aboutsummaryrefslogtreecommitdiff
path: root/src/target/riscv/riscv-013.c
blob: 194064786a026ffecde748d63ee7da29882be443 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
// SPDX-License-Identifier: GPL-2.0-or-later

/*
 * Support for RISC-V, debug version 0.13, which is currently (2/4/17) the
 * latest draft.
 */

#include <assert.h>
#include <stdlib.h>
#include <time.h>

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "target/target.h"
#include "target/algorithm.h"
#include "target/target_type.h"
#include <target/smp.h>
#include <helper/log.h>
#include "jtag/jtag.h"
#include "target/register.h"
#include "target/breakpoints.h"
#include "helper/time_support.h"
#include "helper/list.h"
#include "riscv.h"
#include "debug_defines.h"
#include "rtos/rtos.h"
#include "program.h"
#include "asm.h"
#include "batch.h"
#include "debug_reg_printer.h"
#include "field_helpers.h"

static int riscv013_on_step_or_resume(struct target *target, bool skip, bool step);
static int riscv013_step_or_resume_current_hart(struct target *target,
		bool step);
static int riscv013_clear_abstract_error(struct target *target);

/* Implementations of the functions in struct riscv_info. */
static int riscv013_get_register(struct target *target,
		riscv_reg_t *value, enum gdb_regno rid);
static int riscv013_set_register(struct target *target, enum gdb_regno regid,
		riscv_reg_t value);
static int dm013_select_hart(struct target *target, int hart_index);
static int riscv013_halt_prep(struct target *target);
static int riscv013_halt_go(struct target *target);
static int riscv013_halt_target(struct target *target);
static int riscv013_resume_go(struct target *target);
static int riscv013_step_current_hart(struct target *target);
static int riscv013_on_step(struct target *target);
static int riscv013_resume_prep(struct target *target);
static enum riscv_halt_reason riscv013_halt_reason(struct target *target);
static int riscv013_write_progbuf(struct target *target, unsigned int index,
		riscv_insn_t d);
static riscv_insn_t riscv013_read_progbuf(struct target *target, unsigned int
		index);
static int riscv013_invalidate_cached_progbuf(struct target *target);
static int riscv013_execute_progbuf(struct target *target, uint32_t *cmderr);
static void riscv013_fill_dmi_write(struct target *target, char *buf, uint64_t a, uint32_t d);
static void riscv013_fill_dmi_read(struct target *target, char *buf, uint64_t a);
static void riscv013_fill_dmi_nop(struct target *target, char *buf);
static int riscv013_get_dmi_scan_length(struct target *target);
static void riscv013_fill_dm_write(struct target *target, char *buf, uint64_t a, uint32_t d);
static void riscv013_fill_dm_read(struct target *target, char *buf, uint64_t a);
static void riscv013_fill_dm_nop(struct target *target, char *buf);
static unsigned int register_size(struct target *target, enum gdb_regno number);
static int register_read_direct(struct target *target, riscv_reg_t *value,
		enum gdb_regno number);
static int register_write_direct(struct target *target, enum gdb_regno number,
		riscv_reg_t value);
static int read_memory(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment);
static int write_memory(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, const uint8_t *buffer);

typedef enum {
	HALT_GROUP,
	RESUME_GROUP
} grouptype_t;
static int set_group(struct target *target, bool *supported, unsigned int group,
		grouptype_t grouptype);

/**
 * Since almost everything can be accomplish by scanning the dbus register, all
 * functions here assume dbus is already selected. The exception are functions
 * called directly by OpenOCD, which can't assume anything about what's
 * currently in IR. They should set IR to dbus explicitly.
 */

#define RISCV013_INFO(r) riscv013_info_t *r = get_info(target)

/*** JTAG registers. ***/

typedef enum {
	DMI_OP_NOP = DTM_DMI_OP_NOP,
	DMI_OP_READ = DTM_DMI_OP_READ,
	DMI_OP_WRITE = DTM_DMI_OP_WRITE
} dmi_op_t;
typedef enum {
	DMI_STATUS_SUCCESS = DTM_DMI_OP_SUCCESS,
	DMI_STATUS_FAILED = DTM_DMI_OP_FAILED,
	DMI_STATUS_BUSY = DTM_DMI_OP_BUSY
} dmi_status_t;

typedef enum slot {
	SLOT0,
	SLOT1,
	SLOT_LAST,
} slot_t;

/*** Debug Bus registers. ***/

/* TODO: CMDERR_* defines can removed */
#define CMDERR_NONE			DM_ABSTRACTCS_CMDERR_NONE
#define CMDERR_BUSY			DM_ABSTRACTCS_CMDERR_BUSY
#define CMDERR_NOT_SUPPORTED		DM_ABSTRACTCS_CMDERR_NOT_SUPPORTED
#define CMDERR_EXCEPTION		DM_ABSTRACTCS_CMDERR_EXCEPTION
#define CMDERR_HALT_RESUME		DM_ABSTRACTCS_CMDERR_HALT_RESUME
#define CMDERR_OTHER			DM_ABSTRACTCS_CMDERR_OTHER

#define HART_INDEX_MULTIPLE	-1
#define HART_INDEX_UNKNOWN	-2

typedef struct {
	struct list_head list;
	int abs_chain_position;
	/* The base address to access this DM on DMI */
	uint32_t base;
	/* The number of harts connected to this DM. */
	int hart_count;
	/* Indicates we already examined this DM, so don't need to do it again. */
	bool was_examined;
	/* Indicates we already reset this DM, so don't need to do it again. */
	bool was_reset;
	/* Targets that are connected to this DM. */
	struct list_head target_list;
	/* Contains the ID of the hart that is currently selected by this DM.
	 * If multiple harts are selected this is HART_INDEX_MULTIPLE. */
	int current_hartid;

	bool hasel_supported;

	/* The program buffer stores executable code. 0 is an illegal instruction,
	 * so we use 0 to mean the cached value is invalid. */
	uint32_t progbuf_cache[16];

	/* Some operations are illegal when an abstract command is running.
	 * The field is used to track whether the last command timed out, and
	 * abstractcs.busy may have remained set. In that case we may need to
	 * re-check the busy state before executing these operations. */
	bool abstract_cmd_maybe_busy;
} dm013_info_t;

typedef struct {
	struct list_head list;
	struct target *target;
} target_list_t;

typedef struct {
	/* The indexed used to address this hart in its DM. */
	unsigned index;
	/* Number of address bits in the dbus register. */
	unsigned abits;
	/* Number of abstract command data registers. */
	unsigned datacount;
	/* Number of words in the Program Buffer. */
	unsigned progbufsize;

	/* We cache the read-only bits of sbcs here. */
	uint32_t sbcs;

	yes_no_maybe_t progbuf_writable;
	/* We only need the address so that we know the alignment of the buffer. */
	riscv_addr_t progbuf_address;

	/* Number of run-test/idle cycles the target requests we do after each dbus
	 * access. */
	unsigned int dtmcs_idle;

	/* This value is incremented every time a dbus access comes back as "busy".
	 * It's used to determine how many run-test/idle cycles to feed the target
	 * in between accesses. */
	unsigned int dmi_busy_delay;

	/* Number of run-test/idle cycles to add between consecutive bus master
	 * reads/writes respectively. */
	unsigned int bus_master_write_delay, bus_master_read_delay;

	/* This value is increased every time we tried to execute two commands
	 * consecutively, and the second one failed because the previous hadn't
	 * completed yet.  It's used to add extra run-test/idle cycles after
	 * starting a command, so we don't have to waste time checking for busy to
	 * go low. */
	unsigned int ac_busy_delay;

	bool abstract_read_csr_supported;
	bool abstract_write_csr_supported;
	bool abstract_read_fpr_supported;
	bool abstract_write_fpr_supported;

	yes_no_maybe_t has_aampostincrement;

	/* Some fields from hartinfo. */
	uint8_t datasize;
	uint8_t dataaccess;
	int16_t dataaddr;
	uint8_t nscratch;

	/* DM that provides access to this target. */
	dm013_info_t *dm;

	/* This target was selected using hasel. */
	bool selected;

	/* When false, we need to set dcsr.ebreak*, halting the target if that's
	 * necessary. */
	bool dcsr_ebreak_is_set;

	/* This hart was placed into a halt group in examine(). */
	bool haltgroup_supported;
} riscv013_info_t;

static LIST_HEAD(dm_list);

static riscv013_info_t *get_info(const struct target *target)
{
	struct riscv_info *info = target->arch_info;
	assert(info);
	assert(info->version_specific);
	return info->version_specific;
}

/**
 * Return the DM structure for this target. If there isn't one, find it in the
 * global list of DMs. If it's not in there, then create one and initialize it
 * to 0.
 */
static dm013_info_t *get_dm(struct target *target)
{
	RISCV013_INFO(info);
	if (info->dm)
		return info->dm;

	int abs_chain_position = target->tap->abs_chain_position;

	dm013_info_t *entry;
	dm013_info_t *dm = NULL;
	list_for_each_entry(entry, &dm_list, list) {
		if (entry->abs_chain_position == abs_chain_position
				&& entry->base == target->dbgbase) {
			dm = entry;
			break;
		}
	}

	if (!dm) {
		LOG_TARGET_DEBUG(target, "Coreid [%d] Allocating new DM", target->coreid);
		dm = calloc(1, sizeof(dm013_info_t));
		if (!dm)
			return NULL;
		dm->abs_chain_position = abs_chain_position;

		/* Safety check for dbgbase */
		assert(target->dbgbase_set || target->dbgbase == 0);

		dm->base = target->dbgbase;
		dm->current_hartid = 0;
		dm->hart_count = -1;
		INIT_LIST_HEAD(&dm->target_list);
		list_add(&dm->list, &dm_list);
	}

	info->dm = dm;
	target_list_t *target_entry;
	list_for_each_entry(target_entry, &dm->target_list, list) {
		if (target_entry->target == target)
			return dm;
	}
	target_entry = calloc(1, sizeof(*target_entry));
	if (!target_entry) {
		info->dm = NULL;
		return NULL;
	}
	target_entry->target = target;
	list_add(&target_entry->list, &dm->target_list);

	return dm;
}

static void riscv013_dm_free(struct target *target)
{
	RISCV013_INFO(info);
	dm013_info_t *dm = info->dm;
	if (!dm)
		return;

	target_list_t *target_entry;
	list_for_each_entry(target_entry, &dm->target_list, list) {
		if (target_entry->target == target) {
			list_del(&target_entry->list);
			free(target_entry);
			break;
		}
	}

	if (list_empty(&dm->target_list)) {
		list_del(&dm->list);
		free(dm);
	}
	info->dm = NULL;
}

static riscv_debug_reg_ctx_t get_riscv_debug_reg_ctx(const struct target *target)
{
	if (!target_was_examined(target)) {
		const riscv_debug_reg_ctx_t default_context = {0};
		return default_context;
	}

	RISCV013_INFO(info);
	const riscv_debug_reg_ctx_t context = {
		.XLEN = { .value = riscv_xlen(target), .is_set = true },
		.DXLEN = { .value = riscv_xlen(target), .is_set = true },
		.abits = { .value = info->abits, .is_set = true },
	};
	return context;
}

static void log_debug_reg(struct target *target, enum riscv_debug_reg_ordinal reg,
		riscv_reg_t value, const char *file, unsigned int line, const char *func)
{
	if (debug_level < LOG_LVL_DEBUG)
		return;
	const riscv_debug_reg_ctx_t context = get_riscv_debug_reg_ctx(target);
	char * const buf = malloc(riscv_debug_reg_to_s(NULL, reg, context, value, RISCV_DEBUG_REG_HIDE_UNNAMED_0) + 1);
	if (!buf) {
		LOG_ERROR("Unable to allocate memory.");
		return;
	}
	riscv_debug_reg_to_s(buf, reg, context, value, RISCV_DEBUG_REG_HIDE_UNNAMED_0);
	log_printf_lf(LOG_LVL_DEBUG, file, line, func, "[%s] %s", target_name(target), buf);
	free(buf);
}

#define LOG_DEBUG_REG(t, r, v) log_debug_reg(t, r##_ORDINAL, v, __FILE__, __LINE__, __func__)

static uint32_t set_dmcontrol_hartsel(uint32_t initial, int hart_index)
{
	assert(hart_index != HART_INDEX_UNKNOWN);

	if (hart_index >= 0) {
		initial = set_field(initial, DM_DMCONTROL_HASEL, DM_DMCONTROL_HASEL_SINGLE);
		uint32_t index_lo = hart_index & ((1 << DM_DMCONTROL_HARTSELLO_LENGTH) - 1);
		initial = set_field(initial, DM_DMCONTROL_HARTSELLO, index_lo);
		uint32_t index_hi = hart_index >> DM_DMCONTROL_HARTSELLO_LENGTH;
		assert(index_hi < (1 << DM_DMCONTROL_HARTSELHI_LENGTH));
		initial = set_field(initial, DM_DMCONTROL_HARTSELHI, index_hi);
	} else if (hart_index == HART_INDEX_MULTIPLE) {
		initial = set_field(initial, DM_DMCONTROL_HASEL, DM_DMCONTROL_HASEL_MULTIPLE);
		/* TODO: https://github.com/riscv/riscv-openocd/issues/748 */
		initial = set_field(initial, DM_DMCONTROL_HARTSELLO, 0);
		initial = set_field(initial, DM_DMCONTROL_HARTSELHI, 0);
	}

	return initial;
}

static unsigned int decode_dmi(const struct target *target, char *text, uint32_t address, uint32_t data)
{
	static const struct {
		uint32_t address;
		enum riscv_debug_reg_ordinal ordinal;
	} description[] = {
		{DM_DMCONTROL, DM_DMCONTROL_ORDINAL},
		{DM_DMSTATUS, DM_DMSTATUS_ORDINAL},
		{DM_ABSTRACTCS, DM_ABSTRACTCS_ORDINAL},
		{DM_COMMAND, DM_COMMAND_ORDINAL},
		{DM_SBCS, DM_SBCS_ORDINAL}
	};

	for (unsigned i = 0; i < ARRAY_SIZE(description); i++) {
		if (riscv_get_dmi_address(target, description[i].address) == address) {
			const riscv_debug_reg_ctx_t context = {
				.XLEN = { .value = 0, .is_set = false },
				.DXLEN = { .value = 0, .is_set = false },
				.abits = { .value = 0, .is_set = false },
			};
			return riscv_debug_reg_to_s(text, description[i].ordinal,
					context, data, RISCV_DEBUG_REG_HIDE_ALL_0);
		}
	}
	if (text)
		text[0] = '\0';
	return 0;
}

void riscv_decode_dmi_scan(const struct target *target, int idle, const struct scan_field *field, bool discard_in)
{
	static const char * const op_string[] = {"-", "r", "w", "?"};
	static const char * const status_string[] = {"+", "?", "F", "b"};

	if (debug_level < LOG_LVL_DEBUG)
		return;

	assert(field->out_value);
	const uint64_t out = buf_get_u64(field->out_value, 0, field->num_bits);
	const unsigned int out_op = get_field(out, DTM_DMI_OP);
	const uint32_t out_data = get_field(out, DTM_DMI_DATA);
	const uint32_t out_address = out >> DTM_DMI_ADDRESS_OFFSET;

	if (field->in_value) {
		const uint64_t in = buf_get_u64(field->in_value, 0, field->num_bits);
		const unsigned int in_op = get_field(in, DTM_DMI_OP);
		const uint32_t in_data = get_field(in, DTM_DMI_DATA);
		const uint32_t in_address = in >> DTM_DMI_ADDRESS_OFFSET;

		LOG_DEBUG("%db %s %08" PRIx32 " @%02" PRIx32 " -> %s %08" PRIx32 " @%02" PRIx32 "; %di",
				field->num_bits, op_string[out_op], out_data, out_address,
				status_string[in_op], in_data, in_address, idle);

		if (!discard_in && in_op == DTM_DMI_OP_SUCCESS) {
			char in_decoded[decode_dmi(target, NULL, in_address, in_data) + 1];
			decode_dmi(target, in_decoded, in_address, in_data);
			/* FIXME: The current code assumes that the hardware
			 * provides the read address in the dmi.address field
			 * when returning the dmi.data. That is however not
			 * required by the spec, and therefore not guaranteed.
			 * See https://github.com/riscv-collab/riscv-openocd/issues/1043
			 */
			LOG_DEBUG("read: %s", in_decoded);
		}
	} else {
		LOG_DEBUG("%db %s %08" PRIx32 " @%02" PRIx32 " -> ?; %di",
				field->num_bits, op_string[out_op], out_data, out_address,
				idle);
	}
	if (out_op == DTM_DMI_OP_WRITE) {
		char out_decoded[decode_dmi(target, NULL, out_address, out_data) + 1];
		decode_dmi(target, out_decoded, out_address, out_data);
		LOG_DEBUG("write: %s", out_decoded);
	}
}

/*** Utility functions. ***/

static void select_dmi(struct target *target)
{
	if (bscan_tunnel_ir_width != 0) {
		select_dmi_via_bscan(target);
		return;
	}
	jtag_add_ir_scan(target->tap, &select_dbus, TAP_IDLE);
}

static int dtmcontrol_scan(struct target *target, uint32_t out, uint32_t *in_ptr)
{
	struct scan_field field;
	uint8_t in_value[4];
	uint8_t out_value[4] = { 0 };

	if (bscan_tunnel_ir_width != 0)
		return dtmcontrol_scan_via_bscan(target, out, in_ptr);

	buf_set_u32(out_value, 0, 32, out);

	jtag_add_ir_scan(target->tap, &select_dtmcontrol, TAP_IDLE);

	field.num_bits = 32;
	field.out_value = out_value;
	field.in_value = in_value;
	jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);

	/* Always return to dmi. */
	select_dmi(target);

	int retval = jtag_execute_queue();
	if (retval != ERROR_OK) {
		LOG_ERROR("failed jtag scan: %d", retval);
		return retval;
	}

	uint32_t in = buf_get_u32(field.in_value, 0, 32);
	LOG_DEBUG("DTMCS: 0x%x -> 0x%x", out, in);

	if (in_ptr)
		*in_ptr = in;
	return ERROR_OK;
}

static void increase_dmi_busy_delay(struct target *target)
{
	riscv013_info_t *info = get_info(target);
	info->dmi_busy_delay += info->dmi_busy_delay / 10 + 1;
	LOG_TARGET_DEBUG(target, "dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
			info->dtmcs_idle, info->dmi_busy_delay,
			info->ac_busy_delay);

	dtmcontrol_scan(target, DTM_DTMCS_DMIRESET, NULL /* discard result */);
}

static void decrement_reset_delays_counter(struct target *target, size_t finished_scans)
{
	RISCV_INFO(r);
	if (r->reset_delays_wait < 0) {
		assert(r->reset_delays_wait == -1);
		return;
	}
	if ((size_t)r->reset_delays_wait >= finished_scans) {
		r->reset_delays_wait -= finished_scans;
		return;
	}
	r->reset_delays_wait = -1;
	LOG_TARGET_DEBUG(target,
			"resetting learned delays (reset_delays_wait counter expired)");
	RISCV013_INFO(info);
	info->dmi_busy_delay = 0;
	info->ac_busy_delay = 0;
}
/**
 * exec: If this is set, assume the scan results in an execution, so more
 * run-test/idle cycles may be required.
 */
static dmi_status_t dmi_scan(struct target *target, uint32_t *address_in,
		uint32_t *data_in, dmi_op_t op, uint32_t address_out, uint32_t data_out,
		bool exec)
{
	riscv013_info_t *info = get_info(target);
	unsigned num_bits = info->abits + DTM_DMI_OP_LENGTH + DTM_DMI_DATA_LENGTH;
	size_t num_bytes = (num_bits + 7) / 8;
	uint8_t in[num_bytes];
	uint8_t out[num_bytes];
	struct scan_field field = {
		.num_bits = num_bits,
		.out_value = out,
		.in_value = in
	};
	riscv_bscan_tunneled_scan_context_t bscan_ctxt;

	decrement_reset_delays_counter(target, 1);

	memset(in, 0, num_bytes);
	memset(out, 0, num_bytes);

	if (info->abits == 0) {
		LOG_TARGET_ERROR(target, "Can't access DMI because addrbits=0.");
		return DMI_STATUS_FAILED;
	}

	buf_set_u32(out, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, op);
	buf_set_u32(out, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, data_out);
	buf_set_u32(out, DTM_DMI_ADDRESS_OFFSET, info->abits, address_out);

	/* I wanted to place this code in a different function, but the way JTAG command
	   queueing works in the jtag handling functions, the scan fields either have to be
	   heap allocated, global/static, or else they need to stay on the stack until
	   the jtag_execute_queue() call.  Heap or static fields in this case doesn't seem
	   the best fit.  Declaring stack based field values in a subsidiary function call wouldn't
	   work. */
	if (bscan_tunnel_ir_width != 0) {
		riscv_add_bscan_tunneled_scan(target, &field, &bscan_ctxt);
	} else {
		/* Assume dbus is already selected. */
		jtag_add_dr_scan(target->tap, 1, &field, TAP_IDLE);
	}

	int idle_count = info->dmi_busy_delay;
	if (exec)
		idle_count += info->ac_busy_delay;

	if (idle_count)
		jtag_add_runtest(idle_count, TAP_IDLE);

	int retval = jtag_execute_queue();
	if (retval != ERROR_OK) {
		LOG_ERROR("dmi_scan failed jtag scan");
		if (data_in)
			*data_in = ~0;
		return DMI_STATUS_FAILED;
	}

	if (bscan_tunnel_ir_width != 0) {
		/* need to right-shift "in" by one bit, because of clock skew between BSCAN TAP and DM TAP */
		buffer_shr(in, num_bytes, 1);
	}

	if (data_in)
		*data_in = buf_get_u32(in, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH);

	if (address_in)
		*address_in = buf_get_u32(in, DTM_DMI_ADDRESS_OFFSET, info->abits);
	riscv_decode_dmi_scan(target, idle_count, &field, /*discard_in*/ !data_in);
	return buf_get_u32(in, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH);
}

/**
 * @param target
 * @param data_in  The data we received from the target.
 * @param dmi_busy_encountered
 *                 If non-NULL, will be updated to reflect whether DMI busy was
 *                 encountered while executing this operation or not.
 * @param op       The operation to perform (read/write/nop).
 * @param address  The address argument to that operation.
 * @param data_out The data to send to the target.
 * @param timeout_sec
 * @param exec     When true, this scan will execute something, so extra RTI
 *                 cycles may be added.
 * @param ensure_success
 *                 Scan a nop after the requested operation, ensuring the
 *                 DMI operation succeeded.
 */
static int dmi_op_timeout(struct target *target, uint32_t *data_in,
		bool *dmi_busy_encountered, int op, uint32_t address,
		uint32_t data_out, int timeout_sec, bool exec, bool ensure_success)
{
	select_dmi(target);

	dmi_status_t status;

	if (dmi_busy_encountered)
		*dmi_busy_encountered = false;

	const char *op_name;
	switch (op) {
		case DMI_OP_NOP:
			op_name = "nop";
			break;
		case DMI_OP_READ:
			op_name = "read";
			break;
		case DMI_OP_WRITE:
			op_name = "write";
			break;
		default:
			LOG_ERROR("Invalid DMI operation: %d", op);
			return ERROR_FAIL;
	}

	keep_alive();

	time_t start = time(NULL);
	/* This first loop performs the request.  Note that if for some reason this
	 * stays busy, it is actually due to the previous access. */
	while (1) {
		status = dmi_scan(target, NULL, NULL, op, address, data_out,
				exec);
		if (status == DMI_STATUS_BUSY) {
			increase_dmi_busy_delay(target);
			if (dmi_busy_encountered)
				*dmi_busy_encountered = true;
		} else if (status == DMI_STATUS_SUCCESS) {
			break;
		} else {
			dtmcontrol_scan(target, DTM_DTMCS_DMIRESET, NULL /* discard result */);
			break;
		}
		if (time(NULL) - start > timeout_sec)
			return ERROR_TIMEOUT_REACHED;
	}

	if (status != DMI_STATUS_SUCCESS) {
		LOG_TARGET_ERROR(target, "Failed DMI %s at 0x%x; status=%d", op_name, address, status);
		return ERROR_FAIL;
	}

	if (ensure_success) {
		/* This second loop ensures the request succeeded, and gets back data.
		 * Note that NOP can result in a 'busy' result as well, but that would be
		 * noticed on the next DMI access we do. */
		while (1) {
			status = dmi_scan(target, NULL, data_in, DMI_OP_NOP, address, 0,
					false);
			if (status == DMI_STATUS_BUSY) {
				increase_dmi_busy_delay(target);
				if (dmi_busy_encountered)
					*dmi_busy_encountered = true;
			} else if (status == DMI_STATUS_SUCCESS) {
				break;
			} else {
				if (data_in) {
					LOG_TARGET_ERROR(target,
							"Failed DMI %s (NOP) at 0x%x; value=0x%x, status=%d",
							op_name, address, *data_in, status);
				} else {
					LOG_TARGET_ERROR(target,
							"Failed DMI %s (NOP) at 0x%x; status=%d", op_name, address,
							status);
				}
				dtmcontrol_scan(target, DTM_DTMCS_DMIRESET, NULL /* discard result */);
				return ERROR_FAIL;
			}
			if (time(NULL) - start > timeout_sec)
				return ERROR_TIMEOUT_REACHED;
		}
	}

	return ERROR_OK;
}

static int dmi_op(struct target *target, uint32_t *data_in,
		bool *dmi_busy_encountered, int op, uint32_t address,
		uint32_t data_out, bool exec, bool ensure_success)
{
	int result = dmi_op_timeout(target, data_in, dmi_busy_encountered, op,
			address, data_out, riscv_command_timeout_sec, exec, ensure_success);
	if (result == ERROR_TIMEOUT_REACHED) {
		LOG_TARGET_ERROR(target, "DMI operation didn't complete in %d seconds. The target is "
				"either really slow or broken. You could increase the "
				"timeout with riscv set_command_timeout_sec.",
				riscv_command_timeout_sec);
		return ERROR_FAIL;
	}
	return result;
}

static int dmi_read(struct target *target, uint32_t *value, uint32_t address)
{
	return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, false, true);
}

static int dmi_read_exec(struct target *target, uint32_t *value, uint32_t address)
{
	return dmi_op(target, value, NULL, DMI_OP_READ, address, 0, true, true);
}

static int dmi_write(struct target *target, uint32_t address, uint32_t value)
{
	return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, false, true);
}

static int dmi_write_exec(struct target *target, uint32_t address,
		uint32_t value, bool ensure_success)
{
	return dmi_op(target, NULL, NULL, DMI_OP_WRITE, address, value, true, ensure_success);
}

static uint32_t riscv013_get_dmi_address(const struct target *target, uint32_t address)
{
	assert(target);
	uint32_t base = 0;
	RISCV013_INFO(info);
	if (info && info->dm)
		base = info->dm->base;
	return address + base;
}

static int dm_op_timeout(struct target *target, uint32_t *data_in,
		bool *dmi_busy_encountered, int op, uint32_t address,
		uint32_t data_out, int timeout_sec, bool exec, bool ensure_success)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	return dmi_op_timeout(target, data_in, dmi_busy_encountered, op, address + dm->base,
		data_out, timeout_sec, exec, ensure_success);
}

static int dm_op(struct target *target, uint32_t *data_in,
		bool *dmi_busy_encountered, int op, uint32_t address,
		uint32_t data_out, bool exec, bool ensure_success)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	return dmi_op(target, data_in, dmi_busy_encountered, op, address + dm->base,
			data_out, exec, ensure_success);
}

static int dm_read(struct target *target, uint32_t *value, uint32_t address)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	return dmi_read(target, value, address + dm->base);
}

static int dm_read_exec(struct target *target, uint32_t *value, uint32_t address)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	dm->abstract_cmd_maybe_busy = true;
	return dmi_read_exec(target, value, address + dm->base);
}

static int dm_write(struct target *target, uint32_t address, uint32_t value)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	return dmi_write(target, address + dm->base, value);
}

static int dm_write_exec(struct target *target, uint32_t address,
		uint32_t value, bool ensure_success)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	dm->abstract_cmd_maybe_busy = true;
	return dmi_write_exec(target, address + dm->base, value, ensure_success);
}

static bool check_dbgbase_exists(struct target *target)
{
	uint32_t next_dm = 0;
	unsigned int count = 1;

	LOG_TARGET_DEBUG(target, "Searching for DM with DMI base address (dbgbase) = 0x%x", target->dbgbase);
	while (1) {
		uint32_t current_dm = next_dm;
		if (current_dm == target->dbgbase)
			return true;
		if (dmi_read(target, &next_dm, DM_NEXTDM + current_dm) != ERROR_OK)
			break;
		LOG_TARGET_DEBUG(target, "dm @ 0x%x --> nextdm=0x%x", current_dm, next_dm);
		/* Check if it's last one in the chain. */
		if (next_dm == 0) {
			LOG_TARGET_ERROR(target, "Reached the end of DM chain (detected %u DMs in total).", count);
			break;
		}
		/* Safety: Avoid looping forever in case of buggy nextdm values in the hardware. */
		if (count++ > RISCV_MAX_DMS) {
			LOG_TARGET_ERROR(target, "Supporting no more than %d DMs on a DMI bus. Aborting", RISCV_MAX_DMS);
			break;
		}
	}
	return false;
}

static int dmstatus_read_timeout(struct target *target, uint32_t *dmstatus,
		bool authenticated, unsigned timeout_sec)
{
	int result = dm_op_timeout(target, dmstatus, NULL, DMI_OP_READ,
			DM_DMSTATUS, 0, timeout_sec, false, true);
	if (result != ERROR_OK)
		return result;
	int dmstatus_version = get_field(*dmstatus, DM_DMSTATUS_VERSION);
	if (dmstatus_version != 2 && dmstatus_version != 3) {
		LOG_ERROR("OpenOCD only supports Debug Module version 2 (0.13) and 3 (1.0), not "
				"%" PRId32 " (dmstatus=0x%" PRIx32 "). This error might be caused by a JTAG "
				"signal issue. Try reducing the JTAG clock speed.",
				get_field32(*dmstatus, DM_DMSTATUS_VERSION), *dmstatus);
	} else if (authenticated && !get_field(*dmstatus, DM_DMSTATUS_AUTHENTICATED)) {
		LOG_ERROR("Debugger is not authenticated to target Debug Module. "
				"(dmstatus=0x%x). Use `riscv authdata_read` and "
				"`riscv authdata_write` commands to authenticate.", *dmstatus);
		return ERROR_FAIL;
	}
	return ERROR_OK;
}

static int dmstatus_read(struct target *target, uint32_t *dmstatus,
		bool authenticated)
{
	int result = dmstatus_read_timeout(target, dmstatus, authenticated,
			riscv_command_timeout_sec);
	if (result == ERROR_TIMEOUT_REACHED)
		LOG_TARGET_ERROR(target, "DMSTATUS read didn't complete in %d seconds. The target is "
					 "either really slow or broken. You could increase the "
					 "timeout with `riscv set_command_timeout_sec`.",
				 riscv_command_timeout_sec);
	return result;
}

static void increase_ac_busy_delay(struct target *target)
{
	riscv013_info_t *info = get_info(target);
	info->ac_busy_delay += info->ac_busy_delay / 10 + 1;
	LOG_TARGET_DEBUG(target, "dtmcs_idle=%d, dmi_busy_delay=%d, ac_busy_delay=%d",
			info->dtmcs_idle, info->dmi_busy_delay,
			info->ac_busy_delay);
}

static uint32_t __attribute__((unused)) abstract_register_size(unsigned width)
{
	switch (width) {
		case 32:
			return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 2);
		case 64:
			return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 3);
		case 128:
			return set_field(0, AC_ACCESS_REGISTER_AARSIZE, 4);
		default:
			LOG_ERROR("Unsupported register width: %d", width);
			return 0;
	}
}

static int wait_for_idle(struct target *target, uint32_t *abstractcs)
{
	assert(target);
	assert(abstractcs);

	dm013_info_t *dm = get_dm(target);
	if (!dm) {
		LOG_ERROR("BUG: Target %s is not assigned to any RISC-V debug module",
				target_name(target));
		*abstractcs = 0;
		return ERROR_FAIL;
	}

	time_t start = time(NULL);
	do {
		if (dm_read(target, abstractcs, DM_ABSTRACTCS) != ERROR_OK) {
			/* We couldn't read abstractcs. For safety, overwrite the output value to
			 * prevent the caller working with a stale value of abstractcs. */
			*abstractcs = 0;
			LOG_TARGET_ERROR(target,
				"potentially unrecoverable error detected - could not read abstractcs");
			return ERROR_FAIL;
		}

		if (get_field(*abstractcs, DM_ABSTRACTCS_BUSY) == 0) {
			dm->abstract_cmd_maybe_busy = false;
			return ERROR_OK;
		}
	} while ((time(NULL) - start) < riscv_command_timeout_sec);

	LOG_TARGET_ERROR(target,
		"Timed out after %ds waiting for busy to go low (abstractcs=0x%" PRIx32 "). "
		"Increase the timeout with riscv set_command_timeout_sec.",
		riscv_command_timeout_sec,
		*abstractcs);

	if (!dm->abstract_cmd_maybe_busy)
		LOG_TARGET_ERROR(target,
				"BUG: dm->abstract_cmd_maybe_busy had not been set when starting an abstract command.");
	dm->abstract_cmd_maybe_busy = true;

	return ERROR_TIMEOUT_REACHED;
}

static int dm013_select_target(struct target *target)
{
	riscv013_info_t *info = get_info(target);
	return dm013_select_hart(target, info->index);
}

static int execute_abstract_command(struct target *target, uint32_t command,
		uint32_t *cmderr)
{
	assert(cmderr);
	*cmderr = CMDERR_NONE;
	if (debug_level >= LOG_LVL_DEBUG) {
		switch (get_field(command, DM_COMMAND_CMDTYPE)) {
			case 0:
				LOG_DEBUG_REG(target, AC_ACCESS_REGISTER, command);
				break;
			default:
				LOG_TARGET_DEBUG(target, "command=0x%x", command);
				break;
		}
	}

	if (dm_write_exec(target, DM_COMMAND, command, false /* ensure success */) != ERROR_OK)
		return ERROR_FAIL;

	uint32_t abstractcs;
	int wait_result = wait_for_idle(target, &abstractcs);
	if (wait_result != ERROR_OK) {
		/* TODO: can we recover from this? */
		if (wait_result == ERROR_TIMEOUT_REACHED)
			LOG_TARGET_DEBUG(target, "command 0x%" PRIx32 " failed (timeout)", command);
		else
			LOG_TARGET_DEBUG(target, "command 0x%" PRIx32 " failed (unknown fatal error %d)", command, wait_result);
		return wait_result;
	}
	*cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
	if (*cmderr != CMDERR_NONE) {
		LOG_TARGET_DEBUG(target, "command 0x%" PRIx32 " failed; abstractcs=0x%" PRIx32,
			command, abstractcs);
		/* Attempt to clear the error. */
		/* TODO: can we add a more substantial recovery if the clear operation fails ? */
		if (dm_write(target, DM_ABSTRACTCS, DM_ABSTRACTCS_CMDERR) != ERROR_OK)
			LOG_TARGET_ERROR(target, "could not clear abstractcs error");
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

static riscv_reg_t read_abstract_arg(struct target *target, unsigned index,
		unsigned size_bits)
{
	riscv_reg_t value = 0;
	uint32_t v;
	unsigned offset = index * size_bits / 32;
	switch (size_bits) {
		default:
			LOG_TARGET_ERROR(target, "Unsupported size: %d bits", size_bits);
			return ~0;
		case 64:
			if (dm_read(target, &v, DM_DATA0 + offset + 1) == ERROR_OK)
				value |= ((uint64_t)v) << 32;
			/* falls through */
		case 32:
			if (dm_read(target, &v, DM_DATA0 + offset) == ERROR_OK)
				value |= v;
	}
	return value;
}

static int write_abstract_arg(struct target *target, unsigned index,
		riscv_reg_t value, unsigned size_bits)
{
	unsigned offset = index * size_bits / 32;
	switch (size_bits) {
		default:
			LOG_TARGET_ERROR(target, "Unsupported size: %d bits", size_bits);
			return ERROR_FAIL;
		case 64:
			dm_write(target, DM_DATA0 + offset + 1, (uint32_t)(value >> 32));
			/* falls through */
		case 32:
			dm_write(target, DM_DATA0 + offset, (uint32_t)value);
	}
	return ERROR_OK;
}

/**
 * @par size in bits
 */
static uint32_t access_register_command(struct target *target, uint32_t number,
		unsigned size, uint32_t flags)
{
	uint32_t command = set_field(0, DM_COMMAND_CMDTYPE, 0);
	switch (size) {
		case 32:
			command = set_field(command, AC_ACCESS_REGISTER_AARSIZE, 2);
			break;
		case 64:
			command = set_field(command, AC_ACCESS_REGISTER_AARSIZE, 3);
			break;
		default:
			LOG_TARGET_ERROR(target, "%d-bit register %s not supported.",
					size, gdb_regno_name(target, number));
			assert(0);
	}

	if (number <= GDB_REGNO_XPR31) {
		command = set_field(command, AC_ACCESS_REGISTER_REGNO,
				0x1000 + number - GDB_REGNO_ZERO);
	} else if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
		command = set_field(command, AC_ACCESS_REGISTER_REGNO,
				0x1020 + number - GDB_REGNO_FPR0);
	} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
		command = set_field(command, AC_ACCESS_REGISTER_REGNO,
				number - GDB_REGNO_CSR0);
	} else if (number >= GDB_REGNO_COUNT) {
		/* Custom register. */
		assert(target->reg_cache->reg_list[number].arch_info);
		riscv_reg_info_t *reg_info = target->reg_cache->reg_list[number].arch_info;
		assert(reg_info);
		command = set_field(command, AC_ACCESS_REGISTER_REGNO,
				0xc000 + reg_info->custom_number);
	} else {
		assert(0);
	}

	command |= flags;

	return command;
}

static int register_read_abstract_with_size(struct target *target,
		riscv_reg_t *value, enum gdb_regno number, unsigned int size)
{
	RISCV013_INFO(info);

	if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
			!info->abstract_read_fpr_supported)
		return ERROR_FAIL;
	if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
			!info->abstract_read_csr_supported)
		return ERROR_FAIL;
	/* The spec doesn't define abstract register numbers for vector registers. */
	if (number >= GDB_REGNO_V0 && number <= GDB_REGNO_V31)
		return ERROR_FAIL;

	uint32_t command = access_register_command(target, number, size,
			AC_ACCESS_REGISTER_TRANSFER);

	uint32_t cmderr;
	int result = execute_abstract_command(target, command, &cmderr);
	if (result != ERROR_OK) {
		if (cmderr == CMDERR_NOT_SUPPORTED) {
			if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
				info->abstract_read_fpr_supported = false;
				LOG_TARGET_INFO(target, "Disabling abstract command reads from FPRs.");
			} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
				info->abstract_read_csr_supported = false;
				LOG_TARGET_INFO(target, "Disabling abstract command reads from CSRs.");
			}
		}
		return result;
	}

	if (value)
		*value = read_abstract_arg(target, 0, size);

	return ERROR_OK;
}

static int register_read_abstract(struct target *target, riscv_reg_t *value,
		enum gdb_regno number)
{
	const unsigned int size = register_size(target, number);

	return register_read_abstract_with_size(target, value, number, size);
}

static int register_write_abstract(struct target *target, enum gdb_regno number,
		riscv_reg_t value)
{
	RISCV013_INFO(info);
	const unsigned int size = register_size(target, number);

	if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31 &&
			!info->abstract_write_fpr_supported)
		return ERROR_FAIL;
	if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095 &&
			!info->abstract_write_csr_supported)
		return ERROR_FAIL;

	uint32_t command = access_register_command(target, number, size,
			AC_ACCESS_REGISTER_TRANSFER |
			AC_ACCESS_REGISTER_WRITE);

	if (write_abstract_arg(target, 0, value, size) != ERROR_OK)
		return ERROR_FAIL;

	uint32_t cmderr;
	int result = execute_abstract_command(target, command, &cmderr);
	if (result != ERROR_OK) {
		if (cmderr == CMDERR_NOT_SUPPORTED) {
			if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31) {
				info->abstract_write_fpr_supported = false;
				LOG_TARGET_INFO(target, "Disabling abstract command writes to FPRs.");
			} else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095) {
				info->abstract_write_csr_supported = false;
				LOG_TARGET_INFO(target, "Disabling abstract command writes to CSRs.");
			}
		}
		return result;
	}

	return ERROR_OK;
}

/*
 * Sets the AAMSIZE field of a memory access abstract command based on
 * the width (bits).
 */
static uint32_t abstract_memory_size(unsigned width)
{
	switch (width) {
		case 8:
			return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 0);
		case 16:
			return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 1);
		case 32:
			return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 2);
		case 64:
			return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 3);
		case 128:
			return set_field(0, AC_ACCESS_MEMORY_AAMSIZE, 4);
		default:
			LOG_ERROR("Unsupported memory width: %d", width);
			return 0;
	}
}

/*
 * Creates a memory access abstract command.
 */
static uint32_t access_memory_command(struct target *target, bool virtual,
		unsigned int width, bool postincrement, bool is_write)
{
	uint32_t command = set_field(0, AC_ACCESS_MEMORY_CMDTYPE, 2);
	command = set_field(command, AC_ACCESS_MEMORY_AAMVIRTUAL, virtual);
	command |= abstract_memory_size(width);
	command = set_field(command, AC_ACCESS_MEMORY_AAMPOSTINCREMENT,
						postincrement);
	command = set_field(command, AC_ACCESS_MEMORY_WRITE, is_write);

	return command;
}

static int examine_progbuf(struct target *target)
{
	riscv013_info_t *info = get_info(target);

	if (info->progbuf_writable != YNM_MAYBE)
		return ERROR_OK;

	/* Figure out if progbuf is writable. */

	if (info->progbufsize < 1) {
		info->progbuf_writable = YNM_NO;
		LOG_TARGET_INFO(target, "No program buffer present.");
		return ERROR_OK;
	}

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;
	riscv_program_init(&program, target);
	riscv_program_insert(&program, auipc(S0));
	if (riscv_program_exec(&program, target) != ERROR_OK)
		return ERROR_FAIL;

	if (register_read_direct(target, &info->progbuf_address, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;

	riscv_program_init(&program, target);
	riscv_program_insert(&program, sw(S0, S0, 0));
	int result = riscv_program_exec(&program, target);

	if (result != ERROR_OK) {
		/* This program might have failed if the program buffer is not
		 * writable. */
		info->progbuf_writable = YNM_NO;
		return ERROR_OK;
	}

	uint32_t written;
	if (dm_read(target, &written, DM_PROGBUF0) != ERROR_OK)
		return ERROR_FAIL;
	if (written == (uint32_t) info->progbuf_address) {
		LOG_TARGET_INFO(target, "progbuf is writable at 0x%" PRIx64,
				info->progbuf_address);
		info->progbuf_writable = YNM_YES;

	} else {
		LOG_TARGET_INFO(target, "progbuf is not writeable at 0x%" PRIx64,
				info->progbuf_address);
		info->progbuf_writable = YNM_NO;
	}

	return ERROR_OK;
}

static int is_fpu_reg(enum gdb_regno gdb_regno)
{
	return (gdb_regno >= GDB_REGNO_FPR0 && gdb_regno <= GDB_REGNO_FPR31) ||
		(gdb_regno == GDB_REGNO_CSR0 + CSR_FFLAGS) ||
		(gdb_regno == GDB_REGNO_CSR0 + CSR_FRM) ||
		(gdb_regno == GDB_REGNO_CSR0 + CSR_FCSR);
}

static int is_vector_reg(enum gdb_regno gdb_regno)
{
	return (gdb_regno >= GDB_REGNO_V0 && gdb_regno <= GDB_REGNO_V31) ||
		gdb_regno == GDB_REGNO_VSTART ||
		gdb_regno == GDB_REGNO_VXSAT ||
		gdb_regno == GDB_REGNO_VXRM ||
		gdb_regno == GDB_REGNO_VCSR ||
		gdb_regno == GDB_REGNO_VL ||
		gdb_regno == GDB_REGNO_VTYPE ||
		gdb_regno == GDB_REGNO_VLENB;
}

static int prep_for_register_access(struct target *target,
		riscv_reg_t *orig_mstatus, enum gdb_regno regno)
{
	assert(orig_mstatus);

	if (!is_fpu_reg(regno) && !is_vector_reg(regno)) {
		/* If we don't assign orig_mstatus, clang static analysis
		 * complains when this value is passed to
		 * cleanup_after_register_access(). */
		*orig_mstatus = 0;
		/* No special preparation needed */
		return ERROR_OK;
	}

	LOG_TARGET_DEBUG(target, "Preparing mstatus to access %s",
			gdb_regno_name(target, regno));

	assert(target->state == TARGET_HALTED &&
			"The target must be halted to modify and then restore mstatus");

	if (riscv_get_register(target, orig_mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
		return ERROR_FAIL;

	riscv_reg_t new_mstatus = *orig_mstatus;
	riscv_reg_t field_mask = is_fpu_reg(regno) ? MSTATUS_FS : MSTATUS_VS;

	if ((new_mstatus & field_mask) != 0)
		return ERROR_OK;

	new_mstatus = set_field(new_mstatus, field_mask, 1);

	if (riscv_write_register(target, GDB_REGNO_MSTATUS, new_mstatus) != ERROR_OK)
		return ERROR_FAIL;

	LOG_TARGET_DEBUG(target, "Prepared to access %s (mstatus=0x%" PRIx64 ")",
			gdb_regno_name(target, regno), new_mstatus);
	return ERROR_OK;
}

static int cleanup_after_register_access(struct target *target,
		riscv_reg_t mstatus, enum gdb_regno regno)
{
	if (!is_fpu_reg(regno) && !is_vector_reg(regno))
		/* Mstatus was not changed for this register access. No need to restore it. */
		return ERROR_OK;

	LOG_TARGET_DEBUG(target, "Restoring mstatus to 0x%" PRIx64, mstatus);
	return riscv_write_register(target, GDB_REGNO_MSTATUS, mstatus);
}

typedef enum {
	SPACE_DM_DATA,
	SPACE_DMI_PROGBUF,
	SPACE_DMI_RAM
} memory_space_t;

typedef struct {
	/* How can the debugger access this memory? */
	memory_space_t memory_space;
	/* Memory address to access the scratch memory from the hart. */
	riscv_addr_t hart_address;
	/* Memory address to access the scratch memory from the debugger. */
	riscv_addr_t debug_address;
	struct working_area *area;
} scratch_mem_t;

/**
 * Find some scratch memory to be used with the given program.
 */
static int scratch_reserve(struct target *target,
		scratch_mem_t *scratch,
		struct riscv_program *program,
		unsigned size_bytes)
{
	riscv_addr_t alignment = 1;
	while (alignment < size_bytes)
		alignment *= 2;

	scratch->area = NULL;

	riscv013_info_t *info = get_info(target);

	/* Option 1: See if data# registers can be used as the scratch memory */
	if (info->dataaccess == 1) {
		/* Sign extend dataaddr. */
		scratch->hart_address = info->dataaddr;
		if (info->dataaddr & (1<<11))
			scratch->hart_address |= 0xfffffffffffff000ULL;
		/* Align. */
		scratch->hart_address = (scratch->hart_address + alignment - 1) & ~(alignment - 1);

		if ((size_bytes + scratch->hart_address - info->dataaddr + 3) / 4 >=
				info->datasize) {
			scratch->memory_space = SPACE_DM_DATA;
			scratch->debug_address = (scratch->hart_address - info->dataaddr) / 4;
			return ERROR_OK;
		}
	}

	/* Option 2: See if progbuf can be used as the scratch memory */
	if (examine_progbuf(target) != ERROR_OK)
		return ERROR_FAIL;

	/* Allow for ebreak at the end of the program. */
	unsigned program_size = (program->instruction_count + 1) * 4;
	scratch->hart_address = (info->progbuf_address + program_size + alignment - 1) &
		~(alignment - 1);
	if ((info->progbuf_writable == YNM_YES) &&
			((size_bytes + scratch->hart_address - info->progbuf_address + 3) / 4 >=
			info->progbufsize)) {
		scratch->memory_space = SPACE_DMI_PROGBUF;
		scratch->debug_address = (scratch->hart_address - info->progbuf_address) / 4;
		return ERROR_OK;
	}

	/* Option 3: User-configured memory area as scratch RAM */
	if (target_alloc_working_area(target, size_bytes + alignment - 1,
				&scratch->area) == ERROR_OK) {
		scratch->hart_address = (scratch->area->address + alignment - 1) &
			~(alignment - 1);
		scratch->memory_space = SPACE_DMI_RAM;
		scratch->debug_address = scratch->hart_address;
		return ERROR_OK;
	}

	LOG_TARGET_ERROR(target, "Couldn't find %d bytes of scratch RAM to use. Please configure "
			"a work area with 'configure -work-area-phys'.", size_bytes);
	return ERROR_FAIL;
}

static int scratch_release(struct target *target,
		scratch_mem_t *scratch)
{
	return target_free_working_area(target, scratch->area);
}

static int scratch_read64(struct target *target, scratch_mem_t *scratch,
		uint64_t *value)
{
	uint32_t v;
	switch (scratch->memory_space) {
		case SPACE_DM_DATA:
			if (dm_read(target, &v, DM_DATA0 + scratch->debug_address) != ERROR_OK)
				return ERROR_FAIL;
			*value = v;
			if (dm_read(target, &v, DM_DATA1 + scratch->debug_address) != ERROR_OK)
				return ERROR_FAIL;
			*value |= ((uint64_t) v) << 32;
			break;
		case SPACE_DMI_PROGBUF:
			if (dm_read(target, &v, DM_PROGBUF0 + scratch->debug_address) != ERROR_OK)
				return ERROR_FAIL;
			*value = v;
			if (dm_read(target, &v, DM_PROGBUF1 + scratch->debug_address) != ERROR_OK)
				return ERROR_FAIL;
			*value |= ((uint64_t) v) << 32;
			break;
		case SPACE_DMI_RAM:
			{
				uint8_t buffer[8] = {0};
				if (read_memory(target, scratch->debug_address, 4, 2, buffer, 4) != ERROR_OK)
					return ERROR_FAIL;
				*value = buffer[0] |
					(((uint64_t) buffer[1]) << 8) |
					(((uint64_t) buffer[2]) << 16) |
					(((uint64_t) buffer[3]) << 24) |
					(((uint64_t) buffer[4]) << 32) |
					(((uint64_t) buffer[5]) << 40) |
					(((uint64_t) buffer[6]) << 48) |
					(((uint64_t) buffer[7]) << 56);
			}
			break;
	}
	return ERROR_OK;
}

static int scratch_write64(struct target *target, scratch_mem_t *scratch,
		uint64_t value)
{
	switch (scratch->memory_space) {
		case SPACE_DM_DATA:
			dm_write(target, DM_DATA0 + scratch->debug_address, (uint32_t)value);
			dm_write(target, DM_DATA1 + scratch->debug_address, (uint32_t)(value >> 32));
			break;
		case SPACE_DMI_PROGBUF:
			dm_write(target, DM_PROGBUF0 + scratch->debug_address, (uint32_t)value);
			dm_write(target, DM_PROGBUF1 + scratch->debug_address, (uint32_t)(value >> 32));
			riscv013_invalidate_cached_progbuf(target);
			break;
		case SPACE_DMI_RAM:
			{
				uint8_t buffer[8] = {
					value,
					value >> 8,
					value >> 16,
					value >> 24,
					value >> 32,
					value >> 40,
					value >> 48,
					value >> 56
				};
				if (write_memory(target, scratch->debug_address, 4, 2, buffer) != ERROR_OK)
					return ERROR_FAIL;
			}
			break;
	}
	return ERROR_OK;
}

/** Return register size in bits. */
static unsigned int register_size(struct target *target, enum gdb_regno number)
{
	/* If reg_cache hasn't been initialized yet, make a guess. We need this for
	 * when this function is called during examine(). */
	if (target->reg_cache)
		return target->reg_cache->reg_list[number].size;
	else
		return riscv_xlen(target);
}

static bool has_sufficient_progbuf(struct target *target, unsigned size)
{
	RISCV013_INFO(info);
	RISCV_INFO(r);

	return info->progbufsize + r->impebreak >= size;
}

/**
 * This function is used to read a 64-bit value from a register by executing a
 * program.
 * The program stores a register to address located in S0.
 * The caller should save S0.
 */
static int internal_register_read64_progbuf_scratch(struct target *target,
		struct riscv_program *program, riscv_reg_t *value)
{
	scratch_mem_t scratch;

	if (scratch_reserve(target, &scratch, program, 8) != ERROR_OK)
		return ERROR_FAIL;

	if (register_write_abstract(target, GDB_REGNO_S0, scratch.hart_address)
			!= ERROR_OK) {
		scratch_release(target, &scratch);
		return ERROR_FAIL;
	}
	if (riscv_program_exec(program, target) != ERROR_OK) {
		scratch_release(target, &scratch);
		return ERROR_FAIL;
	}

	int result = scratch_read64(target, &scratch, value);

	scratch_release(target, &scratch);
	return result;
}

static int fpr_read_progbuf(struct target *target, uint64_t *value,
		enum gdb_regno number)
{
	assert(target->state == TARGET_HALTED);
	assert(number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31);

	const unsigned int freg = number - GDB_REGNO_FPR0;

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;
	riscv_program_init(&program, target);
	if (riscv_supports_extension(target, 'D') && riscv_xlen(target) < 64) {
		/* There are no instructions to move all the bits from a
		 * register, so we need to use some scratch RAM.
		 */
		if (riscv_program_insert(&program, fsd(freg, S0, 0)) != ERROR_OK)
			return ERROR_FAIL;
		return internal_register_read64_progbuf_scratch(target, &program, value);
	}
	if (riscv_program_insert(&program,
				riscv_supports_extension(target, 'D') ?
				fmv_x_d(S0, freg) : fmv_x_w(S0, freg)) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_program_exec(&program, target) != ERROR_OK)
		return ERROR_FAIL;

	return register_read_abstract(target, value, GDB_REGNO_S0) != ERROR_OK;
}

static int csr_read_progbuf(struct target *target, uint64_t *value,
		enum gdb_regno number)
{
	assert(target->state == TARGET_HALTED);
	assert(number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095);

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;
	riscv_program_init(&program, target);
	if (riscv_program_csrr(&program, S0, number) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_program_exec(&program, target) != ERROR_OK)
		return ERROR_FAIL;

	return register_read_abstract(target, value, GDB_REGNO_S0) != ERROR_OK;
}

/**
 * This function reads a register by writing a program to program buffer and
 * executing it.
 */
static int register_read_progbuf(struct target *target, uint64_t *value,
		enum gdb_regno number)
{
	assert(target->state == TARGET_HALTED);

	if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31)
		return fpr_read_progbuf(target, value, number);
	else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095)
		return csr_read_progbuf(target, value, number);

	LOG_TARGET_ERROR(target, "Unexpected read of %s via program buffer.",
			gdb_regno_name(target, number));
	return ERROR_FAIL;
}

/**
 * This function is used to write a 64-bit value to a register by executing a
 * program.
 * The program loads a value from address located in S0 to a register.
 * The caller should save S0.
 */
static int internal_register_write64_progbuf_scratch(struct target *target,
		struct riscv_program *program, riscv_reg_t value)
{
	scratch_mem_t scratch;

	if (scratch_reserve(target, &scratch, program, 8) != ERROR_OK)
		return ERROR_FAIL;

	if (register_write_abstract(target, GDB_REGNO_S0, scratch.hart_address)
			!= ERROR_OK) {
		scratch_release(target, &scratch);
		return ERROR_FAIL;
	}
	if (scratch_write64(target, &scratch, value) != ERROR_OK) {
		scratch_release(target, &scratch);
		return ERROR_FAIL;
	}
	int result = riscv_program_exec(program, target);

	scratch_release(target, &scratch);
	return result;
}

static int fpr_write_progbuf(struct target *target, enum gdb_regno number,
		riscv_reg_t value)
{
	assert(target->state == TARGET_HALTED);
	assert(number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31);
	const unsigned int freg = number - GDB_REGNO_FPR0;

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;
	riscv_program_init(&program, target);

	if (riscv_supports_extension(target, 'D') && riscv_xlen(target) < 64) {
		/* There are no instructions to move all the bits from a register,
		 * so we need to use some scratch RAM.
		 */
		if (riscv_program_insert(&program, fld(freg, S0, 0)) != ERROR_OK)
			return ERROR_FAIL;
		return internal_register_write64_progbuf_scratch(target, &program, value);
	}

	if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_program_insert(&program,
			riscv_supports_extension(target, 'D') ?
			fmv_d_x(freg, S0) : fmv_w_x(freg, S0)) != ERROR_OK)
		return ERROR_FAIL;

	return riscv_program_exec(&program, target);
}

static int vtype_write_progbuf(struct target *target, riscv_reg_t value)
{
	assert(target->state == TARGET_HALTED);

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;
	if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;
	riscv_program_init(&program, target);
	if (riscv_program_insert(&program, csrr(S1, CSR_VL)) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_program_insert(&program, vsetvl(ZERO, S1, S0)) != ERROR_OK)
		return ERROR_FAIL;

	return riscv_program_exec(&program, target);
}

static int vl_write_progbuf(struct target *target, riscv_reg_t value)
{
	assert(target->state == TARGET_HALTED);

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;
	if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;
	riscv_program_init(&program, target);
	if (riscv_program_insert(&program, csrr(S1, CSR_VTYPE)) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_program_insert(&program, vsetvl(ZERO, S0, S1)) != ERROR_OK)
		return ERROR_FAIL;

	return riscv_program_exec(&program, target);
}

static int csr_write_progbuf(struct target *target, enum gdb_regno number,
		riscv_reg_t value)
{
	assert(target->state == TARGET_HALTED);
	assert(number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095);

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;
	if (register_write_abstract(target, GDB_REGNO_S0, value) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;
	riscv_program_init(&program, target);
	if (riscv_program_csrw(&program, S0, number) != ERROR_OK)
		return ERROR_FAIL;

	return riscv_program_exec(&program, target);
}

/**
 * This function writes a register by writing a program to program buffer and
 * executing it.
 */
static int register_write_progbuf(struct target *target, enum gdb_regno number,
		riscv_reg_t value)
{
	assert(target->state == TARGET_HALTED);

	if (number >= GDB_REGNO_FPR0 && number <= GDB_REGNO_FPR31)
		return fpr_write_progbuf(target, number, value);
	else if (number == GDB_REGNO_VTYPE)
		return vtype_write_progbuf(target, value);
	else if (number == GDB_REGNO_VL)
		return vl_write_progbuf(target, value);
	else if (number >= GDB_REGNO_CSR0 && number <= GDB_REGNO_CSR4095)
		return csr_write_progbuf(target, number, value);

	LOG_TARGET_ERROR(target, "Unexpected write to %s via program buffer.",
			gdb_regno_name(target, number));
	return ERROR_FAIL;
}

/**
 * Immediately write the new value to the requested register. This mechanism
 * bypasses any caches.
 */
static int register_write_direct(struct target *target, enum gdb_regno number,
		riscv_reg_t value)
{
	LOG_TARGET_DEBUG(target, "Writing 0x%" PRIx64 " to %s", value,
			gdb_regno_name(target, number));

	if (target->state != TARGET_HALTED)
		return register_write_abstract(target, number, value);

	riscv_reg_t mstatus;
	if (prep_for_register_access(target, &mstatus, number) != ERROR_OK)
		return ERROR_FAIL;

	int result = register_write_abstract(target, number, value);

	if (result != ERROR_OK && target->state == TARGET_HALTED)
		result = register_write_progbuf(target, number, value);

	if (cleanup_after_register_access(target, mstatus, number) != ERROR_OK)
		return ERROR_FAIL;

	if (result == ERROR_OK)
		LOG_TARGET_DEBUG(target, "%s <- 0x%" PRIx64, gdb_regno_name(target, number),
				value);

	return result;
}

/** Actually read registers from the target right now. */
static int register_read_direct(struct target *target, riscv_reg_t *value,
		enum gdb_regno number)
{
	LOG_TARGET_DEBUG(target, "Reading %s", gdb_regno_name(target, number));

	if (target->state != TARGET_HALTED)
		return register_read_abstract(target, value, number);

	riscv_reg_t mstatus;

	if (prep_for_register_access(target, &mstatus, number) != ERROR_OK)
		return ERROR_FAIL;

	int result = register_read_abstract(target, value, number);

	if (result != ERROR_OK && target->state == TARGET_HALTED)
		result = register_read_progbuf(target, value, number);

	if (cleanup_after_register_access(target, mstatus, number) != ERROR_OK)
		return ERROR_FAIL;

	if (result == ERROR_OK)
		LOG_TARGET_DEBUG(target, "%s = 0x%" PRIx64, gdb_regno_name(target, number),
				*value);

	return result;
}

static int wait_for_authbusy(struct target *target, uint32_t *dmstatus)
{
	time_t start = time(NULL);
	while (1) {
		uint32_t value;
		if (dmstatus_read(target, &value, false) != ERROR_OK)
			return ERROR_FAIL;
		if (dmstatus)
			*dmstatus = value;
		if (!get_field(value, DM_DMSTATUS_AUTHBUSY))
			break;
		if (time(NULL) - start > riscv_command_timeout_sec) {
			LOG_TARGET_ERROR(target, "Timed out after %ds waiting for authbusy to go low (dmstatus=0x%x). "
					"Increase the timeout with riscv set_command_timeout_sec.",
					riscv_command_timeout_sec,
					value);
			return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

static int set_dcsr_ebreak(struct target *target, bool step)
{
	LOG_TARGET_DEBUG(target, "Set dcsr.ebreak*");

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	RISCV_INFO(r);
	RISCV013_INFO(info);

	if ((info->nscratch >= 1) && has_sufficient_progbuf(target, 8)) {
		uint64_t set_ebreak_bits = 0;
		uint64_t clr_ebreak_bits = 0;
		if (r->riscv_ebreakm)
			set_ebreak_bits |= CSR_DCSR_EBREAKM;
		else
			clr_ebreak_bits |= CSR_DCSR_EBREAKM;
		if (r->riscv_ebreaks && riscv_supports_extension(target, 'S'))
			set_ebreak_bits |= CSR_DCSR_EBREAKS;
		else
			clr_ebreak_bits |= CSR_DCSR_EBREAKS;
		if (r->riscv_ebreaku && riscv_supports_extension(target, 'U'))
			set_ebreak_bits |= CSR_DCSR_EBREAKU;
		else
			clr_ebreak_bits |= CSR_DCSR_EBREAKU;
		if (r->riscv_ebreaku && riscv_supports_extension(target, 'H'))
			set_ebreak_bits |= CSR_DCSR_EBREAKVS;
		else
			clr_ebreak_bits |= CSR_DCSR_EBREAKVS;
		if (r->riscv_ebreaku && riscv_supports_extension(target, 'H'))
			set_ebreak_bits |= CSR_DCSR_EBREAKVU;
		else
			clr_ebreak_bits |= CSR_DCSR_EBREAKVU;
		struct riscv_program program;
		riscv_program_init(&program, target);
		riscv_program_insert(&program, csrw(S0, CSR_DSCRATCH0));
		riscv_program_insert(&program, lui(S0, set_ebreak_bits));
		riscv_program_insert(&program, csrrs(ZERO, S0, CSR_DCSR));
		riscv_program_insert(&program, lui(S0, clr_ebreak_bits));
		riscv_program_insert(&program, csrrc(ZERO, S0, CSR_DCSR));
		if (step)
			riscv_program_insert(&program, csrsi(CSR_DCSR, 0x4));
		else
			riscv_program_insert(&program, csrci(CSR_DCSR, 0x4));
		riscv_program_insert(&program, csrr(S0, CSR_DSCRATCH0));
		if (riscv_program_exec(&program, target) != ERROR_OK)
			return ERROR_FAIL;
	} else {
		riscv_reg_t original_dcsr, dcsr;
		/* We want to twiddle some bits in the debug CSR so debugging works. */
		if (riscv_get_register(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
			return ERROR_FAIL;
		original_dcsr = dcsr;
		dcsr = set_field(dcsr, CSR_DCSR_STEP, step);
		dcsr = set_field(dcsr, CSR_DCSR_EBREAKM, r->riscv_ebreakm);
		dcsr = set_field(dcsr, CSR_DCSR_EBREAKS, r->riscv_ebreaks && riscv_supports_extension(target, 'S'));
		dcsr = set_field(dcsr, CSR_DCSR_EBREAKU, r->riscv_ebreaku && riscv_supports_extension(target, 'U'));
		dcsr = set_field(dcsr, CSR_DCSR_EBREAKVS, r->riscv_ebreaku && riscv_supports_extension(target, 'H'));
		dcsr = set_field(dcsr, CSR_DCSR_EBREAKVU, r->riscv_ebreaku && riscv_supports_extension(target, 'H'));
		if (dcsr != original_dcsr &&
				riscv_set_register(target, GDB_REGNO_DCSR, dcsr) != ERROR_OK)
			return ERROR_FAIL;
	}
	info->dcsr_ebreak_is_set = true;
	return ERROR_OK;
}

static int halt_set_dcsr_ebreak(struct target *target)
{
	LOG_TARGET_DEBUG(target, "Halt to set DCSR.ebreak*");

	/* Remove this hart from the halt group.  This won't work on all targets
	 * because the debug spec allows halt groups to be hard-coded, but I
	 * haven't actually encountered those in the wild yet.
	 *
	 * There is a possible race condition when another hart halts, and
	 * this one is expected to also halt because it's supposed to be in the
	 * same halt group. Or when this hart is halted when that happens.
	 *
	 * A better solution might be to leave the halt groups alone, and track
	 * why we're halting when a halt occurs. When there are halt groups,
	 * that leads to extra halting if not all harts need to set dcsr.ebreak
	 * at the same time.  It also makes for more complicated code.
	 *
	 * The perfect solution would be Quick Access, but I'm not aware of any
	 * hardware that implements it.
	 *
	 * We don't need a perfect solution, because we only get here when a
	 * hart spontaneously resets, or when it powers down and back up again.
	 * Those are both relatively rare. (At least I hope so. Maybe some
	 * design just powers each hart down for 90ms out of every 100ms)
	 */


	struct target_list *entry;
	struct list_head *targets;

	if (target->smp) {
		targets = target->smp_targets;
		foreach_smp_target(entry, targets) {
			struct target *t = entry->target;
			if (riscv013_halt_prep(t) != ERROR_OK)
				return ERROR_FAIL;
		}
	}

	int result = ERROR_OK;
	int halt_result = ERROR_OK;
	int resume_result = ERROR_OK;

	halt_result = riscv013_halt_go(target);
	if (halt_result == ERROR_OK)
		if (riscv013_on_step_or_resume(target, true, false) == ERROR_OK) {
			resume_result = riscv013_step_or_resume_current_hart(target, false);
			if (resume_result == ERROR_OK) {
				target->state = TARGET_RUNNING;
				target->debug_reason = DBG_REASON_NOTHALTED;
			} else if (resume_result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
				target->state = TARGET_UNAVAILABLE;
			else
				result = ERROR_FAIL;
		} else
			result = ERROR_FAIL;
	else if (halt_result != ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
		result = ERROR_FAIL;

	return result;
}

/*** OpenOCD target functions. ***/

static void deinit_target(struct target *target)
{
	LOG_TARGET_DEBUG(target, "Deinitializing target.");
	struct riscv_info *info = target->arch_info;
	if (!info)
		return;

	riscv013_dm_free(target);

	free(info->version_specific);
	/* TODO: free register arch_info */
	info->version_specific = NULL;
}

static int set_group(struct target *target, bool *supported, unsigned int group,
		grouptype_t grouptype)
{
	uint32_t write_val = DM_DMCS2_HGWRITE;
	assert(group <= 31);
	write_val = set_field(write_val, DM_DMCS2_GROUP, group);
	write_val = set_field(write_val, DM_DMCS2_GROUPTYPE, (grouptype == HALT_GROUP) ? 0 : 1);
	if (dm_write(target, DM_DMCS2, write_val) != ERROR_OK)
		return ERROR_FAIL;
	uint32_t read_val;
	if (dm_read(target, &read_val, DM_DMCS2) != ERROR_OK)
		return ERROR_FAIL;
	if (supported)
		*supported = (get_field(read_val, DM_DMCS2_GROUP) == group);
	return ERROR_OK;
}

static int wait_for_idle_if_needed(struct target *target)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	if (!dm->abstract_cmd_maybe_busy)
		/* The previous abstract command ended correctly
		 * and busy was cleared. No need to do anything. */
		return ERROR_OK;

	/* The previous abstract command timed out and abstractcs.busy
	 * may have remained set. Wait for it to get cleared. */
	uint32_t abstractcs;
	int result = wait_for_idle(target, &abstractcs);
	if (result != ERROR_OK)
		return result;
	LOG_DEBUG_REG(target, DM_ABSTRACTCS, abstractcs);
	return ERROR_OK;
}

static int examine_dm(struct target *target)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	if (dm->was_examined)
		return ERROR_OK;

	int result = ERROR_FAIL;

	uint32_t dmcontrol;
	if (!dm->was_reset) {
		/* First, the Debug Module is reset. However,
		 * `dmcontrol.hartsel` should be read first, in order not to
		 * change it when requesting the reset, since changing it
		 * without checking that `abstractcs.busy` is low is
		 * prohibited.
		 */
		result = dm_read(target, &dmcontrol, DM_DMCONTROL);
		if (result != ERROR_OK)
			return result;
		/* Initiate the reset (`dmcontrol.dmactive == 0`) leaving
		 * `dmcontrol.hartsel` the same.
		 */
		dmcontrol = (dmcontrol & DM_DMCONTROL_HARTSELLO) |
			(dmcontrol & DM_DMCONTROL_HARTSELHI);
		result = dm_write(target, DM_DMCONTROL, dmcontrol);
		if (result != ERROR_OK)
			return result;
		/* FIXME: We should poll dmcontrol until dmactive becomes 0
		 * See https://github.com/riscv/riscv-debug-spec/pull/566
		 */
	} else {
		/* The DM was already reset when examining a different hart.
		 * No need to reset it again. But for safety, assume that an abstract
		 * command might be in progress at the moment.
		 */
		dm->abstract_cmd_maybe_busy = true;
	}

	dm->current_hartid = HART_INDEX_UNKNOWN;

	result = dm_write(target, DM_DMCONTROL, DM_DMCONTROL_HARTSELLO |
			DM_DMCONTROL_HARTSELHI | DM_DMCONTROL_DMACTIVE |
			DM_DMCONTROL_HASEL);
	if (result != ERROR_OK)
		return result;


	result = dm_read(target, &dmcontrol, DM_DMCONTROL);
	if (result != ERROR_OK)
		return result;

	/* FIXME: We should poll for dmactive==1 as the debug module
	 * may need some time to actually activate.
	 * See https://github.com/riscv/riscv-debug-spec/pull/566
	 */
	if (!get_field(dmcontrol, DM_DMCONTROL_DMACTIVE)) {
		LOG_TARGET_ERROR(target, "Debug Module did not become active.");
		LOG_DEBUG_REG(target, DM_DMCONTROL, dmcontrol);
		return ERROR_FAIL;
	}

	/* The DM has been reset and has successfully came out of the reset (dmactive=1):
	 * - either the reset has been performed during this call to examine_dm() (above);
	 * - or the reset had already happened in an earlier call of examine_dm() when
	 *   examining a different hart.
	 */
	dm->was_reset = true;

	dm->hasel_supported = get_field(dmcontrol, DM_DMCONTROL_HASEL);

	uint32_t hartsel =
		(get_field(dmcontrol, DM_DMCONTROL_HARTSELHI) <<
		 DM_DMCONTROL_HARTSELLO_LENGTH) |
		get_field(dmcontrol, DM_DMCONTROL_HARTSELLO);

	/* Before doing anything else we must first enumerate the harts. */
	const int max_hart_count = MIN(RISCV_MAX_HARTS, hartsel + 1);
	if (dm->hart_count < 0) {
		for (int i = 0; i < max_hart_count; ++i) {
			/* TODO: This is extremely similar to
			 * riscv013_get_hart_state().
			 * It would be best to reuse the code.
			 */
			result = dm013_select_hart(target, i);
			if (result != ERROR_OK)
				return result;

			uint32_t s;
			result = dmstatus_read(target, &s, /*authenticated*/ true);
			if (result != ERROR_OK)
				return result;

			if (get_field(s, DM_DMSTATUS_ANYNONEXISTENT))
				break;

			dm->hart_count = i + 1;

			if (get_field(s, DM_DMSTATUS_ANYHAVERESET)) {
				dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_ACKHAVERESET;
				/* If `abstractcs.busy` is set, debugger should not
				 * change `hartsel`.
				 */
				result = wait_for_idle_if_needed(target);
				if (result != ERROR_OK)
					return result;
				dmcontrol = set_dmcontrol_hartsel(dmcontrol, i);
				result = dm_write(target, DM_DMCONTROL, dmcontrol);
				if (result != ERROR_OK)
					return result;
			}
		}
		LOG_TARGET_DEBUG(target, "Detected %d harts.", dm->hart_count);
	}

	if (dm->hart_count <= 0) {
		LOG_TARGET_ERROR(target, "No harts found!");
		return ERROR_FAIL;
	}

	dm->was_examined = true;
	return ERROR_OK;
}

static int examine(struct target *target)
{
	/* We reset target state in case if something goes wrong during examine:
	 * DTM/DM scans could fail or hart may fail to halt. */
	target->state = TARGET_UNKNOWN;
	target->debug_reason = DBG_REASON_UNDEFINED;

	/* Don't need to select dbus, since the first thing we do is read dtmcontrol. */
	LOG_TARGET_DEBUG(target, "dbgbase=0x%x", target->dbgbase);

	uint32_t dtmcontrol;
	if (dtmcontrol_scan(target, 0, &dtmcontrol) != ERROR_OK || dtmcontrol == 0) {
		LOG_TARGET_ERROR(target, "Could not scan dtmcontrol. Check JTAG connectivity/board power.");
		return ERROR_FAIL;
	}

	LOG_TARGET_DEBUG(target, "dtmcontrol=0x%x", dtmcontrol);
	LOG_DEBUG_REG(target, DTM_DTMCS, dtmcontrol);

	if (get_field(dtmcontrol, DTM_DTMCS_VERSION) != 1) {
		LOG_TARGET_ERROR(target, "Unsupported DTM version %" PRIu32 ". (dtmcontrol=0x%" PRIx32 ")",
				get_field32(dtmcontrol, DTM_DTMCS_VERSION), dtmcontrol);
		return ERROR_FAIL;
	}

	riscv013_info_t *info = get_info(target);

	info->index = target->coreid;
	info->abits = get_field(dtmcontrol, DTM_DTMCS_ABITS);
	info->dtmcs_idle = get_field(dtmcontrol, DTM_DTMCS_IDLE);

	if (!check_dbgbase_exists(target)) {
		LOG_TARGET_ERROR(target, "Could not find debug module with DMI base address (dbgbase) = 0x%x", target->dbgbase);
		return ERROR_FAIL;
	}

	int result = examine_dm(target);
	if (result != ERROR_OK)
		return result;

	result = dm013_select_target(target);
	if (result != ERROR_OK)
		return result;

	/* We're here because we're uncertain about the state of the target. That
	 * includes our progbuf cache. */
	riscv013_invalidate_cached_progbuf(target);

	uint32_t dmstatus;
	if (dmstatus_read(target, &dmstatus, false) != ERROR_OK)
		return ERROR_FAIL;
	LOG_TARGET_DEBUG(target, "dmstatus:  0x%08x", dmstatus);
	int dmstatus_version = get_field(dmstatus, DM_DMSTATUS_VERSION);
	if (dmstatus_version != 2 && dmstatus_version != 3) {
		/* Error was already printed out in dmstatus_read(). */
		return ERROR_FAIL;
	}

	uint32_t hartinfo;
	if (dm_read(target, &hartinfo, DM_HARTINFO) != ERROR_OK)
		return ERROR_FAIL;

	info->datasize = get_field(hartinfo, DM_HARTINFO_DATASIZE);
	info->dataaccess = get_field(hartinfo, DM_HARTINFO_DATAACCESS);
	info->dataaddr = get_field(hartinfo, DM_HARTINFO_DATAADDR);
	info->nscratch = get_field(hartinfo, DM_HARTINFO_NSCRATCH);

	if (!get_field(dmstatus, DM_DMSTATUS_AUTHENTICATED)) {
		LOG_TARGET_ERROR(target, "Debugger is not authenticated to target Debug Module. "
				"(dmstatus=0x%x). Use `riscv authdata_read` and "
				"`riscv authdata_write` commands to authenticate.", dmstatus);
		return ERROR_FAIL;
	}

	if (dm_read(target, &info->sbcs, DM_SBCS) != ERROR_OK)
		return ERROR_FAIL;

	/* Check that abstract data registers are accessible. */
	uint32_t abstractcs;
	if (dm_read(target, &abstractcs, DM_ABSTRACTCS) != ERROR_OK)
		return ERROR_FAIL;
	info->datacount = get_field(abstractcs, DM_ABSTRACTCS_DATACOUNT);
	info->progbufsize = get_field(abstractcs, DM_ABSTRACTCS_PROGBUFSIZE);

	RISCV_INFO(r);
	r->impebreak = get_field(dmstatus, DM_DMSTATUS_IMPEBREAK);

	/* Don't call any riscv_* functions until after we've counted the number of
	 * cores and initialized registers. */

	enum riscv_hart_state state_at_examine_start;
	if (riscv_get_hart_state(target, &state_at_examine_start) != ERROR_OK)
		return ERROR_FAIL;

	/* Skip full examination and reporting of hart if it is currently unavailable */
	const bool hart_unavailable_at_examine_start = state_at_examine_start == RISCV_STATE_UNAVAILABLE;
	if (hart_unavailable_at_examine_start) {
		LOG_TARGET_DEBUG(target, "Did not fully examine hart %d as it was currently unavailable, deferring examine.", info->index);
		target->state = TARGET_UNAVAILABLE;
		target->defer_examine = true;
		return ERROR_OK;
	}
	const bool hart_halted_at_examine_start = state_at_examine_start == RISCV_STATE_HALTED;
	if (!hart_halted_at_examine_start) {
		if (riscv013_halt_target(target) != ERROR_OK) {
			LOG_TARGET_ERROR(target, "Fatal: Hart %d failed to halt during %s",
					info->index, __func__);
			return ERROR_FAIL;
		}
	}

	LOG_TARGET_INFO(target, "datacount=%d progbufsize=%d",
			info->datacount, info->progbufsize);

	if (!has_sufficient_progbuf(target, 2)) {
		LOG_TARGET_WARNING(target, "We won't be able to execute fence instructions on this "
				"target. Memory may not always appear consistent. "
				"(progbufsize=%d, impebreak=%d)", info->progbufsize,
				r->impebreak);
	}

	if (info->progbufsize < 4 && riscv_enable_virtual) {
		LOG_TARGET_ERROR(target, "set_enable_virtual is not available on this target. It "
				"requires a program buffer size of at least 4. (progbufsize=%d) "
				"Use `riscv set_enable_virtual off` to continue."
					, info->progbufsize);
	}

	target->state = TARGET_HALTED;
	target->debug_reason = hart_halted_at_examine_start ? DBG_REASON_UNDEFINED : DBG_REASON_DBGRQ;

	/* Without knowing anything else we can at least mess with the
	 * program buffer. */
	r->progbuf_size = info->progbufsize;

	result = register_read_abstract_with_size(target, NULL, GDB_REGNO_S0, 64);
	if (result == ERROR_OK)
		r->xlen = 64;
	else
		r->xlen = 32;

	/* Save s0 and s1. The register cache hasn't be initialized yet so we
	 * need to take care of this manually. */
	uint64_t s0, s1;
	if (register_read_abstract(target, &s0, GDB_REGNO_S0) != ERROR_OK) {
		LOG_TARGET_ERROR(target, "Fatal: Failed to read s0.");
		return ERROR_FAIL;
	}
	if (register_read_abstract(target, &s1, GDB_REGNO_S1) != ERROR_OK) {
		LOG_TARGET_ERROR(target, "Fatal: Failed to read s1.");
		return ERROR_FAIL;
	}

	if (register_read_direct(target, &r->misa, GDB_REGNO_MISA)) {
		LOG_TARGET_ERROR(target, "Fatal: Failed to read MISA.");
		return ERROR_FAIL;
	}

	uint64_t value;
	if (register_read_direct(target, &value, GDB_REGNO_VLENB) != ERROR_OK) {
		if (riscv_supports_extension(target, 'V'))
			LOG_TARGET_WARNING(target, "Couldn't read vlenb; vector register access won't work.");
		r->vlenb = 0;
	} else {
		r->vlenb = value;
		LOG_TARGET_INFO(target, "Vector support with vlenb=%d", r->vlenb);
	}

	if (register_read_direct(target, &value, GDB_REGNO_MTOPI) == ERROR_OK) {
		r->mtopi_readable = true;

		if (register_read_direct(target, &value, GDB_REGNO_MTOPEI) == ERROR_OK) {
			LOG_TARGET_INFO(target, "S?aia detected with IMSIC");
			r->mtopei_readable = true;
		} else {
			r->mtopei_readable = false;
			LOG_TARGET_INFO(target, "S?aia detected without IMSIC");
		}
	} else {
		r->mtopi_readable = false;
	}

	/* Display this as early as possible to help people who are using
	 * really slow simulators. */
	LOG_TARGET_DEBUG(target, " XLEN=%d, misa=0x%" PRIx64, r->xlen, r->misa);

	/* Restore s0 and s1. */
	if (register_write_direct(target, GDB_REGNO_S0, s0) != ERROR_OK) {
		LOG_TARGET_ERROR(target, "Fatal: Failed to write back s0.");
		return ERROR_FAIL;
	}
	if (register_write_direct(target, GDB_REGNO_S1, s1) != ERROR_OK) {
		LOG_TARGET_ERROR(target, "Fatal: Failed to write back s1.");
		return ERROR_FAIL;
	}

	/* Now init registers based on what we discovered. */
	if (riscv_init_registers(target) != ERROR_OK)
		return ERROR_FAIL;

	if (set_dcsr_ebreak(target, false) != ERROR_OK)
		return ERROR_FAIL;

	if (state_at_examine_start == RISCV_STATE_RUNNING) {
		riscv013_step_or_resume_current_hart(target, false);
		target->state = TARGET_RUNNING;
		target->debug_reason = DBG_REASON_NOTHALTED;
	} else if (state_at_examine_start == RISCV_STATE_HALTED) {
		target->state = TARGET_HALTED;
		target->debug_reason = DBG_REASON_UNDEFINED;
	}

	if (target->smp) {
		if (set_group(target, &info->haltgroup_supported, target->smp, HALT_GROUP) != ERROR_OK)
			return ERROR_FAIL;
		if (info->haltgroup_supported)
			LOG_TARGET_INFO(target, "Core %d made part of halt group %d.", info->index,
					target->smp);
		else
			LOG_TARGET_INFO(target, "Core %d could not be made part of halt group %d.",
					info->index, target->smp);
	}

	/* Some regression suites rely on seeing 'Examined RISC-V core' to know
	 * when they can connect with gdb/telnet.
	 * We will need to update those suites if we want to change that text. */
	LOG_TARGET_INFO(target, "Examined RISC-V core");
	LOG_TARGET_INFO(target, " XLEN=%d, misa=0x%" PRIx64, r->xlen, r->misa);
	return ERROR_OK;
}

static int riscv013_authdata_read(struct target *target, uint32_t *value, unsigned int index)
{
	if (index > 0) {
		LOG_TARGET_ERROR(target, "Spec 0.13 only has a single authdata register.");
		return ERROR_FAIL;
	}

	if (wait_for_authbusy(target, NULL) != ERROR_OK)
		return ERROR_FAIL;

	return dm_read(target, value, DM_AUTHDATA);
}

static int riscv013_authdata_write(struct target *target, uint32_t value, unsigned int index)
{
	if (index > 0) {
		LOG_TARGET_ERROR(target, "Spec 0.13 only has a single authdata register.");
		return ERROR_FAIL;
	}

	uint32_t before, after;
	if (wait_for_authbusy(target, &before) != ERROR_OK)
		return ERROR_FAIL;

	dm_write(target, DM_AUTHDATA, value);

	if (wait_for_authbusy(target, &after) != ERROR_OK)
		return ERROR_FAIL;

	if (!get_field(before, DM_DMSTATUS_AUTHENTICATED) &&
			get_field(after, DM_DMSTATUS_AUTHENTICATED)) {
		LOG_TARGET_INFO(target, "authdata_write resulted in successful authentication");
		int result = ERROR_OK;
		dm013_info_t *dm = get_dm(target);
		if (!dm)
			return ERROR_FAIL;
		target_list_t *entry;
		list_for_each_entry(entry, &dm->target_list, list) {
			if (target_examine_one(entry->target) != ERROR_OK)
				result = ERROR_FAIL;
		}
		return result;
	}

	return ERROR_OK;
}

/* Try to find out the widest memory access size depending on the selected memory access methods. */
static unsigned riscv013_data_bits(struct target *target)
{
	RISCV013_INFO(info);
	RISCV_INFO(r);

	for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
		int method = r->mem_access_methods[i];

		if (method == RISCV_MEM_ACCESS_PROGBUF) {
			if (has_sufficient_progbuf(target, 3))
				return riscv_xlen(target);
		} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
			if (get_field(info->sbcs, DM_SBCS_SBACCESS128))
				return 128;
			if (get_field(info->sbcs, DM_SBCS_SBACCESS64))
				return 64;
			if (get_field(info->sbcs, DM_SBCS_SBACCESS32))
				return 32;
			if (get_field(info->sbcs, DM_SBCS_SBACCESS16))
				return 16;
			if (get_field(info->sbcs, DM_SBCS_SBACCESS8))
				return 8;
		} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
			/* TODO: Once there is a spec for discovering abstract commands, we can
			 * take those into account as well.  For now we assume abstract commands
			 * support XLEN-wide accesses. */
			return riscv_xlen(target);
		} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
			/* No further mem access method to try. */
			break;
	}
	LOG_TARGET_ERROR(target, "Unable to determine supported data bits on this target. Assuming 32 bits.");
	return 32;
}

static COMMAND_HELPER(riscv013_print_info, struct target *target)
{
	RISCV013_INFO(info);

	/* Abstract description. */
	riscv_print_info_line(CMD, "target", "memory.read_while_running8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
	riscv_print_info_line(CMD, "target", "memory.write_while_running8", get_field(info->sbcs, DM_SBCS_SBACCESS8));
	riscv_print_info_line(CMD, "target", "memory.read_while_running16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
	riscv_print_info_line(CMD, "target", "memory.write_while_running16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
	riscv_print_info_line(CMD, "target", "memory.read_while_running32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
	riscv_print_info_line(CMD, "target", "memory.write_while_running32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
	riscv_print_info_line(CMD, "target", "memory.read_while_running64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
	riscv_print_info_line(CMD, "target", "memory.write_while_running64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
	riscv_print_info_line(CMD, "target", "memory.read_while_running128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
	riscv_print_info_line(CMD, "target", "memory.write_while_running128", get_field(info->sbcs, DM_SBCS_SBACCESS128));

	/* Lower level description. */
	riscv_print_info_line(CMD, "dm", "abits", info->abits);
	riscv_print_info_line(CMD, "dm", "progbufsize", info->progbufsize);
	riscv_print_info_line(CMD, "dm", "sbversion", get_field(info->sbcs, DM_SBCS_SBVERSION));
	riscv_print_info_line(CMD, "dm", "sbasize", get_field(info->sbcs, DM_SBCS_SBASIZE));
	riscv_print_info_line(CMD, "dm", "sbaccess128", get_field(info->sbcs, DM_SBCS_SBACCESS128));
	riscv_print_info_line(CMD, "dm", "sbaccess64", get_field(info->sbcs, DM_SBCS_SBACCESS64));
	riscv_print_info_line(CMD, "dm", "sbaccess32", get_field(info->sbcs, DM_SBCS_SBACCESS32));
	riscv_print_info_line(CMD, "dm", "sbaccess16", get_field(info->sbcs, DM_SBCS_SBACCESS16));
	riscv_print_info_line(CMD, "dm", "sbaccess8", get_field(info->sbcs, DM_SBCS_SBACCESS8));

	uint32_t dmstatus;
	if (dmstatus_read(target, &dmstatus, false) == ERROR_OK)
		riscv_print_info_line(CMD, "dm", "authenticated", get_field(dmstatus, DM_DMSTATUS_AUTHENTICATED));

	return 0;
}

static int try_set_vsew(struct target *target, unsigned int *debug_vsew)
{
	RISCV_INFO(r);
	unsigned int encoded_vsew =
		(riscv_xlen(target) == 64 && r->vsew64_supported != YNM_NO) ? 3 : 2;

	/* Set standard element width to match XLEN, for vmv instruction to move
	 * the least significant bits into a GPR.
	 */
	if (riscv_write_register(target, GDB_REGNO_VTYPE, encoded_vsew << 3) != ERROR_OK)
		return ERROR_FAIL;

	if (encoded_vsew == 3 && r->vsew64_supported == YNM_MAYBE) {
		/* Check that it's supported. */
		riscv_reg_t vtype;

		if (riscv_get_register(target, &vtype, GDB_REGNO_VTYPE) != ERROR_OK)
			return ERROR_FAIL;
		if (vtype >> (riscv_xlen(target) - 1)) {
			r->vsew64_supported = YNM_NO;
			/* Try again. */
			return try_set_vsew(target, debug_vsew);
		}
		r->vsew64_supported = YNM_YES;
	}
	*debug_vsew = encoded_vsew == 3 ? 64 : 32;
	return ERROR_OK;
}

static int prep_for_vector_access(struct target *target,
		riscv_reg_t *orig_mstatus, riscv_reg_t *orig_vtype, riscv_reg_t *orig_vl,
		unsigned int *debug_vl, unsigned int *debug_vsew)
{
	assert(orig_mstatus);
	assert(orig_vtype);
	assert(orig_vl);
	assert(debug_vl);
	assert(debug_vsew);

	RISCV_INFO(r);
	if (target->state != TARGET_HALTED) {
		LOG_TARGET_ERROR(target,
				"Unable to access vector register: target not halted");
		return ERROR_FAIL;
	}
	if (prep_for_register_access(target, orig_mstatus, GDB_REGNO_VL) != ERROR_OK)
		return ERROR_FAIL;

	/* Save vtype and vl. */
	if (riscv_get_register(target, orig_vtype, GDB_REGNO_VTYPE) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_get_register(target, orig_vl, GDB_REGNO_VL) != ERROR_OK)
		return ERROR_FAIL;

	if (try_set_vsew(target, debug_vsew) != ERROR_OK)
		return ERROR_FAIL;
	/* Set the number of elements to be updated with results from a vector
	 * instruction, for the vslide1down instruction.
	 * Set it so the entire V register is updated. */
	*debug_vl = DIV_ROUND_UP(r->vlenb * 8, *debug_vsew);
	return riscv_write_register(target, GDB_REGNO_VL, *debug_vl);
}

static int cleanup_after_vector_access(struct target *target,
		riscv_reg_t mstatus, riscv_reg_t vtype, riscv_reg_t vl)
{
	/* Restore vtype and vl. */
	if (riscv_write_register(target, GDB_REGNO_VTYPE, vtype) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_write_register(target, GDB_REGNO_VL, vl) != ERROR_OK)
		return ERROR_FAIL;
	return cleanup_after_register_access(target, mstatus, GDB_REGNO_VL);
}

static int riscv013_get_register_buf(struct target *target,
		uint8_t *value, enum gdb_regno regno)
{
	assert(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31);

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	riscv_reg_t mstatus, vtype, vl;
	unsigned int debug_vl, debug_vsew;

	if (prep_for_vector_access(target, &mstatus, &vtype, &vl,
				&debug_vl, &debug_vsew) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;

	unsigned int vnum = regno - GDB_REGNO_V0;

	int result = ERROR_OK;
	for (unsigned int i = 0; i < debug_vl; i++) {
		/* Can't reuse the same program because riscv_program_exec() adds
		 * ebreak to the end every time. */
		struct riscv_program program;
		riscv_program_init(&program, target);
		riscv_program_insert(&program, vmv_x_s(S0, vnum));
		riscv_program_insert(&program, vslide1down_vx(vnum, vnum, S0, true));

		/* Executing the program might result in an exception if there is some
		 * issue with the vector implementation/instructions we're using. If that
		 * happens, attempt to restore as usual. We may have clobbered the
		 * vector register we tried to read already.
		 * For other failures, we just return error because things are probably
		 * so messed up that attempting to restore isn't going to help. */
		result = riscv_program_exec(&program, target);
		if (result == ERROR_OK) {
			riscv_reg_t v;
			if (register_read_direct(target, &v, GDB_REGNO_S0) != ERROR_OK)
				return ERROR_FAIL;
			buf_set_u64(value, debug_vsew * i, debug_vsew, v);
		} else {
			LOG_TARGET_ERROR(target,
					"Failed to execute vmv/vslide1down while reading %s",
					gdb_regno_name(target, regno));
			break;
		}
	}

	if (cleanup_after_vector_access(target, mstatus, vtype, vl) != ERROR_OK)
		return ERROR_FAIL;

	return result;
}

static int riscv013_set_register_buf(struct target *target,
		enum gdb_regno regno, const uint8_t *value)
{
	assert(regno >= GDB_REGNO_V0 && regno <= GDB_REGNO_V31);

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	riscv_reg_t mstatus, vtype, vl;
	unsigned int debug_vl, debug_vsew;

	if (prep_for_vector_access(target, &mstatus, &vtype, &vl,
				&debug_vl, &debug_vsew) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;

	unsigned int vnum = regno - GDB_REGNO_V0;

	struct riscv_program program;
	riscv_program_init(&program, target);
	riscv_program_insert(&program, vslide1down_vx(vnum, vnum, S0, true));
	int result = ERROR_OK;
	for (unsigned int i = 0; i < debug_vl; i++) {
		if (register_write_direct(target, GDB_REGNO_S0,
					buf_get_u64(value, debug_vsew * i, debug_vsew)) != ERROR_OK)
			return ERROR_FAIL;
		result = riscv_program_exec(&program, target);
		if (result != ERROR_OK)
			break;
	}

	if (cleanup_after_vector_access(target, mstatus, vtype, vl) != ERROR_OK)
		return ERROR_FAIL;

	return result;
}

static uint32_t sb_sbaccess(unsigned int size_bytes)
{
	switch (size_bytes) {
		case 1:
			return set_field(0, DM_SBCS_SBACCESS, 0);
		case 2:
			return set_field(0, DM_SBCS_SBACCESS, 1);
		case 4:
			return set_field(0, DM_SBCS_SBACCESS, 2);
		case 8:
			return set_field(0, DM_SBCS_SBACCESS, 3);
		case 16:
			return set_field(0, DM_SBCS_SBACCESS, 4);
	}
	assert(0);
	return 0;
}

static int sb_write_address(struct target *target, target_addr_t address,
							bool ensure_success)
{
	RISCV013_INFO(info);
	unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
	/* There currently is no support for >64-bit addresses in OpenOCD. */
	if (sbasize > 96)
		dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS3, 0, false, false);
	if (sbasize > 64)
		dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS2, 0, false, false);
	if (sbasize > 32)
		dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS1,
			(uint32_t)(address >> 32), false, false);
	return dm_op(target, NULL, NULL, DMI_OP_WRITE, DM_SBADDRESS0,
		(uint32_t)address, false, ensure_success);
}

static int batch_run(struct target *target, struct riscv_batch *batch)
{
	RISCV_INFO(r);
	const int result = riscv_batch_run(batch, /*resets_delays*/  r->reset_delays_wait >= 0,
			r->reset_delays_wait);
	/* TODO: `finished_scans` should be the number of scans that have
	 * finished, not the number of scans scheduled. */
	const size_t finished_scans = batch->used_scans;
	decrement_reset_delays_counter(target, finished_scans);
	return result;
}

static int sba_supports_access(struct target *target, unsigned int size_bytes)
{
	RISCV013_INFO(info);
	switch (size_bytes) {
		case 1:
			return get_field(info->sbcs, DM_SBCS_SBACCESS8);
		case 2:
			return get_field(info->sbcs, DM_SBCS_SBACCESS16);
		case 4:
			return get_field(info->sbcs, DM_SBCS_SBACCESS32);
		case 8:
			return get_field(info->sbcs, DM_SBCS_SBACCESS64);
		case 16:
			return get_field(info->sbcs, DM_SBCS_SBACCESS128);
		default:
			return 0;
	}
}

static int sample_memory_bus_v1(struct target *target,
								struct riscv_sample_buf *buf,
								const riscv_sample_config_t *config,
								int64_t until_ms)
{
	RISCV013_INFO(info);
	unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
	if (sbasize > 64) {
		LOG_TARGET_ERROR(target, "Memory sampling is only implemented for sbasize <= 64.");
		return ERROR_NOT_IMPLEMENTED;
	}

	if (get_field(info->sbcs, DM_SBCS_SBVERSION) != 1) {
		LOG_TARGET_ERROR(target, "Memory sampling is only implemented for SBA version 1.");
		return ERROR_NOT_IMPLEMENTED;
	}

	uint32_t sbcs = 0;
	uint32_t sbcs_valid = false;

	uint32_t sbaddress0 = 0;
	bool sbaddress0_valid = false;
	uint32_t sbaddress1 = 0;
	bool sbaddress1_valid = false;

	/* How often to read each value in a batch. */
	const unsigned int repeat = 5;

	unsigned int enabled_count = 0;
	for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
		if (config->bucket[i].enabled)
			enabled_count++;
	}

	while (timeval_ms() < until_ms) {
		/*
		 * batch_run() adds to the batch, so we can't simply reuse the same
		 * batch over and over. So we create a new one every time through the
		 * loop.
		 */
		struct riscv_batch *batch = riscv_batch_alloc(
			target, 1 + enabled_count * 5 * repeat,
			info->dmi_busy_delay + info->bus_master_read_delay);
		if (!batch)
			return ERROR_FAIL;

		unsigned int result_bytes = 0;
		for (unsigned int n = 0; n < repeat; n++) {
			for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
				if (config->bucket[i].enabled) {
					if (!sba_supports_access(target, config->bucket[i].size_bytes)) {
						LOG_TARGET_ERROR(target, "Hardware does not support SBA access for %d-byte memory sampling.",
								config->bucket[i].size_bytes);
						return ERROR_NOT_IMPLEMENTED;
					}

					uint32_t sbcs_write = DM_SBCS_SBREADONADDR;
					if (enabled_count == 1)
						sbcs_write |= DM_SBCS_SBREADONDATA;
					sbcs_write |= sb_sbaccess(config->bucket[i].size_bytes);
					if (!sbcs_valid || sbcs_write != sbcs) {
						riscv_batch_add_dm_write(batch, DM_SBCS, sbcs_write, true);
						sbcs = sbcs_write;
						sbcs_valid = true;
					}

					if (sbasize > 32 &&
							(!sbaddress1_valid ||
							sbaddress1 != config->bucket[i].address >> 32)) {
						sbaddress1 = config->bucket[i].address >> 32;
						riscv_batch_add_dm_write(batch, DM_SBADDRESS1, sbaddress1, true);
						sbaddress1_valid = true;
					}
					if (!sbaddress0_valid ||
							sbaddress0 != (config->bucket[i].address & 0xffffffff)) {
						sbaddress0 = config->bucket[i].address;
						riscv_batch_add_dm_write(batch, DM_SBADDRESS0, sbaddress0, true);
						sbaddress0_valid = true;
					}
					if (config->bucket[i].size_bytes > 4)
						riscv_batch_add_dm_read(batch, DM_SBDATA1);
					riscv_batch_add_dm_read(batch, DM_SBDATA0);
					result_bytes += 1 + config->bucket[i].size_bytes;
				}
			}
		}

		if (buf->used + result_bytes >= buf->size) {
			riscv_batch_free(batch);
			break;
		}

		size_t sbcs_read_index = riscv_batch_add_dm_read(batch, DM_SBCS);

		int result = batch_run(target, batch);
		if (result != ERROR_OK) {
			riscv_batch_free(batch);
			return result;
		}

		/* Discard the batch when we encounter a busy state on the DMI level.
		 * It's too much hassle to try to recover partial data. We'll try again
		 * with a larger DMI delay. */
		unsigned int sbcs_read_op = riscv_batch_get_dmi_read_op(batch, sbcs_read_index);
		if (sbcs_read_op == DTM_DMI_OP_BUSY) {
			increase_dmi_busy_delay(target);
			continue;
		}

		uint32_t sbcs_read = riscv_batch_get_dmi_read_data(batch, sbcs_read_index);
		if (get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
			/* Discard this batch when we encounter "busy error" state on the System Bus level.
			 * We'll try next time with a larger System Bus read delay. */
			info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
			dm_write(target, DM_SBCS, sbcs_read | DM_SBCS_SBBUSYERROR | DM_SBCS_SBERROR);
			riscv_batch_free(batch);
			continue;
		}
		if (get_field(sbcs_read, DM_SBCS_SBERROR)) {
			/* The memory we're sampling was unreadable, somehow. Give up. */
			dm_write(target, DM_SBCS, DM_SBCS_SBBUSYERROR | DM_SBCS_SBERROR);
			riscv_batch_free(batch);
			return ERROR_FAIL;
		}

		unsigned int read_count = 0;
		for (unsigned int n = 0; n < repeat; n++) {
			for (unsigned int i = 0; i < ARRAY_SIZE(config->bucket); i++) {
				if (config->bucket[i].enabled) {
					assert(i < RISCV_SAMPLE_BUF_TIMESTAMP_BEFORE);
					uint64_t value = 0;
					if (config->bucket[i].size_bytes > 4)
						value = ((uint64_t)riscv_batch_get_dmi_read_data(batch, read_count++)) << 32;
					value |= riscv_batch_get_dmi_read_data(batch, read_count++);

					buf->buf[buf->used] = i;
					buf_set_u64(buf->buf + buf->used + 1, 0, config->bucket[i].size_bytes * 8, value);
					buf->used += 1 + config->bucket[i].size_bytes;
				}
			}
		}

		riscv_batch_free(batch);
	}

	return ERROR_OK;
}

static int sample_memory(struct target *target,
						 struct riscv_sample_buf *buf,
						 riscv_sample_config_t *config,
						 int64_t until_ms)
{
	if (!config->enabled)
		return ERROR_OK;

	return sample_memory_bus_v1(target, buf, config, until_ms);
}

static int riscv013_get_hart_state(struct target *target, enum riscv_hart_state *state)
{
	RISCV013_INFO(info);
	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	uint32_t dmstatus;
	if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
		return ERROR_FAIL;
	if (get_field(dmstatus, DM_DMSTATUS_ANYHAVERESET)) {
		LOG_TARGET_DEBUG(target, "Hart unexpectedly reset!");
		info->dcsr_ebreak_is_set = false;
		/* TODO: Can we make this more obvious to eg. a gdb user? */
		uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE |
			DM_DMCONTROL_ACKHAVERESET;
		dmcontrol = set_dmcontrol_hartsel(dmcontrol, info->index);
		/* If we had been halted when we reset, request another halt. If we
		 * ended up running out of reset, then the user will (hopefully) get a
		 * message that a reset happened, that the target is running, and then
		 * that it is halted again once the request goes through.
		 */
		if (target->state == TARGET_HALTED) {
			dmcontrol |= DM_DMCONTROL_HALTREQ;
			/* `haltreq` should not be issued if `abstractcs.busy`
			 * is set. */
			int result = wait_for_idle_if_needed(target);
			if (result != ERROR_OK)
				return result;
		}
		dm_write(target, DM_DMCONTROL, dmcontrol);
	}
	if (get_field(dmstatus, DM_DMSTATUS_ALLNONEXISTENT)) {
		*state = RISCV_STATE_NON_EXISTENT;
		return ERROR_OK;
	}
	if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
		*state = RISCV_STATE_UNAVAILABLE;
		return ERROR_OK;
	}
	if (get_field(dmstatus, DM_DMSTATUS_ALLHALTED)) {
		*state = RISCV_STATE_HALTED;
		return ERROR_OK;
	}
	if (get_field(dmstatus, DM_DMSTATUS_ALLRUNNING)) {
		*state = RISCV_STATE_RUNNING;
		return ERROR_OK;
	}
	LOG_TARGET_ERROR(target, "Couldn't determine state. dmstatus=0x%x", dmstatus);
	return ERROR_FAIL;
}

static int handle_became_available(struct target *target,
		enum riscv_hart_state previous_riscv_state)
{
	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;
	target->state = TARGET_HALTED;
	int result = riscv013_step_or_resume_current_hart(target, false);
	if (result == ERROR_OK) {
		target->state = TARGET_RUNNING;
		target->debug_reason = DBG_REASON_NOTHALTED;
		return ERROR_OK;
	} else if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE) {
		target->state = TARGET_UNAVAILABLE;
		return ERROR_OK;
	}
	return ERROR_FAIL;
}

static int handle_became_unavailable(struct target *target,
		enum riscv_hart_state previous_riscv_state)
{
	RISCV013_INFO(info);
	info->dcsr_ebreak_is_set = false;
	return ERROR_OK;
}

static int tick(struct target *target)
{
	RISCV013_INFO(info);
	if (!info->dcsr_ebreak_is_set &&
			target->state == TARGET_RUNNING &&
			target_was_examined(target))
		return halt_set_dcsr_ebreak(target);
	return ERROR_OK;
}

static int init_target(struct command_context *cmd_ctx,
		struct target *target)
{
	LOG_TARGET_DEBUG(target, "Init.");
	RISCV_INFO(generic_info);

	generic_info->get_register = &riscv013_get_register;
	generic_info->set_register = &riscv013_set_register;
	generic_info->get_register_buf = &riscv013_get_register_buf;
	generic_info->set_register_buf = &riscv013_set_register_buf;
	generic_info->select_target = &dm013_select_target;
	generic_info->get_hart_state = &riscv013_get_hart_state;
	generic_info->resume_go = &riscv013_resume_go;
	generic_info->step_current_hart = &riscv013_step_current_hart;
	generic_info->resume_prep = &riscv013_resume_prep;
	generic_info->halt_prep = &riscv013_halt_prep;
	generic_info->halt_go = &riscv013_halt_go;
	generic_info->on_step = &riscv013_on_step;
	generic_info->halt_reason = &riscv013_halt_reason;
	generic_info->read_progbuf = &riscv013_read_progbuf;
	generic_info->write_progbuf = &riscv013_write_progbuf;
	generic_info->execute_progbuf = &riscv013_execute_progbuf;
	generic_info->invalidate_cached_progbuf = &riscv013_invalidate_cached_progbuf;
	generic_info->fill_dm_write = &riscv013_fill_dm_write;
	generic_info->fill_dm_read = &riscv013_fill_dm_read;
	generic_info->fill_dm_nop = &riscv013_fill_dm_nop;
	generic_info->get_dmi_scan_length = &riscv013_get_dmi_scan_length;
	generic_info->authdata_read = &riscv013_authdata_read;
	generic_info->authdata_write = &riscv013_authdata_write;
	generic_info->dmi_read = &dmi_read;
	generic_info->dmi_write = &dmi_write;
	generic_info->get_dmi_address = &riscv013_get_dmi_address;
	generic_info->read_memory = read_memory;
	generic_info->data_bits = &riscv013_data_bits;
	generic_info->print_info = &riscv013_print_info;

	generic_info->handle_became_available = &handle_became_available;
	generic_info->handle_became_unavailable = &handle_became_unavailable;
	generic_info->tick = &tick;

	if (!generic_info->version_specific) {
		generic_info->version_specific = calloc(1, sizeof(riscv013_info_t));
		if (!generic_info->version_specific)
			return ERROR_FAIL;
	}
	generic_info->sample_memory = sample_memory;
	riscv013_info_t *info = get_info(target);

	info->progbufsize = -1;

	info->dmi_busy_delay = 0;
	info->bus_master_read_delay = 0;
	info->bus_master_write_delay = 0;
	info->ac_busy_delay = 0;

	/* Assume all these abstract commands are supported until we learn
	 * otherwise.
	 * TODO: The spec allows eg. one CSR to be able to be accessed abstractly
	 * while another one isn't. We don't track that this closely here, but in
	 * the future we probably should. */
	info->abstract_read_csr_supported = true;
	info->abstract_write_csr_supported = true;
	info->abstract_read_fpr_supported = true;
	info->abstract_write_fpr_supported = true;

	info->has_aampostincrement = YNM_MAYBE;

	return ERROR_OK;
}

static int assert_reset(struct target *target)
{
	RISCV013_INFO(info);
	int result;

	select_dmi(target);

	if (target_has_event_action(target, TARGET_EVENT_RESET_ASSERT)) {
		/* Run the user-supplied script if there is one. */
		target_handle_event(target, TARGET_EVENT_RESET_ASSERT);
	} else {
		dm013_info_t *dm = get_dm(target);
		if (!dm)
			return ERROR_FAIL;

		uint32_t control = set_field(0, DM_DMCONTROL_DMACTIVE, 1);
		control = set_dmcontrol_hartsel(control, info->index);
		control = set_field(control, DM_DMCONTROL_HALTREQ,
				target->reset_halt ? 1 : 0);
		control = set_field(control, DM_DMCONTROL_NDMRESET, 1);
		/* If `abstractcs.busy` is set, debugger should not
		 * change `hartsel` or set `haltreq`
		 */
		const bool hartsel_changed = (int)info->index != dm->current_hartid;
		if (hartsel_changed || target->reset_halt) {
			result = wait_for_idle_if_needed(target);
			if (result != ERROR_OK)
				return result;
		}
		result = dm_write(target, DM_DMCONTROL, control);
		if (result != ERROR_OK)
			return result;
	}

	target->state = TARGET_RESET;

	/* The DM might have gotten reset if OpenOCD called us in some reset that
	 * involves SRST being toggled. So clear our cache which may be out of
	 * date. */
	return riscv013_invalidate_cached_progbuf(target);
}

static int deassert_reset(struct target *target)
{
	RISCV013_INFO(info);
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	int result;

	select_dmi(target);
	/* Clear the reset, but make sure haltreq is still set */
	uint32_t control = 0;
	control = set_field(control, DM_DMCONTROL_DMACTIVE, 1);
	control = set_field(control, DM_DMCONTROL_HALTREQ, target->reset_halt ? 1 : 0);
	control = set_dmcontrol_hartsel(control, info->index);
	/* If `abstractcs.busy` is set, debugger should not
	 * change `hartsel`.
	 */
	const bool hartsel_changed = (int)info->index != dm->current_hartid;
	if (hartsel_changed) {
		result = wait_for_idle_if_needed(target);
		if (result != ERROR_OK)
			return result;
	}
	result = dm_write(target, DM_DMCONTROL, control);
	if (result != ERROR_OK)
		return result;

	uint32_t dmstatus;
	const int orig_dmi_busy_delay = info->dmi_busy_delay;
	time_t start = time(NULL);
	LOG_TARGET_DEBUG(target, "Waiting for hart to come out of reset.");
	do {
		result = dmstatus_read_timeout(target, &dmstatus, true,
				riscv_reset_timeout_sec);
		if (result == ERROR_TIMEOUT_REACHED)
			LOG_TARGET_ERROR(target, "Hart didn't complete a DMI read coming "
					"out of reset in %ds; Increase the timeout with riscv "
					"set_reset_timeout_sec.",
					riscv_reset_timeout_sec);
		if (result != ERROR_OK)
			return result;

		if (time(NULL) - start > riscv_reset_timeout_sec) {
			LOG_TARGET_ERROR(target, "Hart didn't leave reset in %ds; "
					"dmstatus=0x%x (allunavail=%s, allhavereset=%s); "
					"Increase the timeout with riscv set_reset_timeout_sec.",
					riscv_reset_timeout_sec, dmstatus,
					get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL) ? "true" : "false",
					get_field(dmstatus, DM_DMSTATUS_ALLHAVERESET) ? "true" : "false");
			return ERROR_TIMEOUT_REACHED;
		}
		/* Certain debug modules, like the one in GD32VF103
		 * MCUs, violate the specification's requirement that
		 * each hart is in "exactly one of four states" and,
		 * during reset, report harts as both unavailable and
		 * halted/running. To work around this, we check for
		 * the absence of the unavailable state rather than
		 * the presence of any other state. */
	} while (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL) &&
			!get_field(dmstatus, DM_DMSTATUS_ALLHAVERESET));

	info->dmi_busy_delay = orig_dmi_busy_delay;

	if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
		target->state = TARGET_UNAVAILABLE;
	} else if (target->reset_halt) {
		target->state = TARGET_HALTED;
		target->debug_reason = DBG_REASON_DBGRQ;
	} else {
		target->state = TARGET_RUNNING;
		target->debug_reason = DBG_REASON_NOTHALTED;
	}
	info->dcsr_ebreak_is_set = false;

	/* Ack reset and clear DM_DMCONTROL_HALTREQ if previously set */
	control = 0;
	control = set_field(control, DM_DMCONTROL_DMACTIVE, 1);
	control = set_field(control, DM_DMCONTROL_ACKHAVERESET, 1);
	control = set_dmcontrol_hartsel(control, info->index);
	return dm_write(target, DM_DMCONTROL, control);
}

static int execute_fence(struct target *target)
{
	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	/* FIXME: For non-coherent systems we need to flush the caches right
	 * here, but there's no ISA-defined way of doing that. */
	struct riscv_program program;

	/* program.execution_result may indicate RISCV_PROGBUF_EXEC_RESULT_EXCEPTION -
	 * currently, we ignore this error since most likely this is an indication
	 * that target does not support a fence instruction (execution of an
	 * unsupported instruction results in "Illegal instruction" exception on
	 * targets that comply with riscv-privilege spec).
	 * Currently, RISC-V specification does not provide us with a portable and
	 * less invasive way to detect if a fence is supported by the target. We may
	 * revise this code once the spec allows us to do this */
	if (has_sufficient_progbuf(target, 3)) {
		riscv_program_init(&program, target);
		riscv_program_fence_i(&program);
		riscv_program_fence_rw_rw(&program);
		if (riscv_program_exec(&program, target) != ERROR_OK) {
			if (program.execution_result != RISCV_PROGBUF_EXEC_RESULT_EXCEPTION) {
				LOG_TARGET_ERROR(target, "Unexpected error during fence execution");
				return ERROR_FAIL;
			}
			LOG_TARGET_DEBUG(target, "Unable to execute fence");
		}
		return ERROR_OK;
	}

	if (has_sufficient_progbuf(target, 2)) {
		riscv_program_init(&program, target);
		riscv_program_fence_i(&program);
		if (riscv_program_exec(&program, target) != ERROR_OK) {
			if (program.execution_result != RISCV_PROGBUF_EXEC_RESULT_EXCEPTION) {
				LOG_TARGET_ERROR(target, "Unexpected error during fence.i execution");
				return ERROR_FAIL;
			}
			LOG_TARGET_DEBUG(target, "Unable to execute fence.i");
		}

		riscv_program_init(&program, target);
		riscv_program_fence_rw_rw(&program);
		if (riscv_program_exec(&program, target) != ERROR_OK) {
			if (program.execution_result != RISCV_PROGBUF_EXEC_RESULT_EXCEPTION) {
				LOG_TARGET_ERROR(target, "Unexpected error during fence rw, rw execution");
				return ERROR_FAIL;
			}
			LOG_TARGET_DEBUG(target, "Unable to execute fence rw, rw");
		}
		return ERROR_OK;
	}

	return ERROR_FAIL;
}

static void log_memory_access128(target_addr_t address, uint64_t value_h,
		uint64_t value_l, bool is_read)
{
	if (debug_level < LOG_LVL_DEBUG)
		return;

	char fmt[80];
	sprintf(fmt, "M[0x%" TARGET_PRIxADDR "] %ss 0x%%016" PRIx64 "%%016" PRIx64,
			address, is_read ? "read" : "write");
	LOG_DEBUG(fmt, value_h, value_l);
}

static void log_memory_access64(target_addr_t address, uint64_t value,
		unsigned int size_bytes, bool is_read)
{
	if (debug_level < LOG_LVL_DEBUG)
		return;

	char fmt[80];
	sprintf(fmt, "M[0x%" TARGET_PRIxADDR "] %ss 0x%%0%d" PRIx64,
			address, is_read ? "read" : "write", size_bytes * 2);
	switch (size_bytes) {
		case 1:
			value &= 0xff;
			break;
		case 2:
			value &= 0xffff;
			break;
		case 4:
			value &= 0xffffffffUL;
			break;
		case 8:
			break;
		default:
			assert(false);
	}
	LOG_DEBUG(fmt, value);
}
static void log_memory_access(target_addr_t address, uint32_t *sbvalue,
		unsigned int size_bytes, bool is_read)
{
	if (size_bytes == 16) {
		uint64_t value_h = ((uint64_t)sbvalue[3] << 32) | sbvalue[2];
		uint64_t value_l = ((uint64_t)sbvalue[1] << 32) | sbvalue[0];
		log_memory_access128(address, value_h, value_l, is_read);
	} else {
		uint64_t value = ((uint64_t)sbvalue[1] << 32) | sbvalue[0];
		log_memory_access64(address, value, size_bytes, is_read);
	}
}

/* Read the relevant sbdata regs depending on size, and put the results into
 * buffer. */
static int read_memory_bus_word(struct target *target, target_addr_t address,
		uint32_t size, uint8_t *buffer)
{
	int result;
	uint32_t sbvalue[4] = { 0 };
	static int sbdata[4] = { DM_SBDATA0, DM_SBDATA1, DM_SBDATA2, DM_SBDATA3 };
	assert(size <= 16);
	for (int i = (size - 1) / 4; i >= 0; i--) {
		result = dm_read(target, &sbvalue[i], sbdata[i]);
		if (result != ERROR_OK)
			return result;
		buf_set_u32(buffer + i * 4, 0, 8 * MIN(size, 4), sbvalue[i]);
	}
	log_memory_access(address, sbvalue, size, true);
	return ERROR_OK;
}

static target_addr_t sb_read_address(struct target *target)
{
	RISCV013_INFO(info);
	unsigned sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
	target_addr_t address = 0;
	uint32_t v;
	if (sbasize > 32) {
		if (dm_read(target, &v, DM_SBADDRESS1) == ERROR_OK)
			address |= v;
		address <<= 32;
	}
	if (dm_read(target, &v, DM_SBADDRESS0) == ERROR_OK)
		address |= v;
	return address;
}

static int read_sbcs_nonbusy(struct target *target, uint32_t *sbcs)
{
	time_t start = time(NULL);
	while (1) {
		if (dm_read(target, sbcs, DM_SBCS) != ERROR_OK)
			return ERROR_FAIL;
		if (!get_field(*sbcs, DM_SBCS_SBBUSY))
			return ERROR_OK;
		if (time(NULL) - start > riscv_command_timeout_sec) {
			LOG_TARGET_ERROR(target, "Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
					"Increase the timeout with riscv set_command_timeout_sec.",
					riscv_command_timeout_sec, *sbcs);
			return ERROR_FAIL;
		}
	}
}

static int modify_privilege(struct target *target, uint64_t *mstatus, uint64_t *mstatus_old)
{
	if (riscv_enable_virtual && has_sufficient_progbuf(target, 5)) {
		/* Read DCSR */
		uint64_t dcsr;
		if (register_read_direct(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
			return ERROR_FAIL;

		/* Read and save MSTATUS */
		if (register_read_direct(target, mstatus, GDB_REGNO_MSTATUS) != ERROR_OK)
			return ERROR_FAIL;
		*mstatus_old = *mstatus;

		/* If we come from m-mode with mprv set, we want to keep mpp */
		if (get_field(dcsr, CSR_DCSR_PRV) < 3) {
			/* MPP = PRIV */
			*mstatus = set_field(*mstatus, MSTATUS_MPP, get_field(dcsr, CSR_DCSR_PRV));

			/* MPRV = 1 */
			*mstatus = set_field(*mstatus, MSTATUS_MPRV, 1);

			/* Write MSTATUS */
			if (*mstatus != *mstatus_old)
				if (register_write_direct(target, GDB_REGNO_MSTATUS, *mstatus) != ERROR_OK)
					return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

static int read_memory_bus_v0(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
	if (size != increment) {
		LOG_TARGET_ERROR(target, "sba v0 reads only support size==increment");
		return ERROR_NOT_IMPLEMENTED;
	}

	LOG_TARGET_DEBUG(target, "System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
			TARGET_PRIxADDR, size, count, address);
	uint8_t *t_buffer = buffer;
	riscv_addr_t cur_addr = address;
	riscv_addr_t fin_addr = address + (count * size);
	uint32_t access = 0;

	const int DM_SBCS_SBSINGLEREAD_OFFSET = 20;
	const uint32_t DM_SBCS_SBSINGLEREAD = (0x1U << DM_SBCS_SBSINGLEREAD_OFFSET);

	const int DM_SBCS_SBAUTOREAD_OFFSET = 15;
	const uint32_t DM_SBCS_SBAUTOREAD = (0x1U << DM_SBCS_SBAUTOREAD_OFFSET);

	/* ww favorise one off reading if there is an issue */
	if (count == 1) {
		for (uint32_t i = 0; i < count; i++) {
			if (dm_read(target, &access, DM_SBCS) != ERROR_OK)
				return ERROR_FAIL;
			dm_write(target, DM_SBADDRESS0, cur_addr);
			/* size/2 matching the bit access of the spec 0.13 */
			access = set_field(access, DM_SBCS_SBACCESS, size/2);
			access = set_field(access, DM_SBCS_SBSINGLEREAD, 1);
			LOG_TARGET_DEBUG(target, "read_memory: sab: access:  0x%08x", access);
			dm_write(target, DM_SBCS, access);
			/* 3) read */
			uint32_t value;
			if (dm_read(target, &value, DM_SBDATA0) != ERROR_OK)
				return ERROR_FAIL;
			LOG_TARGET_DEBUG(target, "read_memory: sab: value:  0x%08x", value);
			buf_set_u32(t_buffer, 0, 8 * size, value);
			t_buffer += size;
			cur_addr += size;
		}
		return ERROR_OK;
	}

	/* has to be the same size if we want to read a block */
	LOG_TARGET_DEBUG(target, "Reading block until final address 0x%" PRIx64, fin_addr);
	if (dm_read(target, &access, DM_SBCS) != ERROR_OK)
		return ERROR_FAIL;
	/* set current address */
	dm_write(target, DM_SBADDRESS0, cur_addr);
	/* 2) write sbaccess=2, sbsingleread,sbautoread,sbautoincrement
	 * size/2 matching the bit access of the spec 0.13 */
	access = set_field(access, DM_SBCS_SBACCESS, size/2);
	access = set_field(access, DM_SBCS_SBAUTOREAD, 1);
	access = set_field(access, DM_SBCS_SBSINGLEREAD, 1);
	access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 1);
	LOG_TARGET_DEBUG(target, "access:  0x%08x", access);
	dm_write(target, DM_SBCS, access);

	while (cur_addr < fin_addr) {
		LOG_TARGET_DEBUG(target, "sab:autoincrement:\r\n\tsize: %d\tcount:%d\taddress: 0x%08"
				PRIx64, size, count, cur_addr);
		/* read */
		uint32_t value;
		if (dm_read(target, &value, DM_SBDATA0) != ERROR_OK)
			return ERROR_FAIL;
		buf_set_u32(t_buffer, 0, 8 * size, value);
		cur_addr += size;
		t_buffer += size;

		/* if we are reaching last address, we must clear autoread */
		if (cur_addr == fin_addr && count != 1) {
			dm_write(target, DM_SBCS, 0);
			if (dm_read(target, &value, DM_SBDATA0) != ERROR_OK)
				return ERROR_FAIL;
			buf_set_u32(t_buffer, 0, 8 * size, value);
		}
	}

	uint32_t sbcs;
	if (dm_read(target, &sbcs, DM_SBCS) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

/**
 * Read the requested memory using the system bus interface.
 */
static int read_memory_bus_v1(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
	if (increment != size && increment != 0) {
		LOG_TARGET_ERROR(target, "sba v1 reads only support increment of size or 0");
		return ERROR_NOT_IMPLEMENTED;
	}

	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;

	RISCV013_INFO(info);
	target_addr_t next_address = address;
	target_addr_t end_address = address + (increment ? count : 1) * size;

	while (next_address < end_address) {
		uint32_t sbcs_write = set_field(0, DM_SBCS_SBREADONADDR, 1);
		sbcs_write |= sb_sbaccess(size);
		if (increment == size)
			sbcs_write = set_field(sbcs_write, DM_SBCS_SBAUTOINCREMENT, 1);
		if (count > 1)
			sbcs_write = set_field(sbcs_write, DM_SBCS_SBREADONDATA, count > 1);
		if (dm_write(target, DM_SBCS, sbcs_write) != ERROR_OK)
			return ERROR_FAIL;

		/* This address write will trigger the first read. */
		if (sb_write_address(target, next_address, true) != ERROR_OK)
			return ERROR_FAIL;

		if (info->bus_master_read_delay) {
			LOG_TARGET_DEBUG(target, "Waiting %d cycles for bus master read delay",
					info->bus_master_read_delay);
			jtag_add_runtest(info->bus_master_read_delay, TAP_IDLE);
			if (jtag_execute_queue() != ERROR_OK) {
				LOG_TARGET_ERROR(target, "Failed to scan idle sequence");
				return ERROR_FAIL;
			}
		}

		/* First read has been started. Optimistically assume that it has
		 * completed. */

		static int sbdata[4] = {DM_SBDATA0, DM_SBDATA1, DM_SBDATA2, DM_SBDATA3};
		uint32_t sbvalue[4] = {0};
		assert(size <= 16);
		target_addr_t next_read = address - 1;
		uint32_t buffer_offset = 0;
		int next_read_j = 0;
		for (uint32_t i = (next_address - address) / size; i < count - 1; i++) {
			for (int j = (size - 1) / 4; j >= 0; j--) {
				unsigned attempt = 0;
				while (1) {
					if (attempt++ > 100) {
						LOG_TARGET_ERROR(target, "DMI keeps being busy in while reading memory"
							" just past " TARGET_ADDR_FMT, next_read);
						return ERROR_FAIL;
					}
					keep_alive();
					dmi_status_t status = dmi_scan(target, NULL, &sbvalue[next_read_j],
								       DMI_OP_READ, sbdata[j] + dm->base, 0, false);
					/* By reading from sbdata0, we have just initiated another system bus read.
					 * If necessary add a delay so the read can finish. */
					if (j == 0 && info->bus_master_read_delay) {
						LOG_TARGET_DEBUG(target, "Waiting %d cycles for bus master read delay",
								info->bus_master_read_delay);
						jtag_add_runtest(info->bus_master_read_delay, TAP_IDLE);
						if (jtag_execute_queue() != ERROR_OK) {
							LOG_TARGET_ERROR(target, "Failed to scan idle sequence");
							return ERROR_FAIL;
						}
					}

					if (status == DMI_STATUS_BUSY)
						increase_dmi_busy_delay(target);
					else if (status == DMI_STATUS_SUCCESS)
						break;
					else
						return ERROR_FAIL;
				}
				if (next_read != address - 1) {
					buf_set_u32(buffer + buffer_offset, 0, 8 * MIN(size, 4), sbvalue[next_read_j]);
					if (next_read_j == 0) {
						log_memory_access(next_read, sbvalue, size, true);
						memset(sbvalue, 0, size);
					}
				}
				next_read_j = j;
				next_read = address + i * increment + next_read_j * 4;
				buffer_offset = i * size + next_read_j * 4;
			}
		}

		uint32_t sbcs_read = 0;
		if (count > 1) {
			unsigned attempt = 0;
			while (1) {
				if (attempt++ > 100) {
					LOG_TARGET_ERROR(target, "DMI keeps being busy in while reading memory"
						" just past " TARGET_ADDR_FMT, next_read);
					return ERROR_FAIL;
				}
				dmi_status_t status = dmi_scan(target, NULL, &sbvalue[0], DMI_OP_NOP, 0, 0, false);
				if (status == DMI_STATUS_BUSY)
					increase_dmi_busy_delay(target);
				else if (status == DMI_STATUS_SUCCESS)
					break;
				else
					return ERROR_FAIL;
			}
			buf_set_u32(buffer + buffer_offset, 0, 8 * MIN(size, 4), sbvalue[0]);
			log_memory_access(next_read, sbvalue, size, true);

			/* "Writes to sbcs while sbbusy is high result in undefined behavior.
			 * A debugger must not write to sbcs until it reads sbbusy as 0." */
			if (read_sbcs_nonbusy(target, &sbcs_read) != ERROR_OK)
				return ERROR_FAIL;

			sbcs_write = set_field(sbcs_write, DM_SBCS_SBREADONDATA, 0);
			if (dm_write(target, DM_SBCS, sbcs_write) != ERROR_OK)
				return ERROR_FAIL;
		}

		/* Read the last word, after we disabled sbreadondata if necessary. */
		if (!get_field(sbcs_read, DM_SBCS_SBERROR) &&
				!get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
			if (read_memory_bus_word(target, address + (count - 1) * increment, size,
						buffer + (count - 1) * size) != ERROR_OK)
				return ERROR_FAIL;

			if (read_sbcs_nonbusy(target, &sbcs_read) != ERROR_OK)
				return ERROR_FAIL;
		}

		if (get_field(sbcs_read, DM_SBCS_SBBUSYERROR)) {
			/* We read while the target was busy. Slow down and try again.
			 * Clear sbbusyerror, as well as readondata or readonaddr. */
			if (dm_write(target, DM_SBCS, DM_SBCS_SBBUSYERROR) != ERROR_OK)
				return ERROR_FAIL;

			if (get_field(sbcs_read, DM_SBCS_SBERROR) == DM_SBCS_SBERROR_NONE) {
				/* Read the address whose read was last completed. */
				next_address = sb_read_address(target);

				/* Read the value for the last address. It's
				 * sitting in the register for us, but we read it
				 * too early (sbbusyerror became set). */
				target_addr_t current_address = next_address - (increment ? size : 0);
				if (read_memory_bus_word(target, current_address, size,
							buffer + current_address - address) != ERROR_OK)
					return ERROR_FAIL;
			}

			info->bus_master_read_delay += info->bus_master_read_delay / 10 + 1;
			LOG_TARGET_DEBUG(target, "Increasing bus_master_read_delay to %d.",
					info->bus_master_read_delay);
			continue;
		}

		unsigned error = get_field(sbcs_read, DM_SBCS_SBERROR);
		if (error == DM_SBCS_SBERROR_NONE) {
			next_address = end_address;
		} else {
			/* Some error indicating the bus access failed, but not because of
			 * something we did wrong. */
			if (dm_write(target, DM_SBCS, DM_SBCS_SBERROR) != ERROR_OK)
				return ERROR_FAIL;
			return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

static void log_mem_access_result(struct target *target, bool success, int method, bool is_read)
{
	RISCV_INFO(r);
	bool warn = false;
	char msg[60];

	/* Compose the message */
	snprintf(msg, 60, "%s to %s memory via %s.",
			success ? "Succeeded" : "Failed",
			is_read ? "read" : "write",
			(method == RISCV_MEM_ACCESS_PROGBUF) ? "program buffer" :
			(method == RISCV_MEM_ACCESS_SYSBUS) ? "system bus" : "abstract access");

	/* Determine the log message severity. Show warnings only once. */
	if (!success) {
		if (method == RISCV_MEM_ACCESS_PROGBUF) {
			warn = r->mem_access_progbuf_warn;
			r->mem_access_progbuf_warn = false;
		}
		if (method == RISCV_MEM_ACCESS_SYSBUS) {
			warn = r->mem_access_sysbus_warn;
			r->mem_access_sysbus_warn = false;
		}
		if (method == RISCV_MEM_ACCESS_ABSTRACT) {
			warn = r->mem_access_abstract_warn;
			r->mem_access_abstract_warn = false;
		}
	}

	if (warn)
		LOG_TARGET_WARNING(target, "%s", msg);
	else
		LOG_TARGET_DEBUG(target, "%s", msg);
}

static bool mem_should_skip_progbuf(struct target *target, target_addr_t address,
		uint32_t size, bool is_read, char **skip_reason)
{
	assert(skip_reason);

	if (!has_sufficient_progbuf(target, 3)) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - insufficient progbuf size.",
				is_read ? "read" : "write");
		*skip_reason = "skipped (insufficient progbuf)";
		return true;
	}
	if (target->state != TARGET_HALTED) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - target not halted.",
				is_read ? "read" : "write");
		*skip_reason = "skipped (target not halted)";
		return true;
	}
	if (riscv_xlen(target) < size * 8) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - XLEN (%d) is too short for %d-bit memory access.",
				is_read ? "read" : "write", riscv_xlen(target), size * 8);
		*skip_reason = "skipped (XLEN too short)";
		return true;
	}
	if (size > 8) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - unsupported size.",
				is_read ? "read" : "write");
		*skip_reason = "skipped (unsupported size)";
		return true;
	}
	if ((sizeof(address) * 8 > riscv_xlen(target)) && (address >> riscv_xlen(target))) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via progbuf - progbuf only supports %u-bit address.",
				is_read ? "read" : "write", riscv_xlen(target));
		*skip_reason = "skipped (too large address)";
		return true;
	}

	return false;
}

static bool mem_should_skip_sysbus(struct target *target, target_addr_t address,
		uint32_t size, uint32_t increment, bool is_read, char **skip_reason)
{
	assert(skip_reason);

	RISCV013_INFO(info);
	if (!sba_supports_access(target, size)) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via system bus - unsupported size.",
				is_read ? "read" : "write");
		*skip_reason = "skipped (unsupported size)";
		return true;
	}
	unsigned int sbasize = get_field(info->sbcs, DM_SBCS_SBASIZE);
	if ((sizeof(address) * 8 > sbasize) && (address >> sbasize)) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via system bus - sba only supports %u-bit address.",
				is_read ? "read" : "write", sbasize);
		*skip_reason = "skipped (too large address)";
		return true;
	}
	if (is_read && increment != size && (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0 || increment != 0)) {
		LOG_TARGET_DEBUG(target, "Skipping mem read via system bus - "
				"sba reads only support size==increment or also size==0 for sba v1.");
		*skip_reason = "skipped (unsupported increment)";
		return true;
	}

	return false;
}

static bool mem_should_skip_abstract(struct target *target, target_addr_t address,
		uint32_t size, uint32_t increment, bool is_read, char **skip_reason)
{
	assert(skip_reason);

	if (size > 8) {
		/* TODO: Add 128b support if it's ever used. Involves modifying
				 read/write_abstract_arg() to work on two 64b values. */
		LOG_TARGET_DEBUG(target, "Skipping mem %s via abstract access - unsupported size: %d bits",
				is_read ? "read" : "write", size * 8);
		*skip_reason = "skipped (unsupported size)";
		return true;
	}
	if ((sizeof(address) * 8 > riscv_xlen(target)) && (address >> riscv_xlen(target))) {
		LOG_TARGET_DEBUG(target, "Skipping mem %s via abstract access - abstract access only supports %u-bit address.",
				is_read ? "read" : "write", riscv_xlen(target));
		*skip_reason = "skipped (too large address)";
		return true;
	}
	if (is_read && size != increment) {
		LOG_TARGET_ERROR(target, "Skipping mem read via abstract access - "
				"abstract command reads only support size==increment.");
		*skip_reason = "skipped (unsupported increment)";
		return true;
	}

	return false;
}

/*
 * Performs a memory read using memory access abstract commands. The read sizes
 * supported are 1, 2, and 4 bytes despite the spec's support of 8 and 16 byte
 * aamsize fields in the memory access abstract command.
 */
static int read_memory_abstract(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
	RISCV013_INFO(info);

	int result = ERROR_OK;
	bool use_aampostincrement = info->has_aampostincrement != YNM_NO;

	LOG_TARGET_DEBUG(target, "Reading %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
			  size, address);

	memset(buffer, 0, count * size);

	/* Convert the size (bytes) to width (bits) */
	unsigned width = size << 3;

	/* Create the command (physical address, postincrement, read) */
	uint32_t command = access_memory_command(target, false, width, use_aampostincrement, false);

	/* Execute the reads */
	uint8_t *p = buffer;
	bool updateaddr = true;
	unsigned int width32 = (width < 32) ? 32 : width;
	for (uint32_t c = 0; c < count; c++) {
		/* Update the address if it is the first time or aampostincrement is not supported by the target. */
		if (updateaddr) {
			/* Set arg1 to the address: address + c * size */
			result = write_abstract_arg(target, 1, address + c * size, riscv_xlen(target));
			if (result != ERROR_OK) {
				LOG_TARGET_ERROR(target, "Failed to write arg1.");
				return result;
			}
		}

		/* Execute the command */
		uint32_t cmderr;
		result = execute_abstract_command(target, command, &cmderr);

		/* TODO: we need to modify error handling here. */
		/* NOTE: in case of timeout cmderr is set to CMDERR_NONE */
		if (info->has_aampostincrement == YNM_MAYBE) {
			if (result == ERROR_OK) {
				/* Safety: double-check that the address was really auto-incremented */
				riscv_reg_t new_address = read_abstract_arg(target, 1, riscv_xlen(target));
				if (new_address == address + size) {
					LOG_TARGET_DEBUG(target, "aampostincrement is supported on this target.");
					info->has_aampostincrement = YNM_YES;
				} else {
					LOG_TARGET_WARNING(target, "Buggy aampostincrement! Address not incremented correctly.");
					info->has_aampostincrement = YNM_NO;
				}
			} else {
				/* Try the same access but with postincrement disabled. */
				command = access_memory_command(target, false, width, false, false);
				result = execute_abstract_command(target, command, &cmderr);
				if (result == ERROR_OK) {
					LOG_TARGET_DEBUG(target, "aampostincrement is not supported on this target.");
					info->has_aampostincrement = YNM_NO;
				}
			}
		}

		if (result != ERROR_OK)
			return result;

		/* Copy arg0 to buffer (rounded width up to nearest 32) */
		riscv_reg_t value = read_abstract_arg(target, 0, width32);
		buf_set_u64(p, 0, 8 * size, value);

		if (info->has_aampostincrement == YNM_YES)
			updateaddr = false;
		p += size;
	}

	return result;
}

/*
 * Performs a memory write using memory access abstract commands. The write
 * sizes supported are 1, 2, and 4 bytes despite the spec's support of 8 and 16
 * byte aamsize fields in the memory access abstract command.
 */
static int write_memory_abstract(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, const uint8_t *buffer)
{
	RISCV013_INFO(info);
	int result = ERROR_OK;
	bool use_aampostincrement = info->has_aampostincrement != YNM_NO;

	LOG_TARGET_DEBUG(target, "writing %d words of %d bytes from 0x%" TARGET_PRIxADDR, count,
			  size, address);

	/* Convert the size (bytes) to width (bits) */
	unsigned width = size << 3;

	/* Create the command (physical address, postincrement, write) */
	uint32_t command = access_memory_command(target, false, width, use_aampostincrement, true);

	/* Execute the writes */
	const uint8_t *p = buffer;
	bool updateaddr = true;
	for (uint32_t c = 0; c < count; c++) {
		/* Move data to arg0 */
		riscv_reg_t value = buf_get_u64(p, 0, 8 * size);
		result = write_abstract_arg(target, 0, value, riscv_xlen(target));
		if (result != ERROR_OK) {
			LOG_TARGET_ERROR(target, "Failed to write arg0.");
			return result;
		}

		/* Update the address if it is the first time or aampostincrement is not supported by the target. */
		if (updateaddr) {
			/* Set arg1 to the address: address + c * size */
			result = write_abstract_arg(target, 1, address + c * size, riscv_xlen(target));
			if (result != ERROR_OK) {
				LOG_TARGET_ERROR(target, "Failed to write arg1.");
				return result;
			}
		}

		/* Execute the command */
		uint32_t cmderr;
		result = execute_abstract_command(target, command, &cmderr);

		/* TODO: we need to modify error handling here. */
		/* NOTE: in case of timeout cmderr is set to CMDERR_NONE */
		if (info->has_aampostincrement == YNM_MAYBE) {
			if (result == ERROR_OK) {
				/* Safety: double-check that the address was really auto-incremented */
				riscv_reg_t new_address = read_abstract_arg(target, 1, riscv_xlen(target));
				if (new_address == address + size) {
					LOG_TARGET_DEBUG(target, "aampostincrement is supported on this target.");
					info->has_aampostincrement = YNM_YES;
				} else {
					LOG_TARGET_WARNING(target, "Buggy aampostincrement! Address not incremented correctly.");
					info->has_aampostincrement = YNM_NO;
				}
			} else {
				/* Try the same access but with postincrement disabled. */
				command = access_memory_command(target, false, width, false, true);
				result = execute_abstract_command(target, command, &cmderr);
				if (result == ERROR_OK) {
					LOG_TARGET_DEBUG(target, "aampostincrement is not supported on this target.");
					info->has_aampostincrement = YNM_NO;
				}
			}
		}

		if (result != ERROR_OK)
			return result;

		if (info->has_aampostincrement == YNM_YES)
			updateaddr = false;
		p += size;
	}

	return result;
}

/**
 * This function is used to start the memory-reading pipeline.
 * The pipeline looks like this:
 * memory -> s1 -> dm_data[0:1] -> debugger
 * Prior to calling it, the program buffer should contain the appropriate
 * program.
 * This function sets DM_ABSTRACTAUTO_AUTOEXECDATA to trigger second stage of the
 * pipeline (s1 -> dm_data[0:1]) whenever dm_data is read.
 */
static int read_memory_progbuf_inner_startup(struct target *target,
		target_addr_t address, uint32_t increment, uint32_t index)
{
	/* s0 holds the next address to read from.
	 * s1 holds the next data value read.
	 * a0 is a counter in case increment is 0.
	 */
	if (register_write_direct(target, GDB_REGNO_S0, address + index * increment)
			!= ERROR_OK)
		return ERROR_FAIL;

	if (/*is_repeated_read*/ increment == 0 &&
			register_write_direct(target, GDB_REGNO_A0, index) != ERROR_OK)
		return ERROR_FAIL;

	/* AC_ACCESS_REGISTER_POSTEXEC is used to trigger first stage of the
	 * pipeline (memory -> s1) whenever this command is executed.
	 */
	const uint32_t startup_command = access_register_command(target,
			GDB_REGNO_S1, riscv_xlen(target),
			AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
	uint32_t cmderr;
	if (execute_abstract_command(target, startup_command, &cmderr) != ERROR_OK)
		return ERROR_FAIL;
	/* TODO: we need to modify error handling here. */
	/* NOTE: in case of timeout cmderr is set to CMDERR_NONE */

	/* First read has just triggered. Result is in s1.
	 * dm_data registers contain the previous value of s1 (garbage).
	 */
	if (dm_write(target, DM_ABSTRACTAUTO,
				set_field(0, DM_ABSTRACTAUTO_AUTOEXECDATA, 1)) != ERROR_OK)
		return ERROR_FAIL;

	/* Read garbage from dm_data0, which triggers another execution of the
	 * program. Now dm_data contains the first good result (from s1),
	 * and s1 the next memory value.
	 */
	if (dm_read_exec(target, NULL, DM_DATA0) != ERROR_OK)
		goto clear_abstractauto_and_fail;

	uint32_t abstractcs;
	if (wait_for_idle(target, &abstractcs) != ERROR_OK)
		goto clear_abstractauto_and_fail;

	cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
	switch (cmderr) {
	case CMDERR_NONE:
		return ERROR_OK;
	case CMDERR_BUSY:
		LOG_TARGET_ERROR(target, "Unexpected busy error. This is probably a hardware bug.");
		/* fall through */
	default:
		LOG_TARGET_DEBUG(target, "error when reading memory, cmderr=0x%" PRIx32, cmderr);
		riscv013_clear_abstract_error(target);
		goto clear_abstractauto_and_fail;
	}
clear_abstractauto_and_fail:
	dm_write(target, DM_ABSTRACTAUTO, 0);
	return ERROR_FAIL;
}

struct memory_access_info {
	uint8_t *buffer_address;
	target_addr_t target_address;
	uint32_t element_size;
	uint32_t increment;
};

/**
 * This function attempts to restore the pipeline after a busy on abstract
 * access.
 * Target's state is as follows:
 * s0 contains address + index_on_target * increment
 * s1 contains mem[address + (index_on_target - 1) * increment]
 * dm_data[0:1] contains mem[address + (index_on_target - 2) * increment]
 */
static int read_memory_progbuf_inner_on_ac_busy(struct target *target,
		uint32_t start_index, uint32_t *elements_read,
		struct memory_access_info access)
{
	increase_ac_busy_delay(target);
	riscv013_clear_abstract_error(target);

	if (dm_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
		return ERROR_FAIL;

	/* See how far we got by reading s0/a0 */
	uint32_t index_on_target;

	if (/*is_repeated_read*/ access.increment == 0) {
		/* s0 is constant, a0 is incremented by one each execution */
		riscv_reg_t counter;

		if (register_read_direct(target, &counter, GDB_REGNO_A0) != ERROR_OK)
			return ERROR_FAIL;
		index_on_target = counter;
	} else {
		target_addr_t address_on_target;

		if (register_read_direct(target, &address_on_target, GDB_REGNO_S0) != ERROR_OK)
			return ERROR_FAIL;
		index_on_target = (address_on_target - access.target_address) /
			access.increment;
	}

	/* According to the spec, if an abstract command fails, one can't make any
	 * assumptions about dm_data registers, so all the values in the pipeline
	 * are clobbered now and need to be reread.
	 */
	const uint32_t min_index_on_target = start_index + 2;
	if (index_on_target < min_index_on_target) {
		LOG_TARGET_ERROR(target, "Arithmetic does not work correctly on the target");
		return ERROR_FAIL;
	} else if (index_on_target == min_index_on_target) {
		LOG_TARGET_DEBUG(target, "No forward progress");
	}
	const uint32_t next_index = (index_on_target - 2);
	*elements_read = next_index - start_index;
	LOG_TARGET_WARNING(target, "Re-reading memory from addresses 0x%"
			TARGET_PRIxADDR " and 0x%" TARGET_PRIxADDR ".",
			access.target_address + access.increment * next_index,
			access.target_address + access.increment * (next_index + 1));
	return read_memory_progbuf_inner_startup(target, access.target_address,
			access.increment, next_index);
}

/**
 * This function attempts to restore the pipeline after a dmi busy.
 */
static int read_memory_progbuf_inner_on_dmi_busy(struct target *target,
		uint32_t start_index, uint32_t next_start_index,
		struct memory_access_info access)
{
	LOG_TARGET_DEBUG(target, "DMI_STATUS_BUSY encountered in batch. Memory read [%"
			PRIu32 ", %" PRIu32 ")", start_index, next_start_index);
	if (start_index == next_start_index)
		LOG_TARGET_DEBUG(target, "No forward progress");

	if (dm_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
		return ERROR_FAIL;
	return read_memory_progbuf_inner_startup(target, access.target_address,
			access.increment, next_start_index);
}

/**
 * This function extracts the data from the batch.
 */
static int read_memory_progbuf_inner_extract_batch_data(struct target *target,
		const struct riscv_batch *batch,
		uint32_t start_index, uint32_t elements_to_read, uint32_t *elements_read,
		struct memory_access_info access)
{
	const bool two_reads_per_element = access.element_size > 4;
	const uint32_t reads_per_element = (two_reads_per_element ? 2 : 1);
	assert(!two_reads_per_element || riscv_xlen(target) == 64);
	assert(elements_to_read <= UINT32_MAX / reads_per_element);
	const uint32_t nreads = elements_to_read * reads_per_element;
	for (uint32_t curr_idx = start_index, read = 0; read < nreads; ++read) {
		switch (riscv_batch_get_dmi_read_op(batch, read)) {
		case DMI_STATUS_BUSY:
			*elements_read = curr_idx - start_index;
			return read_memory_progbuf_inner_on_dmi_busy(target, start_index, curr_idx
					, access);
		case DMI_STATUS_FAILED:
			LOG_TARGET_DEBUG(target,
					"Batch memory read encountered DMI_STATUS_FAILED on read %"
					PRIu32, read);
			return ERROR_FAIL;
		case DMI_STATUS_SUCCESS:
			break;
		default:
			assert(0);
		}
		const uint32_t value = riscv_batch_get_dmi_read_data(batch, read);
		uint8_t * const curr_buff = access.buffer_address +
			curr_idx * access.element_size;
		const target_addr_t curr_addr = access.target_address +
			curr_idx * access.increment;
		const uint32_t size = access.element_size;

		assert(size <= 8);
		const bool is_odd_read = read % 2;

		if (two_reads_per_element && !is_odd_read) {
			buf_set_u32(curr_buff + 4, 0, (size * 8) - 32, value);
			continue;
		}
		const bool is_second_read = two_reads_per_element;

		buf_set_u32(curr_buff, 0, is_second_read ? 32 : (size * 8), value);
		log_memory_access64(curr_addr, buf_get_u64(curr_buff, 0, size * 8),
				size, /*is_read*/ true);
		++curr_idx;
	}
	*elements_read = elements_to_read;
	return ERROR_OK;
}

/**
 * This function reads a batch of elements from memory.
 * Prior to calling this function the folowing conditions should be met:
 * - Appropriate program loaded to program buffer.
 * - DM_ABSTRACTAUTO_AUTOEXECDATA is set.
 */
static int read_memory_progbuf_inner_run_and_process_batch(struct target *target,
		struct riscv_batch *batch, struct memory_access_info access,
		uint32_t start_index, uint32_t elements_to_read, uint32_t *elements_read)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;

	/* Abstract commands are executed while running the batch. */
	dm->abstract_cmd_maybe_busy = true;
	if (batch_run(target, batch) != ERROR_OK)
		return ERROR_FAIL;

	uint32_t abstractcs;
	if (wait_for_idle(target, &abstractcs) != ERROR_OK)
		return ERROR_FAIL;

	uint32_t elements_to_extract_from_batch;

	uint32_t cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
	switch (cmderr) {
	case CMDERR_NONE:
		LOG_TARGET_DEBUG(target, "successful (partial?) memory read [%"
				PRIu32 ", %" PRIu32 ")", start_index, start_index + elements_to_read);
		elements_to_extract_from_batch = elements_to_read;
		break;
	case CMDERR_BUSY:
		LOG_TARGET_DEBUG(target, "memory read resulted in busy response");
		if (read_memory_progbuf_inner_on_ac_busy(target, start_index,
					&elements_to_extract_from_batch, access)
				!= ERROR_OK)
			return ERROR_FAIL;
		break;
	default:
		LOG_TARGET_DEBUG(target, "error when reading memory, cmderr=0x%" PRIx32, cmderr);
		riscv013_clear_abstract_error(target);
		return ERROR_FAIL;
	}

	if (read_memory_progbuf_inner_extract_batch_data(target, batch, start_index,
				elements_to_extract_from_batch, elements_read, access) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

static uint32_t read_memory_progbuf_inner_fill_batch(struct riscv_batch *batch,
		uint32_t count, uint32_t size)
{
	assert(size <= 8);
	const uint32_t two_regs_used[] = {DM_DATA1, DM_DATA0};
	const uint32_t one_reg_used[] = {DM_DATA0};
	const uint32_t reads_per_element = size > 4 ? 2 : 1;
	const uint32_t * const used_regs = size > 4 ? two_regs_used : one_reg_used;
	const uint32_t batch_capacity = riscv_batch_available_scans(batch) / reads_per_element;
	const uint32_t end = MIN(batch_capacity, count);

	for (uint32_t j = 0; j < end; ++j)
		for (uint32_t i = 0; i < reads_per_element; ++i)
			riscv_batch_add_dm_read(batch, used_regs[i]);
	return end;
}

static int read_memory_progbuf_inner_try_to_read(struct target *target,
		struct memory_access_info access, uint32_t *elements_read,
		uint32_t index, uint32_t loop_count)
{
	RISCV013_INFO(info);
	struct riscv_batch *batch = riscv_batch_alloc(target, RISCV_BATCH_ALLOC_SIZE,
			info->dmi_busy_delay + info->ac_busy_delay);
	if (!batch)
		return ERROR_FAIL;

	const uint32_t elements_to_read = read_memory_progbuf_inner_fill_batch(batch,
			loop_count - index, access.element_size);

	int result = read_memory_progbuf_inner_run_and_process_batch(target, batch,
			access, index, elements_to_read, elements_read);
	riscv_batch_free(batch);
	return result;
}

/**
 * read_memory_progbuf_inner_startup() must be called before calling this function
 * with the address argument equal to curr_target_address.
 */
static int read_memory_progbuf_inner_ensure_forward_progress(struct target *target,
		struct memory_access_info access, uint32_t start_index)
{
	LOG_TARGET_DEBUG(target,
			"Executing one loop iteration to ensure forward progress (index=%"
			PRIu32 ")", start_index);
	const target_addr_t curr_target_address = access.target_address +
		start_index * access.increment;
	uint8_t * const curr_buffer_address = access.buffer_address +
		start_index * access.element_size;
	const struct memory_access_info curr_access = {
		.buffer_address = curr_buffer_address,
		.target_address = curr_target_address,
		.element_size = access.element_size,
		.increment = access.increment,
	};
	uint32_t elements_read;
	if (read_memory_progbuf_inner_try_to_read(target, curr_access, &elements_read,
			/*index*/ 0, /*loop_count*/ 1) != ERROR_OK)
		return ERROR_FAIL;

	if (elements_read != 1) {
		assert(elements_read == 0);
		LOG_TARGET_DEBUG(target, "Can not ensure forward progress");
		/* FIXME: Here it would be better to retry the read and fail only if the
		 * delay is greater then some threshold.
		 */
		return ERROR_FAIL;
	}
	return ERROR_OK;
}

static void set_buffer_and_log_read(struct memory_access_info access,
		uint32_t index, uint64_t value)
{
	uint8_t * const buffer = access.buffer_address;
	const uint32_t size = access.element_size;
	const uint32_t increment = access.increment;
	const target_addr_t address = access.target_address;

	assert(size <= 8);
	buf_set_u64(buffer + index * size, 0, 8 * size, value);
	log_memory_access64(address + index * increment, value, size,
			/*is_read*/ true);
}

static int read_word_from_dm_data_regs(struct target *target,
		struct memory_access_info access, uint32_t index)
{
	assert(access.element_size <= 8);
	const uint64_t value = read_abstract_arg(target, /*index*/ 0,
			access.element_size > 4 ? 64 : 32);
	set_buffer_and_log_read(access, index, value);
	return ERROR_OK;
}

static int read_word_from_s1(struct target *target,
		struct memory_access_info access, uint32_t index)
{
	uint64_t value;

	if (register_read_direct(target, &value, GDB_REGNO_S1) != ERROR_OK)
		return ERROR_FAIL;
	set_buffer_and_log_read(access, index, value);
	return ERROR_OK;
}

static int riscv_program_load_mprv(struct riscv_program *p, enum gdb_regno d,
		enum gdb_regno b, int offset, unsigned int size, bool mprven)
{
	if (mprven && riscv_program_csrrsi(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
				GDB_REGNO_DCSR) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_program_load(p, d, b, offset, size) != ERROR_OK)
		return ERROR_FAIL;

	if (mprven && riscv_program_csrrci(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
				GDB_REGNO_DCSR) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

static int read_memory_progbuf_inner_fill_progbuf(struct target *target,
		uint32_t increment, uint32_t size, bool mprven)
{
	const bool is_repeated_read = increment == 0;

	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
		return ERROR_FAIL;
	if (is_repeated_read &&	riscv_save_register(target, GDB_REGNO_A0) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;

	riscv_program_init(&program, target);
	if (riscv_program_load_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0, size,
				mprven) != ERROR_OK)
		return ERROR_FAIL;
	if (is_repeated_read) {
		if (riscv_program_addi(&program, GDB_REGNO_A0, GDB_REGNO_A0, 1)
				!= ERROR_OK)
			return ERROR_FAIL;
	} else {
		if (riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0,
					increment)
				!= ERROR_OK)
			return ERROR_FAIL;
	}
	if (riscv_program_ebreak(&program) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_program_write(&program) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

/**
 * Read the requested memory, taking care to minimize the number of reads and
 * re-read the data only if `abstract command busy` or `DMI busy`
 * is encountered in the process.
 */
static int read_memory_progbuf_inner(struct target *target,
		struct memory_access_info access, uint32_t count, bool mprven)
{
	assert(count > 1 && "If count == 1, read_memory_progbuf_inner_one must be called");

	if (read_memory_progbuf_inner_fill_progbuf(target, access.increment,
				access.element_size, mprven) != ERROR_OK)
		return ERROR_FAIL;

	if (read_memory_progbuf_inner_startup(target, access.target_address,
				access.increment, /*index*/ 0)
			!= ERROR_OK)
		return ERROR_FAIL;
	/* The program in program buffer is executed twice during
	 * read_memory_progbuf_inner_startup().
	 * Here:
	 * dm_data[0:1] == M[address]
	 * s1 == M[address + increment]
	 * s0 == address + increment * 2
	 * `count - 2` program executions are performed in this loop.
	 * No need to execute the program any more, since S1 will already contain
	 * M[address + increment * (count - 1)] and we can read it directly.
	 */
	const uint32_t loop_count = count - 2;

	for (uint32_t index = 0; index < loop_count;) {
		uint32_t elements_read;
		if (read_memory_progbuf_inner_try_to_read(target, access, &elements_read,
					index, loop_count) != ERROR_OK) {
			dm_write(target, DM_ABSTRACTAUTO, 0);
			return ERROR_FAIL;
		}
		if (elements_read == 0) {
			if (read_memory_progbuf_inner_ensure_forward_progress(target, access,
						index) != ERROR_OK) {
				dm_write(target, DM_ABSTRACTAUTO, 0);
				return ERROR_FAIL;
			}
			elements_read = 1;
		}
		index += elements_read;
		assert(index <= loop_count);
	}
	if (dm_write(target, DM_ABSTRACTAUTO, 0) != ERROR_OK)
		return ERROR_FAIL;

	/* Read the penultimate word. */
	if (read_word_from_dm_data_regs(target, access, count - 2)
			!= ERROR_OK)
		return ERROR_FAIL;
	/* Read the last word. */
	return read_word_from_s1(target, access, count - 1);
}

/**
 * Only need to save/restore one GPR to read a single word, and the progbuf
 * program doesn't need to increment.
 */
static int read_memory_progbuf_inner_one(struct target *target,
		struct memory_access_info access, bool mprven)
{
	if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;

	riscv_program_init(&program, target);
	if (riscv_program_load_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S1, 0,
				access.element_size, mprven) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_program_ebreak(&program) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_program_write(&program) != ERROR_OK)
		return ERROR_FAIL;

	/* Write address to S1, and execute buffer. */
	if (write_abstract_arg(target, 0, access.target_address, riscv_xlen(target))
			!= ERROR_OK)
		return ERROR_FAIL;
	uint32_t command = access_register_command(target, GDB_REGNO_S1,
			riscv_xlen(target), AC_ACCESS_REGISTER_WRITE |
			AC_ACCESS_REGISTER_TRANSFER | AC_ACCESS_REGISTER_POSTEXEC);
	uint32_t cmderr;
	if (execute_abstract_command(target, command, &cmderr) != ERROR_OK)
		return ERROR_FAIL;

	return read_word_from_s1(target, access, 0);
}

/**
 * Read the requested memory, silently handling memory access errors.
 */
static int read_memory_progbuf(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
	if (riscv_xlen(target) < size * 8) {
		LOG_TARGET_ERROR(target, "XLEN (%d) is too short for %"
				PRIu32 "-bit memory read.", riscv_xlen(target), size * 8);
		return ERROR_FAIL;
	}

	LOG_TARGET_DEBUG(target, "reading %" PRIu32 " elements of %" PRIu32
			" bytes from 0x%" TARGET_PRIxADDR, count, size, address);

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	select_dmi(target);

	memset(buffer, 0, count*size);

	if (execute_fence(target) != ERROR_OK)
		return ERROR_FAIL;

	uint64_t mstatus = 0;
	uint64_t mstatus_old = 0;
	if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
		return ERROR_FAIL;

	const bool mprven = riscv_enable_virtual && get_field(mstatus, MSTATUS_MPRV);
	const struct memory_access_info access = {
		.target_address = address,
		.increment = increment,
		.buffer_address = buffer,
		.element_size = size,
	};
	int result = (count == 1) ?
		read_memory_progbuf_inner_one(target, access, mprven) :
		read_memory_progbuf_inner(target, access, count, mprven);

	if (mstatus != mstatus_old &&
			register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old) != ERROR_OK)
		return ERROR_FAIL;

	return result;
}

static int read_memory(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, uint8_t *buffer, uint32_t increment)
{
	if (count == 0)
		return ERROR_OK;

	if (size != 1 && size != 2 && size != 4 && size != 8 && size != 16) {
		LOG_TARGET_ERROR(target, "BUG: Unsupported size for memory read: %d", size);
		return ERROR_FAIL;
	}

	int ret = ERROR_FAIL;
	RISCV_INFO(r);
	RISCV013_INFO(info);

	char *progbuf_result = "disabled";
	char *sysbus_result = "disabled";
	char *abstract_result = "disabled";

	for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
		int method = r->mem_access_methods[i];

		if (method == RISCV_MEM_ACCESS_PROGBUF) {
			if (mem_should_skip_progbuf(target, address, size, true, &progbuf_result))
				continue;

			ret = read_memory_progbuf(target, address, size, count, buffer, increment);

			if (ret != ERROR_OK)
				progbuf_result = "failed";
		} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
			if (mem_should_skip_sysbus(target, address, size, increment, true, &sysbus_result))
				continue;

			if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0)
				ret = read_memory_bus_v0(target, address, size, count, buffer, increment);
			else if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 1)
				ret = read_memory_bus_v1(target, address, size, count, buffer, increment);

			if (ret != ERROR_OK)
				sysbus_result = "failed";
		} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
			if (mem_should_skip_abstract(target, address, size, increment, true, &abstract_result))
				continue;

			ret = read_memory_abstract(target, address, size, count, buffer, increment);

			if (ret != ERROR_OK)
				abstract_result = "failed";
		} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
			/* No further mem access method to try. */
			break;

		log_mem_access_result(target, ret == ERROR_OK, method, true);

		if (ret == ERROR_OK)
			return ret;
	}

	LOG_TARGET_ERROR(target, "Failed to read memory (addr=0x%" PRIx64 ")", address);
	LOG_TARGET_ERROR(target, "  progbuf=%s, sysbus=%s, abstract=%s", progbuf_result, sysbus_result, abstract_result);
	return ret;
}

static int write_memory_bus_v0(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, const uint8_t *buffer)
{
	/*1) write sbaddress: for singlewrite and autoincrement, we need to write the address once*/
	LOG_TARGET_DEBUG(target, "System Bus Access: size: %d\tcount:%d\tstart address: 0x%08"
			TARGET_PRIxADDR, size, count, address);
	dm_write(target, DM_SBADDRESS0, address);
	int64_t value = 0;
	int64_t access = 0;
	riscv_addr_t offset = 0;
	riscv_addr_t t_addr = 0;
	const uint8_t *t_buffer = buffer + offset;

	/* B.8 Writing Memory, single write check if we write in one go */
	if (count == 1) { /* count is in bytes here */
		value = buf_get_u64(t_buffer, 0, 8 * size);

		access = 0;
		access = set_field(access, DM_SBCS_SBACCESS, size/2);
		dm_write(target, DM_SBCS, access);
		LOG_TARGET_DEBUG(target, "  access:  0x%08" PRIx64, access);
		LOG_TARGET_DEBUG(target, "  write_memory:SAB: ONE OFF: value 0x%08" PRIx64, value);
		dm_write(target, DM_SBDATA0, value);
		return ERROR_OK;
	}

	/*B.8 Writing Memory, using autoincrement*/

	access = 0;
	access = set_field(access, DM_SBCS_SBACCESS, size/2);
	access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 1);
	LOG_TARGET_DEBUG(target, "  access:  0x%08" PRIx64, access);
	dm_write(target, DM_SBCS, access);

	/*2)set the value according to the size required and write*/
	for (riscv_addr_t i = 0; i < count; ++i) {
		offset = size*i;
		/* for monitoring only */
		t_addr = address + offset;
		t_buffer = buffer + offset;

		value = buf_get_u64(t_buffer, 0, 8 * size);
		LOG_TARGET_DEBUG(target, "SAB:autoincrement: expected address: 0x%08x value: 0x%08x"
				PRIx64, (uint32_t)t_addr, (uint32_t)value);
		dm_write(target, DM_SBDATA0, value);
	}
	/*reset the autoincrement when finished (something weird is happening if this is not done at the end*/
	access = set_field(access, DM_SBCS_SBAUTOINCREMENT, 0);
	dm_write(target, DM_SBCS, access);

	return ERROR_OK;
}

static int write_memory_bus_v1(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, const uint8_t *buffer)
{
	RISCV013_INFO(info);
	uint32_t sbcs = sb_sbaccess(size);
	sbcs = set_field(sbcs, DM_SBCS_SBAUTOINCREMENT, 1);
	dm_write(target, DM_SBCS, sbcs);

	target_addr_t next_address = address;
	target_addr_t end_address = address + count * size;

	int result;

	sb_write_address(target, next_address, true);
	while (next_address < end_address) {
		LOG_TARGET_DEBUG(target, "Transferring burst starting at address 0x%" TARGET_PRIxADDR,
				next_address);

		struct riscv_batch *batch = riscv_batch_alloc(
				target,
				RISCV_BATCH_ALLOC_SIZE,
				info->dmi_busy_delay + info->bus_master_write_delay);
		if (!batch)
			return ERROR_FAIL;

		for (uint32_t i = (next_address - address) / size; i < count; i++) {
			const uint8_t *p = buffer + i * size;

			if (riscv_batch_available_scans(batch) < (size + 3) / 4)
				break;

			uint32_t sbvalue[4] = { 0 };
			if (size > 12) {
				sbvalue[3] = ((uint32_t)p[12]) |
						(((uint32_t)p[13]) << 8) |
						(((uint32_t)p[14]) << 16) |
						(((uint32_t)p[15]) << 24);
				riscv_batch_add_dm_write(batch, DM_SBDATA3, sbvalue[3], false);
			}

			if (size > 8) {
				sbvalue[2] = ((uint32_t)p[8]) |
						(((uint32_t)p[9]) << 8) |
						(((uint32_t)p[10]) << 16) |
						(((uint32_t)p[11]) << 24);
				riscv_batch_add_dm_write(batch, DM_SBDATA2, sbvalue[2], false);
			}
			if (size > 4) {
				sbvalue[1] = ((uint32_t)p[4]) |
						(((uint32_t)p[5]) << 8) |
						(((uint32_t)p[6]) << 16) |
						(((uint32_t)p[7]) << 24);
				riscv_batch_add_dm_write(batch, DM_SBDATA1, sbvalue[1], false);
			}

			sbvalue[0] = p[0];
			if (size > 2) {
				sbvalue[0] |= ((uint32_t)p[2]) << 16;
				sbvalue[0] |= ((uint32_t)p[3]) << 24;
			}
			if (size > 1)
				sbvalue[0] |= ((uint32_t)p[1]) << 8;

			riscv_batch_add_dm_write(batch, DM_SBDATA0, sbvalue[0], false);

			log_memory_access(address + i * size, sbvalue, size, false);

			next_address += size;
		}

		/* Execute the batch of writes */
		result = batch_run(target, batch);
		riscv_batch_free(batch);
		if (result != ERROR_OK)
			return result;

		/* Read sbcs value.
		 * At the same time, detect if DMI busy has occurred during the batch write. */
		bool dmi_busy_encountered;
		if (dm_op(target, &sbcs, &dmi_busy_encountered, DMI_OP_READ,
				DM_SBCS, 0, false, true) != ERROR_OK)
			return ERROR_FAIL;
		if (dmi_busy_encountered)
			LOG_TARGET_DEBUG(target, "DMI busy encountered during system bus write.");

		/* Wait until sbbusy goes low */
		time_t start = time(NULL);
		while (get_field(sbcs, DM_SBCS_SBBUSY)) {
			if (time(NULL) - start > riscv_command_timeout_sec) {
				LOG_TARGET_ERROR(target, "Timed out after %ds waiting for sbbusy to go low (sbcs=0x%x). "
						  "Increase the timeout with riscv set_command_timeout_sec.",
						  riscv_command_timeout_sec, sbcs);
				return ERROR_FAIL;
			}
			if (dm_read(target, &sbcs, DM_SBCS) != ERROR_OK)
				return ERROR_FAIL;
		}

		if (get_field(sbcs, DM_SBCS_SBBUSYERROR)) {
			/* We wrote while the target was busy. */
			LOG_TARGET_DEBUG(target, "Sbbusyerror encountered during system bus write.");
			/* Clear the sticky error flag. */
			dm_write(target, DM_SBCS, sbcs | DM_SBCS_SBBUSYERROR);
			/* Slow down before trying again. */
			info->bus_master_write_delay += info->bus_master_write_delay / 10 + 1;
		}

		if (get_field(sbcs, DM_SBCS_SBBUSYERROR) || dmi_busy_encountered) {
			/* Recover from the case when the write commands were issued too fast.
			 * Determine the address from which to resume writing. */
			next_address = sb_read_address(target);
			if (next_address < address) {
				/* This should never happen, probably buggy hardware. */
				LOG_TARGET_DEBUG(target, "unexpected sbaddress=0x%" TARGET_PRIxADDR
						  " - buggy sbautoincrement in hw?", next_address);
				/* Fail the whole operation. */
				return ERROR_FAIL;
			}
			/* Try again - resume writing. */
			continue;
		}

		unsigned int sberror = get_field(sbcs, DM_SBCS_SBERROR);
		if (sberror != 0) {
			/* Sberror indicates the bus access failed, but not because we issued the writes
			 * too fast. Cannot recover. Sbaddress holds the address where the error occurred
			 * (unless sbautoincrement in the HW is buggy).
			 */
			target_addr_t sbaddress = sb_read_address(target);
			LOG_TARGET_DEBUG(target, "System bus access failed with sberror=%u (sbaddress=0x%" TARGET_PRIxADDR ")",
					  sberror, sbaddress);
			if (sbaddress < address) {
				/* This should never happen, probably buggy hardware.
				 * Make a note to the user not to trust the sbaddress value. */
				LOG_TARGET_DEBUG(target, "unexpected sbaddress=0x%" TARGET_PRIxADDR
						  " - buggy sbautoincrement in hw?", next_address);
			}
			/* Clear the sticky error flag */
			dm_write(target, DM_SBCS, DM_SBCS_SBERROR);
			/* Fail the whole operation */
			return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

/**
 * This function is used to start the memory-writing pipeline.
 * As part of the process, the function writes the first item and waits for completion,
 * so forward progress is ensured.
 * The pipeline looks like this:
 * debugger -> dm_data[0:1] -> s1 -> memory
 * Prior to calling it, the program buffer should contain the appropriate
 * program.
 * This function sets DM_ABSTRACTAUTO_AUTOEXECDATA to trigger second stage of the
 * pipeline (dm_data[0:1] -> s1) whenever dm_data is written.
 */
static int write_memory_progbuf_startup(struct target *target, target_addr_t *address_p,
		const uint8_t *buffer, uint32_t size)
{
	/* TODO: There is potential to gain some performance if the operations below are
	 * executed inside the first DMI batch (not separately). */
	if (register_write_direct(target, GDB_REGNO_S0, *address_p) != ERROR_OK)
		return ERROR_FAIL;

	/* Write the first item to data0 [, data1] */
	assert(size <= 8);
	const uint64_t value = buf_get_u64(buffer, 0, 8 * size);
	if (write_abstract_arg(target, /*index*/ 0, value, size > 4 ? 64 : 32)
			!= ERROR_OK)
		return ERROR_FAIL;

	/* Write and execute command that moves the value from data0 [, data1]
	 * into S1 and executes program buffer. */
	uint32_t command = access_register_command(target,
			GDB_REGNO_S1, riscv_xlen(target),
			AC_ACCESS_REGISTER_POSTEXEC |
			AC_ACCESS_REGISTER_TRANSFER |
			AC_ACCESS_REGISTER_WRITE);

	uint32_t cmderr;
	if (execute_abstract_command(target, command, &cmderr) != ERROR_OK)
		return ERROR_FAIL;

	log_memory_access64(*address_p, value, size, /*is_read*/ false);

	/* The execution of the command succeeded, which means:
	 * - write of the first item to memory succeeded
	 * - address on the target (S0) was incremented
	 */
	*address_p += size;

	/* TODO: Setting abstractauto.autoexecdata is not necessary for a write
	 * of one element. */
	return dm_write(target, DM_ABSTRACTAUTO,
			1 << DM_ABSTRACTAUTO_AUTOEXECDATA_OFFSET);
}

/**
 * This function reverts the changes made by `write_memory_progbuf_startup()`
 */
static int write_memory_progbuf_teardown(struct target *target)
{
	return dm_write(target, DM_ABSTRACTAUTO, 0);
}

/**
 * This function attempts to restore the pipeline after a busy on abstract
 * access or a DMI busy by reading the content of s0 -- the address of the
 * failed write.
 */
static int write_memory_progbuf_handle_busy(struct target *target,
		target_addr_t *address_p, uint32_t size, const uint8_t *buffer)
{
	riscv013_clear_abstract_error(target);
	increase_ac_busy_delay(target);

	if (write_memory_progbuf_teardown(target) != ERROR_OK)
		return ERROR_FAIL;

	target_addr_t address_on_target;
	if (register_read_direct(target, &address_on_target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;
	const uint8_t * const curr_buff = buffer + (address_on_target - *address_p);
	LOG_TARGET_DEBUG(target, "Restarting from 0x%" TARGET_PRIxADDR, *address_p);
	*address_p = address_on_target;
	/* This restores the pipeline and ensures one item gets reliably written */
	return write_memory_progbuf_startup(target, address_p, curr_buff, size);
}

/**
 * This function fills the batch with DMI writes (but does not execute the batch).
 * It returns the next address -- the address that will be the start of the next batch.
 */
static target_addr_t write_memory_progbuf_fill_batch(struct riscv_batch *batch,
		target_addr_t start_address, target_addr_t end_address, uint32_t size,
		const uint8_t *buffer)
{
	assert(size <= 8);
	const unsigned int writes_per_element = size > 4 ? 2 : 1;
	const size_t batch_capacity = riscv_batch_available_scans(batch) / writes_per_element;
	/* This is safe even for the edge case when writing at the very top of
	 * the 64-bit address space (in which case end_address overflows to 0).
	 */
	const target_addr_t batch_end_address = start_address +
		MIN((target_addr_t)batch_capacity * size,
				end_address - start_address);
	for (target_addr_t address = start_address; address != batch_end_address;
			address += size, buffer += size) {
		assert(size <= 8);
		const uint64_t value = buf_get_u64(buffer, 0, 8 * size);
		log_memory_access64(address, value, size, /*is_read*/ false);
		if (writes_per_element == 2)
			riscv_batch_add_dm_write(batch, DM_DATA1,
					(uint32_t)(value >> 32), false);
		riscv_batch_add_dm_write(batch, DM_DATA0, (uint32_t)value, false);
	}
	return batch_end_address;
}

/**
 * This function runs the batch of writes and updates address_p with the
 * address of the next write.
 */
static int write_memory_progbuf_run_batch(struct target *target, struct riscv_batch *batch,
		target_addr_t *address_p, target_addr_t end_address, uint32_t size,
		const uint8_t *buffer)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;

	/* Abstract commands are executed while running the batch. */
	dm->abstract_cmd_maybe_busy = true;
	if (batch_run(target, batch) != ERROR_OK)
		return ERROR_FAIL;

	/* Note that if the scan resulted in a Busy DMI response, it
	 * is this call to wait_for_idle() that will cause the dmi_busy_delay
	 * to be incremented if necessary. */
	uint32_t abstractcs;

	if (wait_for_idle(target, &abstractcs) != ERROR_OK)
		return ERROR_FAIL;

	uint32_t cmderr = get_field32(abstractcs, DM_ABSTRACTCS_CMDERR);
	const bool dmi_busy_encountered = riscv_batch_dmi_busy_encountered(batch);
	if (cmderr == CMDERR_NONE && !dmi_busy_encountered) {
		LOG_TARGET_DEBUG(target, "Successfully written memory block M[0x%" TARGET_PRIxADDR
				".. 0x%" TARGET_PRIxADDR ")", *address_p, end_address);
		*address_p = end_address;
		return ERROR_OK;
	} else if (cmderr == CMDERR_BUSY || dmi_busy_encountered) {
		if (cmderr == CMDERR_BUSY)
			LOG_TARGET_DEBUG(target, "Encountered abstract command busy response while writing block M[0x%"
					TARGET_PRIxADDR ".. 0x%" TARGET_PRIxADDR ")", *address_p, end_address);
		if (dmi_busy_encountered)
			LOG_TARGET_DEBUG(target, "Encountered DMI busy response while writing block M[0x%"
					TARGET_PRIxADDR ".. 0x%" TARGET_PRIxADDR ")", *address_p, end_address);
		/* TODO: If dmi busy is encountered, the address of the last
		 * successful write can be deduced by analysing the batch.
		 */
		return write_memory_progbuf_handle_busy(target, address_p, size, buffer);
	}
	LOG_TARGET_ERROR(target, "Error when writing memory, abstractcs=0x%" PRIx32,
			abstractcs);
	riscv013_clear_abstract_error(target);
	return ERROR_FAIL;
}

static int write_memory_progbuf_try_to_write(struct target *target,
		target_addr_t *address_p, target_addr_t end_address, uint32_t size,
		const uint8_t *buffer)
{
	RISCV013_INFO(info);
	struct riscv_batch * const batch = riscv_batch_alloc(target, RISCV_BATCH_ALLOC_SIZE,
			info->dmi_busy_delay + info->ac_busy_delay);
	if (!batch)
		return ERROR_FAIL;

	const target_addr_t batch_end_addr = write_memory_progbuf_fill_batch(batch,
			*address_p, end_address, size, buffer);

	int result = write_memory_progbuf_run_batch(target, batch, address_p,
			batch_end_addr, size, buffer);
	riscv_batch_free(batch);
	return result;
}

static int riscv_program_store_mprv(struct riscv_program *p, enum gdb_regno d,
		enum gdb_regno b, int offset, unsigned int size, bool mprven)
{
	if (mprven && riscv_program_csrrsi(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
				GDB_REGNO_DCSR) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_program_store(p, d, b, offset, size) != ERROR_OK)
		return ERROR_FAIL;

	if (mprven && riscv_program_csrrci(p, GDB_REGNO_ZERO, CSR_DCSR_MPRVEN,
				GDB_REGNO_DCSR) != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

static int write_memory_progbuf_fill_progbuf(struct target *target,
		uint32_t size, bool mprven)
{
	if (riscv_save_register(target, GDB_REGNO_S0) != ERROR_OK)
		return ERROR_FAIL;
	if (riscv_save_register(target, GDB_REGNO_S1) != ERROR_OK)
		return ERROR_FAIL;

	struct riscv_program program;

	riscv_program_init(&program, target);
	if (riscv_program_store_mprv(&program, GDB_REGNO_S1, GDB_REGNO_S0, 0, size,
				mprven) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_program_addi(&program, GDB_REGNO_S0, GDB_REGNO_S0, size) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_program_ebreak(&program) != ERROR_OK)
		return ERROR_FAIL;

	return riscv_program_write(&program);
}

static int write_memory_progbuf_inner(struct target *target, target_addr_t start_addr,
		uint32_t size, uint32_t count, const uint8_t *buffer, bool mprven)
{
	if (write_memory_progbuf_fill_progbuf(target, size,
				mprven) != ERROR_OK)
		return ERROR_FAIL;

	target_addr_t addr_on_target = start_addr;
	if (write_memory_progbuf_startup(target, &addr_on_target, buffer, size) != ERROR_OK)
		return ERROR_FAIL;

	const target_addr_t end_addr = start_addr + (target_addr_t)size * count;

	for (target_addr_t next_addr_on_target = addr_on_target; addr_on_target != end_addr;
			addr_on_target = next_addr_on_target) {
		const uint8_t * const curr_buff = buffer + (addr_on_target - start_addr);
		if (write_memory_progbuf_try_to_write(target, &next_addr_on_target,
					end_addr, size, curr_buff) != ERROR_OK) {
			write_memory_progbuf_teardown(target);
			return ERROR_FAIL;
		}
		/* write_memory_progbuf_try_to_write() ensures that at least one item
		 * gets successfully written even when busy condition is encountered.
		 * These assertions shuld hold when next_address_on_target overflows. */
		assert(next_addr_on_target - addr_on_target > 0);
		assert(next_addr_on_target - start_addr <= (target_addr_t)size * count);
	}

	return write_memory_progbuf_teardown(target);
}

static int write_memory_progbuf(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, const uint8_t *buffer)
{
	if (riscv_xlen(target) < size * 8) {
		LOG_TARGET_ERROR(target, "XLEN (%u) is too short for %" PRIu32 "-bit memory write.",
				riscv_xlen(target), size * 8);
		return ERROR_FAIL;
	}

	LOG_TARGET_DEBUG(target, "writing %" PRIu32 " words of %" PRIu32
			" bytes to 0x%" TARGET_PRIxADDR, count, size, address);

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	uint64_t mstatus = 0;
	uint64_t mstatus_old = 0;
	if (modify_privilege(target, &mstatus, &mstatus_old) != ERROR_OK)
		return ERROR_FAIL;

	const bool mprven = riscv_enable_virtual && get_field(mstatus, MSTATUS_MPRV);

	int result = write_memory_progbuf_inner(target, address, size, count, buffer, mprven);

	/* Restore MSTATUS */
	if (mstatus != mstatus_old)
		if (register_write_direct(target, GDB_REGNO_MSTATUS, mstatus_old))
			return ERROR_FAIL;

	if (execute_fence(target) != ERROR_OK)
		return ERROR_FAIL;

	return result;
}

static int write_memory(struct target *target, target_addr_t address,
		uint32_t size, uint32_t count, const uint8_t *buffer)
{
	if (size != 1 && size != 2 && size != 4 && size != 8 && size != 16) {
		LOG_TARGET_ERROR(target, "BUG: Unsupported size for memory write: %d", size);
		return ERROR_FAIL;
	}

	int ret = ERROR_FAIL;
	RISCV_INFO(r);
	RISCV013_INFO(info);

	char *progbuf_result = "disabled";
	char *sysbus_result = "disabled";
	char *abstract_result = "disabled";

	for (unsigned int i = 0; i < RISCV_NUM_MEM_ACCESS_METHODS; i++) {
		int method = r->mem_access_methods[i];

		if (method == RISCV_MEM_ACCESS_PROGBUF) {
			if (mem_should_skip_progbuf(target, address, size, false, &progbuf_result))
				continue;

			ret = write_memory_progbuf(target, address, size, count, buffer);

			if (ret != ERROR_OK)
				progbuf_result = "failed";
		} else if (method == RISCV_MEM_ACCESS_SYSBUS) {
			if (mem_should_skip_sysbus(target, address, size, 0, false, &sysbus_result))
				continue;

			if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 0)
				ret = write_memory_bus_v0(target, address, size, count, buffer);
			else if (get_field(info->sbcs, DM_SBCS_SBVERSION) == 1)
				ret = write_memory_bus_v1(target, address, size, count, buffer);

			if (ret != ERROR_OK)
				sysbus_result = "failed";
		} else if (method == RISCV_MEM_ACCESS_ABSTRACT) {
			if (mem_should_skip_abstract(target, address, size, 0, false, &abstract_result))
				continue;

			ret = write_memory_abstract(target, address, size, count, buffer);

			if (ret != ERROR_OK)
				abstract_result = "failed";
		} else if (method == RISCV_MEM_ACCESS_UNSPECIFIED)
			/* No further mem access method to try. */
			break;

		log_mem_access_result(target, ret == ERROR_OK, method, false);

		if (ret == ERROR_OK)
			return ret;
	}

	LOG_TARGET_ERROR(target, "Target %s: Failed to write memory (addr=0x%" PRIx64 ")", target_name(target), address);
	LOG_TARGET_ERROR(target, "  progbuf=%s, sysbus=%s, abstract=%s", progbuf_result, sysbus_result, abstract_result);
	return ret;
}

static int arch_state(struct target *target)
{
	return ERROR_OK;
}

struct target_type riscv013_target = {
	.name = "riscv",

	.init_target = init_target,
	.deinit_target = deinit_target,
	.examine = examine,

	.poll = &riscv_openocd_poll,
	.halt = &riscv_halt,
	.step = &riscv_openocd_step,

	.assert_reset = assert_reset,
	.deassert_reset = deassert_reset,

	.write_memory = write_memory,

	.arch_state = arch_state
};

/*** 0.13-specific implementations of various RISC-V helper functions. ***/
static int riscv013_get_register(struct target *target,
		riscv_reg_t *value, enum gdb_regno rid)
{
	/* It would be beneficial to move this redirection to the
	 * version-independent section, but there is a conflict:
	 * `dcsr[5]` is `dcsr.v` in current spec, but it is `dcsr.debugint` in 0.11.
	 */
	if (rid == GDB_REGNO_PRIV) {
		uint64_t dcsr;
		if (riscv_get_register(target, &dcsr, GDB_REGNO_DCSR) != ERROR_OK)
			return ERROR_FAIL;
		*value = set_field(0, VIRT_PRIV_V, get_field(dcsr, CSR_DCSR_V));
		*value = set_field(*value, VIRT_PRIV_PRV, get_field(dcsr, CSR_DCSR_PRV));
		return ERROR_OK;
	}

	LOG_TARGET_DEBUG(target, "reading register %s",	gdb_regno_name(target, rid));

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	if (register_read_direct(target, value, rid) != ERROR_OK) {
		*value = -1;
		return ERROR_FAIL;
	}

	return ERROR_OK;
}

static int riscv013_set_register(struct target *target, enum gdb_regno rid,
		riscv_reg_t value)
{
	LOG_TARGET_DEBUG(target, "writing 0x%" PRIx64 " to register %s",
			value, gdb_regno_name(target, rid));

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	return register_write_direct(target, rid, value);
}

static int dm013_select_hart(struct target *target, int hart_index)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	if (hart_index == dm->current_hartid)
		return ERROR_OK;

	/* `hartsel` should not be changed if `abstractcs.busy` is set. */
	int result = wait_for_idle_if_needed(target);
	if (result != ERROR_OK)
		return result;

	uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE;
	dmcontrol = set_dmcontrol_hartsel(dmcontrol, hart_index);
	if (dm_write(target, DM_DMCONTROL, dmcontrol) != ERROR_OK) {
		/* Who knows what the state is? */
		dm->current_hartid = HART_INDEX_UNKNOWN;
		return ERROR_FAIL;
	}
	dm->current_hartid = hart_index;
	return ERROR_OK;
}

static int riscv013_halt_prep(struct target *target)
{
	LOG_TARGET_DEBUG(target, "grouping hart");

	if (target->smp) {
		/* Let's make sure that all non-halted harts are in the same halt group */
		riscv013_info_t *info = get_info(target);
		if (info->haltgroup_supported) {
			if (dm013_select_target(target) != ERROR_OK)
				return ERROR_FAIL;
			bool supported;
			if (set_group(target, &supported, target->smp, HALT_GROUP) != ERROR_OK)
				return ERROR_FAIL;
			if (!supported)
				LOG_TARGET_ERROR(target, "Couldn't place hart %d in halt group %d. "
							 "Some harts may be unexpectedly halted.", target->coreid, target->smp);
		}
	}

	return ERROR_OK;
}

static int riscv013_halt_go(struct target *target)
{
	LOG_TARGET_DEBUG(target, "halting hart");

	if (dm013_select_target(target) != ERROR_OK) {
		return ERROR_FAIL;
	}
	if (target->smp) {
		/* Let's make sure that harts we want to halt are placed in another group */
		riscv013_info_t *info = get_info(target);
		if (info->haltgroup_supported) {
			bool supported;
			if (set_group(target, &supported, 0, HALT_GROUP) != ERROR_OK)
				return ERROR_FAIL;
			if (!supported)
				LOG_TARGET_ERROR(target, "Couldn't place hart in halt group 0. "
							 "Some harts may be unexpectedly halted.");
		}
	}

	int result = riscv013_halt_target(target);
	if (result == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	else if (result != ERROR_OK)
		return ERROR_FAIL;

	return ERROR_OK;
}

static int riscv013_halt_target(struct target *target)
{
	LOG_TARGET_DEBUG(target, "halting one hart");

	/* `haltreq` should not be issued if `abstractcs.busy` is set. */
	int result = wait_for_idle_if_needed(target);
	if (result != ERROR_OK)
		return result;

	dm013_info_t *dm = get_dm(target);
	/* Issue the halt command, and then wait for the current hart to halt. */
	uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_HALTREQ;
	dmcontrol = set_dmcontrol_hartsel(dmcontrol, dm->current_hartid);
	dm_write(target, DM_DMCONTROL, dmcontrol);
	uint32_t dmstatus;
	for (size_t i = 0; i < 256; ++i) {
		if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
			return ERROR_FAIL;
		/* When hart is not running, there's no point in continuing this loop. */
		if (!get_field(dmstatus, DM_DMSTATUS_ANYRUNNING))
			break;
	}

	/* We declare success if hart is not running. It may be unavailable, though. */

	if ((get_field(dmstatus, DM_DMSTATUS_ANYRUNNING))) {
		if (dm_read(target, &dmcontrol, DM_DMCONTROL) != ERROR_OK)
			return ERROR_FAIL;

		LOG_TARGET_ERROR(target, "Unable to halt. dmcontrol=0x%08x, dmstatus=0x%08x",
				  dmcontrol, dmstatus);
		return ERROR_FAIL;
	}

	dmcontrol = set_field(dmcontrol, DM_DMCONTROL_HALTREQ, 0);
	dm_write(target, DM_DMCONTROL, dmcontrol);

	/* Set state for the current target based on its dmstatus. */
	if (get_field(dmstatus, DM_DMSTATUS_ALLHALTED)) {
		target->state = TARGET_HALTED;
		if (target->debug_reason == DBG_REASON_NOTHALTED)
			target->debug_reason = DBG_REASON_DBGRQ;
	} else if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
		target->state = TARGET_UNAVAILABLE;
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	return ERROR_OK;
}

static int riscv013_resume_go(struct target *target)
{
	return riscv013_step_or_resume_current_hart(target, false);
}

static int riscv013_step_current_hart(struct target *target)
{
	return riscv013_step_or_resume_current_hart(target, true);
}

static int riscv013_resume_prep(struct target *target)
{
	assert(target->state == TARGET_HALTED);
	return riscv013_on_step_or_resume(target, false, false);
}

static int riscv013_on_step(struct target *target)
{
	return riscv013_on_step_or_resume(target, false, true);
}

static enum riscv_halt_reason riscv013_halt_reason(struct target *target)
{
	riscv_reg_t dcsr;
	int result = register_read_direct(target, &dcsr, GDB_REGNO_DCSR);
	if (result != ERROR_OK)
		return RISCV_HALT_UNKNOWN;

	LOG_TARGET_DEBUG(target, "dcsr.cause: 0x%" PRIx64, get_field(dcsr, CSR_DCSR_CAUSE));

	switch (get_field(dcsr, CSR_DCSR_CAUSE)) {
	case CSR_DCSR_CAUSE_EBREAK:
		return RISCV_HALT_EBREAK;
	case CSR_DCSR_CAUSE_TRIGGER:
		/* We could get here before triggers are enumerated if a trigger was
		 * already set when we connected. Force enumeration now, which has the
		 * side effect of clearing any triggers we did not set. */
		riscv_enumerate_triggers(target);
		LOG_TARGET_DEBUG(target, "halted because of trigger");
		return RISCV_HALT_TRIGGER;
	case CSR_DCSR_CAUSE_STEP:
		return RISCV_HALT_SINGLESTEP;
	case CSR_DCSR_CAUSE_HALTREQ:
	case CSR_DCSR_CAUSE_RESETHALTREQ:
		return RISCV_HALT_INTERRUPT;
	case CSR_DCSR_CAUSE_GROUP:
		return RISCV_HALT_GROUP;
	}

	LOG_TARGET_ERROR(target, "Unknown DCSR cause field: 0x%" PRIx64, get_field(dcsr, CSR_DCSR_CAUSE));
	LOG_TARGET_ERROR(target, "  dcsr=0x%" PRIx32, (uint32_t)dcsr);
	return RISCV_HALT_UNKNOWN;
}

static int riscv013_write_progbuf(struct target *target, unsigned int index, riscv_insn_t data)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return ERROR_FAIL;
	if (dm->progbuf_cache[index] != data) {
		if (dm_write(target, DM_PROGBUF0 + index, data) != ERROR_OK)
			return ERROR_FAIL;
		dm->progbuf_cache[index] = data;
	} else {
		LOG_TARGET_DEBUG(target, "Cache hit for 0x%" PRIx32 " @%d", data, index);
	}
	return ERROR_OK;
}

static riscv_insn_t riscv013_read_progbuf(struct target *target, unsigned int index)
{
	uint32_t value;
	if (dm_read(target, &value, DM_PROGBUF0 + index) == ERROR_OK)
		return value;
	else
		return 0;
}

static int riscv013_invalidate_cached_progbuf(struct target *target)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm) {
		LOG_TARGET_DEBUG(target, "No DM is specified for the target");
		return ERROR_FAIL;
	}

	LOG_TARGET_DEBUG(target, "Invalidating progbuf cache");
	for (unsigned int i = 0; i < 15; i++)
		dm->progbuf_cache[i] = 0;
	return ERROR_OK;
}

static int riscv013_execute_progbuf(struct target *target, uint32_t *cmderr)
{
	uint32_t run_program = 0;
	run_program = set_field(run_program, AC_ACCESS_REGISTER_AARSIZE, 2);
	run_program = set_field(run_program, AC_ACCESS_REGISTER_POSTEXEC, 1);
	run_program = set_field(run_program, AC_ACCESS_REGISTER_TRANSFER, 0);
	run_program = set_field(run_program, AC_ACCESS_REGISTER_REGNO, 0x1000);

	return execute_abstract_command(target, run_program, cmderr);
}

static void riscv013_fill_dmi_write(struct target *target, char *buf, uint64_t a, uint32_t d)
{
	RISCV013_INFO(info);
	buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_WRITE);
	buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, d);
	buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}

static void riscv013_fill_dmi_read(struct target *target, char *buf, uint64_t a)
{
	RISCV013_INFO(info);
	buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_READ);
	buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
	buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, a);
}

static void riscv013_fill_dmi_nop(struct target *target, char *buf)
{
	RISCV013_INFO(info);
	buf_set_u64((unsigned char *)buf, DTM_DMI_OP_OFFSET, DTM_DMI_OP_LENGTH, DMI_OP_NOP);
	buf_set_u64((unsigned char *)buf, DTM_DMI_DATA_OFFSET, DTM_DMI_DATA_LENGTH, 0);
	buf_set_u64((unsigned char *)buf, DTM_DMI_ADDRESS_OFFSET, info->abits, 0);
}

static int riscv013_get_dmi_scan_length(struct target *target)
{
	RISCV013_INFO(info);
	return info->abits + DTM_DMI_DATA_LENGTH + DTM_DMI_OP_LENGTH;
}

void riscv013_fill_dm_write(struct target *target, char *buf, uint64_t a, uint32_t d)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return;
	riscv013_fill_dmi_write(target, buf, a + dm->base, d);
}

void riscv013_fill_dm_read(struct target *target, char *buf, uint64_t a)
{
	dm013_info_t *dm = get_dm(target);
	if (!dm)
		return;
	riscv013_fill_dmi_read(target, buf, a + dm->base);
}

void riscv013_fill_dm_nop(struct target *target, char *buf)
{
	riscv013_fill_dmi_nop(target, buf);
}

static int maybe_execute_fence_i(struct target *target, bool skip)
{
	if (!skip && has_sufficient_progbuf(target, 2))
		return execute_fence(target);
	return ERROR_OK;
}

/* Helper Functions. */
static int riscv013_on_step_or_resume(struct target *target, bool skip, bool step)
{
	if (maybe_execute_fence_i(target, skip) != ERROR_OK)
		return ERROR_FAIL;

	if (set_dcsr_ebreak(target, step) != ERROR_OK)
		return ERROR_FAIL;

	if (riscv_flush_registers(target) != ERROR_OK)
		return ERROR_FAIL;
	return ERROR_OK;
}

static int riscv013_step_or_resume_current_hart(struct target *target,
		bool step)
{
	if (target->state != TARGET_HALTED) {
		LOG_TARGET_ERROR(target, "Hart is not halted!");
		return ERROR_FAIL;
	}
	LOG_TARGET_DEBUG(target, "resuming (for step?=%d)", step);

	if (riscv_flush_registers(target) != ERROR_OK)
		return ERROR_FAIL;

	if (dm013_select_target(target) != ERROR_OK)
		return ERROR_FAIL;

	dm013_info_t *dm = get_dm(target);
	/* Issue the resume command, and then wait for the current hart to resume. */
	uint32_t dmcontrol = DM_DMCONTROL_DMACTIVE | DM_DMCONTROL_RESUMEREQ;
	dmcontrol = set_dmcontrol_hartsel(dmcontrol, dm->current_hartid);
	/* `resumereq` should not be issued if `abstractcs.busy` is set. */
	int result = wait_for_idle_if_needed(target);
	if (result != ERROR_OK)
		return result;
	dm_write(target, DM_DMCONTROL, dmcontrol);

	dmcontrol = set_field(dmcontrol, DM_DMCONTROL_RESUMEREQ, 0);

	uint32_t dmstatus;
	for (size_t i = 0; i < 256; ++i) {
		usleep(10);
		if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
			return ERROR_FAIL;
		if (get_field(dmstatus, DM_DMSTATUS_ALLUNAVAIL)) {
			target->state = TARGET_UNAVAILABLE;
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}
		if (get_field(dmstatus, DM_DMSTATUS_ANYHAVERESET))
			dmcontrol = dmcontrol | DM_DMCONTROL_ACKHAVERESET;
		if (get_field(dmstatus, DM_DMSTATUS_ALLRESUMEACK) == 0)
			continue;
		if (step && get_field(dmstatus, DM_DMSTATUS_ALLHALTED) == 0)
			continue;

		dm_write(target, DM_DMCONTROL, dmcontrol);

		if (target->smp) {
			/* Let's make sure that this hart is placed back with all non-halted harts */
			riscv013_info_t *info = get_info(target);
			if (info->haltgroup_supported) {
				bool supported;
				if (set_group(target, &supported, target->smp, HALT_GROUP) != ERROR_OK)
					return ERROR_FAIL;
				if (!supported)
					LOG_TARGET_ERROR(target, "Couldn't place hart back in halt group %d. "
								 "Some harts may be unexpectedly halted.", target->smp);
			}
		}

		return ERROR_OK;
	}

	dm_write(target, DM_DMCONTROL, dmcontrol);

	LOG_TARGET_ERROR(target, "unable to resume");
	if (dmstatus_read(target, &dmstatus, true) != ERROR_OK)
		return ERROR_FAIL;
	LOG_TARGET_ERROR(target, "  dmstatus=0x%08x", dmstatus);

	if (step) {
		LOG_TARGET_ERROR(target, "  was stepping, halting");
		riscv_halt(target);
		return ERROR_OK;
	}

	return ERROR_FAIL;
}

static int riscv013_clear_abstract_error(struct target *target)
{
	uint32_t abstractcs;
	int result = wait_for_idle(target, &abstractcs);
	/* Clear the error status, even if busy is still set. */
	if (dm_write(target, DM_ABSTRACTCS, DM_ABSTRACTCS_CMDERR) != ERROR_OK)
		result = ERROR_FAIL;
	return result;
}