aboutsummaryrefslogtreecommitdiff
path: root/src/target/lakemont.c
blob: 27efc6946b4e20307da5d084fec0a724a93865ec (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
/*
 * Copyright(c) 2013-2016 Intel Corporation.
 *
 * Adrian Burns (adrian.burns@intel.com)
 * Thomas Faust (thomas.faust@intel.com)
 * Ivan De Cesaris (ivan.de.cesaris@intel.com)
 * Julien Carreno (julien.carreno@intel.com)
 * Jeffrey Maxwell (jeffrey.r.maxwell@intel.com)
 * Jessica Gomez (jessica.gomez.hernandez@intel.com)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 * Contact Information:
 * Intel Corporation
 */

/*
 * @file
 * This implements the probemode operations for Lakemont 1 (LMT1).
 */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <helper/log.h>

#include "target.h"
#include "target_type.h"
#include "lakemont.h"
#include "register.h"
#include "breakpoints.h"
#include "x86_32_common.h"

static int irscan(struct target *t, uint8_t *out,
			uint8_t *in, uint8_t ir_len);
static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len);
static int save_context(struct target *target);
static int restore_context(struct target *target);
static uint32_t get_tapstatus(struct target *t);
static int enter_probemode(struct target *t);
static int exit_probemode(struct target *t);
static int halt_prep(struct target *t);
static int do_halt(struct target *t);
static int do_resume(struct target *t);
static int read_all_core_hw_regs(struct target *t);
static int write_all_core_hw_regs(struct target *t);
static int read_hw_reg(struct target *t,
			int reg, uint32_t *regval, uint8_t cache);
static int write_hw_reg(struct target *t,
			int reg, uint32_t regval, uint8_t cache);
static struct reg_cache *lakemont_build_reg_cache
			(struct target *target);
static int submit_reg_pir(struct target *t, int num);
static int submit_instruction_pir(struct target *t, int num);
static int submit_pir(struct target *t, uint64_t op);
static int lakemont_get_core_reg(struct reg *reg);
static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf);

static struct scan_blk scan;

/* registers and opcodes for register access, pm_idx is used to identify the
 * registers that are modified for lakemont probemode specific operations
 */
static const struct {
	uint8_t id;
	const char *name;
	uint64_t op;
	uint8_t pm_idx;
	unsigned bits;
	enum reg_type type;
	const char *group;
	const char *feature;
} regs[] = {
	/* general purpose registers */
	{ EAX, "eax", 0x000000D01D660000, 0, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ECX, "ecx", 0x000000501D660000, 1, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ EDX, "edx", 0x000000901D660000, 2, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ EBX, "ebx", 0x000000101D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ESP, "esp", 0x000000E01D660000, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
	{ EBP, "ebp", 0x000000601D660000, NOT_PMREG, 32, REG_TYPE_DATA_PTR, "general", "org.gnu.gdb.i386.core" },
	{ ESI, "esi", 0x000000A01D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ EDI, "edi", 0x000000201D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },

	/* instruction pointer & flags */
	{ EIP, "eip", 0x000000C01D660000, 3, 32, REG_TYPE_CODE_PTR, "general", "org.gnu.gdb.i386.core" },
	{ EFLAGS, "eflags", 0x000000401D660000, 4, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },

	/* segment registers */
	{ CS, "cs", 0x000000281D660000, 5, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ SS, "ss", 0x000000C81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ DS, "ds", 0x000000481D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ES, "es", 0x000000A81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FS, "fs", 0x000000881D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ GS, "gs", 0x000000081D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },

	/* floating point unit registers - not accessible via JTAG - here to satisfy GDB */
	{ ST0, "st0", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ST1, "st1", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ST2, "st2", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ST3, "st3", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ST4, "st4", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ST5, "st5", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ST6, "st6", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ ST7, "st7", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FCTRL, "fctrl", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FSTAT, "fstat", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FTAG, "ftag", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FISEG, "fiseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FIOFF, "fioff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FOSEG, "foseg", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FOOFF, "fooff", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },
	{ FOP, "fop", 0x0, NOT_AVAIL_REG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.core" },

	/* control registers */
	{ CR0, "cr0", 0x000000001D660000, 6, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ CR2, "cr2", 0x000000BC1D660000, 7, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ CR3, "cr3", 0x000000801D660000, 8, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ CR4, "cr4", 0x0000002C1D660000, 9, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },

	/* debug registers */
	{ DR0, "dr0", 0x0000007C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DR1, "dr1", 0x000000FC1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DR2, "dr2", 0x000000021D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DR3, "dr3", 0x000000821D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DR6, "dr6", 0x000000301D660000, 10, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DR7, "dr7", 0x000000B01D660000, 11, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },

	/* descriptor tables */
	{ IDTB, "idtbase", 0x000000581D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ IDTL, "idtlimit", 0x000000D81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ IDTAR, "idtar", 0x000000981D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ GDTB, "gdtbase", 0x000000B81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ GDTL, "gdtlimit", 0x000000781D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ GDTAR, "gdtar", 0x000000381D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ TR, "tr", 0x000000701D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ LDTR, "ldtr", 0x000000F01D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ LDTB, "ldbase", 0x000000041D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ LDTL, "ldlimit", 0x000000841D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ LDTAR, "ldtar", 0x000000F81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },

	/* segment registers */
	{ CSB, "csbase", 0x000000F41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ CSL, "cslimit", 0x0000000C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ CSAR, "csar", 0x000000741D660000, 12, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DSB, "dsbase", 0x000000941D660000, 13, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DSL, "dslimit", 0x000000541D660000, 14, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ DSAR, "dsar", 0x000000141D660000, 15, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ ESB, "esbase", 0x0000004C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ ESL, "eslimit", 0x000000CC1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ ESAR, "esar", 0x0000008C1D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ FSB, "fsbase", 0x000000641D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ FSL, "fslimit", 0x000000E41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ FSAR, "fsar", 0x000000A41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ GSB, "gsbase", 0x000000C41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ GSL, "gslimit", 0x000000241D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ GSAR, "gsar", 0x000000441D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ SSB, "ssbase", 0x000000341D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ SSL, "sslimit", 0x000000B41D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ SSAR, "ssar", 0x000000D41D660000, 16, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ TSSB, "tssbase", 0x000000E81D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ TSSL, "tsslimit", 0x000000181D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	{ TSSAR, "tssar", 0x000000681D660000, NOT_PMREG, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
	/* probemode control register */
	{ PMCR, "pmcr", 0x000000421D660000, 17, 32, REG_TYPE_INT32, "general", "org.gnu.gdb.i386.sys" },
};

static const struct {
	uint8_t id;
	const char *name;
	uint64_t op;
} instructions[] = {
	/* memory read/write */
	{ MEMRDB32, "MEMRDB32", 0x0909090909090851 },
	{ MEMRDB16, "MEMRDB16", 0x09090909090851E6 },
	{ MEMRDH32, "MEMRDH32", 0x090909090908D166 },
	{ MEMRDH16, "MEMRDH16", 0x090909090908D1E6 },
	{ MEMRDW32, "MEMRDW32", 0x09090909090908D1 },
	{ MEMRDW16, "MEMRDW16", 0x0909090908D1E666 },
	{ MEMWRB32, "MEMWRB32", 0x0909090909090811 },
	{ MEMWRB16, "MEMWRB16", 0x09090909090811E6 },
	{ MEMWRH32, "MEMWRH32", 0x0909090909089166 },
	{ MEMWRH16, "MEMWRH16", 0x09090909090891E6 },
	{ MEMWRW32, "MEMWRW32", 0x0909090909090891 },
	{ MEMWRW16, "MEMWRW16", 0x090909090891E666 },
	/* IO read/write */
	{ IORDB32, "IORDB32", 0x0909090909090937 },
	{ IORDB16, "IORDB16", 0x09090909090937E6 },
	{ IORDH32, "IORDH32", 0x090909090909B766 },
	{ IORDH16, "IORDH16", 0x090909090909B7E6 },
	{ IORDW32, "IORDW32", 0x09090909090909B7 },
	{ IORDW16, "IORDW16", 0x0909090909B7E666 },
	{ IOWRB32, "IOWRB32", 0x0909090909090977 },
	{ IOWRB16, "IOWRB16", 0x09090909090977E6 },
	{ IOWRH32, "IOWRH32", 0x090909090909F766 },
	{ IOWRH16, "IOWRH16", 0x090909090909F7E6 },
	{ IOWRW32, "IOWRW32", 0x09090909090909F7 },
	{ IOWRW16, "IOWRW16", 0x0909090909F7E666 },
	/* lakemont1 core shadow ram access opcodes */
	{ SRAMACCESS, "SRAMACCESS", 0x0000000E9D660000 },
	{ SRAM2PDR, "SRAM2PDR", 0x4CF0000000000000 },
	{ PDR2SRAM, "PDR2SRAM", 0x0CF0000000000000 },
	{ WBINVD, "WBINVD", 0x09090909090990F0 },
};

bool check_not_halted(const struct target *t)
{
	bool halted = t->state == TARGET_HALTED;
	if (!halted)
		LOG_ERROR("target running, halt it first");
	return !halted;
}

static int irscan(struct target *t, uint8_t *out,
			uint8_t *in, uint8_t ir_len)
{
	int retval = ERROR_OK;
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	if (NULL == t->tap) {
		retval = ERROR_FAIL;
		LOG_ERROR("%s invalid target tap", __func__);
		return retval;
	}
	if (ir_len != t->tap->ir_length) {
		retval = ERROR_FAIL;
		if (t->tap->enabled)
			LOG_ERROR("%s tap enabled but tap irlen=%d",
					__func__, t->tap->ir_length);
		else
			LOG_ERROR("%s tap not enabled and irlen=%d",
					__func__, t->tap->ir_length);
		return retval;
	}
	struct scan_field *fields = &scan.field;
	fields->num_bits = ir_len;
	fields->out_value = out;
	fields->in_value = in;
	jtag_add_ir_scan(x86_32->curr_tap, fields, TAP_IDLE);
	if (x86_32->flush) {
		retval = jtag_execute_queue();
		if (retval != ERROR_OK)
			LOG_ERROR("%s failed to execute queue", __func__);
	}
	return retval;
}

static int drscan(struct target *t, uint8_t *out, uint8_t *in, uint8_t len)
{
	int retval = ERROR_OK;
	uint64_t data = 0;
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	if (NULL == t->tap) {
		retval = ERROR_FAIL;
		LOG_ERROR("%s invalid target tap", __func__);
		return retval;
	}
	if (len > MAX_SCAN_SIZE || 0 == len) {
		retval = ERROR_FAIL;
		LOG_ERROR("%s data len is %d bits, max is %d bits",
				__func__, len, MAX_SCAN_SIZE);
		return retval;
	}
	struct scan_field *fields = &scan.field;
	fields->out_value = out;
	fields->in_value = in;
	fields->num_bits = len;
	jtag_add_dr_scan(x86_32->curr_tap, 1, fields, TAP_IDLE);
	if (x86_32->flush) {
		retval = jtag_execute_queue();
		if (retval != ERROR_OK) {
			LOG_ERROR("%s drscan failed to execute queue", __func__);
			return retval;
		}
	}
	if (in != NULL) {
		if (len >= 8) {
			for (int n = (len / 8) - 1 ; n >= 0; n--)
				data = (data << 8) + *(in+n);
		} else
			LOG_DEBUG("dr in 0x%02" PRIx8, *in);
	} else {
		LOG_ERROR("%s no drscan data", __func__);
		retval = ERROR_FAIL;
	}
	return retval;
}

static int save_context(struct target *t)
{
	int err;
	/* read core registers from lakemont sram */
	err = read_all_core_hw_regs(t);
	if (err != ERROR_OK) {
		LOG_ERROR("%s error reading regs", __func__);
		return err;
	}
	return ERROR_OK;
}

static int restore_context(struct target *t)
{
	int err = ERROR_OK;
	uint32_t i;
	struct x86_32_common *x86_32 = target_to_x86_32(t);

	/* write core regs into the core PM SRAM from the reg_cache */
	err = write_all_core_hw_regs(t);
	if (err != ERROR_OK) {
		LOG_ERROR("%s error writing regs", __func__);
		return err;
	}

	for (i = 0; i < (x86_32->cache->num_regs); i++) {
		x86_32->cache->reg_list[i].dirty = 0;
		x86_32->cache->reg_list[i].valid = 0;
	}
	return err;
}

/*
 * we keep reg_cache in sync with hardware at halt/resume time, we avoid
 * writing to real hardware here bacause pm_regs reflects the hardware
 * while we are halted then reg_cache syncs with hw on resume
 * TODO - in order for "reg eip force" to work it assume get/set reads
 * and writes from hardware, may be other reasons also because generally
 * other openocd targets read/write from hardware in get/set - watch this!
 */
static int lakemont_get_core_reg(struct reg *reg)
{
	int retval = ERROR_OK;
	struct lakemont_core_reg *lakemont_reg = reg->arch_info;
	struct target *t = lakemont_reg->target;
	if (check_not_halted(t))
		return ERROR_TARGET_NOT_HALTED;
	LOG_DEBUG("reg=%s, value=0x%08" PRIx32, reg->name,
			buf_get_u32(reg->value, 0, 32));
	return retval;
}

static int lakemont_set_core_reg(struct reg *reg, uint8_t *buf)
{
	struct lakemont_core_reg *lakemont_reg = reg->arch_info;
	struct target *t = lakemont_reg->target;
	uint32_t value = buf_get_u32(buf, 0, 32);
	LOG_DEBUG("reg=%s, newval=0x%08" PRIx32, reg->name, value);
	if (check_not_halted(t))
		return ERROR_TARGET_NOT_HALTED;
	buf_set_u32(reg->value, 0, 32, value);
	reg->dirty = 1;
	reg->valid = 1;
	return ERROR_OK;
}

static const struct reg_arch_type lakemont_reg_type = {
	/* these get called if reg_cache doesnt have a "valid" value
	 * of an individual reg eg "reg eip" but not for "reg" block
	 */
	.get = lakemont_get_core_reg,
	.set = lakemont_set_core_reg,
};

struct reg_cache *lakemont_build_reg_cache(struct target *t)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	int num_regs = ARRAY_SIZE(regs);
	struct reg_cache **cache_p = register_get_last_cache_p(&t->reg_cache);
	struct reg_cache *cache = malloc(sizeof(struct reg_cache));
	struct reg *reg_list = calloc(num_regs, sizeof(struct reg));
	struct lakemont_core_reg *arch_info = malloc(sizeof(struct lakemont_core_reg) * num_regs);
	struct reg_feature *feature;
	int i;

	if (cache == NULL || reg_list == NULL || arch_info == NULL) {
		free(cache);
		free(reg_list);
		free(arch_info);
		LOG_ERROR("%s out of memory", __func__);
		return NULL;
	}

	/* Build the process context cache */
	cache->name = "lakemont registers";
	cache->next = NULL;
	cache->reg_list = reg_list;
	cache->num_regs = num_regs;
	(*cache_p) = cache;
	x86_32->cache = cache;

	for (i = 0; i < num_regs; i++) {
		arch_info[i].target = t;
		arch_info[i].x86_32_common = x86_32;
		arch_info[i].op = regs[i].op;
		arch_info[i].pm_idx = regs[i].pm_idx;
		reg_list[i].name = regs[i].name;
		reg_list[i].size = 32;
		reg_list[i].value = calloc(1, 4);
		reg_list[i].dirty = 0;
		reg_list[i].valid = 0;
		reg_list[i].type = &lakemont_reg_type;
		reg_list[i].arch_info = &arch_info[i];

		reg_list[i].group = regs[i].group;
		reg_list[i].number = i;
		reg_list[i].exist = true;
		reg_list[i].caller_save = true;	/* gdb defaults to true */

		feature = calloc(1, sizeof(struct reg_feature));
		if (feature) {
			feature->name = regs[i].feature;
			reg_list[i].feature = feature;
		} else
			LOG_ERROR("%s unable to allocate feature list", __func__);

		reg_list[i].reg_data_type = calloc(1, sizeof(struct reg_data_type));
		if (reg_list[i].reg_data_type)
			reg_list[i].reg_data_type->type = regs[i].type;
		else
			LOG_ERROR("%s unable to allocate reg type list", __func__);
	}
	return cache;
}

static uint32_t get_tapstatus(struct target *t)
{
	scan.out[0] = TAPSTATUS;
	if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
		return 0;
	if (drscan(t, NULL, scan.out, TS_SIZE) != ERROR_OK)
		return 0;
	return buf_get_u32(scan.out, 0, 32);
}

static int enter_probemode(struct target *t)
{
	uint32_t tapstatus = 0;
	tapstatus = get_tapstatus(t);
	LOG_DEBUG("TS before PM enter = 0x%08" PRIx32, tapstatus);
	if (tapstatus & TS_PM_BIT) {
		LOG_DEBUG("core already in probemode");
		return ERROR_OK;
	}
	scan.out[0] = PROBEMODE;
	if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
		return ERROR_FAIL;
	scan.out[0] = 1;
	if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
		return ERROR_FAIL;
	tapstatus = get_tapstatus(t);
	LOG_DEBUG("TS after PM enter = 0x%08" PRIx32, tapstatus);
	if ((tapstatus & TS_PM_BIT) && (!(tapstatus & TS_EN_PM_BIT)))
		return ERROR_OK;
	else {
		LOG_ERROR("%s PM enter error, tapstatus = 0x%08" PRIx32
				, __func__, tapstatus);
		return ERROR_FAIL;
	}
}

static int exit_probemode(struct target *t)
{
	uint32_t tapstatus = get_tapstatus(t);
	LOG_DEBUG("TS before PM exit = 0x%08" PRIx32, tapstatus);

	if (!(tapstatus & TS_PM_BIT)) {
		LOG_USER("core not in PM");
		return ERROR_OK;
	}
	scan.out[0] = PROBEMODE;
	if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
		return ERROR_FAIL;
	scan.out[0] = 0;
	if (drscan(t, scan.out, scan.in, 1) != ERROR_OK)
		return ERROR_FAIL;
	return ERROR_OK;
}

/* do whats needed to properly enter probemode for debug on lakemont */
static int halt_prep(struct target *t)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	if (write_hw_reg(t, DSB, PM_DSB, 0) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSB].name, PM_DSB);
	if (write_hw_reg(t, DSL, PM_DSL, 0) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("write %s 0x%08" PRIx32, regs[DSL].name, PM_DSL);
	if (write_hw_reg(t, DSAR, PM_DSAR, 0) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("write DSAR 0x%08" PRIx32, PM_DSAR);
	if (write_hw_reg(t, CSB, PM_DSB, 0) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("write %s 0x%08" PRIx32, regs[CSB].name, PM_DSB);
	if (write_hw_reg(t, CSL, PM_DSL, 0) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("write %s 0x%08" PRIx32, regs[CSL].name, PM_DSL);
	if (write_hw_reg(t, DR7, PM_DR7, 0) != ERROR_OK)
		return ERROR_FAIL;
	LOG_DEBUG("write DR7 0x%08" PRIx32, PM_DR7);

	uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
	uint32_t csar = buf_get_u32(x86_32->cache->reg_list[CSAR].value, 0, 32);
	uint32_t ssar = buf_get_u32(x86_32->cache->reg_list[SSAR].value, 0, 32);
	uint32_t cr0 = buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32);

	/* clear VM86 and IF bits if they are set */
	LOG_DEBUG("EFLAGS = 0x%08" PRIx32 ", VM86 = %d, IF = %d", eflags,
			eflags & EFLAGS_VM86 ? 1 : 0,
			eflags & EFLAGS_IF ? 1 : 0);
	if ((eflags & EFLAGS_VM86) || (eflags & EFLAGS_IF)) {
		x86_32->pm_regs[I(EFLAGS)] = eflags & ~(EFLAGS_VM86 | EFLAGS_IF);
		if (write_hw_reg(t, EFLAGS, x86_32->pm_regs[I(EFLAGS)], 0) != ERROR_OK)
			return ERROR_FAIL;
		LOG_DEBUG("EFLAGS now = 0x%08" PRIx32 ", VM86 = %d, IF = %d",
				x86_32->pm_regs[I(EFLAGS)],
				x86_32->pm_regs[I(EFLAGS)] & EFLAGS_VM86 ? 1 : 0,
				x86_32->pm_regs[I(EFLAGS)] & EFLAGS_IF ? 1 : 0);
	}

	/* set CPL to 0 for memory access */
	if (csar & CSAR_DPL) {
		x86_32->pm_regs[I(CSAR)] = csar & ~CSAR_DPL;
		if (write_hw_reg(t, CSAR, x86_32->pm_regs[I(CSAR)], 0) != ERROR_OK)
			return ERROR_FAIL;
		LOG_DEBUG("write CSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(CSAR)]);
	}
	if (ssar & SSAR_DPL) {
		x86_32->pm_regs[I(SSAR)] = ssar & ~SSAR_DPL;
		if (write_hw_reg(t, SSAR, x86_32->pm_regs[I(SSAR)], 0) != ERROR_OK)
			return ERROR_FAIL;
		LOG_DEBUG("write SSAR_CPL to 0 0x%08" PRIx32, x86_32->pm_regs[I(SSAR)]);
	}

	/* if cache's are enabled, disable and flush, depending on the core version */
	if (!(x86_32->core_type == LMT3_5) && !(cr0 & CR0_CD)) {
		LOG_DEBUG("caching enabled CR0 = 0x%08" PRIx32, cr0);
		if (cr0 & CR0_PG) {
			x86_32->pm_regs[I(CR0)] = cr0 & ~CR0_PG;
			if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
				return ERROR_FAIL;
			LOG_DEBUG("cleared paging CR0_PG = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
			/* submit wbinvd to flush cache */
			if (submit_reg_pir(t, WBINVD) != ERROR_OK)
				return ERROR_FAIL;
			x86_32->pm_regs[I(CR0)] =
				x86_32->pm_regs[I(CR0)] | (CR0_CD | CR0_NW | CR0_PG);
			if (write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0) != ERROR_OK)
				return ERROR_FAIL;
			LOG_DEBUG("set CD, NW and PG, CR0 = 0x%08" PRIx32, x86_32->pm_regs[I(CR0)]);
		}
	}
	return ERROR_OK;
}

static int do_halt(struct target *t)
{
	/* needs proper handling later if doing a halt errors out */
	t->state = TARGET_DEBUG_RUNNING;
	if (enter_probemode(t) != ERROR_OK)
		return ERROR_FAIL;

	return lakemont_update_after_probemode_entry(t);
}

/* we need to expose the update to be able to complete the reset at SoC level */
int lakemont_update_after_probemode_entry(struct target *t)
{
	if (save_context(t) != ERROR_OK)
		return ERROR_FAIL;
	if (halt_prep(t) != ERROR_OK)
		return ERROR_FAIL;
	t->state = TARGET_HALTED;

	return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
}

static int do_resume(struct target *t)
{
	/* needs proper handling later */
	t->state = TARGET_DEBUG_RUNNING;
	if (restore_context(t) != ERROR_OK)
		return ERROR_FAIL;
	if (exit_probemode(t) != ERROR_OK)
		return ERROR_FAIL;
	t->state = TARGET_RUNNING;

	t->debug_reason = DBG_REASON_NOTHALTED;
	LOG_USER("target running");

	return target_call_event_callbacks(t, TARGET_EVENT_RESUMED);
}

static int read_all_core_hw_regs(struct target *t)
{
	int err;
	uint32_t regval;
	unsigned i;
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	for (i = 0; i < (x86_32->cache->num_regs); i++) {
		if (NOT_AVAIL_REG == regs[i].pm_idx)
			continue;
		err = read_hw_reg(t, regs[i].id, &regval, 1);
		if (err != ERROR_OK) {
			LOG_ERROR("%s error saving reg %s",
					__func__, x86_32->cache->reg_list[i].name);
			return err;
		}
	}
	LOG_DEBUG("read_all_core_hw_regs read %u registers ok", i);
	return ERROR_OK;
}

static int write_all_core_hw_regs(struct target *t)
{
	int err;
	unsigned i;
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	for (i = 0; i < (x86_32->cache->num_regs); i++) {
		if (NOT_AVAIL_REG == regs[i].pm_idx)
			continue;
		err = write_hw_reg(t, i, 0, 1);
		if (err != ERROR_OK) {
			LOG_ERROR("%s error restoring reg %s",
					__func__, x86_32->cache->reg_list[i].name);
			return err;
		}
	}
	LOG_DEBUG("write_all_core_hw_regs wrote %u registers ok", i);
	return ERROR_OK;
}

/* read reg from lakemont core shadow ram, update reg cache if needed */
static int read_hw_reg(struct target *t, int reg, uint32_t *regval, uint8_t cache)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	struct lakemont_core_reg *arch_info;
	arch_info = x86_32->cache->reg_list[reg].arch_info;
	x86_32->flush = 0; /* dont flush scans till we have a batch */
	if (submit_reg_pir(t, reg) != ERROR_OK)
		return ERROR_FAIL;
	if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
		return ERROR_FAIL;
	if (submit_instruction_pir(t, SRAM2PDR) != ERROR_OK)
		return ERROR_FAIL;
	x86_32->flush = 1;
	scan.out[0] = RDWRPDR;
	if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
		return ERROR_FAIL;
	if (drscan(t, NULL, scan.out, PDR_SIZE) != ERROR_OK)
		return ERROR_FAIL;

	jtag_add_sleep(DELAY_SUBMITPIR);
	*regval = buf_get_u32(scan.out, 0, 32);
	if (cache) {
		buf_set_u32(x86_32->cache->reg_list[reg].value, 0, 32, *regval);
		x86_32->cache->reg_list[reg].valid = 1;
		x86_32->cache->reg_list[reg].dirty = 0;
	}
	LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
			x86_32->cache->reg_list[reg].name,
			arch_info->op,
			*regval);
	return ERROR_OK;
}

/* write lakemont core shadow ram reg, update reg cache if needed */
static int write_hw_reg(struct target *t, int reg, uint32_t regval, uint8_t cache)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	struct lakemont_core_reg *arch_info;
	arch_info = x86_32->cache->reg_list[reg].arch_info;

	uint8_t reg_buf[4];
	if (cache)
		regval = buf_get_u32(x86_32->cache->reg_list[reg].value, 0, 32);
	buf_set_u32(reg_buf, 0, 32, regval);
	LOG_DEBUG("reg=%s, op=0x%016" PRIx64 ", val=0x%08" PRIx32,
			x86_32->cache->reg_list[reg].name,
			arch_info->op,
			regval);

	x86_32->flush = 0; /* dont flush scans till we have a batch */
	if (submit_reg_pir(t, reg) != ERROR_OK)
		return ERROR_FAIL;
	if (submit_instruction_pir(t, SRAMACCESS) != ERROR_OK)
		return ERROR_FAIL;
	scan.out[0] = RDWRPDR;
	if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
		return ERROR_FAIL;
	if (drscan(t, reg_buf, scan.out, PDR_SIZE) != ERROR_OK)
		return ERROR_FAIL;
	x86_32->flush = 1;
	if (submit_instruction_pir(t, PDR2SRAM) != ERROR_OK)
		return ERROR_FAIL;

	/* we are writing from the cache so ensure we reset flags */
	if (cache) {
		x86_32->cache->reg_list[reg].dirty = 0;
		x86_32->cache->reg_list[reg].valid = 0;
	}
	return ERROR_OK;
}

static bool is_paging_enabled(struct target *t)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	if (x86_32->pm_regs[I(CR0)] & CR0_PG)
		return true;
	else
		return false;
}

static uint8_t get_num_user_regs(struct target *t)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	return x86_32->cache->num_regs;
}
/* value of the CR0.PG (paging enabled) bit influences memory reads/writes */
static int disable_paging(struct target *t)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	x86_32->pm_regs[I(CR0)] = x86_32->pm_regs[I(CR0)] & ~CR0_PG;
	int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
	if (err != ERROR_OK) {
		LOG_ERROR("%s error disabling paging", __func__);
		return err;
	}
	return err;
}

static int enable_paging(struct target *t)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	x86_32->pm_regs[I(CR0)] = (x86_32->pm_regs[I(CR0)] | CR0_PG);
	int err = x86_32->write_hw_reg(t, CR0, x86_32->pm_regs[I(CR0)], 0);
	if (err != ERROR_OK) {
		LOG_ERROR("%s error enabling paging", __func__);
		return err;
	}
	return err;
}

static bool sw_bpts_supported(struct target *t)
{
	uint32_t tapstatus = get_tapstatus(t);
	if (tapstatus & TS_SBP_BIT)
		return true;
	else
		return false;
}

static int transaction_status(struct target *t)
{
	uint32_t tapstatus = get_tapstatus(t);
	if ((TS_EN_PM_BIT | TS_PRDY_BIT) & tapstatus) {
		LOG_ERROR("%s transaction error tapstatus = 0x%08" PRIx32
				, __func__, tapstatus);
		return ERROR_FAIL;
	} else {
		return ERROR_OK;
	}
}

static int submit_instruction(struct target *t, int num)
{
	int err = submit_instruction_pir(t, num);
	if (err != ERROR_OK) {
		LOG_ERROR("%s error submitting pir", __func__);
		return err;
	}
	return err;
}

static int submit_reg_pir(struct target *t, int num)
{
	LOG_DEBUG("reg %s op=0x%016" PRIx64, regs[num].name, regs[num].op);
	int err = submit_pir(t, regs[num].op);
	if (err != ERROR_OK) {
		LOG_ERROR("%s error submitting pir", __func__);
		return err;
	}
	return err;
}

static int submit_instruction_pir(struct target *t, int num)
{
	LOG_DEBUG("%s op=0x%016" PRIx64, instructions[num].name,
			instructions[num].op);
	int err = submit_pir(t, instructions[num].op);
	if (err != ERROR_OK) {
		LOG_ERROR("%s error submitting pir", __func__);
		return err;
	}
	return err;
}

/*
 * PIR (Probe Mode Instruction Register), SUBMITPIR is an "IR only" TAP
 * command; there is no corresponding data register
 */
static int submit_pir(struct target *t, uint64_t op)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);

	uint8_t op_buf[8];
	buf_set_u64(op_buf, 0, 64, op);
	int flush = x86_32->flush;
	x86_32->flush = 0;
	scan.out[0] = WRPIR;
	if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
		return ERROR_FAIL;
	if (drscan(t, op_buf, scan.out, PIR_SIZE) != ERROR_OK)
		return ERROR_FAIL;
	scan.out[0] = SUBMITPIR;
	x86_32->flush = flush;
	if (irscan(t, scan.out, NULL, LMT_IRLEN) != ERROR_OK)
		return ERROR_FAIL;
	jtag_add_sleep(DELAY_SUBMITPIR);
	return ERROR_OK;
}

int lakemont_init_target(struct command_context *cmd_ctx, struct target *t)
{
	lakemont_build_reg_cache(t);
	t->state = TARGET_RUNNING;
	t->debug_reason = DBG_REASON_NOTHALTED;
	return ERROR_OK;
}

int lakemont_init_arch_info(struct target *t, struct x86_32_common *x86_32)
{
	x86_32->submit_instruction = submit_instruction;
	x86_32->transaction_status = transaction_status;
	x86_32->read_hw_reg = read_hw_reg;
	x86_32->write_hw_reg = write_hw_reg;
	x86_32->sw_bpts_supported = sw_bpts_supported;
	x86_32->get_num_user_regs = get_num_user_regs;
	x86_32->is_paging_enabled = is_paging_enabled;
	x86_32->disable_paging = disable_paging;
	x86_32->enable_paging = enable_paging;
	return ERROR_OK;
}

int lakemont_poll(struct target *t)
{
	/* LMT1 PMCR register currently allows code breakpoints, data breakpoints,
	 * single stepping and shutdowns to be redirected to PM but does not allow
	 * redirecting into PM as a result of SMM enter and SMM exit
	 */
	uint32_t ts = get_tapstatus(t);

	if (ts == 0xFFFFFFFF && t->state != TARGET_DEBUG_RUNNING) {
		/* something is wrong here */
		LOG_ERROR("tapstatus invalid - scan_chain serialization or locked JTAG access issues");
		/* TODO: Give a hint that unlocking is wrong or maybe a
		 * 'jtag arp_init' helps
		 */
		t->state = TARGET_DEBUG_RUNNING;
		return ERROR_OK;
	}

	if (t->state == TARGET_HALTED && (!(ts & TS_PM_BIT))) {
		LOG_INFO("target running for unknown reason");
		t->state = TARGET_RUNNING;
	}

	if (t->state == TARGET_RUNNING &&
		t->state != TARGET_DEBUG_RUNNING) {

		if ((ts & TS_PM_BIT) && (ts & TS_PMCR_BIT)) {

			LOG_DEBUG("redirect to PM, tapstatus=0x%08" PRIx32, get_tapstatus(t));

			t->state = TARGET_DEBUG_RUNNING;
			if (save_context(t) != ERROR_OK)
				return ERROR_FAIL;
			if (halt_prep(t) != ERROR_OK)
				return ERROR_FAIL;
			t->state = TARGET_HALTED;
			t->debug_reason = DBG_REASON_UNDEFINED;

			struct x86_32_common *x86_32 = target_to_x86_32(t);
			uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
			uint32_t dr6 = buf_get_u32(x86_32->cache->reg_list[DR6].value, 0, 32);
			uint32_t hwbreakpoint = (uint32_t)-1;

			if (dr6 & DR6_BRKDETECT_0)
				hwbreakpoint = 0;
			if (dr6 & DR6_BRKDETECT_1)
				hwbreakpoint = 1;
			if (dr6 & DR6_BRKDETECT_2)
				hwbreakpoint = 2;
			if (dr6 & DR6_BRKDETECT_3)
				hwbreakpoint = 3;

			if (hwbreakpoint != (uint32_t)-1) {
				uint32_t dr7 = buf_get_u32(x86_32->cache->reg_list[DR7].value, 0, 32);
				uint32_t type = dr7 & (0x03 << (DR7_RW_SHIFT + hwbreakpoint*DR7_RW_LEN_SIZE));
				if (type == DR7_BP_EXECUTE) {
					LOG_USER("hit hardware breakpoint (hwreg=%" PRIu32 ") at 0x%08" PRIx32, hwbreakpoint, eip);
				} else {
					uint32_t address = 0;
					switch (hwbreakpoint) {
					default:
					case 0:
						address = buf_get_u32(x86_32->cache->reg_list[DR0].value, 0, 32);
					break;
					case 1:
						address = buf_get_u32(x86_32->cache->reg_list[DR1].value, 0, 32);
					break;
					case 2:
						address = buf_get_u32(x86_32->cache->reg_list[DR2].value, 0, 32);
					break;
					case 3:
						address = buf_get_u32(x86_32->cache->reg_list[DR3].value, 0, 32);
					break;
					}
					LOG_USER("hit '%s' watchpoint for 0x%08" PRIx32 " (hwreg=%" PRIu32 ") at 0x%08" PRIx32,
								type == DR7_BP_WRITE ? "write" : "access", address,
								hwbreakpoint, eip);
				}
				t->debug_reason = DBG_REASON_BREAKPOINT;
			} else {
				/* Check if the target hit a software breakpoint.
				 * ! Watch out: EIP is currently pointing after the breakpoint opcode
				 */
				struct breakpoint *bp = NULL;
				bp = breakpoint_find(t, eip-1);
				if (bp != NULL) {
					t->debug_reason = DBG_REASON_BREAKPOINT;
					if (bp->type == BKPT_SOFT) {
						/* The EIP is now pointing the the next byte after the
						 * breakpoint instruction. This needs to be corrected.
						 */
						buf_set_u32(x86_32->cache->reg_list[EIP].value, 0, 32, eip-1);
						x86_32->cache->reg_list[EIP].dirty = 1;
						x86_32->cache->reg_list[EIP].valid = 1;
						LOG_USER("hit software breakpoint at 0x%08" PRIx32, eip-1);
					} else {
						/* it's not a hardware breakpoint (checked already in DR6 state)
						 * and it's also not a software breakpoint ...
						 */
						LOG_USER("hit unknown breakpoint at 0x%08" PRIx32, eip);
					}
				} else {

					/* There is also the case that we hit an breakpoint instruction,
					 * which was not set by us. This needs to be handled be the
					 * application that introduced the breakpoint.
					 */

					LOG_USER("unknown break reason at 0x%08" PRIx32, eip);
				}
			}

			return target_call_event_callbacks(t, TARGET_EVENT_HALTED);
		}
	}
	return ERROR_OK;
}

int lakemont_arch_state(struct target *t)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);

	LOG_USER("target halted due to %s at 0x%08" PRIx32 " in %s mode",
			debug_reason_name(t),
			buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32),
			(buf_get_u32(x86_32->cache->reg_list[CR0].value, 0, 32) & CR0_PE) ? "protected" : "real");

	return ERROR_OK;
}

int lakemont_halt(struct target *t)
{
	if (t->state == TARGET_RUNNING) {
		t->debug_reason = DBG_REASON_DBGRQ;
		if (do_halt(t) != ERROR_OK)
			return ERROR_FAIL;
		return ERROR_OK;
	} else {
		LOG_ERROR("%s target not running", __func__);
		return ERROR_FAIL;
	}
}

int lakemont_resume(struct target *t, int current, uint32_t address,
			int handle_breakpoints, int debug_execution)
{
	struct breakpoint *bp = NULL;
	struct x86_32_common *x86_32 = target_to_x86_32(t);

	if (check_not_halted(t))
		return ERROR_TARGET_NOT_HALTED;
	/* TODO lakemont_enable_breakpoints(t); */
	if (t->state == TARGET_HALTED) {

		/* running away for a software breakpoint needs some special handling */
		uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
		bp = breakpoint_find(t, eip);
		if (bp != NULL /*&& bp->type == BKPT_SOFT*/) {
			/* the step will step over the breakpoint */
			if (lakemont_step(t, 0, 0, 1) != ERROR_OK) {
				LOG_ERROR("%s stepping over a software breakpoint at 0x%08" PRIx32 " "
						"failed to resume the target", __func__, eip);
				return ERROR_FAIL;
			}
		}

		/* if breakpoints are enabled, we need to redirect these into probe mode */
		struct breakpoint *activeswbp = t->breakpoints;
		while (activeswbp != NULL && activeswbp->set == 0)
			activeswbp = activeswbp->next;
		struct watchpoint *activehwbp = t->watchpoints;
		while (activehwbp != NULL && activehwbp->set == 0)
			activehwbp = activehwbp->next;
		if (activeswbp != NULL || activehwbp != NULL)
			buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
		if (do_resume(t) != ERROR_OK)
			return ERROR_FAIL;
	} else {
		LOG_USER("target not halted");
		return ERROR_FAIL;
	}
	return ERROR_OK;
}

int lakemont_step(struct target *t, int current,
			uint32_t address, int handle_breakpoints)
{
	struct x86_32_common *x86_32 = target_to_x86_32(t);
	uint32_t eflags = buf_get_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32);
	uint32_t eip = buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32);
	uint32_t pmcr = buf_get_u32(x86_32->cache->reg_list[PMCR].value, 0, 32);
	struct breakpoint *bp = NULL;
	int retval = ERROR_OK;
	uint32_t tapstatus = 0;

	if (check_not_halted(t))
		return ERROR_TARGET_NOT_HALTED;
	bp = breakpoint_find(t, eip);
	if (retval == ERROR_OK && bp != NULL/*&& bp->type == BKPT_SOFT*/) {
		/* TODO: This should only be done for software breakpoints.
		 * Stepping from hardware breakpoints should be possible with the resume flag
		 * Needs testing.
		 */
		retval = x86_32_common_remove_breakpoint(t, bp);
	}

	/* Set EFLAGS[TF] and PMCR[IR], exit pm and wait for PRDY# */
	LOG_DEBUG("modifying PMCR = 0x%08" PRIx32 " and EFLAGS = 0x%08" PRIx32, pmcr, eflags);
	eflags = eflags | (EFLAGS_TF | EFLAGS_RF);
	buf_set_u32(x86_32->cache->reg_list[EFLAGS].value, 0, 32, eflags);
	buf_set_u32(x86_32->cache->reg_list[PMCR].value, 0, 32, 1);
	LOG_DEBUG("EFLAGS [TF] [RF] bits set=0x%08" PRIx32 ", PMCR=0x%08" PRIx32 ", EIP=0x%08" PRIx32,
			eflags, pmcr, eip);

	tapstatus = get_tapstatus(t);

	t->debug_reason = DBG_REASON_SINGLESTEP;
	t->state = TARGET_DEBUG_RUNNING;
	if (restore_context(t) != ERROR_OK)
		return ERROR_FAIL;
	if (exit_probemode(t) != ERROR_OK)
		return ERROR_FAIL;

	target_call_event_callbacks(t, TARGET_EVENT_RESUMED);

	tapstatus = get_tapstatus(t);
	if (tapstatus & (TS_PM_BIT | TS_EN_PM_BIT | TS_PRDY_BIT | TS_PMCR_BIT)) {
		/* target has stopped */
		if (save_context(t) != ERROR_OK)
			return ERROR_FAIL;
		if (halt_prep(t) != ERROR_OK)
			return ERROR_FAIL;
		t->state = TARGET_HALTED;

		LOG_USER("step done from EIP 0x%08" PRIx32 " to 0x%08" PRIx32, eip,
				buf_get_u32(x86_32->cache->reg_list[EIP].value, 0, 32));
		target_call_event_callbacks(t, TARGET_EVENT_HALTED);
	} else {
		/* target didn't stop
		 * I hope the poll() will catch it, but the deleted breakpoint is gone
		 */
		LOG_ERROR("%s target didn't stop after executing a single step", __func__);
		t->state = TARGET_RUNNING;
		return ERROR_FAIL;
	}

	/* try to re-apply the breakpoint, even of step failed
	 * TODO: When a bp was set, we should try to stop the target - fix the return above
	 */
	if (bp != NULL/*&& bp->type == BKPT_SOFT*/) {
		/* TODO: This should only be done for software breakpoints.
		 * Stepping from hardware breakpoints should be possible with the resume flag
		 * Needs testing.
		 */
		retval = x86_32_common_add_breakpoint(t, bp);
	}

	return retval;
}

/* TODO - implement resetbreak fully through CLTAP registers */
int lakemont_reset_assert(struct target *t)
{
	LOG_DEBUG("-");
	return ERROR_OK;
}

int lakemont_reset_deassert(struct target *t)
{
	LOG_DEBUG("-");
	return ERROR_OK;
}