1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
|
// See LICENSE for license details.
#include "processor.h"
#include "mmu.h"
#include <cassert>
#ifdef RISCV_ENABLE_COMMITLOG
static void commit_log_reset(processor_t* p)
{
p->get_state()->log_reg_write.clear();
p->get_state()->log_mem_read.clear();
p->get_state()->log_mem_write.clear();
}
static void commit_log_stash_privilege(processor_t* p)
{
state_t* state = p->get_state();
state->last_inst_priv = state->prv;
state->last_inst_xlen = p->get_xlen();
state->last_inst_flen = p->get_flen();
}
static void commit_log_print_value(FILE *log_file, int width, const void *data)
{
assert(log_file);
const uint64_t *arr = (const uint64_t *)data;
fprintf(log_file, "0x");
for (int idx = width / 64 - 1; idx >= 0; --idx) {
fprintf(log_file, "%016" PRIx64, arr[idx]);
}
}
static void commit_log_print_value(FILE *log_file,
int width, uint64_t hi, uint64_t lo)
{
assert(log_file);
switch (width) {
case 8:
fprintf(log_file, "0x%01" PRIx8, (uint8_t)lo);
break;
case 16:
fprintf(log_file, "0x%04" PRIx16, (uint16_t)lo);
break;
case 32:
fprintf(log_file, "0x%08" PRIx32, (uint32_t)lo);
break;
case 64:
fprintf(log_file, "0x%016" PRIx64, lo);
break;
case 128:
fprintf(log_file, "0x%016" PRIx64 "%016" PRIx64, hi, lo);
break;
default:
abort();
}
}
static void commit_log_print_insn(processor_t *p, reg_t pc, insn_t insn)
{
FILE *log_file = p->get_log_file();
auto& reg = p->get_state()->log_reg_write;
auto& load = p->get_state()->log_mem_read;
auto& store = p->get_state()->log_mem_write;
int priv = p->get_state()->last_inst_priv;
int xlen = p->get_state()->last_inst_xlen;
int flen = p->get_state()->last_inst_flen;
fprintf(log_file, "%1d ", priv);
commit_log_print_value(log_file, xlen, 0, pc);
fprintf(log_file, " (");
commit_log_print_value(log_file, insn.length() * 8, 0, insn.bits());
fprintf(log_file, ")");
bool show_vec = false;
for (auto item : reg) {
if (item.first == 0)
continue;
char prefix;
int size;
int rd = item.first >> 2;
bool is_vec = false;
bool is_vreg = false;
switch (item.first & 3) {
case 0:
size = xlen;
prefix = 'x';
break;
case 1:
size = flen;
prefix = 'f';
break;
case 2:
size = p->VU.VLEN;
prefix = 'v';
is_vreg = true;
break;
case 3:
is_vec = true;
break;
default:
assert("can't been here" && 0);
break;
}
if (!show_vec && (is_vreg || is_vec)) {
fprintf(log_file, " e%ld %s%ld l%ld",
p->VU.vsew,
p->VU.vflmul < 0 ? "mf" : "m",
p->VU.vflmul < 0 ? (1 / p->VU.vflmul) : p->VU.vflmul,
p->VU.vl);
show_vec = true;
}
if (!is_vec) {
fprintf(log_file, " %c%2d ", prefix, rd);
if (is_vreg)
commit_log_print_value(log_file, size, &p->VU.elt<uint8_t>(rd, 0));
else
commit_log_print_value(log_file, size, item.second.v[1], item.second.v[0]);
}
}
for (auto item : load) {
fprintf(log_file, " mem ");
commit_log_print_value(log_file, xlen, 0, std::get<0>(item));
}
for (auto item : store) {
fprintf(log_file, " mem ");
commit_log_print_value(log_file, xlen, 0, std::get<0>(item));
fprintf(log_file, " ");
commit_log_print_value(log_file, std::get<2>(item) << 3, 0, std::get<1>(item));
}
fprintf(log_file, "\n");
}
#else
static void commit_log_reset(processor_t* p) {}
static void commit_log_stash_privilege(processor_t* p) {}
static void commit_log_print_insn(processor_t* p, reg_t pc, insn_t insn) {}
#endif
inline void processor_t::update_histogram(reg_t pc)
{
#ifdef RISCV_ENABLE_HISTOGRAM
pc_histogram[pc]++;
#endif
}
// This is expected to be inlined by the compiler so each use of execute_insn
// includes a duplicated body of the function to get separate fetch.func
// function calls.
static reg_t execute_insn(processor_t* p, reg_t pc, insn_fetch_t fetch)
{
commit_log_reset(p);
commit_log_stash_privilege(p);
reg_t npc;
try {
npc = fetch.func(p, fetch.insn, pc);
if (npc != PC_SERIALIZE_BEFORE) {
#ifdef RISCV_ENABLE_COMMITLOG
if (p->get_log_commits_enabled()) {
commit_log_print_insn(p, pc, fetch.insn);
}
#endif
}
#ifdef RISCV_ENABLE_COMMITLOG
} catch(mem_trap_t& t) {
//handle segfault in midlle of vector load/store
if (p->get_log_commits_enabled()) {
for (auto item : p->get_state()->log_reg_write) {
if ((item.first & 3) == 3) {
commit_log_print_insn(p, pc, fetch.insn);
break;
}
}
}
throw;
#endif
} catch(...) {
throw;
}
p->update_histogram(pc);
return npc;
}
bool processor_t::slow_path()
{
return debug || state.single_step != state.STEP_NONE || state.debug_mode;
}
// fetch/decode/execute loop
void processor_t::step(size_t n)
{
if (!state.debug_mode) {
if (halt_request == HR_REGULAR) {
enter_debug_mode(DCSR_CAUSE_DEBUGINT);
} else if (halt_request == HR_GROUP) {
enter_debug_mode(DCSR_CAUSE_GROUP);
} // !!!The halt bit in DCSR is deprecated.
else if (state.dcsr.halt) {
enter_debug_mode(DCSR_CAUSE_HALT);
}
}
while (n > 0) {
size_t instret = 0;
reg_t pc = state.pc;
mmu_t* _mmu = mmu;
#define advance_pc() \
if (unlikely(invalid_pc(pc))) { \
switch (pc) { \
case PC_SERIALIZE_BEFORE: state.serialized = true; break; \
case PC_SERIALIZE_AFTER: ++instret; break; \
case PC_SERIALIZE_WFI: n = ++instret; break; \
default: abort(); \
} \
pc = state.pc; \
break; \
} else { \
state.pc = pc; \
instret++; \
}
try
{
take_pending_interrupt();
if (unlikely(slow_path()))
{
while (instret < n)
{
if (unlikely(!state.serialized && state.single_step == state.STEP_STEPPED)) {
state.single_step = state.STEP_NONE;
if (!state.debug_mode) {
enter_debug_mode(DCSR_CAUSE_STEP);
// enter_debug_mode changed state.pc, so we can't just continue.
break;
}
}
if (unlikely(state.single_step == state.STEP_STEPPING)) {
state.single_step = state.STEP_STEPPED;
}
insn_fetch_t fetch = mmu->load_insn(pc);
if (debug && !state.serialized)
disasm(fetch.insn);
pc = execute_insn(this, pc, fetch);
advance_pc();
}
}
else while (instret < n)
{
// This code uses a modified Duff's Device to improve the performance
// of executing instructions. While typical Duff's Devices are used
// for software pipelining, the switch statement below primarily
// benefits from separate call points for the fetch.func function call
// found in each execute_insn. This function call is an indirect jump
// that depends on the current instruction. By having an indirect jump
// dedicated for each icache entry, you improve the performance of the
// host's next address predictor. Each case in the switch statement
// allows for the program flow to contine to the next case if it
// corresponds to the next instruction in the program and instret is
// still less than n.
//
// According to Andrew Waterman's recollection, this optimization
// resulted in approximately a 2x performance increase.
// This figures out where to jump to in the switch statement
size_t idx = _mmu->icache_index(pc);
// This gets the cached decoded instruction from the MMU. If the MMU
// does not have the current pc cached, it will refill the MMU and
// return the correct entry. ic_entry->data.func is the C++ function
// corresponding to the instruction.
auto ic_entry = _mmu->access_icache(pc);
// This macro is included in "icache.h" included within the switch
// statement below. The indirect jump corresponding to the instruction
// is located within the execute_insn() function call.
#define ICACHE_ACCESS(i) { \
insn_fetch_t fetch = ic_entry->data; \
pc = execute_insn(this, pc, fetch); \
ic_entry = ic_entry->next; \
if (i == mmu_t::ICACHE_ENTRIES-1) break; \
if (unlikely(ic_entry->tag != pc)) break; \
if (unlikely(instret+1 == n)) break; \
instret++; \
state.pc = pc; \
}
// This switch statement implements the modified Duff's device as
// explained above.
switch (idx) {
// "icache.h" is generated by the gen_icache script
#include "icache.h"
}
advance_pc();
}
}
catch(trap_t& t)
{
take_trap(t, pc);
n = instret;
if (unlikely(state.single_step == state.STEP_STEPPED)) {
state.single_step = state.STEP_NONE;
enter_debug_mode(DCSR_CAUSE_STEP);
}
}
catch (trigger_matched_t& t)
{
if (mmu->matched_trigger) {
// This exception came from the MMU. That means the instruction hasn't
// fully executed yet. We start it again, but this time it won't throw
// an exception because matched_trigger is already set. (All memory
// instructions are idempotent so restarting is safe.)
insn_fetch_t fetch = mmu->load_insn(pc);
pc = execute_insn(this, pc, fetch);
advance_pc();
delete mmu->matched_trigger;
mmu->matched_trigger = NULL;
}
switch (state.mcontrol[t.index].action) {
case ACTION_DEBUG_MODE:
enter_debug_mode(DCSR_CAUSE_HWBP);
break;
case ACTION_DEBUG_EXCEPTION: {
mem_trap_t trap(CAUSE_BREAKPOINT, t.address);
take_trap(trap, pc);
break;
}
default:
abort();
}
}
catch (wait_for_interrupt_t &t)
{
// Return to the outer simulation loop, which gives other devices/harts a
// chance to generate interrupts.
//
// In the debug ROM this prevents us from wasting time looping, but also
// allows us to switch to other threads only once per idle loop in case
// there is activity.
n = instret;
}
state.minstret += instret;
n -= instret;
}
}
|