aboutsummaryrefslogtreecommitdiff
path: root/riscv/mmu.h
blob: ef054cf59c244ced51905ae67def46184571c3e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
// See LICENSE for license details.

#ifndef _RISCV_MMU_H
#define _RISCV_MMU_H

#include "decode.h"
#include "trap.h"
#include "common.h"
#include "simif.h"
#include "processor.h"
#include "memtracer.h"
#include "../fesvr/byteorder.h"
#include "triggers.h"
#include "cfg.h"
#include <stdlib.h>
#include <vector>

// virtual memory configuration
#define PGSHIFT 12
const reg_t PGSIZE = 1 << PGSHIFT;
const reg_t PGMASK = ~(PGSIZE-1);
#define MAX_PADDR_BITS 56 // imposed by Sv39 / Sv48

struct insn_fetch_t
{
  insn_func_t func;
  insn_t insn;
};

struct icache_entry_t {
  reg_t tag;
  struct icache_entry_t* next;
  insn_fetch_t data;
};

struct tlb_entry_t {
  char* host_offset;
  reg_t target_offset;
};

void throw_access_exception(bool virt, reg_t addr, access_type type);

// this class implements a processor's port into the virtual memory system.
// an MMU and instruction cache are maintained for simulator performance.
class mmu_t
{
private:
  std::map<reg_t, reg_t> alloc_cache;
  std::vector<std::pair<reg_t, reg_t >> addr_tbl;
public:
  mmu_t(simif_t* sim, endianness_t endianness, processor_t* proc);
  ~mmu_t();

#define RISCV_XLATE_VIRT      (1U << 0)
#define RISCV_XLATE_VIRT_HLVX (1U << 1)
#define RISCV_XLATE_LR        (1U << 2)

  template<typename T>
  T ALWAYS_INLINE load(reg_t addr, uint32_t xlate_flags = 0) {
    target_endian<T> res;
    reg_t vpn = addr >> PGSHIFT;
    bool aligned = (addr & (sizeof(T) - 1)) == 0;
    bool tlb_hit = tlb_load_tag[vpn % TLB_ENTRIES] == vpn;

    if (likely(xlate_flags == 0 && aligned && tlb_hit)) {
      res = *(target_endian<T>*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr);
    } else {
      load_slow_path(addr, sizeof(T), (uint8_t*)&res, xlate_flags);
    }

    if (unlikely(proc && proc->get_log_commits_enabled()))
      proc->state.log_mem_read.push_back(std::make_tuple(addr, 0, sizeof(T)));

    return from_target(res);
  }

  template<typename T>
  T load_reserved(reg_t addr) {
    return load<T>(addr, RISCV_XLATE_LR);
  }

  template<typename T>
  T guest_load(reg_t addr) {
    return load<T>(addr, RISCV_XLATE_VIRT);
  }

  template<typename T>
  T guest_load_x(reg_t addr) {
    return load<T>(addr, RISCV_XLATE_VIRT|RISCV_XLATE_VIRT_HLVX);
  }

  template<typename T>
  void ALWAYS_INLINE store(reg_t addr, T val, uint32_t xlate_flags = 0) {
    reg_t vpn = addr >> PGSHIFT;
    bool aligned = (addr & (sizeof(T) - 1)) == 0;
    bool tlb_hit = tlb_store_tag[vpn % TLB_ENTRIES] == vpn;

    if (xlate_flags == 0 && likely(aligned && tlb_hit)) {
      *(target_endian<T>*)(tlb_data[vpn % TLB_ENTRIES].host_offset + addr) = to_target(val);
    } else {
      target_endian<T> target_val = to_target(val);
      store_slow_path(addr, sizeof(T), (const uint8_t*)&target_val, xlate_flags, true, false);
    }

    if (unlikely(proc && proc->get_log_commits_enabled()))
      proc->state.log_mem_write.push_back(std::make_tuple(addr, val, sizeof(T)));
  }

  template<typename T>
  void guest_store(reg_t addr, T val) {
    store(addr, val, RISCV_XLATE_VIRT);
  }

  // AMO/Zicbom faults should be reported as store faults
  #define convert_load_traps_to_store_traps(BODY) \
    try { \
      BODY \
    } catch (trap_load_address_misaligned& t) { \
      /* Misaligned fault will not be triggered by Zicbom */ \
      throw trap_store_address_misaligned(t.has_gva(), t.get_tval(), t.get_tval2(), t.get_tinst()); \
    } catch (trap_load_page_fault& t) { \
      throw trap_store_page_fault(t.has_gva(), t.get_tval(), t.get_tval2(), t.get_tinst()); \
    } catch (trap_load_access_fault& t) { \
      throw trap_store_access_fault(t.has_gva(), t.get_tval(), t.get_tval2(), t.get_tinst()); \
    } catch (trap_load_guest_page_fault& t) { \
      throw trap_store_guest_page_fault(t.get_tval(), t.get_tval2(), t.get_tinst()); \
    }

  // template for functions that perform an atomic memory operation
  template<typename T, typename op>
  T amo(reg_t addr, op f) {
    convert_load_traps_to_store_traps({
      store_slow_path(addr, sizeof(T), nullptr, 0, false, true);
      auto lhs = load<T>(addr);
      store<T>(addr, f(lhs));
      return lhs;
    })
  }

  void store_float128(reg_t addr, float128_t val)
  {
    if (unlikely(addr & (sizeof(float128_t)-1)) && !is_misaligned_enabled()) {
      throw trap_store_address_misaligned((proc) ? proc->state.v : false, addr, 0, 0);
    }

    store<uint64_t>(addr, val.v[0]);
    store<uint64_t>(addr + 8, val.v[1]);
  }

  float128_t load_float128(reg_t addr)
  {
    if (unlikely(addr & (sizeof(float128_t)-1)) && !is_misaligned_enabled()) {
      throw trap_load_address_misaligned((proc) ? proc->state.v : false, addr, 0, 0);
    }

    return (float128_t){load<uint64_t>(addr), load<uint64_t>(addr + 8)};
  }

  void cbo_zero(reg_t addr) {
    auto base = addr & ~(blocksz - 1);
    for (size_t offset = 0; offset < blocksz; offset += 1)
      store<uint8_t>(base + offset, 0);
  }

  void clean_inval(reg_t addr, bool clean, bool inval) {
    convert_load_traps_to_store_traps({
      const reg_t paddr = translate(addr, blocksz, LOAD, 0) & ~(blocksz - 1);
      if (sim->reservable(paddr)) {
        if (tracer.interested_in_range(paddr, paddr + PGSIZE, LOAD))
          tracer.clean_invalidate(paddr, blocksz, clean, inval);
      } else {
        throw trap_store_access_fault((proc) ? proc->state.v : false, addr, 0, 0);
      }
    })
  }

  inline void yield_load_reservation()
  {
    load_reservation_address = (reg_t)-1;
  }

  inline bool check_load_reservation(reg_t vaddr, size_t size)
  {
    if (vaddr & (size-1)) {
      // Raise either access fault or misaligned exception
      store_slow_path(vaddr, size, nullptr, 0, false, true);
    }

    reg_t paddr = translate(vaddr, 1, STORE, 0);
    if (sim->reservable(paddr))
      return load_reservation_address == paddr;
    else
      throw trap_store_access_fault((proc) ? proc->state.v : false, vaddr, 0, 0);
  }

  template<typename T>
  bool store_conditional(reg_t addr, T val)
  {
    bool have_reservation = check_load_reservation(addr, sizeof(T));

    if (have_reservation)
      store(addr, val);

    yield_load_reservation();

    return have_reservation;
  }

  static const reg_t ICACHE_ENTRIES = 1024;

  inline size_t icache_index(reg_t addr)
  {
    return (addr / PC_ALIGN) % ICACHE_ENTRIES;
  }

  template<typename T>
  T ALWAYS_INLINE fetch_jump_table(reg_t addr) {
    auto tlb_entry = translate_insn_addr(addr);
    return from_target(*(target_endian<T>*)(tlb_entry.host_offset + addr));
  }

  inline icache_entry_t* refill_icache(reg_t addr, icache_entry_t* entry)
  {
    if (matched_trigger)
      throw *matched_trigger;

    auto tlb_entry = translate_insn_addr(addr);
    insn_bits_t insn = from_le(*(uint16_t*)(tlb_entry.host_offset + addr));
    int length = insn_length(insn);

    if (likely(length == 4)) {
      insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 2)) << 16;
    } else if (length == 2) {
      // entire instruction already fetched
    } else if (length == 6) {
      insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 4)) << 32;
      insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 2)) << 16;
    } else {
      static_assert(sizeof(insn_bits_t) == 8, "insn_bits_t must be uint64_t");
      insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 6)) << 48;
      insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 4)) << 32;
      insn |= (insn_bits_t)from_le(*(const uint16_t*)translate_insn_addr_to_host(addr + 2)) << 16;
    }

    insn_fetch_t fetch = {proc->decode_insn(insn), insn};
    entry->tag = addr;
    entry->next = &icache[icache_index(addr + length)];
    entry->data = fetch;

    reg_t paddr = tlb_entry.target_offset + addr;;
    if (tracer.interested_in_range(paddr, paddr + 1, FETCH)) {
      entry->tag = -1;
      tracer.trace(paddr, length, FETCH);
    }
    return entry;
  }

  inline icache_entry_t* access_icache(reg_t addr)
  {
    icache_entry_t* entry = &icache[icache_index(addr)];
    if (likely(entry->tag == addr))
      return entry;
    return refill_icache(addr, entry);
  }

  inline insn_fetch_t load_insn(reg_t addr)
  {
    icache_entry_t entry;
    return refill_icache(addr, &entry)->data;
  }

  void flush_tlb();
  void flush_icache();

  void register_memtracer(memtracer_t*);

  int is_misaligned_enabled()
  {
    return proc && proc->get_cfg().misaligned;
  }

  bool is_target_big_endian()
  {
    return target_big_endian;
  }

  template<typename T> inline T from_target(target_endian<T> n) const
  {
    return target_big_endian? n.from_be() : n.from_le();
  }

  template<typename T> inline target_endian<T> to_target(T n) const
  {
    return target_big_endian? target_endian<T>::to_be(n) : target_endian<T>::to_le(n);
  }

  void set_cache_blocksz(reg_t size)
  {
    blocksz = size;
  }

private:
  simif_t* sim;
  processor_t* proc;
  memtracer_list_t tracer;
  reg_t load_reservation_address;
  uint16_t fetch_temp;
  reg_t blocksz;

  // implement an instruction cache for simulator performance
  icache_entry_t icache[ICACHE_ENTRIES];

  // implement a TLB for simulator performance
  static const reg_t TLB_ENTRIES = 256;
  // If a TLB tag has TLB_CHECK_TRIGGERS set, then the MMU must check for a
  // trigger match before completing an access.
  static const reg_t TLB_CHECK_TRIGGERS = reg_t(1) << 63;
  tlb_entry_t tlb_data[TLB_ENTRIES];
  reg_t tlb_insn_tag[TLB_ENTRIES];
  reg_t tlb_load_tag[TLB_ENTRIES];
  reg_t tlb_store_tag[TLB_ENTRIES];

  // finish translation on a TLB miss and update the TLB
  tlb_entry_t refill_tlb(reg_t vaddr, reg_t paddr, char* host_addr, access_type type);
  const char* fill_from_mmio(reg_t vaddr, reg_t paddr);

  // perform a stage2 translation for a given guest address
  reg_t s2xlate(reg_t gva, reg_t gpa, access_type type, access_type trap_type, bool virt, bool hlvx);

  // perform a page table walk for a given VA; set referenced/dirty bits
  reg_t walk(reg_t addr, access_type type, reg_t prv, bool virt, bool hlvx);

  // handle uncommon cases: TLB misses, page faults, MMIO
  tlb_entry_t fetch_slow_path(reg_t addr);
  void load_slow_path(reg_t addr, reg_t len, uint8_t* bytes, uint32_t xlate_flags);
  void load_slow_path_intrapage(reg_t addr, reg_t len, uint8_t* bytes, uint32_t xlate_flags);
  void store_slow_path(reg_t addr, reg_t len, const uint8_t* bytes, uint32_t xlate_flags, bool actually_store, bool require_alignment);
  void store_slow_path_intrapage(reg_t addr, reg_t len, const uint8_t* bytes, uint32_t xlate_flags, bool actually_store);
  bool mmio_fetch(reg_t paddr, size_t len, uint8_t* bytes);
  bool mmio_load(reg_t paddr, size_t len, uint8_t* bytes);
  bool mmio_store(reg_t paddr, size_t len, const uint8_t* bytes);
  bool mmio(reg_t paddr, size_t len, uint8_t* bytes, access_type type);
  bool mmio_ok(reg_t paddr, access_type type);
  void check_triggers(triggers::operation_t operation, reg_t address, std::optional<reg_t> data = std::nullopt);
  reg_t translate(reg_t addr, reg_t len, access_type type, uint32_t xlate_flags);

  reg_t pte_load(reg_t pte_paddr, reg_t addr, bool virt, access_type trap_type, size_t ptesize) {
    if (ptesize == 4)
      return pte_load<uint32_t>(pte_paddr, addr, virt, trap_type);
    else
      return pte_load<uint64_t>(pte_paddr, addr, virt, trap_type);
  }

  void pte_store(reg_t pte_paddr, reg_t new_pte, reg_t addr, bool virt, access_type trap_type, size_t ptesize) {
    if (ptesize == 4)
      return pte_store<uint32_t>(pte_paddr, new_pte, addr, virt, trap_type);
    else
      return pte_store<uint64_t>(pte_paddr, new_pte, addr, virt, trap_type);
  }

  template<typename T> inline reg_t pte_load(reg_t pte_paddr, reg_t addr, bool virt, access_type trap_type)
  {
    const size_t ptesize = sizeof(T);

    if (!pmp_ok(pte_paddr, ptesize, LOAD, PRV_S))
      throw_access_exception(virt, addr, trap_type);

    void* host_pte_addr = sim->addr_to_mem(pte_paddr);
    target_endian<T> target_pte;
    if (host_pte_addr) {
      memcpy(&target_pte, host_pte_addr, ptesize);
    } else if (!mmio_load(pte_paddr, ptesize, (uint8_t*)&target_pte)) {
      throw_access_exception(virt, addr, trap_type);
    }
    return from_target(target_pte);
  }

  template<typename T> inline void pte_store(reg_t pte_paddr, reg_t new_pte, reg_t addr, bool virt, access_type trap_type)
  {
    const size_t ptesize = sizeof(T);

    if (!pmp_ok(pte_paddr, ptesize, STORE, PRV_S))
      throw_access_exception(virt, addr, trap_type);

    void* host_pte_addr = sim->addr_to_mem(pte_paddr);
    target_endian<T> target_pte = to_target((T)new_pte);
    if (host_pte_addr) {
      memcpy(host_pte_addr, &target_pte, ptesize);
    } else if (!mmio_store(pte_paddr, ptesize, (uint8_t*)&target_pte)) {
      throw_access_exception(virt, addr, trap_type);
    }
  }

  // ITLB lookup
  inline tlb_entry_t translate_insn_addr(reg_t addr) {
    reg_t vpn = addr >> PGSHIFT;
    if (likely(tlb_insn_tag[vpn % TLB_ENTRIES] == vpn))
      return tlb_data[vpn % TLB_ENTRIES];
    return fetch_slow_path(addr);
  }

  inline const uint16_t* translate_insn_addr_to_host(reg_t addr) {
    return (uint16_t*)(translate_insn_addr(addr).host_offset + addr);
  }

  inline bool in_mprv()
  {
    return proc != nullptr
           && !(proc->state.mnstatus && !get_field(proc->state.mnstatus->read(), MNSTATUS_NMIE))
           && !proc->state.debug_mode
           && get_field(proc->state.mstatus->read(), MSTATUS_MPRV);
  }

  reg_t pmp_homogeneous(reg_t addr, reg_t len);
  bool pmp_ok(reg_t addr, reg_t len, access_type type, reg_t mode);

#ifdef RISCV_ENABLE_DUAL_ENDIAN
  bool target_big_endian;
#else
  static const bool target_big_endian = false;
#endif
  bool check_triggers_fetch;
  bool check_triggers_load;
  bool check_triggers_store;
  // The exception describing a matched trigger, or NULL.
  triggers::matched_t *matched_trigger;

  friend class processor_t;
};

struct vm_info {
  int levels;
  int idxbits;
  int widenbits;
  int ptesize;
  reg_t ptbase;
};

inline vm_info decode_vm_info(int xlen, bool stage2, reg_t prv, reg_t satp)
{
  if (prv == PRV_M) {
    return {0, 0, 0, 0, 0};
  } else if (!stage2 && prv <= PRV_S && xlen == 32) {
    switch (get_field(satp, SATP32_MODE)) {
      case SATP_MODE_OFF: return {0, 0, 0, 0, 0};
      case SATP_MODE_SV32: return {2, 10, 0, 4, (satp & SATP32_PPN) << PGSHIFT};
      default: abort();
    }
  } else if (!stage2 && prv <= PRV_S && xlen == 64) {
    switch (get_field(satp, SATP64_MODE)) {
      case SATP_MODE_OFF: return {0, 0, 0, 0, 0};
      case SATP_MODE_SV39: return {3, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT};
      case SATP_MODE_SV48: return {4, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT};
      case SATP_MODE_SV57: return {5, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT};
      case SATP_MODE_SV64: return {6, 9, 0, 8, (satp & SATP64_PPN) << PGSHIFT};
      default: abort();
    }
  } else if (stage2 && xlen == 32) {
    switch (get_field(satp, HGATP32_MODE)) {
      case HGATP_MODE_OFF: return {0, 0, 0, 0, 0};
      case HGATP_MODE_SV32X4: return {2, 10, 2, 4, (satp & HGATP32_PPN) << PGSHIFT};
      default: abort();
    }
  } else if (stage2 && xlen == 64) {
    switch (get_field(satp, HGATP64_MODE)) {
      case HGATP_MODE_OFF: return {0, 0, 0, 0, 0};
      case HGATP_MODE_SV39X4: return {3, 9, 2, 8, (satp & HGATP64_PPN) << PGSHIFT};
      case HGATP_MODE_SV48X4: return {4, 9, 2, 8, (satp & HGATP64_PPN) << PGSHIFT};
      case HGATP_MODE_SV57X4: return {5, 9, 2, 8, (satp & HGATP64_PPN) << PGSHIFT};
      default: abort();
    }
  } else {
    abort();
  }
}

#endif