aboutsummaryrefslogtreecommitdiff
path: root/hw/occ.c
blob: 82775af3f456d354767317b24a8105a41941ad9d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
/* Copyright 2013-2016 IBM Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * 	http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <skiboot.h>
#include <xscom.h>
#include <io.h>
#include <cpu.h>
#include <chip.h>
#include <mem_region.h>
#include <fsp.h>
#include <timebase.h>
#include <hostservices.h>
#include <errorlog.h>
#include <opal-api.h>
#include <opal-msg.h>
#include <timer.h>

/* OCC Communication Area for PStates */

#define P8_HOMER_OPAL_DATA_OFFSET	0x1F8000
#define P9_HOMER_OPAL_DATA_OFFSET	0x0E2000

#define OPAL_DYNAMIC_DATA_OFFSET	0x0B80
/* relative to HOMER_OPAL_DATA_OFFSET */

#define MAX_PSTATES			256
#define MAX_P8_CORES			12
#define MAX_P9_CORES			24

/**
 * OCC-OPAL Shared Memory Region
 *
 * Reference document :
 * https://github.com/open-power/docs/blob/master/occ/OCC_OpenPwr_FW_Interfaces.pdf
 *
 * Supported layout versions:
 * - 0x01, 0x02 : P8
 * https://github.com/open-power/occ/blob/master_p8/src/occ/proc/proc_pstate.h
 *
 * - 0x90 : P9
 * https://github.com/open-power/occ/blob/master/src/occ_405/proc/proc_pstate.h
 *   In 0x90 the data is separated into :-
 *   -- Static Data (struct occ_pstate_table): Data is written once by OCC
 *   -- Dynamic Data (struct occ_dynamic_data): Data is updated at runtime
 *
 * struct occ_pstate_table -	Pstate table layout
 * @valid:			Indicates if data is valid
 * @version:			Layout version
 * @v2.throttle:		Reason for limiting the max pstate
 * @v9.occ_role:		OCC role (Master/Slave)
 * @v#.pstate_min:		Minimum pstate ever allowed
 * @v#.pstate_nom:		Nominal pstate
 * @v#.pstate_turbo:		Maximum turbo pstate
 * @v#.pstate_ultra_turbo:	Maximum ultra turbo pstate and the maximum
 *				pstate ever allowed
 * @v#.pstates:			Pstate-id and frequency list from Pmax to Pmin
 * @v#.pstates.id:		Pstate-id
 * @v#.pstates.flags:		Pstate-flag(reserved)
 * @v2.pstates.vdd:		Voltage Identifier
 * @v2.pstates.vcs:		Voltage Identifier
 * @v#.pstates.freq_khz:	Frequency in KHz
 * @v#.core_max[1..N]:		Max pstate with N active cores
 * @spare/reserved/pad:		Unused data
 */
struct occ_pstate_table {
	u8 valid;
	u8 version;
	union __packed {
		struct __packed { /* Version 0x01 and 0x02 */
			u8 throttle;
			s8 pstate_min;
			s8 pstate_nom;
			s8 pstate_turbo;
			s8 pstate_ultra_turbo;
			u8 spare;
			u64 reserved;
			struct __packed {
				s8 id;
				u8 flags;
				u8 vdd;
				u8 vcs;
				u32 freq_khz;
			} pstates[MAX_PSTATES];
			s8 core_max[MAX_P8_CORES];
			u8 pad[100];
		} v2;
		struct __packed { /* Version 0x90 */
			u8 occ_role;
			u8 pstate_min;
			u8 pstate_nom;
			u8 pstate_turbo;
			u8 pstate_ultra_turbo;
			u8 spare;
			u64 reserved1;
			u64 reserved2;
			struct __packed {
				u8 id;
				u8 flags;
				u16 reserved;
				u32 freq_khz;
			} pstates[MAX_PSTATES];
			u8 core_max[MAX_P9_CORES];
			u8 pad[56];
		} v9;
	};
} __packed;

/**
 * OCC-OPAL Shared Memory Interface Dynamic Data Vx90
 *
 * struct occ_dynamic_data -	Contains runtime attributes
 * @occ_state:			Current state of OCC
 * @cpu_throttle:		Reason for limiting the max pstate
 * @mem_throttle:		Reason for throttling memory
 * @quick_pwr_drop:		Indicates if QPD is asserted
 * @pwr_shifting_ratio:		Indicates the current percentage of power to
 *				take away from the CPU vs GPU when shifting
 *				power to maintain a power cap. Value of 100
 *				means take all power from CPU.
 * @pwr_cap_type:		Indicates type of power cap in effect
 * @min_pwr_cap:		Minimum allowed system power cap in Watts
 * @max_pwr_cap:		Maximum allowed system power cap in Watts
 * @cur_pwr_cap:		Current system power cap
 * @spare/reserved:		Unused data
 */
struct occ_dynamic_data {
	u8 occ_state;
	u8 spare1;
	u8 spare2;
	u8 spare3;
	u8 spare4;
	u8 cpu_throttle;
	u8 mem_throttle;
	u8 quick_pwr_drop;
	u8 pwr_shifting_ratio;
	u8 pwr_cap_type;
	u16 min_pwr_cap;
	u16 max_pwr_cap;
	u16 cur_pwr_cap;
	u64 reserved;
} __packed;

static bool occ_reset;
static struct lock occ_lock = LOCK_UNLOCKED;
static unsigned long homer_opal_data_offset;

DEFINE_LOG_ENTRY(OPAL_RC_OCC_LOAD, OPAL_PLATFORM_ERR_EVT, OPAL_OCC,
		OPAL_CEC_HARDWARE, OPAL_PREDICTIVE_ERR_GENERAL,
		OPAL_NA);

DEFINE_LOG_ENTRY(OPAL_RC_OCC_RESET, OPAL_PLATFORM_ERR_EVT, OPAL_OCC,
		OPAL_CEC_HARDWARE, OPAL_PREDICTIVE_ERR_GENERAL,
		OPAL_NA);

DEFINE_LOG_ENTRY(OPAL_RC_OCC_PSTATE_INIT, OPAL_PLATFORM_ERR_EVT, OPAL_OCC,
		OPAL_CEC_HARDWARE, OPAL_INFO,
		OPAL_NA);

DEFINE_LOG_ENTRY(OPAL_RC_OCC_TIMEOUT, OPAL_PLATFORM_ERR_EVT, OPAL_OCC,
		OPAL_CEC_HARDWARE, OPAL_UNRECOVERABLE_ERR_GENERAL,
		OPAL_NA);

/*
 * POWER9 and newer platforms have pstate values which are unsigned
 * positive values.  They are continuous set of unsigned integers
 * [0 to +N] where Pmax is 0 and Pmin is N. The linear ordering of
 * pstates for P9 has changed compared to P8.  Where P8 has negative
 * pstate values advertised as [0 to -N] where Pmax is 0 and
 * Pmin is -N.  The following routine helps to abstract pstate
 * comparison with pmax and perform sanity checks on pstate limits.
 */

/**
 * cmp_pstates: Compares the given two pstates and determines which
 *              among them is associated with a higher pstate.
 *
 * @a,@b: The pstate ids of the pstates being compared.
 *
 * Returns: -1 : If pstate associated with @a is smaller than
 *               the pstate associated with @b.
 *	     0 : If pstates associated with @a and @b are equal.
 *	     1 : If pstate associated with @a is greater than
 *               the pstate associated with @b.
 */
static int cmp_pstates(int a, int b)
{
	/* P8 has 0 to -N (pmax to pmin), P9 has 0 to +N (pmax to pmin) */
	if (a > b)
		return (proc_gen == proc_gen_p8)? 1 : -1;
	else if (a < b)
		return (proc_gen == proc_gen_p8)? -1 : 1;

	return 0;
}

static inline
struct occ_pstate_table *get_occ_pstate_table(struct proc_chip *chip)
{
	return (struct occ_pstate_table *)
	       (chip->homer_base + homer_opal_data_offset);
}

static inline
struct occ_dynamic_data *get_occ_dynamic_data(struct proc_chip *chip)
{
	return (struct occ_dynamic_data *)
	       (chip->homer_base + homer_opal_data_offset +
		OPAL_DYNAMIC_DATA_OFFSET);
}

/* Check each chip's HOMER/Sapphire area for PState valid bit */
static bool wait_for_all_occ_init(void)
{
	struct proc_chip *chip;
	struct dt_node *xn;
	struct occ_pstate_table *occ_data;
	int tries;
	uint64_t start_time, end_time;
	uint32_t timeout = 0;

	if (platform.occ_timeout)
		timeout = platform.occ_timeout();

	start_time = mftb();
	for_each_chip(chip) {
		/* Check for valid homer address */
		if (!chip->homer_base) {
			/**
			 * @fwts-label OCCInvalidHomerBase
			 * @fwts-advice The HOMER base address for a chip
			 * was not valid. This means that OCC (On Chip
			 * Controller) will be non-functional and CPU
			 * frequency scaling will not be functional. CPU may
			 * be set to a safe, low frequency. Power savings in
			 * CPU idle or CPU hotplug may be impacted.
			 */
			prlog(PR_ERR,"OCC: Chip: %x homer_base is not valid\n",
				chip->id);
			return false;
		}

		/* Get PState table address */
		occ_data = get_occ_pstate_table(chip);

		/*
		 * Checking for occ_data->valid == 1 is ok because we clear all
		 * homer_base+size before passing memory to host services.
		 * This ensures occ_data->valid == 0 before OCC load
		 */
		tries = timeout * 10;
		while((occ_data->valid != 1) && tries--) {
			time_wait_ms(100);
		}
		if (occ_data->valid != 1) {
			/**
			 * @fwts-label OCCInvalidPStateTable
			 * @fwts-advice The pstate table for a chip
			 * was not valid. This means that OCC (On Chip
			 * Controller) will be non-functional and CPU
			 * frequency scaling will not be functional. CPU may
			 * be set to a low, safe frequency. This means
			 * that CPU idle states and CPU frequency scaling
			 * may not be functional.
			 */
			prlog(PR_ERR, "OCC: Chip: %x PState table is not valid\n",
				chip->id);
			return false;
		}

		if (!chip->occ_functional)
			chip->occ_functional = true;

		prlog(PR_DEBUG, "OCC: Chip %02x Data (%016llx) = %016llx\n",
		      chip->id, (uint64_t)occ_data, *(uint64_t *)occ_data);
	}
	end_time = mftb();
	prlog(PR_NOTICE, "OCC: All Chip Rdy after %lu ms\n",
	      tb_to_msecs(end_time - start_time));

        dt_for_each_compatible(dt_root, xn, "ibm,xscom") {
	        const struct dt_property *p;
		p = dt_find_property(xn, "ibm,occ-functional-state");
		if (!p)
			dt_add_property_cells(xn, "ibm,occ-functional-state",
					      0x1);
	}
	return true;
}

/*
 * OCC provides pstate table entries in continuous descending order.
 * Parse the pstate table to skip pstate_ids that are greater
 * than Pmax. If a pstate_id is equal to Pmin then add it to
 * the list and break from the loop as this is the last valid
 * element in the pstate table.
 */
static void parse_pstates_v2(struct occ_pstate_table *data, u32 *dt_id,
			     u32 *dt_freq, int nr_pstates, int pmax, int pmin)
{
	int i, j;

	for (i = 0, j = 0; i < MAX_PSTATES && j < nr_pstates; i++) {
		if (cmp_pstates(data->v2.pstates[i].id, pmax) > 0)
			continue;

		dt_id[j] = data->v2.pstates[i].id;
		dt_freq[j] = data->v2.pstates[i].freq_khz / 1000;
		j++;

		if (data->v2.pstates[i].id == pmin)
			break;
	}

	if (j != nr_pstates)
		prerror("OCC: Expected pstates(%d) is not equal to parsed pstates(%d)\n",
			nr_pstates, j);
}

static void parse_pstates_v9(struct occ_pstate_table *data, u32 *dt_id,
			     u32 *dt_freq, int nr_pstates, int pmax, int pmin)
{
	int i, j;

	for (i = 0, j = 0; i < MAX_PSTATES && j < nr_pstates; i++) {
		if (cmp_pstates(data->v9.pstates[i].id, pmax) > 0)
			continue;

		dt_id[j] = data->v9.pstates[i].id;
		dt_freq[j] = data->v9.pstates[i].freq_khz / 1000;
		j++;

		if (data->v9.pstates[i].id == pmin)
			break;
	}

	if (j != nr_pstates)
		prerror("OCC: Expected pstates(%d) is not equal to parsed pstates(%d)\n",
			nr_pstates, j);
}

static void parse_vid(struct occ_pstate_table *occ_data,
		      struct dt_node *node, u8 nr_pstates,
		      int pmax, int pmin)
{
	u8 *dt_vdd, *dt_vcs;
	int i, j;

	dt_vdd = malloc(nr_pstates);
	assert(dt_vdd);
	dt_vcs = malloc(nr_pstates);
	assert(dt_vcs);

	for (i = 0, j = 0; i < MAX_PSTATES && j < nr_pstates; i++) {
		if (cmp_pstates(occ_data->v2.pstates[i].id, pmax) > 0)
			continue;

		dt_vdd[j] = occ_data->v2.pstates[i].vdd;
		dt_vcs[j] = occ_data->v2.pstates[i].vcs;
		j++;

		if (occ_data->v2.pstates[i].id == pmin)
			break;
	}

	dt_add_property(node, "ibm,pstate-vdds", dt_vdd, nr_pstates);
	dt_add_property(node, "ibm,pstate-vcss", dt_vcs, nr_pstates);

	free(dt_vdd);
	free(dt_vcs);
}

/* Add device tree properties to describe pstates states */
/* Return nominal pstate to set in each core */
static bool add_cpu_pstate_properties(int *pstate_nom)
{
	struct proc_chip *chip;
	uint64_t occ_data_area;
	struct occ_pstate_table *occ_data;
	struct dt_node *power_mgt;
	/* Arrays for device tree */
	u32 *dt_id, *dt_freq;
	int pmax, pmin, pnom;
	u8 nr_pstates;
	bool ultra_turbo_supported;
	int i;

	prlog(PR_DEBUG, "OCC: CPU pstate state device tree init\n");

	/* Find first chip */
	chip = next_chip(NULL);

	/* Extract PState information from OCC */
	occ_data = get_occ_pstate_table(chip);

	/* Dump first 16 bytes of PState table */
	occ_data_area = (uint64_t)occ_data;
	prlog(PR_DEBUG, "OCC: Data (%16llx) = %16llx %16llx\n",
	      occ_data_area,
	      *(uint64_t *)occ_data_area,
	      *(uint64_t *)(occ_data_area + 8));

	if (!occ_data->valid) {
		/**
		 * @fwts-label OCCInvalidPStateTableDT
		 * @fwts-advice The pstate table for the first chip
		 * was not valid. This means that OCC (On Chip
		 * Controller) will be non-functional. This means
		 * that CPU idle states and CPU frequency scaling
		 * will not be functional as OPAL doesn't populate
		 * the device tree with pstates in this case.
		 */
		prlog(PR_ERR, "OCC: PState table is not valid\n");
		return false;
	}

	/*
	 * Workload-Optimized-Frequency(WOF) or Ultra-Turbo is supported
	 * from version 0x02 onwards. If WOF is disabled then, the max
	 * ultra_turbo pstate will be equal to max turbo pstate.
	 */
	ultra_turbo_supported = true;

	/* Parse Pmax, Pmin and Pnominal */
	switch (occ_data->version) {
	case 0x01:
		ultra_turbo_supported = false;
	case 0x02:
		if (proc_gen == proc_gen_p9) {
			/**
			 * @fwts-label OCCInvalidVersion02
			 * @fwts-advice The PState table layout version is not
			 * supported in P9. So OPAL will not parse the PState
			 * table. CPU frequency scaling will not be functional
			 * as frequency and pstate-ids are not added to DT.
			 */
			prerror("OCC: Version %x is not supported in P9\n",
				occ_data->version);
			return false;
		}
		pmin = occ_data->v2.pstate_min;
		pnom = occ_data->v2.pstate_nom;
		if (ultra_turbo_supported)
			pmax = occ_data->v2.pstate_ultra_turbo;
		else
			pmax = occ_data->v2.pstate_turbo;
		break;
	case 0x90:
		if (proc_gen == proc_gen_p8) {
			/**
			 * @fwts-label OCCInvalidVersion90
			 * @fwts-advice The PState table layout version is not
			 * supported in P8. So OPAL will not parse the PState
			 * table. CPU frequency scaling will not be functional
			 * as frequency and pstate-ids are not added to DT.
			 */
			prerror("OCC: Version %x is not supported in P8\n",
				occ_data->version);
			return false;
		}
		pmin = occ_data->v9.pstate_min;
		pnom = occ_data->v9.pstate_nom;
		if (ultra_turbo_supported)
			pmax = occ_data->v9.pstate_ultra_turbo;
		else
			pmax = occ_data->v9.pstate_turbo;
		break;
	default:
		/**
		 * @fwts-label OCCUnsupportedVersion
		 * @fwts-advice The PState table layout version is not
		 * supported. So OPAL will not parse the PState table.
		 * CPU frequency scaling will not be functional as OPAL
		 * doesn't populate the device tree with pstates.
		 */
		prerror("OCC: Unsupported pstate table layout version %d\n",
			occ_data->version);
		return false;
	}

	/* Sanity check for pstate limits */
	if (cmp_pstates(pmin, pmax) > 0) {
		/**
		 * @fwts-label OCCInvalidPStateLimits
		 * @fwts-advice The min pstate is greater than the
		 * max pstate, this could be due to corrupted/invalid
		 * data in OCC-OPAL shared memory region. So OPAL has
		 * not added pstates to device tree. This means that
		 * CPU Frequency management will not be functional in
		 * the host.
		 */
		prerror("OCC: Invalid pstate limits. Pmin(%d) > Pmax (%d)\n",
			pmin, pmax);
		return false;
	}

	if (cmp_pstates(pnom, pmax) > 0) {
		/**
		 * @fwts-label OCCInvalidNominalPState
		 * @fwts-advice The nominal pstate is greater than the
		 * max pstate, this could be due to corrupted/invalid
		 * data in OCC-OPAL shared memory region. So OPAL has
		 * limited the nominal pstate to max pstate.
		 */
		prerror("OCC: Clipping nominal pstate(%d) to Pmax(%d)\n",
			pnom, pmax);
		pnom = pmax;
	}

	nr_pstates = labs(pmax - pmin) + 1;
	prlog(PR_DEBUG, "OCC: Version %x Min %d Nom %d Max %d Nr States %d\n",
	      occ_data->version, pmin, pnom, pmax, nr_pstates);
	if (nr_pstates <= 1 || nr_pstates > 128) {
		/**
		 * @fwts-label OCCInvalidPStateRange
		 * @fwts-advice The number of pstates is outside the valid
		 * range (currently <=1 or > 128), so OPAL has not added
		 * pstates to the device tree. This means that OCC (On Chip
		 * Controller) will be non-functional. This means
		 * that CPU idle states and CPU frequency scaling
		 * will not be functional.
		 */
		prerror("OCC: OCC range is not valid; No of pstates = %d\n",
			nr_pstates);
		return false;
	}

	power_mgt = dt_find_by_path(dt_root, "/ibm,opal/power-mgt");
	if (!power_mgt) {
		/**
		 * @fwts-label OCCDTNodeNotFound
		 * @fwts-advice Device tree node /ibm,opal/power-mgt not
		 * found. OPAL didn't add pstate information to device tree.
		 * Probably a firmware bug.
		 */
		prlog(PR_ERR, "OCC: dt node /ibm,opal/power-mgt not found\n");
		return false;
	}

	dt_id = malloc(nr_pstates * sizeof(u32));
	assert(dt_id);
	dt_freq = malloc(nr_pstates * sizeof(u32));
	assert(dt_freq);

	switch (occ_data->version) {
	case 0x01:
	case 0x02:
		parse_pstates_v2(occ_data, dt_id, dt_freq, nr_pstates,
				 pmax, pmin);
		break;
	case 0x90:
		parse_pstates_v9(occ_data, dt_id, dt_freq, nr_pstates,
				 pmax, pmin);
		break;
	default:
		return false;
	}

	/* Add the device-tree entries */
	dt_add_property(power_mgt, "ibm,pstate-ids", dt_id,
			nr_pstates * sizeof(u32));
	dt_add_property(power_mgt, "ibm,pstate-frequencies-mhz", dt_freq,
			nr_pstates * sizeof(u32));
	dt_add_property_cells(power_mgt, "ibm,pstate-min", pmin);
	dt_add_property_cells(power_mgt, "ibm,pstate-nominal", pnom);
	dt_add_property_cells(power_mgt, "ibm,pstate-max", pmax);

	free(dt_freq);
	free(dt_id);

	/*
	 * Parse and add WOF properties: turbo, ultra-turbo and core_max array.
	 * core_max[1..n] array provides the max sustainable pstate that can be
	 * achieved with i active cores in the chip.
	 */
	if (ultra_turbo_supported) {
		int pturbo, pultra_turbo;
		u8 nr_cores = get_available_nr_cores_in_chip(chip->id);
		u32 *dt_cmax;

		dt_cmax = malloc(nr_cores * sizeof(u32));
		assert(dt_cmax);
		switch (occ_data->version) {
		case 0x02:
			pturbo = occ_data->v2.pstate_turbo;
			pultra_turbo = occ_data->v2.pstate_ultra_turbo;
			for (i = 0; i < nr_cores; i++)
				dt_cmax[i] = occ_data->v2.core_max[i];
			break;
		case 0x90:
			pturbo = occ_data->v9.pstate_turbo;
			pultra_turbo = occ_data->v9.pstate_ultra_turbo;
			for (i = 0; i < nr_cores; i++)
				dt_cmax[i] = occ_data->v9.core_max[i];
			break;
		default:
			return false;
		}

		if (cmp_pstates(pturbo, pmax) > 0) {
			prerror("OCC: Clipping turbo pstate(%d) to Pmax(%d)\n",
				pturbo, pmax);
			dt_add_property_cells(power_mgt, "ibm,pstate-turbo",
					      pmax);
		} else {
			dt_add_property_cells(power_mgt, "ibm,pstate-turbo",
					      pturbo);
		}

		dt_add_property_cells(power_mgt, "ibm,pstate-ultra-turbo",
				      pultra_turbo);
		dt_add_property(power_mgt, "ibm,pstate-core-max", dt_cmax,
				nr_cores * sizeof(u32));

		free(dt_cmax);
	}

	if (occ_data->version > 0x02)
		goto out;

	dt_add_property_cells(power_mgt, "#address-cells", 2);
	dt_add_property_cells(power_mgt, "#size-cells", 1);

	/* Add chip specific pstate properties */
	for_each_chip(chip) {
		struct dt_node *occ_node;

		occ_data = get_occ_pstate_table(chip);
		occ_node = dt_new_addr(power_mgt, "occ", (uint64_t)occ_data);
		if (!occ_node) {
			/**
			 * @fwts-label OCCDTFailedNodeCreation
			 * @fwts-advice Failed to create
			 * /ibm,opal/power-mgt/occ. Per-chip pstate properties
			 * are not added to Device Tree.
			 */
			prerror("OCC: Failed to create /ibm,opal/power-mgt/occ@%llx\n",
				(uint64_t)occ_data);
			return false;
		}

		dt_add_property_cells(occ_node, "reg",
				      hi32((uint64_t)occ_data),
				      lo32((uint64_t)occ_data),
				      OPAL_DYNAMIC_DATA_OFFSET +
				      sizeof(struct occ_dynamic_data));
		dt_add_property_cells(occ_node, "ibm,chip-id", chip->id);

		/*
		 * Parse and add pstate Voltage Identifiers (VID) to DT which
		 * are provided by OCC in version 0x01 and 0x02
		 */
		parse_vid(occ_data, occ_node, nr_pstates, pmax, pmin);
	}
out:
	/* Return pstate to set for each core */
	*pstate_nom = pnom;
	return true;
}

/*
 * Prepare chip for pstate transitions
 */

static bool cpu_pstates_prepare_core(struct proc_chip *chip,
				     struct cpu_thread *c,
				     int pstate_nom)
{
	uint32_t core = pir_to_core_id(c->pir);
	uint64_t tmp, pstate;
	int rc;

	/*
	 * Currently Fastsleep init clears EX_PM_SPR_OVERRIDE_EN.
	 * Need to ensure only relevant bits are inited
	 */

	/* Init PM GP1 for SCOM based PSTATE control to set nominal freq
	 *
	 * Use the OR SCOM to set the required bits in PM_GP1 register
	 * since the OCC might be mainpulating the PM_GP1 register as well.
	 */ 
	rc = xscom_write(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_SET_GP1),
			 EX_PM_SETUP_GP1_PM_SPR_OVERRIDE_EN);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
			"OCC: Failed to write PM_GP1 in pstates init\n");
		return false;
	}

	/* Set new pstate to core */
	rc = xscom_read(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_PPMCR), &tmp);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
			"OCC: Failed to read from OCC in pstates init\n");
		return false;
	}
	tmp = tmp & ~0xFFFF000000000000ULL;
	pstate = ((uint64_t) pstate_nom) & 0xFF;
	tmp = tmp | (pstate << 56) | (pstate << 48);
	rc = xscom_write(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_PPMCR), tmp);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
			"OCC: Failed to write PM_GP1 in pstates init\n");
		return false;
	}
	time_wait_ms(1); /* Wait for PState to change */
	/*
	 * Init PM GP1 for SPR based PSTATE control.
	 * Once OCC is active EX_PM_SETUP_GP1_DPLL_FREQ_OVERRIDE_EN will be
	 * cleared by OCC.  Sapphire need not clear.
	 * However wait for DVFS state machine to become idle after min->nominal
	 * transition initiated above.  If not switch over to SPR control could fail.
	 *
	 * Use the AND SCOM to clear the required bits in PM_GP1 register
	 * since the OCC might be mainpulating the PM_GP1 register as well.
	 */
	tmp = ~EX_PM_SETUP_GP1_PM_SPR_OVERRIDE_EN;
	rc = xscom_write(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_CLEAR_GP1),
			tmp);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
			"OCC: Failed to write PM_GP1 in pstates init\n");
		return false;
	}

	/* Just debug */
	rc = xscom_read(chip->id, XSCOM_ADDR_P8_EX_SLAVE(core, EX_PM_PPMSR), &tmp);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
			"OCC: Failed to read back setting from OCC"
				 "in pstates init\n");
		return false;
	}
	prlog(PR_DEBUG, "OCC: Chip %x Core %x PPMSR %016llx\n",
	      chip->id, core, tmp);

	/*
	 * If PMSR is still in transition at this point due to PState change
	 * initiated above, then the switchover to SPR may not work.
	 * ToDo: Check for DVFS state machine idle before change.
	 */

	return true;
}

static bool occ_opal_msg_outstanding = false;
static void occ_msg_consumed(void *data __unused)
{
	lock(&occ_lock);
	occ_opal_msg_outstanding = false;
	unlock(&occ_lock);
}

static inline u8 get_cpu_throttle(struct proc_chip *chip)
{
	struct occ_pstate_table *pdata = get_occ_pstate_table(chip);
	struct occ_dynamic_data *data;

	switch (pdata->version) {
	case 0x01:
	case 0x02:
		return pdata->v2.throttle;
	case 0x90:
		data = get_occ_dynamic_data(chip);
		return data->cpu_throttle;
	default:
		return 0;
	};
}

static void occ_throttle_poll(void *data __unused)
{
	struct proc_chip *chip;
	struct occ_pstate_table *occ_data;
	struct opal_occ_msg occ_msg;
	int rc;

	if (!try_lock(&occ_lock))
		return;
	if (occ_reset) {
		int inactive = 0;

		for_each_chip(chip) {
			occ_data = get_occ_pstate_table(chip);
			if (occ_data->valid != 1) {
				inactive = 1;
				break;
			}
		}
		if (!inactive) {
			/*
			 * Queue OCC_THROTTLE with throttle status as 0 to
			 * indicate all OCCs are active after a reset.
			 */
			occ_msg.type = cpu_to_be64(OCC_THROTTLE);
			occ_msg.chip = 0;
			occ_msg.throttle_status = 0;
			rc = _opal_queue_msg(OPAL_MSG_OCC, NULL, NULL, 3,
					     (uint64_t *)&occ_msg);
			if (!rc)
				occ_reset = false;
		}
	} else {
		if (occ_opal_msg_outstanding)
			goto done;
		for_each_chip(chip) {
			u8 throttle;

			occ_data = get_occ_pstate_table(chip);
			throttle = get_cpu_throttle(chip);
			if ((occ_data->valid == 1) &&
			    (chip->throttle != throttle) &&
			    (throttle <= OCC_MAX_THROTTLE_STATUS)) {
				occ_msg.type = cpu_to_be64(OCC_THROTTLE);
				occ_msg.chip = cpu_to_be64(chip->id);
				occ_msg.throttle_status = cpu_to_be64(throttle);
				rc = _opal_queue_msg(OPAL_MSG_OCC, NULL,
						     occ_msg_consumed,
						     3, (uint64_t *)&occ_msg);
				if (!rc) {
					chip->throttle = throttle;
					occ_opal_msg_outstanding = true;
					break;
				}
			}
		}
	}
done:
	unlock(&occ_lock);
}

/* CPU-OCC PState init */
/* Called after OCC init on P8 and P9 */
void occ_pstates_init(void)
{
	struct proc_chip *chip;
	struct cpu_thread *c;
	int pstate_nom;
	static bool occ_pstates_initialized;

	/* OCC is supported in P8 and P9 */
	if (proc_gen < proc_gen_p8)
		return;
	/* Handle fast reboots */
	if (occ_pstates_initialized)
		return;

	switch (proc_gen) {
	case proc_gen_p8:
		homer_opal_data_offset = P8_HOMER_OPAL_DATA_OFFSET;
		break;
	case proc_gen_p9:
		homer_opal_data_offset = P9_HOMER_OPAL_DATA_OFFSET;
		break;
	default:
		return;
	}

	chip = next_chip(NULL);
	if (!chip->homer_base) {
		log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
			"OCC: No HOMER detected, assuming no pstates\n");
		return;
	}

	/* Wait for all OCC to boot up */
	if(!wait_for_all_occ_init()) {
		log_simple_error(&e_info(OPAL_RC_OCC_TIMEOUT),
			 "OCC: Initialization on all chips did not complete"
			 "(timed out)\n");
		return;
	}

	/*
	 * Check boundary conditions and add device tree nodes
	 * and return nominal pstate to set for the core
	 */
	if (!add_cpu_pstate_properties(&pstate_nom)) {
		log_simple_error(&e_info(OPAL_RC_OCC_PSTATE_INIT),
			"Skiping core cpufreq init due to OCC error\n");
		return;
	}

	/* Setup host based pstates and set nominal frequency */
	for_each_chip(chip) {
		for_each_available_core_in_chip(c, chip->id) {
			cpu_pstates_prepare_core(chip, c, pstate_nom);
		}
	}

	/* Add opal_poller to poll OCC throttle status of each chip */
	for_each_chip(chip)
		chip->throttle = 0;
	opal_add_poller(occ_throttle_poll, NULL);
	occ_pstates_initialized = true;
}

struct occ_load_req {
	u8 scope;
	u32 dbob_id;
	u32 seq_id;
	struct list_node link;
};
static LIST_HEAD(occ_load_req_list);

int find_master_and_slave_occ(uint64_t **master, uint64_t **slave,
			      int *nr_masters, int *nr_slaves)
{
	struct proc_chip *chip;
	int nr_chips = 0, i;
	uint64_t chipids[MAX_CHIPS];

	for_each_chip(chip) {
		chipids[nr_chips++] = chip->id;
	}

	chip = next_chip(NULL);
	/*
	 * Proc0 is the master OCC for Tuleta/Alpine boxes.
	 * Hostboot expects the pair of chips for MURANO, so pass the sibling
	 * chip id along with proc0 to hostboot.
	 */
	*nr_masters = (chip->type == PROC_CHIP_P8_MURANO) ? 2 : 1;
	*master = (uint64_t *)malloc(*nr_masters * sizeof(uint64_t));

	if (!*master) {
		printf("OCC: master array alloc failure\n");
		return -ENOMEM;
	}

	if (nr_chips - *nr_masters > 0) {
		*nr_slaves = nr_chips - *nr_masters;
		*slave = (uint64_t *)malloc(*nr_slaves * sizeof(uint64_t));
		if (!*slave) {
			printf("OCC: slave array alloc failure\n");
			return -ENOMEM;
		}
	}

	for (i = 0; i < nr_chips; i++) {
		if (i < *nr_masters) {
			*(*master + i) = chipids[i];
			continue;
		}
		*(*slave + i - *nr_masters) = chipids[i];
	}
	return 0;
}

static void occ_queue_load(u8 scope, u32 dbob_id, u32 seq_id)
{
	struct occ_load_req *occ_req;

	occ_req = zalloc(sizeof(struct occ_load_req));
	if (!occ_req) {
		/**
		 * @fwts-label OCCload_reqENOMEM
		 * @fwts-advice ENOMEM while allocating OCC load message.
		 * OCCs not started, consequently no power/frequency scaling
		 * will be functional.
		 */
		prlog(PR_ERR, "OCC: Could not allocate occ_load_req\n");
		return;
	}

	occ_req->scope = scope;
	occ_req->dbob_id = dbob_id;
	occ_req->seq_id = seq_id;
	list_add_tail(&occ_load_req_list, &occ_req->link);
}

static void __occ_do_load(u8 scope, u32 dbob_id __unused, u32 seq_id)
{
	struct fsp_msg *stat;
	int rc = -ENOMEM;
	int status_word = 0;
	struct proc_chip *chip = next_chip(NULL);

	/* Call HBRT... */
	rc = host_services_occ_load();

	/* Handle fallback to preload */
	if (rc == -ENOENT && chip->homer_base) {
		prlog(PR_INFO, "OCC: Load: Fallback to preloaded image\n");
		rc = 0;
	} else if (!rc) {
		struct opal_occ_msg occ_msg = { CPU_TO_BE64(OCC_LOAD), 0, 0 };

		rc = _opal_queue_msg(OPAL_MSG_OCC, NULL, NULL, 3,
				     (uint64_t *)&occ_msg);
		if (rc)
			prlog(PR_INFO, "OCC: Failed to queue message %d\n",
			      OCC_LOAD);

		/* Success, start OCC */
		rc = host_services_occ_start();
	}
	if (rc) {
		/* If either of hostservices call fail, send fail to FSP */
		/* Find a chip ID to send failure */
		for_each_chip(chip) {
			if (scope == 0x01 && dbob_id != chip->dbob_id)
				continue;
			status_word = 0xB500 | (chip->pcid & 0xff);
			break;
		}
		log_simple_error(&e_info(OPAL_RC_OCC_LOAD),
			"OCC: Error %d in load/start OCC\n", rc);
	}

	/* Send a single response for all chips */
	stat = fsp_mkmsg(FSP_CMD_LOAD_OCC_STAT, 2, status_word, seq_id);
	if (stat)
		rc = fsp_queue_msg(stat, fsp_freemsg);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_OCC_LOAD),
			"OCC: Error %d queueing FSP OCC LOAD STATUS msg", rc);
		fsp_freemsg(stat);
	}
}

void occ_poke_load_queue(void)
{
	struct occ_load_req *occ_req, *next;

	if (list_empty(&occ_load_req_list))
		return;

	list_for_each_safe(&occ_load_req_list, occ_req, next, link) {
		__occ_do_load(occ_req->scope, occ_req->dbob_id,
				occ_req->seq_id);
		list_del(&occ_req->link);
		free(occ_req);
	}
}

static void occ_do_load(u8 scope, u32 dbob_id __unused, u32 seq_id)
{
	struct fsp_msg *rsp;
	int rc = -ENOMEM;
	u8 err = 0;

	if (scope != 0x01 && scope != 0x02) {
		/**
		 * @fwts-label OCCLoadInvalidScope
		 * @fwts-advice Invalid request for loading OCCs. Power and
		 * frequency management not functional
		 */
		prlog(PR_ERR, "OCC: Load message with invalid scope 0x%x\n",
		      scope);
		err = 0x22;
	}

	/* First queue up an OK response to the load message itself */
	rsp = fsp_mkmsg(FSP_RSP_LOAD_OCC | err, 0);
	if (rsp)
		rc = fsp_queue_msg(rsp, fsp_freemsg);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_OCC_LOAD),
			"OCC: Error %d queueing FSP OCC LOAD reply\n", rc);
		fsp_freemsg(rsp);
		return;
	}

	if (err)
		return;

	/*
	 * Check if hostservices lid caching is complete. If not, queue
	 * the load request.
	 */
	if (!hservices_lid_preload_complete()) {
		occ_queue_load(scope, dbob_id, seq_id);
		return;
	}

	__occ_do_load(scope, dbob_id, seq_id);
}

int occ_msg_queue_occ_reset(void)
{
	struct opal_occ_msg occ_msg = { OCC_RESET, 0, 0 };
	struct proc_chip *chip;
	int rc;

	lock(&occ_lock);
	rc = _opal_queue_msg(OPAL_MSG_OCC, NULL, NULL, 3,
			     (uint64_t *)&occ_msg);
	if (rc) {
		prlog(PR_INFO, "OCC: Failed to queue OCC_RESET message\n");
		goto out;
	}
	/*
	 * Set 'valid' byte of occ_pstate_table to 0 since OCC
	 * may not clear this byte on a reset.
	 * OCC will set the 'valid' byte to 1 when it becomes
	 * active again.
	 */
	for_each_chip(chip) {
		struct occ_pstate_table *occ_data;

		occ_data = get_occ_pstate_table(chip);
		occ_data->valid = 0;
		chip->throttle = 0;
	}
	occ_reset = true;
out:
	unlock(&occ_lock);
	return rc;
}

static void occ_do_reset(u8 scope, u32 dbob_id, u32 seq_id)
{
	struct fsp_msg *rsp, *stat;
	struct proc_chip *chip = next_chip(NULL);
	int rc = -ENOMEM;
	u8 err = 0;

	/* Check arguments */
	if (scope != 0x01 && scope != 0x02) {
		/**
		 * @fwts-label OCCResetInvalidScope
		 * @fwts-advice Invalid request for resetting OCCs. Power and
		 * frequency management not functional
		 */
		prlog(PR_ERR, "OCC: Reset message with invalid scope 0x%x\n",
		      scope);
		err = 0x22;
	}

	/* First queue up an OK response to the reset message itself */
	rsp = fsp_mkmsg(FSP_RSP_RESET_OCC | err, 0);
	if (rsp)
		rc = fsp_queue_msg(rsp, fsp_freemsg);
	if (rc) {
		fsp_freemsg(rsp);
		log_simple_error(&e_info(OPAL_RC_OCC_RESET),
			"OCC: Error %d queueing FSP OCC RESET reply\n", rc);
		return;
	}

	/* If we had an error, return */
	if (err)
		return;

	/*
	 * Call HBRT to stop OCC and leave it stopped.  FSP will send load/start
	 * request subsequently.  Also after few runtime restarts (currently 3),
	 * FSP will request OCC to left in stopped state.
	 */

	rc = host_services_occ_stop();

	/* Handle fallback to preload */
	if (rc == -ENOENT && chip->homer_base) {
		prlog(PR_INFO, "OCC: Reset: Fallback to preloaded image\n");
		rc = 0;
	}
	if (!rc) {
		/* Send a single success response for all chips */
		stat = fsp_mkmsg(FSP_CMD_RESET_OCC_STAT, 2, 0, seq_id);
		if (stat)
			rc = fsp_queue_msg(stat, fsp_freemsg);
		if (rc) {
			fsp_freemsg(stat);
			log_simple_error(&e_info(OPAL_RC_OCC_RESET),
				"OCC: Error %d queueing FSP OCC RESET"
					" STATUS message\n", rc);
		}
		occ_msg_queue_occ_reset();
	} else {

		/*
		 * Then send a matching OCC Reset Status message with an 0xFE
		 * (fail) response code as well to the first matching chip
		 */
		for_each_chip(chip) {
			if (scope == 0x01 && dbob_id != chip->dbob_id)
				continue;
			rc = -ENOMEM;
			stat = fsp_mkmsg(FSP_CMD_RESET_OCC_STAT, 2,
					 0xfe00 | (chip->pcid & 0xff), seq_id);
			if (stat)
				rc = fsp_queue_msg(stat, fsp_freemsg);
			if (rc) {
				fsp_freemsg(stat);
				log_simple_error(&e_info(OPAL_RC_OCC_RESET),
					"OCC: Error %d queueing FSP OCC RESET"
						" STATUS message\n", rc);
			}
			break;
		}
	}
}

#define PV_OCC_GP0		0x01000000
#define PV_OCC_GP0_AND		0x01000004
#define PV_OCC_GP0_OR		0x01000005
#define PV_OCC_GP0_PNOR_OWNER	PPC_BIT(18) /* 1 = OCC / Host, 0 = BMC */

static void occ_pnor_set_one_owner(uint32_t chip_id, enum pnor_owner owner)
{
	uint64_t reg, mask;

	if (owner == PNOR_OWNER_HOST) {
		reg = PV_OCC_GP0_OR;
		mask = PV_OCC_GP0_PNOR_OWNER;
	} else {
		reg = PV_OCC_GP0_AND;
		mask = ~PV_OCC_GP0_PNOR_OWNER;
	}

	xscom_write(chip_id, reg, mask);
}

void occ_pnor_set_owner(enum pnor_owner owner)
{
	struct proc_chip *chip;

	for_each_chip(chip)
		occ_pnor_set_one_owner(chip->id, owner);
}

static bool fsp_occ_msg(u32 cmd_sub_mod, struct fsp_msg *msg)
{
	u32 dbob_id, seq_id;
	u8 scope;

	switch (cmd_sub_mod) {
	case FSP_CMD_LOAD_OCC:
		/*
		 * We get the "Load OCC" command at boot. We don't currently
		 * support loading it ourselves (we don't have the procedures,
		 * they will come with Host Services). For now HostBoot will
		 * have loaded a OCC firmware for us, but we still need to
		 * be nice and respond to OCC.
		 */
		scope = msg->data.bytes[3];
		dbob_id = msg->data.words[1];
		seq_id = msg->data.words[2];
		prlog(PR_INFO, "OCC: Got OCC Load message, scope=0x%x"
		      " dbob=0x%x seq=0x%x\n", scope, dbob_id, seq_id);
		occ_do_load(scope, dbob_id, seq_id);
		return true;

	case FSP_CMD_RESET_OCC:
		/*
		 * We shouldn't be getting this one, but if we do, we have
		 * to reply something sensible or the FSP will get upset
		 */
		scope = msg->data.bytes[3];
		dbob_id = msg->data.words[1];
		seq_id = msg->data.words[2];
		prlog(PR_INFO, "OCC: Got OCC Reset message, scope=0x%x"
		      " dbob=0x%x seq=0x%x\n", scope, dbob_id, seq_id);
		occ_do_reset(scope, dbob_id, seq_id);
		return true;
	}
	return false;
}

static struct fsp_client fsp_occ_client = {
	.message = fsp_occ_msg,
};

#define P8_OCB_OCI_OCCMISC		0x6a020
#define P8_OCB_OCI_OCCMISC_AND		0x6a021
#define P8_OCB_OCI_OCCMISC_OR		0x6a022

#define P9_OCB_OCI_OCCMISC		0x6c080
#define P9_OCB_OCI_OCCMISC_CLEAR	0x6c081
#define P9_OCB_OCI_OCCMISC_OR		0x6c082

#define OCB_OCI_OCIMISC_IRQ		PPC_BIT(0)
#define OCB_OCI_OCIMISC_IRQ_TMGT	PPC_BIT(1)
#define OCB_OCI_OCIMISC_IRQ_SLW_TMR	PPC_BIT(14)
#define OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY	PPC_BIT(15)

#define P8_OCB_OCI_OCIMISC_MASK		(OCB_OCI_OCIMISC_IRQ_TMGT | \
					 OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY | \
					 OCB_OCI_OCIMISC_IRQ_SLW_TMR)

#define OCB_OCI_OCIMISC_IRQ_I2C		PPC_BIT(2)
#define OCB_OCI_OCIMISC_IRQ_SHMEM	PPC_BIT(3)
#define P9_OCB_OCI_OCIMISC_MASK		(OCB_OCI_OCIMISC_IRQ_TMGT | \
					 OCB_OCI_OCIMISC_IRQ_I2C | \
					 OCB_OCI_OCIMISC_IRQ_SHMEM | \
					 OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY)

void occ_send_dummy_interrupt(void)
{
	struct psi *psi;
	struct proc_chip *chip = get_chip(this_cpu()->chip_id);

	/* Emulators and P7 doesn't do this */
	if (proc_gen < proc_gen_p8 || chip_quirk(QUIRK_NO_OCC_IRQ))
		return;

	/* Find a functional PSI. This ensures an interrupt even if
	 * the psihb on the current chip is not configured */
	if (chip->psi)
		psi = chip->psi;
	else
		psi = psi_find_functional_chip();

	if (!psi) {
		prlog_once(PR_WARNING, "PSI: no functional PSI HB found, "
				       "no self interrupts delivered\n");
		return;
	}

	switch (proc_gen) {
	case proc_gen_p8:
		xscom_write(psi->chip_id, P8_OCB_OCI_OCCMISC_OR,
			    OCB_OCI_OCIMISC_IRQ |
			    OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY);
		break;
	case proc_gen_p9:
		xscom_write(psi->chip_id, P9_OCB_OCI_OCCMISC_OR,
			    OCB_OCI_OCIMISC_IRQ |
			    OCB_OCI_OCIMISC_IRQ_OPAL_DUMMY);
		break;
	default:
		break;
	}
}

void occ_p8_interrupt(uint32_t chip_id)
{
	uint64_t ireg;
	int64_t rc;

	/* The OCC interrupt is used to mux up to 15 different sources */
	rc = xscom_read(chip_id, P8_OCB_OCI_OCCMISC, &ireg);
	if (rc) {
		prerror("OCC: Failed to read interrupt status !\n");
		/* Should we mask it in the XIVR ? */
		return;
	}
	prlog(PR_TRACE, "OCC: IRQ received: %04llx\n", ireg >> 48);

	/* Clear the bits */
	xscom_write(chip_id, P8_OCB_OCI_OCCMISC_AND, ~ireg);

	/* Dispatch */
	if (ireg & OCB_OCI_OCIMISC_IRQ_TMGT)
		prd_tmgt_interrupt(chip_id);
	if (ireg & OCB_OCI_OCIMISC_IRQ_SLW_TMR)
		check_timers(true);

	/* We may have masked-out OCB_OCI_OCIMISC_IRQ in the previous
	 * OCCMISC_AND write. Check if there are any new source bits set,
	 * and trigger another interrupt if so.
	 */
	rc = xscom_read(chip_id, P8_OCB_OCI_OCCMISC, &ireg);
	if (!rc && (ireg & P8_OCB_OCI_OCIMISC_MASK))
		xscom_write(chip_id, P8_OCB_OCI_OCCMISC_OR,
			    OCB_OCI_OCIMISC_IRQ);
}

void occ_p9_interrupt(uint32_t chip_id)
{
	u64 ireg;
	s64 rc;

	/* The OCC interrupt is used to mux up to 15 different sources */
	rc = xscom_read(chip_id, P9_OCB_OCI_OCCMISC, &ireg);
	if (rc) {
		prerror("OCC: Failed to read interrupt status !\n");
		return;
	}
	prlog(PR_TRACE, "OCC: IRQ received: %04llx\n", ireg >> 48);

	/* Clear the bits */
	xscom_write(chip_id, P9_OCB_OCI_OCCMISC_CLEAR, ireg);

	/* Dispatch */
	if (ireg & OCB_OCI_OCIMISC_IRQ_TMGT)
		prd_tmgt_interrupt(chip_id);

	if (ireg & OCB_OCI_OCIMISC_IRQ_SHMEM)
		occ_throttle_poll(NULL);

	/* We may have masked-out OCB_OCI_OCIMISC_IRQ in the previous
	 * OCCMISC_AND write. Check if there are any new source bits set,
	 * and trigger another interrupt if so.
	 */
	rc = xscom_read(chip_id, P9_OCB_OCI_OCCMISC, &ireg);
	if (!rc && (ireg & P9_OCB_OCI_OCIMISC_MASK))
		xscom_write(chip_id, P9_OCB_OCI_OCCMISC_OR,
			    OCB_OCI_OCIMISC_IRQ);
}

void occ_fsp_init(void)
{
	/* OCC is P8 only */
	if (proc_gen != proc_gen_p8)
		return;

	/* If we have an FSP, register for notifications */
	if (fsp_present())
		fsp_register_client(&fsp_occ_client, FSP_MCLASS_OCC);
}