1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
//**************************************************************************
// Towers of Hanoi benchmark
//--------------------------------------------------------------------------
//
// Towers of Hanoi is a classic puzzle problem. The game consists of
// three pegs and a set of discs. Each disc is a different size, and
// initially all of the discs are on the left most peg with the smallest
// disc on top and the largest disc on the bottom. The goal is to move all
// of the discs onto the right most peg. The catch is that you are only
// allowed to move one disc at a time and you can never place a larger
// disc on top of a smaller disc.
//
// This implementation starts with NUM_DISC discs and uses a recursive
// algorithm to sovel the puzzle. The smips-gcc toolchain does not support
// system calls so printf's can only be used on a host system, not on the
// smips processor simulator itself. You should not change anything except
// the HOST_DEBUG and PREALLOCATE macros for your timing run.
//--------------------------------------------------------------------------
// Macros
// Set HOST_DEBUG to 1 if you are going to compile this for a host
// machine (ie Athena/Linux) for debug purposes and set HOST_DEBUG
// to 0 if you are compiling with the smips-gcc toolchain.
#ifndef HOST_DEBUG
#define HOST_DEBUG 0
#endif
// Set PREALLOCATE to 1 if you want to preallocate the benchmark
// function before starting stats. If you have instruction/data
// caches and you don't want to count the overhead of misses, then
// you will need to use preallocation.
#ifndef PREALLOCATE
#define PREALLOCATE 0
#endif
// Set SET_STATS to 1 if you want to carve out the piece that actually
// does the computation.
#ifndef SET_STATS
#define SET_STATS 0
#endif
// This is the number of discs in the puzzle.
#define NUM_DISCS 7
//--------------------------------------------------------------------------
// Helper functions
void finishTest( int toHostValue )
{
#if HOST_DEBUG
if ( toHostValue == 1 )
printf( "*** PASSED ***\n" );
else
printf( "*** FAILED *** (tohost = %d)\n", toHostValue );
exit(0);
#else
asm( "mtpcr %0, tohost" : : "r" (toHostValue) );
while ( 1 ) { }
#endif
}
void setStats( int enable )
{
#if ( !HOST_DEBUG && SET_STATS )
asm( "mtpcr %0, cr10" : : "r" (enable) );
#endif
}
//--------------------------------------------------------------------------
// List data structure and functions
struct Node
{
int val;
struct Node* next;
};
struct List
{
int size;
struct Node* head;
};
struct List g_nodeFreeList;
struct Node g_nodePool[NUM_DISCS];
int list_getSize( struct List* list )
{
return list->size;
}
void list_init( struct List* list )
{
list->size = 0;
list->head = 0;
}
void list_push( struct List* list, int val )
{
struct Node* newNode;
// Pop the next free node off the free list
newNode = g_nodeFreeList.head;
g_nodeFreeList.head = g_nodeFreeList.head->next;
// Push the new node onto the given list
newNode->next = list->head;
list->head = newNode;
// Assign the value
list->head->val = val;
// Increment size
list->size++;
}
int list_pop( struct List* list )
{
struct Node* freedNode;
int val;
// Get the value from the->head of given list
val = list->head->val;
// Pop the head node off the given list
freedNode = list->head;
list->head = list->head->next;
// Push the freed node onto the free list
freedNode->next = g_nodeFreeList.head;
g_nodeFreeList.head = freedNode;
// Decrement size
list->size--;
return val;
}
void list_clear( struct List* list )
{
while ( list_getSize(list) > 0 )
list_pop(list);
}
//--------------------------------------------------------------------------
// Tower data structure and functions
struct Towers
{
int numDiscs;
int numMoves;
struct List pegA;
struct List pegB;
struct List pegC;
};
void towers_init( struct Towers* this, int n )
{
int i;
this->numDiscs = n;
this->numMoves = 0;
list_init( &(this->pegA) );
list_init( &(this->pegB) );
list_init( &(this->pegC) );
for ( i = 0; i < n; i++ )
list_push( &(this->pegA), n-i );
}
void towers_clear( struct Towers* this )
{
list_clear( &(this->pegA) );
list_clear( &(this->pegB) );
list_clear( &(this->pegC) );
towers_init( this, this->numDiscs );
}
#if HOST_DEBUG
void towers_print( struct Towers* this )
{
struct Node* ptr;
int i, numElements;
printf( " pegA: " );
for ( i = 0; i < ((this->numDiscs)-list_getSize(&(this->pegA))); i++ )
printf( ". " );
for ( ptr = this->pegA.head; ptr != 0; ptr = ptr->next )
printf( "%d ", ptr->val );
printf( " pegB: " );
for ( i = 0; i < ((this->numDiscs)-list_getSize(&(this->pegB))); i++ )
printf( ". " );
for ( ptr = this->pegB.head; ptr != 0; ptr = ptr->next )
printf( "%d ", ptr->val );
printf( " pegC: " );
for ( i = 0; i < ((this->numDiscs)-list_getSize(&(this->pegC))); i++ )
printf( ". " );
for ( ptr = this->pegC.head; ptr != 0; ptr = ptr->next )
printf( "%d ", ptr->val );
printf( "\n" );
}
#endif
void towers_solve_h( struct Towers* this, int n,
struct List* startPeg,
struct List* tempPeg,
struct List* destPeg )
{
int val;
if ( n == 1 ) {
#if HOST_DEBUG
towers_print(this);
#endif
val = list_pop(startPeg);
list_push(destPeg,val);
this->numMoves++;
}
else {
towers_solve_h( this, n-1, startPeg, destPeg, tempPeg );
towers_solve_h( this, 1, startPeg, tempPeg, destPeg );
towers_solve_h( this, n-1, tempPeg, startPeg, destPeg );
}
}
void towers_solve( struct Towers* this )
{
towers_solve_h( this, this->numDiscs, &(this->pegA), &(this->pegB), &(this->pegC) );
}
int towers_verify( struct Towers* this )
{
struct Node* ptr;
int numDiscs = 0;
if ( list_getSize(&this->pegA) != 0 ) {
#if HOST_DEBUG
printf( "ERROR: Peg A is not empty!\n" );
#endif
return 2;
}
if ( list_getSize(&this->pegB) != 0 ) {
#if HOST_DEBUG
printf( "ERROR: Peg B is not empty!\n" );
#endif
return 3;
}
if ( list_getSize(&this->pegC) != this->numDiscs ) {
#if HOST_DEBUG
printf( " ERROR: Expected %d discs but found only %d discs!\n", \
this->numDiscs, list_getSize(&this->pegC) );
#endif
return 4;
}
for ( ptr = this->pegC.head; ptr != 0; ptr = ptr->next ) {
numDiscs++;
if ( ptr->val != numDiscs ) {
#if HOST_DEBUG
printf( " ERROR: Expecting disc %d on peg C but found disc %d instead!\n", \
numDiscs, ptr->val );
#endif
return 5;
}
}
if ( this->numMoves != ((1 << this->numDiscs) - 1) ) {
#if HOST_DEBUG
printf( " ERROR: Expecting %d num moves but found %d instead!\n", \
((1 << this->numDiscs) - 1), this->numMoves );
#endif
return 6;
}
return 1;
}
//--------------------------------------------------------------------------
// Main
int main( int argc, char* argv[] )
{
struct Towers towers;
int i;
// Initialize free list
list_init( &g_nodeFreeList );
g_nodeFreeList.head = &(g_nodePool[0]);
g_nodeFreeList.size = NUM_DISCS;
g_nodePool[NUM_DISCS-1].next = 0;
g_nodePool[NUM_DISCS-1].val = 99;
for ( i = 0; i < (NUM_DISCS-1); i++ ) {
g_nodePool[i].next = &(g_nodePool[i+1]);
g_nodePool[i].val = i;
}
towers_init( &towers, NUM_DISCS );
// If needed we preallocate everything in the caches
#if PREALLOCATE
towers_solve( &towers );
#endif
// Solve it
towers_clear( &towers );
setStats(1);
towers_solve( &towers );
setStats(0);
// Print out the results
#if HOST_DEBUG
towers_print( &towers );
#endif
// Check the results
finishTest( towers_verify( &towers ) );
}
|