aboutsummaryrefslogtreecommitdiff
path: root/softfloat/SoftFloat-3/source/OLD-softfloat.c
diff options
context:
space:
mode:
Diffstat (limited to 'softfloat/SoftFloat-3/source/OLD-softfloat.c')
-rwxr-xr-xsoftfloat/SoftFloat-3/source/OLD-softfloat.c2962
1 files changed, 2962 insertions, 0 deletions
diff --git a/softfloat/SoftFloat-3/source/OLD-softfloat.c b/softfloat/SoftFloat-3/source/OLD-softfloat.c
new file mode 100755
index 0000000..0096550
--- /dev/null
+++ b/softfloat/SoftFloat-3/source/OLD-softfloat.c
@@ -0,0 +1,2962 @@
+
+/*============================================================================
+
+This C source file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
+Package, Release 2b.
+
+Written by John R. Hauser. This work was made possible in part by the
+International Computer Science Institute, located at Suite 600, 1947 Center
+Street, Berkeley, California 94704. Funding was partially provided by the
+National Science Foundation under grant MIP-9311980. The original version
+of this code was written as part of a project to build a fixed-point vector
+processor in collaboration with the University of California at Berkeley,
+overseen by Profs. Nelson Morgan and John Wawrzynek. More information
+is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
+arithmetic/SoftFloat.html'.
+
+THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort has
+been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
+RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
+AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
+COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
+EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
+INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
+OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
+
+Derivative works are acceptable, even for commercial purposes, so long as
+(1) the source code for the derivative work includes prominent notice that
+the work is derivative, and (2) the source code includes prominent notice with
+these four paragraphs for those parts of this code that are retained.
+
+=============================================================================*/
+
+#include "milieu.h"
+#include "softfloat.h"
+
+/*----------------------------------------------------------------------------
+| Primitive arithmetic functions, including multi-word arithmetic, and
+| division and square root approximations. (Can be specialized to target if
+| desired.)
+*----------------------------------------------------------------------------*/
+#include "softfloat-macros"
+
+/*----------------------------------------------------------------------------
+| Functions and definitions to determine: (1) whether tininess for underflow
+| is detected before or after rounding by default, (2) what (if anything)
+| happens when exceptions are raised, (3) how signaling NaNs are distinguished
+| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs
+| are propagated from function inputs to output. These details are target-
+| specific.
+*----------------------------------------------------------------------------*/
+#include "softfloat-specialize"
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the fraction bits of the extended double-precision floating-point
+| value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits64 extractFloatx80Frac( floatx80 a )
+{
+
+ return a.low;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the extended double-precision floating-point
+| value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int32 extractFloatx80Exp( floatx80 a )
+{
+
+ return a.high & 0x7FFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the extended double-precision floating-point value
+| `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloatx80Sign( floatx80 a )
+{
+
+ return a.high>>15;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal extended double-precision floating-point value
+| represented by the denormalized significand `aSig'. The normalized exponent
+| and significand are stored at the locations pointed to by `zExpPtr' and
+| `zSigPtr', respectively.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr )
+{
+ int8 shiftCount;
+
+ shiftCount = countLeadingZeros64( aSig );
+ *zSigPtr = aSig<<shiftCount;
+ *zExpPtr = 1 - shiftCount;
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an
+| extended double-precision floating-point value, returning the result.
+*----------------------------------------------------------------------------*/
+
+INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig )
+{
+ floatx80 z;
+
+ z.low = zSig;
+ z.high = ( ( (bits16) zSign )<<15 ) + zExp;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and extended significand formed by the concatenation of `zSig0' and `zSig1',
+| and returns the proper extended double-precision floating-point value
+| corresponding to the abstract input. Ordinarily, the abstract value is
+| rounded and packed into the extended double-precision format, with the
+| inexact exception raised if the abstract input cannot be represented
+| exactly. However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned. If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal extended
+| double-precision floating-point number.
+| If `roundingPrecision' is 32 or 64, the result is rounded to the same
+| number of bits as single or double precision, respectively. Otherwise, the
+| result is rounded to the full precision of the extended double-precision
+| format.
+| The input significand must be normalized or smaller. If the input
+| significand is not normalized, `zExp' must be 0; in that case, the result
+| returned is a subnormal number, and it must not require rounding. The
+| handling of underflow and overflow follows the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80
+ roundAndPackFloatx80(
+ int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+ int64 roundIncrement, roundMask, roundBits;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ if ( roundingPrecision == 80 ) goto precision80;
+ if ( roundingPrecision == 64 ) {
+ roundIncrement = LIT64( 0x0000000000000400 );
+ roundMask = LIT64( 0x00000000000007FF );
+ }
+ else if ( roundingPrecision == 32 ) {
+ roundIncrement = LIT64( 0x0000008000000000 );
+ roundMask = LIT64( 0x000000FFFFFFFFFF );
+ }
+ else {
+ goto precision80;
+ }
+ zSig0 |= ( zSig1 != 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ roundIncrement = 0;
+ }
+ else {
+ roundIncrement = roundMask;
+ if ( zSign ) {
+ if ( roundingMode == float_round_up ) roundIncrement = 0;
+ }
+ else {
+ if ( roundingMode == float_round_down ) roundIncrement = 0;
+ }
+ }
+ }
+ roundBits = zSig0 & roundMask;
+ if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) )
+ ) {
+ goto overflow;
+ }
+ if ( zExp <= 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < 0 )
+ || ( zSig0 <= zSig0 + roundIncrement );
+ shift64RightJamming( zSig0, 1 - zExp, &zSig0 );
+ zExp = 0;
+ roundBits = zSig0 & roundMask;
+ if ( isTiny && roundBits ) float_raise( float_flag_underflow );
+ if ( roundBits ) float_exception_flags |= float_flag_inexact;
+ zSig0 += roundIncrement;
+ if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if ( roundBits ) float_exception_flags |= float_flag_inexact;
+ zSig0 += roundIncrement;
+ if ( zSig0 < roundIncrement ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ roundIncrement = roundMask + 1;
+ if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) {
+ roundMask |= roundIncrement;
+ }
+ zSig0 &= ~ roundMask;
+ if ( zSig0 == 0 ) zExp = 0;
+ return packFloatx80( zSign, zExp, zSig0 );
+ precision80:
+ increment = ( (sbits64) zSig1 < 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ increment = 0;
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig1;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig1;
+ }
+ }
+ }
+ if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) {
+ if ( ( 0x7FFE < zExp )
+ || ( ( zExp == 0x7FFE )
+ && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) )
+ && increment
+ )
+ ) {
+ roundMask = 0;
+ overflow:
+ float_raise( float_flag_overflow | float_flag_inexact );
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return packFloatx80( zSign, 0x7FFE, ~ roundMask );
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( zExp <= 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < 0 )
+ || ! increment
+ || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) );
+ shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 );
+ zExp = 0;
+ if ( isTiny && zSig1 ) float_raise( float_flag_underflow );
+ if ( zSig1 ) float_exception_flags |= float_flag_inexact;
+ if ( roundNearestEven ) {
+ increment = ( (sbits64) zSig1 < 0 );
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig1;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig1;
+ }
+ }
+ if ( increment ) {
+ ++zSig0;
+ zSig0 &=
+ ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ if ( (sbits64) zSig0 < 0 ) zExp = 1;
+ }
+ return packFloatx80( zSign, zExp, zSig0 );
+ }
+ }
+ if ( zSig1 ) float_exception_flags |= float_flag_inexact;
+ if ( increment ) {
+ ++zSig0;
+ if ( zSig0 == 0 ) {
+ ++zExp;
+ zSig0 = LIT64( 0x8000000000000000 );
+ }
+ else {
+ zSig0 &= ~ ( ( (bits64) ( zSig1<<1 ) == 0 ) & roundNearestEven );
+ }
+ }
+ else {
+ if ( zSig0 == 0 ) zExp = 0;
+ }
+ return packFloatx80( zSign, zExp, zSig0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent
+| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1',
+| and returns the proper extended double-precision floating-point value
+| corresponding to the abstract input. This routine is just like
+| `roundAndPackFloatx80' except that the input significand does not have to be
+| normalized.
+*----------------------------------------------------------------------------*/
+
+static floatx80
+ normalizeRoundAndPackFloatx80(
+ int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1
+ )
+{
+ int8 shiftCount;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 64;
+ }
+ shiftCount = countLeadingZeros64( zSig0 );
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ zExp -= shiftCount;
+ return
+ roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the least-significant 64 fraction bits of the quadruple-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits64 extractFloat128Frac1( float128 a )
+{
+
+ return a.low;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the most-significant 48 fraction bits of the quadruple-precision
+| floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE bits64 extractFloat128Frac0( float128 a )
+{
+
+ return a.high & LIT64( 0x0000FFFFFFFFFFFF );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the exponent bits of the quadruple-precision floating-point value
+| `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE int32 extractFloat128Exp( float128 a )
+{
+
+ return ( a.high>>48 ) & 0x7FFF;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the sign bit of the quadruple-precision floating-point value `a'.
+*----------------------------------------------------------------------------*/
+
+INLINE flag extractFloat128Sign( float128 a )
+{
+
+ return a.high>>63;
+
+}
+
+/*----------------------------------------------------------------------------
+| Normalizes the subnormal quadruple-precision floating-point value
+| represented by the denormalized significand formed by the concatenation of
+| `aSig0' and `aSig1'. The normalized exponent is stored at the location
+| pointed to by `zExpPtr'. The most significant 49 bits of the normalized
+| significand are stored at the location pointed to by `zSig0Ptr', and the
+| least significant 64 bits of the normalized significand are stored at the
+| location pointed to by `zSig1Ptr'.
+*----------------------------------------------------------------------------*/
+
+static void
+ normalizeFloat128Subnormal(
+ bits64 aSig0,
+ bits64 aSig1,
+ int32 *zExpPtr,
+ bits64 *zSig0Ptr,
+ bits64 *zSig1Ptr
+ )
+{
+ int8 shiftCount;
+
+ if ( aSig0 == 0 ) {
+ shiftCount = countLeadingZeros64( aSig1 ) - 15;
+ if ( shiftCount < 0 ) {
+ *zSig0Ptr = aSig1>>( - shiftCount );
+ *zSig1Ptr = aSig1<<( shiftCount & 63 );
+ }
+ else {
+ *zSig0Ptr = aSig1<<shiftCount;
+ *zSig1Ptr = 0;
+ }
+ *zExpPtr = - shiftCount - 63;
+ }
+ else {
+ shiftCount = countLeadingZeros64( aSig0 ) - 15;
+ shortShift128Left( aSig0, aSig1, shiftCount, zSig0Ptr, zSig1Ptr );
+ *zExpPtr = 1 - shiftCount;
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Packs the sign `zSign', the exponent `zExp', and the significand formed
+| by the concatenation of `zSig0' and `zSig1' into a quadruple-precision
+| floating-point value, returning the result. After being shifted into the
+| proper positions, the three fields `zSign', `zExp', and `zSig0' are simply
+| added together to form the most significant 32 bits of the result. This
+| means that any integer portion of `zSig0' will be added into the exponent.
+| Since a properly normalized significand will have an integer portion equal
+| to 1, the `zExp' input should be 1 less than the desired result exponent
+| whenever `zSig0' and `zSig1' concatenated form a complete, normalized
+| significand.
+*----------------------------------------------------------------------------*/
+
+INLINE float128
+ packFloat128( flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
+{
+ float128 z;
+
+ z.low = zSig1;
+ z.high = ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<48 ) + zSig0;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and extended significand formed by the concatenation of `zSig0', `zSig1',
+| and `zSig2', and returns the proper quadruple-precision floating-point value
+| corresponding to the abstract input. Ordinarily, the abstract value is
+| simply rounded and packed into the quadruple-precision format, with the
+| inexact exception raised if the abstract input cannot be represented
+| exactly. However, if the abstract value is too large, the overflow and
+| inexact exceptions are raised and an infinity or maximal finite value is
+| returned. If the abstract value is too small, the input value is rounded to
+| a subnormal number, and the underflow and inexact exceptions are raised if
+| the abstract input cannot be represented exactly as a subnormal quadruple-
+| precision floating-point number.
+| The input significand must be normalized or smaller. If the input
+| significand is not normalized, `zExp' must be 0; in that case, the result
+| returned is a subnormal number, and it must not require rounding. In the
+| usual case that the input significand is normalized, `zExp' must be 1 less
+| than the ``true'' floating-point exponent. The handling of underflow and
+| overflow follows the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128
+ roundAndPackFloat128(
+ flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1, bits64 zSig2 )
+{
+ int8 roundingMode;
+ flag roundNearestEven, increment, isTiny;
+
+ roundingMode = float_rounding_mode;
+ roundNearestEven = ( roundingMode == float_round_nearest_even );
+ increment = ( (sbits64) zSig2 < 0 );
+ if ( ! roundNearestEven ) {
+ if ( roundingMode == float_round_to_zero ) {
+ increment = 0;
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig2;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig2;
+ }
+ }
+ }
+ if ( 0x7FFD <= (bits32) zExp ) {
+ if ( ( 0x7FFD < zExp )
+ || ( ( zExp == 0x7FFD )
+ && eq128(
+ LIT64( 0x0001FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF ),
+ zSig0,
+ zSig1
+ )
+ && increment
+ )
+ ) {
+ float_raise( float_flag_overflow | float_flag_inexact );
+ if ( ( roundingMode == float_round_to_zero )
+ || ( zSign && ( roundingMode == float_round_up ) )
+ || ( ! zSign && ( roundingMode == float_round_down ) )
+ ) {
+ return
+ packFloat128(
+ zSign,
+ 0x7FFE,
+ LIT64( 0x0000FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF )
+ );
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( zExp < 0 ) {
+ isTiny =
+ ( float_detect_tininess == float_tininess_before_rounding )
+ || ( zExp < -1 )
+ || ! increment
+ || lt128(
+ zSig0,
+ zSig1,
+ LIT64( 0x0001FFFFFFFFFFFF ),
+ LIT64( 0xFFFFFFFFFFFFFFFF )
+ );
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, - zExp, &zSig0, &zSig1, &zSig2 );
+ zExp = 0;
+ if ( isTiny && zSig2 ) float_raise( float_flag_underflow );
+ if ( roundNearestEven ) {
+ increment = ( (sbits64) zSig2 < 0 );
+ }
+ else {
+ if ( zSign ) {
+ increment = ( roundingMode == float_round_down ) && zSig2;
+ }
+ else {
+ increment = ( roundingMode == float_round_up ) && zSig2;
+ }
+ }
+ }
+ }
+ if ( zSig2 ) float_exception_flags |= float_flag_inexact;
+ if ( increment ) {
+ add128( zSig0, zSig1, 0, 1, &zSig0, &zSig1 );
+ zSig1 &= ~ ( ( zSig2 + zSig2 == 0 ) & roundNearestEven );
+ }
+ else {
+ if ( ( zSig0 | zSig1 ) == 0 ) zExp = 0;
+ }
+ return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Takes an abstract floating-point value having sign `zSign', exponent `zExp',
+| and significand formed by the concatenation of `zSig0' and `zSig1', and
+| returns the proper quadruple-precision floating-point value corresponding
+| to the abstract input. This routine is just like `roundAndPackFloat128'
+| except that the input significand has fewer bits and does not have to be
+| normalized. In all cases, `zExp' must be 1 less than the ``true'' floating-
+| point exponent.
+*----------------------------------------------------------------------------*/
+
+static float128
+ normalizeRoundAndPackFloat128(
+ flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 )
+{
+ int8 shiftCount;
+ bits64 zSig2;
+
+ if ( zSig0 == 0 ) {
+ zSig0 = zSig1;
+ zSig1 = 0;
+ zExp -= 64;
+ }
+ shiftCount = countLeadingZeros64( zSig0 ) - 15;
+ if ( 0 <= shiftCount ) {
+ zSig2 = 0;
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ }
+ else {
+ shift128ExtraRightJamming(
+ zSig0, zSig1, 0, - shiftCount, &zSig0, &zSig1, &zSig2 );
+ }
+ zExp -= shiftCount;
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+#endif
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a'
+| to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 int32_to_floatx80( int32 a )
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ bits64 zSig;
+
+ if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 32;
+ zSig = absA;
+ return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 32-bit two's complement integer `a' to
+| the quadruple-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 int32_to_float128( int32 a )
+{
+ flag zSign;
+ uint32 absA;
+ int8 shiftCount;
+ bits64 zSig0;
+
+ if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros32( absA ) + 17;
+ zSig0 = absA;
+ return packFloat128( zSign, 0x402E - shiftCount, zSig0<<shiftCount, 0 );
+
+}
+
+#endif
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a'
+| to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 int64_to_floatx80( int64 a )
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+
+ if ( a == 0 ) return packFloatx80( 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA );
+ return packFloatx80( zSign, 0x403E - shiftCount, absA<<shiftCount );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the 64-bit two's complement integer `a' to
+| the quadruple-precision floating-point format. The conversion is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 int64_to_float128( int64 a )
+{
+ flag zSign;
+ uint64 absA;
+ int8 shiftCount;
+ int32 zExp;
+ bits64 zSig0, zSig1;
+
+ if ( a == 0 ) return packFloat128( 0, 0, 0, 0 );
+ zSign = ( a < 0 );
+ absA = zSign ? - a : a;
+ shiftCount = countLeadingZeros64( absA ) + 49;
+ zExp = 0x406E - shiftCount;
+ if ( 64 <= shiftCount ) {
+ zSig1 = 0;
+ zSig0 = absA;
+ shiftCount -= 64;
+ }
+ else {
+ zSig1 = absA;
+ zSig0 = 0;
+ }
+ shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 );
+ return packFloat128( zSign, zExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float32_to_floatx80( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) );
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ }
+ aSig |= 0x00800000;
+ return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the single-precision floating-point value
+| `a' to the double-precision floating-point format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float32_to_float128( float32 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits32 aSig;
+
+ aSig = extractFloat32Frac( a );
+ aExp = extractFloat32Exp( a );
+ aSign = extractFloat32Sign( a );
+ if ( aExp == 0xFF ) {
+ if ( aSig ) return commonNaNToFloat128( float32ToCommonNaN( a ) );
+ return packFloat128( aSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+ normalizeFloat32Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ return packFloat128( aSign, aExp + 0x3F80, ( (bits64) aSig )<<25, 0 );
+
+}
+
+#endif
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the extended double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float64_to_floatx80( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) );
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ }
+ return
+ packFloatx80(
+ aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the double-precision floating-point value
+| `a' to the quadruple-precision floating-point format. The conversion is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float64_to_float128( float64 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig, zSig0, zSig1;
+
+ aSig = extractFloat64Frac( a );
+ aExp = extractFloat64Exp( a );
+ aSign = extractFloat64Sign( a );
+ if ( aExp == 0x7FF ) {
+ if ( aSig ) return commonNaNToFloat128( float64ToCommonNaN( a ) );
+ return packFloat128( aSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloat128( aSign, 0, 0, 0 );
+ normalizeFloat64Subnormal( aSig, &aExp, &aSig );
+ --aExp;
+ }
+ shift128Right( aSig, 0, 4, &zSig0, &zSig1 );
+ return packFloat128( aSign, aExp + 0x3C00, zSig0, zSig1 );
+
+}
+
+#endif
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 32-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic---which means in particular that the conversion
+| is rounded according to the current rounding mode. If `a' is a NaN, the
+| largest positive integer is returned. Otherwise, if the conversion
+| overflows, the largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 floatx80_to_int32( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ shiftCount = 0x4037 - aExp;
+ if ( shiftCount <= 0 ) shiftCount = 1;
+ shift64RightJamming( aSig, shiftCount, &aSig );
+ return roundAndPackInt32( aSign, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 32-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic, except that the conversion is always rounded
+| toward zero. If `a' is a NaN, the largest positive integer is returned.
+| Otherwise, if the conversion overflows, the largest integer with the same
+| sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 floatx80_to_int32_round_to_zero( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig, savedASig;
+ int32 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( 0x401E < aExp ) {
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FFF ) {
+ if ( aExp || aSig ) float_exception_flags |= float_flag_inexact;
+ return 0;
+ }
+ shiftCount = 0x403E - aExp;
+ savedASig = aSig;
+ aSig >>= shiftCount;
+ z = aSig;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig<<shiftCount ) != savedASig ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 64-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic---which means in particular that the conversion
+| is rounded according to the current rounding mode. If `a' is a NaN,
+| the largest positive integer is returned. Otherwise, if the conversion
+| overflows, the largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 floatx80_to_int64( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig, aSigExtra;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ shiftCount = 0x403E - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( shiftCount ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign
+ || ( ( aExp == 0x7FFF )
+ && ( aSig != LIT64( 0x8000000000000000 ) ) )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ aSigExtra = 0;
+ }
+ else {
+ shift64ExtraRightJamming( aSig, 0, shiftCount, &aSig, &aSigExtra );
+ }
+ return roundAndPackInt64( aSign, aSig, aSigExtra );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the 64-bit two's complement integer format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic, except that the conversion is always rounded
+| toward zero. If `a' is a NaN, the largest positive integer is returned.
+| Otherwise, if the conversion overflows, the largest integer with the same
+| sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 floatx80_to_int64_round_to_zero( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig;
+ int64 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ shiftCount = aExp - 0x403E;
+ if ( 0 <= shiftCount ) {
+ aSig &= LIT64( 0x7FFFFFFFFFFFFFFF );
+ if ( ( a.high != 0xC03E ) || aSig ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0x7FFF ) && aSig ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ else if ( aExp < 0x3FFF ) {
+ if ( aExp | aSig ) float_exception_flags |= float_flag_inexact;
+ return 0;
+ }
+ z = aSig>>( - shiftCount );
+ if ( (bits64) ( aSig<<( shiftCount & 63 ) ) ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the single-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 floatx80_to_float32( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat32( floatx80ToCommonNaN( a ) );
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ shift64RightJamming( aSig, 33, &aSig );
+ if ( aExp || aSig ) aExp -= 0x3F81;
+ return roundAndPackFloat32( aSign, aExp, aSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the double-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 floatx80_to_float64( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig, zSig;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat64( floatx80ToCommonNaN( a ) );
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ shift64RightJamming( aSig, 1, &zSig );
+ if ( aExp || aSig ) aExp -= 0x3C01;
+ return roundAndPackFloat64( aSign, aExp, zSig );
+
+}
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the extended double-precision floating-
+| point value `a' to the quadruple-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 floatx80_to_float128( floatx80 a )
+{
+ flag aSign;
+ int16 aExp;
+ bits64 aSig, zSig0, zSig1;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) {
+ return commonNaNToFloat128( floatx80ToCommonNaN( a ) );
+ }
+ shift128Right( aSig<<1, 0, 16, &zSig0, &zSig1 );
+ return packFloat128( aSign, aExp, zSig0, zSig1 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Rounds the extended double-precision floating-point value `a' to an integer,
+| and returns the result as an extended quadruple-precision floating-point
+| value. The operation is performed according to the IEC/IEEE Standard for
+| Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_round_to_int( floatx80 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ floatx80 z;
+
+ aExp = extractFloatx80Exp( a );
+ if ( 0x403E <= aExp ) {
+ if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) {
+ return propagateFloatx80NaN( a, a );
+ }
+ return a;
+ }
+ if ( aExp < 0x3FFF ) {
+ if ( ( aExp == 0 )
+ && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) {
+ return a;
+ }
+ float_exception_flags |= float_flag_inexact;
+ aSign = extractFloatx80Sign( a );
+ switch ( float_rounding_mode ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 )
+ ) {
+ return
+ packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ?
+ packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) )
+ : packFloatx80( 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloatx80( 1, 0, 0 )
+ : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) );
+ }
+ return packFloatx80( aSign, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x403E - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ z.low += lastBitMask>>1;
+ if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) {
+ z.low += roundBitsMask;
+ }
+ }
+ z.low &= ~ roundBitsMask;
+ if ( z.low == 0 ) {
+ ++z.high;
+ z.low = LIT64( 0x8000000000000000 );
+ }
+ if ( z.low != a.low ) float_exception_flags |= float_flag_inexact;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the extended double-
+| precision floating-point values `a' and `b'. If `zSign' is 1, the sum is
+| negated before being returned. `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ return a;
+ }
+ zSig1 = 0;
+ zSig0 = aSig + bSig;
+ if ( aExp == 0 ) {
+ normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 );
+ goto roundAndPack;
+ }
+ zExp = aExp;
+ goto shiftRight1;
+ }
+ zSig0 = aSig + bSig;
+ if ( (sbits64) zSig0 < 0 ) goto roundAndPack;
+ shiftRight1:
+ shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ zSig0 |= LIT64( 0x8000000000000000 );
+ ++zExp;
+ roundAndPack:
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the extended
+| double-precision floating-point values `a' and `b'. If `zSign' is 1, the
+| difference is negated before being returned. `zSign' is ignored if the
+| result is a NaN. The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ int32 expDiff;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( ( aSig | bSig )<<1 ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ zSig1 = 0;
+ if ( bSig < aSig ) goto aBigger;
+ if ( aSig < bSig ) goto bBigger;
+ return packFloatx80( float_rounding_mode == float_round_down, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) ++expDiff;
+ shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 );
+ bBigger:
+ sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) --expDiff;
+ shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 );
+ aBigger:
+ sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ return
+ normalizeRoundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the extended double-precision floating-point
+| values `a' and `b'. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_add( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return addFloatx80Sigs( a, b, aSign );
+ }
+ else {
+ return subFloatx80Sigs( a, b, aSign );
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the extended double-precision floating-
+| point values `a' and `b'. The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_sub( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign == bSign ) {
+ return subFloatx80Sigs( a, b, aSign );
+ }
+ else {
+ return addFloatx80Sigs( a, b, aSign );
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the extended double-precision floating-
+| point values `a' and `b'. The operation is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_mul( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 )
+ || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ if ( ( bExp | bSig ) == 0 ) goto invalid;
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ zExp = aExp + bExp - 0x3FFE;
+ mul64To128( aSig, bSig, &zSig0, &zSig1 );
+ if ( 0 < (sbits64) zSig0 ) {
+ shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 );
+ --zExp;
+ }
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the extended double-precision floating-point
+| value `a' by the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_div( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig, bSig, zSig0, zSig1;
+ bits64 rem0, rem1, rem2, term0, term1, term2;
+ floatx80 z;
+
+ aSig = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ goto invalid;
+ }
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return packFloatx80( zSign, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ if ( ( aExp | aSig ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 );
+ normalizeFloatx80Subnormal( aSig, &aExp, &aSig );
+ }
+ zExp = aExp - bExp + 0x3FFE;
+ rem1 = 0;
+ if ( bSig <= aSig ) {
+ shift128Right( aSig, 0, 1, &aSig, &rem1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv128To64( aSig, rem1, bSig );
+ mul64To128( bSig, zSig0, &term0, &term1 );
+ sub128( aSig, rem1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, bSig );
+ if ( (bits64) ( zSig1<<1 ) <= 8 ) {
+ mul64To128( bSig, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ add128( rem1, rem2, 0, bSig, &rem1, &rem2 );
+ }
+ zSig1 |= ( ( rem1 | rem2 ) != 0 );
+ }
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the extended double-precision floating-point value
+| `a' with respect to the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_rem( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, expDiff;
+ bits64 aSig0, aSig1, bSig;
+ bits64 q, term0, term1, alternateASig0, alternateASig1;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ bSig = extractFloatx80Frac( b );
+ bExp = extractFloatx80Exp( b );
+ bSign = extractFloatx80Sign( b );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig0<<1 )
+ || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) {
+ return propagateFloatx80NaN( a, b );
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( bSig == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ normalizeFloatx80Subnormal( bSig, &bExp, &bSig );
+ }
+ if ( aExp == 0 ) {
+ if ( (bits64) ( aSig0<<1 ) == 0 ) return a;
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ bSig |= LIT64( 0x8000000000000000 );
+ zSign = aSign;
+ expDiff = aExp - bExp;
+ aSig1 = 0;
+ if ( expDiff < 0 ) {
+ if ( expDiff < -1 ) return a;
+ shift128Right( aSig0, 0, 1, &aSig0, &aSig1 );
+ expDiff = 0;
+ }
+ q = ( bSig <= aSig0 );
+ if ( q ) aSig0 -= bSig;
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ mul64To128( bSig, q, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 );
+ expDiff -= 62;
+ }
+ expDiff += 64;
+ if ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig );
+ q = ( 2 < q ) ? q - 2 : 0;
+ q >>= 64 - expDiff;
+ mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 );
+ while ( le128( term0, term1, aSig0, aSig1 ) ) {
+ ++q;
+ sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 );
+ }
+ }
+ else {
+ term1 = 0;
+ term0 = bSig;
+ }
+ sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 );
+ if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 )
+ && ( q & 1 ) )
+ ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ zSign = ! zSign;
+ }
+ return
+ normalizeRoundAndPackFloatx80(
+ 80, zSign, bExp + expDiff, aSig0, aSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the extended double-precision floating-point
+| value `a'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 floatx80_sqrt( floatx80 a )
+{
+ flag aSign;
+ int32 aExp, zExp;
+ bits64 aSig0, aSig1, zSig0, zSig1, doubleZSig0;
+ bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ floatx80 z;
+
+ aSig0 = extractFloatx80Frac( a );
+ aExp = extractFloatx80Exp( a );
+ aSign = extractFloatx80Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a );
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 ) == 0 ) return a;
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = floatx80_default_nan_low;
+ z.high = floatx80_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 );
+ normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 );
+ }
+ zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF;
+ zSig0 = estimateSqrt32( aExp, aSig0>>32 );
+ shift128Right( aSig0, 0, 2 + ( aExp & 1 ), &aSig0, &aSig1 );
+ zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+ doubleZSig0 = zSig0<<1;
+ mul64To128( zSig0, zSig0, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ doubleZSig0 -= 2;
+ add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+ if ( ( zSig1 & LIT64( 0x3FFFFFFFFFFFFFFF ) ) <= 5 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul64To128( zSig1, zSig1, &term2, &term3 );
+ sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+ term3 |= 1;
+ term2 |= doubleZSig0;
+ add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shortShift128Left( 0, zSig1, 1, &zSig0, &zSig1 );
+ zSig0 |= doubleZSig0;
+ return
+ roundAndPackFloatx80(
+ floatx80_rounding_precision, 0, zExp, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| equal to the corresponding value `b', and 0 otherwise. The comparison is
+| performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_eq( floatx80 a, floatx80 b )
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| less than or equal to the corresponding value `b', and 0 otherwise. The
+| comparison is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_le( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is
+| less than the corresponding value `b', and 0 otherwise. The comparison
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_lt( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is equal
+| to the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_eq_signaling( floatx80 a, floatx80 b )
+{
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is less
+| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs
+| do not cause an exception. Otherwise, the comparison is performed according
+| to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_le_quiet( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the extended double-precision floating-point value `a' is less
+| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause
+| an exception. Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag floatx80_lt_quiet( floatx80 a, floatx80 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloatx80Exp( a ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( a )<<1 ) )
+ || ( ( extractFloatx80Exp( b ) == 0x7FFF )
+ && (bits64) ( extractFloatx80Frac( b )<<1 ) )
+ ) {
+ if ( floatx80_is_signaling_nan( a )
+ || floatx80_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloatx80Sign( a );
+ bSign = extractFloatx80Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+#endif
+
+#ifdef FLOAT128
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 32-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int32 float128_to_int32( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) aSign = 0;
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ aSig0 |= ( aSig1 != 0 );
+ shiftCount = 0x4028 - aExp;
+ if ( 0 < shiftCount ) shift64RightJamming( aSig0, shiftCount, &aSig0 );
+ return roundAndPackInt32( aSign, aSig0 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 32-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero. If
+| `a' is a NaN, the largest positive integer is returned. Otherwise, if the
+| conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int32 float128_to_int32_round_to_zero( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1, savedASig;
+ int32 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ aSig0 |= ( aSig1 != 0 );
+ if ( 0x401E < aExp ) {
+ if ( ( aExp == 0x7FFF ) && aSig0 ) aSign = 0;
+ goto invalid;
+ }
+ else if ( aExp < 0x3FFF ) {
+ if ( aExp || aSig0 ) float_exception_flags |= float_flag_inexact;
+ return 0;
+ }
+ aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = 0x402F - aExp;
+ savedASig = aSig0;
+ aSig0 >>= shiftCount;
+ z = aSig0;
+ if ( aSign ) z = - z;
+ if ( ( z < 0 ) ^ aSign ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ return aSign ? (sbits32) 0x80000000 : 0x7FFFFFFF;
+ }
+ if ( ( aSig0<<shiftCount ) != savedASig ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 64-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic---which means in particular that the conversion is rounded
+| according to the current rounding mode. If `a' is a NaN, the largest
+| positive integer is returned. Otherwise, if the conversion overflows, the
+| largest integer with the same sign as `a' is returned.
+*----------------------------------------------------------------------------*/
+
+int64 float128_to_int64( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = 0x402F - aExp;
+ if ( shiftCount <= 0 ) {
+ if ( 0x403E < aExp ) {
+ float_raise( float_flag_invalid );
+ if ( ! aSign
+ || ( ( aExp == 0x7FFF )
+ && ( aSig1 || ( aSig0 != LIT64( 0x0001000000000000 ) ) )
+ )
+ ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ shortShift128Left( aSig0, aSig1, - shiftCount, &aSig0, &aSig1 );
+ }
+ else {
+ shift64ExtraRightJamming( aSig0, aSig1, shiftCount, &aSig0, &aSig1 );
+ }
+ return roundAndPackInt64( aSign, aSig0, aSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the 64-bit two's complement integer format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic, except that the conversion is always rounded toward zero.
+| If `a' is a NaN, the largest positive integer is returned. Otherwise, if
+| the conversion overflows, the largest integer with the same sign as `a' is
+| returned.
+*----------------------------------------------------------------------------*/
+
+int64 float128_to_int64_round_to_zero( float128 a )
+{
+ flag aSign;
+ int32 aExp, shiftCount;
+ bits64 aSig0, aSig1;
+ int64 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp ) aSig0 |= LIT64( 0x0001000000000000 );
+ shiftCount = aExp - 0x402F;
+ if ( 0 < shiftCount ) {
+ if ( 0x403E <= aExp ) {
+ aSig0 &= LIT64( 0x0000FFFFFFFFFFFF );
+ if ( ( a.high == LIT64( 0xC03E000000000000 ) )
+ && ( aSig1 < LIT64( 0x0002000000000000 ) ) ) {
+ if ( aSig1 ) float_exception_flags |= float_flag_inexact;
+ }
+ else {
+ float_raise( float_flag_invalid );
+ if ( ! aSign || ( ( aExp == 0x7FFF ) && ( aSig0 | aSig1 ) ) ) {
+ return LIT64( 0x7FFFFFFFFFFFFFFF );
+ }
+ }
+ return (sbits64) LIT64( 0x8000000000000000 );
+ }
+ z = ( aSig0<<shiftCount ) | ( aSig1>>( ( - shiftCount ) & 63 ) );
+ if ( (bits64) ( aSig1<<shiftCount ) ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ }
+ else {
+ if ( aExp < 0x3FFF ) {
+ if ( aExp | aSig0 | aSig1 ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return 0;
+ }
+ z = aSig0>>( - shiftCount );
+ if ( aSig1
+ || ( shiftCount && (bits64) ( aSig0<<( shiftCount & 63 ) ) ) ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ }
+ if ( aSign ) z = - z;
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the single-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float32 float128_to_float32( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig0, aSig1;
+ bits32 zSig;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloat32( float128ToCommonNaN( a ) );
+ }
+ return packFloat32( aSign, 0xFF, 0 );
+ }
+ aSig0 |= ( aSig1 != 0 );
+ shift64RightJamming( aSig0, 18, &aSig0 );
+ zSig = aSig0;
+ if ( aExp || zSig ) {
+ zSig |= 0x40000000;
+ aExp -= 0x3F81;
+ }
+ return roundAndPackFloat32( aSign, aExp, zSig );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the double-precision floating-point format. The conversion
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float64 float128_to_float64( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloat64( float128ToCommonNaN( a ) );
+ }
+ return packFloat64( aSign, 0x7FF, 0 );
+ }
+ shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+ aSig0 |= ( aSig1 != 0 );
+ if ( aExp || aSig0 ) {
+ aSig0 |= LIT64( 0x4000000000000000 );
+ aExp -= 0x3C01;
+ }
+ return roundAndPackFloat64( aSign, aExp, aSig0 );
+
+}
+
+#ifdef FLOATX80
+
+/*----------------------------------------------------------------------------
+| Returns the result of converting the quadruple-precision floating-point
+| value `a' to the extended double-precision floating-point format. The
+| conversion is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+floatx80 float128_to_floatx80( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 aSig0, aSig1;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) {
+ return commonNaNToFloatx80( float128ToCommonNaN( a ) );
+ }
+ return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloatx80( aSign, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ else {
+ aSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shortShift128Left( aSig0, aSig1, 15, &aSig0, &aSig1 );
+ return roundAndPackFloatx80( 80, aSign, aExp, aSig0, aSig1 );
+
+}
+
+#endif
+
+/*----------------------------------------------------------------------------
+| Rounds the quadruple-precision floating-point value `a' to an integer, and
+| returns the result as a quadruple-precision floating-point value. The
+| operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_round_to_int( float128 a )
+{
+ flag aSign;
+ int32 aExp;
+ bits64 lastBitMask, roundBitsMask;
+ int8 roundingMode;
+ float128 z;
+
+ aExp = extractFloat128Exp( a );
+ if ( 0x402F <= aExp ) {
+ if ( 0x406F <= aExp ) {
+ if ( ( aExp == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) )
+ ) {
+ return propagateFloat128NaN( a, a );
+ }
+ return a;
+ }
+ lastBitMask = 1;
+ lastBitMask = ( lastBitMask<<( 0x406E - aExp ) )<<1;
+ roundBitsMask = lastBitMask - 1;
+ z = a;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ if ( lastBitMask ) {
+ add128( z.high, z.low, 0, lastBitMask>>1, &z.high, &z.low );
+ if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask;
+ }
+ else {
+ if ( (sbits64) z.low < 0 ) {
+ ++z.high;
+ if ( (bits64) ( z.low<<1 ) == 0 ) z.high &= ~1;
+ }
+ }
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat128Sign( z )
+ ^ ( roundingMode == float_round_up ) ) {
+ add128( z.high, z.low, 0, roundBitsMask, &z.high, &z.low );
+ }
+ }
+ z.low &= ~ roundBitsMask;
+ }
+ else {
+ if ( aExp < 0x3FFF ) {
+ if ( ( ( (bits64) ( a.high<<1 ) ) | a.low ) == 0 ) return a;
+ float_exception_flags |= float_flag_inexact;
+ aSign = extractFloat128Sign( a );
+ switch ( float_rounding_mode ) {
+ case float_round_nearest_even:
+ if ( ( aExp == 0x3FFE )
+ && ( extractFloat128Frac0( a )
+ | extractFloat128Frac1( a ) )
+ ) {
+ return packFloat128( aSign, 0x3FFF, 0, 0 );
+ }
+ break;
+ case float_round_down:
+ return
+ aSign ? packFloat128( 1, 0x3FFF, 0, 0 )
+ : packFloat128( 0, 0, 0, 0 );
+ case float_round_up:
+ return
+ aSign ? packFloat128( 1, 0, 0, 0 )
+ : packFloat128( 0, 0x3FFF, 0, 0 );
+ }
+ return packFloat128( aSign, 0, 0, 0 );
+ }
+ lastBitMask = 1;
+ lastBitMask <<= 0x402F - aExp;
+ roundBitsMask = lastBitMask - 1;
+ z.low = 0;
+ z.high = a.high;
+ roundingMode = float_rounding_mode;
+ if ( roundingMode == float_round_nearest_even ) {
+ z.high += lastBitMask>>1;
+ if ( ( ( z.high & roundBitsMask ) | a.low ) == 0 ) {
+ z.high &= ~ lastBitMask;
+ }
+ }
+ else if ( roundingMode != float_round_to_zero ) {
+ if ( extractFloat128Sign( z )
+ ^ ( roundingMode == float_round_up ) ) {
+ z.high |= ( a.low != 0 );
+ z.high += roundBitsMask;
+ }
+ }
+ z.high &= ~ roundBitsMask;
+ }
+ if ( ( z.low != a.low ) || ( z.high != a.high ) ) {
+ float_exception_flags |= float_flag_inexact;
+ }
+ return z;
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the absolute values of the quadruple-precision
+| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
+| before being returned. `zSign' is ignored if the result is a NaN.
+| The addition is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128 addFloat128Sigs( float128 a, float128 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ int32 expDiff;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ expDiff = aExp - bExp;
+ if ( 0 < expDiff ) {
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shift128ExtraRightJamming(
+ bSig0, bSig1, 0, expDiff, &bSig0, &bSig1, &zSig2 );
+ zExp = aExp;
+ }
+ else if ( expDiff < 0 ) {
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= LIT64( 0x0001000000000000 );
+ }
+ shift128ExtraRightJamming(
+ aSig0, aSig1, 0, - expDiff, &aSig0, &aSig1, &zSig2 );
+ zExp = bExp;
+ }
+ else {
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat128NaN( a, b );
+ }
+ return a;
+ }
+ add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ if ( aExp == 0 ) return packFloat128( zSign, 0, zSig0, zSig1 );
+ zSig2 = 0;
+ zSig0 |= LIT64( 0x0002000000000000 );
+ zExp = aExp;
+ goto shiftRight1;
+ }
+ aSig0 |= LIT64( 0x0001000000000000 );
+ add128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ --zExp;
+ if ( zSig0 < LIT64( 0x0002000000000000 ) ) goto roundAndPack;
+ ++zExp;
+ shiftRight1:
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ roundAndPack:
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the absolute values of the quadruple-
+| precision floating-point values `a' and `b'. If `zSign' is 1, the
+| difference is negated before being returned. `zSign' is ignored if the
+| result is a NaN. The subtraction is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+static float128 subFloat128Sigs( float128 a, float128 b, flag zSign )
+{
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1;
+ int32 expDiff;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ expDiff = aExp - bExp;
+ shortShift128Left( aSig0, aSig1, 14, &aSig0, &aSig1 );
+ shortShift128Left( bSig0, bSig1, 14, &bSig0, &bSig1 );
+ if ( 0 < expDiff ) goto aExpBigger;
+ if ( expDiff < 0 ) goto bExpBigger;
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 | bSig0 | bSig1 ) {
+ return propagateFloat128NaN( a, b );
+ }
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ aExp = 1;
+ bExp = 1;
+ }
+ if ( bSig0 < aSig0 ) goto aBigger;
+ if ( aSig0 < bSig0 ) goto bBigger;
+ if ( bSig1 < aSig1 ) goto aBigger;
+ if ( aSig1 < bSig1 ) goto bBigger;
+ return packFloat128( float_rounding_mode == float_round_down, 0, 0, 0 );
+ bExpBigger:
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return packFloat128( zSign ^ 1, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ ++expDiff;
+ }
+ else {
+ aSig0 |= LIT64( 0x4000000000000000 );
+ }
+ shift128RightJamming( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ bSig0 |= LIT64( 0x4000000000000000 );
+ bBigger:
+ sub128( bSig0, bSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zExp = bExp;
+ zSign ^= 1;
+ goto normalizeRoundAndPack;
+ aExpBigger:
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ --expDiff;
+ }
+ else {
+ bSig0 |= LIT64( 0x4000000000000000 );
+ }
+ shift128RightJamming( bSig0, bSig1, expDiff, &bSig0, &bSig1 );
+ aSig0 |= LIT64( 0x4000000000000000 );
+ aBigger:
+ sub128( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1 );
+ zExp = aExp;
+ normalizeRoundAndPack:
+ --zExp;
+ return normalizeRoundAndPackFloat128( zSign, zExp - 14, zSig0, zSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of adding the quadruple-precision floating-point values
+| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
+| for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_add( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign == bSign ) {
+ return addFloat128Sigs( a, b, aSign );
+ }
+ else {
+ return subFloat128Sigs( a, b, aSign );
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of subtracting the quadruple-precision floating-point
+| values `a' and `b'. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_sub( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign == bSign ) {
+ return subFloat128Sigs( a, b, aSign );
+ }
+ else {
+ return addFloat128Sigs( a, b, aSign );
+ }
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of multiplying the quadruple-precision floating-point
+| values `a' and `b'. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_mul( float128 a, float128 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2, zSig3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat128NaN( a, b );
+ }
+ if ( ( bExp | bSig0 | bSig1 ) == 0 ) goto invalid;
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ zExp = aExp + bExp - 0x4000;
+ aSig0 |= LIT64( 0x0001000000000000 );
+ shortShift128Left( bSig0, bSig1, 16, &bSig0, &bSig1 );
+ mul128To256( aSig0, aSig1, bSig0, bSig1, &zSig0, &zSig1, &zSig2, &zSig3 );
+ add128( zSig0, zSig1, aSig0, aSig1, &zSig0, &zSig1 );
+ zSig2 |= ( zSig3 != 0 );
+ if ( LIT64( 0x0002000000000000 ) <= zSig0 ) {
+ shift128ExtraRightJamming(
+ zSig0, zSig1, zSig2, 1, &zSig0, &zSig1, &zSig2 );
+ ++zExp;
+ }
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the result of dividing the quadruple-precision floating-point value
+| `a' by the corresponding value `b'. The operation is performed according to
+| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_div( float128 a, float128 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, zExp;
+ bits64 aSig0, aSig1, bSig0, bSig1, zSig0, zSig1, zSig2;
+ bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ zSign = aSign ^ bSign;
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, b );
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ goto invalid;
+ }
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return packFloat128( zSign, 0, 0, 0 );
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ float_raise( float_flag_divbyzero );
+ return packFloat128( zSign, 0x7FFF, 0, 0 );
+ }
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( zSign, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = aExp - bExp + 0x3FFD;
+ shortShift128Left(
+ aSig0 | LIT64( 0x0001000000000000 ), aSig1, 15, &aSig0, &aSig1 );
+ shortShift128Left(
+ bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+ if ( le128( bSig0, bSig1, aSig0, aSig1 ) ) {
+ shift128Right( aSig0, aSig1, 1, &aSig0, &aSig1 );
+ ++zExp;
+ }
+ zSig0 = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ mul128By64To192( bSig0, bSig1, zSig0, &term0, &term1, &term2 );
+ sub192( aSig0, aSig1, 0, term0, term1, term2, &rem0, &rem1, &rem2 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ add192( rem0, rem1, rem2, 0, bSig0, bSig1, &rem0, &rem1, &rem2 );
+ }
+ zSig1 = estimateDiv128To64( rem1, rem2, bSig0 );
+ if ( ( zSig1 & 0x3FFF ) <= 4 ) {
+ mul128By64To192( bSig0, bSig1, zSig1, &term1, &term2, &term3 );
+ sub192( rem1, rem2, 0, term1, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ add192( rem1, rem2, rem3, 0, bSig0, bSig1, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift128ExtraRightJamming( zSig0, zSig1, 0, 15, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat128( zSign, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the remainder of the quadruple-precision floating-point value `a'
+| with respect to the corresponding value `b'. The operation is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_rem( float128 a, float128 b )
+{
+ flag aSign, bSign, zSign;
+ int32 aExp, bExp, expDiff;
+ bits64 aSig0, aSig1, bSig0, bSig1, q, term0, term1, term2;
+ bits64 allZero, alternateASig0, alternateASig1, sigMean1;
+ sbits64 sigMean0;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ bSig1 = extractFloat128Frac1( b );
+ bSig0 = extractFloat128Frac0( b );
+ bExp = extractFloat128Exp( b );
+ bSign = extractFloat128Sign( b );
+ if ( aExp == 0x7FFF ) {
+ if ( ( aSig0 | aSig1 )
+ || ( ( bExp == 0x7FFF ) && ( bSig0 | bSig1 ) ) ) {
+ return propagateFloat128NaN( a, b );
+ }
+ goto invalid;
+ }
+ if ( bExp == 0x7FFF ) {
+ if ( bSig0 | bSig1 ) return propagateFloat128NaN( a, b );
+ return a;
+ }
+ if ( bExp == 0 ) {
+ if ( ( bSig0 | bSig1 ) == 0 ) {
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ normalizeFloat128Subnormal( bSig0, bSig1, &bExp, &bSig0, &bSig1 );
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return a;
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ expDiff = aExp - bExp;
+ if ( expDiff < -1 ) return a;
+ shortShift128Left(
+ aSig0 | LIT64( 0x0001000000000000 ),
+ aSig1,
+ 15 - ( expDiff < 0 ),
+ &aSig0,
+ &aSig1
+ );
+ shortShift128Left(
+ bSig0 | LIT64( 0x0001000000000000 ), bSig1, 15, &bSig0, &bSig1 );
+ q = le128( bSig0, bSig1, aSig0, aSig1 );
+ if ( q ) sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ expDiff -= 64;
+ while ( 0 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+ shortShift192Left( term0, term1, term2, 61, &term1, &term2, &allZero );
+ shortShift128Left( aSig0, aSig1, 61, &aSig0, &allZero );
+ sub128( aSig0, 0, term1, term2, &aSig0, &aSig1 );
+ expDiff -= 61;
+ }
+ if ( -64 < expDiff ) {
+ q = estimateDiv128To64( aSig0, aSig1, bSig0 );
+ q = ( 4 < q ) ? q - 4 : 0;
+ q >>= - expDiff;
+ shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+ expDiff += 52;
+ if ( expDiff < 0 ) {
+ shift128Right( aSig0, aSig1, - expDiff, &aSig0, &aSig1 );
+ }
+ else {
+ shortShift128Left( aSig0, aSig1, expDiff, &aSig0, &aSig1 );
+ }
+ mul128By64To192( bSig0, bSig1, q, &term0, &term1, &term2 );
+ sub128( aSig0, aSig1, term1, term2, &aSig0, &aSig1 );
+ }
+ else {
+ shift128Right( aSig0, aSig1, 12, &aSig0, &aSig1 );
+ shift128Right( bSig0, bSig1, 12, &bSig0, &bSig1 );
+ }
+ do {
+ alternateASig0 = aSig0;
+ alternateASig1 = aSig1;
+ ++q;
+ sub128( aSig0, aSig1, bSig0, bSig1, &aSig0, &aSig1 );
+ } while ( 0 <= (sbits64) aSig0 );
+ add128(
+ aSig0, aSig1, alternateASig0, alternateASig1, &sigMean0, &sigMean1 );
+ if ( ( sigMean0 < 0 )
+ || ( ( ( sigMean0 | sigMean1 ) == 0 ) && ( q & 1 ) ) ) {
+ aSig0 = alternateASig0;
+ aSig1 = alternateASig1;
+ }
+ zSign = ( (sbits64) aSig0 < 0 );
+ if ( zSign ) sub128( 0, 0, aSig0, aSig1, &aSig0, &aSig1 );
+ return
+ normalizeRoundAndPackFloat128( aSign ^ zSign, bExp - 4, aSig0, aSig1 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns the square root of the quadruple-precision floating-point value `a'.
+| The operation is performed according to the IEC/IEEE Standard for Binary
+| Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+float128 float128_sqrt( float128 a )
+{
+ flag aSign;
+ int32 aExp, zExp;
+ bits64 aSig0, aSig1, zSig0, zSig1, zSig2, doubleZSig0;
+ bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3;
+ float128 z;
+
+ aSig1 = extractFloat128Frac1( a );
+ aSig0 = extractFloat128Frac0( a );
+ aExp = extractFloat128Exp( a );
+ aSign = extractFloat128Sign( a );
+ if ( aExp == 0x7FFF ) {
+ if ( aSig0 | aSig1 ) return propagateFloat128NaN( a, a );
+ if ( ! aSign ) return a;
+ goto invalid;
+ }
+ if ( aSign ) {
+ if ( ( aExp | aSig0 | aSig1 ) == 0 ) return a;
+ invalid:
+ float_raise( float_flag_invalid );
+ z.low = float128_default_nan_low;
+ z.high = float128_default_nan_high;
+ return z;
+ }
+ if ( aExp == 0 ) {
+ if ( ( aSig0 | aSig1 ) == 0 ) return packFloat128( 0, 0, 0, 0 );
+ normalizeFloat128Subnormal( aSig0, aSig1, &aExp, &aSig0, &aSig1 );
+ }
+ zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFE;
+ aSig0 |= LIT64( 0x0001000000000000 );
+ zSig0 = estimateSqrt32( aExp, aSig0>>17 );
+ shortShift128Left( aSig0, aSig1, 13 - ( aExp & 1 ), &aSig0, &aSig1 );
+ zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0<<32 ) + ( zSig0<<30 );
+ doubleZSig0 = zSig0<<1;
+ mul64To128( zSig0, zSig0, &term0, &term1 );
+ sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 );
+ while ( (sbits64) rem0 < 0 ) {
+ --zSig0;
+ doubleZSig0 -= 2;
+ add128( rem0, rem1, zSig0>>63, doubleZSig0 | 1, &rem0, &rem1 );
+ }
+ zSig1 = estimateDiv128To64( rem1, 0, doubleZSig0 );
+ if ( ( zSig1 & 0x1FFF ) <= 5 ) {
+ if ( zSig1 == 0 ) zSig1 = 1;
+ mul64To128( doubleZSig0, zSig1, &term1, &term2 );
+ sub128( rem1, 0, term1, term2, &rem1, &rem2 );
+ mul64To128( zSig1, zSig1, &term2, &term3 );
+ sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 );
+ while ( (sbits64) rem1 < 0 ) {
+ --zSig1;
+ shortShift128Left( 0, zSig1, 1, &term2, &term3 );
+ term3 |= 1;
+ term2 |= doubleZSig0;
+ add192( rem1, rem2, rem3, 0, term2, term3, &rem1, &rem2, &rem3 );
+ }
+ zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 );
+ }
+ shift128ExtraRightJamming( zSig0, zSig1, 0, 14, &zSig0, &zSig1, &zSig2 );
+ return roundAndPackFloat128( 0, zExp, zSig0, zSig1, zSig2 );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_eq( float128 a, float128 b )
+{
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise. The comparison
+| is performed according to the IEC/IEEE Standard for Binary Floating-Point
+| Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_le( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. The comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_lt( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is equal to
+| the corresponding value `b', and 0 otherwise. The invalid exception is
+| raised if either operand is a NaN. Otherwise, the comparison is performed
+| according to the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_eq_signaling( float128 a, float128 b )
+{
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ float_raise( float_flag_invalid );
+ return 0;
+ }
+ return
+ ( a.low == b.low )
+ && ( ( a.high == b.high )
+ || ( ( a.low == 0 )
+ && ( (bits64) ( ( a.high | b.high )<<1 ) == 0 ) )
+ );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not
+| cause an exception. Otherwise, the comparison is performed according to the
+| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_le_quiet( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ || ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ == 0 );
+ }
+ return
+ aSign ? le128( b.high, b.low, a.high, a.low )
+ : le128( a.high, a.low, b.high, b.low );
+
+}
+
+/*----------------------------------------------------------------------------
+| Returns 1 if the quadruple-precision floating-point value `a' is less than
+| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an
+| exception. Otherwise, the comparison is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic.
+*----------------------------------------------------------------------------*/
+
+flag float128_lt_quiet( float128 a, float128 b )
+{
+ flag aSign, bSign;
+
+ if ( ( ( extractFloat128Exp( a ) == 0x7FFF )
+ && ( extractFloat128Frac0( a ) | extractFloat128Frac1( a ) ) )
+ || ( ( extractFloat128Exp( b ) == 0x7FFF )
+ && ( extractFloat128Frac0( b ) | extractFloat128Frac1( b ) ) )
+ ) {
+ if ( float128_is_signaling_nan( a )
+ || float128_is_signaling_nan( b ) ) {
+ float_raise( float_flag_invalid );
+ }
+ return 0;
+ }
+ aSign = extractFloat128Sign( a );
+ bSign = extractFloat128Sign( b );
+ if ( aSign != bSign ) {
+ return
+ aSign
+ && ( ( ( (bits64) ( ( a.high | b.high )<<1 ) ) | a.low | b.low )
+ != 0 );
+ }
+ return
+ aSign ? lt128( b.high, b.low, a.high, a.low )
+ : lt128( a.high, a.low, b.high, b.low );
+
+}
+
+#endif
+