aboutsummaryrefslogtreecommitdiff
path: root/mt/bp_matmul/matmul_mi.c
diff options
context:
space:
mode:
Diffstat (limited to 'mt/bp_matmul/matmul_mi.c')
-rwxr-xr-xmt/bp_matmul/matmul_mi.c341
1 files changed, 0 insertions, 341 deletions
diff --git a/mt/bp_matmul/matmul_mi.c b/mt/bp_matmul/matmul_mi.c
deleted file mode 100755
index dd06110..0000000
--- a/mt/bp_matmul/matmul_mi.c
+++ /dev/null
@@ -1,341 +0,0 @@
-//**************************************************************************
-// Multi-threaded Matrix Multiply benchmark
-//--------------------------------------------------------------------------
-// TA : Christopher Celio
-// Student:
-//
-//
-// This benchmark multiplies two 2-D arrays together and writes the results to
-// a third vector. The input data (and reference data) should be generated
-// using the matmul_gendata.pl perl script and dumped to a file named
-// dataset.h.
-
-
-// print out arrays, etc.
-//#define DEBUG
-
-//--------------------------------------------------------------------------
-// Includes
-
-#include <string.h>
-#include <stdlib.h>
-#include <stdio.h>
-
-
-//--------------------------------------------------------------------------
-// Input/Reference Data
-
-typedef float data_t;
-#include "dataset.h"
-
-
-//--------------------------------------------------------------------------
-// Basic Utilities and Multi-thread Support
-
-__thread unsigned long coreid;
-unsigned long ncores;
-
-#include "util.h"
-
-#define stringify_1(s) #s
-#define stringify(s) stringify_1(s)
-#define stats(code) do { \
- unsigned long _c = -rdcycle(), _i = -rdinstret(); \
- code; \
- _c += rdcycle(), _i += rdinstret(); \
- if (coreid == 0) \
- printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \
- stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \
- } while(0)
-
-
-//--------------------------------------------------------------------------
-// Helper functions
-
-void printArrayMT( char name[], int n, data_t arr[] )
-{
- int i;
- if (coreid != 0)
- return;
-
- printf( " %10s :", name );
- for ( i = 0; i < n; i++ )
- printf( " %3ld ", (long) arr[i] );
- printf( "\n" );
-}
-
-void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct)
-{
- if (coreid != 0)
- return;
-
- size_t i;
- for (i = 0; i < n; i++)
- {
- if (test[i] != correct[i])
- {
- printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n",
- i, (long)test[i], i, (long)correct[i]);
- exit(-1);
- }
- }
-
- return;
-}
-
-//--------------------------------------------------------------------------
-// matmul function
-
-// single-thread, naive version
-void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] )
-{
- int i, j, k;
-
- if (coreid > 0)
- return;
-
- for ( i = 0; i < lda; i++ )
- for ( j = 0; j < lda; j++ )
- {
- for ( k = 0; k < lda; k++ )
- {
- C[i + j*lda] += A[j*lda + k] * B[k*lda + i];
- }
- }
-
-}
-
-void __attribute__((noinline)) matmul_MI_transpose(const int lda, const data_t A[], const data_t B[], data_t C[] )
-{
- int i, j, k;
- data_t B_trans[32*32];
- data_t acc_temp0, acc_temp1;
- data_t *A_j, *B_i;
- data_t *A_j_k, *B_i_k;
- int z;
-
- //for (i = 0; i < 32; i++) {
- // for (j = 0; j < 32; j++) {
- // B_trans[i*lda+j] = B[i+j*lda];
- // }
- //}
-
- if (coreid == 0) {
- for (i = 0; i < 32; i++) {
- B_i = B_trans+i*32;
- for (z = 0; z < 32; z++) {
- *(B_i+z) = B[i+z*32];
- }
- for (j = 0; j < 16; j+=2) {
- A_j = A+j*lda;
- acc_temp0 = 0;
- for (k = 0; k < 32; k+=8) {
- A_j_k = A_j+k;
- B_i_k = B_i+k;
- acc_temp0 += *(A_j_k) * *(B_i_k);
- acc_temp0 += *(A_j_k + 1) * *(B_i_k + 1);
- acc_temp0 += *(A_j_k + 2) * *(B_i_k + 2);
- acc_temp0 += *(A_j_k + 3) * *(B_i_k + 3);
- acc_temp0 += *(A_j_k + 4) * *(B_i_k + 4);
- acc_temp0 += *(A_j_k + 5) * *(B_i_k + 5);
- acc_temp0 += *(A_j_k + 6) * *(B_i_k + 6);
- acc_temp0 += *(A_j_k + 7) * *(B_i_k + 7);
- }
- A_j += 32;
-
- acc_temp1 = 0;
- for (k = 0; k < 32; k+=8) {
- acc_temp1 += *(A_j+k) * *(B_i+k);
- acc_temp1 += *(A_j+k + 1) * *(B_i+k + 1);
- acc_temp1 += *(A_j+k + 2) * *(B_i+k + 2);
- acc_temp1 += *(A_j+k + 3) * *(B_i+k + 3);
- acc_temp1 += *(A_j+k + 4) * *(B_i+k + 4);
- acc_temp1 += *(A_j+k + 5) * *(B_i+k + 5);
- acc_temp1 += *(A_j+k + 6) * *(B_i+k + 6);
- acc_temp1 += *(A_j+k + 7) * *(B_i+k + 7);
- }
-
- C[i + j*lda] = acc_temp0;
- C[i + (j+1)*lda] = acc_temp1;
- }
- }
- } else if (coreid == 1) {
- for (i = 0; i < 32; i++) {
- B_i = B_trans+i*32;
- for (z = 0; z < 32; z++) {
- *(B_i+z) = B[i+z*32];
- }
- for (j = 16; j < 32; j+=2) {
- A_j = A+j*lda;
- acc_temp0 = 0;
- for (k = 0; k < 32; k+=8) {
- acc_temp0 += *(A_j+k) * *(B_i+k);
- acc_temp0 += *(A_j+k + 1) * *(B_i+k + 1);
- acc_temp0 += *(A_j+k + 2) * *(B_i+k + 2);
- acc_temp0 += *(A_j+k + 3) * *(B_i+k + 3);
- acc_temp0 += *(A_j+k + 4) * *(B_i+k + 4);
- acc_temp0 += *(A_j+k + 5) * *(B_i+k + 5);
- acc_temp0 += *(A_j+k + 6) * *(B_i+k + 6);
- acc_temp0 += *(A_j+k + 7) * *(B_i+k + 7);
- }
- A_j += 32;
-
- acc_temp1 = 0;
- for (k = 0; k < 32; k+=8) {
- acc_temp1 += *(A_j+k) * *(B_i+k);
- acc_temp1 += *(A_j+k + 1) * *(B_i+k + 1);
- acc_temp1 += *(A_j+k + 2) * *(B_i+k + 2);
- acc_temp1 += *(A_j+k + 3) * *(B_i+k + 3);
- acc_temp1 += *(A_j+k + 4) * *(B_i+k + 4);
- acc_temp1 += *(A_j+k + 5) * *(B_i+k + 5);
- acc_temp1 += *(A_j+k + 6) * *(B_i+k + 6);
- acc_temp1 += *(A_j+k + 7) * *(B_i+k + 7);
- }
- C[i + j*lda] = acc_temp0;
- C[i + (j+1)*lda] = acc_temp1;
- }
- }
- }
-}
-
-void __attribute__((noinline)) matmul_MI(const int lda, const data_t A[], const data_t B[], data_t C[] )
-{
- int i, j, k;
- data_t acc_temp;
- data_t *A_j, *B_i;
- int j_start = coreid*16;
- int j_end = (coreid*16)+16;
- if (coreid == 0) {
- for ( i = 0; i < 32; i++ ) {
- B_i = B + i;
- for ( j = j_start; j < j_end; j++ )
- {
- acc_temp = 0;
- A_j = A + j*32;
- for ( k = 0; k < 32; k++ )
- {
- acc_temp += *(A_j + k) * *(B_i + k*32);
- }
- C[i + j*32] = acc_temp;
- }
- }
- } else if (coreid == 1) {
- for ( i = 16; i < 32; i++ ) {
- B_i = B + i;
- for ( j = j_start; j < j_end; j++ )
- {
- acc_temp = 0;
- A_j = A + j*32;
- for ( k = 0; k < 32; k+=4 )
- {
- acc_temp += *(A_j + k) * *(B_i + k*32);
- acc_temp += *(A_j + k + 1) * *(B_i + (k+1)*32);
- acc_temp += *(A_j + k + 2) * *(B_i + (k+2)*32);
- acc_temp += *(A_j + k + 3) * *(B_i + (k+3)*32);
- }
- C[i + j*32] = acc_temp;
- }
- }
- for ( i = 0; i < 16; i++ ) {
- B_i = B + i;
- for ( j = j_start; j < j_end; j++ )
- {
- acc_temp = 0;
- A_j = A + j*32;
- for ( k = 0; k < 32; k+=4 )
- {
- acc_temp += *(A_j + k) * *(B_i + k*32);
- acc_temp += *(A_j + k + 1) * *(B_i + (k+1)*32);
- acc_temp += *(A_j + k + 2) * *(B_i + (k+2)*32);
- acc_temp += *(A_j + k + 3) * *(B_i + (k+3)*32);
- }
- C[i + j*32] = acc_temp;
- }
- }
-
- }
-}
-
-void __attribute__((noinline)) matmul_MSI(const int lda, const data_t A[], const data_t B[], data_t C[] )
-{
- int i, j, k;
- data_t acc_temp;
- data_t *A_j, *B_i;
- int j_start = coreid*16;
- int j_end = (coreid*16)+16;
- for ( i = 0; i < 32; i++ ) {
- B_i = B + i;
- for ( j = j_start; j < j_end; j++ )
- {
- acc_temp = 0;
- A_j = A + j*32;
- for ( k = 0; k < 32; k++ )
- {
- acc_temp += *(A_j + k) * *(B_i + k*32);
- }
- C[i + j*32] = acc_temp;
- }
- }
-}
-
-void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] )
-{
-
- // ***************************** //
- // **** ADD YOUR CODE HERE ***** //
- // ***************************** //
- //
- // feel free to make a separate function for MI and MSI versions.
- // ENABLE_SHARING = false is MI
- // ENABLE_SHARING = true is MSI
- matmul_MI_transpose(lda, A, B, C);
- //matmul_MSI(lda, A, B, C);
-}
-
-//--------------------------------------------------------------------------
-// Main
-//
-// all threads start executing thread_entry(). Use their "coreid" to
-// differentiate between threads (each thread is running on a separate core).
-
-void thread_entry(int cid, int nc)
-{
- coreid = cid;
- ncores = nc;
-
- // static allocates data in the binary, which is visible to both threads
- static data_t results_data[ARRAY_SIZE];
-
-
-// // Execute the provided, naive matmul
-// barrier(nc);
-// //stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
-//
-//
-// // verify
-// //verifyMT(ARRAY_SIZE, results_data, verify_data);
-//
-// // clear results from the first trial
-// size_t i;
-// if (coreid == 0)
-// for (i=0; i < ARRAY_SIZE; i++)
-// results_data[i] = 0;
-// barrier(nc);
-
-
- // Execute your faster matmul
- barrier(nc);
- stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc));
-
-#ifdef DEBUG
- printArrayMT("results:", ARRAY_SIZE, results_data);
- printArrayMT("verify :", ARRAY_SIZE, verify_data);
-#endif
-
- // verify
- verifyMT(ARRAY_SIZE, results_data, verify_data);
- barrier(nc);
-
- exit(0);
-}
-