aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nor/stm32l4x.c
blob: fa0c48b4f5992b92567ddc9c1a9fb60f8414e598 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
/***************************************************************************
 *   Copyright (C) 2015 by Uwe Bonnes                                      *
 *   bon@elektron.ikp.physik.tu-darmstadt.de                               *
 *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include <helper/binarybuffer.h>
#include <target/algorithm.h>
#include <target/armv7m.h>

/* STM32L4xxx series for reference.
 *
 * RM0351 (STM32L4x5/STM32L4x6)
 * http://www.st.com/resource/en/reference_manual/dm00083560.pdf
 *
 * RM0394 (STM32L43x/44x/45x/46x)
 * http://www.st.com/resource/en/reference_manual/dm00151940.pdf
 *
 * STM32L476RG Datasheet (for erase timing)
 * http://www.st.com/resource/en/datasheet/stm32l476rg.pdf
 *
 * The RM0351 devices have normally two banks, but on 512 and 256 kiB devices
 * an option byte is available to map all sectors to the first bank.
 * Both STM32 banks are treated as one OpenOCD bank, as other STM32 devices
 * handlers do!
 *
 * RM0394 devices have a single bank only.
 *
 */

/* Erase time can be as high as 25ms, 10x this and assume it's toast... */

#define FLASH_ERASE_TIMEOUT 250

#define STM32_FLASH_BASE    0x40022000
#define STM32_FLASH_ACR     0x40022000
#define STM32_FLASH_KEYR    0x40022008
#define STM32_FLASH_OPTKEYR 0x4002200c
#define STM32_FLASH_SR      0x40022010
#define STM32_FLASH_CR      0x40022014
#define STM32_FLASH_OPTR    0x40022020
#define STM32_FLASH_WRP1AR  0x4002202c
#define STM32_FLASH_WRP2AR  0x40022030
#define STM32_FLASH_WRP1BR  0x4002204c
#define STM32_FLASH_WRP2BR  0x40022050

/* FLASH_CR register bits */

#define FLASH_PG       (1 << 0)
#define FLASH_PER      (1 << 1)
#define FLASH_MER1     (1 << 2)
#define FLASH_PAGE_SHIFT     3
#define FLASH_CR_BKER  (1 << 11)
#define FLASH_MER2     (1 << 15)
#define FLASH_STRT     (1 << 16)
#define FLASH_EOPIE    (1 << 24)
#define FLASH_ERRIE    (1 << 25)
#define FLASH_OPTLOCK  (1 << 30)
#define FLASH_LOCK     (1 << 31)

/* FLASH_SR register bits */

#define FLASH_BSY      (1 << 16)
/* Fast programming not used => related errors not used*/
#define FLASH_PGSERR   (1 << 7) /* Programming sequence error */
#define FLASH_SIZERR   (1 << 6) /* Size  error */
#define FLASH_PGAERR   (1 << 5) /* Programming alignment error */
#define FLASH_WRPERR   (1 << 4) /* Write protection error */
#define FLASH_PROGERR  (1 << 3) /* Programming error */
#define FLASH_OPERR    (1 << 1) /* Operation error */
#define FLASH_EOP      (1 << 0) /* End of operation */

#define FLASH_ERROR (FLASH_PGSERR | FLASH_PGSERR | FLASH_PGAERR | FLASH_WRPERR | FLASH_OPERR)

/* STM32_FLASH_OBR bit definitions (reading) */

#define OPT_DUALBANK   21	/* dual flash bank only */

/* register unlock keys */

#define KEY1           0x45670123
#define KEY2           0xCDEF89AB

/* option register unlock key */
#define OPTKEY1        0x08192A3B
#define OPTKEY2        0x4C5D6E7F


/* other registers */
#define DBGMCU_IDCODE	0xE0042000
#define FLASH_SIZE_REG	0x1FFF75E0

struct stm32l4_options {
	uint8_t RDP;
	uint16_t bank_b_start;
	uint8_t user_options;
	uint8_t wpr1a_start;
	uint8_t wpr1a_end;
	uint8_t wpr1b_start;
	uint8_t wpr1b_end;
	uint8_t wpr2a_start;
	uint8_t wpr2a_end;
	uint8_t wpr2b_start;
	uint8_t wpr2b_end;
    /* Fixme: Handle PCROP */
};

struct stm32l4_flash_bank {
	struct stm32l4_options option_bytes;
	int probed;
};

/* flash bank stm32l4x <base> <size> 0 0 <target#>
 */
FLASH_BANK_COMMAND_HANDLER(stm32l4_flash_bank_command)
{
	struct stm32l4_flash_bank *stm32l4_info;

	if (CMD_ARGC < 6)
		return ERROR_COMMAND_SYNTAX_ERROR;

	stm32l4_info = malloc(sizeof(struct stm32l4_flash_bank));
	if (!stm32l4_info)
		return ERROR_FAIL; /* Checkme: What better error to use?*/
	bank->driver_priv = stm32l4_info;

	stm32l4_info->probed = 0;

	return ERROR_OK;
}

static inline int stm32l4_get_flash_reg(struct flash_bank *bank, uint32_t reg)
{
	return reg;
}

static inline int stm32l4_get_flash_status(struct flash_bank *bank, uint32_t *status)
{
	struct target *target = bank->target;
	return target_read_u32(
		target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR), status);
}

static int stm32l4_wait_status_busy(struct flash_bank *bank, int timeout)
{
	struct target *target = bank->target;
	uint32_t status;
	int retval = ERROR_OK;

	/* wait for busy to clear */
	for (;;) {
		retval = stm32l4_get_flash_status(bank, &status);
		if (retval != ERROR_OK)
			return retval;
		LOG_DEBUG("status: 0x%" PRIx32 "", status);
		if ((status & FLASH_BSY) == 0)
			break;
		if (timeout-- <= 0) {
			LOG_ERROR("timed out waiting for flash");
			return ERROR_FAIL;
		}
		alive_sleep(1);
	}


	if (status & FLASH_WRPERR) {
		LOG_ERROR("stm32x device protected");
		retval = ERROR_FAIL;
	}

	/* Clear but report errors */
	if (status & FLASH_ERROR) {
		/* If this operation fails, we ignore it and report the original
		 * retval
		 */
		target_write_u32(target, stm32l4_get_flash_reg(bank, STM32_FLASH_SR),
				status & FLASH_ERROR);
	}
	return retval;
}

static int stm32l4_unlock_reg(struct target *target)
{
	uint32_t ctrl;

	/* first check if not already unlocked
	 * otherwise writing on STM32_FLASH_KEYR will fail
	 */
	int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & FLASH_LOCK) == 0)
		return ERROR_OK;

	/* unlock flash registers */
	retval = target_write_u32(target, STM32_FLASH_KEYR, KEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = target_write_u32(target, STM32_FLASH_KEYR, KEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & FLASH_LOCK) {
		LOG_ERROR("flash not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}

	return ERROR_OK;
}

static int stm32l4_unlock_option_reg(struct target *target)
{
	uint32_t ctrl;

	int retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if ((ctrl & FLASH_OPTLOCK) == 0)
		return ERROR_OK;

	/* unlock option registers */
	retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY1);
	if (retval != ERROR_OK)
		return retval;

	retval = target_write_u32(target, STM32_FLASH_OPTKEYR, OPTKEY2);
	if (retval != ERROR_OK)
		return retval;

	retval = target_read_u32(target, STM32_FLASH_CR, &ctrl);
	if (retval != ERROR_OK)
		return retval;

	if (ctrl & FLASH_OPTLOCK) {
		LOG_ERROR("options not unlocked STM32_FLASH_CR: %" PRIx32, ctrl);
		return ERROR_TARGET_FAILURE;
	}

	return ERROR_OK;
}

static int stm32l4_read_options(struct flash_bank *bank)
{
	uint32_t optiondata;
	struct stm32l4_flash_bank *stm32l4_info = NULL;
	struct target *target = bank->target;

	stm32l4_info = bank->driver_priv;

	/* read current option bytes */
	int retval = target_read_u32(target, STM32_FLASH_OPTR, &optiondata);
	if (retval != ERROR_OK)
		return retval;

	stm32l4_info->option_bytes.user_options = (optiondata >> 8) & 0x3ffff;
	stm32l4_info->option_bytes.RDP = optiondata & 0xff;

	retval = target_read_u32(target, STM32_FLASH_WRP1AR, &optiondata);
	if (retval != ERROR_OK)
		return retval;
	stm32l4_info->option_bytes.wpr1a_start =  optiondata         & 0xff;
	stm32l4_info->option_bytes.wpr1a_end   = (optiondata >> 16)  & 0xff;

	retval = target_read_u32(target, STM32_FLASH_WRP2AR, &optiondata);
	if (retval != ERROR_OK)
		return retval;
	stm32l4_info->option_bytes.wpr2a_start =  optiondata         & 0xff;
	stm32l4_info->option_bytes.wpr2a_end   = (optiondata >> 16)  & 0xff;

	retval = target_read_u32(target, STM32_FLASH_WRP1BR, &optiondata);
	if (retval != ERROR_OK)
		return retval;
	stm32l4_info->option_bytes.wpr1b_start =  optiondata         & 0xff;
	stm32l4_info->option_bytes.wpr1b_end   = (optiondata >> 16)  & 0xff;

	retval = target_read_u32(target, STM32_FLASH_WRP2BR, &optiondata);
	if (retval != ERROR_OK)
		return retval;
	stm32l4_info->option_bytes.wpr2b_start =  optiondata         & 0xff;
	stm32l4_info->option_bytes.wpr2b_end   = (optiondata >> 16)  & 0xff;

	if (stm32l4_info->option_bytes.RDP != 0xAA)
		LOG_INFO("Device Security Bit Set");

	return ERROR_OK;
}

static int stm32l4_write_options(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = NULL;
	struct target *target = bank->target;
	uint32_t optiondata;

	stm32l4_info = bank->driver_priv;

	(void) optiondata;
	(void) stm32l4_info;

	int retval = stm32l4_unlock_option_reg(target);
	if (retval != ERROR_OK)
		return retval;
	/* FIXME: Implement Option writing!*/
	return ERROR_OK;
}

static int stm32l4_protect_check(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	/* read write protection settings */
	int retval = stm32l4_read_options(bank);
	if (retval != ERROR_OK) {
		LOG_DEBUG("unable to read option bytes");
		return retval;
	}

	for (int i = 0; i < bank->num_sectors; i++) {
		if (i < stm32l4_info->option_bytes.bank_b_start) {
			if (((i >= stm32l4_info->option_bytes.wpr1a_start) &&
				 (i <= stm32l4_info->option_bytes.wpr1a_end)) ||
				((i >= stm32l4_info->option_bytes.wpr2a_start) &&
				 (i <= stm32l4_info->option_bytes.wpr2a_end)))
				bank->sectors[i].is_protected = 1;
			else
				bank->sectors[i].is_protected = 0;
		} else {
			uint8_t snb;
			snb = i - stm32l4_info->option_bytes.bank_b_start + 256;
			if (((snb >= stm32l4_info->option_bytes.wpr1b_start) &&
				 (snb <= stm32l4_info->option_bytes.wpr1b_end)) ||
				((snb >= stm32l4_info->option_bytes.wpr2b_start) &&
				 (snb <= stm32l4_info->option_bytes.wpr2b_end)))
				bank->sectors[i].is_protected = 1;
			else
				bank->sectors[i].is_protected = 0;
		}
	}
	return ERROR_OK;
}

static int stm32l4_erase(struct flash_bank *bank, int first, int last)
{
	struct target *target = bank->target;
	int i;

	assert(first < bank->num_sectors);
	assert(last < bank->num_sectors);

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	int retval;
	retval = stm32l4_unlock_reg(target);
	if (retval != ERROR_OK)
		return retval;

	/*
	Sector Erase
	To erase a sector, follow the procedure below:
	1. Check that no Flash memory operation is ongoing by
       checking the BSY bit in the FLASH_SR register
	2. Set the PER bit and select the page and bank
	   you wish to erase  in the FLASH_CR register
	3. Set the STRT bit in the FLASH_CR register
	4. Wait for the BSY bit to be cleared
	 */
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	for (i = first; i <= last; i++) {
		uint32_t erase_flags;
		erase_flags = FLASH_PER | FLASH_STRT;

		if  (i >= stm32l4_info->option_bytes.bank_b_start) {
			uint8_t snb;
			snb = (i - stm32l4_info->option_bytes.bank_b_start) + 256;
			erase_flags |= snb << FLASH_PAGE_SHIFT | FLASH_CR_BKER;
		} else
			erase_flags |= i << FLASH_PAGE_SHIFT;
		retval = target_write_u32(target,
				stm32l4_get_flash_reg(bank, STM32_FLASH_CR), erase_flags);
		if (retval != ERROR_OK)
			return retval;

		retval = stm32l4_wait_status_busy(bank, FLASH_ERASE_TIMEOUT);
		if (retval != ERROR_OK)
			return retval;

		bank->sectors[i].is_erased = 1;
	}

	retval = target_write_u32(
		target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

static int stm32l4_protect(struct flash_bank *bank, int set, int first, int last)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	/* read protection settings */
	int retval = stm32l4_read_options(bank);
	if (retval != ERROR_OK) {
		LOG_DEBUG("unable to read option bytes");
		return retval;
	}

	(void)stm32l4_info;
	/* FIXME: Write First and last in a valid WRPxx_start/end combo*/
	retval = stm32l4_write_options(bank);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

/* Count is in halfwords */
static int stm32l4_write_block(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	uint32_t buffer_size = 16384;
	struct working_area *write_algorithm;
	struct working_area *source;
	uint32_t address = bank->base + offset;
	struct reg_param reg_params[5];
	struct armv7m_algorithm armv7m_info;
	int retval = ERROR_OK;

	/* See contrib/loaders/flash/stm32l4x.S for source and
	 * hints how to generate the data!
	 */

	static const uint8_t stm32l4_flash_write_code[] = {
		0xd0, 0xf8, 0x00, 0x80, 0xb8, 0xf1, 0x00, 0x0f, 0x21, 0xd0, 0x45, 0x68,
		0xb8, 0xeb, 0x05, 0x06, 0x44, 0xbf, 0x76, 0x18, 0x36, 0x1a, 0x08, 0x2e,
		0xf2, 0xd3, 0xdf, 0xf8, 0x36, 0x60, 0x66, 0x61, 0xf5, 0xe8, 0x02, 0x67,
		0xe2, 0xe8, 0x02, 0x67, 0xbf, 0xf3, 0x4f, 0x8f, 0x26, 0x69, 0x16, 0xf4,
		0x80, 0x3f, 0xfb, 0xd1, 0x16, 0xf0, 0xfa, 0x0f, 0x07, 0xd1, 0x8d, 0x42,
		0x28, 0xbf, 0x00, 0xf1, 0x08, 0x05, 0x45, 0x60, 0x01, 0x3b, 0x13, 0xb1,
		0xda, 0xe7, 0x00, 0x21, 0x41, 0x60, 0x30, 0x46, 0x00, 0xbe, 0x01, 0x00,
		0x00, 0x00
	};

	if (target_alloc_working_area(target, sizeof(stm32l4_flash_write_code),
			&write_algorithm) != ERROR_OK) {
		LOG_WARNING("no working area available, can't do block memory writes");
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
	}

	retval = target_write_buffer(target, write_algorithm->address,
			sizeof(stm32l4_flash_write_code),
			stm32l4_flash_write_code);
	if (retval != ERROR_OK)
		return retval;

	/* memory buffer */
	while (target_alloc_working_area_try(target, buffer_size, &source) !=
		   ERROR_OK) {
		buffer_size /= 2;
		if (buffer_size <= 256) {
			/* we already allocated the writing code, but failed to get a
			 * buffer, free the algorithm */
			target_free_working_area(target, write_algorithm);

			LOG_WARNING("no large enough working area available, can't do block memory writes");
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}
	}

	armv7m_info.common_magic = ARMV7M_COMMON_MAGIC;
	armv7m_info.core_mode = ARM_MODE_THREAD;

	init_reg_param(&reg_params[0], "r0", 32, PARAM_IN_OUT);	/* buffer start, status (out) */
	init_reg_param(&reg_params[1], "r1", 32, PARAM_OUT);	/* buffer end */
	init_reg_param(&reg_params[2], "r2", 32, PARAM_OUT);	/* target address */
	init_reg_param(&reg_params[3], "r3", 32, PARAM_OUT);	/* count (double word-64bit) */
	init_reg_param(&reg_params[4], "r4", 32, PARAM_OUT);	/* flash base */

	buf_set_u32(reg_params[0].value, 0, 32, source->address);
	buf_set_u32(reg_params[1].value, 0, 32, source->address + source->size);
	buf_set_u32(reg_params[2].value, 0, 32, address);
	buf_set_u32(reg_params[3].value, 0, 32, count / 4);
	buf_set_u32(reg_params[4].value, 0, 32, STM32_FLASH_BASE);

	retval = target_run_flash_async_algorithm(target, buffer, count, 2,
			0, NULL,
			5, reg_params,
			source->address, source->size,
			write_algorithm->address, 0,
			&armv7m_info);

	if (retval == ERROR_FLASH_OPERATION_FAILED) {
		LOG_ERROR("error executing stm32l4 flash write algorithm");

		uint32_t error = buf_get_u32(reg_params[0].value, 0, 32) & FLASH_ERROR;

		if (error & FLASH_WRPERR)
			LOG_ERROR("flash memory write protected");

		if (error != 0) {
			LOG_ERROR("flash write failed = %08" PRIx32, error);
			/* Clear but report errors */
			target_write_u32(target, STM32_FLASH_SR, error);
			retval = ERROR_FAIL;
		}
	}

	target_free_working_area(target, source);
	target_free_working_area(target, write_algorithm);

	destroy_reg_param(&reg_params[0]);
	destroy_reg_param(&reg_params[1]);
	destroy_reg_param(&reg_params[2]);
	destroy_reg_param(&reg_params[3]);
	destroy_reg_param(&reg_params[4]);

	return retval;
}

static int stm32l4_write(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	int retval;

	if (bank->target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (offset & 0x7) {
		LOG_WARNING("offset 0x%" PRIx32 " breaks required 8-byte alignment",
					offset);
		return ERROR_FLASH_DST_BREAKS_ALIGNMENT;
	}

	if (count & 0x7) {
		LOG_WARNING("Padding %d bytes to keep 8-byte write size",
					count & 7);
		count = (count + 7) & ~7;
		/* This pads the write chunk with random bytes by overrunning the
		 * write buffer. Padding with the erased pattern 0xff is purely
		 * cosmetical, as 8-byte flash words are ECC secured and the first
		 * write will program the ECC bits. A second write would need
		 * to reprogramm these ECC bits.
		 * But this can only be done after erase!
		 */
	}

	retval = stm32l4_unlock_reg(target);
	if (retval != ERROR_OK)
		return retval;

	/* Only full double words (8-byte) can be programmed*/
	retval = stm32l4_write_block(bank, buffer, offset, count / 2);
	if (retval != ERROR_OK) {
		LOG_WARNING("block write failed");
		return retval;
		}

	LOG_WARNING("block write succeeded");
	return target_write_u32(target, STM32_FLASH_CR, FLASH_LOCK);
}

static int stm32l4_probe(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	int i;
	uint16_t flash_size_in_kb = 0xffff;
	uint16_t max_flash_size_in_kb;
	uint32_t device_id;
	uint32_t options;
	uint32_t base_address = 0x08000000;

	stm32l4_info->probed = 0;

	/* read stm32 device id register */
	int retval = target_read_u32(target, DBGMCU_IDCODE, &device_id);
	if (retval != ERROR_OK)
		return retval;
	LOG_INFO("device id = 0x%08" PRIx32 "", device_id);

	/* set max flash size depending on family */
	switch (device_id & 0xfff) {
	case 0x461:
	case 0x415:
		max_flash_size_in_kb = 1024;
		break;
	case 0x462:
		max_flash_size_in_kb = 512;
		break;
	case 0x435:
		max_flash_size_in_kb = 256;
		break;
	default:
		LOG_WARNING("Cannot identify target as a STM32L4 family.");
		return ERROR_FAIL;
	}

	/* get flash size from target. */
	retval = target_read_u16(target, FLASH_SIZE_REG, &flash_size_in_kb);

	/* failed reading flash size or flash size invalid (early silicon),
	 * default to max target family */
	if (retval != ERROR_OK || flash_size_in_kb == 0xffff || flash_size_in_kb == 0) {
		LOG_WARNING("STM32 flash size failed, probe inaccurate - assuming %dk flash",
			max_flash_size_in_kb);
		flash_size_in_kb = max_flash_size_in_kb;
	}

	LOG_INFO("flash size = %dkbytes", flash_size_in_kb);

	/* did we assign flash size? */
	assert(flash_size_in_kb != 0xffff);

	/* get options to for DUAL BANK. */
	retval = target_read_u32(target, STM32_FLASH_OPTR, &options);

	/* only devices with < 1024 kiB may be set to single bank dual banks */
	if ((flash_size_in_kb == 1024) || !(options & OPT_DUALBANK))
		stm32l4_info->option_bytes.bank_b_start = 256;
	else
		stm32l4_info->option_bytes.bank_b_start = flash_size_in_kb << 9;

	/* did we assign flash size? */
	assert((flash_size_in_kb != 0xffff) && flash_size_in_kb);

	/* calculate numbers of pages */
	int num_pages = flash_size_in_kb / 2;

	/* check that calculation result makes sense */
	assert(num_pages > 0);

	if (bank->sectors) {
		free(bank->sectors);
		bank->sectors = NULL;
	}

	bank->base = base_address;
	bank->size = num_pages * (1 << 11);
	bank->num_sectors = num_pages;
	bank->sectors = malloc(sizeof(struct flash_sector) * num_pages);
	if (!bank->sectors)
		return ERROR_FAIL; /* Checkme: What better error to use?*/

	for (i = 0; i < num_pages; i++) {
		bank->sectors[i].offset = i << 11;
		bank->sectors[i].size = 1 << 11;
		bank->sectors[i].is_erased = -1;
		bank->sectors[i].is_protected = 1;
	}

	stm32l4_info->probed = 1;

	return ERROR_OK;
}

static int stm32l4_auto_probe(struct flash_bank *bank)
{
	struct stm32l4_flash_bank *stm32l4_info = bank->driver_priv;
	if (stm32l4_info->probed)
		return ERROR_OK;
	return stm32l4_probe(bank);
}

static int get_stm32l4_info(struct flash_bank *bank, char *buf, int buf_size)
{
	struct target *target = bank->target;
	uint32_t dbgmcu_idcode;

	/* read stm32 device id register */
	int retval = target_read_u32(target, DBGMCU_IDCODE, &dbgmcu_idcode);
	if (retval != ERROR_OK)
		return retval;

	uint16_t device_id = dbgmcu_idcode & 0xfff;
	uint8_t rev_id = dbgmcu_idcode >> 28;
	uint8_t rev_minor = 0;
	int i;

	for (i = 16; i < 28; i++) {
		if (dbgmcu_idcode & (1 << i))
			rev_minor++;
		else
			break;
	}

	const char *device_str;

	switch (device_id) {
	case 0x461:
		device_str = "STM32L496/4A6";
		break;

	case 0x415:
		device_str = "STM32L475/476/486";
		break;

	case 0x462:
		device_str = "STM32L45x/46x";
		break;

	case 0x435:
		device_str = "STM32L43x/44x";
		break;

	default:
		snprintf(buf, buf_size, "Cannot identify target as a STM32L4\n");
		return ERROR_FAIL;
	}

	snprintf(buf, buf_size, "%s - Rev: %1d.%02d",
			 device_str, rev_id, rev_minor);

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_lock_command)
{
	struct target *target = NULL;
	struct stm32l4_flash_bank *stm32l4_info = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	stm32l4_info = bank->driver_priv;
	target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (stm32l4_read_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to read options",
					  bank->driver->name);
		return ERROR_OK;
	}

	/* set readout protection */
	stm32l4_info->option_bytes.RDP = 0;

	if (stm32l4_write_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to lock device", bank->driver->name);
		return ERROR_OK;
	}

	command_print(CMD_CTX, "%s locked", bank->driver->name);

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_unlock_command)
{
	struct target *target = NULL;
	struct stm32l4_flash_bank *stm32l4_info = NULL;

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	stm32l4_info = bank->driver_priv;
	target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (stm32l4_read_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to read options", bank->driver->name);
		return ERROR_OK;
	}

	/* clear readout protection and complementary option bytes
	 * this will also force a device unlock if set */
	stm32l4_info->option_bytes.RDP = 0xAA;

	if (stm32l4_write_options(bank) != ERROR_OK) {
		command_print(CMD_CTX, "%s failed to unlock device",
					  bank->driver->name);
		return ERROR_OK;
	}

	command_print(CMD_CTX, "%s unlocked.\n"
			"INFO: a reset or power cycle is required "
			"for the new settings to take effect.", bank->driver->name);

	return ERROR_OK;
}

static int stm32l4_mass_erase(struct flash_bank *bank, uint32_t action)
{
	int retval;
	struct target *target = bank->target;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	retval = stm32l4_unlock_reg(target);
	if (retval != ERROR_OK)
		return retval;

	/* mass erase flash memory */
	retval = target_write_u32(
		target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), action);
	if (retval != ERROR_OK)
		return retval;
	retval = target_write_u32(
		target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR),
		action | FLASH_STRT);
	if (retval != ERROR_OK)
		return retval;

	retval = stm32l4_wait_status_busy(bank,  FLASH_ERASE_TIMEOUT);
	if (retval != ERROR_OK)
		return retval;

	retval = target_write_u32(
		target, stm32l4_get_flash_reg(bank, STM32_FLASH_CR), FLASH_LOCK);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

COMMAND_HANDLER(stm32l4_handle_mass_erase_command)
{
	int i;
	uint32_t action;

	if (CMD_ARGC < 1) {
		command_print(CMD_CTX, "stm32x mass_erase <STM32L4 bank>");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct flash_bank *bank;
	int retval = CALL_COMMAND_HANDLER(flash_command_get_bank, 0, &bank);
	if (ERROR_OK != retval)
		return retval;

	action =  FLASH_MER1 |  FLASH_MER2;
	retval = stm32l4_mass_erase(bank, action);
	if (retval == ERROR_OK) {
		/* set all sectors as erased */
		for (i = 0; i < bank->num_sectors; i++)
			bank->sectors[i].is_erased = 1;

		command_print(CMD_CTX, "stm32x mass erase complete");
	} else {
		command_print(CMD_CTX, "stm32x mass erase failed");
	}

	return retval;
}

static const struct command_registration stm32l4_exec_command_handlers[] = {
	{
		.name = "lock",
		.handler = stm32l4_handle_lock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Lock entire flash device.",
	},
	{
		.name = "unlock",
		.handler = stm32l4_handle_unlock_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Unlock entire protected flash device.",
	},
	{
		.name = "mass_erase",
		.handler = stm32l4_handle_mass_erase_command,
		.mode = COMMAND_EXEC,
		.usage = "bank_id",
		.help = "Erase entire flash device.",
	},
	COMMAND_REGISTRATION_DONE
};

static const struct command_registration stm32l4_command_handlers[] = {
	{
		.name = "stm32l4x",
		.mode = COMMAND_ANY,
		.help = "stm32l4x flash command group",
		.usage = "",
		.chain = stm32l4_exec_command_handlers,
	},
	COMMAND_REGISTRATION_DONE
};

struct flash_driver stm32l4x_flash = {
	.name = "stm32l4x",
	.commands = stm32l4_command_handlers,
	.flash_bank_command = stm32l4_flash_bank_command,
	.erase = stm32l4_erase,
	.protect = stm32l4_protect,
	.write = stm32l4_write,
	.read = default_flash_read,
	.probe = stm32l4_probe,
	.auto_probe = stm32l4_auto_probe,
	.erase_check = default_flash_blank_check,
	.protect_check = stm32l4_protect_check,
	.info = get_stm32l4_info,
};