aboutsummaryrefslogtreecommitdiff
path: root/src/flash/nor/fespi.c
blob: 9b53d2d89700b8c01cdfa5559258939f0f5ded66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
/***************************************************************************
 *   Copyright (C) 2010 by Antonio Borneo <borneo.antonio@gmail.com>       *
 *   Modified by Megan Wachs <megan@sifive.com> from the original stmsmi.c *
 *                                                                         * 
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

/* The Freedom E SPI controller is a SPI bus controller
 * specifically designed for SPI Flash Memories on Freedom E platforms.
 * 
 * Two working modes are available:
 * - SW mode: the SPI is controlled by SW. Any custom commands can be sent
 *   on the bus. Writes are only possible in this mode.
 * - HW mode: Memory content is directly
 *   accessible in CPU memory space. CPU can read, write and execute memory
 *   content. */

/* ATTENTION:
 * To have flash memory mapped in CPU memory space, the controller
 * must have "HW mode" enabled.
 * 1) The command "reset init" has to initialize the controller and put
 *    it in HW mode (this is actually the default out of reset for Freedom E systems).
 * 2) every command in this file have to return to prompt in HW mode. */

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include "imp.h"
#include "spi.h"
#include <jtag/jtag.h>
#include <helper/time_support.h>
#include <target/algorithm.h>
#include "target/riscv/riscv.h"

/* Register offsets */

#define FESPI_REG_SCKDIV          0x00
#define FESPI_REG_SCKMODE         0x04
#define FESPI_REG_CSID            0x10
#define FESPI_REG_CSDEF           0x14
#define FESPI_REG_CSMODE          0x18

#define FESPI_REG_DCSSCK          0x28
#define FESPI_REG_DSCKCS          0x2a
#define FESPI_REG_DINTERCS        0x2c
#define FESPI_REG_DINTERXFR       0x2e

#define FESPI_REG_FMT             0x40
#define FESPI_REG_TXFIFO          0x48
#define FESPI_REG_RXFIFO          0x4c
#define FESPI_REG_TXCTRL          0x50
#define FESPI_REG_RXCTRL          0x54

#define FESPI_REG_FCTRL           0x60
#define FESPI_REG_FFMT            0x64

#define FESPI_REG_IE              0x70
#define FESPI_REG_IP              0x74

/* Fields */

#define FESPI_SCK_POL             0x1
#define FESPI_SCK_PHA             0x2

#define FESPI_FMT_PROTO(x)        ((x) & 0x3)
#define FESPI_FMT_ENDIAN(x)       (((x) & 0x1) << 2)
#define FESPI_FMT_DIR(x)          (((x) & 0x1) << 3)
#define FESPI_FMT_LEN(x)          (((x) & 0xf) << 16)

/* TXCTRL register */
#define FESPI_TXWM(x)             ((x) & 0xffff)
/* RXCTRL register */
#define FESPI_RXWM(x)             ((x) & 0xffff)

#define FESPI_IP_TXWM             0x1
#define FESPI_IP_RXWM             0x2

#define FESPI_FCTRL_EN            0x1

#define FESPI_INSN_CMD_EN         0x1
#define FESPI_INSN_ADDR_LEN(x)    (((x) & 0x7) << 1)
#define FESPI_INSN_PAD_CNT(x)     (((x) & 0xf) << 4)
#define FESPI_INSN_CMD_PROTO(x)   (((x) & 0x3) << 8)
#define FESPI_INSN_ADDR_PROTO(x)  (((x) & 0x3) << 10)
#define FESPI_INSN_DATA_PROTO(x)  (((x) & 0x3) << 12)
#define FESPI_INSN_CMD_CODE(x)    (((x) & 0xff) << 16)
#define FESPI_INSN_PAD_CODE(x)    (((x) & 0xff) << 24)

/* Values */

#define FESPI_CSMODE_AUTO         0
#define FESPI_CSMODE_HOLD         2
#define FESPI_CSMODE_OFF          3

#define FESPI_DIR_RX              0
#define FESPI_DIR_TX              1

#define FESPI_PROTO_S             0
#define FESPI_PROTO_D             1
#define FESPI_PROTO_Q             2

#define FESPI_ENDIAN_MSB          0
#define FESPI_ENDIAN_LSB          1


/* Timeout in ms */
#define FESPI_CMD_TIMEOUT   (100)
#define FESPI_PROBE_TIMEOUT (100)
#define FESPI_MAX_TIMEOUT  (3000)


#define FESPI_READ_REG(a) (_FESPI_READ_REG(a))
#define _FESPI_READ_REG(a)					\
{								\
	int __a;						\
	uint32_t __v;						\
								\
	__a = target_read_u32(target, ctrl_base + (a), &__v); 	\
	if (__a != ERROR_OK) {					\
		LOG_ERROR("FESPI_READ_REG error");		\
		return __a;					\
	}							\
	__v;							\
}

#define FESPI_WRITE_REG(a, v)					\
{								\
	int __r;						\
								\
	__r = target_write_u32(target, ctrl_base + (a), (v)); 	\
	if (__r != ERROR_OK) {					\
		LOG_ERROR("FESPI_WRITE_REG error");		\
		return __r;					\
	}							\
}

#define FESPI_DISABLE_HW_MODE()	FESPI_WRITE_REG(FESPI_REG_FCTRL, \
		FESPI_READ_REG(FESPI_REG_FCTRL) & ~FESPI_FCTRL_EN)
#define FESPI_ENABLE_HW_MODE()	FESPI_WRITE_REG(FESPI_REG_FCTRL, \
	FESPI_READ_REG(FESPI_REG_FCTRL) | FESPI_FCTRL_EN)

struct fespi_flash_bank {
	int probed;
	uint32_t ctrl_base;
	const struct flash_device *dev;
};

struct fespi_target {
	char *name;
	uint32_t tap_idcode;
	uint32_t ctrl_base;
};

//TODO !!! What is the right naming convention here?
static const struct fespi_target target_devices[] = {
	/* name,   tap_idcode, ctrl_base */
	{ "Freedom E300 SPI Flash",  0x10e31913 , 0x10014000 },
	{ NULL,    0,           0          }
};

FLASH_BANK_COMMAND_HANDLER(fespi_flash_bank_command)
{
	struct fespi_flash_bank *fespi_info;

	LOG_DEBUG("%s", __func__);

	if (CMD_ARGC < 6)
		return ERROR_COMMAND_SYNTAX_ERROR;

	fespi_info = malloc(sizeof(struct fespi_flash_bank));
	if (fespi_info == NULL) {
		LOG_ERROR("not enough memory");
		return ERROR_FAIL;
	}

	bank->driver_priv = fespi_info;
	fespi_info->probed = 0;
	fespi_info->ctrl_base = 0;
	if (CMD_ARGC >= 7) {
          int temp;
	  COMMAND_PARSE_NUMBER(int, CMD_ARGV[6], temp);
          fespi_info->ctrl_base = (uint32_t) temp;
	  LOG_DEBUG("ASSUMING FESPI device at ctrl_base = 0x%x", fespi_info->ctrl_base);
	}

	return ERROR_OK;
}

static int fespi_set_dir (struct flash_bank * bank, bool dir) {
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;

	FESPI_WRITE_REG(FESPI_REG_FMT,
			(FESPI_READ_REG(FESPI_REG_FMT) & ~(FESPI_FMT_DIR(0xFFFFFFFF))) |
			FESPI_FMT_DIR(dir));

	return ERROR_OK;

}

static int fespi_txwm_wait(struct flash_bank *bank) {
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;

	int64_t start = timeval_ms();

	while (1) {
		if (FESPI_READ_REG(FESPI_REG_IP) & FESPI_IP_TXWM) {
			break;
		}
		int64_t now = timeval_ms();
		if (now - start > 1000) {
			LOG_ERROR("ip.txwm didn't get set.");
			return ERROR_TARGET_TIMEOUT;
		}
	}

	return ERROR_OK;

}

static int fespi_tx(struct flash_bank *bank, uint8_t in){
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;

	int64_t start = timeval_ms();

	while (1) {
		if ((int32_t) FESPI_READ_REG(FESPI_REG_TXFIFO) >= 0) {
			break;
		}
		int64_t now = timeval_ms();
		if (now - start > 1000) {
			LOG_ERROR("txfifo stayed negative.");
			return ERROR_TARGET_TIMEOUT;
		}
	}

	FESPI_WRITE_REG(FESPI_REG_TXFIFO, in);

	return ERROR_OK;
}

static int fespi_rx(struct flash_bank *bank, uint8_t *out)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;

	int64_t start = timeval_ms();
	int32_t value;

	while (1) {
		value = (int32_t) FESPI_READ_REG(FESPI_REG_RXFIFO);
		if (value >= 0)
			break;
		int64_t now = timeval_ms();
		if (now - start > 1000) {
			LOG_ERROR("rxfifo didn't go positive (value=0x%x).", value);
			return ERROR_TARGET_TIMEOUT;
		}
	}

	if (out) {
		*out = value & 0xff;
	}
	return ERROR_OK;
}

//TODO!!! Why don't we need to call this after writing?
static int fespi_wip (struct flash_bank * bank, int timeout)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;

	int64_t endtime;

	fespi_set_dir(bank, FESPI_DIR_RX);

	FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);
	endtime = timeval_ms() + timeout;

	fespi_tx(bank, SPIFLASH_READ_STATUS);
	if (fespi_rx(bank, NULL) != ERROR_OK)
		return ERROR_FAIL;

	do {
		alive_sleep(1);

		fespi_tx(bank, 0);
		uint8_t rx;
		if (fespi_rx(bank, &rx) != ERROR_OK)
			return ERROR_FAIL;
		if ((rx & SPIFLASH_BSY_BIT) == 0) {
			FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);
			fespi_set_dir(bank, FESPI_DIR_TX);
			return ERROR_OK;
		}
	} while (timeval_ms() < endtime);

	LOG_ERROR("timeout");
	return ERROR_FAIL;
}

static int fespi_erase_sector(struct flash_bank *bank, int sector)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;
	int retval;

	retval = fespi_tx(bank, SPIFLASH_WRITE_ENABLE);
	if (retval != ERROR_OK) {return retval;}
	retval = fespi_txwm_wait(bank);
	if (retval != ERROR_OK) {return retval;}
	  
	FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);
	retval = fespi_tx(bank, fespi_info->dev->erase_cmd);
	if (retval != ERROR_OK) {return retval;}	
	sector = bank->sectors[sector].offset;
	retval = fespi_tx(bank, sector >> 16);
	if (retval != ERROR_OK) {return retval;}	
	retval = fespi_tx(bank, sector >> 8);
	if (retval != ERROR_OK) {return retval;}	
	retval = fespi_tx(bank, sector);
	if (retval != ERROR_OK) {return retval;}	
	retval = fespi_txwm_wait(bank);
	if (retval != ERROR_OK) {return retval;}	
	FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);

	retval = fespi_wip(bank, FESPI_MAX_TIMEOUT);
	if (retval != ERROR_OK){return retval;}

	return ERROR_OK;
}

static int fespi_erase(struct flash_bank *bank, int first, int last)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;
	int retval = ERROR_OK;
	int sector;

	LOG_DEBUG("%s: from sector %d to sector %d", __func__, first, last);

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if ((first < 0) || (last < first) || (last >= bank->num_sectors)) {
		LOG_ERROR("Flash sector invalid");
		return ERROR_FLASH_SECTOR_INVALID;
	}

	if (!(fespi_info->probed)) {
		LOG_ERROR("Flash bank not probed");
		return ERROR_FLASH_BANK_NOT_PROBED;
	}

	for (sector = first; sector <= last; sector++) {
		if (bank->sectors[sector].is_protected) {
			LOG_ERROR("Flash sector %d protected", sector);
			return ERROR_FAIL;
		}
	}

	FESPI_WRITE_REG(FESPI_REG_TXCTRL, FESPI_TXWM(1));
	retval = fespi_txwm_wait(bank);
	if (retval != ERROR_OK){
	  LOG_ERROR("WM Didn't go high before attempting.");
	  return retval;
	}

	/* Disable Hardware accesses*/
	FESPI_DISABLE_HW_MODE();

	/* poll WIP */
	retval = fespi_wip(bank, FESPI_PROBE_TIMEOUT);
	if (retval != ERROR_OK) 
		return retval;

	for (sector = first; sector <= last; sector++) {
		retval = fespi_erase_sector(bank, sector);
		if (retval != ERROR_OK)
			break;
		keep_alive();
	}

	/* Switch to HW mode before return to prompt */
	FESPI_ENABLE_HW_MODE();
	return retval;
}

static int fespi_protect(struct flash_bank *bank, int set,
		int first, int last)
{
	int sector;

	for (sector = first; sector <= last; sector++)
		bank->sectors[sector].is_protected = set;
	return ERROR_OK;
}

static int slow_fespi_write_buffer(struct flash_bank *bank,
		const uint8_t *buffer, uint32_t offset, uint32_t len)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;
	uint32_t ii;

	//TODO!!! assert that len < page size

	fespi_tx(bank, SPIFLASH_WRITE_ENABLE);
	fespi_txwm_wait(bank);

	FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);

	fespi_tx(bank, SPIFLASH_PAGE_PROGRAM);

	fespi_tx(bank, offset >> 16);
	fespi_tx(bank, offset >> 8);
	fespi_tx(bank, offset);

	for (ii = 0; ii < len; ii++) {
		fespi_tx(bank, buffer[ii]);
	}

	fespi_txwm_wait(bank);

	FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);

	keep_alive();

	return ERROR_OK;
}

/*
 * Here's the source for the algorithm.
 * You can turn it into the array below using:
	sed -n '/ALGO_START$/,/ALGO_END/ p' fespi.c | \
		riscv32-unknown-elf-gcc -x assembler-with-cpp - -nostdlib -nostartfiles -o tmp.o && \
		riscv32-unknown-elf-objcopy -O binary tmp.o algorithm.bin && \
		xxd -i algorithm.bin

// ALGO_START
#define SPIFLASH_READ_STATUS	0x05 // Read Status Register
#define SPIFLASH_BSY_BIT		0x00000001 // WIP Bit of SPI SR on SMI SR

// Register offsets
#define FESPI_REG_FMT             0x40
#define FESPI_REG_TXFIFO          0x48
#define FESPI_REG_RXFIFO          0x4c
#define FESPI_REG_IP              0x74

// Fields
#define FESPI_IP_TXWM             0x1
#define FESPI_FMT_DIR(x)          (((x) & 0x1) << 3)

// To enter, jump to the start of command_table (ie. offset 0).
//      a0 - FESPI base address
//      a1 - start address of buffer

// The buffer contains a "program" in byte sequences. The first byte in a
// sequence determines the operation. Some operation will read more data from
// the program, while some will not. The operation byte is the offset into
// command_table, so eg. 4 means exit, 8 means transmit, and so on.

		.global _start
_start:
command_table:
        j       main            // 0
        ebreak                  // 4
        j       tx              // 8
        j       txwm_wait       // 12
        j       write_reg       // 16
		j		wip_wait		// 20
		j		set_dir 		// 24

// Execute the program.
main:
        lbu     t0, 0(a1)
        addi    a1, a1, 1
        la      t1, command_table
        add     t0, t0, t1
        jr      t0

// Read 1 byte the contains the number of bytes to transmit. Then read those
// bytes from the program and transmit them one by one.
tx:
        lbu     t1, 0(a1)       // read number of bytes to transmit
        addi    a1, a1, 1
1:      lw      t0, FESPI_REG_TXFIFO(a0)        // wait for FIFO clear
        bltz    t0, 1b
        lbu     t0, 0(a1)       // Load byte to write
        sw      t0, FESPI_REG_TXFIFO(a0)
        addi    a1, a1, 1
        addi    t1, t1, -1
        bgtz    t1, 1b
        j       main

// Wait until TXWM is set.
txwm_wait:
1:      lw      t0, FESPI_REG_IP(a0)
        andi    t0, t0, FESPI_IP_TXWM
        beqz    t0, 1b
        j       main

// Read 1 byte that contains the offset of the register to write, and 1 byte
// that contains the data to write.
write_reg:
        lbu     t0, 0(a1)       // read register to write
        add     t0, t0, a0
        lbu     t1, 1(a1)       // read value to write
        addi    a1, a1, 2
        sw      t1, 0(t0)
        j       main

wip_wait:
		li		a2, SPIFLASH_READ_STATUS
        jal		txrx_byte
		// discard first result
1:		li		a2, 0
        jal		txrx_byte
		andi	t0, a2, SPIFLASH_BSY_BIT
		bnez	t0, 1b
		j		main

txrx_byte:	// transmit the byte in a2, receive a bit into a2
		lw      t0, FESPI_REG_TXFIFO(a0)        // wait for FIFO clear
        bltz    t0, txrx_byte
        sw      a2, FESPI_REG_TXFIFO(a0)
1:		lw		a2, FESPI_REG_RXFIFO(a0)
		bltz	a2, 1b
		ret

set_dir:
		lw		t0, FESPI_REG_FMT(a0)
		li		t1, ~(FESPI_FMT_DIR(0xFFFFFFFF))
		and		t0, t0, t1
        lbu     t1, 0(a1)       // read value to OR in
        addi    a1, a1, 1
		or		t0, t0, t1
		sw		t0, FESPI_REG_FMT(a0)
		j		main

// ALGO_END
 */
static const uint8_t algorithm_bin[] = {
  0x6f, 0x00, 0xc0, 0x01, 0x73, 0x00, 0x10, 0x00, 0x6f, 0x00, 0xc0, 0x02,
  0x6f, 0x00, 0x00, 0x05, 0x6f, 0x00, 0xc0, 0x05, 0x6f, 0x00, 0x00, 0x07,
  0x6f, 0x00, 0x00, 0x0a, 0x83, 0xc2, 0x05, 0x00, 0x93, 0x85, 0x15, 0x00,
  0x17, 0x03, 0x00, 0x00, 0x13, 0x03, 0xc3, 0xfd, 0xb3, 0x82, 0x62, 0x00,
  0x67, 0x80, 0x02, 0x00, 0x03, 0xc3, 0x05, 0x00, 0x93, 0x85, 0x15, 0x00,
  0x83, 0x22, 0x85, 0x04, 0xe3, 0xce, 0x02, 0xfe, 0x83, 0xc2, 0x05, 0x00,
  0x23, 0x24, 0x55, 0x04, 0x93, 0x85, 0x15, 0x00, 0x13, 0x03, 0xf3, 0xff,
  0xe3, 0x44, 0x60, 0xfe, 0x6f, 0xf0, 0x5f, 0xfc, 0x83, 0x22, 0x45, 0x07,
  0x93, 0xf2, 0x12, 0x00, 0xe3, 0x8c, 0x02, 0xfe, 0x6f, 0xf0, 0x5f, 0xfb,
  0x83, 0xc2, 0x05, 0x00, 0xb3, 0x82, 0xa2, 0x00, 0x03, 0xc3, 0x15, 0x00,
  0x93, 0x85, 0x25, 0x00, 0x23, 0xa0, 0x62, 0x00, 0x6f, 0xf0, 0xdf, 0xf9,
  0x13, 0x06, 0x50, 0x00, 0xef, 0x00, 0x80, 0x01, 0x13, 0x06, 0x00, 0x00,
  0xef, 0x00, 0x00, 0x01, 0x93, 0x72, 0x16, 0x00, 0xe3, 0x9a, 0x02, 0xfe,
  0x6f, 0xf0, 0x1f, 0xf8, 0x83, 0x22, 0x85, 0x04, 0xe3, 0xce, 0x02, 0xfe,
  0x23, 0x24, 0xc5, 0x04, 0x03, 0x26, 0xc5, 0x04, 0xe3, 0x4e, 0x06, 0xfe,
  0x67, 0x80, 0x00, 0x00, 0x83, 0x22, 0x05, 0x04, 0x13, 0x03, 0x70, 0xff,
  0xb3, 0xf2, 0x62, 0x00, 0x03, 0xc3, 0x05, 0x00, 0x93, 0x85, 0x15, 0x00,
  0xb3, 0xe2, 0x62, 0x00, 0x23, 0x20, 0x55, 0x04, 0x6f, 0xf0, 0x9f, 0xf4
};
#define STEP_EXIT			4
#define STEP_TX				8
#define STEP_TXWM_WAIT		12
#define STEP_WRITE_REG		16
#define STEP_WIP_WAIT		20
#define STEP_SET_DIR		24
#define STEP_NOP			0xff

struct algorithm_steps {
	unsigned size;
	unsigned used;
	uint8_t **steps;
};

struct algorithm_steps *as_new(unsigned size)
{
	struct algorithm_steps *as = calloc(1, sizeof(struct algorithm_steps));
	as->size = size;
	as->steps = calloc(size, sizeof(as->steps[0]));
	return as;
}

struct algorithm_steps *as_delete(struct algorithm_steps *as)
{
	for (unsigned step = 0; step < as->used; step++) {
		free(as->steps[step]);
		as->steps[step] = NULL;
	}
	free(as);
	return NULL;
}

int as_empty(struct algorithm_steps *as)
{
	for (unsigned s = 0; s < as->used; s++) {
		if (as->steps[s][0] != STEP_NOP)
			return 0;
	}
	return 1;
}

// Return size of compiled program.
unsigned as_compile(struct algorithm_steps *as, uint8_t *target,
		unsigned target_size)
{
	unsigned offset = 0;
	bool finish_early = false;
	for (unsigned s = 0; s < as->used && !finish_early; s++) {
		unsigned bytes_left = target_size - offset;
		switch (as->steps[s][0]) {
			case STEP_NOP:
				break;
			case STEP_TX:
				{
					unsigned size = as->steps[s][1];
					if (size + 3 > bytes_left) {
						finish_early = true;
						break;
					}
					memcpy(target + offset, as->steps[s], size + 2);
					offset += size + 2;
					break;
				}
			case STEP_WRITE_REG:
				if (4 > bytes_left) {
					finish_early = true;
					break;
				}
				memcpy(target + offset, as->steps[s], 3);
				offset += 3;
				break;
			case STEP_SET_DIR:
				if (3 > bytes_left) {
					finish_early = true;
					break;
				}
				memcpy(target + offset, as->steps[s], 2);
				offset += 2;
				break;
			case STEP_TXWM_WAIT:
			case STEP_WIP_WAIT:
				if (2 > bytes_left) {
					finish_early = true;
					break;
				}
				memcpy(target + offset, as->steps[s], 1);
				offset += 1;
				break;
			default:
				assert(0);
		}
		if (!finish_early)
			as->steps[s][0] = STEP_NOP;
	}
	assert(offset + 1 <= target_size);
	target[offset++] = STEP_EXIT;

	LOG_DEBUG("%d-byte program:", offset);
	for (unsigned i = 0; i < offset;) {
		char buf[80];
		for (unsigned x = 0; i < offset && x < 16; x++, i++) {
			sprintf(buf + x*3, "%02x ", target[i]);
		}
		LOG_DEBUG("%s", buf);
	}

	return offset;
}

void as_add_tx(struct algorithm_steps *as, unsigned count, const uint8_t *data)
{
	LOG_DEBUG("count=%d", count);
	while (count > 0) {
		unsigned step_count = MIN(count, 255);
		assert(as->used < as->size);
		as->steps[as->used] = malloc(step_count + 2);
		as->steps[as->used][0] = STEP_TX;
		as->steps[as->used][1] = step_count;
		memcpy(as->steps[as->used] + 2, data, step_count);
		as->used++;
		data += step_count;
		count -= step_count;
	}
}

void as_add_tx1(struct algorithm_steps *as, uint8_t byte)
{
	uint8_t data[1];
	data[0] = byte;
	as_add_tx(as, 1, data);
}

void as_add_write_reg(struct algorithm_steps *as, uint8_t offset, uint8_t data)
{
	assert(as->used < as->size);
	as->steps[as->used] = malloc(3);
	as->steps[as->used][0] = STEP_WRITE_REG;
	as->steps[as->used][1] = offset;
	as->steps[as->used][2] = data;
	as->used++;
}

void as_add_txwm_wait(struct algorithm_steps *as)
{
	assert(as->used < as->size);
	as->steps[as->used] = malloc(1);
	as->steps[as->used][0] = STEP_TXWM_WAIT;
	as->used++;
}

void as_add_wip_wait(struct algorithm_steps *as)
{
	assert(as->used < as->size);
	as->steps[as->used] = malloc(1);
	as->steps[as->used][0] = STEP_WIP_WAIT;
	as->used++;
}

void as_add_set_dir(struct algorithm_steps *as, bool dir)
{
	assert(as->used < as->size);
	as->steps[as->used] = malloc(2);
	as->steps[as->used][0] = STEP_SET_DIR;
	as->steps[as->used][1] = FESPI_FMT_DIR(dir);
	as->used++;
}

/* This should write something less than or equal to a page.*/
static int steps_add_buffer_write(struct algorithm_steps *as,
		const uint8_t *buffer, uint32_t chip_offset, uint32_t len)
{
	as_add_tx1(as, SPIFLASH_WRITE_ENABLE);
	as_add_txwm_wait(as);
	as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);

	uint8_t setup[] = {
		SPIFLASH_PAGE_PROGRAM,
		chip_offset >> 16,
		chip_offset >> 8,
		chip_offset,
	};
	as_add_tx(as, sizeof(setup), setup);

	as_add_tx(as, len, buffer);
	as_add_txwm_wait(as);
	as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);

	// fespi_wip()
	as_add_set_dir(as, FESPI_DIR_RX);
	as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);
	as_add_wip_wait(as);
	as_add_write_reg(as, FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);
	as_add_set_dir(as, FESPI_DIR_TX);

	return ERROR_OK;
}

static int steps_execute(struct algorithm_steps *as,
		struct flash_bank *bank, struct working_area *algorithm_wa,
		struct working_area *data_wa)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;
	uint8_t *data_buf = malloc(data_wa->size);
	int xlen = riscv_xlen(target);

	struct reg_param reg_params[2];
	init_reg_param(&reg_params[0], "x10", xlen, PARAM_OUT);
	init_reg_param(&reg_params[1], "x11", xlen, PARAM_OUT);
	buf_set_u64(reg_params[0].value, 0, xlen, ctrl_base);
	buf_set_u64(reg_params[1].value, 0, xlen, data_wa->address);
	while (!as_empty(as)) {
		keep_alive();
		unsigned bytes = as_compile(as, data_buf, data_wa->size);
		int retval = target_write_buffer(target, data_wa->address, bytes,
				data_buf);
		if (retval != ERROR_OK) {
			LOG_ERROR("Failed to write data to 0x%" TARGET_PRIxADDR ": %d",
					data_wa->address, retval);
			return retval;
		}

		retval = target_run_algorithm(target, 0, NULL, 2, reg_params,
				algorithm_wa->address, algorithm_wa->address + 4,
				10000, NULL);
		if (retval != ERROR_OK) {
			LOG_ERROR("Failed to execute algorithm at 0x%" TARGET_PRIxADDR ": %d",
					algorithm_wa->address, retval);
			return retval;
		}
	}

	return ERROR_OK;
}

static int fespi_write(struct flash_bank *bank, const uint8_t *buffer,
		uint32_t offset, uint32_t count)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;
	uint32_t cur_count, page_size, page_offset;
	int sector;
	int retval = ERROR_OK;

	LOG_DEBUG("%s: offset=0x%08" PRIx32 " count=0x%08" PRIx32,
			__func__, offset, count);

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	if (offset + count > fespi_info->dev->size_in_bytes) {
		LOG_WARNING("Write past end of flash. Extra data discarded.");
		count = fespi_info->dev->size_in_bytes - offset;
	}

	/* Check sector protection */
	for (sector = 0; sector < bank->num_sectors; sector++) {
		/* Start offset in or before this sector? */
		/* End offset in or behind this sector? */
		if ((offset <
					(bank->sectors[sector].offset + bank->sectors[sector].size))
				&& ((offset + count - 1) >= bank->sectors[sector].offset)
				&& bank->sectors[sector].is_protected) {
			LOG_ERROR("Flash sector %d protected", sector);
			return ERROR_FAIL;
		}
	}

	struct working_area *algorithm_wa;
	if (target_alloc_working_area(target, sizeof(algorithm_bin),
				&algorithm_wa) != ERROR_OK) {
		LOG_WARNING("Couldn't allocate %zd-byte working area.",
				sizeof(algorithm_bin));
		algorithm_wa = NULL;
	} else {
		retval = target_write_buffer(target, algorithm_wa->address,
				sizeof(algorithm_bin), algorithm_bin);
		if (retval != ERROR_OK) {
			LOG_ERROR("Failed to write code to 0x%" TARGET_PRIxADDR ": %d",
					algorithm_wa->address, retval);
			target_free_working_area(target, algorithm_wa);
			algorithm_wa = NULL;
		}
	}

	struct working_area *data_wa = NULL;
	unsigned data_wa_size = 2 * count;
	while (1) {
		if (data_wa_size < 128) {
			LOG_WARNING("Couldn't allocate data working area.");
			target_free_working_area(target, algorithm_wa);
			algorithm_wa = NULL;
		}
		if (target_alloc_working_area_try(target, data_wa_size, &data_wa) ==
				ERROR_OK) {
			break;
		}

		data_wa_size /= 2;
	}

	page_size = fespi_info->dev->pagesize;

	fespi_txwm_wait(bank);

	/* Disable Hardware accesses*/
	FESPI_DISABLE_HW_MODE();

	/* poll WIP */
	retval = fespi_wip(bank, FESPI_PROBE_TIMEOUT);
	if (retval != ERROR_OK)
		return retval;

	struct algorithm_steps *as = as_new(count / 4);

	/* unaligned buffer head */
	if (count > 0 && (offset & 3) != 0) {
		cur_count = 4 - (offset & 3);
		if (cur_count > count)
			cur_count = count;
		if (algorithm_wa) {
			retval = steps_add_buffer_write(as, buffer, offset, cur_count);
		} else {
			retval = slow_fespi_write_buffer(bank, buffer, offset, cur_count);
		}
		if (retval != ERROR_OK)
			goto err;
		offset += cur_count;
		buffer += cur_count;
		count -= cur_count;
	}

	page_offset = offset % page_size;
	/* central part, aligned words */
	while (count >= 4) {
		/* clip block at page boundary */
		if (page_offset + count > page_size)
			cur_count = page_size - page_offset;
		else
			cur_count = count & ~3;

		if (algorithm_wa) {
			retval = steps_add_buffer_write(as, buffer, offset, cur_count);
		} else {
			retval = slow_fespi_write_buffer(bank, buffer, offset, cur_count);
		}
		if (retval != ERROR_OK)
			goto err;

		page_offset = 0;
		buffer += cur_count;
		offset += cur_count;
		count -= cur_count;
	}

	/* buffer tail */
	if (count > 0) {
		if (algorithm_wa) {
			retval = steps_add_buffer_write(as, buffer, offset, count);
		} else {
			retval = slow_fespi_write_buffer(bank, buffer, offset, count);
		}
		if (retval != ERROR_OK)
			goto err;
	}

	if (algorithm_wa) {
		retval = steps_execute(as, bank, algorithm_wa, data_wa);
	}

err:
	if (algorithm_wa) {
		target_free_working_area(target, data_wa);
		target_free_working_area(target, algorithm_wa);
	}

	/* Switch to HW mode before return to prompt */
	FESPI_ENABLE_HW_MODE();
	return retval;
}

/* Return ID of flash device */
/* On exit, SW mode is kept */
static int fespi_read_flash_id(struct flash_bank *bank, uint32_t *id)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base = fespi_info->ctrl_base;
	int retval;

	if (target->state != TARGET_HALTED) {
		LOG_ERROR("Target not halted");
		return ERROR_TARGET_NOT_HALTED;
	}

	fespi_txwm_wait(bank);

	/* Disable Hardware accesses*/
	FESPI_DISABLE_HW_MODE();

	/* poll WIP */
	retval = fespi_wip(bank, FESPI_PROBE_TIMEOUT);
	if (retval != ERROR_OK)
		return retval;

	fespi_set_dir(bank, FESPI_DIR_RX);

	/* Send SPI command "read ID" */
	FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_HOLD);

	fespi_tx(bank, SPIFLASH_READ_ID);
	/* Send dummy bytes to actually read the ID.*/
	fespi_tx(bank, 0);
	fespi_tx(bank, 0);
	fespi_tx(bank, 0);

	/* read ID from Receive Register */
	*id = 0;
	if (fespi_rx(bank, NULL) != ERROR_OK)
		return ERROR_FAIL;
	uint8_t rx;
	if (fespi_rx(bank, &rx) != ERROR_OK)
		return ERROR_FAIL;
	*id = rx;
	if (fespi_rx(bank, &rx) != ERROR_OK)
		return ERROR_FAIL;
	*id |= (rx << 8);
	if (fespi_rx(bank, &rx) != ERROR_OK)
		return ERROR_FAIL;
	*id |= (rx << 16);

	FESPI_WRITE_REG(FESPI_REG_CSMODE, FESPI_CSMODE_AUTO);

	fespi_set_dir(bank, FESPI_DIR_TX);

	return ERROR_OK;
}

static int fespi_probe(struct flash_bank *bank)
{
	struct target *target = bank->target;
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	uint32_t ctrl_base;
	struct flash_sector *sectors;
	uint32_t id = 0; /* silence uninitialized warning */
	const struct fespi_target *target_device;
	int retval;

	if (fespi_info->probed)
		free(bank->sectors);
	fespi_info->probed = 0;

	if (fespi_info->ctrl_base == 0) {
	  for (target_device = target_devices ; target_device->name ; ++target_device)
	    if (target_device->tap_idcode == target->tap->idcode)
	      break;

	  if (!target_device->name) {
	    LOG_ERROR("Device ID 0x%" PRIx32 " is not known as FESPI capable",
		      target->tap->idcode);
	    return ERROR_FAIL;
	  }

	  fespi_info->ctrl_base = target_device->ctrl_base;

	  LOG_DEBUG("Valid FESPI on device %s at address 0x%" PRIx32,
		    target_device->name, bank->base);

	} else {
	  LOG_DEBUG("Assuming FESPI as specified at address 0x%x with ctrl at 0x%x",
		    fespi_info->ctrl_base,
		    bank->base);
	}
        ctrl_base = fespi_info->ctrl_base;

	/* read and decode flash ID; returns in SW mode */
	FESPI_WRITE_REG(FESPI_REG_TXCTRL, FESPI_TXWM(1));
	fespi_set_dir(bank, FESPI_DIR_TX);

	retval = fespi_read_flash_id(bank, &id);

	FESPI_ENABLE_HW_MODE();
	if (retval != ERROR_OK)
		return retval;

	fespi_info->dev = NULL;
	for (const struct flash_device *p = flash_devices; p->name ; p++)
		if (p->device_id == id) {
			fespi_info->dev = p;
			break;
		}

	if (!fespi_info->dev) {
		LOG_ERROR("Unknown flash device (ID 0x%08" PRIx32 ")", id);
		return ERROR_FAIL;
	}

	LOG_INFO("Found flash device \'%s\' (ID 0x%08" PRIx32 ")",
			fespi_info->dev->name, fespi_info->dev->device_id);

	/* Set correct size value */
	bank->size = fespi_info->dev->size_in_bytes;

	/* create and fill sectors array */
	bank->num_sectors =
		fespi_info->dev->size_in_bytes / fespi_info->dev->sectorsize;
	sectors = malloc(sizeof(struct flash_sector) * bank->num_sectors);
	if (sectors == NULL) {
		LOG_ERROR("not enough memory");
		return ERROR_FAIL;
	}

	for (int sector = 0; sector < bank->num_sectors; sector++) {
		sectors[sector].offset = sector * fespi_info->dev->sectorsize;
		sectors[sector].size = fespi_info->dev->sectorsize;
		sectors[sector].is_erased = -1;
		sectors[sector].is_protected = 1;
	}

	bank->sectors = sectors;
	fespi_info->probed = 1;
	return ERROR_OK;
}

static int fespi_auto_probe(struct flash_bank *bank)
{
	struct fespi_flash_bank *fespi_info = bank->driver_priv;
	if (fespi_info->probed)
		return ERROR_OK;
	return fespi_probe(bank);
}

static int fespi_protect_check(struct flash_bank *bank)
{
	/* Nothing to do. Protection is only handled in SW. */
	return ERROR_OK;
}

static int get_fespi_info(struct flash_bank *bank, char *buf, int buf_size)
{
	struct fespi_flash_bank *fespi_info = bank->driver_priv;

	if (!(fespi_info->probed)) {
		snprintf(buf, buf_size,
				"\nFESPI flash bank not probed yet\n");
		return ERROR_OK;
	}

	snprintf(buf, buf_size, "\nFESPI flash information:\n"
			"  Device \'%s\' (ID 0x%08" PRIx32 ")\n",
			fespi_info->dev->name, fespi_info->dev->device_id);

	return ERROR_OK;
}

struct flash_driver fespi_flash = {
	.name = "fespi",
	.flash_bank_command = fespi_flash_bank_command,
	.erase = fespi_erase,
	.protect = fespi_protect,
	.write = fespi_write,
	.read = default_flash_read,
	.probe = fespi_probe,
	.auto_probe = fespi_auto_probe,
	.erase_check = default_flash_blank_check,
	.protect_check = fespi_protect_check,
	.info = get_fespi_info
};