aboutsummaryrefslogtreecommitdiff
path: root/hw/xive.c
blob: dcd8d5bbde0bff23cccc4472a9c4246df4a30d55 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
/* Copyright 2016 IBM Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * 	http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <skiboot.h>
#include <xscom.h>
#include <chip.h>
#include <io.h>
#include <xive.h>
#include <xscom-p9-regs.h>
#include <interrupts.h>
#include <timebase.h>

/* Use Block group mode to move chip_id into block .... */
#define USE_BLOCK_GROUP_MODE

/* Indirect mode */
#define USE_INDIRECT

/* Always notify from EQ to VP (no EOI on EQs). Will speed up
 * EOIs at the expense of potentially higher powerbus traffic.
 */
#define EQ_ALWAYS_NOTIFY

/* Indirect VSDs are little endian (SIMICS bug ?) */
#undef INDIRECT_IS_LE

/* Verbose debug */
#undef XIVE_VERBOSE_DEBUG

/* Note on interrupt numbering:
 *
 * The way we represent HW interrupt numbers globaly in the system
 * and in the device-tree is documented in include/interrupts.h
 *
 * Basically, the EAS/IVT index is the global interrupt number
 */


/*
 *
 * VSDs, blocks, set translation etc...
 *
 * This stuff confused me to no end so here's an attempt at explaining
 * my understanding of it and how I use it in OPAL & Linux
 *
 * For the following data structures, the XIVE use a mechanism called
 * Virtualization Structure Tables (VST) to manage the memory layout
 * and access: ESBs (Event State Buffers, aka IPI sources), EAS/IVT
 * (Event assignment structures), END/EQs (Notification descriptors
 * aka event queues) and NVT/VPD (Notification Virtual Targets).
 *
 * These structures divide those tables into 16 "blocks". Each XIVE
 * instance has a definition for all 16 blocks that can either represent
 * an actual table in memory or a remote XIVE MMIO port to access a
 * block that is owned by that remote XIVE.
 *
 * Our SW design will consist of allocating one block per chip (and thus
 * per XIVE instance) for now, thus giving us up to 16 supported chips in
 * the system. We may have to revisit that if we ever support systems with
 * more than 16 chips but that isn't on our radar at the moment or if we
 * want to do like pHyp on some machines and dedicate 2 blocks per chip
 * for some structures.
 *
 * Thus we need to be careful that we never expose to Linux the concept
 * of block and block boundaries, but instead we provide full number ranges
 * so that consecutive blocks can be supported.
 *
 * We will pre-allocate some of the tables in order to support a "fallback"
 * mode operations where an old-style XICS is emulated via OPAL calls. This
 * is achieved by having a default of one VP per physical thread associated
 * with one EQ and one IPI. There is also enought EATs to cover all the PHBs.
 *
 * Similarily, for MMIO access, the BARs support what is called "set
 * translation" which allows tyhe BAR to be devided into a certain
 * number of sets. The VC BAR (ESBs, ENDs, ...) supports 64 sets and
 * the PC BAT supports 16. Each "set" can be routed to a specific
 * block and offset within a block.
 *
 * For now, we will not use much of that functionality. We will use a
 * fixed split between ESB and ENDs for the VC BAR as defined by the
 * constants below and we will allocate all the PC BARs set to the
 * local block of that chip
 */


/* BAR default values (should be initialized by HostBoot but for
 * now we do it). Based on the memory map document by Dave Larson
 *
 * Fixed IC and TM BARs first.
 */
/* Use 64K for everything by default */
#define IC_PAGE_SIZE	0x10000
#define TM_PAGE_SIZE	0x10000

#define IC_BAR_DEFAULT	0x30203100000ull
#define IC_BAR_SIZE	(8 * IC_PAGE_SIZE)
#define TM_BAR_DEFAULT	0x30203180000ull
#define TM_BAR_SIZE	(4 * TM_PAGE_SIZE)

/* VC BAR contains set translations for the ESBs and the EQs.
 *
 * It's divided in 64 sets, each of which can be either ESB pages or EQ pages.
 * The table configuring this is the EDT
 *
 * Additionally, the ESB pages come in pair of Linux_Trig_Mode isn't enabled
 * (which we won't enable for now as it assumes write-only permission which
 * the MMU doesn't support).
 *
 * To get started we just hard wire the following setup:
 *
 * VC_BAR size is 512G. We split it into 384G of ESBs (48 sets) and 128G
 * of ENDs (16 sets) for the time being. IE. Each set is thus 8GB
 */

#define VC_BAR_DEFAULT	0x10000000000ull
#define VC_BAR_SIZE	0x08000000000ull
#define VC_ESB_SETS	48
#define VC_END_SETS	16
#define VC_MAX_SETS	64

/* PC BAR contains the virtual processors
 *
 * The table configuring the set translation (16 sets) is the VDT
 */
#define PC_BAR_DEFAULT	0x18000000000ull
#define PC_BAR_SIZE	0x01000000000ull
#define PC_MAX_SETS	16

/* XXX This is the currently top limit of number of ESB/SBE entries
 * and EAS/IVT entries pre-allocated per chip. This should probably
 * turn into a device-tree property or NVRAM setting, or maybe
 * calculated from the amount of system RAM...
 *
 * This is currently set to 1M
 *
 * This is independent of the sizing of the MMIO space.
 *
 * WARNING: Due to how XICS emulation works, we cannot support more
 * interrupts per chip at this stage as the full interrupt number
 * (block + index) has to fit in a 24-bit number.
 *
 * That gives us a pre-allocated space of 256KB per chip for the state
 * bits and 8M per chip for the EAS/IVT.
 *
 * Note: The HW interrupts from PCIe and similar other entities that
 * use their own state bit array will have to share that IVT space,
 * so we could potentially make the IVT size twice as big, but for now
 * we will simply share it and ensure we don't hand out IPIs that
 * overlap the HW interrupts.
 */
#define MAX_INT_ENTRIES		(1 * 1024 * 1024)

/* Corresponding direct table sizes */
#define SBE_SIZE	(MAX_INT_ENTRIES / 4)
#define IVT_SIZE	(MAX_INT_ENTRIES * 8)

/* Max number of EQs. We allocate an indirect table big enough so
 * that when fully populated we can have that many EQs.
 *
 * The max number of EQs we support in our MMIO space is 128G/128K
 * ie. 1M. Since one EQ is 8 words (32 bytes), a 64K page can hold
 * 2K EQs. We need 512 pointers, ie, 4K of memory for the indirect
 * table.
 *
 * XXX Adjust that based on BAR value ?
 */
#ifdef USE_INDIRECT
#define MAX_EQ_COUNT		(1 * 1024 * 1024)
#define EQ_PER_PAGE		(0x10000 / 32) // Use sizeof ?
#define IND_EQ_TABLE_SIZE	((MAX_EQ_COUNT / EQ_PER_PAGE) * 8)
#else
#define MAX_EQ_COUNT		(4 * 1024)
#define EQT_SIZE		(MAX_EQ_COUNT * 32)
#endif


/* Max number of VPs. We allocate an indirect table big enough so
 * that when fully populated we can have that many VPs.
 *
 * The max number of VPs we support in our MMIO space is 64G/64K
 * ie. 1M. Since one VP is 16 words (64 bytes), a 64K page can hold
 * 1K EQ. We need 1024 pointers, ie, 8K of memory for the indirect
 * table.
 *
 * HOWEVER: A block supports only up to 512K VPs (19 bits of target
 * in the EQ). Since we currently only support 1 block per chip,
 * we will allocate half of the above. We might add support for
 * 2 blocks per chip later if necessary.
 *
 * XXX Adjust that based on BAR value ?
 */
#ifdef USE_INDIRECT
#define MAX_VP_COUNT		(512 * 1024)
#define VP_PER_PAGE		(0x10000 / 64) // Use sizeof ?
#define IND_VP_TABLE_SIZE	((MAX_VP_COUNT / VP_PER_PAGE) * 8)
#else
#define MAX_VP_COUNT		(4 * 1024)
#define VPT_SIZE		(MAX_VP_COUNT * 64)
#endif

#ifdef USE_BLOCK_GROUP_MODE

/* Initial number of VPs (XXX Make it a variable ?). Round things
 * up to a max of 32 cores per chip
 */
#define INITIAL_VP_BASE		0x80
#define INITIAL_VP_COUNT	0x80

#else

/* Initial number of VPs on block 0 only */
#define INITIAL_BLK0_VP_BASE	0x800
#define INITIAL_BLK0_VP_COUNT	(2 * 1024)

#endif

/* Each source controller has one of these. There's one embedded
 * in the XIVE struct for IPIs
 */
struct xive_src {
	struct irq_source		is;
	const struct irq_source_ops	*orig_ops;
	struct xive			*xive;
	void				*esb_mmio;
	uint32_t			esb_base;
	uint32_t			esb_shift;
	uint32_t			flags;
};

struct xive {
	uint32_t	chip_id;
	struct dt_node	*x_node;
	struct dt_node	*m_node;

	uint64_t	xscom_base;

	/* MMIO regions */
	void		*ic_base;
	uint64_t	ic_size;
	uint32_t	ic_shift;
	void		*tm_base;
	uint64_t	tm_size;
	uint32_t	tm_shift;
	void		*pc_base;
	uint64_t	pc_size;
	void		*vc_base;
	uint64_t	vc_size;

	void		*esb_mmio;
	void		*eq_mmio;

	/* Set on XSCOM register access error */
	bool		last_reg_error;

	/* Per-XIVE mutex */
	struct lock	lock;

	/* Pre-allocated tables.
	 *
	 * We setup all the VDS for actual tables (ie, by opposition to
	 * forwarding ports) as either direct pre-allocated or indirect
	 * and partially populated.
	 *
	 * Currently, the ESB/SBE and the EAS/IVT tables are direct and
	 * fully pre-allocated based on MAX_INT_ENTRIES.
	 *
	 * The other tables are indirect, we thus pre-allocate the indirect
	 * table (ie, pages of pointers) and populate enough of the pages
	 * for our basic setup using 64K pages.
	 *
	 * The size of the indirect tables are driven by MAX_VP_COUNT and
	 * MAX_EQ_COUNT. The number of pre-allocated ones are driven by
	 * INITIAL_VP_COUNT (number of EQ depends on number of VP) in block
	 * mode, otherwise we only preallocate INITIAL_BLK0_VP_COUNT on
	 * block 0.
	 */

	/* Direct SBE and IVT tables */
	void		*sbe_base;
	void		*ivt_base;

#ifdef USE_INDIRECT
	/* Indirect END/EQ table. NULL entries are unallocated, count is
	 * the numbre of pointers (ie, sub page placeholders). base_count
	 * is the number of sub-pages that have been pre-allocated (and
	 * thus whose memory is owned by OPAL).
	 */
	uint64_t	*eq_ind_base;
	uint32_t	eq_ind_count;
	uint32_t	eq_alloc_count;
#else
	void		*eq_base;
#endif

#ifdef USE_INDIRECT
	/* Indirect NVT/VP table. NULL entries are unallocated, count is
	 * the numbre of pointers (ie, sub page placeholders).
	 */
	uint64_t	*vp_ind_base;
	uint64_t	vp_ind_count;
#else
	void		*vp_base;
#endif
	/* To ease a possible change to supporting more than one block of
	 * interrupts per chip, we store here the "base" global number
	 * and max number of interrupts for this chip. The global number
	 * encompass the block number and index.
	 */
	uint32_t	int_base;
	uint32_t	int_max;

	/* Due to the overlap between IPIs and HW sources in the IVT table,
	 * we keep some kind of top-down allocator. It is used for HW sources
	 * to "allocate" interrupt entries and will limit what can be handed
	 * out as IPIs. Of course this assumes we "allocate" all HW sources
	 * before we start handing out IPIs.
	 *
	 * Note: The numbers here are global interrupt numbers so that we can
	 * potentially handle more than one block per chip in the future.
	 */
	uint32_t	int_hw_bot;	/* Bottom of HW allocation */
	uint32_t	int_ipi_top;	/* Highest IPI handed out so far */

	/* Embedded source IPIs */
	struct xive_src	ipis;
};

/* Conversion between GIRQ and block/index.
 *
 * ------------------------------------
 * |00000000|BLOC|               INDEX|
 * ------------------------------------
 *      8      4           20
 *
 * The global interrupt number is thus limited to 24 bits which is
 * necessary for our XICS emulation since the top 8 bits are
 * reserved for the CPPR value.
 *
 */
#define GIRQ_TO_BLK(__g)	(((__g) >> 24) & 0xf)
#define GIRQ_TO_IDX(__g)	((__g) & 0x00ffffff)
#define BLKIDX_TO_GIRQ(__b,__i)	(((uint32_t)(__b)) << 24 | (__i))

/* VP IDs are just the concatenation of the BLK and index as found
 * in an EQ target field for example
 */

/* For now, it's one chip per block for both VC and PC */
#define PC_BLK_TO_CHIP(__b)	(__b)
#define VC_BLK_TO_CHIP(__b)	(__b)
#define GIRQ_TO_CHIP(__isn)	(VC_BLK_TO_CHIP(GIRQ_TO_BLK(__isn)))

/* Routing of physical processors to VPs */
#ifdef USE_BLOCK_GROUP_MODE
#define PIR2VP_IDX(__pir)	(0x80 | P9_PIR2LOCALCPU(__pir))
#define PIR2VP_BLK(__pir)	(P9_PIR2GCID(__pir))
#define VP2PIR(__blk, __idx)	(P9_PIRFROMLOCALCPU(VC_BLK_TO_CHIP(__blk), (__idx) & 0x7f))
#else
#define PIR2VP_IDX(__pir)	(0x800 | (P9_PIR2GCID(__pir) << 7) | P9_PIR2LOCALCPU(__pir))
#define PIR2VP_BLK(__pir)	(0)
#define VP2PIR(__blk, __idx)	(P9_PIRFROMLOCALCPU(((__idx) >> 7) & 0xf, (__idx) & 0x7f))
#endif

#define xive_regw(__x, __r, __v) \
	__xive_regw(__x, __r, X_##__r, __v, #__r)
#define xive_regr(__x, __r) \
	__xive_regr(__x, __r, X_##__r, #__r)
#define xive_regwx(__x, __r, __v) \
	__xive_regw(__x, 0, X_##__r, __v, #__r)
#define xive_regrx(__x, __r) \
	__xive_regr(__x, 0, X_##__r, #__r)

#ifdef XIVE_VERBOSE_DEBUG
#define xive_vdbg(__x,__fmt,...)	prlog(PR_DEBUG,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_vdbg(__c,__fmt,...)	prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#else
#define xive_vdbg(x,fmt,...)		do { } while(0)
#define xive_cpu_vdbg(x,fmt,...)	do { } while(0)
#endif

#define xive_dbg(__x,__fmt,...)		prlog(PR_DEBUG,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_dbg(__c,__fmt,...)	prlog(PR_DEBUG,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_warn(__x,__fmt,...)	prlog(PR_WARNING,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_warn(__c,__fmt,...)	prlog(PR_WARNING,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)
#define xive_err(__x,__fmt,...)		prlog(PR_ERR,"XIVE[ IC %02x  ] " __fmt, (__x)->chip_id, ##__VA_ARGS__)
#define xive_cpu_err(__c,__fmt,...)	prlog(PR_ERR,"XIVE[CPU %04x] " __fmt, (__c)->pir, ##__VA_ARGS__)

static void __xive_regw(struct xive *x, uint32_t m_reg, uint32_t x_reg, uint64_t v,
			const char *rname)
{
	bool use_xscom = (m_reg == 0) || !x->ic_base;
	int64_t rc;

	x->last_reg_error = false;

	if (use_xscom) {
		assert(x_reg != 0);
		rc = xscom_write(x->chip_id, x->xscom_base + x_reg, v);
		if (rc) {
			if (!rname)
				rname = "???";
			xive_err(x, "Error writing register %s\n", rname);
			/* Anything else we can do here ? */
			x->last_reg_error = true;
		}
	} else {
		out_be64(x->ic_base + m_reg, v);
	}
}

static uint64_t __xive_regr(struct xive *x, uint32_t m_reg, uint32_t x_reg,
			    const char *rname)
{
	bool use_xscom = (m_reg == 0) || !x->ic_base;
	int64_t rc;
	uint64_t val;

	x->last_reg_error = false;

	if (use_xscom) {
		rc = xscom_read(x->chip_id, x->xscom_base + x_reg, &val);
		if (rc) {
			if (!rname)
				rname = "???";
			xive_err(x, "Error reading register %s\n", rname);
			/* Anything else we can do here ? */
			x->last_reg_error = true;
			return -1ull;
		}
	} else {
		val = in_be64(x->ic_base + m_reg);
	}
	return val;
}

/* Locate a controller from an IRQ number */
static struct xive *xive_from_isn(uint32_t isn)
{
	uint32_t chip_id = GIRQ_TO_CHIP(isn);
	struct proc_chip *c = get_chip(chip_id);

	if (!c)
		return NULL;
	return c->xive;
}

/*
static struct xive *xive_from_pc_blk(uint32_t blk)
{
	uint32_t chip_id = PC_BLK_TO_CHIP(blk);
	struct proc_chip *c = get_chip(chip_id);

	if (!c)
		return NULL;
	return c->xive;
}
*/

static struct xive *xive_from_vc_blk(uint32_t blk)
{
	uint32_t chip_id = VC_BLK_TO_CHIP(blk);
	struct proc_chip *c = get_chip(chip_id);

	if (!c)
		return NULL;
	return c->xive;
}

static struct xive_ive *xive_get_ive(struct xive *x, unsigned int isn)
{
	struct xive_ive *ivt;
	uint32_t idx = GIRQ_TO_IDX(isn);

	/* Check the block matches */
	if (isn < x->int_base || isn >= x->int_max) {
		xive_err(x, "xive_get_ive, ISN 0x%x not on chip\n", idx);
		return NULL;
	}
	assert (idx < MAX_INT_ENTRIES);

	/* XXX If we support >1 block per chip, fix this */
	ivt = x->ivt_base;
	assert(ivt);

	// XXX DBG
	if (ivt[idx].w != 0)
		xive_vdbg(x, "xive_get_ive(isn %x), idx=0x%x IVE=%016llx\n",
			  isn, idx, ivt[idx].w);

	return ivt + idx;
}

static struct xive_eq *xive_get_eq(struct xive *x, unsigned int idx)
{
	struct xive_eq *p;

#ifdef USE_INDIRECT
	if (idx >= (x->eq_ind_count * EQ_PER_PAGE))
		return NULL;
#ifdef INDIRECT_IS_LE
	p = (struct xive_eq *)(le64_to_cpu(x->eq_ind_base[idx / EQ_PER_PAGE]) &
			       VSD_ADDRESS_MASK);
#else
	p = (struct xive_eq *)(x->eq_ind_base[idx / EQ_PER_PAGE] &
			       VSD_ADDRESS_MASK);
#endif
	if (!p)
		return NULL;

	return &p[idx % EQ_PER_PAGE];
#else
	if (idx >= MAX_EQ_COUNT)
		return NULL;
	if (!x->eq_base)
		return NULL;
	p = x->eq_base;
	return p + idx;
#endif
}

static struct xive_vp *xive_get_vp(struct xive *x, unsigned int idx)
{
	struct xive_vp *p;

#ifdef USE_INDIRECT
	assert(idx < (x->vp_ind_count * VP_PER_PAGE));
#ifdef INDIRECT_IS_LE
	p = (struct xive_vp *)(le64_to_cpu(x->vp_ind_base[idx / VP_PER_PAGE]) &
			       VSD_ADDRESS_MASK);
#else
	p = (struct xive_vp *)(x->vp_ind_base[idx / VP_PER_PAGE] &
			       VSD_ADDRESS_MASK);
#endif
	assert(p);

	return &p[idx % VP_PER_PAGE];
#else
	assert(idx < MAX_VP_COUNT);
	p = x->vp_base;
	return p + idx;
#endif
}

static void xive_init_vp(struct xive *x __unused, struct xive_vp *vp __unused)
{
	/* XXX TODO: Look at the special cache line stuff */
	vp->w0 = VP_W0_VALID;
}

static void xive_init_eq(struct xive *x __unused, uint32_t vp_idx,
			 struct xive_eq *eq, void *backing_page)
{
	eq->w1 = EQ_W1_GENERATION;
	eq->w3 = ((uint64_t)backing_page) & 0xffffffff;
	eq->w2 = (((uint64_t)backing_page)) >> 32 & 0x0fffffff;
	// IS this right ? Are we limited to 2K VPs per block ? */
	eq->w6 = SETFIELD(EQ_W6_NVT_BLOCK, 0ul, x->chip_id) |
		SETFIELD(EQ_W6_NVT_INDEX, 0ul, vp_idx);
	eq->w7 = SETFIELD(EQ_W7_F0_PRIORITY, 0ul, 0x07);
	eieio();
	eq->w0 = EQ_W0_VALID | EQ_W0_ENQUEUE |
		SETFIELD(EQ_W0_QSIZE, 0ul, EQ_QSIZE_64K);
#ifdef EQ_ALWAYS_NOTIFY
	eq->w0 |= EQ_W0_UCOND_NOTIFY;
#endif
}

static uint32_t *xive_get_eq_buf(struct xive *x, uint32_t eq_blk __unused,
				 uint32_t eq_idx)
{
	struct xive_eq *eq = xive_get_eq(x, eq_idx);
	uint64_t addr;

	assert(eq);
	assert(eq->w0 & EQ_W0_VALID);
	addr = (((uint64_t)eq->w2) & 0x0fffffff) << 32 | eq->w3;

	return (uint32_t *)addr;
}

#if 0 /* Not used yet. This will be used to kill the cache
       * of indirect VSDs
       */
static int64_t xive_vc_ind_cache_kill(struct xive *x, uint64_t type,
				      uint64_t block, uint64_t idx)
{
	uint64_t val;

	xive_regw(x, VC_AT_MACRO_KILL_MASK,
		  SETFIELD(VC_KILL_BLOCK_ID, 0ull, -1ull) |
		  SETFIELD(VC_KILL_OFFSET, 0ull, -1ull));
	xive_regw(x, VC_AT_MACRO_KILL, VC_KILL_VALID |
		  SETFIELD(VC_KILL_TYPE, 0ull, type) |
		  SETFIELD(VC_KILL_BLOCK_ID, 0ull, block) |
		  SETFIELD(VC_KILL_OFFSET, 0ull, idx));

	/* XXX SIMICS problem ? */
	if (chip_quirk(QUIRK_SIMICS))
		return 0;

	/* XXX Add timeout */
	for (;;) {
		val = xive_regr(x, VC_AT_MACRO_KILL);
		if (!(val & VC_KILL_VALID))
			break;
	}
	return 0;
}
#endif

enum xive_cache_type {
	xive_cache_ivc,
	xive_cache_sbc,
	xive_cache_eqc,
	xive_cache_vpc,
};

static int64_t __xive_cache_scrub(struct xive *x, enum xive_cache_type ctype,
				  uint64_t block, uint64_t idx,
				  bool want_inval, bool want_disable)
{
	uint64_t sreg, sregx, mreg, mregx;
	uint64_t mval, sval;

	switch (ctype) {
	case xive_cache_ivc:
		sreg = VC_IVC_SCRUB_TRIG;
		sregx = X_VC_IVC_SCRUB_TRIG;
		mreg = VC_IVC_SCRUB_MASK;
		mregx = X_VC_IVC_SCRUB_MASK;
		break;
	case xive_cache_sbc:
		sreg = VC_SBC_SCRUB_TRIG;
		sregx = X_VC_SBC_SCRUB_TRIG;
		mreg = VC_SBC_SCRUB_MASK;
		mregx = X_VC_SBC_SCRUB_MASK;
		break;
	case xive_cache_eqc:
		sreg = VC_EQC_SCRUB_TRIG;
		sregx = X_VC_EQC_SCRUB_TRIG;
		mreg = VC_EQC_SCRUB_MASK;
		mregx = X_VC_EQC_SCRUB_MASK;
		break;
	case xive_cache_vpc:
		sreg = PC_VPC_SCRUB_TRIG;
		sregx = X_PC_VPC_SCRUB_TRIG;
		mreg = PC_VPC_SCRUB_MASK;
		mregx = X_PC_VPC_SCRUB_MASK;
		break;
	}
	if (ctype == xive_cache_vpc) {
		mval = PC_SCRUB_BLOCK_ID | PC_SCRUB_OFFSET;
		sval = SETFIELD(PC_SCRUB_BLOCK_ID, idx, block) |
			PC_SCRUB_VALID;
	} else {
		mval = VC_SCRUB_BLOCK_ID | VC_SCRUB_OFFSET;
		sval = SETFIELD(VC_SCRUB_BLOCK_ID, idx, block) |
			VC_SCRUB_VALID;
	}
	if (want_inval)
		sval |= PC_SCRUB_WANT_INVAL;
	if (want_disable)
		sval |= PC_SCRUB_WANT_DISABLE;

	__xive_regw(x, mreg, mregx, mval, NULL);
	__xive_regw(x, sreg, sregx, sval, NULL);

	/* XXX Add timeout !!! */
	for (;;) {
		sval = __xive_regr(x, sreg, sregx, NULL);
		if (!(sval & VC_SCRUB_VALID))
			break;
		time_wait_us(1);
	}
	return 0;
}

static int64_t xive_ivc_scrub(struct xive *x, uint64_t block, uint64_t idx)
{
	return __xive_cache_scrub(x, xive_cache_ivc, block, idx, false, false);
}

static bool xive_set_vsd(struct xive *x, uint32_t tbl, uint32_t idx, uint64_t v)
{
	/* Set VC version */
	xive_regw(x, VC_VSD_TABLE_ADDR,
		  SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
		  SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
	if (x->last_reg_error)
		return false;
	xive_regw(x, VC_VSD_TABLE_DATA, v);
	if (x->last_reg_error)
		return false;

	/* Except for IRQ table, also set PC version */
	if (tbl == VST_TSEL_IRQ)
		return true;

	xive_regw(x, PC_VSD_TABLE_ADDR,
		  SETFIELD(VST_TABLE_SELECT, 0ull, tbl) |
		  SETFIELD(VST_TABLE_OFFSET, 0ull, idx));
	if (x->last_reg_error)
		return false;
	xive_regw(x, PC_VSD_TABLE_DATA, v);
	if (x->last_reg_error)
		return false;
	return true;
}

static bool xive_set_local_tables(struct xive *x)
{
	uint64_t base;

	/* These have to be power of 2 sized */
	assert(is_pow2(SBE_SIZE));
	assert(is_pow2(IVT_SIZE));

	/* All tables set as exclusive */
	base = SETFIELD(VSD_MODE, 0ull, VSD_MODE_EXCLUSIVE);

	/* Set IVT as direct mode */
	if (!xive_set_vsd(x, VST_TSEL_IVT, x->chip_id, base |
			  (((uint64_t)x->ivt_base) & VSD_ADDRESS_MASK) |
			  SETFIELD(VSD_TSIZE, 0ull, ilog2(IVT_SIZE) - 12)))
		return false;

	/* Set SBE as direct mode */
	if (!xive_set_vsd(x, VST_TSEL_SBE, x->chip_id, base |
			  (((uint64_t)x->sbe_base) & VSD_ADDRESS_MASK) |
			  SETFIELD(VSD_TSIZE, 0ull, ilog2(SBE_SIZE) - 12)))
		return false;

#ifdef USE_INDIRECT
	/* Set EQDT as indirect mode with 64K subpages */
	if (!xive_set_vsd(x, VST_TSEL_EQDT, x->chip_id, base |
			  (((uint64_t)x->eq_ind_base) & VSD_ADDRESS_MASK) |
			  VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
		return false;

	/* Set VPDT as indirect mode with 64K subpages */
	if (!xive_set_vsd(x, VST_TSEL_VPDT, x->chip_id, base |
			  (((uint64_t)x->vp_ind_base) & VSD_ADDRESS_MASK) |
			  VSD_INDIRECT | SETFIELD(VSD_TSIZE, 0ull, 4)))
		return false;
#else
	/* Set EQDT as direct mode */
	if (!xive_set_vsd(x, VST_TSEL_EQDT, x->chip_id, base |
			  (((uint64_t)x->eq_base) & VSD_ADDRESS_MASK) |
			  SETFIELD(VSD_TSIZE, 0ull, ilog2(EQT_SIZE) - 12)))
		return false;

	/* Set VPDT as direct mode */
	if (!xive_set_vsd(x, VST_TSEL_VPDT, x->chip_id, base |
			  (((uint64_t)x->vp_base) & VSD_ADDRESS_MASK) |
			  SETFIELD(VSD_TSIZE, 0ull, ilog2(VPT_SIZE) - 12)))
		return false;
#endif

	return true;
}

static bool xive_read_bars(struct xive *x)
{
	uint64_t bar, msk;

	/* Read IC BAR */
	bar = xive_regrx(x, CQ_IC_BAR);
	if (bar & CQ_IC_BAR_64K)
		x->ic_shift = 16;
	else
		x->ic_shift = 12;
	x->ic_size = 8ul << x->ic_shift;
	x->ic_base = (void *)(bar & 0x00ffffffffffffffull);

	/* Read TM BAR */
	bar = xive_regrx(x, CQ_TM1_BAR);
	assert(bar & CQ_TM_BAR_VALID);
	if (bar & CQ_TM_BAR_64K)
		x->tm_shift = 16;
	else
		x->tm_shift = 12;
	x->tm_size = 4ul << x->tm_shift;
	x->tm_base = (void *)(bar & 0x00ffffffffffffffull);

	/* Read PC BAR */
	bar = xive_regr(x, CQ_PC_BAR);
	msk = xive_regr(x, CQ_PC_BARM) | 0xffffffc000000000ul;
	assert(bar & CQ_PC_BAR_VALID);
	x->pc_size = (~msk) + 1;
	x->pc_base = (void *)(bar & 0x00ffffffffffffffull);

	/* Read VC BAR */
	bar = xive_regr(x, CQ_VC_BAR);
	msk = xive_regr(x, CQ_VC_BARM) | 0xfffff80000000000ul;
	assert(bar & CQ_VC_BAR_VALID);
	x->vc_size = (~msk) + 1;
	x->vc_base = (void *)(bar & 0x00ffffffffffffffull);

	return true;
}

static bool xive_configure_bars(struct xive *x)
{
	uint64_t mmio_base, chip_base, val;

	/* Calculate MMIO base offset for that chip */
	mmio_base = 0x006000000000000ull;
	chip_base = mmio_base | (0x40000000000ull * (uint64_t)x->chip_id);

	/* IC BAR */
	x->ic_base = (void *)(chip_base | IC_BAR_DEFAULT);
	x->ic_size = IC_BAR_SIZE;
	val = (uint64_t)x->ic_base | CQ_IC_BAR_VALID;
	if (IC_PAGE_SIZE == 0x10000) {
		val |= CQ_IC_BAR_64K;
		x->ic_shift = 16;
	} else
		x->ic_shift = 12;
	xive_regwx(x, CQ_IC_BAR, val);
	if (x->last_reg_error)
		return false;

	/* TM BAR, only configure TM1. Note that this has the same address
	 * for each chip !!!
	 */
	x->tm_base = (void *)(mmio_base | TM_BAR_DEFAULT);
	x->tm_size = TM_BAR_SIZE;
	val = (uint64_t)x->tm_base | CQ_TM_BAR_VALID;
	if (TM_PAGE_SIZE == 0x10000) {
		x->tm_shift = 16;
		val |= CQ_TM_BAR_64K;
	} else
		x->tm_shift = 12;
	xive_regwx(x, CQ_TM1_BAR, val);
	if (x->last_reg_error)
		return false;
	xive_regwx(x, CQ_TM2_BAR, 0);
	if (x->last_reg_error)
		return false;

	/* PC BAR. Clear first, write mask, then write value */
	x->pc_base = (void *)(chip_base | PC_BAR_DEFAULT);
	x->pc_size = PC_BAR_SIZE;
	xive_regwx(x, CQ_PC_BAR, 0);
	if (x->last_reg_error)
		return false;
	val = ~(PC_BAR_SIZE - 1) & CQ_PC_BARM_MASK;
	xive_regwx(x, CQ_PC_BARM, val);
	if (x->last_reg_error)
		return false;
	val = (uint64_t)x->pc_base | CQ_PC_BAR_VALID;
	xive_regwx(x, CQ_PC_BAR, val);
	if (x->last_reg_error)
		return false;

	/* VC BAR. Clear first, write mask, then write value */
	x->vc_base = (void *)(chip_base | VC_BAR_DEFAULT);
	x->vc_size = VC_BAR_SIZE;
	xive_regwx(x, CQ_VC_BAR, 0);
	if (x->last_reg_error)
		return false;
	val = ~(VC_BAR_SIZE - 1) & CQ_VC_BARM_MASK;
	xive_regwx(x, CQ_VC_BARM, val);
	if (x->last_reg_error)
		return false;
	val = (uint64_t)x->vc_base | CQ_VC_BAR_VALID;
	xive_regwx(x, CQ_VC_BAR, val);
	if (x->last_reg_error)
		return false;

	return true;
}

static void xive_dump_mmio(struct xive *x)
{
	prlog(PR_DEBUG, " CQ_CFG_PB_GEN = %016llx\n",
	      in_be64(x->ic_base + CQ_CFG_PB_GEN));
	prlog(PR_DEBUG, " CQ_MSGSND     = %016llx\n",
	      in_be64(x->ic_base + CQ_MSGSND));
}

static bool xive_check_update_bars(struct xive *x)
{
	uint64_t val;
	bool force_assign;

	/* Check if IC BAR is enabled */
	val = xive_regrx(x, CQ_IC_BAR);
	if (x->last_reg_error)
		return false;

	/* Check if device-tree tells us to force-assign the BARs */
	force_assign = dt_has_node_property(x->x_node,
					    "force-assign-bars", NULL);
	if ((val & CQ_IC_BAR_VALID) && !force_assign) {
		xive_dbg(x, "IC BAR valid, using existing values\n");
		if (!xive_read_bars(x))
			return false;
	} else {
		xive_warn(x, "IC BAR invalid, reconfiguring\n");
		if (!xive_configure_bars(x))
			return false;
	}

	/* Calculate some MMIO bases in the VC BAR */
	x->esb_mmio = x->vc_base;
	x->eq_mmio = x->vc_base + (x->vc_size / VC_MAX_SETS) * VC_ESB_SETS;

	/* Print things out */
	xive_dbg(x, "IC: %14p [0x%012llx/%d]\n", x->ic_base, x->ic_size,
		 x->ic_shift);
	xive_dbg(x, "TM: %14p [0x%012llx/%d]\n", x->tm_base, x->tm_size,
		 x->tm_shift);
	xive_dbg(x, "PC: %14p [0x%012llx]\n", x->pc_base, x->pc_size);
	xive_dbg(x, "VC: %14p [0x%012llx]\n", x->vc_base, x->vc_size);

	return true;
}

static bool xive_config_init(struct xive *x)
{
	uint64_t val __unused;

	/* Configure PC and VC page sizes and disable Linux trigger mode */
	xive_regwx(x, CQ_PBI_CTL, CQ_PBI_PC_64K | CQ_PBI_VC_64K);
	if (x->last_reg_error)
		return false;

	/*** The rest can use MMIO ***/

#ifdef USE_INDIRECT
	/* Enable indirect mode in VC config */
	val = xive_regr(x, VC_GLOBAL_CONFIG);
	val |= VC_GCONF_INDIRECT;
	xive_regw(x, VC_GLOBAL_CONFIG, val);

	/* Enable indirect mode in PC config */
	val = xive_regr(x, PC_GLOBAL_CONFIG);
	val |= PC_GCONF_INDIRECT;
	xive_regw(x, PC_GLOBAL_CONFIG, val);
#endif

#ifdef USE_BLOCK_GROUP_MODE
	val = xive_regr(x, PC_TCTXT_CFG);
	val |= PC_TCTXT_CFG_BLKGRP_EN | PC_TCTXT_CFG_HARD_CHIPID_BLK;
	xive_regw(x, PC_TCTXT_CFG, val);
#endif
	return true;
}

static bool xive_setup_set_xlate(struct xive *x)
{
	unsigned int i;

	/* Configure EDT for ESBs (aka IPIs) */
	xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_EDT);
	if (x->last_reg_error)
		return false;
	for (i = 0; i < VC_ESB_SETS; i++) {
		xive_regw(x, CQ_TDR,
			  /* IPI type */
			  (1ull << 62) |
			  /* block is chip_ID */
			  (((uint64_t)x->chip_id) << 48) |
			  /* offset */
			  (((uint64_t)i) << 32));
		if (x->last_reg_error)
			return false;
	}

	/* Configure EDT for ENDs (aka EQs) */
	for (i = 0; i < VC_END_SETS; i++) {
		xive_regw(x, CQ_TDR,
			  /* EQ type */
			  (2ull << 62) |
			  /* block is chip_ID */
			  (((uint64_t)x->chip_id) << 48) |
			  /* offset */
			  (((uint64_t)i) << 32));
		if (x->last_reg_error)
			return false;
	}

	/* Configure VDT */
	xive_regw(x, CQ_TAR, CQ_TAR_TBL_AUTOINC | CQ_TAR_TSEL_VDT);
	if (x->last_reg_error)
		return false;
	for (i = 0; i < PC_MAX_SETS; i++) {
		xive_regw(x, CQ_TDR,
			  /* Valid bit */
			  (1ull << 63) |
			  /* block is chip_ID */
			  (((uint64_t)x->chip_id) << 48) |
			  /* offset */
			  (((uint64_t)i) << 32));
		if (x->last_reg_error)
			return false;
	}
	return true;
}

static struct xive_vp *xive_alloc_init_vp(struct xive *x, unsigned int idx)
{
	struct xive_vp *vp = xive_get_vp(x, idx);
	struct xive_eq *eq = xive_get_eq(x, idx);
	void *p;

	assert(vp);
	assert(eq);

	xive_init_vp(x, vp);

	p = local_alloc(x->chip_id, 0x10000, 0x10000);
	if (!p) {
		xive_err(x, "Failed to allocate EQ backing store\n");
		return NULL;
	}
	xive_init_eq(x, idx, eq, p);

	return vp;
}

static bool xive_prealloc_tables(struct xive *x)
{
	unsigned int i, vp_init_count, vp_init_base;
	unsigned int pbase __unused, pend __unused;
	uint64_t al __unused;

	/* ESB/SBE has 4 entries per byte */
	x->sbe_base = local_alloc(x->chip_id, SBE_SIZE, SBE_SIZE);
	if (!x->sbe_base) {
		xive_err(x, "Failed to allocate SBE\n");
		return false;
	}
	/* SBEs are initialized to 0b01 which corresponds to "ints off" */
	memset(x->sbe_base, 0x55, SBE_SIZE);

	/* EAS/IVT entries are 8 bytes */
	x->ivt_base = local_alloc(x->chip_id, IVT_SIZE, IVT_SIZE);
	if (!x->ivt_base) {
		xive_err(x, "Failed to allocate IVT\n");
		return false;
	}
	/* We clear the entries (non-valid). They will be initialized
	 * when actually used
	 */
	memset(x->ivt_base, 0, IVT_SIZE);

#ifdef USE_INDIRECT
	/* Indirect EQ table. (XXX Align to 64K until I figure out the
	 * HW requirements)
	 */
	al = (IND_EQ_TABLE_SIZE + 0xffff) & ~0xffffull;
	x->eq_ind_base = local_alloc(x->chip_id, al, al);
	if (!x->eq_ind_base) {
		xive_err(x, "Failed to allocate EQ indirect table\n");
		return false;
	}
	memset(x->eq_ind_base, 0, al);
	x->eq_ind_count = IND_EQ_TABLE_SIZE / 8;

	/* Indirect VP table. (XXX Align to 64K until I figure out the
	 * HW requirements)
	 */
	al = (IND_VP_TABLE_SIZE + 0xffff) & ~0xffffull;
	x->vp_ind_base = local_alloc(x->chip_id, al, al);
	if (!x->vp_ind_base) {
		xive_err(x, "Failed to allocate VP indirect table\n");
		return false;
	}
	x->vp_ind_count = IND_VP_TABLE_SIZE / 8;
	memset(x->vp_ind_base, 0, al);

#else /* USE_INDIRECT */

	x->eq_base = local_alloc(x->chip_id, EQT_SIZE, EQT_SIZE);
	if (!x->eq_base) {
		xive_err(x, "Failed to allocate EQ table\n");
		return false;
	}
	memset(x->eq_base, 0, EQT_SIZE);

	/* EAS/IVT entries are 8 bytes */
	x->vp_base = local_alloc(x->chip_id, VPT_SIZE, VPT_SIZE);
	if (!x->vp_base) {
		xive_err(x, "Failed to allocate VP table\n");
		return false;
	}
	/* We clear the entries (non-valid). They will be initialized
	 * when actually used
	 */
	memset(x->vp_base, 0, VPT_SIZE);

#endif /* USE_INDIRECT */

	/* Populate/initialize VP/EQs */
#ifdef USE_BLOCK_GROUP_MODE
	vp_init_count = INITIAL_VP_COUNT;
	vp_init_base = INITIAL_VP_BASE;
#else
	vp_init_count = x->chip_id == 0 ? INITIAL_BLK0_VP_COUNT : 0;
	vp_init_base = INITIAL_BLK0_VP_BASE;
#endif

#ifdef USE_INDIRECT
	/* Allocate pages for some VPs and EQs in indirect mode */
	pbase = vp_init_base / VP_PER_PAGE;
	pend  = (vp_init_base + vp_init_count) / VP_PER_PAGE;
	xive_dbg(x, "Allocating pages %d to %d of VPs (for %d VPs)\n",
		 pbase, pend, INITIAL_VP_COUNT);
	for (i = pbase; i <= pend; i++) {
		void *page;

		/* Indirect entries have a VSD format */
		page = local_alloc(x->chip_id, 0x10000, 0x10000);
		if (!page) {
			xive_err(x, "Failed to allocate VP page\n");
			return false;
		}
		memset(page, 0, 0x10000);
		x->vp_ind_base[i] = ((uint64_t)page) & VSD_ADDRESS_MASK;
		x->vp_ind_base[i] |= SETFIELD(VSD_TSIZE, 0ull, 4);

		page = local_alloc(x->chip_id, 0x10000, 0x10000);
		if (!page) {
			xive_err(x, "Failed to allocate EQ page\n");
			return false;
		}
		memset(page, 0, 0x10000);
		x->eq_ind_base[i] = ((uint64_t)page) & VSD_ADDRESS_MASK;
		x->eq_ind_base[i] |= SETFIELD(VSD_TSIZE, 0ull, 4);

#ifdef INDIRECT_IS_LE
		x->vp_ind_base[i] = cpu_to_le64(x->vp_ind_base[i]);
		x->eq_ind_base[i] = cpu_to_le64(x->eq_ind_base[i]);
#endif
	}
#endif /* USE_INDIRECT */

	/* Allocate the initial EQs backing store and initialize EQs and VPs */
	for (i = vp_init_base; i < (vp_init_base + vp_init_count); i++)
		if (xive_alloc_init_vp(x, i) == NULL) {
			xive_err(x, "Base VP initialization failed\n");
			return false;
		}

	return true;
}

static void xive_create_mmio_dt_node(struct xive *x)
{
	x->m_node = dt_new_addr(dt_root, "interrupt-controller",
				(uint64_t)x->ic_base);
	assert(x->m_node);

	dt_add_property_u64s(x->m_node, "reg",
			     (uint64_t)x->ic_base, x->ic_size,
			     (uint64_t)x->tm_base, x->tm_size,
			     (uint64_t)x->pc_base, x->pc_size,
			     (uint64_t)x->vc_base, x->vc_size);

	/* XXX Only put in "ibm,power9-xive" when we support the exploitation
	 * related APIs and properties
	 */
	dt_add_property_strings(x->m_node, "compatible", /*"ibm,power9-xive",*/ "ibm,opal-intc");

	dt_add_property_cells(x->m_node, "ibm,xive-max-sources",
			      MAX_INT_ENTRIES);
}

static void late_init_one_xive(struct xive *x __unused)
{
	// XXX Setup fwd ports
}

uint32_t xive_alloc_hw_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
{
	struct proc_chip *chip = get_chip(chip_id);
	struct xive *x;
	uint32_t base, i;

	assert(chip);
	assert(is_pow2(align));

	x = chip->xive;
	assert(x);

	/* Allocate the HW interrupts */
	base = x->int_hw_bot - count;
	base &= ~(align - 1);
	if (base < x->int_ipi_top) {
		xive_err(x,
			 "HW alloc request for %d interrupts aligned to %d failed\n",
			 count, align);
		return XIVE_IRQ_ERROR;
	}
	x->int_hw_bot = base;

	/* Adjust the irq source to avoid overlaps */
	adjust_irq_source(&x->ipis.is, base - x->int_base);

	/* Initialize the corresponding IVT entries to sane defaults,
	 * IE entry is valid, not routed and masked, EQ data is set
	 * to the GIRQ number.
	 */
	for (i = 0; i < count; i++) {
		struct xive_ive *ive = xive_get_ive(x, base + i);

		ive->w = IVE_VALID | IVE_MASKED | SETFIELD(IVE_EQ_DATA, 0ul, base + i);
	}
	return base;
}

uint32_t xive_alloc_ipi_irqs(uint32_t chip_id, uint32_t count, uint32_t align)
{
	struct proc_chip *chip = get_chip(chip_id);
	struct xive *x;
	uint32_t base, i;

	assert(chip);
	assert(is_pow2(align));

	x = chip->xive;
	assert(x);

	/* Allocate the IPI interrupts */
	base = x->int_ipi_top + (align - 1);
	base &= ~(align - 1);
	if (base >= x->int_hw_bot) {
		xive_err(x,
			 "IPI alloc request for %d interrupts aligned to %d failed\n",
			 count, align);
		return XIVE_IRQ_ERROR;
	}
	x->int_ipi_top = base + count;

	/* Initialize the corresponding IVT entries to sane defaults,
	 * IE entry is valid, not routed and masked, EQ data is set
	 * to the GIRQ number.
	 */
	for (i = 0; i < count; i++) {
		struct xive_ive *ive = xive_get_ive(x, base + i);

		ive->w = IVE_VALID | IVE_MASKED |
			SETFIELD(IVE_EQ_DATA, 0ul, base + i);
	}

	return base;
}

uint64_t xive_get_notify_port(uint32_t chip_id, uint32_t ent)
{
	struct proc_chip *chip = get_chip(chip_id);
	struct xive *x;
	uint32_t offset = 0;

	assert(chip);
	x = chip->xive;
	assert(x);

	/* This is where we can assign a different HW queue to a different
	 * source by offsetting into the cache lines of the notify port
	 *
	 * For now we keep it very basic, this will have to be looked at
	 * again on real HW with some proper performance analysis.
	 *
	 * Here's what Florian says on the matter:
	 *
	 * <<
	 * The first 2k of the notify port page can all be used for PCIe triggers
	 *
	 * However the idea would be that we try to use the first 4 cache lines to
	 * balance the PCIe Interrupt requests to use the least used snoop buses
	 * (we went from 2 to 4 snoop buses for P9). snoop 0 is heavily used
	 * (I think TLBIs are using that in addition to the normal addresses),
	 * snoop 3 is used for all Int commands, so I think snoop 2 (CL 2 in the
	 * page) is the least used overall. So we probably should that one for
	 * the Int commands from PCIe.
	 *
	 * In addition, our EAS cache supports hashing to provide "private" cache
	 * areas for the PHBs in the shared 1k EAS cache. This allows e.g. to avoid
	 * that one "thrashing" PHB thrashes the EAS cache for everyone, or provide
	 * a PHB with a private area that would allow high cache hits in case of a
	 * device using very few interrupts. The hashing is based on the offset within
	 * the cache line. So using that, you can e.g. set the EAS cache up so that
	 * IPIs use 512 entries, the x16 PHB uses 256 entries and the x8 PHBs 128
	 * entries each - or IPIs using all entries and sharing with PHBs, so PHBs
	 * would use 512 entries and 256 entries respectively.
	 *
	 * This is a tuning we would probably do later in the lab, but as a "prep"
	 * we should set up the different PHBs such that they are using different
	 * 8B-aligned offsets within the cache line, so e.g.
	 * PH4_0  addr        0x100        (CL 2 DW0
	 * PH4_1  addr        0x108        (CL 2 DW1)
	 * PH4_2  addr        0x110        (CL 2 DW2)
	 * etc.
	 * >>
	 */
	switch(ent) {
	case XIVE_HW_SRC_PHBn(0):
		offset = 0x100;
		break;
	case XIVE_HW_SRC_PHBn(1):
		offset = 0x108;
		break;
	case XIVE_HW_SRC_PHBn(2):
		offset = 0x110;
		break;
	case XIVE_HW_SRC_PHBn(3):
		offset = 0x118;
		break;
	case XIVE_HW_SRC_PHBn(4):
		offset = 0x120;
		break;
	case XIVE_HW_SRC_PHBn(5):
		offset = 0x128;
		break;
	case XIVE_HW_SRC_PSI:
		offset = 0x130;
		break;
	default:
		assert(false);
		return 0;
	}

	/* Notify port is the second page of the IC BAR */
	return ((uint64_t)x->ic_base) + (1ul << x->ic_shift) + offset;
}

/* Manufacture the powerbus packet bits 32:63 */
__attrconst uint32_t xive_get_notify_base(uint32_t girq)
{
	return (GIRQ_TO_BLK(girq) << 28)  | GIRQ_TO_IDX(girq);
}

static bool xive_get_eq_info(uint32_t isn, uint32_t *out_target,
			     uint8_t *out_prio)
{
	struct xive_ive *ive;
	struct xive *x, *eq_x;
	struct xive_eq *eq;
	uint32_t eq_blk, eq_idx;
	uint32_t vp_blk, vp_idx;
	uint32_t prio, server;

	/* Find XIVE on which the IVE resides */
	x = xive_from_isn(isn);
	if (!x)
		return false;
	/* Grab the IVE */
	ive = xive_get_ive(x, isn);
	if (!ive)
		return false;
	if (!(ive->w & IVE_VALID)) {
		xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
		return false;
	}
	/* Find the EQ and its xive instance */
	eq_blk = GETFIELD(IVE_EQ_BLOCK, ive->w);
	eq_idx = GETFIELD(IVE_EQ_INDEX, ive->w);
	eq_x = xive_from_vc_blk(eq_blk);
	if (!eq_x) {
		xive_err(x, "Can't find controller for EQ BLK %d\n", eq_blk);
		return false;
	}
	eq = xive_get_eq(eq_x, eq_idx);
	if (!eq) {
		xive_err(eq_x, "Can't locate EQ %d\n", eq_idx);
		return false;
	}
	/* XXX Check valid and format 0 */

	/* No priority conversion, return the actual one ! */
	prio = GETFIELD(EQ_W7_F0_PRIORITY, eq->w7);
	if (out_prio)
		*out_prio = prio;

	vp_blk = GETFIELD(EQ_W6_NVT_BLOCK, eq->w6);
	vp_idx = GETFIELD(EQ_W6_NVT_INDEX, eq->w6);
	server = VP2PIR(vp_blk, vp_idx);

	if (out_target)
		*out_target = server;
	xive_vdbg(eq_x, "EQ info for ISN %x: prio=%d, server=0x%x (VP %x/%x)\n",
		  isn, prio, server, vp_blk, vp_idx);
	return true;
}

static inline bool xive_eq_for_target(uint32_t target, uint8_t prio __unused,
				      uint32_t *eq_blk, uint32_t *eq_idx)
{
	uint32_t vp_blk = PIR2VP_BLK(target);
	uint32_t vp_idx = PIR2VP_IDX(target);

	/* XXX We currently have EQ BLK/IDX == VP BLK/IDX. This will change
	 * when we support priorities.
	 */
	if (eq_blk)
		*eq_blk = vp_blk;
	if (eq_idx)
		*eq_idx = vp_idx;
	return true;
}

static bool xive_set_eq_info(uint32_t isn, uint32_t target, uint8_t prio)
{
	struct xive *x;
	struct xive_ive *ive;
	uint32_t eq_blk, eq_idx;

	/* Find XIVE on which the IVE resides */
	x = xive_from_isn(isn);
	if (!x)
		return false;
	/* Grab the IVE */
	ive = xive_get_ive(x, isn);
	if (!ive)
		return false;
	if (!(ive->w & IVE_VALID)) {
		xive_err(x, "ISN %x lead to invalid IVE !\n", isn);
		return false;
	}

	/* Are we masking ? */
	if (prio == 0xff) {
		/* Masking, just set the M bit */
		ive->w |= IVE_MASKED;

		xive_vdbg(x, "ISN %x masked !\n", isn);
	} else {
		uint64_t new_ive;

		/* Unmasking, re-target the IVE. First find the EQ
		 * correponding to the target
		 */
		if (!xive_eq_for_target(target, prio, &eq_blk, &eq_idx)) {
			xive_err(x, "Can't find EQ for target/prio 0x%x/%d\n",
				 target, prio);
			return false;
		}

		/* Try to update it atomically to avoid an intermediary
		 * stale state
		 */
		new_ive = ive->w & ~IVE_MASKED;
		new_ive = SETFIELD(IVE_EQ_BLOCK, new_ive, eq_blk);
		new_ive = SETFIELD(IVE_EQ_INDEX, new_ive, eq_idx);
		sync();
		ive->w = new_ive;

		xive_vdbg(x,"ISN %x routed to eq %x/%x IVE=%016llx !\n",
		  isn, eq_blk, eq_idx, new_ive);
	}

	/* Scrub IVE from cache */
	xive_ivc_scrub(x, x->chip_id, GIRQ_TO_IDX(isn));

	return true;
}

static int64_t xive_source_get_xive(struct irq_source *is __unused,
				    uint32_t isn, uint16_t *server,
				    uint8_t *prio)
{
	uint32_t target_id;

	if (xive_get_eq_info(isn, &target_id, prio)) {
		*server = target_id;
		return OPAL_SUCCESS;
	} else
		return OPAL_PARAMETER;
}

static int64_t xive_source_set_xive(struct irq_source *is, uint32_t isn,
				    uint16_t server, uint8_t prio)
{
	struct xive_src *s = container_of(is, struct xive_src, is);
	uint32_t idx = isn - s->esb_base;
 	void *mmio_base;

	/* Let XIVE configure the EQ */
	if (!xive_set_eq_info(isn, server, prio))
		return OPAL_PARAMETER;

	/* Ensure it's enabled/disabled in the source controller.
	 *
	 * This won't do much for LSIs but will work for MSIs and will
	 * ensure that a stray P bit left over won't block further
	 * interrupts when enabling
	 */
	mmio_base = s->esb_mmio + (1ul << s->esb_shift) * idx;
	if (s->flags & XIVE_SRC_EOI_PAGE1)
		mmio_base += 1ull << (s->esb_shift - 1);
	if (prio == 0xff)
		in_be64(mmio_base + 0xd00); /* PQ = 01 */
	else
		in_be64(mmio_base + 0xc00); /* PQ = 00 */

	return OPAL_SUCCESS;
}

static void xive_source_eoi(struct irq_source *is, uint32_t isn)
{
	struct xive_src *s = container_of(is, struct xive_src, is);
	uint32_t idx = isn - s->esb_base;
	void *mmio_base;
	uint64_t eoi_val;

	mmio_base = s->esb_mmio + (1ull << s->esb_shift) * idx;

	/* If the XIVE supports the new "store EOI facility, use it */
	if (s->flags & XIVE_SRC_STORE_EOI)
		out_be64(mmio_base, 0);
	else {
		/* Otherwise for EOI, we use the special MMIO that does
		 * a clear of both P and Q and returns the old Q.
		 *
		 * This allows us to then do a re-trigger if Q was set
		 rather than synthetizing an interrupt in software
		*/
		if (s->flags & XIVE_SRC_EOI_PAGE1) {
			uint64_t p1off = 1ull << (s->esb_shift - 1);
			eoi_val = in_be64(mmio_base + p1off + 0xc00);
		} else
			eoi_val = in_be64(mmio_base + 0xc00);
		xive_vdbg(s->xive, "ISN: %08x EOI=%llx\n", isn, eoi_val);
		if ((s->flags & XIVE_SRC_LSI) || !(eoi_val & 1))
			return;

		/* Re-trigger always on page0 or page1 ? */
		out_be64(mmio_base, 0);
	}
}

static void xive_source_interrupt(struct irq_source *is, uint32_t isn)
{
	struct xive_src *s = container_of(is, struct xive_src, is);

	if (!s->orig_ops || !s->orig_ops->interrupt)
		return;
	s->orig_ops->interrupt(is, isn);
}

static uint64_t xive_source_attributes(struct irq_source *is, uint32_t isn)
{
	struct xive_src *s = container_of(is, struct xive_src, is);

	if (!s->orig_ops || !s->orig_ops->attributes)
		return IRQ_ATTR_TARGET_LINUX;
	return s->orig_ops->attributes(is, isn);
}

static const struct irq_source_ops xive_irq_source_ops = {
	.get_xive = xive_source_get_xive,
	.set_xive = xive_source_set_xive,
	.eoi = xive_source_eoi,
	.interrupt = xive_source_interrupt,
	.attributes = xive_source_attributes,
};

static void __xive_register_source(struct xive_src *s, uint32_t base,
				   uint32_t count, uint32_t shift,
				   void *mmio, uint32_t flags, void *data,
				   const struct irq_source_ops *orig_ops)
{
	s->esb_base = base;
	s->esb_shift = shift;
	s->esb_mmio = mmio;
	s->flags = flags;
	s->orig_ops = orig_ops;

	s->is.start = base;
	s->is.end = base + count;
	s->is.ops = &xive_irq_source_ops;
	s->is.data = data;

	__register_irq_source(&s->is);
}

void xive_register_source(uint32_t base, uint32_t count, uint32_t shift,
			  void *mmio, uint32_t flags, void *data,
			  const struct irq_source_ops *ops)
{
	struct xive_src *s;

	s = malloc(sizeof(struct xive_src));
	assert(s);
	__xive_register_source(s, base, count, shift, mmio, flags, data, ops);
}

static void init_one_xive(struct dt_node *np)
{
	struct xive *x;
	struct proc_chip *chip;

	x = zalloc(sizeof(struct xive));
	assert(x);
	x->xscom_base = dt_get_address(np, 0, NULL);
	x->chip_id = dt_get_chip_id(np);
	x->x_node = np;
	init_lock(&x->lock);

	chip = get_chip(x->chip_id);
	assert(chip);
	xive_dbg(x, "Initializing...\n");
	chip->xive = x;

	/* Base interrupt numbers and allocator init */
	/* XXX Consider allocating half as many ESBs than MMIO space
	 * so that HW sources land outside of ESB space...
	 */
	x->int_base	= BLKIDX_TO_GIRQ(x->chip_id, 0);
	x->int_max	= x->int_base + MAX_INT_ENTRIES;
	x->int_hw_bot	= x->int_max;
	x->int_ipi_top	= x->int_base;

	/* Make sure we never hand out "2" as it's reserved for XICS emulation
	 * IPI returns. Generally start handing out at 0x10
	 */
	if (x->int_ipi_top < 0x10)
		x->int_ipi_top = 0x10;

	xive_dbg(x, "Handling interrupts [%08x..%08x]\n",
		 x->int_base, x->int_max - 1);

	/* System dependant values that must be set before BARs */
	//xive_regwx(x, CQ_CFG_PB_GEN, xx);
	//xive_regwx(x, CQ_MSGSND, xx);

	/* Verify the BARs are initialized and if not, setup a default layout */
	xive_check_update_bars(x);

	/* Some basic global inits such as page sizes etc... */
	if (!xive_config_init(x))
		goto fail;

	/* Configure the set translations for MMIO */
	if (!xive_setup_set_xlate(x))
		goto fail;

	/* Dump some MMIO registers for diagnostics */
	xive_dump_mmio(x);

	/* Pre-allocate a number of tables */
	if (!xive_prealloc_tables(x))
		goto fail;

	/* Configure local tables in VSDs (forward ports will be
	 * handled later)
	 */
	if (!xive_set_local_tables(x))
		goto fail;

	/* Register built-in source controllers (aka IPIs) */
	/* XXX Add new EOI mode for DD2 */
	__xive_register_source(&x->ipis, x->int_base,
			       x->int_hw_bot - x->int_base, 16 + 1,
			       x->esb_mmio, XIVE_SRC_EOI_PAGE1, NULL, NULL);

	/* Create a device-tree node for Linux use */
	xive_create_mmio_dt_node(x);

	return;
 fail:
	xive_err(x, "Initialization failed...\n");

	/* Should this be fatal ? */
	//assert(false);
}

/*
 * XICS emulation
 */
struct xive_cpu_state {
	struct xive	*xive;
	void		*tm_ring1;
	uint32_t	vp_blk;
	uint32_t	vp_idx;
	struct lock	lock;
	uint8_t		cppr;
	uint8_t		mfrr;
	uint8_t		pending;
	uint8_t		prev_cppr;
	uint32_t	*eqbuf;
	uint32_t	eqidx;
	uint32_t	eqmsk;
	uint8_t		eqgen;
	void		*eqmmio;
	uint32_t	ipi_irq;
};

static void xive_ipi_init(struct xive *x, struct cpu_thread *cpu)
{
	struct xive_cpu_state *xs = cpu->xstate;
	uint32_t idx = GIRQ_TO_IDX(xs->ipi_irq);
	uint8_t *mm = x->esb_mmio + idx * 0x20000;

	assert(xs);

	xive_source_set_xive(&x->ipis.is, xs->ipi_irq, cpu->pir, 0x7);

	/* Clear P and Q */
	in_8(mm + 0x10c00);
}

static void xive_ipi_eoi(struct xive *x, uint32_t idx)
{
	uint8_t *mm = x->esb_mmio + idx * 0x20000;
	uint8_t eoi_val;

	/* For EOI, we use the special MMIO that does a clear of both
	 * P and Q and returns the old Q.
	 *
	 * This allows us to then do a re-trigger if Q was set rather
	 * than synthetizing an interrupt in software
	 */
	eoi_val = in_8(mm + 0x10c00);
	if (eoi_val & 1) {
		out_8(mm, 0);
	}
}

static void xive_ipi_trigger(struct xive *x, uint32_t idx)
{
	uint8_t *mm = x->esb_mmio + idx * 0x20000;

	xive_vdbg(x, "Trigger IPI 0x%x\n", idx);

	out_8(mm, 0);
}


void xive_cpu_callin(struct cpu_thread *cpu)
{
	struct xive_cpu_state *xs = cpu->xstate;
	struct proc_chip *chip = get_chip(cpu->chip_id);
	struct xive *x = chip->xive;
	uint32_t fc, bit;

	if (!xs)
		return;

	/* First enable us in PTER. We currently assume that the
	 * PIR bits can be directly used to index in PTER. That might
	 * need to be verified
	 */

	/* Get fused core number */
	fc = (cpu->pir >> 3) & 0xf;
	/* Get bit in register */
	bit = cpu->pir & 0x3f;
	/* Get which register to access */
	if (fc < 8)
		xive_regw(x, PC_THREAD_EN_REG0_SET, PPC_BIT(bit));
	else
		xive_regw(x, PC_THREAD_EN_REG1_SET, PPC_BIT(bit));

	/* Set CPPR to 0 */
	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, 0);

	/* Set VT to 1 */
	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_WORD2, 0x80);

	xive_cpu_dbg(cpu, "Initialized interrupt management area\n");

	/* Now unmask the IPI */
	xive_ipi_init(x, cpu);
}

static void xive_init_cpu(struct cpu_thread *c)
{
	struct proc_chip *chip = get_chip(c->chip_id);
	struct xive *x = chip->xive;
	struct xive_cpu_state *xs;

	if (!x)
		return;

	/* First, if we are the first CPU of an EX pair, we need to
	 * setup the special BAR
	 */
	/* XXX This is very P9 specific ... */
	if ((c->pir & 0x7) == 0) {
		uint64_t xa, val;
		int64_t rc;

		xive_cpu_dbg(c, "Setting up special BAR\n");
		xa = XSCOM_ADDR_P9_EX(pir_to_core_id(c->pir), P9X_EX_NCU_SPEC_BAR);
		printf("NCU_SPEC_BAR_XA=%08llx\n", xa);
		val = (uint64_t)x->tm_base | P9X_EX_NCU_SPEC_BAR_ENABLE;
		if (x->tm_shift == 16)
			val |= P9X_EX_NCU_SPEC_BAR_256K;
		rc = xscom_write(c->chip_id, xa, val);
		if (rc) {
			xive_cpu_err(c, "Failed to setup NCU_SPEC_BAR\n");
			/* XXXX  what do do now ? */
		}
	}

	/* Initialize the state structure */
	c->xstate = xs = local_alloc(c->chip_id, sizeof(struct xive_cpu_state), 1);
	assert(xs);
	xs->xive = x;

	init_lock(&xs->lock);

	xs->vp_blk = PIR2VP_BLK(c->pir);
	xs->vp_idx = PIR2VP_IDX(c->pir);
	xs->cppr = 0;
	xs->mfrr = 0xff;

	/* XXX Find the one eq buffer associated with the VP, for now same BLK/ID */
	xs->eqbuf = xive_get_eq_buf(x, xs->vp_blk, xs->vp_idx);
	xs->eqidx = 0;
	xs->eqmsk = (0x10000/4) - 1;
	xs->eqgen = false;
	xs->eqmmio = x->eq_mmio + xs->vp_idx * 0x20000;
	assert(xs->eqbuf);

	/* Shortcut to TM HV ring */
	xs->tm_ring1 = x->tm_base + (1u << x->tm_shift);

	/* Allocate an IPI */
	xs->ipi_irq = xive_alloc_ipi_irqs(c->chip_id, 1, 1);

	xive_cpu_dbg(c, "CPU IPI is irq %08x\n", xs->ipi_irq);
}


static uint32_t xive_read_eq(struct xive_cpu_state *xs, bool just_peek)
{
	uint32_t cur;

	xive_cpu_vdbg(this_cpu(), "  EQ %s... IDX=%x MSK=%x G=%d\n",
		      just_peek ? "peek" : "read",
		      xs->eqidx, xs->eqmsk, xs->eqgen);
	cur = xs->eqbuf[xs->eqidx];
	xive_cpu_vdbg(this_cpu(), "    cur: %08x [%08x %08x %08x ...]\n", cur,
		      xs->eqbuf[(xs->eqidx + 1) & xs->eqmsk],
		      xs->eqbuf[(xs->eqidx + 2) & xs->eqmsk],
		      xs->eqbuf[(xs->eqidx + 3) & xs->eqmsk]);
	if ((cur >> 31) == xs->eqgen)
		return 0;
	if (!just_peek) {
		xs->eqidx = (xs->eqidx + 1) & xs->eqmsk;
		if (xs->eqidx == 0)
			xs->eqgen = !xs->eqgen;
	}
	return cur & 0x00ffffff;
}

static uint8_t xive_sanitize_cppr(uint8_t cppr)
{
	if (cppr == 0xff || cppr == 0)
		return cppr;
	else
		return 7;
}

static inline uint8_t opal_xive_check_pending(struct xive_cpu_state *xs,
					      uint8_t cppr)
{
	uint8_t mask = (cppr > 7) ? 0xff : ((1 << cppr) - 1);

	return xs->pending & mask;
}

static int64_t opal_xive_eoi(uint32_t xirr)
{
	struct cpu_thread *c = this_cpu();
	struct xive_cpu_state *xs = c->xstate;
	uint32_t isn = xirr & 0x00ffffff;
	uint8_t cppr, irqprio;
	struct xive *src_x;
	bool special_ipi = false;

	if (!xs)
		return OPAL_INTERNAL_ERROR;

	xive_cpu_vdbg(c, "EOI xirr=%08x cur_cppr=%d\n", xirr, xs->cppr);

	/* Limit supported CPPR values from OS */
	cppr = xive_sanitize_cppr(xirr >> 24);

	lock(&xs->lock);

	/* Snapshor current CPPR, it's assumed to be our IRQ priority */
	irqprio = xs->cppr;

	/* If this was our magic IPI, convert to IRQ number */
	if (isn == 2) {
		isn = xs->ipi_irq;
		special_ipi = true;
		xive_cpu_vdbg(c, "User EOI for IPI !\n");
	}

	/* First check if we have stuff in that queue. If we do, don't bother with
	 * doing an EOI on the EQ. Just mark that priority pending, we'll come
	 * back later.
	 *
	 * If/when supporting multiple queues we would have to check them all
	 * in ascending prio order up to the passed-in CPPR value (exclusive).
	 */
	if (xive_read_eq(xs, true)) {
		xive_cpu_vdbg(c, "  isn %08x, skip, queue non empty\n", xirr);
		xs->pending |= 1 << irqprio;
	}
#ifndef EQ_ALWAYS_NOTIFY
	else {
		uint8_t eoi_val;

		/* Perform EQ level EOI. Only one EQ for now ...
		 *
		 * Note: We aren't doing an actual EOI. Instead we are clearing
		 * both P and Q and will re-check the queue if Q was set.
		 */
		eoi_val = in_8(xs->eqmmio + 0xc00);
		xive_cpu_vdbg(c, "  isn %08x, eoi_val=%02x\n", xirr, eoi_val);

		/* Q was set ? Check EQ again after doing a sync to ensure
		 * ordering.
		 */
		if (eoi_val & 1) {
			sync();
			if (xive_read_eq(xs, true))
				xs->pending |= 1 << irqprio;
		}
	}
#endif

	/* Perform source level EOI if it's a HW interrupt, otherwise,
	 * EOI ourselves
	 */
	src_x = xive_from_isn(isn);
	if (src_x) {
		uint32_t idx = GIRQ_TO_IDX(isn);

		/* Is it an IPI ? */
		if (idx < src_x->int_ipi_top) {
			xive_vdbg(src_x, "EOI of IDX %x in IPI range\n", idx);
			xive_ipi_eoi(src_x, idx);

			/* It was a special IPI, check mfrr and eventually
			 * re-trigger. We check against the new CPPR since
			 * we are about to update the HW.
			 */
			if (special_ipi && xs->mfrr < cppr)
				xive_ipi_trigger(src_x, idx);
		} else {
			xive_vdbg(src_x, "EOI of IDX %x in EXT range\n", idx);
			irq_source_eoi(isn);
		}
	} else {
		xive_cpu_err(c, "  EOI unknown ISN %08x\n", isn);
	}

	/* Finally restore CPPR */
	xs->cppr = cppr;
	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, cppr);

	xive_cpu_vdbg(c, "  pending=0x%x cppr=%d\n", xs->pending, cppr);

	unlock(&xs->lock);

	/* Return whether something is pending that is suitable for
	 * delivery considering the new CPPR value. This can be done
	 * without lock as these fields are per-cpu.
	 */
	return opal_xive_check_pending(xs, cppr);
}

static int64_t opal_xive_get_xirr(uint32_t *out_xirr, bool just_poll)
{
	struct cpu_thread *c = this_cpu();
	struct xive_cpu_state *xs = c->xstate;
	uint16_t ack;
	uint8_t active, old_cppr;

	if (!xs)
		return OPAL_INTERNAL_ERROR;
	if (!out_xirr)
		return OPAL_PARAMETER;

	*out_xirr = 0;

	lock(&xs->lock);

	/*
	 * Due to the need to fetch multiple interrupts from the EQ, we
	 * need to play some tricks.
	 *
	 * The "pending" byte in "xs" keeps track of the priorities that
	 * are known to have stuff to read (currently we only use one).
	 *
	 * It is set in EOI and cleared when consumed here. We don't bother
	 * looking ahead here, EOI will do it.
	 *
	 * We do need to still do an ACK every time in case a higher prio
	 * exception occurred (though we don't do prio yet... right ? still
	 * let's get the basic design right !).
	 *
	 * Note that if we haven't found anything via ack, but did find
	 * something in the queue, we must also raise CPPR back.
	 */

	/* Perform the HV Ack cycle */
	if (just_poll)
		ack = in_be64(xs->tm_ring1 + TM_QW3_HV_PHYS) >> 48;
	else
		ack = in_be16(xs->tm_ring1 + TM_SPC_ACK_HV_REG);
	xive_cpu_vdbg(c, "get_xirr,%s=%04x\n", just_poll ? "POLL" : "ACK", ack);

	/* Capture the old CPPR which we will return with the interrupt */
	old_cppr = xs->cppr;

	switch(GETFIELD(TM_QW3_NSR_HE, (ack >> 8))) {
	case TM_QW3_NSR_HE_NONE:
		break;
	case TM_QW3_NSR_HE_POOL:
		break;
	case TM_QW3_NSR_HE_PHYS:
		/* Mark pending and keep track of the CPPR update */
		if (!just_poll) {
			xs->cppr = ack & 0xff;
			xs->pending |= 1 << xs->cppr;
		}
		break;
	case TM_QW3_NSR_HE_LSI:
		break;
	}

	/* Calculate "active" lines as being the pending interrupts
	 * masked by the "old" CPPR
	 */
	active = opal_xive_check_pending(xs, old_cppr);

	xive_cpu_vdbg(c, "  cppr=%d->%d pending=0x%x active=%x\n",
		      old_cppr, xs->cppr, xs->pending, active);
	if (active) {
		/* Find highest pending */
		uint8_t prio = ffs(active) - 1;
		uint32_t val;

		/* XXX Use "p" to select queue */
		val = xive_read_eq(xs, just_poll);

		/* Convert to magic IPI if needed */
		if (val == xs->ipi_irq)
			val = 2;

		*out_xirr = (old_cppr << 24) | val;

		/* If we are polling, that's it */
		if (just_poll)
			goto skip;

		/* Clear the pending bit. EOI will set it again if needed. We
		 * could check the queue but that's not really critical here.
		 */
		xs->pending &= ~(1 << prio);

		/* There should always be an interrupt here I think, unless
		 * some race occurred, but let's be safe. If we don't find
		 * anything, we just return.
		 */
		if (!val)
			goto skip;

		xive_cpu_vdbg(c, "  found irq, prio=%d\n", prio);

		/* We could have fetched a pending interrupt left over
		 * by a previous EOI, so the CPPR might need adjusting
		 */
		if (xs->cppr > prio) {
			xs->cppr = prio;
			out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, prio);
			xive_cpu_vdbg(c, "  adjusted CPPR\n");
		}
	}
 skip:

	xive_cpu_vdbg(c, "  returning XIRR=%08x, pending=0x%x\n",
		      *out_xirr, xs->pending);

	unlock(&xs->lock);

	return OPAL_SUCCESS;
}

static int64_t opal_xive_set_cppr(uint8_t cppr)
{
	struct cpu_thread *c = this_cpu();
	struct xive_cpu_state *xs = c->xstate;

	/* Limit supported CPPR values */
	cppr = xive_sanitize_cppr(cppr);

	if (!xs)
		return OPAL_INTERNAL_ERROR;
	xive_cpu_vdbg(c, "CPPR setting to %d\n", cppr);

	lock(&xs->lock);
	c->xstate->cppr = cppr;
	out_8(xs->tm_ring1 + TM_QW3_HV_PHYS + TM_CPPR, cppr);

	unlock(&xs->lock);

	return OPAL_SUCCESS;
}

static int64_t opal_xive_set_mfrr(uint32_t cpu, uint8_t mfrr)
{
	struct cpu_thread *c = find_cpu_by_server(cpu);
	struct xive_cpu_state *xs;
	uint8_t old_mfrr;

	if (!c)
		return OPAL_PARAMETER;
	xs = c->xstate;
	if (!xs)
		return OPAL_INTERNAL_ERROR;

	lock(&xs->lock);
	old_mfrr = xs->mfrr;
	xive_cpu_vdbg(c, "  Setting MFRR to %x, old is %x\n", mfrr, old_mfrr);
	xs->mfrr = mfrr;
	if (old_mfrr > mfrr && mfrr < xs->cppr)
		xive_ipi_trigger(xs->xive, GIRQ_TO_IDX(xs->ipi_irq));
	unlock(&xs->lock);

	return OPAL_SUCCESS;
}

void init_xive(void)
{
	struct dt_node *np;
	struct proc_chip *chip;
	struct cpu_thread *cpu;

	/* Look for xive nodes and do basic inits */
	dt_for_each_compatible(dt_root, np, "ibm,power9-xive-x") {
		init_one_xive(np);
	}

	/* Some inits must be done after all xive have been created
	 * such as setting up the forwarding ports
	 */
	for_each_chip(chip) {
		if (chip->xive)
			late_init_one_xive(chip->xive);
	}

	/* Initialize XICS emulation per-cpu structures */
	for_each_cpu(cpu) {
		xive_init_cpu(cpu);
	}

	/* Calling boot CPU */
	xive_cpu_callin(this_cpu());

	/* Register XICS emulation calls */
	opal_register(OPAL_INT_GET_XIRR, opal_xive_get_xirr, 2);
	opal_register(OPAL_INT_SET_CPPR, opal_xive_set_cppr, 1);
	opal_register(OPAL_INT_EOI, opal_xive_eoi, 1);
	opal_register(OPAL_INT_SET_MFRR, opal_xive_set_mfrr, 2);
}