was
* busy. */
if (dmi_read(target, &dmi_data0, DMI_DATA0) != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Clobbers DMI_DATA0. */
result = register_read_direct(target, &next_read_addr,
GDB_REGNO_S0);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Restore the command, and execute it.
* Now DMI_DATA0 contains the next value just as it would if no
* error had occurred. */
dmi_write(target, DMI_COMMAND, command);
dmi_write(target, DMI_ABSTRACTAUTO,
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
break;
default:
LOG_ERROR("error when reading memory, abstractcs=0x%08lx", (long)abstractcs);
riscv013_clear_abstract_error(target);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
/* Now read whatever we got out of the batch. */
for (size_t i = 0; i < reads; i++) {
if (read_addr >= next_read_addr)
break;
read_addr += size;
if (skip > 0) {
skip--;
continue;
}
riscv_addr_t offset = receive_addr - address;
uint64_t dmi_out = riscv_batch_get_dmi_read(batch, i);
uint32_t value = get_field(dmi_out, DTM_DMI_DATA);
write_to_buf(buffer + offset, value, size);
log_memory_access(receive_addr, value, size, true);
receive_addr += size;
}
riscv_batch_free(batch);
if (cmderr == CMDERR_BUSY) {
riscv_addr_t offset = receive_addr - address;
write_to_buf(buffer + offset, dmi_data0, size);
log_memory_access(receive_addr, dmi_data0, size, true);
read_addr += size;
receive_addr += size;
}
}
dmi_write(target, DMI_ABSTRACTAUTO, 0);
if (count > 1) {
/* Read the penultimate word. */
uint32_t value;
if (dmi_read(target, &value, DMI_DATA0) != ERROR_OK)
goto error;
write_to_buf(buffer + receive_addr - address, value, size);
log_memory_access(receive_addr, value, size, true);
receive_addr += size;
}
/* Read the last word. */
uint64_t value;
result = register_read_direct(target, &value, GDB_REGNO_S1);
if (result != ERROR_OK)
goto error;
write_to_buf(buffer + receive_addr - address, value, size);
log_memory_access(receive_addr, value, size, true);
riscv_set_register(target, GDB_REGNO_S0, s0);
riscv_set_register(target, GDB_REGNO_S1, s1);
return ERROR_OK;
error:
dmi_write(target, DMI_ABSTRACTAUTO, 0);
riscv_set_register(target, GDB_REGNO_S0, s0);
riscv_set_register(target, GDB_REGNO_S1, s1);
return result;
}
static int read_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, uint8_t *buffer)
{
RISCV013_INFO(info);
if (info->progbufsize >= 2 && !riscv_prefer_sba)
return read_memory_progbuf(target, address, size, count, buffer);
if ((get_field(info->sbcs, DMI_SBCS_SBACCESS8) && size == 1) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS16) && size == 2) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS32) && size == 4) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS64) && size == 8) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS128) && size == 16)) {
if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 0)
return read_memory_bus_v0(target, address, size, count, buffer);
else if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 1)
return read_memory_bus_v1(target, address, size, count, buffer);
}
if (info->progbufsize >= 2)
return read_memory_progbuf(target, address, size, count, buffer);
LOG_ERROR("Don't know how to read memory on this target.");
return ERROR_FAIL;
}
static int write_memory_bus_v0(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
/*1) write sbaddress: for singlewrite and autoincrement, we need to write the address once*/
LOG_DEBUG("System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
TARGET_PRIxADDR, size, count, address);
dmi_write(target, DMI_SBADDRESS0, address);
int64_t value = 0;
int64_t access = 0;
riscv_addr_t offset = 0;
riscv_addr_t t_addr = 0;
const uint8_t *t_buffer = buffer + offset;
/* B.8 Writing Memory, single write check if we write in one go */
if (count == 1) { /* count is in bytes here */
/* check the size */
switch (size) {
case 1:
value = t_buffer[0];
break;
case 2:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8);
break;
case 4:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8)
| ((uint32_t) t_buffer[2] << 16)
| ((uint32_t) t_buffer[3] << 24);
break;
default:
LOG_ERROR("unsupported access size: %d", size);
return ERROR_FAIL;
}
access = 0;
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
dmi_write(target, DMI_SBCS, access);
LOG_DEBUG("\r\naccess: 0x%08" PRIx64, access);
LOG_DEBUG("\r\nwrite_memory:SAB: ONE OFF: value 0x%08" PRIx64, value);
dmi_write(target, DMI_SBDATA0, value);
return ERROR_OK;
}
/*B.8 Writing Memory, using autoincrement*/
access = 0;
access = set_field(access, DMI_SBCS_SBACCESS, size/2);
access = set_field(access, DMI_SBCS_SBAUTOINCREMENT, 1);
LOG_DEBUG("\r\naccess: 0x%08" PRIx64, access);
dmi_write(target, DMI_SBCS, access);
/*2)set the value according to the size required and write*/
for (riscv_addr_t i = 0; i < count; ++i) {
offset = size*i;
/* for monitoring only */
t_addr = address + offset;
t_buffer = buffer + offset;
switch (size) {
case 1:
value = t_buffer[0];
break;
case 2:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8);
break;
case 4:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8)
| ((uint32_t) t_buffer[2] << 16)
| ((uint32_t) t_buffer[3] << 24);
break;
default:
LOG_ERROR("unsupported access size: %d", size);
return ERROR_FAIL;
}
LOG_DEBUG("SAB:autoincrement: expected address: 0x%08x value: 0x%08x"
PRIx64, (uint32_t)t_addr, (uint32_t)value);
dmi_write(target, DMI_SBDATA0, value);
}
/*reset the autoincrement when finished (something weird is happening if this is not done at the end*/
access = set_field(access, DMI_SBCS_SBAUTOINCREMENT, 0);
dmi_write(target, DMI_SBCS, access);
return ERROR_OK;
}
static int write_memory_bus_v1(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
uint32_t sbcs = sb_sbaccess(size);
sbcs = set_field(sbcs, DMI_SBCS_SBAUTOINCREMENT, 1);
dmi_write(target, DMI_SBCS, sbcs);
target_addr_t next_address = address;
target_addr_t end_address = address + count * size;
sb_write_address(target, next_address);
while (next_address < end_address) {
for (uint32_t i = (next_address - address) / size; i < count; i++) {
const uint8_t *p = buffer + i * size;
if (size > 12)
dmi_write(target, DMI_SBDATA3,
((uint32_t) p[12]) |
(((uint32_t) p[13]) << 8) |
(((uint32_t) p[14]) << 16) |
(((uint32_t) p[15]) << 24));
if (size > 8)
dmi_write(target, DMI_SBDATA2,
((uint32_t) p[8]) |
(((uint32_t) p[9]) << 8) |
(((uint32_t) p[10]) << 16) |
(((uint32_t) p[11]) << 24));
if (size > 4)
dmi_write(target, DMI_SBDATA1,
((uint32_t) p[4]) |
(((uint32_t) p[5]) << 8) |
(((uint32_t) p[6]) << 16) |
(((uint32_t) p[7]) << 24));
uint32_t value = p[0];
if (size > 2) {
value |= ((uint32_t) p[2]) << 16;
value |= ((uint32_t) p[3]) << 24;
}
if (size > 1)
value |= ((uint32_t) p[1]) << 8;
dmi_write(target, DMI_SBDATA0, value);
log_memory_access(address + i * size, value, size, false);
if (info->bus_master_write_delay) {
jtag_add_runtest(info->bus_master_write_delay, TAP_IDLE);
if (jtag_execute_queue() != ERROR_OK) {
LOG_ERROR("Failed to scan idle sequence");
return ERROR_FAIL;
}
}
}
if (read_sbcs_nonbusy(target, &sbcs) != ERROR_OK)
return ERROR_FAIL;
if (get_field(sbcs, DMI_SBCS_SBBUSYERROR)) {
/* We wrote while the target was busy. Slow down and try again. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBBUSYERROR);
next_address = sb_read_address(target);
info->bus_master_write_delay += info->bus_master_write_delay / 10 + 1;
continue;
}
unsigned error = get_field(sbcs, DMI_SBCS_SBERROR);
if (error == 0) {
next_address = end_address;
} else {
/* Some error indicating the bus access failed, but not because of
* something we did wrong. */
dmi_write(target, DMI_SBCS, DMI_SBCS_SBERROR);
return ERROR_FAIL;
}
}
return ERROR_OK;
}
static int write_memory_progbuf(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
LOG_DEBUG("writing %d words of %d bytes to 0x%08lx", count, size, (long)address);
select_dmi(target);
/* s0 holds the next address to write to
* s1 holds the next data value to write
*/
int result = ERROR_OK;
uint64_t s0, s1;
if (register_read(target, &s0, GDB_REGNO_S0) != ERROR_OK)
return ERROR_FAIL;
if (register_read(target, &s1, GDB_REGNO_S1) != ERROR_OK)
return ERROR_FAIL;
/* Write the program (store, increment) */
struct riscv_program program;
riscv_program_init(&program, target);
switch (size) {
case 1:
riscv_program_sbr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 2:
riscv_program_shr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
case 4:
riscv_program_swr(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0);
break;
default:
LOG_ERROR("Unsupported size: %d", size);
result = ERROR_FAIL;
goto error;
}
riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size);
result = riscv_program_ebreak(&program);
if (result != ERROR_OK)
goto error;
riscv_program_write(&program);
riscv_addr_t cur_addr = address;
riscv_addr_t fin_addr = address + (count * size);
bool setup_needed = true;
LOG_DEBUG("writing until final address 0x%016" PRIx64, fin_addr);
while (cur_addr < fin_addr) {
LOG_DEBUG("transferring burst starting at address 0x%016" PRIx64,
cur_addr);
struct riscv_batch *batch = riscv_batch_alloc(
target,
32,
info->dmi_busy_delay + info->ac_busy_delay);
/* To write another word, we put it in S1 and execute the program. */
unsigned start = (cur_addr - address) / size;
for (unsigned i = start; i < count; ++i) {
unsigned offset = size*i;
const uint8_t *t_buffer = buffer + offset;
uint32_t value;
switch (size) {
case 1:
value = t_buffer[0];
break;
case 2:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8);
break;
case 4:
value = t_buffer[0]
| ((uint32_t) t_buffer[1] << 8)
| ((uint32_t) t_buffer[2] << 16)
| ((uint32_t) t_buffer[3] << 24);
break;
default:
LOG_ERROR("unsupported access size: %d", size);
riscv_batch_free(batch);
result = ERROR_FAIL;
goto error;
}
log_memory_access(address + offset, value, size, false);
cur_addr += size;
if (setup_needed) {
result = register_write_direct(target, GDB_REGNO_S0,
address + offset);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Write value. */
dmi_write(target, DMI_DATA0, value);
/* Write and execute command that moves value into S1 and
* executes program buffer. */
uint32_t command = access_register_command(target,
GDB_REGNO_S1, 32,
AC_ACCESS_REGISTER_POSTEXEC |
AC_ACCESS_REGISTER_TRANSFER |
AC_ACCESS_REGISTER_WRITE);
result = execute_abstract_command(target, command);
if (result != ERROR_OK) {
riscv_batch_free(batch);
goto error;
}
/* Turn on autoexec */
dmi_write(target, DMI_ABSTRACTAUTO,
1 << DMI_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
setup_needed = false;
} else {
riscv_batch_add_dmi_write(batch, DMI_DATA0, value);
if (riscv_batch_full(batch))
break;
}
}
result = riscv_batch_run(batch);
riscv_batch_free(batch);
if (result != ERROR_OK)
goto error;
/* Note that if the scan resulted in a Busy DMI response, it
* is this read to abstractcs that will cause the dmi_busy_delay
* to be incremented if necessary. */
uint32_t abstractcs;
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
goto error;
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY))
if (dmi_read(target, &abstractcs, DMI_ABSTRACTCS) != ERROR_OK)
return ERROR_FAIL;
info->cmderr = get_field(abstractcs, DMI_ABSTRACTCS_CMDERR);
switch (info->cmderr) {
case CMDERR_NONE:
LOG_DEBUG("successful (partial?) memory write");
break;
case CMDERR_BUSY:
LOG_DEBUG("memory write resulted in busy response");
riscv013_clear_abstract_error(target);
increase_ac_busy_delay(target);
dmi_write(target, DMI_ABSTRACTAUTO, 0);
result = register_read_direct(target, &cur_addr, GDB_REGNO_S0);
if (result != ERROR_OK)
goto error;
setup_needed = true;
break;
default:
LOG_ERROR("error when writing memory, abstractcs=0x%08lx", (long)abstractcs);
riscv013_clear_abstract_error(target);
result = ERROR_FAIL;
goto error;
}
}
error:
dmi_write(target, DMI_ABSTRACTAUTO, 0);
if (register_write_direct(target, GDB_REGNO_S1, s1) != ERROR_OK)
return ERROR_FAIL;
if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK)
return ERROR_FAIL;
if (execute_fence(target) != ERROR_OK)
return ERROR_FAIL;
return result;
}
static int write_memory(struct target *target, target_addr_t address,
uint32_t size, uint32_t count, const uint8_t *buffer)
{
RISCV013_INFO(info);
if (info->progbufsize >= 2 && !riscv_prefer_sba)
return write_memory_progbuf(target, address, size, count, buffer);
if ((get_field(info->sbcs, DMI_SBCS_SBACCESS8) && size == 1) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS16) && size == 2) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS32) && size == 4) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS64) && size == 8) ||
(get_field(info->sbcs, DMI_SBCS_SBACCESS128) && size == 16)) {
if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 0)
return write_memory_bus_v0(target, address, size, count, buffer);
else if (get_field(info->sbcs, DMI_SBCS_SBVERSION) == 1)
return write_memory_bus_v1(target, address, size, count, buffer);
}
if (info->progbufsize >= 2)
return write_memory_progbuf(target, address, size, count, buffer);
LOG_ERROR("Don't know how to write memory on this target.");
return ERROR_FAIL;
}
static int arch_state(struct target *target)
{
return ERROR_OK;
}
struct target_type riscv013_target = {
.name = "riscv",
.init_target = init_target,
.deinit_target = deinit_target,
.examine = examine,
.poll = &riscv_openocd_poll,
.halt = &riscv_openocd_halt,
.resume = &riscv_openocd_resume,
.step = &riscv_openocd_step,
.assert_reset = assert_reset,
.deassert_reset = deassert_reset,
.read_memory = read_memory,
.write_memory = write_memory,
.arch_state = arch_state,
};
/*** 0.13-specific implementations of various RISC-V helper functions. ***/
static int riscv013_get_register(struct target *target,
riscv_reg_t *value, int hid, int rid)
{
LOG_DEBUG("reading register %s on hart %d", gdb_regno_name(rid), hid);
riscv_set_current_hartid(target, hid);
int result = ERROR_OK;
if (rid == GDB_REGNO_PC) {
result = register_read(target, value, GDB_REGNO_DPC);
LOG_DEBUG("read PC from DPC: 0x%016" PRIx64, *value);
} else if (rid == GDB_REGNO_PRIV) {
uint64_t dcsr;
result = register_read(target, &dcsr, GDB_REGNO_DCSR);
*value = get_field(dcsr, CSR_DCSR_PRV);
} else {
result = register_read(target, value, rid);
if (result != ERROR_OK)
*value = -1;
}
return result;
}
static int riscv013_set_register(struct target *target, int hid, int rid, uint64_t value)
{
LOG_DEBUG("writing 0x%" PRIx64 " to register %s on hart %d", value,
gdb_regno_name(rid), hid);
riscv_set_current_hartid(target, hid);
if (rid <= GDB_REGNO_XPR31) {
return register_write_direct(target, rid, value);
} else if (rid == GDB_REGNO_PC) {
LOG_DEBUG("writing PC to DPC: 0x%016" PRIx64, value);
register_write_direct(target, GDB_REGNO_DPC, value);
uint64_t actual_value;
register_read_direct(target, &actual_value, GDB_REGNO_DPC);
LOG_DEBUG(" actual DPC written: 0x%016" PRIx64, actual_value);
if (value != actual_value) {
LOG_ERROR("Written PC (0x%" PRIx64 ") does not match read back "
"value (0x%" PRIx64 ")", value, actual_value);
return ERROR_FAIL;
}
} else if (rid == GDB_REGNO_PRIV) {
uint64_t dcsr;
register_read(target, &dcsr, GDB_REGNO_DCSR);
dcsr = set_field(dcsr, CSR_DCSR_PRV, value);
return register_write_direct(target, GDB_REGNO_DCSR, dcsr);
} else {
return register_write_direct(target, rid, value);
}
return ERROR_OK;
}
static int riscv013_select_current_hart(struct target *target)
{
RISCV_INFO(r);
dm013_info_t *dm = get_dm(target);
if (r->current_hartid == dm->current_hartid)
return ERROR_OK;
uint32_t dmcontrol;
/* TODO: can't we just "dmcontrol = DMI_DMACTIVE"? */
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
dmcontrol = set_hartsel(dmcontrol, r->current_hartid);
int result = dmi_write(target, DMI_DMCONTROL, dmcontrol);
dm->current_hartid = r->current_hartid;
return result;
}
static int riscv013_halt_current_hart(struct target *target)
{
RISCV_INFO(r);
LOG_DEBUG("halting hart %d", r->current_hartid);
if (riscv_is_halted(target))
LOG_ERROR("Hart %d is already halted!", r->current_hartid);
/* Issue the halt command, and then wait for the current hart to halt. */
uint32_t dmcontrol;
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
dmcontrol = set_field(dmcontrol, DMI_DMCONTROL_HALTREQ, 1);
dmi_write(target, DMI_DMCONTROL, dmcontrol);
for (size_t i = 0; i < 256; ++i)
if (riscv_is_halted(target))
break;
if (!riscv_is_halted(target)) {
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR("unable to halt hart %d", r->current_hartid);
LOG_ERROR(" dmcontrol=0x%08x", dmcontrol);
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
return ERROR_FAIL;
}
dmcontrol = set_field(dmcontrol, DMI_DMCONTROL_HALTREQ, 0);
dmi_write(target, DMI_DMCONTROL, dmcontrol);
return ERROR_OK;
}
static int riscv013_resume_current_hart(struct target *target)
{
return riscv013_step_or_resume_current_hart(target, false);
}
static int riscv013_step_current_hart(struct target *target)
{
return riscv013_step_or_resume_current_hart(target, true);
}
static int riscv013_on_resume(struct target *target)
{
return riscv013_on_step_or_resume(target, false);
}
static int riscv013_on_step(struct target *target)
{
return riscv013_on_step_or_resume(target, true);
}
static int riscv013_on_halt(struct target *target)
{
return ERROR_OK;
}
static bool riscv013_is_halted(struct target *target)
{
uint32_t dmstatus;
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return false;
if (get_field(dmstatus, DMI_DMSTATUS_ANYUNAVAIL))
LOG_ERROR("Hart %d is unavailable.", riscv_current_hartid(target));
if (get_field(dmstatus, DMI_DMSTATUS_ANYNONEXISTENT))
LOG_ERROR("Hart %d doesn't exist.", riscv_current_hartid(target));
if (get_field(dmstatus, DMI_DMSTATUS_ANYHAVERESET)) {
int hartid = riscv_current_hartid(target);
LOG_INFO("Hart %d unexpectedly reset!", hartid);
/* TODO: Can we make this more obvious to eg. a gdb user? */
uint32_t dmcontrol = DMI_DMCONTROL_DMACTIVE |
DMI_DMCONTROL_ACKHAVERESET;
dmcontrol = set_hartsel(dmcontrol, hartid);
/* If we had been halted when we reset, request another halt. If we
* ended up running out of reset, then the user will (hopefully) get a
* message that a reset happened, that the target is running, and then
* that it is halted again once the request goes through.
*/
if (target->state == TARGET_HALTED)
dmcontrol |= DMI_DMCONTROL_HALTREQ;
dmi_write(target, DMI_DMCONTROL, dmcontrol);
}
return get_field(dmstatus, DMI_DMSTATUS_ALLHALTED);
}
static enum riscv_halt_reason riscv013_halt_reason(struct target *target)
{
riscv_reg_t dcsr;
int result = register_read(target, &dcsr, GDB_REGNO_DCSR);
if (result != ERROR_OK)
return RISCV_HALT_UNKNOWN;
switch (get_field(dcsr, CSR_DCSR_CAUSE)) {
case CSR_DCSR_CAUSE_SWBP:
return RISCV_HALT_BREAKPOINT;
case CSR_DCSR_CAUSE_TRIGGER:
/* We could get here before triggers are enumerated if a trigger was
* already set when we connected. Force enumeration now, which has the
* side effect of clearing any triggers we did not set. */
riscv_enumerate_triggers(target);
return RISCV_HALT_TRIGGER;
case CSR_DCSR_CAUSE_STEP:
return RISCV_HALT_SINGLESTEP;
case CSR_DCSR_CAUSE_DEBUGINT:
case CSR_DCSR_CAUSE_HALT:
return RISCV_HALT_INTERRUPT;
}
LOG_ERROR("Unknown DCSR cause field: %x", (int)get_field(dcsr, CSR_DCSR_CAUSE));
LOG_ERROR(" dcsr=0x%016lx", (long)dcsr);
return RISCV_HALT_UNKNOWN;
}
int riscv013_write_debug_buffer(struct target *target, unsigned index, riscv_insn_t data)
{
return dmi_write(target, DMI_PROGBUF0 + index, data);
}
riscv_insn_t riscv013_read_debug_buffer(struct target *target, unsigned index)
{
uint32_t value;
dmi_read(target, &value, DMI_PROGBUF0 + index);
return value;
}
int riscv013_execute_debug_buffer(struct target *target)
{
uint32_t run_program = 0;
run_program = set_field(run_program, AC_ACCESS_REGISTER_SIZE, 2);
run_program = set_field(run_program, AC_ACCESS_REGISTER_POSTEXEC, 1);
run_program = set_field(run_program, AC_ACCESS_REGISTER_TRANSFER, 0);
run_program = set_field(run_program, AC_ACCESS_REGISTER_REGNO, 0x1000);
return execute_abstract_command(target, run_program);
}
void riscv013_fill_dmi_write_u64(struct target *target, char *buf, int a, uint64_t d)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_WRITE);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, d);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
void riscv013_fill_dmi_read_u64(struct target *target, char *buf, int a)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_READ);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}
void riscv013_fill_dmi_nop_u64(struct target *target, char *buf)
{
RISCV013_INFO(info);
buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_NOP);
buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, 0);
}
/* Helper function for riscv013_test_sba_config_reg */
static int get_max_sbaccess(struct target *target)
{
RISCV013_INFO(info);
uint32_t sbaccess128 = get_field(info->sbcs, DMI_SBCS_SBACCESS128);
uint32_t sbaccess64 = get_field(info->sbcs, DMI_SBCS_SBACCESS64);
uint32_t sbaccess32 = get_field(info->sbcs, DMI_SBCS_SBACCESS32);
uint32_t sbaccess16 = get_field(info->sbcs, DMI_SBCS_SBACCESS16);
uint32_t sbaccess8 = get_field(info->sbcs, DMI_SBCS_SBACCESS8);
if (sbaccess128)
return 4;
else if (sbaccess64)
return 3;
else if (sbaccess32)
return 2;
else if (sbaccess16)
return 1;
else if (sbaccess8)
return 0;
else
return -1;
}
static uint32_t get_num_sbdata_regs(struct target *target)
{
RISCV013_INFO(info);
uint32_t sbaccess128 = get_field(info->sbcs, DMI_SBCS_SBACCESS128);
uint32_t sbaccess64 = get_field(info->sbcs, DMI_SBCS_SBACCESS64);
uint32_t sbaccess32 = get_field(info->sbcs, DMI_SBCS_SBACCESS32);
if (sbaccess128)
return 4;
else if (sbaccess64)
return 2;
else if (sbaccess32)
return 1;
else
return 0;
}
static int riscv013_test_sba_config_reg(struct target *target,
target_addr_t legal_address, uint32_t num_words,
target_addr_t illegal_address, bool run_sbbusyerror_test)
{
LOG_INFO("Testing System Bus Access as defined by RISC-V Debug Spec v0.13");
uint32_t tests_failed = 0;
uint32_t rd_val;
uint32_t sbcs_orig;
dmi_read(target, &sbcs_orig, DMI_SBCS);
uint32_t sbcs = sbcs_orig;
bool test_passed;
int max_sbaccess = get_max_sbaccess(target);
if (max_sbaccess == -1) {
LOG_ERROR("System Bus Access not supported in this config.");
return ERROR_FAIL;
}
if (get_field(sbcs, DMI_SBCS_SBVERSION) != 1) {
LOG_ERROR("System Bus Access unsupported SBVERSION (%d). Only version 1 is supported.",
get_field(sbcs, DMI_SBCS_SBVERSION));
return ERROR_FAIL;
}
uint32_t num_sbdata_regs = get_num_sbdata_regs(target);
uint32_t rd_buf[num_sbdata_regs];
/* Test 1: Simple write/read test */
test_passed = true;
sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 0);
dmi_write(target, DMI_SBCS, sbcs);
uint32_t test_patterns[4] = {0xdeadbeef, 0xfeedbabe, 0x12345678, 0x08675309};
for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) {
sbcs = set_field(sbcs, DMI_SBCS_SBACCESS, sbaccess);
dmi_write(target, DMI_SBCS, sbcs);
uint32_t compare_mask = (sbaccess == 0) ? 0xff : (sbaccess == 1) ? 0xffff : 0xffffffff;
for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess);
uint32_t wr_data[num_sbdata_regs];
for (uint32_t j = 0; j < num_sbdata_regs; j++)
wr_data[j] = test_patterns[j] + i;
write_memory_sba_simple(target, addr, wr_data, num_sbdata_regs, sbcs);
}
for (uint32_t i = 0; i < num_words; i++) {
uint32_t addr = legal_address + (i << sbaccess);
read_memory_sba_simple(target, addr, rd_buf, num_sbdata_regs, sbcs);
for (uint32_t j = 0; j < num_sbdata_regs; j++) {
if (((test_patterns[j]+i)&compare_mask) != (rd_buf[j]&compare_mask)) {
LOG_ERROR("System Bus Access Test 1: Error reading non-autoincremented address %x,"
"expected val = %x, read val = %x", addr, test_patterns[j]+i, rd_buf[j]);
test_passed = false;
tests_failed++;
}
}
}
}
if (test_passed)
LOG_INFO("System Bus Access Test 1: Simple write/read test PASSED.");
/* Test 2: Address autoincrement test */
target_addr_t curr_addr;
target_addr_t prev_addr;
test_passed = true;
sbcs = set_field(sbcs_orig, DMI_SBCS_SBAUTOINCREMENT, 1);
dmi_write(target, DMI_SBCS, sbcs);
for (uint32_t sbaccess = 0; sbaccess <= (uint32_t)max_sbaccess; sbaccess++) {
sbcs = set_field(sbcs, DMI_SBCS_SBACCESS, sbaccess);
dmi_write(target, DMI_SBCS, sbcs);
dmi_write(target, DMI_SBADDRESS0, legal_address);
read_sbcs_nonbusy(target, &sbcs);
curr_addr = legal_address;
for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs);
curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && (i != 0)) {
LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x.", sbaccess);
test_passed = false;
tests_failed++;
}
dmi_write(target, DMI_SBDATA0, i);
}
read_sbcs_nonbusy(target, &sbcs);
dmi_write(target, DMI_SBADDRESS0, legal_address);
uint32_t val;
sbcs = set_field(sbcs, DMI_SBCS_SBREADONDATA, 1);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &val, DMI_SBDATA0); /* Dummy read to trigger first system bus read */
curr_addr = legal_address;
for (uint32_t i = 0; i < num_words; i++) {
prev_addr = curr_addr;
read_sbcs_nonbusy(target, &sbcs);
curr_addr = sb_read_address(target);
if ((curr_addr - prev_addr != (uint32_t)(1 << sbaccess)) && (i != 0)) {
LOG_ERROR("System Bus Access Test 2: Error with address auto-increment, sbaccess = %x", sbaccess);
test_passed = false;
tests_failed++;
}
dmi_read(target, &val, DMI_SBDATA0);
read_sbcs_nonbusy(target, &sbcs);
if (i != val) {
LOG_ERROR("System Bus Access Test 2: Error reading auto-incremented address,"
"expected val = %x, read val = %x.", i, val);
test_passed = false;
tests_failed++;
}
}
}
if (test_passed)
LOG_INFO("System Bus Access Test 2: Address auto-increment test PASSED.");
/* Test 3: Read from illegal address */
read_memory_sba_simple(target, illegal_address, rd_buf, 1, sbcs_orig);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 2);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 3: Illegal address read test PASSED.");
else
LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED, unable to clear to 0.");
} else {
LOG_ERROR("System Bus Access Test 3: Illegal address read test FAILED, unable to set error code.");
}
/* Test 4: Write to illegal address */
write_memory_sba_simple(target, illegal_address, test_patterns, 1, sbcs_orig);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 2) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 2);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 4: Illegal address write test PASSED.");
else {
LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 4: Illegal address write test FAILED, unable to set error code.");
tests_failed++;
}
/* Test 5: Write with unsupported sbaccess size */
uint32_t sbaccess128 = get_field(sbcs_orig, DMI_SBCS_SBACCESS128);
if (sbaccess128) {
LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED, all sbaccess sizes supported.");
} else {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBACCESS, 4);
write_memory_sba_simple(target, legal_address, test_patterns, 1, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 4) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 4);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 5: SBCS sbaccess error test PASSED.");
else {
LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 5: SBCS sbaccess error test FAILED, unable to set error code.");
tests_failed++;
}
}
/* Test 6: Write to misaligned address */
sbcs = set_field(sbcs_orig, DMI_SBCS_SBACCESS, 1);
write_memory_sba_simple(target, legal_address+1, test_patterns, 1, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 3) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBERROR, 3);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBERROR) == 0)
LOG_INFO("System Bus Access Test 6: SBCS address alignment error test PASSED");
else {
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 6: SBCS address alignment error test FAILED, unable to set error code.");
tests_failed++;
}
/* Test 7: Set sbbusyerror, only run this case in simulation as it is likely
* impossible to hit otherwise */
if (run_sbbusyerror_test) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBREADONADDR, 1);
dmi_write(target, DMI_SBCS, sbcs);
for (int i = 0; i < 16; i++)
dmi_write(target, DMI_SBDATA0, 0xdeadbeef);
for (int i = 0; i < 16; i++)
dmi_write(target, DMI_SBADDRESS0, legal_address);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBBUSYERROR)) {
sbcs = set_field(sbcs_orig, DMI_SBCS_SBBUSYERROR, 1);
dmi_write(target, DMI_SBCS, sbcs);
dmi_read(target, &rd_val, DMI_SBCS);
if (get_field(rd_val, DMI_SBCS_SBBUSYERROR) == 0)
LOG_INFO("System Bus Access Test 7: SBCS sbbusyerror test PASSED.");
else {
LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to clear to 0.");
tests_failed++;
}
} else {
LOG_ERROR("System Bus Access Test 7: SBCS sbbusyerror test FAILED, unable to set error code.");
tests_failed++;
}
}
if (tests_failed == 0) {
LOG_INFO("ALL TESTS PASSED");
return ERROR_OK;
} else {
LOG_ERROR("%d TESTS FAILED", tests_failed);
return ERROR_FAIL;
}
}
void write_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *write_data, uint32_t write_size, uint32_t sbcs)
{
RISCV013_INFO(info);
uint32_t rd_sbcs;
uint32_t masked_addr;
uint32_t sba_size = get_field(info->sbcs, DMI_SBCS_SBASIZE);
read_sbcs_nonbusy(target, &rd_sbcs);
uint32_t sbcs_no_readonaddr = set_field(sbcs, DMI_SBCS_SBREADONADDR, 0);
dmi_write(target, DMI_SBCS, sbcs_no_readonaddr);
for (uint32_t i = 0; i < sba_size/32; i++) {
masked_addr = (addr >> 32*i) & 0xffffffff;
if (i != 3)
dmi_write(target, DMI_SBADDRESS0+i, masked_addr);
else
dmi_write(target, DMI_SBADDRESS3, masked_addr);
}
/* Write SBDATA registers starting with highest address, since write to
* SBDATA0 triggers write */
for (int i = write_size-1; i >= 0; i--)
dmi_write(target, DMI_SBDATA0+i, write_data[i]);
}
void read_memory_sba_simple(struct target *target, target_addr_t addr,
uint32_t *rd_buf, uint32_t read_size, uint32_t sbcs)
{
RISCV013_INFO(info);
uint32_t rd_sbcs;
uint32_t masked_addr;
uint32_t sba_size = get_field(info->sbcs, DMI_SBCS_SBASIZE);
read_sbcs_nonbusy(target, &rd_sbcs);
uint32_t sbcs_readonaddr = set_field(sbcs, DMI_SBCS_SBREADONADDR, 1);
dmi_write(target, DMI_SBCS, sbcs_readonaddr);
/* Write addresses starting with highest address register */
for (int i = sba_size/32-1; i >= 0; i--) {
masked_addr = (addr >> 32*i) & 0xffffffff;
if (i != 3)
dmi_write(target, DMI_SBADDRESS0+i, masked_addr);
else
dmi_write(target, DMI_SBADDRESS3, masked_addr);
}
read_sbcs_nonbusy(target, &rd_sbcs);
for (uint32_t i = 0; i < read_size; i++)
dmi_read(target, &(rd_buf[i]), DMI_SBDATA0+i);
}
int riscv013_dmi_write_u64_bits(struct target *target)
{
RISCV013_INFO(info);
return info->abits + DTM_DMI_DATA_LENGTH + DTM_DMI_OP_LENGTH;
}
static int maybe_execute_fence_i(struct target *target)
{
RISCV013_INFO(info);
RISCV_INFO(r);
if (info->progbufsize + r->impebreak >= 2) {
struct riscv_program program;
riscv_program_init(&program, target);
if (riscv_program_fence_i(&program) != ERROR_OK)
return ERROR_FAIL;
if (riscv_program_exec(&program, target) != ERROR_OK) {
LOG_ERROR("Failed to execute fence.i");
return ERROR_FAIL;
}
}
return ERROR_OK;
}
/* Helper Functions. */
static int riscv013_on_step_or_resume(struct target *target, bool step)
{
if (maybe_execute_fence_i(target) != ERROR_OK)
return ERROR_FAIL;
/* We want to twiddle some bits in the debug CSR so debugging works. */
riscv_reg_t dcsr;
int result = register_read(target, &dcsr, GDB_REGNO_DCSR);
if (result != ERROR_OK)
return result;
dcsr = set_field(dcsr, CSR_DCSR_STEP, step);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKM, 1);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKS, 1);
dcsr = set_field(dcsr, CSR_DCSR_EBREAKU, 1);
return riscv_set_register(target, GDB_REGNO_DCSR, dcsr);
}
static int riscv013_step_or_resume_current_hart(struct target *target, bool step)
{
RISCV_INFO(r);
LOG_DEBUG("resuming hart %d (for step?=%d)", r->current_hartid, step);
if (!riscv_is_halted(target)) {
LOG_ERROR("Hart %d is not halted!", r->current_hartid);
return ERROR_FAIL;
}
if (maybe_execute_fence_i(target) != ERROR_OK)
return ERROR_FAIL;
/* Issue the resume command, and then wait for the current hart to resume. */
uint32_t dmcontrol = DMI_DMCONTROL_DMACTIVE;
dmcontrol = set_hartsel(dmcontrol, r->current_hartid);
dmi_write(target, DMI_DMCONTROL, dmcontrol | DMI_DMCONTROL_RESUMEREQ);
uint32_t dmstatus;
for (size_t i = 0; i < 256; ++i) {
usleep(10);
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
if (get_field(dmstatus, DMI_DMSTATUS_ALLRESUMEACK) == 0)
continue;
if (step && get_field(dmstatus, DMI_DMSTATUS_ALLHALTED) == 0)
continue;
dmi_write(target, DMI_DMCONTROL, dmcontrol);
return ERROR_OK;
}
LOG_ERROR("unable to resume hart %d", r->current_hartid);
if (dmi_read(target, &dmcontrol, DMI_DMCONTROL) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR(" dmcontrol=0x%08x", dmcontrol);
if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
return ERROR_FAIL;
LOG_ERROR(" dmstatus =0x%08x", dmstatus);
if (step) {
LOG_ERROR(" was stepping, halting");
riscv013_halt_current_hart(target);
return ERROR_OK;
}
return ERROR_FAIL;
}
void riscv013_clear_abstract_error(struct target *target)
{
/* Wait for busy to go away. */
time_t start = time(NULL);
uint32_t abstractcs;
dmi_read(target, &abstractcs, DMI_ABSTRACTCS);
while (get_field(abstractcs, DMI_ABSTRACTCS_BUSY)) {
dmi_read(target, &abstractcs, DMI_ABSTRACTCS);
if (time(NULL) - start > riscv_command_timeout_sec) {
LOG_ERROR("abstractcs.busy is not going low after %d seconds "
"(abstractcs=0x%x). The target is either really slow or "
"broken. You could increase the timeout with riscv "
"set_command_timeout_sec.",
riscv_command_timeout_sec, abstractcs);
break;
}
}
/* Clear the error status. */
dmi_write(target, DMI_ABSTRACTCS, abstractcs & DMI_ABSTRACTCS_CMDERR);
}
#define COMPLIANCE_TEST(b, message) \
{ \
int pass = 0; \
if (b) { \
pass = 1; \
passed_tests++; \
} \
LOG_INFO("%s test %d (%s)\n", (pass) ? "PASSED" : "FAILED", total_tests, message); \
assert(pass); \
total_tests++; \
}
#define COMPLIANCE_MUST_PASS(b) COMPLIANCE_TEST(ERROR_OK == (b), "Regular calls must return ERROR_OK")
#define COMPLIANCE_READ(target, addr, value) COMPLIANCE_MUST_PASS(dmi_read(target, addr, value))
#define COMPLIANCE_WRITE(target, addr, value) COMPLIANCE_MUST_PASS(dmi_write(target, addr, value))
#define COMPLIANCE_CHECK_RO(target, addr) \
{ \
uint32_t orig; \
uint32_t inverse; \
COMPLIANCE_READ(target, &orig, addr); \
COMPLIANCE_WRITE(target, addr, ~orig); \
COMPLIANCE_READ(target, &inverse, addr); \
COMPLIANCE_TEST(orig == inverse, "Register must be read-only"); \
}
int riscv013_test_compliance(struct target *target)
{
LOG_INFO("Testing Compliance against RISC-V Debug Spec v0.13");
if (!riscv_rtos_enabled(target)) {
LOG_ERROR("Please run with -rtos riscv to run compliance test.");
return ERROR_FAIL;
}
int total_tests = 0;
int passed_tests = 0;
uint32_t dmcontrol_orig = DMI_DMCONTROL_DMACTIVE;
uint32_t dmcontrol;
uint32_t testvar;
uint32_t testvar_read;
riscv_reg_t value;
RISCV013_INFO(info);
/* All the bits of HARTSEL are covered by the examine sequence. */
/* hartreset */
/* This field is optional. Either we can read and write it to 1/0,
or it is tied to 0. This check doesn't really do anything, but
it does attempt to set the bit to 1 and then back to 0, which needs to
work if its implemented. */
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HARTRESET, 1));
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HARTRESET, 0));
COMPLIANCE_READ(target, &dmcontrol, DMI_DMCONTROL);
COMPLIANCE_TEST((get_field(dmcontrol, DMI_DMCONTROL_HARTRESET) == 0),
"DMCONTROL.hartreset can be 0 or RW.");
/* hasel */
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HASEL, 1));
COMPLIANCE_WRITE(target, DMI_DMCONTROL, set_field(dmcontrol_orig, DMI_DMCONTROL_HASEL, 0));
COMPLIANCE_READ(target, &dmcontrol, DMI_DMCONTROL);
COMPLIANCE_TEST((get_field(dmcontrol, DMI_DMCONTROL_HASEL) == 0),
"DMCONTROL.hasel can be 0 or RW.");
/* TODO: test that hamask registers exist if hasel does. */
/* haltreq */
COMPLIANCE_MUST_PASS(riscv_halt_all_harts(target));
/* This bit is not actually readable according to the spec, so nothing to check.*/
/* DMSTATUS */
COMPLIANCE_CHECK_RO(target, DMI_DMSTATUS);
/* resumereq */
/* This bit is not actually readable according to the spec, so nothing to check.*/
COMPLIANCE_MUST_PASS(riscv_resume_all_harts(target));
/* Halt all harts again so the test can continue.*/
COMPLIANCE_MUST_PASS(riscv_halt_all_harts(target));
/* HARTINFO: Read-Only. This is per-hart, so need to adjust hartsel. */
uint32_t hartinfo;
COMPLIANCE_READ(target, &hartinfo, DMI_HARTINFO);
for (int hartsel = 0; hartsel < riscv_count_harts(target); hartsel++) {
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, hartsel));
COMPLIANCE_CHECK_RO(target, DMI_HARTINFO);
/* $dscratch CSRs */
uint32_t nscratch = get_field(hartinfo, DMI_HARTINFO_NSCRATCH);
for (unsigned int d = 0; d < nscratch; d++) {
riscv_reg_t testval, testval_read;
/* Because DSCRATCH is not guaranteed to last across PB executions, need to put
this all into one PB execution. Which may not be possible on all implementations.*/
if (info->progbufsize >= 5) {
for (testval = 0x0011223300112233;
testval != 0xDEAD;
testval = testval == 0x0011223300112233 ? ~testval : 0xDEAD) {
COMPLIANCE_TEST(register_write_direct(target, GDB_REGNO_S0, testval) == ERROR_OK,
"Need to be able to write S0 in order to test DSCRATCH.");
struct riscv_program program32;
riscv_program_init(&program32, target);
riscv_program_csrw(&program32, GDB_REGNO_S0, GDB_REGNO_DSCRATCH + d);
riscv_program_csrr(&program32, GDB_REGNO_S1, GDB_REGNO_DSCRATCH + d);
riscv_program_fence(&program32);
riscv_program_ebreak(&program32);
COMPLIANCE_TEST(riscv_program_exec(&program32, target) == ERROR_OK,
"Accessing DSCRATCH with program buffer should succeed.");
COMPLIANCE_TEST(register_read_direct(target, &testval_read, GDB_REGNO_S1) == ERROR_OK,
"Need to be able to read S1 in order to test DSCRATCH.");
if (riscv_xlen(target) > 32) {
COMPLIANCE_TEST(testval == testval_read,
"All DSCRATCH registers in HARTINFO must be R/W.");
} else {
COMPLIANCE_TEST(testval_read == (testval & 0xFFFFFFFF),
"All DSCRATCH registers in HARTINFO must be R/W.");
}
}
}
}
/* TODO: dataaccess */
if (get_field(hartinfo, DMI_HARTINFO_DATAACCESS)) {
/* TODO: Shadowed in memory map. */
/* TODO: datasize */
/* TODO: dataaddr */
} else {
/* TODO: Shadowed in CSRs. */
/* TODO: datasize */
/* TODO: dataaddr */
}
}
/* HALTSUM -- TODO: More than 32 harts. Would need to loop over this to set hartsel */
/* TODO: HALTSUM2, HALTSUM3 */
/* HALTSUM0 */
uint32_t expected_haltsum0 = 0;
for (int i = 0; i < MIN(riscv_count_harts(target), 32); i++)
expected_haltsum0 |= (1 << i);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM0);
COMPLIANCE_TEST(testvar_read == expected_haltsum0,
"HALTSUM0 should report summary of up to 32 halted harts");
COMPLIANCE_WRITE(target, DMI_HALTSUM0, 0xffffffff);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM0);
COMPLIANCE_TEST(testvar_read == expected_haltsum0, "HALTSUM0 should be R/O");
COMPLIANCE_WRITE(target, DMI_HALTSUM0, 0x0);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM0);
COMPLIANCE_TEST(testvar_read == expected_haltsum0, "HALTSUM0 should be R/O");
/* HALTSUM1 */
uint32_t expected_haltsum1 = 0;
for (int i = 0; i < MIN(riscv_count_harts(target), 1024); i += 32)
expected_haltsum1 |= (1 << (i/32));
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM1);
COMPLIANCE_TEST(testvar_read == expected_haltsum1,
"HALTSUM1 should report summary of up to 1024 halted harts");
COMPLIANCE_WRITE(target, DMI_HALTSUM1, 0xffffffff);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM1);
COMPLIANCE_TEST(testvar_read == expected_haltsum1, "HALTSUM1 should be R/O");
COMPLIANCE_WRITE(target, DMI_HALTSUM1, 0x0);
COMPLIANCE_READ(target, &testvar_read, DMI_HALTSUM1);
COMPLIANCE_TEST(testvar_read == expected_haltsum1, "HALTSUM1 should be R/O");
/* TODO: HAWINDOWSEL */
/* TODO: HAWINDOW */
/* ABSTRACTCS */
uint32_t abstractcs;
COMPLIANCE_READ(target, &abstractcs, DMI_ABSTRACTCS);
/* Check that all reported Data Words are really R/W */
for (int invert = 0; invert < 2; invert++) {
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_WRITE(target, DMI_DATA0 + i, testvar);
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "All reported DATA words must be R/W");
}
}
/* Check that all reported ProgBuf words are really R/W */
for (int invert = 0; invert < 2; invert++) {
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_WRITE(target, DMI_PROGBUF0 + i, testvar);
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
if (invert)
testvar = ~testvar;
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "All reported PROGBUF words must be R/W");
}
}
/* TODO: Cause and clear all error types */
/* COMMAND
According to the spec, this register is only W, so can't really check the read result.
But at any rate, this is not legal and should cause an error. */
COMPLIANCE_WRITE(target, DMI_COMMAND, 0xAAAAAAAA);
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == CMDERR_NOT_SUPPORTED, \
"Illegal COMMAND should result in UNSUPPORTED");
COMPLIANCE_WRITE(target, DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR);
COMPLIANCE_WRITE(target, DMI_COMMAND, 0x55555555);
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == CMDERR_NOT_SUPPORTED, \
"Illegal COMMAND should result in UNSUPPORTED");
COMPLIANCE_WRITE(target, DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR);
/* Basic Abstract Commands */
for (unsigned int i = 1; i < 32; i = i << 1) {
riscv_reg_t testval = i | ((i + 1ULL) << 32);
riscv_reg_t testval_read;
COMPLIANCE_TEST(ERROR_OK == register_write_direct(target, GDB_REGNO_ZERO + i, testval),
"GPR Writes should be supported.");
COMPLIANCE_MUST_PASS(write_abstract_arg(target, 0, 0xDEADBEEFDEADBEEF, 64));
COMPLIANCE_TEST(ERROR_OK == register_read_direct(target, &testval_read, GDB_REGNO_ZERO + i),
"GPR Reads should be supported.");
if (riscv_xlen(target) > 32) {
/* Dummy comment to satisfy linter, since removing the brances here doesn't actually compile. */
COMPLIANCE_TEST(testval == testval_read, "GPR Reads and writes should be supported.");
} else {
/* Dummy comment to satisfy linter, since removing the brances here doesn't actually compile. */
COMPLIANCE_TEST((testval & 0xFFFFFFFF) == testval_read, "GPR Reads and writes should be supported.");
}
}
/* ABSTRACTAUTO
See which bits are actually writable */
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0xFFFFFFFF);
uint32_t abstractauto;
uint32_t busy;
COMPLIANCE_READ(target, &abstractauto, DMI_ABSTRACTAUTO);
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0x0);
if (abstractauto > 0) {
/* This mechanism only works when you have a reasonable sized progbuf, which is not
a true compliance requirement. */
if (info->progbufsize >= 3) {
testvar = 0;
COMPLIANCE_TEST(ERROR_OK == register_write_direct(target, GDB_REGNO_S0, 0),
"Need to be able to write S0 to test ABSTRACTAUTO");
struct riscv_program program;
COMPLIANCE_MUST_PASS(riscv_program_init(&program, target));
/* This is also testing that WFI() is a NOP during debug mode. */
COMPLIANCE_MUST_PASS(riscv_program_insert(&program, wfi()));
COMPLIANCE_MUST_PASS(riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, 1));
COMPLIANCE_MUST_PASS(riscv_program_ebreak(&program));
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0x0);
COMPLIANCE_MUST_PASS(riscv_program_exec(&program, target));
testvar++;
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0xFFFFFFFF);
COMPLIANCE_READ(target, &abstractauto, DMI_ABSTRACTAUTO);
uint32_t autoexec_data = get_field(abstractauto, DMI_ABSTRACTAUTO_AUTOEXECDATA);
uint32_t autoexec_progbuf = get_field(abstractauto, DMI_ABSTRACTAUTO_AUTOEXECPROGBUF);
for (unsigned int i = 0; i < 12; i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
do {
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
busy = get_field(testvar_read, DMI_ABSTRACTCS_BUSY);
} while (busy);
if (autoexec_data & (1 << i)) {
COMPLIANCE_TEST(i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT),
"AUTOEXEC may be writable up to DATACOUNT bits.");
testvar++;
}
}
for (unsigned int i = 0; i < 16; i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
do {
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
busy = get_field(testvar_read, DMI_ABSTRACTCS_BUSY);
} while (busy);
if (autoexec_progbuf & (1 << i)) {
COMPLIANCE_TEST(i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE),
"AUTOEXEC may be writable up to PROGBUFSIZE bits.");
testvar++;
}
}
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0);
COMPLIANCE_TEST(ERROR_OK == register_read_direct(target, &value, GDB_REGNO_S0),
"Need to be able to read S0 to test ABSTRACTAUTO");
COMPLIANCE_TEST(testvar == value,
"ABSTRACTAUTO should cause COMMAND to run the expected number of times.");
}
}
/* Single-Step each hart. */
for (int hartsel = 0; hartsel < riscv_count_harts(target); hartsel++) {
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, hartsel));
COMPLIANCE_MUST_PASS(riscv013_on_step(target));
COMPLIANCE_MUST_PASS(riscv013_step_current_hart(target));
COMPLIANCE_TEST(riscv_halt_reason(target, hartsel) == RISCV_HALT_SINGLESTEP,
"Single Step should result in SINGLESTEP");
}
/* Core Register Tests */
uint64_t bogus_dpc = 0xdeadbeef;
for (int hartsel = 0; hartsel < riscv_count_harts(target); hartsel++) {
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, hartsel));
/* DCSR Tests */
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DCSR, 0x0));
COMPLIANCE_MUST_PASS(register_read_direct(target, &value, GDB_REGNO_DCSR));
COMPLIANCE_TEST(value != 0, "Not all bits in DCSR are writable by Debugger");
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DCSR, 0xFFFFFFFF));
COMPLIANCE_MUST_PASS(register_read_direct(target, &value, GDB_REGNO_DCSR));
COMPLIANCE_TEST(value != 0, "At least some bits in DCSR must be 1");
/* DPC. Note that DPC is sign-extended. */
riscv_reg_t dpcmask = 0xFFFFFFFCUL;
riscv_reg_t dpc;
if (riscv_xlen(target) > 32)
dpcmask |= (0xFFFFFFFFULL << 32);
if (riscv_supports_extension(target, riscv_current_hartid(target), 'C'))
dpcmask |= 0x2;
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DPC, dpcmask));
COMPLIANCE_MUST_PASS(register_read_direct(target, &dpc, GDB_REGNO_DPC));
COMPLIANCE_TEST(dpcmask == dpc,
"DPC must be sign-extended to XLEN and writable to all-1s (except the least significant bits)");
COMPLIANCE_MUST_PASS(register_write_direct(target, GDB_REGNO_DPC, 0));
COMPLIANCE_MUST_PASS(register_read_direct(target, &dpc, GDB_REGNO_DPC));
COMPLIANCE_TEST(dpc == 0, "DPC must be writable to 0.");
if (hartsel == 0)
bogus_dpc = dpc; /* For a later test step */
}
/* NDMRESET
Asserting non-debug module reset should not reset Debug Module state.
But it should reset Hart State, e.g. DPC should get a different value.
Also make sure that DCSR reports cause of 'HALT' even though previously we single-stepped.
*/
/* Write some registers. They should not be impacted by ndmreset. */
COMPLIANCE_WRITE(target, DMI_COMMAND, 0xFFFFFFFF);
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_WRITE(target, DMI_PROGBUF0 + i, testvar);
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_WRITE(target, DMI_DATA0 + i, testvar);
}
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0xFFFFFFFF);
COMPLIANCE_READ(target, &abstractauto, DMI_ABSTRACTAUTO);
/* Pulse reset. */
target->reset_halt = true;
COMPLIANCE_MUST_PASS(riscv_set_current_hartid(target, 0));
COMPLIANCE_TEST(ERROR_OK == assert_reset(target), "Must be able to assert NDMRESET");
COMPLIANCE_TEST(ERROR_OK == deassert_reset(target), "Must be able to deassert NDMRESET");
/* Verify that most stuff is not affected by ndmreset. */
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == CMDERR_NOT_SUPPORTED,
"NDMRESET should not affect DMI_ABSTRACTCS");
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTAUTO);
COMPLIANCE_TEST(testvar_read == abstractauto, "NDMRESET should not affect DMI_ABSTRACTAUTO");
/* Clean up to avoid future test failures */
COMPLIANCE_WRITE(target, DMI_ABSTRACTCS, DMI_ABSTRACTCS_CMDERR);
COMPLIANCE_WRITE(target, DMI_ABSTRACTAUTO, 0);
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "PROGBUF words must not be affected by NDMRESET");
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
testvar = (i + 1) * 0x11111111;
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
COMPLIANCE_TEST(testvar_read == testvar, "DATA words must not be affected by NDMRESET");
}
/* Verify that DPC *is* affected by ndmreset. Since we don't know what it *should* be,
just verify that at least it's not the bogus value anymore. */
COMPLIANCE_TEST(bogus_dpc != 0xdeadbeef, "BOGUS DPC should have been set somehow (bug in compliance test)");
COMPLIANCE_MUST_PASS(register_read_direct(target, &value, GDB_REGNO_DPC));
COMPLIANCE_TEST(bogus_dpc != value, "NDMRESET should move DPC to reset value.");
COMPLIANCE_TEST(riscv_halt_reason(target, 0) == RISCV_HALT_INTERRUPT,
"After NDMRESET halt, DCSR should report cause of halt");
/* DMACTIVE -- deasserting DMACTIVE should reset all the above values. */
/* Toggle dmactive */
COMPLIANCE_WRITE(target, DMI_DMCONTROL, 0);
COMPLIANCE_WRITE(target, DMI_DMCONTROL, DMI_DMCONTROL_DMACTIVE);
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTCS);
COMPLIANCE_TEST(get_field(testvar_read, DMI_ABSTRACTCS_CMDERR) == 0, "ABSTRACTCS.cmderr should reset to 0");
COMPLIANCE_READ(target, &testvar_read, DMI_ABSTRACTAUTO);
COMPLIANCE_TEST(testvar_read == 0, "ABSTRACTAUTO should reset to 0");
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_PROGBUFSIZE); i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_PROGBUF0 + i);
COMPLIANCE_TEST(testvar_read == 0, "PROGBUF words should reset to 0");
}
for (unsigned int i = 0; i < get_field(abstractcs, DMI_ABSTRACTCS_DATACOUNT); i++) {
COMPLIANCE_READ(target, &testvar_read, DMI_DATA0 + i);
COMPLIANCE_TEST(testvar_read == 0, "DATA words should reset to 0");
}
/*
* TODO:
* DCSR.cause priorities
* DCSR.stoptime/stopcycle
* DCSR.stepie
* DCSR.ebreak
* DCSR.prv
*/
/* Halt every hart for any follow-up tests*/
COMPLIANCE_MUST_PASS(riscv_halt_all_harts(target));
uint32_t failed_tests = total_tests - passed_tests;
if (total_tests == passed_tests) {
LOG_INFO("ALL TESTS PASSED\n");
return ERROR_OK;
} else {
LOG_INFO("%d TESTS FAILED\n", failed_tests);
return ERROR_FAIL;
}
}
|