aboutsummaryrefslogtreecommitdiff
path: root/src/target/arm_jtag.c
AgeCommit message (Expand)AuthorFilesLines
2021-07-24openocd: fix simple cases of NULL comparisonAntonio Borneo1-1/+1
2020-07-08target/arm926ejs: fix memory leaksAntonio Borneo1-0/+5
2020-03-07helper/binarybuffer: fix clang static analyzer warningsTomas Vanek1-2/+2
2016-05-24Remove FSF address from GPL noticesMarc Schink1-3/+1
2015-12-29target/arm: Remove usage of struct arm_jtag in ARMv7 targetsAndreas Fritiofson1-4/+2
2014-01-20Retire jtag_add_dr_outAndreas Fritiofson1-7/+5
2013-06-05update files to correct FSF addressSpencer Oliver1-1/+1
2012-02-06build: cleanup src/target directorySpencer Oliver1-12/+8
2010-04-10ARM_JTAG: review scope of functionsAntonio Borneo1-1/+1
2010-03-20jtag: move towards making out_value constØyvind Harboe1-1/+1
2010-03-18jtag: retire one instance of jtag_get_end_state() usageØyvind Harboe1-6/+6
2010-03-08jtag: jtag_add_ir_scan() now takes a single fieldØyvind Harboe1-2/+2
2010-03-08jtag: retire tap fieldØyvind Harboe1-3/+2
2009-12-11embedded hosts: optimize common code path for core arm operationsØyvind Harboe1-43/+32
2009-11-14remove unused arm_jtag_buf_to_* helpersZachary T Welch1-89/+0
2009-11-14struct scan_field_s -> struct scan_fieldZachary T Welch1-12/+12
2009-11-13arm_jtag_t -> struct arm_jtagZachary T Welch1-4/+4
2009-11-13scan_field_t -> struct scan_fieldZachary T Welch1-1/+1
2009-11-13jtag_tap_t -> struct jtag_tapZachary T Welch1-1/+1
2009-07-17Andreas Fritiofson <andreas.fritiofson@gmail.com> UTF8 fixesoharboe1-1/+1
2009-06-23Remove whitespace at end of lines, step 1.zwelch1-1/+1
2009-06-23- Fixes '==' whitespacezwelch1-2/+2
2009-06-23- Replace 'if(' with 'if ('.zwelch1-2/+2
2009-06-18Transform 'u32' to 'uint32_t' in src/target/arm*zwelch1-11/+11
2009-06-18Transform 'u16' to 'uint16_t'zwelch1-4/+4
2009-06-18Transform 'u8' to 'uint8_t' in src/targetzwelch1-25/+25
2009-06-04Introduce jtag_get_end_state() fn to clarify code a bit.oharboe1-3/+3
2009-06-04remove TAP_INVALID as argument to jtag_add_xxx() fn'soharboe1-3/+3
2009-05-11Audit and eliminate redundant #include directives in arm target files.zwelch1-5/+0
2009-05-08in_handler in_check_mask and in_check_value now removed from field. Last big ...oharboe1-1/+1
2009-05-08pull up verify_capture_ir one level in api stackoharboe1-5/+12
2009-05-07marker for in_handler to removeoharboe1-5/+5
2009-05-06remove unecessary setting of deprecated fields to NULLoharboe1-3/+3
2009-05-06retire out_mask - not used anywhereoharboe1-1/+1
2009-04-18The following patches was applied:mifi1-2/+2
2008-11-30jtag newtap change & huge manual updateduane1-6/+7
2008-11-19jtag_get_device() now returns NULL and reports error instead of invoking exit()oharboe1-7/+9
2008-10-14Laurentiu Cocanu - add error handlingoharboe1-8/+11
2008-09-20- added myself to copyright on files i remember adding large contributions fo...ntfreak1-1/+1
2008-07-25added yours sincerely for files where I feel that I've made non-trivial contr...oharboe1-0/+3
2008-05-07This matters for embedded devices, but is probably not observably better for ...oharboe1-25/+11
2008-02-29added an #error in case anybody tries to compile that broken code.oharboe1-0/+1
2008-02-25- convert all files to unix line-endingdrath1-207/+207
2008-02-25From Michael Bruckoharboe1-207/+207
2008-01-20- added patch "remove error handler as planned"mifi1-35/+14
2008-01-14- use correct SCAN_N check value (disabled by default)drath1-1/+1
2008-01-07- added gdb flash fixes patch mifi1-6/+8
2007-04-25- added support for error handlers to JTAG scan commands (jtag_[plain_][ir|dr...drath1-5/+33
2006-08-31- endianess fixes everywhere but in the flash code. flashing might still be b...drath1-3/+83
2006-07-17- Added support for native MinGW builds (thanks to Spencer Oliver and Michael...drath1-0/+2
48 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226
/***************************************************************************
 *   Copyright (C) 2005 by Dominic Rath                                    *
 *   Dominic.Rath@gmx.de                                                   *
 *                                                                         *
 *   Copyright (C) 2007-2010 Øyvind Harboe                                 *
 *   oyvind.harboe@zylin.com                                               *
 *                                                                         *
 *   Copyright (C) 2008, Duane Ellis                                       *
 *   openocd@duaneeellis.com                                               *
 *                                                                         *
 *   Copyright (C) 2008 by Spencer Oliver                                  *
 *   spen@spen-soft.co.uk                                                  *
 *                                                                         *
 *   Copyright (C) 2008 by Rick Altherr                                    *
 *   kc8apf@kc8apf.net>                                                    *
 *                                                                         *
 *   Copyright (C) 2011 by Broadcom Corporation                            *
 *   Evan Hunter - ehunter@broadcom.com                                    *
 *                                                                         *
 *   Copyright (C) ST-Ericsson SA 2011                                     *
 *   michel.jaouen@stericsson.com : smp minimum support                    *
 *                                                                         *
 *   Copyright (C) 2011 Andreas Fritiofson                                 *
 *   andreas.fritiofson@gmail.com                                          *
 *                                                                         *
 *   This program is free software; you can redistribute it and/or modify  *
 *   it under the terms of the GNU General Public License as published by  *
 *   the Free Software Foundation; either version 2 of the License, or     *
 *   (at your option) any later version.                                   *
 *                                                                         *
 *   This program is distributed in the hope that it will be useful,       *
 *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
 *   GNU General Public License for more details.                          *
 *                                                                         *
 *   You should have received a copy of the GNU General Public License     *
 *   along with this program.  If not, see <http://www.gnu.org/licenses/>. *
 ***************************************************************************/

#ifdef HAVE_CONFIG_H
#include "config.h"
#endif

#include <helper/align.h>
#include <helper/time_support.h>
#include <jtag/jtag.h>
#include <flash/nor/core.h>

#include "target.h"
#include "target_type.h"
#include "target_request.h"
#include "breakpoints.h"
#include "register.h"
#include "trace.h"
#include "image.h"
#include "rtos/rtos.h"
#include "transport/transport.h"
#include "arm_cti.h"
#include "smp.h"
#include "semihosting_common.h"

/* default halt wait timeout (ms) */
#define DEFAULT_HALT_TIMEOUT 5000

static int target_read_buffer_default(struct target *target, target_addr_t address,
		uint32_t count, uint8_t *buffer);
static int target_write_buffer_default(struct target *target, target_addr_t address,
		uint32_t count, const uint8_t *buffer);
static int target_array2mem(Jim_Interp *interp, struct target *target,
		int argc, Jim_Obj * const *argv);
static int target_mem2array(Jim_Interp *interp, struct target *target,
		int argc, Jim_Obj * const *argv);
static int target_register_user_commands(struct command_context *cmd_ctx);
static int target_get_gdb_fileio_info_default(struct target *target,
		struct gdb_fileio_info *fileio_info);
static int target_gdb_fileio_end_default(struct target *target, int retcode,
		int fileio_errno, bool ctrl_c);

/* targets */
extern struct target_type arm7tdmi_target;
extern struct target_type arm720t_target;
extern struct target_type arm9tdmi_target;
extern struct target_type arm920t_target;
extern struct target_type arm966e_target;
extern struct target_type arm946e_target;
extern struct target_type arm926ejs_target;
extern struct target_type fa526_target;
extern struct target_type feroceon_target;
extern struct target_type dragonite_target;
extern struct target_type xscale_target;
extern struct target_type cortexm_target;
extern struct target_type cortexa_target;
extern struct target_type aarch64_target;
extern struct target_type cortexr4_target;
extern struct target_type arm11_target;
extern struct target_type ls1_sap_target;
extern struct target_type mips_m4k_target;
extern struct target_type mips_mips64_target;
extern struct target_type avr_target;
extern struct target_type dsp563xx_target;
extern struct target_type dsp5680xx_target;
extern struct target_type testee_target;
extern struct target_type avr32_ap7k_target;
extern struct target_type hla_target;
extern struct target_type nds32_v2_target;
extern struct target_type nds32_v3_target;
extern struct target_type nds32_v3m_target;
extern struct target_type esp32s2_target;
extern struct target_type or1k_target;
extern struct target_type quark_x10xx_target;
extern struct target_type quark_d20xx_target;
extern struct target_type stm8_target;
extern struct target_type riscv_target;
extern struct target_type mem_ap_target;
extern struct target_type esirisc_target;
extern struct target_type arcv2_target;

static struct target_type *target_types[] = {
	&arm7tdmi_target,
	&arm9tdmi_target,
	&arm920t_target,
	&arm720t_target,
	&arm966e_target,
	&arm946e_target,
	&arm926ejs_target,
	&fa526_target,
	&feroceon_target,
	&dragonite_target,
	&xscale_target,
	&cortexm_target,
	&cortexa_target,
	&cortexr4_target,
	&arm11_target,
	&ls1_sap_target,
	&mips_m4k_target,
	&avr_target,
	&dsp563xx_target,
	&dsp5680xx_target,
	&testee_target,
	&avr32_ap7k_target,
	&hla_target,
	&nds32_v2_target,
	&nds32_v3_target,
	&nds32_v3m_target,
	&esp32s2_target,
	&or1k_target,
	&quark_x10xx_target,
	&quark_d20xx_target,
	&stm8_target,
	&riscv_target,
	&mem_ap_target,
	&esirisc_target,
	&arcv2_target,
	&aarch64_target,
	&mips_mips64_target,
	NULL,
};

struct target *all_targets;
static struct target_event_callback *target_event_callbacks;
static struct target_timer_callback *target_timer_callbacks;
static int64_t target_timer_next_event_value;
static LIST_HEAD(target_reset_callback_list);
static LIST_HEAD(target_trace_callback_list);
static const unsigned int polling_interval = TARGET_DEFAULT_POLLING_INTERVAL;
static LIST_HEAD(empty_smp_targets);

static const struct jim_nvp nvp_assert[] = {
	{ .name = "assert", NVP_ASSERT },
	{ .name = "deassert", NVP_DEASSERT },
	{ .name = "T", NVP_ASSERT },
	{ .name = "F", NVP_DEASSERT },
	{ .name = "t", NVP_ASSERT },
	{ .name = "f", NVP_DEASSERT },
	{ .name = NULL, .value = -1 }
};

static const struct jim_nvp nvp_error_target[] = {
	{ .value = ERROR_TARGET_INVALID, .name = "err-invalid" },
	{ .value = ERROR_TARGET_INIT_FAILED, .name = "err-init-failed" },
	{ .value = ERROR_TARGET_TIMEOUT, .name = "err-timeout" },
	{ .value = ERROR_TARGET_NOT_HALTED, .name = "err-not-halted" },
	{ .value = ERROR_TARGET_FAILURE, .name = "err-failure" },
	{ .value = ERROR_TARGET_UNALIGNED_ACCESS, .name = "err-unaligned-access" },
	{ .value = ERROR_TARGET_DATA_ABORT, .name = "err-data-abort" },
	{ .value = ERROR_TARGET_RESOURCE_NOT_AVAILABLE, .name = "err-resource-not-available" },
	{ .value = ERROR_TARGET_TRANSLATION_FAULT, .name = "err-translation-fault" },
	{ .value = ERROR_TARGET_NOT_RUNNING, .name = "err-not-running" },
	{ .value = ERROR_TARGET_NOT_EXAMINED, .name = "err-not-examined" },
	{ .value = -1, .name = NULL }
};

static const char *target_strerror_safe(int err)
{
	const struct jim_nvp *n;

	n = jim_nvp_value2name_simple(nvp_error_target, err);
	if (!n->name)
		return "unknown";
	else
		return n->name;
}

static const struct jim_nvp nvp_target_event[] = {

	{ .value = TARGET_EVENT_GDB_HALT, .name = "gdb-halt" },
	{ .value = TARGET_EVENT_HALTED, .name = "halted" },
	{ .value = TARGET_EVENT_RESUMED, .name = "resumed" },
	{ .value = TARGET_EVENT_RESUME_START, .name = "resume-start" },
	{ .value = TARGET_EVENT_RESUME_END, .name = "resume-end" },
	{ .value = TARGET_EVENT_STEP_START, .name = "step-start" },
	{ .value = TARGET_EVENT_STEP_END, .name = "step-end" },

	{ .name = "gdb-start", .value = TARGET_EVENT_GDB_START },
	{ .name = "gdb-end", .value = TARGET_EVENT_GDB_END },

	{ .value = TARGET_EVENT_RESET_START,         .name = "reset-start" },
	{ .value = TARGET_EVENT_RESET_ASSERT_PRE,    .name = "reset-assert-pre" },
	{ .value = TARGET_EVENT_RESET_ASSERT,        .name = "reset-assert" },
	{ .value = TARGET_EVENT_RESET_ASSERT_POST,   .name = "reset-assert-post" },
	{ .value = TARGET_EVENT_RESET_DEASSERT_PRE,  .name = "reset-deassert-pre" },
	{ .value = TARGET_EVENT_RESET_DEASSERT_POST, .name = "reset-deassert-post" },
	{ .value = TARGET_EVENT_RESET_INIT,          .name = "reset-init" },
	{ .value = TARGET_EVENT_RESET_END,           .name = "reset-end" },

	{ .value = TARGET_EVENT_EXAMINE_START, .name = "examine-start" },
	{ .value = TARGET_EVENT_EXAMINE_FAIL, .name = "examine-fail" },
	{ .value = TARGET_EVENT_EXAMINE_END, .name = "examine-end" },

	{ .value = TARGET_EVENT_DEBUG_HALTED, .name = "debug-halted" },
	{ .value = TARGET_EVENT_DEBUG_RESUMED, .name = "debug-resumed" },

	{ .value = TARGET_EVENT_GDB_ATTACH, .name = "gdb-attach" },
	{ .value = TARGET_EVENT_GDB_DETACH, .name = "gdb-detach" },

	{ .value = TARGET_EVENT_GDB_FLASH_WRITE_START, .name = "gdb-flash-write-start" },
	{ .value = TARGET_EVENT_GDB_FLASH_WRITE_END,   .name = "gdb-flash-write-end"   },

	{ .value = TARGET_EVENT_GDB_FLASH_ERASE_START, .name = "gdb-flash-erase-start" },
	{ .value = TARGET_EVENT_GDB_FLASH_ERASE_END,   .name = "gdb-flash-erase-end" },

	{ .value = TARGET_EVENT_TRACE_CONFIG, .name = "trace-config" },

	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x100, .name = "semihosting-user-cmd-0x100" },
	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x101, .name = "semihosting-user-cmd-0x101" },
	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x102, .name = "semihosting-user-cmd-0x102" },
	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x103, .name = "semihosting-user-cmd-0x103" },
	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x104, .name = "semihosting-user-cmd-0x104" },
	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x105, .name = "semihosting-user-cmd-0x105" },
	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x106, .name = "semihosting-user-cmd-0x106" },
	{ .value = TARGET_EVENT_SEMIHOSTING_USER_CMD_0x107, .name = "semihosting-user-cmd-0x107" },

	{ .name = NULL, .value = -1 }
};

static const struct jim_nvp nvp_target_state[] = {
	{ .name = "unknown", .value = TARGET_UNKNOWN },
	{ .name = "running", .value = TARGET_RUNNING },
	{ .name = "halted",  .value = TARGET_HALTED },
	{ .name = "reset",   .value = TARGET_RESET },
	{ .name = "debug-running", .value = TARGET_DEBUG_RUNNING },
	{ .name = "unavailable", .value = TARGET_UNAVAILABLE },
	{ .name = NULL, .value = -1 },
};

static const struct jim_nvp nvp_target_debug_reason[] = {
	{ .name = "debug-request",             .value = DBG_REASON_DBGRQ },
	{ .name = "breakpoint",                .value = DBG_REASON_BREAKPOINT },
	{ .name = "watchpoint",                .value = DBG_REASON_WATCHPOINT },
	{ .name = "watchpoint-and-breakpoint", .value = DBG_REASON_WPTANDBKPT },
	{ .name = "single-step",               .value = DBG_REASON_SINGLESTEP },
	{ .name = "target-not-halted",         .value = DBG_REASON_NOTHALTED  },
	{ .name = "program-exit",              .value = DBG_REASON_EXIT },
	{ .name = "exception-catch",           .value = DBG_REASON_EXC_CATCH },
	{ .name = "undefined",                 .value = DBG_REASON_UNDEFINED },
	{ .name = NULL, .value = -1 },
};

static const struct jim_nvp nvp_target_endian[] = {
	{ .name = "big",    .value = TARGET_BIG_ENDIAN },
	{ .name = "little", .value = TARGET_LITTLE_ENDIAN },
	{ .name = "be",     .value = TARGET_BIG_ENDIAN },
	{ .name = "le",     .value = TARGET_LITTLE_ENDIAN },
	{ .name = NULL,     .value = -1 },
};

static const struct jim_nvp nvp_reset_modes[] = {
	{ .name = "unknown", .value = RESET_UNKNOWN },
	{ .name = "run",     .value = RESET_RUN },
	{ .name = "halt",    .value = RESET_HALT },
	{ .name = "init",    .value = RESET_INIT },
	{ .name = NULL,      .value = -1 },
};

const char *debug_reason_name(struct target *t)
{
	const char *cp;

	cp = jim_nvp_value2name_simple(nvp_target_debug_reason,
			t->debug_reason)->name;
	if (!cp) {
		LOG_ERROR("Invalid debug reason: %d", (int)(t->debug_reason));
		cp = "(*BUG*unknown*BUG*)";
	}
	return cp;
}

const char *target_state_name(struct target *t)
{
	const char *cp;
	cp = jim_nvp_value2name_simple(nvp_target_state, t->state)->name;
	if (!cp) {
		LOG_ERROR("Invalid target state: %d", (int)(t->state));
		cp = "(*BUG*unknown*BUG*)";
	}

	if (!target_was_examined(t) && t->defer_examine)
		cp = "examine deferred";

	return cp;
}

const char *target_event_name(enum target_event event)
{
	const char *cp;
	cp = jim_nvp_value2name_simple(nvp_target_event, event)->name;
	if (!cp) {
		LOG_ERROR("Invalid target event: %d", (int)(event));
		cp = "(*BUG*unknown*BUG*)";
	}
	return cp;
}

const char *target_reset_mode_name(enum target_reset_mode reset_mode)
{
	const char *cp;
	cp = jim_nvp_value2name_simple(nvp_reset_modes, reset_mode)->name;
	if (!cp) {
		LOG_ERROR("Invalid target reset mode: %d", (int)(reset_mode));
		cp = "(*BUG*unknown*BUG*)";
	}
	return cp;
}

/* determine the number of the new target */
static int new_target_number(void)
{
	struct target *t;
	int x;

	/* number is 0 based */
	x = -1;
	t = all_targets;
	while (t) {
		if (x < t->target_number)
			x = t->target_number;
		t = t->next;
	}
	return x + 1;
}

static void append_to_list_all_targets(struct target *target)
{
	struct target **t = &all_targets;

	while (*t)
		t = &((*t)->next);
	*t = target;
}

/* read a uint64_t from a buffer in target memory endianness */
uint64_t target_buffer_get_u64(struct target *target, const uint8_t *buffer)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		return le_to_h_u64(buffer);
	else
		return be_to_h_u64(buffer);
}

/* read a uint32_t from a buffer in target memory endianness */
uint32_t target_buffer_get_u32(struct target *target, const uint8_t *buffer)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		return le_to_h_u32(buffer);
	else
		return be_to_h_u32(buffer);
}

/* read a uint24_t from a buffer in target memory endianness */
uint32_t target_buffer_get_u24(struct target *target, const uint8_t *buffer)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		return le_to_h_u24(buffer);
	else
		return be_to_h_u24(buffer);
}

/* read a uint16_t from a buffer in target memory endianness */
uint16_t target_buffer_get_u16(struct target *target, const uint8_t *buffer)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		return le_to_h_u16(buffer);
	else
		return be_to_h_u16(buffer);
}

/* write a uint64_t to a buffer in target memory endianness */
void target_buffer_set_u64(struct target *target, uint8_t *buffer, uint64_t value)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		h_u64_to_le(buffer, value);
	else
		h_u64_to_be(buffer, value);
}

/* write a uint32_t to a buffer in target memory endianness */
void target_buffer_set_u32(struct target *target, uint8_t *buffer, uint32_t value)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		h_u32_to_le(buffer, value);
	else
		h_u32_to_be(buffer, value);
}

/* write a uint24_t to a buffer in target memory endianness */
void target_buffer_set_u24(struct target *target, uint8_t *buffer, uint32_t value)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		h_u24_to_le(buffer, value);
	else
		h_u24_to_be(buffer, value);
}

/* write a uint16_t to a buffer in target memory endianness */
void target_buffer_set_u16(struct target *target, uint8_t *buffer, uint16_t value)
{
	if (target->endianness == TARGET_LITTLE_ENDIAN)
		h_u16_to_le(buffer, value);
	else
		h_u16_to_be(buffer, value);
}

/* write a uint8_t to a buffer in target memory endianness */
static void target_buffer_set_u8(struct target *target, uint8_t *buffer, uint8_t value)
{
	*buffer = value;
}

/* write a uint64_t array to a buffer in target memory endianness */
void target_buffer_get_u64_array(struct target *target, const uint8_t *buffer, uint32_t count, uint64_t *dstbuf)
{
	uint32_t i;
	for (i = 0; i < count; i++)
		dstbuf[i] = target_buffer_get_u64(target, &buffer[i * 8]);
}

/* write a uint32_t array to a buffer in target memory endianness */
void target_buffer_get_u32_array(struct target *target, const uint8_t *buffer, uint32_t count, uint32_t *dstbuf)
{
	uint32_t i;
	for (i = 0; i < count; i++)
		dstbuf[i] = target_buffer_get_u32(target, &buffer[i * 4]);
}

/* write a uint16_t array to a buffer in target memory endianness */
void target_buffer_get_u16_array(struct target *target, const uint8_t *buffer, uint32_t count, uint16_t *dstbuf)
{
	uint32_t i;
	for (i = 0; i < count; i++)
		dstbuf[i] = target_buffer_get_u16(target, &buffer[i * 2]);
}

/* write a uint64_t array to a buffer in target memory endianness */
void target_buffer_set_u64_array(struct target *target, uint8_t *buffer, uint32_t count, const uint64_t *srcbuf)
{
	uint32_t i;
	for (i = 0; i < count; i++)
		target_buffer_set_u64(target, &buffer[i * 8], srcbuf[i]);
}

/* write a uint32_t array to a buffer in target memory endianness */
void target_buffer_set_u32_array(struct target *target, uint8_t *buffer, uint32_t count, const uint32_t *srcbuf)
{
	uint32_t i;
	for (i = 0; i < count; i++)
		target_buffer_set_u32(target, &buffer[i * 4], srcbuf[i]);
}

/* write a uint16_t array to a buffer in target memory endianness */
void target_buffer_set_u16_array(struct target *target, uint8_t *buffer, uint32_t count, const uint16_t *srcbuf)
{
	uint32_t i;
	for (i = 0; i < count; i++)
		target_buffer_set_u16(target, &buffer[i * 2], srcbuf[i]);
}

/* return a pointer to a configured target; id is name or number */
struct target *get_target(const char *id)
{
	struct target *target;

	/* try as tcltarget name */
	for (target = all_targets; target; target = target->next) {
		if (!target_name(target))
			continue;
		if (strcmp(id, target_name(target)) == 0)
			return target;
	}

	/* It's OK to remove this fallback sometime after August 2010 or so */

	/* no match, try as number */
	unsigned num;
	if (parse_uint(id, &num) != ERROR_OK)
		return NULL;

	for (target = all_targets; target; target = target->next) {
		if (target->target_number == (int)num) {
			LOG_WARNING("use '%s' as target identifier, not '%u'",
					target_name(target), num);
			return target;
		}
	}

	return NULL;
}

/* returns a pointer to the n-th configured target */
struct target *get_target_by_num(int num)
{
	struct target *target = all_targets;

	while (target) {
		if (target->target_number == num)
			return target;
		target = target->next;
	}

	return NULL;
}

struct target *get_current_target(struct command_context *cmd_ctx)
{
	struct target *target = get_current_target_or_null(cmd_ctx);

	if (!target) {
		LOG_ERROR("BUG: current_target out of bounds");
		exit(-1);
	}

	return target;
}

struct target *get_current_target_or_null(struct command_context *cmd_ctx)
{
	return cmd_ctx->current_target_override
		? cmd_ctx->current_target_override
		: cmd_ctx->current_target;
}

int target_poll(struct target *target)
{
	int retval;

	/* We can't poll until after examine */
	if (!target_was_examined(target)) {
		/* Fail silently lest we pollute the log */
		return ERROR_FAIL;
	}

	retval = target->type->poll(target);
	if (retval != ERROR_OK)
		return retval;

	if (target->halt_issued) {
		if (target->state == TARGET_HALTED)
			target->halt_issued = false;
		else {
			int64_t t = timeval_ms() - target->halt_issued_time;
			if (t > DEFAULT_HALT_TIMEOUT) {
				target->halt_issued = false;
				LOG_INFO("Halt timed out, wake up GDB.");
				target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
			}
		}
	}

	return ERROR_OK;
}

int target_halt(struct target *target)
{
	int retval;
	/* We can't poll until after examine */
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	retval = target->type->halt(target);
	if (retval != ERROR_OK)
		return retval;

	target->halt_issued = true;
	target->halt_issued_time = timeval_ms();

	return ERROR_OK;
}

/**
 * Make the target (re)start executing using its saved execution
 * context (possibly with some modifications).
 *
 * @param target Which target should start executing.
 * @param current True to use the target's saved program counter instead
 *	of the address parameter
 * @param address Optionally used as the program counter.
 * @param handle_breakpoints True iff breakpoints at the resumption PC
 *	should be skipped.  (For example, maybe execution was stopped by
 *	such a breakpoint, in which case it would be counterproductive to
 *	let it re-trigger.
 * @param debug_execution False if all working areas allocated by OpenOCD
 *	should be released and/or restored to their original contents.
 *	(This would for example be true to run some downloaded "helper"
 *	algorithm code, which resides in one such working buffer and uses
 *	another for data storage.)
 *
 * @todo Resolve the ambiguity about what the "debug_execution" flag
 * signifies.  For example, Target implementations don't agree on how
 * it relates to invalidation of the register cache, or to whether
 * breakpoints and watchpoints should be enabled.  (It would seem wrong
 * to enable breakpoints when running downloaded "helper" algorithms
 * (debug_execution true), since the breakpoints would be set to match
 * target firmware being debugged, not the helper algorithm.... and
 * enabling them could cause such helpers to malfunction (for example,
 * by overwriting data with a breakpoint instruction.  On the other
 * hand the infrastructure for running such helpers might use this
 * procedure but rely on hardware breakpoint to detect termination.)
 */
int target_resume(struct target *target, int current, target_addr_t address,
		int handle_breakpoints, int debug_execution)
{
	int retval;

	/* We can't poll until after examine */
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	target_call_event_callbacks(target, TARGET_EVENT_RESUME_START);

	/* note that resume *must* be asynchronous. The CPU can halt before
	 * we poll. The CPU can even halt at the current PC as a result of
	 * a software breakpoint being inserted by (a bug?) the application.
	 */
	/*
	 * resume() triggers the event 'resumed'. The execution of TCL commands
	 * in the event handler causes the polling of targets. If the target has
	 * already halted for a breakpoint, polling will run the 'halted' event
	 * handler before the pending 'resumed' handler.
	 * Disable polling during resume() to guarantee the execution of handlers
	 * in the correct order.
	 */
	bool save_poll = jtag_poll_get_enabled();
	jtag_poll_set_enabled(false);
	retval = target->type->resume(target, current, address, handle_breakpoints, debug_execution);
	jtag_poll_set_enabled(save_poll);
	if (retval != ERROR_OK)
		return retval;

	target_call_event_callbacks(target, TARGET_EVENT_RESUME_END);

	return retval;
}

static int target_process_reset(struct command_invocation *cmd, enum target_reset_mode reset_mode)
{
	char buf[100];
	int retval;
	struct jim_nvp *n;
	n = jim_nvp_value2name_simple(nvp_reset_modes, reset_mode);
	if (!n->name) {
		LOG_ERROR("invalid reset mode");
		return ERROR_FAIL;
	}

	struct target *target;
	for (target = all_targets; target; target = target->next)
		target_call_reset_callbacks(target, reset_mode);

	/* disable polling during reset to make reset event scripts
	 * more predictable, i.e. dr/irscan & pathmove in events will
	 * not have JTAG operations injected into the middle of a sequence.
	 */
	bool save_poll = jtag_poll_get_enabled();

	jtag_poll_set_enabled(false);

	sprintf(buf, "ocd_process_reset %s", n->name);
	retval = Jim_Eval(cmd->ctx->interp, buf);

	jtag_poll_set_enabled(save_poll);

	if (retval != JIM_OK) {
		Jim_MakeErrorMessage(cmd->ctx->interp);
		command_print(cmd, "%s", Jim_GetString(Jim_GetResult(cmd->ctx->interp), NULL));
		return ERROR_FAIL;
	}

	/* We want any events to be processed before the prompt */
	retval = target_call_timer_callbacks_now();

	for (target = all_targets; target; target = target->next) {
		target->type->check_reset(target);
		target->running_alg = false;
	}

	return retval;
}

static int identity_virt2phys(struct target *target,
		target_addr_t virtual, target_addr_t *physical)
{
	*physical = virtual;
	return ERROR_OK;
}

static int no_mmu(struct target *target, int *enabled)
{
	*enabled = 0;
	return ERROR_OK;
}

/**
 * Reset the @c examined flag for the given target.
 * Pure paranoia -- targets are zeroed on allocation.
 */
static inline void target_reset_examined(struct target *target)
{
	target->examined = false;
}

static int default_examine(struct target *target)
{
	target_set_examined(target);
	return ERROR_OK;
}

/* no check by default */
static int default_check_reset(struct target *target)
{
	return ERROR_OK;
}

/* Equivalent Tcl code arp_examine_one is in src/target/startup.tcl
 * Keep in sync */
int target_examine_one(struct target *target)
{
	target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_START);

	int retval = target->type->examine(target);
	if (retval != ERROR_OK) {
		target_reset_examined(target);
		target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_FAIL);
		return retval;
	}

	LOG_USER("[%s] Target successfully examined.", target_name(target));
	target_set_examined(target);
	target_call_event_callbacks(target, TARGET_EVENT_EXAMINE_END);

	return ERROR_OK;
}

static int jtag_enable_callback(enum jtag_event event, void *priv)
{
	struct target *target = priv;

	if (event != JTAG_TAP_EVENT_ENABLE || !target->tap->enabled)
		return ERROR_OK;

	jtag_unregister_event_callback(jtag_enable_callback, target);

	return target_examine_one(target);
}

/* When this is true, it's OK to call examine() again in the hopes that this time
 * it will work.  Earlier than that there is probably other initialization that
 * needs to happen (like scanning the JTAG chain) before examine should be
 * called. */
static bool examine_attempted;

/* Targets that correctly implement init + examine, i.e.
 * no communication with target during init:
 *
 * XScale
 */
int target_examine(void)
{
	int retval = ERROR_OK;
	struct target *target;

	examine_attempted = true;

	for (target = all_targets; target; target = target->next) {
		/* defer examination, but don't skip it */
		if (!target->tap->enabled) {
			jtag_register_event_callback(jtag_enable_callback,
					target);
			continue;
		}

		if (target->defer_examine)
			continue;

		int retval2 = target_examine_one(target);
		if (retval2 != ERROR_OK) {
			LOG_WARNING("target %s examination failed", target_name(target));
			retval = retval2;
		}
	}
	return retval;
}

const char *target_type_name(struct target *target)
{
	return target->type->name;
}

static int target_soft_reset_halt(struct target *target)
{
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	if (!target->type->soft_reset_halt) {
		LOG_ERROR("Target %s does not support soft_reset_halt",
				target_name(target));
		return ERROR_FAIL;
	}
	return target->type->soft_reset_halt(target);
}

/**
 * Downloads a target-specific native code algorithm to the target,
 * and executes it.  * Note that some targets may need to set up, enable,
 * and tear down a breakpoint (hard or * soft) to detect algorithm
 * termination, while others may support  lower overhead schemes where
 * soft breakpoints embedded in the algorithm automatically terminate the
 * algorithm.
 *
 * @param target used to run the algorithm
 * @param num_mem_params
 * @param mem_params
 * @param num_reg_params
 * @param reg_param
 * @param entry_point
 * @param exit_point
 * @param timeout_ms
 * @param arch_info target-specific description of the algorithm.
 */
int target_run_algorithm(struct target *target,
		int num_mem_params, struct mem_param *mem_params,
		int num_reg_params, struct reg_param *reg_param,
		target_addr_t entry_point, target_addr_t exit_point,
		int timeout_ms, void *arch_info)
{
	int retval = ERROR_FAIL;

	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		goto done;
	}
	if (!target->type->run_algorithm) {
		LOG_ERROR("Target type '%s' does not support %s",
				target_type_name(target), __func__);
		goto done;
	}

	target->running_alg = true;
	retval = target->type->run_algorithm(target,
			num_mem_params, mem_params,
			num_reg_params, reg_param,
			entry_point, exit_point, timeout_ms, arch_info);
	target->running_alg = false;

done:
	return retval;
}

/**
 * Executes a target-specific native code algorithm and leaves it running.
 *
 * @param target used to run the algorithm
 * @param num_mem_params
 * @param mem_params
 * @param num_reg_params
 * @param reg_params
 * @param entry_point
 * @param exit_point
 * @param arch_info target-specific description of the algorithm.
 */
int target_start_algorithm(struct target *target,
		int num_mem_params, struct mem_param *mem_params,
		int num_reg_params, struct reg_param *reg_params,
		target_addr_t entry_point, target_addr_t exit_point,
		void *arch_info)
{
	int retval = ERROR_FAIL;

	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		goto done;
	}
	if (!target->type->start_algorithm) {
		LOG_ERROR("Target type '%s' does not support %s",
				target_type_name(target), __func__);
		goto done;
	}
	if (target->running_alg) {
		LOG_ERROR("Target is already running an algorithm");
		goto done;
	}

	target->running_alg = true;
	retval = target->type->start_algorithm(target,
			num_mem_params, mem_params,
			num_reg_params, reg_params,
			entry_point, exit_point, arch_info);

done:
	return retval;
}

/**
 * Waits for an algorithm started with target_start_algorithm() to complete.
 *
 * @param target used to run the algorithm
 * @param num_mem_params
 * @param mem_params
 * @param num_reg_params
 * @param reg_params
 * @param exit_point
 * @param timeout_ms
 * @param arch_info target-specific description of the algorithm.
 */
int target_wait_algorithm(struct target *target,
		int num_mem_params, struct mem_param *mem_params,
		int num_reg_params, struct reg_param *reg_params,
		target_addr_t exit_point, int timeout_ms,
		void *arch_info)
{
	int retval = ERROR_FAIL;

	if (!target->type->wait_algorithm) {
		LOG_ERROR("Target type '%s' does not support %s",
				target_type_name(target), __func__);
		goto done;
	}
	if (!target->running_alg) {
		LOG_ERROR("Target is not running an algorithm");
		goto done;
	}

	retval = target->type->wait_algorithm(target,
			num_mem_params, mem_params,
			num_reg_params, reg_params,
			exit_point, timeout_ms, arch_info);
	if (retval != ERROR_TARGET_TIMEOUT)
		target->running_alg = false;

done:
	return retval;
}

/**
 * Streams data to a circular buffer on target intended for consumption by code
 * running asynchronously on target.
 *
 * This is intended for applications where target-specific native code runs
 * on the target, receives data from the circular buffer, does something with
 * it (most likely writing it to a flash memory), and advances the circular
 * buffer pointer.
 *
 * This assumes that the helper algorithm has already been loaded to the target,
 * but has not been started yet. Given memory and register parameters are passed
 * to the algorithm.
 *
 * The buffer is defined by (buffer_start, buffer_size) arguments and has the
 * following format:
 *
 *     [buffer_start + 0, buffer_start + 4):
 *         Write Pointer address (aka head). Written and updated by this
 *         routine when new data is written to the circular buffer.
 *     [buffer_start + 4, buffer_start + 8):
 *         Read Pointer address (aka tail). Updated by code running on the
 *         target after it consumes data.
 *     [buffer_start + 8, buffer_start + buffer_size):
 *         Circular buffer contents.
 *
 * See contrib/loaders/flash/stm32f1x.S for an example.
 *
 * @param target used to run the algorithm
 * @param buffer address on the host where data to be sent is located
 * @param count number of blocks to send
 * @param block_size size in bytes of each block
 * @param num_mem_params count of memory-based params to pass to algorithm
 * @param mem_params memory-based params to pass to algorithm
 * @param num_reg_params count of register-based params to pass to algorithm
 * @param reg_params memory-based params to pass to algorithm
 * @param buffer_start address on the target of the circular buffer structure
 * @param buffer_size size of the circular buffer structure
 * @param entry_point address on the target to execute to start the algorithm
 * @param exit_point address at which to set a breakpoint to catch the
 *     end of the algorithm; can be 0 if target triggers a breakpoint itself
 * @param arch_info
 */

int target_run_flash_async_algorithm(struct target *target,
		const uint8_t *buffer, uint32_t count, int block_size,
		int num_mem_params, struct mem_param *mem_params,
		int num_reg_params, struct reg_param *reg_params,
		uint32_t buffer_start, uint32_t buffer_size,
		uint32_t entry_point, uint32_t exit_point, void *arch_info)
{
	int retval;
	int timeout = 0;

	const uint8_t *buffer_orig = buffer;

	/* Set up working area. First word is write pointer, second word is read pointer,
	 * rest is fifo data area. */
	uint32_t wp_addr = buffer_start;
	uint32_t rp_addr = buffer_start + 4;
	uint32_t fifo_start_addr = buffer_start + 8;
	uint32_t fifo_end_addr = buffer_start + buffer_size;

	uint32_t wp = fifo_start_addr;
	uint32_t rp = fifo_start_addr;

	/* validate block_size is 2^n */
	assert(IS_PWR_OF_2(block_size));

	retval = target_write_u32(target, wp_addr, wp);
	if (retval != ERROR_OK)
		return retval;
	retval = target_write_u32(target, rp_addr, rp);
	if (retval != ERROR_OK)
		return retval;

	/* Start up algorithm on target and let it idle while writing the first chunk */
	retval = target_start_algorithm(target, num_mem_params, mem_params,
			num_reg_params, reg_params,
			entry_point,
			exit_point,
			arch_info);

	if (retval != ERROR_OK) {
		LOG_ERROR("error starting target flash write algorithm");
		return retval;
	}

	while (count > 0) {

		retval = target_read_u32(target, rp_addr, &rp);
		if (retval != ERROR_OK) {
			LOG_ERROR("failed to get read pointer");
			break;
		}

		LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
			(size_t) (buffer - buffer_orig), count, wp, rp);

		if (rp == 0) {
			LOG_ERROR("flash write algorithm aborted by target");
			retval = ERROR_FLASH_OPERATION_FAILED;
			break;
		}

		if (!IS_ALIGNED(rp - fifo_start_addr, block_size) || rp < fifo_start_addr || rp >= fifo_end_addr) {
			LOG_ERROR("corrupted fifo read pointer 0x%" PRIx32, rp);
			break;
		}

		/* Count the number of bytes available in the fifo without
		 * crossing the wrap around. Make sure to not fill it completely,
		 * because that would make wp == rp and that's the empty condition. */
		uint32_t thisrun_bytes;
		if (rp > wp)
			thisrun_bytes = rp - wp - block_size;
		else if (rp > fifo_start_addr)
			thisrun_bytes = fifo_end_addr - wp;
		else
			thisrun_bytes = fifo_end_addr - wp - block_size;

		if (thisrun_bytes == 0) {
			/* Throttle polling a bit if transfer is (much) faster than flash
			 * programming. The exact delay shouldn't matter as long as it's
			 * less than buffer size / flash speed. This is very unlikely to
			 * run when using high latency connections such as USB. */
			alive_sleep(2);

			/* to stop an infinite loop on some targets check and increment a timeout
			 * this issue was observed on a stellaris using the new ICDI interface */
			if (timeout++ >= 2500) {
				LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
				return ERROR_FLASH_OPERATION_FAILED;
			}
			continue;
		}

		/* reset our timeout */
		timeout = 0;

		/* Limit to the amount of data we actually want to write */
		if (thisrun_bytes > count * block_size)
			thisrun_bytes = count * block_size;

		/* Force end of large blocks to be word aligned */
		if (thisrun_bytes >= 16)
			thisrun_bytes -= (rp + thisrun_bytes) & 0x03;

		/* Write data to fifo */
		retval = target_write_buffer(target, wp, thisrun_bytes, buffer);
		if (retval != ERROR_OK)
			break;

		/* Update counters and wrap write pointer */
		buffer += thisrun_bytes;
		count -= thisrun_bytes / block_size;
		wp += thisrun_bytes;
		if (wp >= fifo_end_addr)
			wp = fifo_start_addr;

		/* Store updated write pointer to target */
		retval = target_write_u32(target, wp_addr, wp);
		if (retval != ERROR_OK)
			break;

		/* Avoid GDB timeouts */
		keep_alive();
	}

	if (retval != ERROR_OK) {
		/* abort flash write algorithm on target */
		target_write_u32(target, wp_addr, 0);
	}

	int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
			num_reg_params, reg_params,
			exit_point,
			10000,
			arch_info);

	if (retval2 != ERROR_OK) {
		LOG_ERROR("error waiting for target flash write algorithm");
		retval = retval2;
	}

	if (retval == ERROR_OK) {
		/* check if algorithm set rp = 0 after fifo writer loop finished */
		retval = target_read_u32(target, rp_addr, &rp);
		if (retval == ERROR_OK && rp == 0) {
			LOG_ERROR("flash write algorithm aborted by target");
			retval = ERROR_FLASH_OPERATION_FAILED;
		}
	}

	return retval;
}

int target_run_read_async_algorithm(struct target *target,
		uint8_t *buffer, uint32_t count, int block_size,
		int num_mem_params, struct mem_param *mem_params,
		int num_reg_params, struct reg_param *reg_params,
		uint32_t buffer_start, uint32_t buffer_size,
		uint32_t entry_point, uint32_t exit_point, void *arch_info)
{
	int retval;
	int timeout = 0;

	const uint8_t *buffer_orig = buffer;

	/* Set up working area. First word is write pointer, second word is read pointer,
	 * rest is fifo data area. */
	uint32_t wp_addr = buffer_start;
	uint32_t rp_addr = buffer_start + 4;
	uint32_t fifo_start_addr = buffer_start + 8;
	uint32_t fifo_end_addr = buffer_start + buffer_size;

	uint32_t wp = fifo_start_addr;
	uint32_t rp = fifo_start_addr;

	/* validate block_size is 2^n */
	assert(IS_PWR_OF_2(block_size));

	retval = target_write_u32(target, wp_addr, wp);
	if (retval != ERROR_OK)
		return retval;
	retval = target_write_u32(target, rp_addr, rp);
	if (retval != ERROR_OK)
		return retval;

	/* Start up algorithm on target */
	retval = target_start_algorithm(target, num_mem_params, mem_params,
			num_reg_params, reg_params,
			entry_point,
			exit_point,
			arch_info);

	if (retval != ERROR_OK) {
		LOG_ERROR("error starting target flash read algorithm");
		return retval;
	}

	while (count > 0) {
		retval = target_read_u32(target, wp_addr, &wp);
		if (retval != ERROR_OK) {
			LOG_ERROR("failed to get write pointer");
			break;
		}

		LOG_DEBUG("offs 0x%zx count 0x%" PRIx32 " wp 0x%" PRIx32 " rp 0x%" PRIx32,
			(size_t)(buffer - buffer_orig), count, wp, rp);

		if (wp == 0) {
			LOG_ERROR("flash read algorithm aborted by target");
			retval = ERROR_FLASH_OPERATION_FAILED;
			break;
		}

		if (!IS_ALIGNED(wp - fifo_start_addr, block_size) || wp < fifo_start_addr || wp >= fifo_end_addr) {
			LOG_ERROR("corrupted fifo write pointer 0x%" PRIx32, wp);
			break;
		}

		/* Count the number of bytes available in the fifo without
		 * crossing the wrap around. */
		uint32_t thisrun_bytes;
		if (wp >= rp)
			thisrun_bytes = wp - rp;
		else
			thisrun_bytes = fifo_end_addr - rp;

		if (thisrun_bytes == 0) {
			/* Throttle polling a bit if transfer is (much) faster than flash
			 * reading. The exact delay shouldn't matter as long as it's
			 * less than buffer size / flash speed. This is very unlikely to
			 * run when using high latency connections such as USB. */
			alive_sleep(2);

			/* to stop an infinite loop on some targets check and increment a timeout
			 * this issue was observed on a stellaris using the new ICDI interface */
			if (timeout++ >= 2500) {
				LOG_ERROR("timeout waiting for algorithm, a target reset is recommended");
				return ERROR_FLASH_OPERATION_FAILED;
			}
			continue;
		}

		/* Reset our timeout */
		timeout = 0;

		/* Limit to the amount of data we actually want to read */
		if (thisrun_bytes > count * block_size)
			thisrun_bytes = count * block_size;

		/* Force end of large blocks to be word aligned */
		if (thisrun_bytes >= 16)
			thisrun_bytes -= (rp + thisrun_bytes) & 0x03;

		/* Read data from fifo */
		retval = target_read_buffer(target, rp, thisrun_bytes, buffer);
		if (retval != ERROR_OK)
			break;

		/* Update counters and wrap write pointer */
		buffer += thisrun_bytes;
		count -= thisrun_bytes / block_size;
		rp += thisrun_bytes;
		if (rp >= fifo_end_addr)
			rp = fifo_start_addr;

		/* Store updated write pointer to target */
		retval = target_write_u32(target, rp_addr, rp);
		if (retval != ERROR_OK)
			break;

		/* Avoid GDB timeouts */
		keep_alive();

	}

	if (retval != ERROR_OK) {
		/* abort flash write algorithm on target */
		target_write_u32(target, rp_addr, 0);
	}

	int retval2 = target_wait_algorithm(target, num_mem_params, mem_params,
			num_reg_params, reg_params,
			exit_point,
			10000,
			arch_info);

	if (retval2 != ERROR_OK) {
		LOG_ERROR("error waiting for target flash write algorithm");
		retval = retval2;
	}

	if (retval == ERROR_OK) {
		/* check if algorithm set wp = 0 after fifo writer loop finished */
		retval = target_read_u32(target, wp_addr, &wp);
		if (retval == ERROR_OK && wp == 0) {
			LOG_ERROR("flash read algorithm aborted by target");
			retval = ERROR_FLASH_OPERATION_FAILED;
		}
	}

	return retval;
}

int target_read_memory(struct target *target,
		target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	if (!target->type->read_memory) {
		LOG_ERROR("Target %s doesn't support read_memory", target_name(target));
		return ERROR_FAIL;
	}
	return target->type->read_memory(target, address, size, count, buffer);
}

int target_read_phys_memory(struct target *target,
		target_addr_t address, uint32_t size, uint32_t count, uint8_t *buffer)
{
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	if (!target->type->read_phys_memory) {
		LOG_ERROR("Target %s doesn't support read_phys_memory", target_name(target));
		return ERROR_FAIL;
	}
	return target->type->read_phys_memory(target, address, size, count, buffer);
}

int target_write_memory(struct target *target,
		target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
{
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	if (!target->type->write_memory) {
		LOG_ERROR("Target %s doesn't support write_memory", target_name(target));
		return ERROR_FAIL;
	}
	return target->type->write_memory(target, address, size, count, buffer);
}

int target_write_phys_memory(struct target *target,
		target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer)
{
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	if (!target->type->write_phys_memory) {
		LOG_ERROR("Target %s doesn't support write_phys_memory", target_name(target));
		return ERROR_FAIL;
	}
	return target->type->write_phys_memory(target, address, size, count, buffer);
}

int target_add_breakpoint(struct target *target,
		struct breakpoint *breakpoint)
{
	if ((target->state != TARGET_HALTED) && (breakpoint->type != BKPT_HARD)) {
		LOG_WARNING("target %s is not halted (add breakpoint)", target_name(target));
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->add_breakpoint(target, breakpoint);
}

int target_add_context_breakpoint(struct target *target,
		struct breakpoint *breakpoint)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted (add context breakpoint)", target_name(target));
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->add_context_breakpoint(target, breakpoint);
}

int target_add_hybrid_breakpoint(struct target *target,
		struct breakpoint *breakpoint)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted (add hybrid breakpoint)", target_name(target));
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->add_hybrid_breakpoint(target, breakpoint);
}

int target_remove_breakpoint(struct target *target,
		struct breakpoint *breakpoint)
{
	return target->type->remove_breakpoint(target, breakpoint);
}

int target_add_watchpoint(struct target *target,
		struct watchpoint *watchpoint)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted (add watchpoint)", target_name(target));
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->add_watchpoint(target, watchpoint);
}
int target_remove_watchpoint(struct target *target,
		struct watchpoint *watchpoint)
{
	return target->type->remove_watchpoint(target, watchpoint);
}
int target_hit_watchpoint(struct target *target,
		struct watchpoint **hit_watchpoint)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted (hit watchpoint)", target->cmd_name);
		return ERROR_TARGET_NOT_HALTED;
	}

	if (!target->type->hit_watchpoint) {
		/* For backward compatible, if hit_watchpoint is not implemented,
		 * return ERROR_FAIL such that gdb_server will not take the nonsense
		 * information. */
		return ERROR_FAIL;
	}

	return target->type->hit_watchpoint(target, hit_watchpoint);
}

const char *target_get_gdb_arch(struct target *target)
{
	if (!target->type->get_gdb_arch)
		return NULL;
	return target->type->get_gdb_arch(target);
}

int target_get_gdb_reg_list(struct target *target,
		struct reg **reg_list[], int *reg_list_size,
		enum target_register_class reg_class)
{
	int result = ERROR_FAIL;

	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		goto done;
	}

	result = target->type->get_gdb_reg_list(target, reg_list,
			reg_list_size, reg_class);

done:
	if (result != ERROR_OK) {
		*reg_list = NULL;
		*reg_list_size = 0;
	}
	return result;
}

int target_get_gdb_reg_list_noread(struct target *target,
		struct reg **reg_list[], int *reg_list_size,
		enum target_register_class reg_class)
{
	if (target->type->get_gdb_reg_list_noread &&
			target->type->get_gdb_reg_list_noread(target, reg_list,
				reg_list_size, reg_class) == ERROR_OK)
		return ERROR_OK;
	return target_get_gdb_reg_list(target, reg_list, reg_list_size, reg_class);
}

bool target_supports_gdb_connection(struct target *target)
{
	/*
	 * exclude all the targets that don't provide get_gdb_reg_list
	 * or that have explicit gdb_max_connection == 0
	 */
	return !!target->type->get_gdb_reg_list && !!target->gdb_max_connections;
}

int target_step(struct target *target,
		int current, target_addr_t address, int handle_breakpoints)
{
	int retval;

	target_call_event_callbacks(target, TARGET_EVENT_STEP_START);

	retval = target->type->step(target, current, address, handle_breakpoints);
	if (retval != ERROR_OK)
		return retval;

	target_call_event_callbacks(target, TARGET_EVENT_STEP_END);

	return retval;
}

int target_get_gdb_fileio_info(struct target *target, struct gdb_fileio_info *fileio_info)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted (gdb fileio)", target->cmd_name);
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->get_gdb_fileio_info(target, fileio_info);
}

int target_gdb_fileio_end(struct target *target, int retcode, int fileio_errno, bool ctrl_c)
{
	if (target->state != TARGET_HALTED) {
		LOG_WARNING("target %s is not halted (gdb fileio end)", target->cmd_name);
		return ERROR_TARGET_NOT_HALTED;
	}
	return target->type->gdb_fileio_end(target, retcode, fileio_errno, ctrl_c);
}

target_addr_t target_address_max(struct target *target)
{
	unsigned bits = target_address_bits(target);
	if (sizeof(target_addr_t) * 8 == bits)
		return (target_addr_t) -1;
	else
		return (((target_addr_t) 1) << bits) - 1;
}

unsigned target_address_bits(struct target *target)
{
	if (target->type->address_bits)
		return target->type->address_bits(target);
	return 32;
}

unsigned int target_data_bits(struct target *target)
{
	if (target->type->data_bits)
		return target->type->data_bits(target);
	return 32;
}

static int target_profiling(struct target *target, uint32_t *samples,
			uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
{
	return target->type->profiling(target, samples, max_num_samples,
			num_samples, seconds);
}

static int handle_target(void *priv);

static int target_init_one(struct command_context *cmd_ctx,
		struct target *target)
{
	target_reset_examined(target);

	struct target_type *type = target->type;
	if (!type->examine)
		type->examine = default_examine;

	if (!type->check_reset)
		type->check_reset = default_check_reset;

	assert(type->init_target);

	int retval = type->init_target(cmd_ctx, target);
	if (retval != ERROR_OK) {
		LOG_ERROR("target '%s' init failed", target_name(target));
		return retval;
	}

	/* Sanity-check MMU support ... stub in what we must, to help
	 * implement it in stages, but warn if we need to do so.
	 */
	if (type->mmu) {
		if (!type->virt2phys) {
			LOG_ERROR("type '%s' is missing virt2phys", type->name);
			type->virt2phys = identity_virt2phys;
		}
	} else {
		/* Make sure no-MMU targets all behave the same:  make no
		 * distinction between physical and virtual addresses, and
		 * ensure that virt2phys() is always an identity mapping.
		 */
		if (type->write_phys_memory || type->read_phys_memory || type->virt2phys)
			LOG_WARNING("type '%s' has bad MMU hooks", type->name);

		type->mmu = no_mmu;
		type->write_phys_memory = type->write_memory;
		type->read_phys_memory = type->read_memory;
		type->virt2phys = identity_virt2phys;
	}

	if (!target->type->read_buffer)
		target->type->read_buffer = target_read_buffer_default;

	if (!target->type->write_buffer)
		target->type->write_buffer = target_write_buffer_default;

	if (!target->type->get_gdb_fileio_info)
		target->type->get_gdb_fileio_info = target_get_gdb_fileio_info_default;

	if (!target->type->gdb_fileio_end)
		target->type->gdb_fileio_end = target_gdb_fileio_end_default;

	if (!target->type->profiling)
		target->type->profiling = target_profiling_default;

	return ERROR_OK;
}

static int target_init(struct command_context *cmd_ctx)
{
	struct target *target;
	int retval;

	for (target = all_targets; target; target = target->next) {
		retval = target_init_one(cmd_ctx, target);
		if (retval != ERROR_OK)
			return retval;
	}

	if (!all_targets)
		return ERROR_OK;

	retval = target_register_user_commands(cmd_ctx);
	if (retval != ERROR_OK)
		return retval;

	retval = target_register_timer_callback(&handle_target,
			polling_interval, TARGET_TIMER_TYPE_PERIODIC, cmd_ctx->interp);
	if (retval != ERROR_OK)
		return retval;

	return ERROR_OK;
}

COMMAND_HANDLER(handle_target_init_command)
{
	int retval;

	if (CMD_ARGC != 0)
		return ERROR_COMMAND_SYNTAX_ERROR;

	static bool target_initialized;
	if (target_initialized) {
		LOG_INFO("'target init' has already been called");
		return ERROR_OK;
	}
	target_initialized = true;

	retval = command_run_line(CMD_CTX, "init_targets");
	if (retval != ERROR_OK)
		return retval;

	retval = command_run_line(CMD_CTX, "init_target_events");
	if (retval != ERROR_OK)
		return retval;

	retval = command_run_line(CMD_CTX, "init_board");
	if (retval != ERROR_OK)
		return retval;

	LOG_DEBUG("Initializing targets...");
	return target_init(CMD_CTX);
}

int target_register_event_callback(int (*callback)(struct target *target,
		enum target_event event, void *priv), void *priv)
{
	struct target_event_callback **callbacks_p = &target_event_callbacks;

	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	if (*callbacks_p) {
		while ((*callbacks_p)->next)
			callbacks_p = &((*callbacks_p)->next);
		callbacks_p = &((*callbacks_p)->next);
	}

	(*callbacks_p) = malloc(sizeof(struct target_event_callback));
	(*callbacks_p)->callback = callback;
	(*callbacks_p)->priv = priv;
	(*callbacks_p)->next = NULL;

	return ERROR_OK;
}

int target_register_reset_callback(int (*callback)(struct target *target,
		enum target_reset_mode reset_mode, void *priv), void *priv)
{
	struct target_reset_callback *entry;

	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	entry = malloc(sizeof(struct target_reset_callback));
	if (!entry) {
		LOG_ERROR("error allocating buffer for reset callback entry");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	entry->callback = callback;
	entry->priv = priv;
	list_add(&entry->list, &target_reset_callback_list);


	return ERROR_OK;
}

int target_register_trace_callback(int (*callback)(struct target *target,
		size_t len, uint8_t *data, void *priv), void *priv)
{
	struct target_trace_callback *entry;

	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	entry = malloc(sizeof(struct target_trace_callback));
	if (!entry) {
		LOG_ERROR("error allocating buffer for trace callback entry");
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	entry->callback = callback;
	entry->priv = priv;
	list_add(&entry->list, &target_trace_callback_list);


	return ERROR_OK;
}

int target_register_timer_callback(int (*callback)(void *priv),
		unsigned int time_ms, enum target_timer_type type, void *priv)
{
	struct target_timer_callback **callbacks_p = &target_timer_callbacks;

	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	if (*callbacks_p) {
		while ((*callbacks_p)->next)
			callbacks_p = &((*callbacks_p)->next);
		callbacks_p = &((*callbacks_p)->next);
	}

	(*callbacks_p) = malloc(sizeof(struct target_timer_callback));
	(*callbacks_p)->callback = callback;
	(*callbacks_p)->type = type;
	(*callbacks_p)->time_ms = time_ms;
	(*callbacks_p)->removed = false;

	(*callbacks_p)->when = timeval_ms() + time_ms;
	target_timer_next_event_value = MIN(target_timer_next_event_value, (*callbacks_p)->when);

	(*callbacks_p)->priv = priv;
	(*callbacks_p)->next = NULL;

	return ERROR_OK;
}

int target_unregister_event_callback(int (*callback)(struct target *target,
		enum target_event event, void *priv), void *priv)
{
	struct target_event_callback **p = &target_event_callbacks;
	struct target_event_callback *c = target_event_callbacks;

	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	while (c) {
		struct target_event_callback *next = c->next;
		if ((c->callback == callback) && (c->priv == priv)) {
			*p = next;
			free(c);
			return ERROR_OK;
		} else
			p = &(c->next);
		c = next;
	}

	return ERROR_OK;
}

int target_unregister_reset_callback(int (*callback)(struct target *target,
		enum target_reset_mode reset_mode, void *priv), void *priv)
{
	struct target_reset_callback *entry;

	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	list_for_each_entry(entry, &target_reset_callback_list, list) {
		if (entry->callback == callback && entry->priv == priv) {
			list_del(&entry->list);
			free(entry);
			break;
		}
	}

	return ERROR_OK;
}

int target_unregister_trace_callback(int (*callback)(struct target *target,
		size_t len, uint8_t *data, void *priv), void *priv)
{
	struct target_trace_callback *entry;

	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	list_for_each_entry(entry, &target_trace_callback_list, list) {
		if (entry->callback == callback && entry->priv == priv) {
			list_del(&entry->list);
			free(entry);
			break;
		}
	}

	return ERROR_OK;
}

int target_unregister_timer_callback(int (*callback)(void *priv), void *priv)
{
	if (!callback)
		return ERROR_COMMAND_SYNTAX_ERROR;

	for (struct target_timer_callback *c = target_timer_callbacks;
	     c; c = c->next) {
		if ((c->callback == callback) && (c->priv == priv)) {
			c->removed = true;
			return ERROR_OK;
		}
	}

	return ERROR_FAIL;
}

int target_call_event_callbacks(struct target *target, enum target_event event)
{
	struct target_event_callback *callback = target_event_callbacks;
	struct target_event_callback *next_callback;

	if (event == TARGET_EVENT_HALTED) {
		/* execute early halted first */
		target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
	}

	LOG_DEBUG("target event %i (%s) for core %s", event,
			target_event_name(event),
			target_name(target));

	target_handle_event(target, event);

	while (callback) {
		next_callback = callback->next;
		callback->callback(target, event, callback->priv);
		callback = next_callback;
	}

	return ERROR_OK;
}

int target_call_reset_callbacks(struct target *target, enum target_reset_mode reset_mode)
{
	struct target_reset_callback *callback;

	LOG_DEBUG("target reset %i (%s)", reset_mode,
			jim_nvp_value2name_simple(nvp_reset_modes, reset_mode)->name);

	list_for_each_entry(callback, &target_reset_callback_list, list)
		callback->callback(target, reset_mode, callback->priv);

	return ERROR_OK;
}

int target_call_trace_callbacks(struct target *target, size_t len, uint8_t *data)
{
	struct target_trace_callback *callback;

	list_for_each_entry(callback, &target_trace_callback_list, list)
		callback->callback(target, len, data, callback->priv);

	return ERROR_OK;
}

static int target_timer_callback_periodic_restart(
		struct target_timer_callback *cb, int64_t *now)
{
	cb->when = *now + cb->time_ms;
	return ERROR_OK;
}

static int target_call_timer_callback(struct target_timer_callback *cb,
		int64_t *now)
{
	cb->callback(cb->priv);

	if (cb->type == TARGET_TIMER_TYPE_PERIODIC)
		return target_timer_callback_periodic_restart(cb, now);

	return target_unregister_timer_callback(cb->callback, cb->priv);
}

static int target_call_timer_callbacks_check_time(int checktime)
{
	static bool callback_processing;

	/* Do not allow nesting */
	if (callback_processing)
		return ERROR_OK;

	callback_processing = true;

	keep_alive();

	int64_t now = timeval_ms();

	/* Initialize to a default value that's a ways into the future.
	 * The loop below will make it closer to now if there are
	 * callbacks that want to be called sooner. */
	target_timer_next_event_value = now + 1000;

	/* Store an address of the place containing a pointer to the
	 * next item; initially, that's a standalone "root of the
	 * list" variable. */
	struct target_timer_callback **callback = &target_timer_callbacks;
	while (callback && *callback) {
		if ((*callback)->removed) {
			struct target_timer_callback *p = *callback;
			*callback = (*callback)->next;
			free(p);
			continue;
		}

		bool call_it = (*callback)->callback &&
			((!checktime && (*callback)->type == TARGET_TIMER_TYPE_PERIODIC) ||
			 now >= (*callback)->when);

		if (call_it)
			target_call_timer_callback(*callback, &now);

		if (!(*callback)->removed && (*callback)->when < target_timer_next_event_value)
			target_timer_next_event_value = (*callback)->when;

		callback = &(*callback)->next;
	}

	callback_processing = false;
	return ERROR_OK;
}

int target_call_timer_callbacks()
{
	return target_call_timer_callbacks_check_time(1);
}

/* invoke periodic callbacks immediately */
int target_call_timer_callbacks_now()
{
	return target_call_timer_callbacks_check_time(0);
}

int64_t target_timer_next_event(void)
{
	return target_timer_next_event_value;
}

/* Prints the working area layout for debug purposes */
static void print_wa_layout(struct target *target)
{
	struct working_area *c = target->working_areas;

	while (c) {
		LOG_DEBUG("%c%c " TARGET_ADDR_FMT "-" TARGET_ADDR_FMT " (%" PRIu32 " bytes)",
			c->backup ? 'b' : ' ', c->free ? ' ' : '*',
			c->address, c->address + c->size - 1, c->size);
		c = c->next;
	}
}

/* Reduce area to size bytes, create a new free area from the remaining bytes, if any. */
static void target_split_working_area(struct working_area *area, uint32_t size)
{
	assert(area->free); /* Shouldn't split an allocated area */
	assert(size <= area->size); /* Caller should guarantee this */

	/* Split only if not already the right size */
	if (size < area->size) {
		struct working_area *new_wa = malloc(sizeof(*new_wa));

		if (!new_wa)
			return;

		new_wa->next = area->next;
		new_wa->size = area->size - size;
		new_wa->address = area->address + size;
		new_wa->backup = NULL;
		new_wa->user = NULL;
		new_wa->free = true;

		area->next = new_wa;
		area->size = size;

		/* If backup memory was allocated to this area, it has the wrong size
		 * now so free it and it will be reallocated if/when needed */
		free(area->backup);
		area->backup = NULL;
	}
}

/* Merge all adjacent free areas into one */
static void target_merge_working_areas(struct target *target)
{
	struct working_area *c = target->working_areas;

	while (c && c->next) {
		assert(c->next->address == c->address + c->size); /* This is an invariant */

		/* Find two adjacent free areas */
		if (c->free && c->next->free) {
			/* Merge the last into the first */
			c->size += c->next->size;

			/* Remove the last */
			struct working_area *to_be_freed = c->next;
			c->next = c->next->next;
			free(to_be_freed->backup);
			free(to_be_freed);

			/* If backup memory was allocated to the remaining area, it's has
			 * the wrong size now */
			free(c->backup);
			c->backup = NULL;
		} else {
			c = c->next;
		}
	}
}

int target_alloc_working_area_try(struct target *target, uint32_t size, struct working_area **area)
{
	/* Reevaluate working area address based on MMU state*/
	if (!target->working_areas) {
		int retval;
		int enabled;

		retval = target->type->mmu(target, &enabled);
		if (retval != ERROR_OK)
			return retval;

		if (!enabled) {
			if (target->working_area_phys_spec) {
				LOG_DEBUG("MMU disabled, using physical "
					"address for working memory " TARGET_ADDR_FMT,
					target->working_area_phys);
				target->working_area = target->working_area_phys;
			} else {
				LOG_ERROR("No working memory available. "
					"Specify -work-area-phys to target.");
				return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
			}
		} else {
			if (target->working_area_virt_spec) {
				LOG_DEBUG("MMU enabled, using virtual "
					"address for working memory " TARGET_ADDR_FMT,
					target->working_area_virt);
				target->working_area = target->working_area_virt;
			} else {
				LOG_ERROR("No working memory available. "
					"Specify -work-area-virt to target.");
				return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
			}
		}

		/* Set up initial working area on first call */
		struct working_area *new_wa = malloc(sizeof(*new_wa));
		if (new_wa) {
			new_wa->next = NULL;
			new_wa->size = target->working_area_size & ~3UL; /* 4-byte align */
			new_wa->address = target->working_area;
			new_wa->backup = NULL;
			new_wa->user = NULL;
			new_wa->free = true;
		}

		target->working_areas = new_wa;
	}

	/* only allocate multiples of 4 byte */
	if (size % 4)
		size = (size + 3) & (~3UL);

	struct working_area *c = target->working_areas;

	/* Find the first large enough working area */
	while (c) {
		if (c->free && c->size >= size)
			break;
		c = c->next;
	}

	if (!c)
		return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;

	/* Split the working area into the requested size */
	target_split_working_area(c, size);

	LOG_DEBUG("allocated new working area of %" PRIu32 " bytes at address " TARGET_ADDR_FMT,
			  size, c->address);

	if (target->backup_working_area) {
		if (!c->backup) {
			c->backup = malloc(c->size);
			if (!c->backup)
				return ERROR_FAIL;
		}

		int retval = target_read_memory(target, c->address, 4, c->size / 4, c->backup);
		if (retval != ERROR_OK)
			return retval;
	}

	/* mark as used, and return the new (reused) area */
	c->free = false;
	*area = c;

	/* user pointer */
	c->user = area;

	print_wa_layout(target);

	return ERROR_OK;
}

int target_alloc_working_area(struct target *target, uint32_t size, struct working_area **area)
{
	int retval;

	retval = target_alloc_working_area_try(target, size, area);
	if (retval == ERROR_TARGET_RESOURCE_NOT_AVAILABLE)
		LOG_WARNING("not enough working area available(requested %"PRIu32")", size);
	return retval;

}

static int target_restore_working_area(struct target *target, struct working_area *area)
{
	int retval = ERROR_OK;

	if (target->backup_working_area && area->backup) {
		retval = target_write_memory(target, area->address, 4, area->size / 4, area->backup);
		if (retval != ERROR_OK)
			LOG_ERROR("failed to restore %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
					area->size, area->address);
	}

	return retval;
}

/* Restore the area's backup memory, if any, and return the area to the allocation pool */
static int target_free_working_area_restore(struct target *target, struct working_area *area, int restore)
{
	if (!area || area->free)
		return ERROR_OK;

	int retval = ERROR_OK;
	if (restore) {
		retval = target_restore_working_area(target, area);
		/* REVISIT: Perhaps the area should be freed even if restoring fails. */
		if (retval != ERROR_OK)
			return retval;
	}

	area->free = true;

	LOG_DEBUG("freed %" PRIu32 " bytes of working area at address " TARGET_ADDR_FMT,
			area->size, area->address);

	/* mark user pointer invalid */
	/* TODO: Is this really safe? It points to some previous caller's memory.
	 * How could we know that the area pointer is still in that place and not
	 * some other vital data? What's the purpose of this, anyway? */
	*area->user = NULL;
	area->user = NULL;

	target_merge_working_areas(target);

	print_wa_layout(target);

	return retval;
}

int target_free_working_area(struct target *target, struct working_area *area)
{
	return target_free_working_area_restore(target, area, 1);
}

/* free resources and restore memory, if restoring memory fails,
 * free up resources anyway
 */
static void target_free_all_working_areas_restore(struct target *target, int restore)
{
	struct working_area *c = target->working_areas;

	LOG_DEBUG("freeing all working areas");

	/* Loop through all areas, restoring the allocated ones and marking them as free */
	while (c) {
		if (!c->free) {
			if (restore)
				target_restore_working_area(target, c);
			c->free = true;
			*c->user = NULL; /* Same as above */
			c->user = NULL;
		}
		c = c->next;
	}

	/* Run a merge pass to combine all areas into one */
	target_merge_working_areas(target);

	print_wa_layout(target);
}

void target_free_all_working_areas(struct target *target)
{
	target_free_all_working_areas_restore(target, 1);

	/* Now we have none or only one working area marked as free */
	if (target->working_areas) {
		/* Free the last one to allow on-the-fly moving and resizing */
		free(target->working_areas->backup);
		free(target->working_areas);
		target->working_areas = NULL;
	}
}

/* Find the largest number of bytes that can be allocated */
uint32_t target_get_working_area_avail(struct target *target)
{
	struct working_area *c = target->working_areas;
	uint32_t max_size = 0;

	if (!c)
		return target->working_area_size;

	while (c) {
		if (c->free && max_size < c->size)
			max_size = c->size;

		c = c->next;
	}

	return max_size;
}

static void target_destroy(struct target *target)
{
	if (target->type->deinit_target)
		target->type->deinit_target(target);

	if (target->semihosting)
		free(target->semihosting->basedir);
	free(target->semihosting);

	jtag_unregister_event_callback(jtag_enable_callback, target);

	struct target_event_action *teap = target->event_action;
	while (teap) {
		struct target_event_action *next = teap->next;
		Jim_DecrRefCount(teap->interp, teap->body);
		free(teap);
		teap = next;
	}

	target_free_all_working_areas(target);

	/* release the targets SMP list */
	if (target->smp) {
		struct target_list *head, *tmp;

		list_for_each_entry_safe(head, tmp, target->smp_targets, lh) {
			list_del(&head->lh);
			head->target->smp = 0;
			free(head);
		}
		if (target->smp_targets != &empty_smp_targets)
			free(target->smp_targets);
		target->smp = 0;
	}

	rtos_destroy(target);

	free(target->gdb_port_override);
	free(target->type);
	free(target->trace_info);
	free(target->fileio_info);
	free(target->cmd_name);
	free(target);
}

void target_quit(void)
{
	struct target_event_callback *pe = target_event_callbacks;
	while (pe) {
		struct target_event_callback *t = pe->next;
		free(pe);
		pe = t;
	}
	target_event_callbacks = NULL;

	struct target_timer_callback *pt = target_timer_callbacks;
	while (pt) {
		struct target_timer_callback *t = pt->next;
		free(pt);
		pt = t;
	}
	target_timer_callbacks = NULL;

	for (struct target *target = all_targets; target;) {
		struct target *tmp;

		tmp = target->next;
		target_destroy(target);
		target = tmp;
	}

	all_targets = NULL;
}

int target_arch_state(struct target *target)
{
	int retval;
	if (!target) {
		LOG_WARNING("No target has been configured");
		return ERROR_OK;
	}

	if (target->state != TARGET_HALTED)
		return ERROR_OK;

	retval = target->type->arch_state(target);
	return retval;
}

static int target_get_gdb_fileio_info_default(struct target *target,
		struct gdb_fileio_info *fileio_info)
{
	/* If target does not support semi-hosting function, target
	   has no need to provide .get_gdb_fileio_info callback.
	   It just return ERROR_FAIL and gdb_server will return "Txx"
	   as target halted every time.  */
	return ERROR_FAIL;
}

static int target_gdb_fileio_end_default(struct target *target,
		int retcode, int fileio_errno, bool ctrl_c)
{
	return ERROR_OK;
}

int target_profiling_default(struct target *target, uint32_t *samples,
		uint32_t max_num_samples, uint32_t *num_samples, uint32_t seconds)
{
	struct timeval timeout, now;

	gettimeofday(&timeout, NULL);
	timeval_add_time(&timeout, seconds, 0);

	LOG_INFO("Starting profiling. Halting and resuming the"
			" target as often as we can...");

	uint32_t sample_count = 0;
	/* hopefully it is safe to cache! We want to stop/restart as quickly as possible. */
	struct reg *reg = register_get_by_name(target->reg_cache, "pc", true);

	int retval = ERROR_OK;
	for (;;) {
		target_poll(target);
		if (target->state == TARGET_HALTED) {
			uint32_t t = buf_get_u32(reg->value, 0, 32);
			samples[sample_count++] = t;
			/* current pc, addr = 0, do not handle breakpoints, not debugging */
			retval = target_resume(target, 1, 0, 0, 0);
			target_poll(target);
			alive_sleep(10); /* sleep 10ms, i.e. <100 samples/second. */
		} else if (target->state == TARGET_RUNNING) {
			/* We want to quickly sample the PC. */
			retval = target_halt(target);
		} else {
			LOG_INFO("Target not halted or running");
			retval = ERROR_OK;
			break;
		}

		if (retval != ERROR_OK)
			break;

		gettimeofday(&now, NULL);
		if ((sample_count >= max_num_samples) || timeval_compare(&now, &timeout) >= 0) {
			LOG_INFO("Profiling completed. %" PRIu32 " samples.", sample_count);
			break;
		}
	}

	*num_samples = sample_count;
	return retval;
}

/* Single aligned words are guaranteed to use 16 or 32 bit access
 * mode respectively, otherwise data is handled as quickly as
 * possible
 */
int target_write_buffer(struct target *target, target_addr_t address, uint32_t size, const uint8_t *buffer)
{
	LOG_DEBUG("writing buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
			  size, address);

	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if (size == 0)
		return ERROR_OK;

	if ((address + size - 1) < address) {
		/* GDB can request this when e.g. PC is 0xfffffffc */
		LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
				  address,
				  size);
		return ERROR_FAIL;
	}

	return target->type->write_buffer(target, address, size, buffer);
}

static int target_write_buffer_default(struct target *target,
	target_addr_t address, uint32_t count, const uint8_t *buffer)
{
	uint32_t size;
	unsigned int data_bytes = target_data_bits(target) / 8;

	/* Align up to maximum bytes. The loop condition makes sure the next pass
	 * will have something to do with the size we leave to it. */
	for (size = 1;
			size < data_bytes && count >= size * 2 + (address & size);
			size *= 2) {
		if (address & size) {
			int retval = target_write_memory(target, address, size, 1, buffer);
			if (retval != ERROR_OK)
				return retval;
			address += size;
			count -= size;
			buffer += size;
		}
	}

	/* Write the data with as large access size as possible. */
	for (; size > 0; size /= 2) {
		uint32_t aligned = count - count % size;
		if (aligned > 0) {
			int retval = target_write_memory(target, address, size, aligned / size, buffer);
			if (retval != ERROR_OK)
				return retval;
			address += aligned;
			count -= aligned;
			buffer += aligned;
		}
	}

	return ERROR_OK;
}

/* Single aligned words are guaranteed to use 16 or 32 bit access
 * mode respectively, otherwise data is handled as quickly as
 * possible
 */
int target_read_buffer(struct target *target, target_addr_t address, uint32_t size, uint8_t *buffer)
{
	LOG_DEBUG("reading buffer of %" PRIu32 " byte at " TARGET_ADDR_FMT,
			  size, address);

	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if (size == 0)
		return ERROR_OK;

	if ((address + size - 1) < address) {
		/* GDB can request this when e.g. PC is 0xfffffffc */
		LOG_ERROR("address + size wrapped (" TARGET_ADDR_FMT ", 0x%08" PRIx32 ")",
				  address,
				  size);
		return ERROR_FAIL;
	}

	return target->type->read_buffer(target, address, size, buffer);
}

static int target_read_buffer_default(struct target *target, target_addr_t address, uint32_t count, uint8_t *buffer)
{
	uint32_t size;
	unsigned int data_bytes = target_data_bits(target) / 8;

	/* Align up to maximum bytes. The loop condition makes sure the next pass
	 * will have something to do with the size we leave to it. */
	for (size = 1;
			size < data_bytes && count >= size * 2 + (address & size);
			size *= 2) {
		if (address & size) {
			int retval = target_read_memory(target, address, size, 1, buffer);
			if (retval != ERROR_OK)
				return retval;
			address += size;
			count -= size;
			buffer += size;
		}
	}

	/* Read the data with as large access size as possible. */
	for (; size > 0; size /= 2) {
		uint32_t aligned = count - count % size;
		if (aligned > 0) {
			int retval = target_read_memory(target, address, size, aligned / size, buffer);
			if (retval != ERROR_OK)
				return retval;
			address += aligned;
			count -= aligned;
			buffer += aligned;
		}
	}

	return ERROR_OK;
}

int target_checksum_memory(struct target *target, target_addr_t address, uint32_t size, uint32_t *crc)
{
	uint8_t *buffer;
	int retval;
	uint32_t i;
	uint32_t checksum = 0;
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}
	if (!target->type->checksum_memory) {
		LOG_ERROR("Target %s doesn't support checksum_memory", target_name(target));
		return ERROR_FAIL;
	}

	retval = target->type->checksum_memory(target, address, size, &checksum);
	if (retval != ERROR_OK) {
		buffer = malloc(size);
		if (!buffer) {
			LOG_ERROR("error allocating buffer for section (%" PRIu32 " bytes)", size);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
		retval = target_read_buffer(target, address, size, buffer);
		if (retval != ERROR_OK) {
			free(buffer);
			return retval;
		}

		/* convert to target endianness */
		for (i = 0; i < (size/sizeof(uint32_t)); i++) {
			uint32_t target_data;
			target_data = target_buffer_get_u32(target, &buffer[i*sizeof(uint32_t)]);
			target_buffer_set_u32(target, &buffer[i*sizeof(uint32_t)], target_data);
		}

		retval = image_calculate_checksum(buffer, size, &checksum);
		free(buffer);
	}

	*crc = checksum;

	return retval;
}

int target_blank_check_memory(struct target *target,
	struct target_memory_check_block *blocks, int num_blocks,
	uint8_t erased_value)
{
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	if (!target->type->blank_check_memory)
		return ERROR_NOT_IMPLEMENTED;

	return target->type->blank_check_memory(target, blocks, num_blocks, erased_value);
}

int target_read_u64(struct target *target, target_addr_t address, uint64_t *value)
{
	uint8_t value_buf[8];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	int retval = target_read_memory(target, address, 8, 1, value_buf);

	if (retval == ERROR_OK) {
		*value = target_buffer_get_u64(target, value_buf);
		LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
				  address,
				  *value);
	} else {
		*value = 0x0;
		LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
				  address);
	}

	return retval;
}

int target_read_u32(struct target *target, target_addr_t address, uint32_t *value)
{
	uint8_t value_buf[4];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	int retval = target_read_memory(target, address, 4, 1, value_buf);

	if (retval == ERROR_OK) {
		*value = target_buffer_get_u32(target, value_buf);
		LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
				  address,
				  *value);
	} else {
		*value = 0x0;
		LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
				  address);
	}

	return retval;
}

int target_read_u16(struct target *target, target_addr_t address, uint16_t *value)
{
	uint8_t value_buf[2];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	int retval = target_read_memory(target, address, 2, 1, value_buf);

	if (retval == ERROR_OK) {
		*value = target_buffer_get_u16(target, value_buf);
		LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%4.4" PRIx16,
				  address,
				  *value);
	} else {
		*value = 0x0;
		LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
				  address);
	}

	return retval;
}

int target_read_u8(struct target *target, target_addr_t address, uint8_t *value)
{
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	int retval = target_read_memory(target, address, 1, 1, value);

	if (retval == ERROR_OK) {
		LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
				  address,
				  *value);
	} else {
		*value = 0x0;
		LOG_DEBUG("address: " TARGET_ADDR_FMT " failed",
				  address);
	}

	return retval;
}

int target_write_u64(struct target *target, target_addr_t address, uint64_t value)
{
	int retval;
	uint8_t value_buf[8];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
			  address,
			  value);

	target_buffer_set_u64(target, value_buf, value);
	retval = target_write_memory(target, address, 8, 1, value_buf);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

int target_write_u32(struct target *target, target_addr_t address, uint32_t value)
{
	int retval;
	uint8_t value_buf[4];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
			  address,
			  value);

	target_buffer_set_u32(target, value_buf, value);
	retval = target_write_memory(target, address, 4, 1, value_buf);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

int target_write_u16(struct target *target, target_addr_t address, uint16_t value)
{
	int retval;
	uint8_t value_buf[2];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
			  address,
			  value);

	target_buffer_set_u16(target, value_buf, value);
	retval = target_write_memory(target, address, 2, 1, value_buf);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

int target_write_u8(struct target *target, target_addr_t address, uint8_t value)
{
	int retval;
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
			  address, value);

	retval = target_write_memory(target, address, 1, 1, &value);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

int target_write_phys_u64(struct target *target, target_addr_t address, uint64_t value)
{
	int retval;
	uint8_t value_buf[8];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%16.16" PRIx64 "",
			  address,
			  value);

	target_buffer_set_u64(target, value_buf, value);
	retval = target_write_phys_memory(target, address, 8, 1, value_buf);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

int target_write_phys_u32(struct target *target, target_addr_t address, uint32_t value)
{
	int retval;
	uint8_t value_buf[4];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx32 "",
			  address,
			  value);

	target_buffer_set_u32(target, value_buf, value);
	retval = target_write_phys_memory(target, address, 4, 1, value_buf);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

int target_write_phys_u16(struct target *target, target_addr_t address, uint16_t value)
{
	int retval;
	uint8_t value_buf[2];
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%8.8" PRIx16,
			  address,
			  value);

	target_buffer_set_u16(target, value_buf, value);
	retval = target_write_phys_memory(target, address, 2, 1, value_buf);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

int target_write_phys_u8(struct target *target, target_addr_t address, uint8_t value)
{
	int retval;
	if (!target_was_examined(target)) {
		LOG_ERROR("Target not examined yet");
		return ERROR_FAIL;
	}

	LOG_DEBUG("address: " TARGET_ADDR_FMT ", value: 0x%2.2" PRIx8,
			  address, value);

	retval = target_write_phys_memory(target, address, 1, 1, &value);
	if (retval != ERROR_OK)
		LOG_DEBUG("failed: %i", retval);

	return retval;
}

static int find_target(struct command_invocation *cmd, const char *name)
{
	struct target *target = get_target(name);
	if (!target) {
		command_print(cmd, "Target: %s is unknown, try one of:\n", name);
		return ERROR_FAIL;
	}
	if (!target->tap->enabled) {
		command_print(cmd, "Target: TAP %s is disabled, "
			 "can't be the current target\n",
			 target->tap->dotted_name);
		return ERROR_FAIL;
	}

	cmd->ctx->current_target = target;
	if (cmd->ctx->current_target_override)
		cmd->ctx->current_target_override = target;

	return ERROR_OK;
}


COMMAND_HANDLER(handle_targets_command)
{
	int retval = ERROR_OK;
	if (CMD_ARGC == 1) {
		retval = find_target(CMD, CMD_ARGV[0]);
		if (retval == ERROR_OK) {
			/* we're done! */
			return retval;
		}
	}

	struct target *target = all_targets;
	command_print(CMD, "    TargetName         Type       Endian TapName            State       ");
	command_print(CMD, "--  ------------------ ---------- ------ ------------------ ------------");
	while (target) {
		const char *state;
		char marker = ' ';

		if (target->tap->enabled)
			state = target_state_name(target);
		else
			state = "tap-disabled";

		if (CMD_CTX->current_target == target)
			marker = '*';

		/* keep columns lined up to match the headers above */
		command_print(CMD,
				"%2d%c %-18s %-10s %-6s %-18s %s",
				target->target_number,
				marker,
				target_name(target),
				target_type_name(target),
				jim_nvp_value2name_simple(nvp_target_endian,
					target->endianness)->name,
				target->tap->dotted_name,
				state);
		target = target->next;
	}

	return retval;
}

/* every 300ms we check for reset & powerdropout and issue a "reset halt" if so. */

static int power_dropout;
static int srst_asserted;

static int run_power_restore;
static int run_power_dropout;
static int run_srst_asserted;
static int run_srst_deasserted;

static int sense_handler(void)
{
	static int prev_srst_asserted;
	static int prev_power_dropout;

	int retval = jtag_power_dropout(&power_dropout);
	if (retval != ERROR_OK)
		return retval;

	int power_restored;
	power_restored = prev_power_dropout && !power_dropout;
	if (power_restored)
		run_power_restore = 1;

	int64_t current = timeval_ms();
	static int64_t last_power;
	bool wait_more = last_power + 2000 > current;
	if (power_dropout && !wait_more) {
		run_power_dropout = 1;
		last_power = current;
	}

	retval = jtag_srst_asserted(&srst_asserted);
	if (retval != ERROR_OK)
		return retval;

	int srst_deasserted;
	srst_deasserted = prev_srst_asserted && !srst_asserted;

	static int64_t last_srst;
	wait_more = last_srst + 2000 > current;
	if (srst_deasserted && !wait_more) {
		run_srst_deasserted = 1;
		last_srst = current;
	}

	if (!prev_srst_asserted && srst_asserted)
		run_srst_asserted = 1;

	prev_srst_asserted = srst_asserted;
	prev_power_dropout = power_dropout;

	if (srst_deasserted || power_restored) {
		/* Other than logging the event we can't do anything here.
		 * Issuing a reset is a particularly bad idea as we might
		 * be inside a reset already.
		 */
	}

	return ERROR_OK;
}

/* process target state changes */
static int handle_target(void *priv)
{
	Jim_Interp *interp = (Jim_Interp *)priv;
	int retval = ERROR_OK;

	if (!is_jtag_poll_safe()) {
		/* polling is disabled currently */
		return ERROR_OK;
	}

	/* we do not want to recurse here... */
	static int recursive;
	if (!recursive) {
		recursive = 1;
		sense_handler();
		/* danger! running these procedures can trigger srst assertions and power dropouts.
		 * We need to avoid an infinite loop/recursion here and we do that by
		 * clearing the flags after running these events.
		 */
		int did_something = 0;
		if (run_srst_asserted) {
			LOG_INFO("srst asserted detected, running srst_asserted proc.");
			Jim_Eval(interp, "srst_asserted");
			did_something = 1;
		}
		if (run_srst_deasserted) {
			Jim_Eval(interp, "srst_deasserted");
			did_something = 1;
		}
		if (run_power_dropout) {
			LOG_INFO("Power dropout detected, running power_dropout proc.");
			Jim_Eval(interp, "power_dropout");
			did_something = 1;
		}
		if (run_power_restore) {
			Jim_Eval(interp, "power_restore");
			did_something = 1;
		}

		if (did_something) {
			/* clear detect flags */
			sense_handler();
		}

		/* clear action flags */

		run_srst_asserted = 0;
		run_srst_deasserted = 0;
		run_power_restore = 0;
		run_power_dropout = 0;

		recursive = 0;
	}

	/* Poll targets for state changes unless that's globally disabled.
	 * Skip targets that are currently disabled.
	 */
	for (struct target *target = all_targets;
			is_jtag_poll_safe() && target;
			target = target->next) {

		/* This function only gets called every polling_interval, so
		 * allow some slack in the time comparison. Otherwise, if we
		 * schedule for now+polling_interval, the next poll won't
		 * actually happen until a polling_interval later. */
		bool poll_needed = timeval_ms() + polling_interval / 2 >= target->backoff.next_attempt;
		if (!target->tap->enabled || power_dropout || srst_asserted || !poll_needed)
			continue;

		/* polling may fail silently until the target has been examined */
		retval = target_poll(target);
		if (retval == ERROR_OK) {
			/* Polling succeeded, reset the back-off interval */
			target->backoff.interval = polling_interval;
		} else {
			/* Increase interval between polling up to 5000ms */
			target->backoff.interval = MAX(polling_interval,
					MIN(target->backoff.interval * 2 + 1, 5000));
			/* Tell GDB to halt the debugger. This allows the user to run
			 * monitor commands to handle the situation. */
			target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT);
		}
		target->backoff.next_attempt = timeval_ms() + target->backoff.interval;
		LOG_TARGET_DEBUG(target, "target_poll() -> %d, next attempt in %dms",
				 retval, target->backoff.interval);

		if (retval != ERROR_OK && examine_attempted) {
			target_reset_examined(target);
			retval = target_examine_one(target);
			if (retval != ERROR_OK) {
				LOG_TARGET_DEBUG(target, "Examination failed, GDB will be halted. "
					"Polling again in %dms",
					target->backoff.interval);
				return retval;
			}
		}
	}

	return retval;
}

COMMAND_HANDLER(handle_reg_command)
{
	LOG_DEBUG("-");

	struct target *target = get_current_target(CMD_CTX);
	struct reg *reg = NULL;

	/* list all available registers for the current target */
	if (CMD_ARGC == 0) {
		struct reg_cache *cache = target->reg_cache;

		unsigned int count = 0;
		while (cache) {
			unsigned i;

			command_print(CMD, "===== %s", cache->name);

			for (i = 0, reg = cache->reg_list;
					i < cache->num_regs;
					i++, reg++, count++) {
				if (reg->exist == false || reg->hidden)
					continue;
				/* only print cached values if they are valid */
				if (reg->exist) {
					if (reg->valid) {
						char *value = buf_to_hex_str(reg->value,
								reg->size);
						command_print(CMD,
								"(%i) %s (/%" PRIu32 "): 0x%s%s",
								count, reg->name,
								reg->size, value,
								reg->dirty
								? " (dirty)"
								: "");
						free(value);
					} else {
						command_print(CMD, "(%i) %s (/%" PRIu32 ")",
								count, reg->name,
								reg->size) ;
					}
				}
			}
			cache = cache->next;
		}

		return ERROR_OK;
	}

	/* access a single register by its ordinal number */
	if ((CMD_ARGV[0][0] >= '0') && (CMD_ARGV[0][0] <= '9')) {
		unsigned num;
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[0], num);

		struct reg_cache *cache = target->reg_cache;
		unsigned int count = 0;
		while (cache) {
			unsigned i;
			for (i = 0; i < cache->num_regs; i++) {
				if (count++ == num) {
					reg = &cache->reg_list[i];
					break;
				}
			}
			if (reg)
				break;
			cache = cache->next;
		}

		if (!reg) {
			command_print(CMD, "%i is out of bounds, the current target "
					"has only %i registers (0 - %i)", num, count, count - 1);
			return ERROR_OK;
		}
	} else {
		/* access a single register by its name */
		reg = register_get_by_name(target->reg_cache, CMD_ARGV[0], true);

		if (!reg)
			goto not_found;
	}

	assert(reg); /* give clang a hint that we *know* reg is != NULL here */

	if (!reg->exist)
		goto not_found;

	/* display a register */
	if ((CMD_ARGC == 1) || ((CMD_ARGC == 2) && !((CMD_ARGV[1][0] >= '0')
			&& (CMD_ARGV[1][0] <= '9')))) {
		if ((CMD_ARGC == 2) && (strcmp(CMD_ARGV[1], "force") == 0))
			reg->valid = 0;

		if (reg->valid == 0) {
			int retval = reg->type->get(reg);
			if (retval != ERROR_OK) {
			    LOG_DEBUG("Couldn't get register %s.", reg->name);
			    return retval;
			}
		}
		char *value = buf_to_hex_str(reg->value, reg->size);
		command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
		free(value);
		return ERROR_OK;
	}

	/* set register value */
	if (CMD_ARGC == 2) {
		uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));
		if (!buf)
			return ERROR_FAIL;
		str_to_buf(CMD_ARGV[1], strlen(CMD_ARGV[1]), buf, reg->size, 0);

		int retval = reg->type->set(reg, buf);
		if (retval != ERROR_OK) {
			LOG_ERROR("Could not write to register '%s'", reg->name);
		} else {
			char *value = buf_to_hex_str(reg->value, reg->size);
			command_print(CMD, "%s (/%i): 0x%s", reg->name, (int)(reg->size), value);
			free(value);
		}

		free(buf);

		return retval;
	}

	return ERROR_COMMAND_SYNTAX_ERROR;

not_found:
	command_print(CMD, "register %s not found in current target", CMD_ARGV[0]);
	return ERROR_OK;
}

COMMAND_HANDLER(handle_poll_command)
{
	int retval = ERROR_OK;
	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC == 0) {
		command_print(CMD, "background polling: %s",
				jtag_poll_get_enabled() ? "on" : "off");
		command_print(CMD, "TAP: %s (%s)",
				target->tap->dotted_name,
				target->tap->enabled ? "enabled" : "disabled");
		if (!target->tap->enabled)
			return ERROR_OK;
		retval = target_poll(target);
		if (retval != ERROR_OK)
			return retval;
		retval = target_arch_state(target);
		if (retval != ERROR_OK)
			return retval;
	} else if (CMD_ARGC == 1) {
		bool enable;
		COMMAND_PARSE_ON_OFF(CMD_ARGV[0], enable);
		jtag_poll_set_enabled(enable);
	} else
		return ERROR_COMMAND_SYNTAX_ERROR;

	return retval;
}

COMMAND_HANDLER(handle_wait_halt_command)
{
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	unsigned ms = DEFAULT_HALT_TIMEOUT;
	if (1 == CMD_ARGC) {
		int retval = parse_uint(CMD_ARGV[0], &ms);
		if (retval != ERROR_OK)
			return ERROR_COMMAND_SYNTAX_ERROR;
	}

	struct target *target = get_current_target(CMD_CTX);
	return target_wait_state(target, TARGET_HALTED, ms);
}

/* wait for target state to change. The trick here is to have a low
 * latency for short waits and not to suck up all the CPU time
 * on longer waits.
 *
 * After 500ms, keep_alive() is invoked
 */
int target_wait_state(struct target *target, enum target_state state, int ms)
{
	int retval;
	int64_t then = 0, cur;
	bool once = true;

	for (;;) {
		retval = target_poll(target);
		if (retval != ERROR_OK)
			return retval;
		if (target->state == state)
			break;
		cur = timeval_ms();
		if (once) {
			once = false;
			then = timeval_ms();
			LOG_DEBUG("waiting for target %s...",
				jim_nvp_value2name_simple(nvp_target_state, state)->name);
		}

		if (cur-then > 500)
			keep_alive();

		if ((cur-then) > ms) {
			LOG_ERROR("timed out while waiting for target %s",
				jim_nvp_value2name_simple(nvp_target_state, state)->name);
			return ERROR_FAIL;
		}
	}

	return ERROR_OK;
}

COMMAND_HANDLER(handle_halt_command)
{
	LOG_DEBUG("-");

	struct target *target = get_current_target(CMD_CTX);

	target->verbose_halt_msg = true;

	int retval = target_halt(target);
	if (retval != ERROR_OK)
		return retval;

	if (CMD_ARGC == 1) {
		unsigned wait_local;
		retval = parse_uint(CMD_ARGV[0], &wait_local);
		if (retval != ERROR_OK)
			return ERROR_COMMAND_SYNTAX_ERROR;
		if (!wait_local)
			return ERROR_OK;
	}

	return CALL_COMMAND_HANDLER(handle_wait_halt_command);
}

COMMAND_HANDLER(handle_soft_reset_halt_command)
{
	struct target *target = get_current_target(CMD_CTX);

	LOG_USER("requesting target halt and executing a soft reset");

	target_soft_reset_halt(target);

	return ERROR_OK;
}

COMMAND_HANDLER(handle_reset_command)
{
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	enum target_reset_mode reset_mode = RESET_RUN;
	if (CMD_ARGC == 1) {
		const struct jim_nvp *n;
		n = jim_nvp_name2value_simple(nvp_reset_modes, CMD_ARGV[0]);
		if ((!n->name) || (n->value == RESET_UNKNOWN))
			return ERROR_COMMAND_SYNTAX_ERROR;
		reset_mode = n->value;
	}

	/* reset *all* targets */
	return target_process_reset(CMD, reset_mode);
}


COMMAND_HANDLER(handle_resume_command)
{
	int current = 1;
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct target *target = get_current_target(CMD_CTX);

	/* with no CMD_ARGV, resume from current pc, addr = 0,
	 * with one arguments, addr = CMD_ARGV[0],
	 * handle breakpoints, not debugging */
	target_addr_t addr = 0;
	if (CMD_ARGC == 1) {
		COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
		current = 0;
	}

	return target_resume(target, current, addr, 1, 0);
}

COMMAND_HANDLER(handle_step_command)
{
	if (CMD_ARGC > 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	LOG_DEBUG("-");

	/* with no CMD_ARGV, step from current pc, addr = 0,
	 * with one argument addr = CMD_ARGV[0],
	 * handle breakpoints, debugging */
	target_addr_t addr = 0;
	int current_pc = 1;
	if (CMD_ARGC == 1) {
		COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
		current_pc = 0;
	}

	struct target *target = get_current_target(CMD_CTX);

	return target_step(target, current_pc, addr, 1);
}

void target_handle_md_output(struct command_invocation *cmd,
		struct target *target, target_addr_t address, unsigned size,
		unsigned count, const uint8_t *buffer, bool include_address)
{
	const unsigned line_bytecnt = 32;
	unsigned line_modulo = line_bytecnt / size;

	char output[line_bytecnt * 4 + 1];
	unsigned output_len = 0;

	const char *value_fmt;
	switch (size) {
	case 8:
		value_fmt = "%16.16"PRIx64" ";
		break;
	case 4:
		value_fmt = "%8.8"PRIx64" ";
		break;
	case 2:
		value_fmt = "%4.4"PRIx64" ";
		break;
	case 1:
		value_fmt = "%2.2"PRIx64" ";
		break;
	default:
		/* "can't happen", caller checked */
		LOG_ERROR("invalid memory read size: %u", size);
		return;
	}

	for (unsigned i = 0; i < count; i++) {
		if (include_address && (i % line_modulo == 0)) {
			output_len += snprintf(output + output_len,
					sizeof(output) - output_len,
					TARGET_ADDR_FMT ": ",
					(address + (i * size)));
		}

		uint64_t value = 0;
		const uint8_t *value_ptr = buffer + i * size;
		switch (size) {
		case 8:
			value = target_buffer_get_u64(target, value_ptr);
			break;
		case 4:
			value = target_buffer_get_u32(target, value_ptr);
			break;
		case 2:
			value = target_buffer_get_u16(target, value_ptr);
			break;
		case 1:
			value = *value_ptr;
		}
		output_len += snprintf(output + output_len,
				sizeof(output) - output_len,
				value_fmt, value);

		if ((i % line_modulo == line_modulo - 1) || (i == count - 1)) {
			command_print(cmd, "%s", output);
			output_len = 0;
		}
	}
}

COMMAND_HANDLER(handle_md_command)
{
	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	unsigned size = 0;
	switch (CMD_NAME[2]) {
	case 'd':
		size = 8;
		break;
	case 'w':
		size = 4;
		break;
	case 'h':
		size = 2;
		break;
	case 'b':
		size = 1;
		break;
	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
	int (*fn)(struct target *target,
			target_addr_t address, uint32_t size_value, uint32_t count, uint8_t *buffer);
	if (physical) {
		CMD_ARGC--;
		CMD_ARGV++;
		fn = target_read_phys_memory;
	} else
		fn = target_read_memory;
	if ((CMD_ARGC < 1) || (CMD_ARGC > 2))
		return ERROR_COMMAND_SYNTAX_ERROR;

	target_addr_t address;
	COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);

	unsigned count = 1;
	if (CMD_ARGC == 2)
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[1], count);

	uint8_t *buffer = calloc(count, size);
	if (!buffer) {
		LOG_ERROR("Failed to allocate md read buffer");
		return ERROR_FAIL;
	}

	struct target *target = get_current_target(CMD_CTX);
	int retval = fn(target, address, size, count, buffer);
	if (retval == ERROR_OK)
		target_handle_md_output(CMD, target, address, size, count, buffer,
				true);

	free(buffer);

	return retval;
}

typedef int (*target_write_fn)(struct target *target,
		target_addr_t address, uint32_t size, uint32_t count, const uint8_t *buffer);

static int target_fill_mem(struct target *target,
		target_addr_t address,
		target_write_fn fn,
		unsigned data_size,
		/* value */
		uint64_t b,
		/* count */
		unsigned c)
{
	/* We have to write in reasonably large chunks to be able
	 * to fill large memory areas with any sane speed */
	const unsigned chunk_size = 16384;
	uint8_t *target_buf = malloc(chunk_size * data_size);
	if (!target_buf) {
		LOG_ERROR("Out of memory");
		return ERROR_FAIL;
	}

	for (unsigned i = 0; i < chunk_size; i++) {
		switch (data_size) {
		case 8:
			target_buffer_set_u64(target, target_buf + i * data_size, b);
			break;
		case 4:
			target_buffer_set_u32(target, target_buf + i * data_size, b);
			break;
		case 2:
			target_buffer_set_u16(target, target_buf + i * data_size, b);
			break;
		case 1:
			target_buffer_set_u8(target, target_buf + i * data_size, b);
			break;
		default:
			exit(-1);
		}
	}

	int retval = ERROR_OK;

	for (unsigned x = 0; x < c; x += chunk_size) {
		unsigned current;
		current = c - x;
		if (current > chunk_size)
			current = chunk_size;
		retval = fn(target, address + x * data_size, data_size, current, target_buf);
		if (retval != ERROR_OK)
			break;
		/* avoid GDB timeouts */
		keep_alive();
	}
	free(target_buf);

	return retval;
}


COMMAND_HANDLER(handle_mw_command)
{
	if (CMD_ARGC < 2)
		return ERROR_COMMAND_SYNTAX_ERROR;
	bool physical = strcmp(CMD_ARGV[0], "phys") == 0;
	target_write_fn fn;
	if (physical) {
		CMD_ARGC--;
		CMD_ARGV++;
		fn = target_write_phys_memory;
	} else
		fn = target_write_memory;
	if ((CMD_ARGC < 2) || (CMD_ARGC > 3))
		return ERROR_COMMAND_SYNTAX_ERROR;

	target_addr_t address;
	COMMAND_PARSE_ADDRESS(CMD_ARGV[0], address);

	uint64_t value;
	COMMAND_PARSE_NUMBER(u64, CMD_ARGV[1], value);

	unsigned count = 1;
	if (CMD_ARGC == 3)
		COMMAND_PARSE_NUMBER(uint, CMD_ARGV[2], count);

	struct target *target = get_current_target(CMD_CTX);
	unsigned wordsize;
	switch (CMD_NAME[2]) {
		case 'd':
			wordsize = 8;
			break;
		case 'w':
			wordsize = 4;
			break;
		case 'h':
			wordsize = 2;
			break;
		case 'b':
			wordsize = 1;
			break;
		default:
			return ERROR_COMMAND_SYNTAX_ERROR;
	}

	return target_fill_mem(target, address, fn, wordsize, value, count);
}

static COMMAND_HELPER(parse_load_image_command, struct image *image,
		target_addr_t *min_address, target_addr_t *max_address)
{
	if (CMD_ARGC < 1 || CMD_ARGC > 5)
		return ERROR_COMMAND_SYNTAX_ERROR;

	/* a base address isn't always necessary,
	 * default to 0x0 (i.e. don't relocate) */
	if (CMD_ARGC >= 2) {
		target_addr_t addr;
		COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
		image->base_address = addr;
		image->base_address_set = true;
	} else
		image->base_address_set = false;

	image->start_address_set = false;

	if (CMD_ARGC >= 4)
		COMMAND_PARSE_ADDRESS(CMD_ARGV[3], *min_address);
	if (CMD_ARGC == 5) {
		COMMAND_PARSE_ADDRESS(CMD_ARGV[4], *max_address);
		/* use size (given) to find max (required) */
		*max_address += *min_address;
	}

	if (*min_address > *max_address)
		return ERROR_COMMAND_SYNTAX_ERROR;

	return ERROR_OK;
}

COMMAND_HANDLER(handle_load_image_command)
{
	uint8_t *buffer;
	size_t buf_cnt;
	uint32_t image_size;
	target_addr_t min_address = 0;
	target_addr_t max_address = -1;
	struct image image;

	int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
			&image, &min_address, &max_address);
	if (retval != ERROR_OK)
		return retval;

	struct target *target = get_current_target(CMD_CTX);

	struct duration bench;
	duration_start(&bench);

	if (image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL) != ERROR_OK)
		return ERROR_FAIL;

	image_size = 0x0;
	retval = ERROR_OK;
	for (unsigned int i = 0; i < image.num_sections; i++) {
		buffer = malloc(image.sections[i].size);
		if (!buffer) {
			command_print(CMD,
						  "error allocating buffer for section (%d bytes)",
						  (int)(image.sections[i].size));
			retval = ERROR_FAIL;
			break;
		}

		retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
		if (retval != ERROR_OK) {
			free(buffer);
			break;
		}

		uint32_t offset = 0;
		uint32_t length = buf_cnt;

		/* DANGER!!! beware of unsigned comparison here!!! */

		if ((image.sections[i].base_address + buf_cnt >= min_address) &&
				(image.sections[i].base_address < max_address)) {

			if (image.sections[i].base_address < min_address) {
				/* clip addresses below */
				offset += min_address-image.sections[i].base_address;
				length -= offset;
			}

			if (image.sections[i].base_address + buf_cnt > max_address)
				length -= (image.sections[i].base_address + buf_cnt)-max_address;

			retval = target_write_buffer(target,
					image.sections[i].base_address + offset, length, buffer + offset);
			if (retval != ERROR_OK) {
				free(buffer);
				break;
			}
			image_size += length;
			command_print(CMD, "%u bytes written at address " TARGET_ADDR_FMT "",
					(unsigned int)length,
					image.sections[i].base_address + offset);
		}

		free(buffer);
	}

	if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
		command_print(CMD, "downloaded %" PRIu32 " bytes "
				"in %fs (%0.3f KiB/s)", image_size,
				duration_elapsed(&bench), duration_kbps(&bench, image_size));
	}

	image_close(&image);

	return retval;

}

COMMAND_HANDLER(handle_dump_image_command)
{
	struct fileio *fileio;
	uint8_t *buffer;
	int retval, retvaltemp;
	target_addr_t address, size;
	struct duration bench;
	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC != 3)
		return ERROR_COMMAND_SYNTAX_ERROR;

	COMMAND_PARSE_ADDRESS(CMD_ARGV[1], address);
	COMMAND_PARSE_ADDRESS(CMD_ARGV[2], size);

	uint32_t buf_size = (size > 4096) ? 4096 : size;
	buffer = malloc(buf_size);
	if (!buffer)
		return ERROR_FAIL;

	retval = fileio_open(&fileio, CMD_ARGV[0], FILEIO_WRITE, FILEIO_BINARY);
	if (retval != ERROR_OK) {
		free(buffer);
		return retval;
	}

	duration_start(&bench);

	while (size > 0) {
		size_t size_written;
		uint32_t this_run_size = (size > buf_size) ? buf_size : size;
		retval = target_read_buffer(target, address, this_run_size, buffer);
		if (retval != ERROR_OK)
			break;

		retval = fileio_write(fileio, this_run_size, buffer, &size_written);
		if (retval != ERROR_OK)
			break;

		size -= this_run_size;
		address += this_run_size;
	}

	free(buffer);

	if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
		size_t filesize;
		retval = fileio_size(fileio, &filesize);
		if (retval != ERROR_OK)
			return retval;
		command_print(CMD,
				"dumped %zu bytes in %fs (%0.3f KiB/s)", filesize,
				duration_elapsed(&bench), duration_kbps(&bench, filesize));
	}

	retvaltemp = fileio_close(fileio);
	if (retvaltemp != ERROR_OK)
		return retvaltemp;

	return retval;
}

enum verify_mode {
	IMAGE_TEST = 0,
	IMAGE_VERIFY = 1,
	IMAGE_CHECKSUM_ONLY = 2
};

static COMMAND_HELPER(handle_verify_image_command_internal, enum verify_mode verify)
{
	uint8_t *buffer;
	size_t buf_cnt;
	uint32_t image_size;
	int retval;
	uint32_t checksum = 0;
	uint32_t mem_checksum = 0;

	struct image image;

	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC < 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	if (!target) {
		LOG_ERROR("no target selected");
		return ERROR_FAIL;
	}

	struct duration bench;
	duration_start(&bench);

	if (CMD_ARGC >= 2) {
		target_addr_t addr;
		COMMAND_PARSE_ADDRESS(CMD_ARGV[1], addr);
		image.base_address = addr;
		image.base_address_set = true;
	} else {
		image.base_address_set = false;
		image.base_address = 0x0;
	}

	image.start_address_set = false;

	retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC == 3) ? CMD_ARGV[2] : NULL);
	if (retval != ERROR_OK)
		return retval;

	image_size = 0x0;
	int diffs = 0;
	retval = ERROR_OK;
	for (unsigned int i = 0; i < image.num_sections; i++) {
		buffer = malloc(image.sections[i].size);
		if (!buffer) {
			command_print(CMD,
					"error allocating buffer for section (%" PRIu32 " bytes)",
					image.sections[i].size);
			break;
		}
		retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
		if (retval != ERROR_OK) {
			free(buffer);
			break;
		}

		if (verify >= IMAGE_VERIFY) {
			/* calculate checksum of image */
			retval = image_calculate_checksum(buffer, buf_cnt, &checksum);
			if (retval != ERROR_OK) {
				free(buffer);
				break;
			}

			retval = target_checksum_memory(target, image.sections[i].base_address, buf_cnt, &mem_checksum);
			if (retval != ERROR_OK) {
				free(buffer);
				break;
			}
			if ((checksum != mem_checksum) && (verify == IMAGE_CHECKSUM_ONLY)) {
				LOG_ERROR("checksum mismatch");
				free(buffer);
				retval = ERROR_FAIL;
				goto done;
			}
			if (checksum != mem_checksum) {
				/* failed crc checksum, fall back to a binary compare */
				uint8_t *data;

				if (diffs == 0)
					LOG_ERROR("checksum mismatch - attempting binary compare");

				data = malloc(buf_cnt);

				retval = target_read_buffer(target, image.sections[i].base_address, buf_cnt, data);
				if (retval == ERROR_OK) {
					uint32_t t;
					for (t = 0; t < buf_cnt; t++) {
						if (data[t] != buffer[t]) {
							command_print(CMD,
										  "diff %d address 0x%08x. Was 0x%02x instead of 0x%02x",
										  diffs,
										  (unsigned)(t + image.sections[i].base_address),
										  data[t],
										  buffer[t]);
							if (diffs++ >= 127) {
								command_print(CMD, "More than 128 errors, the rest are not printed.");
								free(data);
								free(buffer);
								goto done;
							}
						}
						keep_alive();
					}
				}
				free(data);
			}
		} else {
			command_print(CMD, "address " TARGET_ADDR_FMT " length 0x%08zx",
						  image.sections[i].base_address,
						  buf_cnt);
		}

		free(buffer);
		image_size += buf_cnt;
	}
	if (diffs > 0)
		command_print(CMD, "No more differences found.");
done:
	if (diffs > 0)
		retval = ERROR_FAIL;
	if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
		command_print(CMD, "verified %" PRIu32 " bytes "
				"in %fs (%0.3f KiB/s)", image_size,
				duration_elapsed(&bench), duration_kbps(&bench, image_size));
	}

	image_close(&image);

	return retval;
}

COMMAND_HANDLER(handle_verify_image_checksum_command)
{
	return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_CHECKSUM_ONLY);
}

COMMAND_HANDLER(handle_verify_image_command)
{
	return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_VERIFY);
}

COMMAND_HANDLER(handle_test_image_command)
{
	return CALL_COMMAND_HANDLER(handle_verify_image_command_internal, IMAGE_TEST);
}

static int handle_bp_command_list(struct command_invocation *cmd)
{
	struct target *target = get_current_target(cmd->ctx);
	struct breakpoint *breakpoint = target->breakpoints;
	while (breakpoint) {
		if (breakpoint->type == BKPT_SOFT) {
			char *buf = buf_to_hex_str(breakpoint->orig_instr,
					breakpoint->length);
			command_print(cmd, "IVA breakpoint: " TARGET_ADDR_FMT ", 0x%x, 0x%s",
					breakpoint->address,
					breakpoint->length,
					buf);
			free(buf);
		} else {
			if ((breakpoint->address == 0) && (breakpoint->asid != 0))
				command_print(cmd, "Context breakpoint: 0x%8.8" PRIx32 ", 0x%x, %u",
							breakpoint->asid,
							breakpoint->length, breakpoint->number);
			else if ((breakpoint->address != 0) && (breakpoint->asid != 0)) {
				command_print(cmd, "Hybrid breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %u",
							breakpoint->address,
							breakpoint->length, breakpoint->number);
				command_print(cmd, "\t|--->linked with ContextID: 0x%8.8" PRIx32,
							breakpoint->asid);
			} else
				command_print(cmd, "Breakpoint(IVA): " TARGET_ADDR_FMT ", 0x%x, %u",
							breakpoint->address,
							breakpoint->length, breakpoint->number);
		}

		breakpoint = breakpoint->next;
	}
	return ERROR_OK;
}

static int handle_bp_command_set(struct command_invocation *cmd,
		target_addr_t addr, uint32_t asid, uint32_t length, int hw)
{
	struct target *target = get_current_target(cmd->ctx);
	int retval;

	if (asid == 0) {
		retval = breakpoint_add(target, addr, length, hw);
		/* error is always logged in breakpoint_add(), do not print it again */
		if (retval == ERROR_OK)
			command_print(cmd, "breakpoint set at " TARGET_ADDR_FMT "", addr);

	} else if (addr == 0) {
		if (!target->type->add_context_breakpoint) {
			LOG_ERROR("Context breakpoint not available");
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}
		retval = context_breakpoint_add(target, asid, length, hw);
		/* error is always logged in context_breakpoint_add(), do not print it again */
		if (retval == ERROR_OK)
			command_print(cmd, "Context breakpoint set at 0x%8.8" PRIx32 "", asid);

	} else {
		if (!target->type->add_hybrid_breakpoint) {
			LOG_ERROR("Hybrid breakpoint not available");
			return ERROR_TARGET_RESOURCE_NOT_AVAILABLE;
		}
		retval = hybrid_breakpoint_add(target, addr, asid, length, hw);
		/* error is always logged in hybrid_breakpoint_add(), do not print it again */
		if (retval == ERROR_OK)
			command_print(cmd, "Hybrid breakpoint set at 0x%8.8" PRIx32 "", asid);
	}
	return retval;
}

COMMAND_HANDLER(handle_bp_command)
{
	target_addr_t addr;
	uint32_t asid;
	uint32_t length;
	int hw = BKPT_SOFT;

	switch (CMD_ARGC) {
		case 0:
			return handle_bp_command_list(CMD);

		case 2:
			asid = 0;
			COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
			return handle_bp_command_set(CMD, addr, asid, length, hw);

		case 3:
			if (strcmp(CMD_ARGV[2], "hw") == 0) {
				hw = BKPT_HARD;
				COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
				COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
				asid = 0;
				return handle_bp_command_set(CMD, addr, asid, length, hw);
			} else if (strcmp(CMD_ARGV[2], "hw_ctx") == 0) {
				hw = BKPT_HARD;
				COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], asid);
				COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
				addr = 0;
				return handle_bp_command_set(CMD, addr, asid, length, hw);
			}
			/* fallthrough */
		case 4:
			hw = BKPT_HARD;
			COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], asid);
			COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], length);
			return handle_bp_command_set(CMD, addr, asid, length, hw);

		default:
			return ERROR_COMMAND_SYNTAX_ERROR;
	}
}

COMMAND_HANDLER(handle_rbp_command)
{
	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	struct target *target = get_current_target(CMD_CTX);

	if (!strcmp(CMD_ARGV[0], "all")) {
		breakpoint_remove_all(target);
	} else {
		target_addr_t addr;
		COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);

		breakpoint_remove(target, addr);
	}

	return ERROR_OK;
}

COMMAND_HANDLER(handle_wp_command)
{
	struct target *target = get_current_target(CMD_CTX);

	if (CMD_ARGC == 0) {
		struct watchpoint *watchpoint = target->watchpoints;

		while (watchpoint) {
			command_print(CMD, "address: " TARGET_ADDR_FMT
					", len: 0x%8.8" PRIx32
					", r/w/a: %i, value: 0x%8.8" PRIx32
					", mask: 0x%8.8" PRIx32,
					watchpoint->address,
					watchpoint->length,
					(int)watchpoint->rw,
					watchpoint->value,
					watchpoint->mask);
			watchpoint = watchpoint->next;
		}
		return ERROR_OK;
	}

	enum watchpoint_rw type = WPT_ACCESS;
	target_addr_t addr = 0;
	uint32_t length = 0;
	uint32_t data_value = 0x0;
	uint32_t data_mask = 0xffffffff;

	switch (CMD_ARGC) {
	case 5:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[4], data_mask);
		/* fall through */
	case 4:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], data_value);
		/* fall through */
	case 3:
		switch (CMD_ARGV[2][0]) {
		case 'r':
			type = WPT_READ;
			break;
		case 'w':
			type = WPT_WRITE;
			break;
		case 'a':
			type = WPT_ACCESS;
			break;
		default:
			LOG_ERROR("invalid watchpoint mode ('%c')", CMD_ARGV[2][0]);
			return ERROR_COMMAND_SYNTAX_ERROR;
		}
		/* fall through */
	case 2:
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[1], length);
		COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);
		break;

	default:
		return ERROR_COMMAND_SYNTAX_ERROR;
	}

	int retval = watchpoint_add(target, addr, length, type,
			data_value, data_mask);
	if (retval != ERROR_OK)
		LOG_ERROR("Failure setting watchpoints");

	return retval;
}

COMMAND_HANDLER(handle_rwp_command)
{
	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	target_addr_t addr;
	COMMAND_PARSE_ADDRESS(CMD_ARGV[0], addr);

	struct target *target = get_current_target(CMD_CTX);
	watchpoint_remove(target, addr);

	return ERROR_OK;
}

/**
 * Translate a virtual address to a physical address.
 *
 * The low-level target implementation must have logged a detailed error
 * which is forwarded to telnet/GDB session.
 */
COMMAND_HANDLER(handle_virt2phys_command)
{
	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	target_addr_t va;
	COMMAND_PARSE_ADDRESS(CMD_ARGV[0], va);
	target_addr_t pa;

	struct target *target = get_current_target(CMD_CTX);
	int retval = target->type->virt2phys(target, va, &pa);
	if (retval == ERROR_OK)
		command_print(CMD, "Physical address " TARGET_ADDR_FMT "", pa);

	return retval;
}

static void write_data(FILE *f, const void *data, size_t len)
{
	size_t written = fwrite(data, 1, len, f);
	if (written != len)
		LOG_ERROR("failed to write %zu bytes: %s", len, strerror(errno));
}

static void write_long(FILE *f, int l, struct target *target)
{
	uint8_t val[4];

	target_buffer_set_u32(target, val, l);
	write_data(f, val, 4);
}

static void write_string(FILE *f, char *s)
{
	write_data(f, s, strlen(s));
}

typedef unsigned char UNIT[2];  /* unit of profiling */

/* Dump a gmon.out histogram file. */
static void write_gmon(uint32_t *samples, uint32_t sample_num, const char *filename, bool with_range,
			uint32_t start_address, uint32_t end_address, struct target *target, uint32_t duration_ms)
{
	uint32_t i;
	FILE *f = fopen(filename, "w");
	if (!f)
		return;
	write_string(f, "gmon");
	write_long(f, 0x00000001, target); /* Version */
	write_long(f, 0, target); /* padding */
	write_long(f, 0, target); /* padding */
	write_long(f, 0, target); /* padding */

	uint8_t zero = 0;  /* GMON_TAG_TIME_HIST */
	write_data(f, &zero, 1);

	/* figure out bucket size */
	uint32_t min;
	uint32_t max;
	if (with_range) {
		min = start_address;
		max = end_address;
	} else {
		min = samples[0];
		max = samples[0];
		for (i = 0; i < sample_num; i++) {
			if (min > samples[i])
				min = samples[i];
			if (max < samples[i])
				max = samples[i];
		}

		/* max should be (largest sample + 1)
		 * Refer to binutils/gprof/hist.c (find_histogram_for_pc) */
		max++;
	}

	int address_space = max - min;
	assert(address_space >= 2);

	/* FIXME: What is the reasonable number of buckets?
	 * The profiling result will be more accurate if there are enough buckets. */
	static const uint32_t max_buckets = 128 * 1024; /* maximum buckets. */
	uint32_t num_buckets = address_space / sizeof(UNIT);
	if (num_buckets > max_buckets)
		num_buckets = max_buckets;
	int *buckets = malloc(sizeof(int) * num_buckets);
	if (!buckets) {
		fclose(f);
		return;
	}
	memset(buckets, 0, sizeof(int) * num_buckets);
	for (i = 0; i < sample_num; i++) {
		uint32_t address = samples[i];

		if ((address < min) || (max <= address))
			continue;

		long long a = address - min;
		long long b = num_buckets;
		long long c = address_space;
		int index_t = (a * b) / c; /* danger!!!! int32 overflows */
		buckets[index_t]++;
	}

	/* append binary memory gmon.out &profile_hist_hdr ((char*)&profile_hist_hdr + sizeof(struct gmon_hist_hdr)) */
	write_long(f, min, target);			/* low_pc */
	write_long(f, max, target);			/* high_pc */
	write_long(f, num_buckets, target);	/* # of buckets */
	float sample_rate = sample_num / (duration_ms / 1000.0);
	write_long(f, sample_rate, target);
	write_string(f, "seconds");
	for (i = 0; i < (15-strlen("seconds")); i++)
		write_data(f, &zero, 1);
	write_string(f, "s");

	/*append binary memory gmon.out profile_hist_data (profile_hist_data + profile_hist_hdr.hist_size) */

	char *data = malloc(2 * num_buckets);
	if (data) {
		for (i = 0; i < num_buckets; i++) {
			int val;
			val = buckets[i];
			if (val > 65535)
				val = 65535;
			data[i * 2] = val&0xff;
			data[i * 2 + 1] = (val >> 8) & 0xff;
		}
		free(buckets);
		write_data(f, data, num_buckets * 2);
		free(data);
	} else
		free(buckets);

	fclose(f);
}

/* profiling samples the CPU PC as quickly as OpenOCD is able,
 * which will be used as a random sampling of PC */
COMMAND_HANDLER(handle_profile_command)
{
	struct target *target = get_current_target(CMD_CTX);

	if ((CMD_ARGC != 2) && (CMD_ARGC != 4))
		return ERROR_COMMAND_SYNTAX_ERROR;

	const uint32_t MAX_PROFILE_SAMPLE_NUM = 10000;
	uint32_t offset;
	uint32_t num_of_samples;
	int retval = ERROR_OK;
	bool halted_before_profiling = target->state == TARGET_HALTED;

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], offset);

	uint32_t *samples = malloc(sizeof(uint32_t) * MAX_PROFILE_SAMPLE_NUM);
	if (!samples) {
		LOG_ERROR("No memory to store samples.");
		return ERROR_FAIL;
	}

	uint64_t timestart_ms = timeval_ms();
	/**
	 * Some cores let us sample the PC without the
	 * annoying halt/resume step; for example, ARMv7 PCSR.
	 * Provide a way to use that more efficient mechanism.
	 */
	retval = target_profiling(target, samples, MAX_PROFILE_SAMPLE_NUM,
				&num_of_samples, offset);
	if (retval != ERROR_OK) {
		free(samples);
		return retval;
	}
	uint32_t duration_ms = timeval_ms() - timestart_ms;

	assert(num_of_samples <= MAX_PROFILE_SAMPLE_NUM);

	retval = target_poll(target);
	if (retval != ERROR_OK) {
		free(samples);
		return retval;
	}

	if (target->state == TARGET_RUNNING && halted_before_profiling) {
		/* The target was halted before we started and is running now. Halt it,
		 * for consistency. */
		retval = target_halt(target);
		if (retval != ERROR_OK) {
			free(samples);
			return retval;
		}
	} else if (target->state == TARGET_HALTED && !halted_before_profiling) {
		/* The target was running before we started and is halted now. Resume
		 * it, for consistency. */
		retval = target_resume(target, 1, 0, 0, 0);
		if (retval != ERROR_OK) {
			free(samples);
			return retval;
		}
	}

	retval = target_poll(target);
	if (retval != ERROR_OK) {
		free(samples);
		return retval;
	}

	uint32_t start_address = 0;
	uint32_t end_address = 0;
	bool with_range = false;
	if (CMD_ARGC == 4) {
		with_range = true;
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[2], start_address);
		COMMAND_PARSE_NUMBER(u32, CMD_ARGV[3], end_address);
	}

	write_gmon(samples, num_of_samples, CMD_ARGV[1],
		   with_range, start_address, end_address, target, duration_ms);
	command_print(CMD, "Wrote %s", CMD_ARGV[1]);

	free(samples);
	return retval;
}

static int new_u64_array_element(Jim_Interp *interp, const char *varname, int idx, uint64_t val)
{
	char *namebuf;
	Jim_Obj *obj_name, *obj_val;
	int result;

	namebuf = alloc_printf("%s(%d)", varname, idx);
	if (!namebuf)
		return JIM_ERR;

	obj_name = Jim_NewStringObj(interp, namebuf, -1);
	jim_wide wide_val = val;
	obj_val = Jim_NewWideObj(interp, wide_val);
	if (!obj_name || !obj_val) {
		free(namebuf);
		return JIM_ERR;
	}

	Jim_IncrRefCount(obj_name);
	Jim_IncrRefCount(obj_val);
	result = Jim_SetVariable(interp, obj_name, obj_val);
	Jim_DecrRefCount(interp, obj_name);
	Jim_DecrRefCount(interp, obj_val);
	free(namebuf);
	/* printf("%s(%d) <= 0%08x\n", varname, idx, val); */
	return result;
}

static int target_mem2array(Jim_Interp *interp, struct target *target, int argc, Jim_Obj *const *argv)
{
	int e;

	LOG_WARNING("DEPRECATED! use 'read_memory' not 'mem2array'");

	/* argv[0] = name of array to receive the data
	 * argv[1] = desired element width in bits
	 * argv[2] = memory address
	 * argv[3] = count of times to read
	 * argv[4] = optional "phys"
	 */
	if (argc < 4 || argc > 5) {
		Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
		return JIM_ERR;
	}

	/* Arg 0: Name of the array variable */
	const char *varname = Jim_GetString(argv[0], NULL);

	/* Arg 1: Bit width of one element */
	long l;
	e = Jim_GetLong(interp, argv[1], &l);
	if (e != JIM_OK)
		return e;
	const unsigned int width_bits = l;

	if (width_bits != 8 &&
			width_bits != 16 &&
			width_bits != 32 &&
			width_bits != 64) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp),
				"Invalid width param. Must be one of: 8, 16, 32 or 64.", NULL);
		return JIM_ERR;
	}
	const unsigned int width = width_bits / 8;

	/* Arg 2: Memory address */
	jim_wide wide_addr;
	e = Jim_GetWide(interp, argv[2], &wide_addr);
	if (e != JIM_OK)
		return e;
	target_addr_t addr = (target_addr_t)wide_addr;

	/* Arg 3: Number of elements to read */
	e = Jim_GetLong(interp, argv[3], &l);
	if (e != JIM_OK)
		return e;
	size_t len = l;

	/* Arg 4: phys */
	bool is_phys = false;
	if (argc > 4) {
		int str_len = 0;
		const char *phys = Jim_GetString(argv[4], &str_len);
		if (!strncmp(phys, "phys", str_len))
			is_phys = true;
		else
			return JIM_ERR;
	}

	/* Argument checks */
	if (len == 0) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: zero width read?", NULL);
		return JIM_ERR;
	}
	if ((addr + (len * width)) < addr) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: addr + len - wraps to zero?", NULL);
		return JIM_ERR;
	}
	if (len > 65536) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp),
				"mem2array: too large read request, exceeds 64K items", NULL);
		return JIM_ERR;
	}

	if ((width == 1) ||
		((width == 2) && ((addr & 1) == 0)) ||
		((width == 4) && ((addr & 3) == 0)) ||
		((width == 8) && ((addr & 7) == 0))) {
		/* alignment correct */
	} else {
		char buf[100];
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		sprintf(buf, "mem2array address: " TARGET_ADDR_FMT " is not aligned for %" PRIu32 " byte reads",
				addr,
				width);
		Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
		return JIM_ERR;
	}

	/* Transfer loop */

	/* index counter */
	size_t idx = 0;

	const size_t buffersize = 4096;
	uint8_t *buffer = malloc(buffersize);
	if (!buffer)
		return JIM_ERR;

	/* assume ok */
	e = JIM_OK;
	while (len) {
		/* Slurp... in buffer size chunks */
		const unsigned int max_chunk_len = buffersize / width;
		const size_t chunk_len = MIN(len, max_chunk_len); /* in elements.. */

		int retval;
		if (is_phys)
			retval = target_read_phys_memory(target, addr, width, chunk_len, buffer);
		else
			retval = target_read_memory(target, addr, width, chunk_len, buffer);
		if (retval != ERROR_OK) {
			/* BOO !*/
			LOG_ERROR("mem2array: Read @ " TARGET_ADDR_FMT ", w=%u, cnt=%zu, failed",
					  addr,
					  width,
					  chunk_len);
			Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
			Jim_AppendStrings(interp, Jim_GetResult(interp), "mem2array: cannot read memory", NULL);
			e = JIM_ERR;
			break;
		} else {
			for (size_t i = 0; i < chunk_len ; i++, idx++) {
				uint64_t v = 0;
				switch (width) {
					case 8:
						v = target_buffer_get_u64(target, &buffer[i*width]);
						break;
					case 4:
						v = target_buffer_get_u32(target, &buffer[i*width]);
						break;
					case 2:
						v = target_buffer_get_u16(target, &buffer[i*width]);
						break;
					case 1:
						v = buffer[i] & 0x0ff;
						break;
				}
				new_u64_array_element(interp, varname, idx, v);
			}
			len -= chunk_len;
			addr += chunk_len * width;
		}
	}

	free(buffer);

	Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));

	return e;
}

static int target_jim_read_memory(Jim_Interp *interp, int argc,
		Jim_Obj * const *argv)
{
	/*
	 * argv[1] = memory address
	 * argv[2] = desired element width in bits
	 * argv[3] = number of elements to read
	 * argv[4] = optional "phys"
	 */

	if (argc < 4 || argc > 5) {
		Jim_WrongNumArgs(interp, 1, argv, "address width count ['phys']");
		return JIM_ERR;
	}

	/* Arg 1: Memory address. */
	jim_wide wide_addr;
	int e;
	e = Jim_GetWide(interp, argv[1], &wide_addr);

	if (e != JIM_OK)
		return e;

	target_addr_t addr = (target_addr_t)wide_addr;

	/* Arg 2: Bit width of one element. */
	long l;
	e = Jim_GetLong(interp, argv[2], &l);

	if (e != JIM_OK)
		return e;

	const unsigned int width_bits = l;

	/* Arg 3: Number of elements to read. */
	e = Jim_GetLong(interp, argv[3], &l);

	if (e != JIM_OK)
		return e;

	size_t count = l;

	/* Arg 4: Optional 'phys'. */
	bool is_phys = false;

	if (argc > 4) {
		const char *phys = Jim_GetString(argv[4], NULL);

		if (strcmp(phys, "phys")) {
			Jim_SetResultFormatted(interp, "invalid argument '%s', must be 'phys'", phys);
			return JIM_ERR;
		}

		is_phys = true;
	}

	switch (width_bits) {
	case 8:
	case 16:
	case 32:
	case 64:
		break;
	default:
		Jim_SetResultString(interp, "invalid width, must be 8, 16, 32 or 64", -1);
		return JIM_ERR;
	}

	const unsigned int width = width_bits / 8;

	if ((addr + (count * width)) < addr) {
		Jim_SetResultString(interp, "read_memory: addr + count wraps to zero", -1);
		return JIM_ERR;
	}

	if (count > 65536) {
		Jim_SetResultString(interp, "read_memory: too large read request, exeeds 64K elements", -1);
		return JIM_ERR;
	}

	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx != NULL);
	struct target *target = get_current_target(cmd_ctx);

	const size_t buffersize = 4096;
	uint8_t *buffer = malloc(buffersize);

	if (!buffer) {
		LOG_ERROR("Failed to allocate memory");
		return JIM_ERR;
	}

	Jim_Obj *result_list = Jim_NewListObj(interp, NULL, 0);
	Jim_IncrRefCount(result_list);

	while (count > 0) {
		const unsigned int max_chunk_len = buffersize / width;
		const size_t chunk_len = MIN(count, max_chunk_len);

		int retval;

		if (is_phys)
			retval = target_read_phys_memory(target, addr, width, chunk_len, buffer);
		else
			retval = target_read_memory(target, addr, width, chunk_len, buffer);

		if (retval != ERROR_OK) {
			LOG_ERROR("read_memory: read at " TARGET_ADDR_FMT " with width=%u and count=%zu failed",
				addr, width_bits, chunk_len);
			Jim_SetResultString(interp, "read_memory: failed to read memory", -1);
			e = JIM_ERR;
			break;
		}

		for (size_t i = 0; i < chunk_len ; i++) {
			uint64_t v = 0;

			switch (width) {
			case 8:
				v = target_buffer_get_u64(target, &buffer[i * width]);
				break;
			case 4:
				v = target_buffer_get_u32(target, &buffer[i * width]);
				break;
			case 2:
				v = target_buffer_get_u16(target, &buffer[i * width]);
				break;
			case 1:
				v = buffer[i];
				break;
			}

			char value_buf[11];
			snprintf(value_buf, sizeof(value_buf), "0x%" PRIx64, v);

			Jim_ListAppendElement(interp, result_list,
				Jim_NewStringObj(interp, value_buf, -1));
		}

		count -= chunk_len;
		addr += chunk_len * width;
	}

	free(buffer);

	if (e != JIM_OK) {
		Jim_DecrRefCount(interp, result_list);
		return e;
	}

	Jim_SetResult(interp, result_list);
	Jim_DecrRefCount(interp, result_list);

	return JIM_OK;
}

static int get_u64_array_element(Jim_Interp *interp, const char *varname, size_t idx, uint64_t *val)
{
	char *namebuf = alloc_printf("%s(%zu)", varname, idx);
	if (!namebuf)
		return JIM_ERR;

	Jim_Obj *obj_name = Jim_NewStringObj(interp, namebuf, -1);
	if (!obj_name) {
		free(namebuf);
		return JIM_ERR;
	}

	Jim_IncrRefCount(obj_name);
	Jim_Obj *obj_val = Jim_GetVariable(interp, obj_name, JIM_ERRMSG);
	Jim_DecrRefCount(interp, obj_name);
	free(namebuf);
	if (!obj_val)
		return JIM_ERR;

	jim_wide wide_val;
	int result = Jim_GetWide(interp, obj_val, &wide_val);
	*val = wide_val;
	return result;
}

static int target_array2mem(Jim_Interp *interp, struct target *target,
		int argc, Jim_Obj *const *argv)
{
	int e;

	LOG_WARNING("DEPRECATED! use 'write_memory' not 'array2mem'");

	/* argv[0] = name of array from which to read the data
	 * argv[1] = desired element width in bits
	 * argv[2] = memory address
	 * argv[3] = number of elements to write
	 * argv[4] = optional "phys"
	 */
	if (argc < 4 || argc > 5) {
		Jim_WrongNumArgs(interp, 0, argv, "varname width addr nelems [phys]");
		return JIM_ERR;
	}

	/* Arg 0: Name of the array variable */
	const char *varname = Jim_GetString(argv[0], NULL);

	/* Arg 1: Bit width of one element */
	long l;
	e = Jim_GetLong(interp, argv[1], &l);
	if (e != JIM_OK)
		return e;
	const unsigned int width_bits = l;

	if (width_bits != 8 &&
			width_bits != 16 &&
			width_bits != 32 &&
			width_bits != 64) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp),
				"Invalid width param. Must be one of: 8, 16, 32 or 64.", NULL);
		return JIM_ERR;
	}
	const unsigned int width = width_bits / 8;

	/* Arg 2: Memory address */
	jim_wide wide_addr;
	e = Jim_GetWide(interp, argv[2], &wide_addr);
	if (e != JIM_OK)
		return e;
	target_addr_t addr = (target_addr_t)wide_addr;

	/* Arg 3: Number of elements to write */
	e = Jim_GetLong(interp, argv[3], &l);
	if (e != JIM_OK)
		return e;
	size_t len = l;

	/* Arg 4: Phys */
	bool is_phys = false;
	if (argc > 4) {
		int str_len = 0;
		const char *phys = Jim_GetString(argv[4], &str_len);
		if (!strncmp(phys, "phys", str_len))
			is_phys = true;
		else
			return JIM_ERR;
	}

	/* Argument checks */
	if (len == 0) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp),
				"array2mem: zero width read?", NULL);
		return JIM_ERR;
	}

	if ((addr + (len * width)) < addr) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp),
				"array2mem: addr + len - wraps to zero?", NULL);
		return JIM_ERR;
	}

	if (len > 65536) {
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		Jim_AppendStrings(interp, Jim_GetResult(interp),
				"array2mem: too large memory write request, exceeds 64K items", NULL);
		return JIM_ERR;
	}

	if ((width == 1) ||
		((width == 2) && ((addr & 1) == 0)) ||
		((width == 4) && ((addr & 3) == 0)) ||
		((width == 8) && ((addr & 7) == 0))) {
		/* alignment correct */
	} else {
		char buf[100];
		Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
		sprintf(buf, "array2mem address: " TARGET_ADDR_FMT " is not aligned for %" PRIu32 " byte reads",
				addr,
				width);
		Jim_AppendStrings(interp, Jim_GetResult(interp), buf, NULL);
		return JIM_ERR;
	}

	/* Transfer loop */

	/* assume ok */
	e = JIM_OK;

	const size_t buffersize = 4096;
	uint8_t *buffer = malloc(buffersize);
	if (!buffer)
		return JIM_ERR;

	/* index counter */
	size_t idx = 0;

	while (len) {
		/* Slurp... in buffer size chunks */
		const unsigned int max_chunk_len = buffersize / width;

		const size_t chunk_len = MIN(len, max_chunk_len); /* in elements.. */

		/* Fill the buffer */
		for (size_t i = 0; i < chunk_len; i++, idx++) {
			uint64_t v = 0;
			if (get_u64_array_element(interp, varname, idx, &v) != JIM_OK) {
				free(buffer);
				return JIM_ERR;
			}
			switch (width) {
			case 8:
				target_buffer_set_u64(target, &buffer[i * width], v);
				break;
			case 4:
				target_buffer_set_u32(target, &buffer[i * width], v);
				break;
			case 2:
				target_buffer_set_u16(target, &buffer[i * width], v);
				break;
			case 1:
				buffer[i] = v & 0x0ff;
				break;
			}
		}
		len -= chunk_len;

		/* Write the buffer to memory */
		int retval;
		if (is_phys)
			retval = target_write_phys_memory(target, addr, width, chunk_len, buffer);
		else
			retval = target_write_memory(target, addr, width, chunk_len, buffer);
		if (retval != ERROR_OK) {
			/* BOO !*/
			LOG_ERROR("array2mem: Write @ " TARGET_ADDR_FMT ", w=%u, cnt=%zu, failed",
					  addr,
					  width,
					  chunk_len);
			Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));
			Jim_AppendStrings(interp, Jim_GetResult(interp), "array2mem: cannot read memory", NULL);
			e = JIM_ERR;
			break;
		}
		addr += chunk_len * width;
	}

	free(buffer);

	Jim_SetResult(interp, Jim_NewEmptyStringObj(interp));

	return e;
}

static int target_jim_write_memory(Jim_Interp *interp, int argc,
		Jim_Obj * const *argv)
{
	/*
	 * argv[1] = memory address
	 * argv[2] = desired element width in bits
	 * argv[3] = list of data to write
	 * argv[4] = optional "phys"
	 */

	if (argc < 4 || argc > 5) {
		Jim_WrongNumArgs(interp, 1, argv, "address width data ['phys']");
		return JIM_ERR;
	}

	/* Arg 1: Memory address. */
	int e;
	jim_wide wide_addr;
	e = Jim_GetWide(interp, argv[1], &wide_addr);

	if (e != JIM_OK)
		return e;

	target_addr_t addr = (target_addr_t)wide_addr;

	/* Arg 2: Bit width of one element. */
	long l;
	e = Jim_GetLong(interp, argv[2], &l);

	if (e != JIM_OK)
		return e;

	const unsigned int width_bits = l;
	size_t count = Jim_ListLength(interp, argv[3]);

	/* Arg 4: Optional 'phys'. */
	bool is_phys = false;

	if (argc > 4) {
		const char *phys = Jim_GetString(argv[4], NULL);

		if (strcmp(phys, "phys")) {
			Jim_SetResultFormatted(interp, "invalid argument '%s', must be 'phys'", phys);
			return JIM_ERR;
		}

		is_phys = true;
	}

	switch (width_bits) {
	case 8:
	case 16:
	case 32:
	case 64:
		break;
	default:
		Jim_SetResultString(interp, "invalid width, must be 8, 16, 32 or 64", -1);
		return JIM_ERR;
	}

	const unsigned int width = width_bits / 8;

	if ((addr + (count * width)) < addr) {
		Jim_SetResultString(interp, "write_memory: addr + len wraps to zero", -1);
		return JIM_ERR;
	}

	if (count > 65536) {
		Jim_SetResultString(interp, "write_memory: too large memory write request, exceeds 64K elements", -1);
		return JIM_ERR;
	}

	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx != NULL);
	struct target *target = get_current_target(cmd_ctx);

	const size_t buffersize = 4096;
	uint8_t *buffer = malloc(buffersize);

	if (!buffer) {
		LOG_ERROR("Failed to allocate memory");
		return JIM_ERR;
	}

	size_t j = 0;

	while (count > 0) {
		const unsigned int max_chunk_len = buffersize / width;
		const size_t chunk_len = MIN(count, max_chunk_len);

		for (size_t i = 0; i < chunk_len; i++, j++) {
			Jim_Obj *tmp = Jim_ListGetIndex(interp, argv[3], j);
			jim_wide element_wide;
			Jim_GetWide(interp, tmp, &element_wide);

			const uint64_t v = element_wide;

			switch (width) {
			case 8:
				target_buffer_set_u64(target, &buffer[i * width], v);
				break;
			case 4:
				target_buffer_set_u32(target, &buffer[i * width], v);
				break;
			case 2:
				target_buffer_set_u16(target, &buffer[i * width], v);
				break;
			case 1:
				buffer[i] = v & 0x0ff;
				break;
			}
		}

		count -= chunk_len;

		int retval;

		if (is_phys)
			retval = target_write_phys_memory(target, addr, width, chunk_len, buffer);
		else
			retval = target_write_memory(target, addr, width, chunk_len, buffer);

		if (retval != ERROR_OK) {
			LOG_ERROR("write_memory: write at " TARGET_ADDR_FMT " with width=%u and count=%zu failed",
				addr,  width_bits, chunk_len);
			Jim_SetResultString(interp, "write_memory: failed to write memory", -1);
			e = JIM_ERR;
			break;
		}

		addr += chunk_len * width;
	}

	free(buffer);

	return e;
}

/* FIX? should we propagate errors here rather than printing them
 * and continuing?
 */
void target_handle_event(struct target *target, enum target_event e)
{
	struct target_event_action *teap;
	int retval;

	for (teap = target->event_action; teap; teap = teap->next) {
		if (teap->event == e) {
			LOG_DEBUG("target(%d): %s (%s) event: %d (%s) action: %s",
					   target->target_number,
					   target_name(target),
					   target_type_name(target),
					   e,
					   target_event_name(e),
					   Jim_GetString(teap->body, NULL));

			/* Override current target by the target an event
			 * is issued from (lot of scripts need it).
			 * Return back to previous override as soon
			 * as the handler processing is done */
			struct command_context *cmd_ctx = current_command_context(teap->interp);
			struct target *saved_target_override = cmd_ctx->current_target_override;
			cmd_ctx->current_target_override = target;

			retval = Jim_EvalObj(teap->interp, teap->body);

			cmd_ctx->current_target_override = saved_target_override;

			if (retval == ERROR_COMMAND_CLOSE_CONNECTION)
				return;

			if (retval == JIM_RETURN)
				retval = teap->interp->returnCode;

			if (retval != JIM_OK) {
				Jim_MakeErrorMessage(teap->interp);
				LOG_USER("Error executing event %s on target %s:\n%s",
						  target_event_name(e),
						  target_name(target),
						  Jim_GetString(Jim_GetResult(teap->interp), NULL));
				/* clean both error code and stacktrace before return */
				Jim_Eval(teap->interp, "error \"\" \"\"");
			}
		}
	}
}

static int target_jim_get_reg(Jim_Interp *interp, int argc,
		Jim_Obj * const *argv)
{
	bool force = false;

	if (argc == 3) {
		const char *option = Jim_GetString(argv[1], NULL);

		if (!strcmp(option, "-force")) {
			argc--;
			argv++;
			force = true;
		} else {
			Jim_SetResultFormatted(interp, "invalid option '%s'", option);
			return JIM_ERR;
		}
	}

	if (argc != 2) {
		Jim_WrongNumArgs(interp, 1, argv, "[-force] list");
		return JIM_ERR;
	}

	const int length = Jim_ListLength(interp, argv[1]);

	Jim_Obj *result_dict = Jim_NewDictObj(interp, NULL, 0);

	if (!result_dict)
		return JIM_ERR;

	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx != NULL);
	const struct target *target = get_current_target(cmd_ctx);

	for (int i = 0; i < length; i++) {
		Jim_Obj *elem = Jim_ListGetIndex(interp, argv[1], i);

		if (!elem)
			return JIM_ERR;

		const char *reg_name = Jim_String(elem);

		struct reg *reg = register_get_by_name(target->reg_cache, reg_name,
			false);

		if (!reg || !reg->exist) {
			Jim_SetResultFormatted(interp, "unknown register '%s'", reg_name);
			return JIM_ERR;
		}

		if (force) {
			int retval = reg->type->get(reg);

			if (retval != ERROR_OK) {
				Jim_SetResultFormatted(interp, "failed to read register '%s'",
					reg_name);
				return JIM_ERR;
			}
		}

		char *reg_value = buf_to_hex_str(reg->value, reg->size);

		if (!reg_value) {
			LOG_ERROR("Failed to allocate memory");
			return JIM_ERR;
		}

		char *tmp = alloc_printf("0x%s", reg_value);

		free(reg_value);

		if (!tmp) {
			LOG_ERROR("Failed to allocate memory");
			return JIM_ERR;
		}

		Jim_DictAddElement(interp, result_dict, elem,
			Jim_NewStringObj(interp, tmp, -1));

		free(tmp);
	}

	Jim_SetResult(interp, result_dict);

	return JIM_OK;
}

static int target_jim_set_reg(Jim_Interp *interp, int argc,
		Jim_Obj * const *argv)
{
	if (argc != 2) {
		Jim_WrongNumArgs(interp, 1, argv, "dict");
		return JIM_ERR;
	}

	int tmp;
#if JIM_VERSION >= 80
	Jim_Obj **dict = Jim_DictPairs(interp, argv[1], &tmp);

	if (!dict)
		return JIM_ERR;
#else
	Jim_Obj **dict;
	int ret = Jim_DictPairs(interp, argv[1], &dict, &tmp);

	if (ret != JIM_OK)
		return ret;
#endif

	const unsigned int length = tmp;
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	const struct target *target = get_current_target(cmd_ctx);

	for (unsigned int i = 0; i < length; i += 2) {
		const char *reg_name = Jim_String(dict[i]);
		const char *reg_value = Jim_String(dict[i + 1]);
		struct reg *reg = register_get_by_name(target->reg_cache, reg_name,
			false);

		if (!reg || !reg->exist) {
			Jim_SetResultFormatted(interp, "unknown register '%s'", reg_name);
			return JIM_ERR;
		}

		uint8_t *buf = malloc(DIV_ROUND_UP(reg->size, 8));

		if (!buf) {
			LOG_ERROR("Failed to allocate memory");
			return JIM_ERR;
		}

		str_to_buf(reg_value, strlen(reg_value), buf, reg->size, 0);
		int retval = reg->type->set(reg, buf);
		free(buf);

		if (retval != ERROR_OK) {
			Jim_SetResultFormatted(interp, "failed to set '%s' to register '%s'",
				reg_value, reg_name);
			return JIM_ERR;
		}
	}

	return JIM_OK;
}

/**
 * Returns true only if the target has a handler for the specified event.
 */
bool target_has_event_action(struct target *target, enum target_event event)
{
	struct target_event_action *teap;

	for (teap = target->event_action; teap; teap = teap->next) {
		if (teap->event == event)
			return true;
	}
	return false;
}

enum target_cfg_param {
	TCFG_TYPE,
	TCFG_EVENT,
	TCFG_WORK_AREA_VIRT,
	TCFG_WORK_AREA_PHYS,
	TCFG_WORK_AREA_SIZE,
	TCFG_WORK_AREA_BACKUP,
	TCFG_ENDIAN,
	TCFG_COREID,
	TCFG_CHAIN_POSITION,
	TCFG_DBGBASE,
	TCFG_RTOS,
	TCFG_DEFER_EXAMINE,
	TCFG_GDB_PORT,
	TCFG_GDB_MAX_CONNECTIONS,
};

static struct jim_nvp nvp_config_opts[] = {
	{ .name = "-type",             .value = TCFG_TYPE },
	{ .name = "-event",            .value = TCFG_EVENT },
	{ .name = "-work-area-virt",   .value = TCFG_WORK_AREA_VIRT },
	{ .name = "-work-area-phys",   .value = TCFG_WORK_AREA_PHYS },
	{ .name = "-work-area-size",   .value = TCFG_WORK_AREA_SIZE },
	{ .name = "-work-area-backup", .value = TCFG_WORK_AREA_BACKUP },
	{ .name = "-endian",           .value = TCFG_ENDIAN },
	{ .name = "-coreid",           .value = TCFG_COREID },
	{ .name = "-chain-position",   .value = TCFG_CHAIN_POSITION },
	{ .name = "-dbgbase",          .value = TCFG_DBGBASE },
	{ .name = "-rtos",             .value = TCFG_RTOS },
	{ .name = "-defer-examine",    .value = TCFG_DEFER_EXAMINE },
	{ .name = "-gdb-port",         .value = TCFG_GDB_PORT },
	{ .name = "-gdb-max-connections",   .value = TCFG_GDB_MAX_CONNECTIONS },
	{ .name = NULL, .value = -1 }
};

static int target_configure(struct jim_getopt_info *goi, struct target *target)
{
	struct jim_nvp *n;
	Jim_Obj *o;
	jim_wide w;
	int e;

	/* parse config or cget options ... */
	while (goi->argc > 0) {
		Jim_SetEmptyResult(goi->interp);
		/* jim_getopt_debug(goi); */

		if (target->type->target_jim_configure) {
			/* target defines a configure function */
			/* target gets first dibs on parameters */
			e = (*(target->type->target_jim_configure))(target, goi);
			if (e == JIM_OK) {
				/* more? */
				continue;
			}
			if (e == JIM_ERR) {
				/* An error */
				return e;
			}
			/* otherwise we 'continue' below */
		}
		e = jim_getopt_nvp(goi, nvp_config_opts, &n);
		if (e != JIM_OK) {
			jim_getopt_nvp_unknown(goi, nvp_config_opts, 0);
			return e;
		}
		switch (n->value) {
		case TCFG_TYPE:
			/* not settable */
			if (goi->isconfigure) {
				Jim_SetResultFormatted(goi->interp,
						"not settable: %s", n->name);
				return JIM_ERR;
			} else {
no_params:
				if (goi->argc != 0) {
					Jim_WrongNumArgs(goi->interp,
							goi->argc, goi->argv,
							"NO PARAMS");
					return JIM_ERR;
				}
			}
			Jim_SetResultString(goi->interp,
					target_type_name(target), -1);
			/* loop for more */
			break;
		case TCFG_EVENT:
			if (goi->argc == 0) {
				Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ...");
				return JIM_ERR;
			}

			e = jim_getopt_nvp(goi, nvp_target_event, &n);
			if (e != JIM_OK) {
				jim_getopt_nvp_unknown(goi, nvp_target_event, 1);
				return e;
			}

			if (goi->isconfigure) {
				if (goi->argc != 1) {
					Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name? ?EVENT-BODY?");
					return JIM_ERR;
				}
			} else {
				if (goi->argc != 0) {
					Jim_WrongNumArgs(goi->interp, goi->argc, goi->argv, "-event ?event-name?");
					return JIM_ERR;
				}
			}

			{
				struct target_event_action *teap;

				teap = target->event_action;
				/* replace existing? */
				while (teap) {
					if (teap->event == (enum target_event)n->value)
						break;
					teap = teap->next;
				}

				if (goi->isconfigure) {
					/* START_DEPRECATED_TPIU */
					if (n->value == TARGET_EVENT_TRACE_CONFIG)
						LOG_INFO("DEPRECATED target event %s; use TPIU events {pre,post}-{enable,disable}", n->name);
					/* END_DEPRECATED_TPIU */

					bool replace = true;
					if (!teap) {
						/* create new */
						teap = calloc(1, sizeof(*teap));
						replace = false;
					}
					teap->event = n->value;
					teap->interp = goi->interp;
					jim_getopt_obj(goi, &o);
					if (teap->body)
						Jim_DecrRefCount(teap->interp, teap->body);
					teap->body  = Jim_DuplicateObj(goi->interp, o);
					/*
					 * FIXME:
					 *     Tcl/TK - "tk events" have a nice feature.
					 *     See the "BIND" command.
					 *    We should support that here.
					 *     You can specify %X and %Y in the event code.
					 *     The idea is: %T - target name.
					 *     The idea is: %N - target number
					 *     The idea is: %E - event name.
					 */
					Jim_IncrRefCount(teap->body);

					if (!replace) {
						/* add to head of event list */
						teap->next = target->event_action;
						target->event_action = teap;
					}
					Jim_SetEmptyResult(goi->interp);
				} else {
					/* get */
					if (!teap)
						Jim_SetEmptyResult(goi->interp);
					else
						Jim_SetResult(goi->interp, Jim_DuplicateObj(goi->interp, teap->body));
				}
			}
			/* loop for more */
			break;

		case TCFG_WORK_AREA_VIRT:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = jim_getopt_wide(goi, &w);
				if (e != JIM_OK)
					return e;
				target->working_area_virt = w;
				target->working_area_virt_spec = true;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_virt));
			/* loop for more */
			break;

		case TCFG_WORK_AREA_PHYS:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = jim_getopt_wide(goi, &w);
				if (e != JIM_OK)
					return e;
				target->working_area_phys = w;
				target->working_area_phys_spec = true;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_phys));
			/* loop for more */
			break;

		case TCFG_WORK_AREA_SIZE:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = jim_getopt_wide(goi, &w);
				if (e != JIM_OK)
					return e;
				target->working_area_size = w;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->working_area_size));
			/* loop for more */
			break;

		case TCFG_WORK_AREA_BACKUP:
			if (goi->isconfigure) {
				target_free_all_working_areas(target);
				e = jim_getopt_wide(goi, &w);
				if (e != JIM_OK)
					return e;
				/* make this exactly 1 or 0 */
				target->backup_working_area = (!!w);
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->backup_working_area));
			/* loop for more e*/
			break;


		case TCFG_ENDIAN:
			if (goi->isconfigure) {
				e = jim_getopt_nvp(goi, nvp_target_endian, &n);
				if (e != JIM_OK) {
					jim_getopt_nvp_unknown(goi, nvp_target_endian, 1);
					return e;
				}
				target->endianness = n->value;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			n = jim_nvp_value2name_simple(nvp_target_endian, target->endianness);
			if (!n->name) {
				target->endianness = TARGET_LITTLE_ENDIAN;
				n = jim_nvp_value2name_simple(nvp_target_endian, target->endianness);
			}
			Jim_SetResultString(goi->interp, n->name, -1);
			/* loop for more */
			break;

		case TCFG_COREID:
			if (goi->isconfigure) {
				e = jim_getopt_wide(goi, &w);
				if (e != JIM_OK)
					return e;
				target->coreid = (int32_t)w;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->coreid));
			/* loop for more */
			break;

		case TCFG_CHAIN_POSITION:
			if (goi->isconfigure) {
				Jim_Obj *o_t;
				struct jtag_tap *tap;

				if (target->has_dap) {
					Jim_SetResultString(goi->interp,
						"target requires -dap parameter instead of -chain-position!", -1);
					return JIM_ERR;
				}

				target_free_all_working_areas(target);
				e = jim_getopt_obj(goi, &o_t);
				if (e != JIM_OK)
					return e;
				tap = jtag_tap_by_jim_obj(goi->interp, o_t);
				if (!tap)
					return JIM_ERR;
				target->tap = tap;
				target->tap_configured = true;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResultString(goi->interp, target->tap->dotted_name, -1);
			/* loop for more e*/
			break;
		case TCFG_DBGBASE:
			if (goi->isconfigure) {
				e = jim_getopt_wide(goi, &w);
				if (e != JIM_OK)
					return e;
				target->dbgbase = (uint32_t)w;
				target->dbgbase_set = true;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->dbgbase));
			/* loop for more */
			break;
		case TCFG_RTOS:
			/* RTOS */
			{
				int result = rtos_create(goi, target);
				if (result != JIM_OK)
					return result;
			}
			/* loop for more */
			break;

		case TCFG_DEFER_EXAMINE:
			/* DEFER_EXAMINE */
			target->defer_examine = true;
			/* loop for more */
			break;

		case TCFG_GDB_PORT:
			if (goi->isconfigure) {
				struct command_context *cmd_ctx = current_command_context(goi->interp);
				if (cmd_ctx->mode != COMMAND_CONFIG) {
					Jim_SetResultString(goi->interp, "-gdb-port must be configured before 'init'", -1);
					return JIM_ERR;
				}

				const char *s;
				e = jim_getopt_string(goi, &s, NULL);
				if (e != JIM_OK)
					return e;
				free(target->gdb_port_override);
				target->gdb_port_override = strdup(s);
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResultString(goi->interp, target->gdb_port_override ? target->gdb_port_override : "undefined", -1);
			/* loop for more */
			break;

		case TCFG_GDB_MAX_CONNECTIONS:
			if (goi->isconfigure) {
				struct command_context *cmd_ctx = current_command_context(goi->interp);
				if (cmd_ctx->mode != COMMAND_CONFIG) {
					Jim_SetResultString(goi->interp, "-gdb-max-connections must be configured before 'init'", -1);
					return JIM_ERR;
				}

				e = jim_getopt_wide(goi, &w);
				if (e != JIM_OK)
					return e;
				target->gdb_max_connections = (w < 0) ? CONNECTION_LIMIT_UNLIMITED : (int)w;
			} else {
				if (goi->argc != 0)
					goto no_params;
			}
			Jim_SetResult(goi->interp, Jim_NewIntObj(goi->interp, target->gdb_max_connections));
			break;
		}
	} /* while (goi->argc) */


		/* done - we return */
	return JIM_OK;
}

static int jim_target_configure(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
	struct command *c = jim_to_command(interp);
	struct jim_getopt_info goi;

	jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
	goi.isconfigure = !strcmp(c->name, "configure");
	if (goi.argc < 1) {
		Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
				 "missing: -option ...");
		return JIM_ERR;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	return target_configure(&goi, target);
}

static int jim_target_mem2array(Jim_Interp *interp,
		int argc, Jim_Obj *const *argv)
{
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	return target_mem2array(interp, target, argc - 1, argv + 1);
}

static int jim_target_array2mem(Jim_Interp *interp,
		int argc, Jim_Obj *const *argv)
{
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	return target_array2mem(interp, target, argc - 1, argv + 1);
}

static int jim_target_tap_disabled(Jim_Interp *interp)
{
	Jim_SetResultFormatted(interp, "[TAP is disabled]");
	return JIM_ERR;
}

static int jim_target_examine(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	bool allow_defer = false;

	struct jim_getopt_info goi;
	jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
	if (goi.argc > 1) {
		const char *cmd_name = Jim_GetString(argv[0], NULL);
		Jim_SetResultFormatted(goi.interp,
				"usage: %s ['allow-defer']", cmd_name);
		return JIM_ERR;
	}
	if (goi.argc > 0 &&
	    strcmp(Jim_GetString(argv[1], NULL), "allow-defer") == 0) {
		/* consume it */
		Jim_Obj *obj;
		int e = jim_getopt_obj(&goi, &obj);
		if (e != JIM_OK)
			return e;
		allow_defer = true;
	}

	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);

	if (allow_defer && target->defer_examine) {
		LOG_INFO("Deferring arp_examine of %s", target_name(target));
		LOG_INFO("Use arp_examine command to examine it manually!");
		return JIM_OK;
	}

	int e = target->type->examine(target);
	if (e != ERROR_OK) {
		target_reset_examined(target);
		return JIM_ERR;
	}

	target_set_examined(target);

	return JIM_OK;
}

static int jim_target_was_examined(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);

	Jim_SetResultBool(interp, target_was_examined(target));
	return JIM_OK;
}

static int jim_target_examine_deferred(Jim_Interp *interp, int argc, Jim_Obj * const *argv)
{
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);

	Jim_SetResultBool(interp, target->defer_examine);
	return JIM_OK;
}

static int jim_target_halt_gdb(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);

	if (target_call_event_callbacks(target, TARGET_EVENT_GDB_HALT) != ERROR_OK)
		return JIM_ERR;

	return JIM_OK;
}

static int jim_target_poll(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);

	int e;
	if (!(target_was_examined(target)))
		e = ERROR_TARGET_NOT_EXAMINED;
	else
		e = target->type->poll(target);
	if (e != ERROR_OK)
		return JIM_ERR;
	return JIM_OK;
}

static int jim_target_reset(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	struct jim_getopt_info goi;
	jim_getopt_setup(&goi, interp, argc - 1, argv + 1);

	if (goi.argc != 2) {
		Jim_WrongNumArgs(interp, 0, argv,
				"([tT]|[fF]|assert|deassert) BOOL");
		return JIM_ERR;
	}

	struct jim_nvp *n;
	int e = jim_getopt_nvp(&goi, nvp_assert, &n);
	if (e != JIM_OK) {
		jim_getopt_nvp_unknown(&goi, nvp_assert, 1);
		return e;
	}
	/* the halt or not param */
	jim_wide a;
	e = jim_getopt_wide(&goi, &a);
	if (e != JIM_OK)
		return e;

	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);

	if (!target->type->assert_reset || !target->type->deassert_reset) {
		Jim_SetResultFormatted(interp,
				"No target-specific reset for %s",
				target_name(target));
		return JIM_ERR;
	}

	if (target->defer_examine)
		target_reset_examined(target);

	/* determine if we should halt or not. */
	target->reset_halt = (a != 0);
	/* When this happens - all workareas are invalid. */
	target_free_all_working_areas_restore(target, 0);

	/* do the assert */
	if (n->value == NVP_ASSERT)
		e = target->type->assert_reset(target);
	else
		e = target->type->deassert_reset(target);
	return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
}

static int jim_target_halt(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);
	int e = target->type->halt(target);
	return (e == ERROR_OK) ? JIM_OK : JIM_ERR;
}

static int jim_target_wait_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	struct jim_getopt_info goi;
	jim_getopt_setup(&goi, interp, argc - 1, argv + 1);

	/* params:  <name>  statename timeoutmsecs */
	if (goi.argc != 2) {
		const char *cmd_name = Jim_GetString(argv[0], NULL);
		Jim_SetResultFormatted(goi.interp,
				"%s <state_name> <timeout_in_msec>", cmd_name);
		return JIM_ERR;
	}

	struct jim_nvp *n;
	int e = jim_getopt_nvp(&goi, nvp_target_state, &n);
	if (e != JIM_OK) {
		jim_getopt_nvp_unknown(&goi, nvp_target_state, 1);
		return e;
	}
	jim_wide a;
	e = jim_getopt_wide(&goi, &a);
	if (e != JIM_OK)
		return e;
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	if (!target->tap->enabled)
		return jim_target_tap_disabled(interp);

	e = target_wait_state(target, n->value, a);
	if (e != ERROR_OK) {
		Jim_Obj *obj = Jim_NewIntObj(interp, e);
		Jim_SetResultFormatted(goi.interp,
				"target: %s wait %s fails (%#s) %s",
				target_name(target), n->name,
				obj, target_strerror_safe(e));
		return JIM_ERR;
	}
	return JIM_OK;
}
/* List for human, Events defined for this target.
 * scripts/programs should use 'name cget -event NAME'
 */
COMMAND_HANDLER(handle_target_event_list)
{
	struct target *target = get_current_target(CMD_CTX);
	struct target_event_action *teap = target->event_action;

	command_print(CMD, "Event actions for target (%d) %s\n",
				   target->target_number,
				   target_name(target));
	command_print(CMD, "%-25s | Body", "Event");
	command_print(CMD, "------------------------- | "
			"----------------------------------------");
	while (teap) {
		command_print(CMD, "%-25s | %s",
				target_event_name(teap->event),
				Jim_GetString(teap->body, NULL));
		teap = teap->next;
	}
	command_print(CMD, "***END***");
	return ERROR_OK;
}
static int jim_target_current_state(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "[no parameters]");
		return JIM_ERR;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	Jim_SetResultString(interp, target_state_name(target), -1);
	return JIM_OK;
}
static int jim_target_invoke_event(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	struct jim_getopt_info goi;
	jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
	if (goi.argc != 1) {
		const char *cmd_name = Jim_GetString(argv[0], NULL);
		Jim_SetResultFormatted(goi.interp, "%s <eventname>", cmd_name);
		return JIM_ERR;
	}
	struct jim_nvp *n;
	int e = jim_getopt_nvp(&goi, nvp_target_event, &n);
	if (e != JIM_OK) {
		jim_getopt_nvp_unknown(&goi, nvp_target_event, 1);
		return e;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);
	struct target *target = get_current_target(cmd_ctx);
	target_handle_event(target, n->value);
	return JIM_OK;
}

static const struct command_registration target_instance_command_handlers[] = {
	{
		.name = "configure",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_configure,
		.help  = "configure a new target for use",
		.usage = "[target_attribute ...]",
	},
	{
		.name = "cget",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_configure,
		.help  = "returns the specified target attribute",
		.usage = "target_attribute",
	},
	{
		.name = "mwd",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "Write 64-bit word(s) to target memory",
		.usage = "address data [count]",
	},
	{
		.name = "mww",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "Write 32-bit word(s) to target memory",
		.usage = "address data [count]",
	},
	{
		.name = "mwh",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "Write 16-bit half-word(s) to target memory",
		.usage = "address data [count]",
	},
	{
		.name = "mwb",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "Write byte(s) to target memory",
		.usage = "address data [count]",
	},
	{
		.name = "mdd",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "Display target memory as 64-bit words",
		.usage = "address [count]",
	},
	{
		.name = "mdw",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "Display target memory as 32-bit words",
		.usage = "address [count]",
	},
	{
		.name = "mdh",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "Display target memory as 16-bit half-words",
		.usage = "address [count]",
	},
	{
		.name = "mdb",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "Display target memory as 8-bit bytes",
		.usage = "address [count]",
	},
	{
		.name = "array2mem",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_array2mem,
		.help = "Writes Tcl array of 8/16/32 bit numbers "
			"to target memory",
		.usage = "arrayname bitwidth address count",
	},
	{
		.name = "mem2array",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_mem2array,
		.help = "Loads Tcl array of 8/16/32 bit numbers "
			"from target memory",
		.usage = "arrayname bitwidth address count",
	},
	{
		.name = "get_reg",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_get_reg,
		.help = "Get register values from the target",
		.usage = "list",
	},
	{
		.name = "set_reg",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_set_reg,
		.help = "Set target register values",
		.usage = "dict",
	},
	{
		.name = "read_memory",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_read_memory,
		.help = "Read Tcl list of 8/16/32/64 bit numbers from target memory",
		.usage = "address width count ['phys']",
	},
	{
		.name = "write_memory",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_write_memory,
		.help = "Write Tcl list of 8/16/32/64 bit numbers to target memory",
		.usage = "address width data ['phys']",
	},
	{
		.name = "eventlist",
		.handler = handle_target_event_list,
		.mode = COMMAND_EXEC,
		.help = "displays a table of events defined for this target",
		.usage = "",
	},
	{
		.name = "curstate",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_current_state,
		.help = "displays the current state of this target",
	},
	{
		.name = "arp_examine",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_examine,
		.help = "used internally for reset processing",
		.usage = "['allow-defer']",
	},
	{
		.name = "was_examined",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_was_examined,
		.help = "used internally for reset processing",
	},
	{
		.name = "examine_deferred",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_examine_deferred,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_halt_gdb",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_halt_gdb,
		.help = "used internally for reset processing to halt GDB",
	},
	{
		.name = "arp_poll",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_poll,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_reset",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_reset,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_halt",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_halt,
		.help = "used internally for reset processing",
	},
	{
		.name = "arp_waitstate",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_wait_state,
		.help = "used internally for reset processing",
	},
	{
		.name = "invoke-event",
		.mode = COMMAND_EXEC,
		.jim_handler = jim_target_invoke_event,
		.help = "invoke handler for specified event",
		.usage = "event_name",
	},
	COMMAND_REGISTRATION_DONE
};

static int target_create(struct jim_getopt_info *goi)
{
	Jim_Obj *new_cmd;
	Jim_Cmd *cmd;
	const char *cp;
	int e;
	int x;
	struct target *target;
	struct command_context *cmd_ctx;

	cmd_ctx = current_command_context(goi->interp);
	assert(cmd_ctx);

	if (goi->argc < 3) {
		Jim_WrongNumArgs(goi->interp, 1, goi->argv, "?name? ?type? ..options...");
		return JIM_ERR;
	}

	/* COMMAND */
	jim_getopt_obj(goi, &new_cmd);
	/* does this command exist? */
	cmd = Jim_GetCommand(goi->interp, new_cmd, JIM_NONE);
	if (cmd) {
		cp = Jim_GetString(new_cmd, NULL);
		Jim_SetResultFormatted(goi->interp, "Command/target: %s Exists", cp);
		return JIM_ERR;
	}

	/* TYPE */
	e = jim_getopt_string(goi, &cp, NULL);
	if (e != JIM_OK)
		return e;
	struct transport *tr = get_current_transport();
	if (tr->override_target) {
		e = tr->override_target(&cp);
		if (e != ERROR_OK) {
			LOG_ERROR("The selected transport doesn't support this target");
			return JIM_ERR;
		}
		LOG_INFO("The selected transport took over low-level target control. The results might differ compared to plain JTAG/SWD");
	}
	/* now does target type exist */
	for (x = 0 ; target_types[x] ; x++) {
		if (strcmp(cp, target_types[x]->name) == 0) {
			/* found */
			break;
		}
	}
	if (!target_types[x]) {
		Jim_SetResultFormatted(goi->interp, "Unknown target type %s, try one of ", cp);
		for (x = 0 ; target_types[x] ; x++) {
			if (target_types[x + 1]) {
				Jim_AppendStrings(goi->interp,
								   Jim_GetResult(goi->interp),
								   target_types[x]->name,
								   ", ", NULL);
			} else {
				Jim_AppendStrings(goi->interp,
								   Jim_GetResult(goi->interp),
								   " or ",
								   target_types[x]->name, NULL);
			}
		}
		return JIM_ERR;
	}

	/* Create it */
	target = calloc(1, sizeof(struct target));
	if (!target) {
		LOG_ERROR("Out of memory");
		return JIM_ERR;
	}

	/* set empty smp cluster */
	target->smp_targets = &empty_smp_targets;

	/* set target number */
	target->target_number = new_target_number();

	/* allocate memory for each unique target type */
	target->type = malloc(sizeof(struct target_type));
	if (!target->type) {
		LOG_ERROR("Out of memory");
		free(target);
		return JIM_ERR;
	}

	memcpy(target->type, target_types[x], sizeof(struct target_type));

	/* default to first core, override with -coreid */
	target->coreid = 0;

	target->working_area        = 0x0;
	target->working_area_size   = 0x0;
	target->working_areas       = NULL;
	target->backup_working_area = 0;

	target->state               = TARGET_UNKNOWN;
	target->debug_reason        = DBG_REASON_UNDEFINED;
	target->reg_cache           = NULL;
	target->breakpoints         = NULL;
	target->watchpoints         = NULL;
	target->next                = NULL;
	target->arch_info           = NULL;

	target->verbose_halt_msg	= true;

	target->halt_issued			= false;

	/* initialize trace information */
	target->trace_info = calloc(1, sizeof(struct trace));
	if (!target->trace_info) {
		LOG_ERROR("Out of memory");
		free(target->type);
		free(target);
		return JIM_ERR;
	}

	target->dbgmsg          = NULL;
	target->dbg_msg_enabled = 0;

	target->endianness = TARGET_ENDIAN_UNKNOWN;

	target->rtos = NULL;
	target->rtos_auto_detect = false;

	target->gdb_port_override = NULL;
	target->gdb_max_connections = 1;

	/* Do the rest as "configure" options */
	goi->isconfigure = 1;
	e = target_configure(goi, target);

	if (e == JIM_OK) {
		if (target->has_dap) {
			if (!target->dap_configured) {
				Jim_SetResultString(goi->interp, "-dap ?name? required when creating target", -1);
				e = JIM_ERR;
			}
		} else {
			if (!target->tap_configured) {
				Jim_SetResultString(goi->interp, "-chain-position ?name? required when creating target", -1);
				e = JIM_ERR;
			}
		}
		/* tap must be set after target was configured */
		if (!target->tap)
			e = JIM_ERR;
	}

	if (e != JIM_OK) {
		rtos_destroy(target);
		free(target->gdb_port_override);
		free(target->trace_info);
		free(target->type);
		free(target);
		return e;
	}

	if (target->endianness == TARGET_ENDIAN_UNKNOWN) {
		/* default endian to little if not specified */
		target->endianness = TARGET_LITTLE_ENDIAN;
	}

	cp = Jim_GetString(new_cmd, NULL);
	target->cmd_name = strdup(cp);
	if (!target->cmd_name) {
		LOG_ERROR("Out of memory");
		rtos_destroy(target);
		free(target->gdb_port_override);
		free(target->trace_info);
		free(target->type);
		free(target);
		return JIM_ERR;
	}

	if (target->type->target_create) {
		e = (*(target->type->target_create))(target, goi->interp);
		if (e != ERROR_OK) {
			LOG_DEBUG("target_create failed");
			free(target->cmd_name);
			rtos_destroy(target);
			free(target->gdb_port_override);
			free(target->trace_info);
			free(target->type);
			free(target);
			return JIM_ERR;
		}
	}

	/* create the target specific commands */
	if (target->type->commands) {
		e = register_commands(cmd_ctx, NULL, target->type->commands);
		if (e != ERROR_OK)
			LOG_ERROR("unable to register '%s' commands", cp);
	}

	/* now - create the new target name command */
	const struct command_registration target_subcommands[] = {
		{
			.chain = target_instance_command_handlers,
		},
		{
			.chain = target->type->commands,
		},
		COMMAND_REGISTRATION_DONE
	};
	const struct command_registration target_commands[] = {
		{
			.name = cp,
			.mode = COMMAND_ANY,
			.help = "target command group",
			.usage = "",
			.chain = target_subcommands,
		},
		COMMAND_REGISTRATION_DONE
	};
	e = register_commands_override_target(cmd_ctx, NULL, target_commands, target);
	if (e != ERROR_OK) {
		if (target->type->deinit_target)
			target->type->deinit_target(target);
		free(target->cmd_name);
		rtos_destroy(target);
		free(target->gdb_port_override);
		free(target->trace_info);
		free(target->type);
		free(target);
		return JIM_ERR;
	}

	/* append to end of list */
	append_to_list_all_targets(target);

	cmd_ctx->current_target = target;
	return JIM_OK;
}

static int jim_target_current(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
		return JIM_ERR;
	}
	struct command_context *cmd_ctx = current_command_context(interp);
	assert(cmd_ctx);

	struct target *target = get_current_target_or_null(cmd_ctx);
	if (target)
		Jim_SetResultString(interp, target_name(target), -1);
	return JIM_OK;
}

static int jim_target_types(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
		return JIM_ERR;
	}
	Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
	for (unsigned x = 0; target_types[x]; x++) {
		Jim_ListAppendElement(interp, Jim_GetResult(interp),
			Jim_NewStringObj(interp, target_types[x]->name, -1));
	}
	return JIM_OK;
}

static int jim_target_names(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	if (argc != 1) {
		Jim_WrongNumArgs(interp, 1, argv, "Too many parameters");
		return JIM_ERR;
	}
	Jim_SetResult(interp, Jim_NewListObj(interp, NULL, 0));
	struct target *target = all_targets;
	while (target) {
		Jim_ListAppendElement(interp, Jim_GetResult(interp),
			Jim_NewStringObj(interp, target_name(target), -1));
		target = target->next;
	}
	return JIM_OK;
}

static int jim_target_smp(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	int i;
	const char *targetname;
	int retval, len;
	static int smp_group = 1;
	struct target *target = NULL;
	struct target_list *head, *new;

	retval = 0;
	LOG_DEBUG("%d", argc);
	/* argv[1] = target to associate in smp
	 * argv[2] = target to associate in smp
	 * argv[3] ...
	 */

	struct list_head *lh = malloc(sizeof(*lh));
	if (!lh) {
		LOG_ERROR("Out of memory");
		return JIM_ERR;
	}
	INIT_LIST_HEAD(lh);

	for (i = 1; i < argc; i++) {

		targetname = Jim_GetString(argv[i], &len);
		target = get_target(targetname);
		LOG_DEBUG("%s ", targetname);
		if (target) {
			new = malloc(sizeof(struct target_list));
			new->target = target;
			list_add_tail(&new->lh, lh);
		}
	}
	/*  now parse the list of cpu and put the target in smp mode*/
	foreach_smp_target(head, lh) {
		target = head->target;
		target->smp = smp_group;
		target->smp_targets = lh;
	}
	smp_group++;

	if (target && target->rtos)
		retval = rtos_smp_init(target);

	return retval;
}


static int jim_target_create(Jim_Interp *interp, int argc, Jim_Obj *const *argv)
{
	struct jim_getopt_info goi;
	jim_getopt_setup(&goi, interp, argc - 1, argv + 1);
	if (goi.argc < 3) {
		Jim_WrongNumArgs(goi.interp, goi.argc, goi.argv,
			"<name> <target_type> [<target_options> ...]");
		return JIM_ERR;
	}
	return target_create(&goi);
}

static const struct command_registration target_subcommand_handlers[] = {
	{
		.name = "init",
		.mode = COMMAND_CONFIG,
		.handler = handle_target_init_command,
		.help = "initialize targets",
		.usage = "",
	},
	{
		.name = "create",
		.mode = COMMAND_CONFIG,
		.jim_handler = jim_target_create,
		.usage = "name type '-chain-position' name [options ...]",
		.help = "Creates and selects a new target",
	},
	{
		.name = "current",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_current,
		.help = "Returns the currently selected target",
	},
	{
		.name = "types",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_types,
		.help = "Returns the available target types as "
				"a list of strings",
	},
	{
		.name = "names",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_names,
		.help = "Returns the names of all targets as a list of strings",
	},
	{
		.name = "smp",
		.mode = COMMAND_ANY,
		.jim_handler = jim_target_smp,
		.usage = "targetname1 targetname2 ...",
		.help = "gather several target in a smp list"
	},

	COMMAND_REGISTRATION_DONE
};

struct fast_load {
	target_addr_t address;
	uint8_t *data;
	int length;

};

static int fastload_num;
static struct fast_load *fastload;

static void free_fastload(void)
{
	if (fastload) {
		for (int i = 0; i < fastload_num; i++)
			free(fastload[i].data);
		free(fastload);
		fastload = NULL;
	}
}

COMMAND_HANDLER(handle_fast_load_image_command)
{
	uint8_t *buffer;
	size_t buf_cnt;
	uint32_t image_size;
	target_addr_t min_address = 0;
	target_addr_t max_address = -1;

	struct image image;

	int retval = CALL_COMMAND_HANDLER(parse_load_image_command,
			&image, &min_address, &max_address);
	if (retval != ERROR_OK)
		return retval;

	struct duration bench;
	duration_start(&bench);

	retval = image_open(&image, CMD_ARGV[0], (CMD_ARGC >= 3) ? CMD_ARGV[2] : NULL);
	if (retval != ERROR_OK)
		return retval;

	image_size = 0x0;
	retval = ERROR_OK;
	fastload_num = image.num_sections;
	fastload = malloc(sizeof(struct fast_load)*image.num_sections);
	if (!fastload) {
		command_print(CMD, "out of memory");
		image_close(&image);
		return ERROR_FAIL;
	}
	memset(fastload, 0, sizeof(struct fast_load)*image.num_sections);
	for (unsigned int i = 0; i < image.num_sections; i++) {
		buffer = malloc(image.sections[i].size);
		if (!buffer) {
			command_print(CMD, "error allocating buffer for section (%d bytes)",
						  (int)(image.sections[i].size));
			retval = ERROR_FAIL;
			break;
		}

		retval = image_read_section(&image, i, 0x0, image.sections[i].size, buffer, &buf_cnt);
		if (retval != ERROR_OK) {
			free(buffer);
			break;
		}

		uint32_t offset = 0;
		uint32_t length = buf_cnt;

		/* DANGER!!! beware of unsigned comparison here!!! */

		if ((image.sections[i].base_address + buf_cnt >= min_address) &&
				(image.sections[i].base_address < max_address)) {
			if (image.sections[i].base_address < min_address) {
				/* clip addresses below */
				offset += min_address-image.sections[i].base_address;
				length -= offset;
			}

			if (image.sections[i].base_address + buf_cnt > max_address)
				length -= (image.sections[i].base_address + buf_cnt)-max_address;

			fastload[i].address = image.sections[i].base_address + offset;
			fastload[i].data = malloc(length);
			if (!fastload[i].data) {
				free(buffer);
				command_print(CMD, "error allocating buffer for section (%" PRIu32 " bytes)",
							  length);
				retval = ERROR_FAIL;
				break;
			}
			memcpy(fastload[i].data, buffer + offset, length);
			fastload[i].length = length;

			image_size += length;
			command_print(CMD, "%u bytes written at address 0x%8.8x",
						  (unsigned int)length,
						  ((unsigned int)(image.sections[i].base_address + offset)));
		}

		free(buffer);
	}

	if ((retval == ERROR_OK) && (duration_measure(&bench) == ERROR_OK)) {
		command_print(CMD, "Loaded %" PRIu32 " bytes "
				"in %fs (%0.3f KiB/s)", image_size,
				duration_elapsed(&bench), duration_kbps(&bench, image_size));

		command_print(CMD,
				"WARNING: image has not been loaded to target!"
				"You can issue a 'fast_load' to finish loading.");
	}

	image_close(&image);

	if (retval != ERROR_OK)
		free_fastload();

	return retval;
}

COMMAND_HANDLER(handle_fast_load_command)
{
	if (CMD_ARGC > 0)
		return ERROR_COMMAND_SYNTAX_ERROR;
	if (!fastload) {
		LOG_ERROR("No image in memory");
		return ERROR_FAIL;
	}
	int i;
	int64_t ms = timeval_ms();
	int size = 0;
	int retval = ERROR_OK;
	for (i = 0; i < fastload_num; i++) {
		struct target *target = get_current_target(CMD_CTX);
		command_print(CMD, "Write to 0x%08x, length 0x%08x",
					  (unsigned int)(fastload[i].address),
					  (unsigned int)(fastload[i].length));
		retval = target_write_buffer(target, fastload[i].address, fastload[i].length, fastload[i].data);
		if (retval != ERROR_OK)
			break;
		size += fastload[i].length;
	}
	if (retval == ERROR_OK) {
		int64_t after = timeval_ms();
		command_print(CMD, "Loaded image %f kBytes/s", (float)(size/1024.0)/((float)(after-ms)/1000.0));
	}
	return retval;
}

static const struct command_registration target_command_handlers[] = {
	{
		.name = "targets",
		.handler = handle_targets_command,
		.mode = COMMAND_ANY,
		.help = "change current default target (one parameter) "
			"or prints table of all targets (no parameters)",
		.usage = "[target]",
	},
	{
		.name = "target",
		.mode = COMMAND_CONFIG,
		.help = "configure target",
		.chain = target_subcommand_handlers,
		.usage = "",
	},
	COMMAND_REGISTRATION_DONE
};

int target_register_commands(struct command_context *cmd_ctx)
{
	return register_commands(cmd_ctx, NULL, target_command_handlers);
}

static bool target_reset_nag = true;

bool get_target_reset_nag(void)
{
	return target_reset_nag;
}

COMMAND_HANDLER(handle_target_reset_nag)
{
	return CALL_COMMAND_HANDLER(handle_command_parse_bool,
			&target_reset_nag, "Nag after each reset about options to improve "
			"performance");
}

COMMAND_HANDLER(handle_ps_command)
{
	struct target *target = get_current_target(CMD_CTX);
	char *display;
	if (target->state != TARGET_HALTED) {
		LOG_INFO("target not halted !!");
		return ERROR_OK;
	}

	if ((target->rtos) && (target->rtos->type)
			&& (target->rtos->type->ps_command)) {
		display = target->rtos->type->ps_command(target);
		command_print(CMD, "%s", display);
		free(display);
		return ERROR_OK;
	} else {
		LOG_INFO("failed");
		return ERROR_TARGET_FAILURE;
	}
}

static void binprint(struct command_invocation *cmd, const char *text, const uint8_t *buf, int size)
{
	if (text)
		command_print_sameline(cmd, "%s", text);
	for (int i = 0; i < size; i++)
		command_print_sameline(cmd, " %02x", buf[i]);
	command_print(cmd, " ");
}

COMMAND_HANDLER(handle_test_mem_access_command)
{
	struct target *target = get_current_target(CMD_CTX);
	uint32_t test_size;
	int retval = ERROR_OK;

	if (target->state != TARGET_HALTED) {
		LOG_INFO("target not halted !!");
		return ERROR_FAIL;
	}

	if (CMD_ARGC != 1)
		return ERROR_COMMAND_SYNTAX_ERROR;

	COMMAND_PARSE_NUMBER(u32, CMD_ARGV[0], test_size);

	/* Test reads */
	size_t num_bytes = test_size + 4;

	struct working_area *wa = NULL;
	retval = target_alloc_working_area(target, num_bytes, &wa);
	if (retval != ERROR_OK) {
		LOG_ERROR("Not enough working area");
		return ERROR_FAIL;
	}

	uint8_t *test_pattern = malloc(num_bytes);

	for (size_t i = 0; i < num_bytes; i++)
		test_pattern[i] = rand();

	retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
	if (retval != ERROR_OK) {
		LOG_ERROR("Test pattern write failed");
		goto out;
	}

	for (int host_offset = 0; host_offset <= 1; host_offset++) {
		for (int size = 1; size <= 4; size *= 2) {
			for (int offset = 0; offset < 4; offset++) {
				uint32_t count = test_size / size;
				size_t host_bufsiz = (count + 2) * size + host_offset;
				uint8_t *read_ref = malloc(host_bufsiz);
				uint8_t *read_buf = malloc(host_bufsiz);

				for (size_t i = 0; i < host_bufsiz; i++) {
					read_ref[i] = rand();
					read_buf[i] = read_ref[i];
				}
				command_print_sameline(CMD,
						"Test read %" PRIu32 " x %d @ %d to %saligned buffer: ", count,
						size, offset, host_offset ? "un" : "");

				struct duration bench;
				duration_start(&bench);

				retval = target_read_memory(target, wa->address + offset, size, count,
						read_buf + size + host_offset);

				duration_measure(&bench);

				if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
					command_print(CMD, "Unsupported alignment");
					goto next;
				} else if (retval != ERROR_OK) {
					command_print(CMD, "Memory read failed");
					goto next;
				}

				/* replay on host */
				memcpy(read_ref + size + host_offset, test_pattern + offset, count * size);

				/* check result */
				int result = memcmp(read_ref, read_buf, host_bufsiz);
				if (result == 0) {
					command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
							duration_elapsed(&bench),
							duration_kbps(&bench, count * size));
				} else {
					command_print(CMD, "Compare failed");
					binprint(CMD, "ref:", read_ref, host_bufsiz);
					binprint(CMD, "buf:", read_buf, host_bufsiz);
				}
next:
				free(read_ref);
				free(read_buf);
			}
		}
	}

out:
	free(test_pattern);

	target_free_working_area(target, wa);

	/* Test writes */
	num_bytes = test_size + 4 + 4 + 4;

	retval = target_alloc_working_area(target, num_bytes, &wa);
	if (retval != ERROR_OK) {
		LOG_ERROR("Not enough working area");
		return ERROR_FAIL;
	}

	test_pattern = malloc(num_bytes);

	for (size_t i = 0; i < num_bytes; i++)
		test_pattern[i] = rand();

	for (int host_offset = 0; host_offset <= 1; host_offset++) {
		for (int size = 1; size <= 4; size *= 2) {
			for (int offset = 0; offset < 4; offset++) {
				uint32_t count = test_size / size;
				size_t host_bufsiz = count * size + host_offset;
				uint8_t *read_ref = malloc(num_bytes);
				uint8_t *read_buf = malloc(num_bytes);
				uint8_t *write_buf = malloc(host_bufsiz);

				for (size_t i = 0; i < host_bufsiz; i++)
					write_buf[i] = rand();
				command_print_sameline(CMD,
						"Test write %" PRIu32 " x %d @ %d from %saligned buffer: ", count,
						size, offset, host_offset ? "un" : "");

				retval = target_write_memory(target, wa->address, 1, num_bytes, test_pattern);
				if (retval != ERROR_OK) {
					command_print(CMD, "Test pattern write failed");
					goto nextw;
				}

				/* replay on host */
				memcpy(read_ref, test_pattern, num_bytes);
				memcpy(read_ref + size + offset, write_buf + host_offset, count * size);

				struct duration bench;
				duration_start(&bench);

				retval = target_write_memory(target, wa->address + size + offset, size, count,
						write_buf + host_offset);

				duration_measure(&bench);

				if (retval == ERROR_TARGET_UNALIGNED_ACCESS) {
					command_print(CMD, "Unsupported alignment");
					goto nextw;
				} else if (retval != ERROR_OK) {
					command_print(CMD, "Memory write failed");
					goto nextw;
				}

				/* read back */
				retval = target_read_memory(target, wa->address, 1, num_bytes, read_buf);
				if (retval != ERROR_OK) {
					command_print(CMD, "Test pattern write failed");
					goto nextw;
				}

				/* check result */
				int result = memcmp(read_ref, read_buf, num_bytes);
				if (result == 0) {
					command_print(CMD, "Pass in %fs (%0.3f KiB/s)",
							duration_elapsed(&bench),
							duration_kbps(&bench, count * size));
				} else {
					command_print(CMD, "Compare failed");
					binprint(CMD, "ref:", read_ref, num_bytes);
					binprint(CMD, "buf:", read_buf, num_bytes);
				}
nextw:
				free(read_ref);
				free(read_buf);
			}
		}
	}

	free(test_pattern);

	target_free_working_area(target, wa);
	return retval;
}

static const struct command_registration target_exec_command_handlers[] = {
	{
		.name = "fast_load_image",
		.handler = handle_fast_load_image_command,
		.mode = COMMAND_ANY,
		.help = "Load image into server memory for later use by "
			"fast_load; primarily for profiling",
		.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
			"[min_address [max_length]]",
	},
	{
		.name = "fast_load",
		.handler = handle_fast_load_command,
		.mode = COMMAND_EXEC,
		.help = "loads active fast load image to current target "
			"- mainly for profiling purposes",
		.usage = "",
	},
	{
		.name = "profile",
		.handler = handle_profile_command,
		.mode = COMMAND_EXEC,
		.usage = "seconds filename [start end]",
		.help = "profiling samples the CPU PC",
	},
	/** @todo don't register virt2phys() unless target supports it */
	{
		.name = "virt2phys",
		.handler = handle_virt2phys_command,
		.mode = COMMAND_ANY,
		.help = "translate a virtual address into a physical address",
		.usage = "virtual_address",
	},
	{
		.name = "reg",
		.handler = handle_reg_command,
		.mode = COMMAND_EXEC,
		.help = "display (reread from target with \"force\") or set a register; "
			"with no arguments, displays all registers and their values",
		.usage = "[(register_number|register_name) [(value|'force')]]",
	},
	{
		.name = "poll",
		.handler = handle_poll_command,
		.mode = COMMAND_EXEC,
		.help = "poll target state; or reconfigure background polling",
		.usage = "['on'|'off']",
	},
	{
		.name = "wait_halt",
		.handler = handle_wait_halt_command,
		.mode = COMMAND_EXEC,
		.help = "wait up to the specified number of milliseconds "
			"(default 5000) for a previously requested halt",
		.usage = "[milliseconds]",
	},
	{
		.name = "halt",
		.handler = handle_halt_command,
		.mode = COMMAND_EXEC,
		.help = "request target to halt, then wait up to the specified "
			"number of milliseconds (default 5000) for it to complete",
		.usage = "[milliseconds]",
	},
	{
		.name = "resume",
		.handler = handle_resume_command,
		.mode = COMMAND_EXEC,
		.help =	"resume target execution from current PC or address",
		.usage = "[address]",
	},
	{
		.name = "reset",
		.handler = handle_reset_command,
		.mode = COMMAND_EXEC,
		.usage = "[run|halt|init]",
		.help = "Reset all targets into the specified mode. "
			"Default reset mode is run, if not given.",
	},
	{
		.name = "soft_reset_halt",
		.handler = handle_soft_reset_halt_command,
		.mode = COMMAND_EXEC,
		.usage = "",
		.help = "halt the target and do a soft reset",
	},
	{
		.name = "step",
		.handler = handle_step_command,
		.mode = COMMAND_EXEC,
		.help =	"step one instruction from current PC or address",
		.usage = "[address]",
	},
	{
		.name = "mdd",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "display memory double-words",
		.usage = "['phys'] address [count]",
	},
	{
		.name = "mdw",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "display memory words",
		.usage = "['phys'] address [count]",
	},
	{
		.name = "mdh",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "display memory half-words",
		.usage = "['phys'] address [count]",
	},
	{
		.name = "mdb",
		.handler = handle_md_command,
		.mode = COMMAND_EXEC,
		.help = "display memory bytes",
		.usage = "['phys'] address [count]",
	},
	{
		.name = "mwd",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "write memory double-word",
		.usage = "['phys'] address value [count]",
	},
	{
		.name = "mww",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "write memory word",
		.usage = "['phys'] address value [count]",
	},
	{
		.name = "mwh",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "write memory half-word",
		.usage = "['phys'] address value [count]",
	},
	{
		.name = "mwb",
		.handler = handle_mw_command,
		.mode = COMMAND_EXEC,
		.help = "write memory byte",
		.usage = "['phys'] address value [count]",
	},
	{
		.name = "bp",
		.handler = handle_bp_command,
		.mode = COMMAND_EXEC,
		.help = "list or set hardware or software breakpoint",
		.usage = "[<address> [<asid>] <length> ['hw'|'hw_ctx']]",
	},
	{
		.name = "rbp",
		.handler = handle_rbp_command,
		.mode = COMMAND_EXEC,
		.help = "remove breakpoint",
		.usage = "'all' | address",
	},
	{
		.name = "wp",
		.handler = handle_wp_command,
		.mode = COMMAND_EXEC,
		.help = "list (no params) or create watchpoints",
		.usage = "[address length [('r'|'w'|'a') value [mask]]]",
	},
	{
		.name = "rwp",
		.handler = handle_rwp_command,
		.mode = COMMAND_EXEC,
		.help = "remove watchpoint",
		.usage = "address",
	},
	{
		.name = "load_image",
		.handler = handle_load_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename address ['bin'|'ihex'|'elf'|'s19'] "
			"[min_address] [max_length]",
	},
	{
		.name = "dump_image",
		.handler = handle_dump_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename address size",
	},
	{
		.name = "verify_image_checksum",
		.handler = handle_verify_image_checksum_command,
		.mode = COMMAND_EXEC,
		.usage = "filename [offset [type]]",
	},
	{
		.name = "verify_image",
		.handler = handle_verify_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename [offset [type]]",
	},
	{
		.name = "test_image",
		.handler = handle_test_image_command,
		.mode = COMMAND_EXEC,
		.usage = "filename [offset [type]]",
	},
	{
		.name = "get_reg",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_get_reg,
		.help = "Get register values from the target",
		.usage = "list",
	},
	{
		.name = "set_reg",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_set_reg,
		.help = "Set target register values",
		.usage = "dict",
	},
	{
		.name = "read_memory",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_read_memory,
		.help = "Read Tcl list of 8/16/32/64 bit numbers from target memory",
		.usage = "address width count ['phys']",
	},
	{
		.name = "write_memory",
		.mode = COMMAND_EXEC,
		.jim_handler = target_jim_write_memory,
		.help = "Write Tcl list of 8/16/32/64 bit numbers to target memory",
		.usage = "address width data ['phys']",
	},
	{
		.name = "reset_nag",
		.handler = handle_target_reset_nag,
		.mode = COMMAND_ANY,
		.help = "Nag after each reset about options that could have been "
				"enabled to improve performance.",
		.usage = "['enable'|'disable']",
	},
	{
		.name = "ps",
		.handler = handle_ps_command,
		.mode = COMMAND_EXEC,
		.help = "list all tasks",
		.usage = "",
	},
	{
		.name = "test_mem_access",
		.handler = handle_test_mem_access_command,
		.mode = COMMAND_EXEC,
		.help = "Test the target's memory access functions",
		.usage = "size",
	},

	COMMAND_REGISTRATION_DONE
};
static int target_register_user_commands(struct command_context *cmd_ctx)
{
	int retval = ERROR_OK;
	retval = target_request_register_commands(cmd_ctx);
	if (retval != ERROR_OK)
		return retval;

	retval = trace_register_commands(cmd_ctx);
	if (retval != ERROR_OK)
		return retval;


	return register_commands(cmd_ctx, NULL, target_exec_command_handlers);
}