1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
|
// SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
/*
* OCC (On Chip Controller) exports a bunch of sensors
*
* Copyright 2017-2019 IBM Corp.
*/
#include <skiboot.h>
#include <opal.h>
#include <chip.h>
#include <sensor.h>
#include <device.h>
#include <cpu.h>
#include <occ.h>
enum sensor_attr {
SENSOR_SAMPLE,
SENSOR_SAMPLE_MIN, /* OCC's min/max */
SENSOR_SAMPLE_MAX,
SENSOR_CSM_MIN, /* CSM's min/max */
SENSOR_CSM_MAX,
SENSOR_ACCUMULATOR,
MAX_SENSOR_ATTR,
};
#define HWMON_SENSORS_MASK (OCC_SENSOR_TYPE_CURRENT | \
OCC_SENSOR_TYPE_VOLTAGE | \
OCC_SENSOR_TYPE_TEMPERATURE | \
OCC_SENSOR_TYPE_POWER)
/*
* Standard HWMON linux interface expects the below units for the
* environment sensors:
* - Current : milliampere
* - Voltage : millivolt
* - Temperature : millidegree Celsius (scaled in kernel)
* - Power : microWatt (scaled in kernel)
* - Energy : microJoule
*/
/*
* OCC sensor units are obtained after scaling the sensor values.
* https://github.com/open-power/occ/blob/master/src/occ_405/sensor/sensor_info.c
*/
static struct str_map {
const char *occ_str;
const char *opal_str;
} str_maps[] = {
{"PWRSYS", "System"},
/* Bulk power of the system: Watt */
{"PWRFAN", "Fan"},
/* Power consumption of the system fans: Watt */
{"PWRIO", "IO"},
/* Power consumption of the IO subsystem: Watt */
{"PWRSTORE", "Storage"},
/* Power comsumption of the storage subsystem: Watt */
{"PWRGPU", "GPU"},
/* Power consumption for GPUs per socket read from APSS: Watt */
{"PWRAPSSCH", "APSS"},
/* Power Provided by APSS channel x (where x=0…15): Watt */
{"PWRPROC", ""},
/* Power consumption for this Processor: Watt */
{"PWRVDD", "Vdd"},
/* Power consumption for this Processor's Vdd(AVSBus readings): Watt */
{"PWRVDN", "Vdn"},
/* Power consumption for this Processor's Vdn (nest)
* Calculated from AVSBus readings: Watt */
{"PWRMEM", "Memory"},
/* Power consumption for Memory for this Processor read from APSS:
* Watt */
{"CURVDD", "Vdd"},
/* Processor Vdd Current (read from AVSBus): Ampere */
{"CURVDN", "Vdn"},
/* Processor Vdn Current (read from AVSBus): Ampere */
{"VOLTVDDSENSE", "Vdd Remote Sense"},
/* Vdd Voltage at the remote sense.
* AVS reading adjusted for loadline: millivolt */
{"VOLTVDNSENSE", "Vdn Remote Sense"},
/* Vdn Voltage at the remote sense.
* AVS reading adjusted for loadline: millivolt */
{"VOLTVDD", "Vdd"},
/* Processor Vdd Voltage (read from AVSBus): millivolt */
{"VOLTVDN", "Vdn"},
/* Processor Vdn Voltage (read from AVSBus): millivolt */
{"TEMPC", "Core"},
/* Average temperature of core DTS sensors for Processor's Core y:
* Celsius */
{"TEMPQ", "Quad"},
/* Average temperature of quad (in cache) DTS sensors for
* Processor’s Quad y: Celsius */
{"TEMPNEST", "Nest"},
/* Average temperature of nest DTS sensors: Celsius */
{"TEMPPROCTHRMC", "Core"},
/* The combined weighted core/quad temperature for processor core y:
* Celsius */
{"TEMPDIMM", "DIMM"},
/* DIMM temperature for DIMM x: Celsius */
{"TEMPGPU", "GPU"},
/* GPU x (0..2) board temperature: Celsius */
/* TEMPGPUxMEM: GPU x hottest HBM temperature (individual memory
* temperatures are not available): Celsius */
{"TEMPVDD", "VRM VDD"},
/* VRM Vdd temperature: Celsius */
};
static u64 occ_sensor_base;
static inline
struct occ_sensor_data_header *get_sensor_header_block(int occ_num)
{
return (struct occ_sensor_data_header *)
(occ_sensor_base + occ_num * OCC_SENSOR_DATA_BLOCK_SIZE);
}
static inline
struct occ_sensor_name *get_names_block(struct occ_sensor_data_header *hb)
{
return ((struct occ_sensor_name *)((u64)hb + be32_to_cpu(hb->names_offset)));
}
static inline u32 sensor_handler(int occ_num, int sensor_id, int attr)
{
return sensor_make_handler(SENSOR_OCC, occ_num, sensor_id, attr);
}
/*
* The scaling factor for the sensors is encoded in the below format:
* (((UINT32)mantissa << 8) | (UINT32)((UINT8) 256 + (UINT8)exp))
* https://github.com/open-power/occ/blob/master/src/occ_405/sensor/sensor.h
*/
static void scale_sensor(struct occ_sensor_name *md, u64 *sensor)
{
u32 factor = be32_to_cpu(md->scale_factor);
int i;
s8 exp;
if (be16_to_cpu(md->type) == OCC_SENSOR_TYPE_CURRENT)
*sensor *= 1000; //convert to mA
*sensor *= factor >> 8;
exp = factor & 0xFF;
if (exp > 0) {
for (i = labs(exp); i > 0; i--)
*sensor *= 10;
} else {
for (i = labs(exp); i > 0; i--)
*sensor /= 10;
}
}
static void scale_energy(struct occ_sensor_name *md, u64 *sensor)
{
u32 factor = be32_to_cpu(md->freq);
int i;
s8 exp;
*sensor *= 1000000; //convert to uJ
*sensor /= factor >> 8;
exp = factor & 0xFF;
if (exp > 0) {
for (i = labs(exp); i > 0; i--)
*sensor /= 10;
} else {
for (i = labs(exp); i > 0; i--)
*sensor *= 10;
}
}
static u64 read_sensor(struct occ_sensor_record *sensor, int attr)
{
switch (attr) {
case SENSOR_SAMPLE:
return be16_to_cpu(sensor->sample);
case SENSOR_SAMPLE_MIN:
return be16_to_cpu(sensor->sample_min);
case SENSOR_SAMPLE_MAX:
return be16_to_cpu(sensor->sample_max);
case SENSOR_CSM_MIN:
return be16_to_cpu(sensor->csm_min);
case SENSOR_CSM_MAX:
return be16_to_cpu(sensor->csm_max);
case SENSOR_ACCUMULATOR:
return be64_to_cpu(sensor->accumulator);
default:
break;
}
return 0;
}
static void *select_sensor_buffer(struct occ_sensor_data_header *hb, int id)
{
struct occ_sensor_name *md;
u8 *ping, *pong;
void *buffer = NULL;
u32 reading_offset;
if (!hb)
return NULL;
md = get_names_block(hb);
ping = (u8 *)((u64)hb + be32_to_cpu(hb->reading_ping_offset));
pong = (u8 *)((u64)hb + be32_to_cpu(hb->reading_pong_offset));
reading_offset = be32_to_cpu(md[id].reading_offset);
/* Check which buffer is valid and read the data from that.
* Ping Pong Action
* 0 0 Return with error
* 0 1 Read Pong
* 1 0 Read Ping
* 1 1 Read the buffer with latest timestamp
*/
if (*ping && *pong) {
u64 tping, tpong;
u64 ping_buf = (u64)ping + reading_offset;
u64 pong_buf = (u64)pong + reading_offset;
tping = be64_to_cpu(((struct occ_sensor_record *)ping_buf)->timestamp);
tpong = be64_to_cpu(((struct occ_sensor_record *)pong_buf)->timestamp);
if (tping > tpong)
buffer = ping;
else
buffer = pong;
} else if (*ping && !*pong) {
buffer = ping;
} else if (!*ping && *pong) {
buffer = pong;
} else if (!*ping && !*pong) {
prlog(PR_DEBUG, "OCC: Both ping and pong sensor buffers are invalid\n");
return NULL;
}
assert(buffer);
buffer = (void *)((u64)buffer + reading_offset);
return buffer;
}
int occ_sensor_read(u32 handle, __be64 *data)
{
struct occ_sensor_data_header *hb;
struct occ_sensor_name *md;
u16 id = sensor_get_rid(handle);
u8 occ_num = sensor_get_frc(handle);
u8 attr = sensor_get_attr(handle);
u64 d;
void *buff;
if (occ_num > MAX_OCCS)
return OPAL_PARAMETER;
if (attr > MAX_SENSOR_ATTR)
return OPAL_PARAMETER;
if (is_occ_reset())
return OPAL_HARDWARE;
hb = get_sensor_header_block(occ_num);
if (hb->valid != 1)
return OPAL_HARDWARE;
if (id > be16_to_cpu(hb->nr_sensors))
return OPAL_PARAMETER;
buff = select_sensor_buffer(hb, id);
if (!buff)
return OPAL_HARDWARE;
d = read_sensor(buff, attr);
if (!d)
goto out_success;
md = get_names_block(hb);
if (be16_to_cpu(md[id].type) == OCC_SENSOR_TYPE_POWER && attr == SENSOR_ACCUMULATOR)
scale_energy(&md[id], &d);
else
scale_sensor(&md[id], &d);
out_success:
*data = cpu_to_be64(d);
return OPAL_SUCCESS;
}
static bool occ_sensor_sanity(struct occ_sensor_data_header *hb, int chipid)
{
if (hb->valid != 0x01) {
prerror("OCC: Chip %d sensor data invalid\n", chipid);
return false;
}
if (hb->version != 0x01) {
prerror("OCC: Chip %d unsupported sensor header block version %d\n",
chipid, hb->version);
return false;
}
if (hb->reading_version != 0x01) {
prerror("OCC: Chip %d unsupported sensor record format %d\n",
chipid, hb->reading_version);
return false;
}
if (hb->names_version != 0x01) {
prerror("OCC: Chip %d unsupported sensor names format %d\n",
chipid, hb->names_version);
return false;
}
if (hb->name_length != sizeof(struct occ_sensor_name)) {
prerror("OCC: Chip %d unsupported sensor names length %d\n",
chipid, hb->name_length);
return false;
}
if (!hb->nr_sensors) {
prerror("OCC: Chip %d has no sensors\n", chipid);
return false;
}
if (!hb->names_offset ||
!hb->reading_ping_offset ||
!hb->reading_pong_offset) {
prerror("OCC: Chip %d Invalid sensor buffer pointers\n",
chipid);
return false;
}
return true;
}
/*
* parse_entity: Parses OCC sensor name to return the entity number like
* chipid, core-id, dimm-no, gpu-no. 'end' is used to
* get the subentity strings. Returns -1 if no number is found.
* TEMPC4 --> returns 4, end will be NULL
* TEMPGPU2DRAM1 --> returns 2, end = "DRAM1"
* PWRSYS --> returns -1, end = NULL
*/
static int parse_entity(const char *name, char **end)
{
while (*name != '\0') {
if (isdigit(*name))
break;
name++;
}
if (*name)
return strtol(name, end, 10);
else
return -1;
}
static void add_sensor_label(struct dt_node *node, struct occ_sensor_name *md,
int chipid)
{
char sname[30] = "";
char prefix[30] = "";
uint16_t location = be16_to_cpu(md->location);
int i;
if (location != OCC_SENSOR_LOC_SYSTEM)
snprintf(prefix, sizeof(prefix), "%s %d ", "Chip", chipid);
for (i = 0; i < ARRAY_SIZE(str_maps); i++)
if (!strncmp(str_maps[i].occ_str, md->name,
strlen(str_maps[i].occ_str))) {
char *end;
int num = -1;
if (location != OCC_SENSOR_LOC_CORE)
num = parse_entity(md->name, &end);
if (num != -1) {
snprintf(sname, sizeof(sname), "%s%s %d %s",
prefix, str_maps[i].opal_str, num,
end);
} else {
snprintf(sname, sizeof(sname), "%s%s", prefix,
str_maps[i].opal_str);
}
dt_add_property_string(node, "label", sname);
return;
}
/* Fallback to OCC literal if mapping is not found */
if (location == OCC_SENSOR_LOC_SYSTEM) {
dt_add_property_string(node, "label", md->name);
} else {
snprintf(sname, sizeof(sname), "%s%s", prefix, md->name);
dt_add_property_string(node, "label", sname);
}
}
static const char *get_sensor_type_string(enum occ_sensor_type type)
{
switch (type) {
case OCC_SENSOR_TYPE_POWER:
return "power";
case OCC_SENSOR_TYPE_TEMPERATURE:
return "temp";
case OCC_SENSOR_TYPE_CURRENT:
return "curr";
case OCC_SENSOR_TYPE_VOLTAGE:
return "in";
default:
break;
}
return "unknown";
}
static const char *get_sensor_loc_string(enum occ_sensor_location loc)
{
switch (loc) {
case OCC_SENSOR_LOC_SYSTEM:
return "sys";
case OCC_SENSOR_LOC_PROCESSOR:
return "proc";
case OCC_SENSOR_LOC_MEMORY:
return "mem";
case OCC_SENSOR_LOC_VRM:
return "vrm";
case OCC_SENSOR_LOC_CORE:
return "core";
case OCC_SENSOR_LOC_QUAD:
return "quad";
case OCC_SENSOR_LOC_GPU:
return "gpu";
default:
break;
}
return "unknown";
}
/*
* Power sensors can be 0 valued in few platforms like Zaius, Romulus
* which do not have APSS. At the moment there is no HDAT/DT property
* to indicate if APSS is present. So for now skip zero valued power
* sensors.
*/
static bool check_sensor_sample(struct occ_sensor_data_header *hb, u32 offset)
{
struct occ_sensor_record *ping, *pong;
ping = (struct occ_sensor_record *)((u64)hb
+ be32_to_cpu(hb->reading_ping_offset) + offset);
pong = (struct occ_sensor_record *)((u64)hb
+ be32_to_cpu(hb->reading_pong_offset) + offset);
return ping->sample || pong->sample;
}
static void add_sensor_node(const char *loc, const char *type, int i, int attr,
struct occ_sensor_name *md, __be32 *phandle, u32 *ptype,
u32 pir, u32 occ_num, u32 chipid)
{
char name[30];
struct dt_node *node;
u32 handler;
snprintf(name, sizeof(name), "%s-%s", loc, type);
handler = sensor_handler(occ_num, i, attr);
node = dt_new_addr(sensor_node, name, handler);
dt_add_property_string(node, "sensor-type", type);
dt_add_property_cells(node, "sensor-data", handler);
dt_add_property_cells(node, "reg", handler);
dt_add_property_string(node, "occ_label", md->name);
add_sensor_label(node, md, chipid);
if (be16_to_cpu(md->location) == OCC_SENSOR_LOC_CORE)
dt_add_property_cells(node, "ibm,pir", pir);
*ptype = be16_to_cpu(md->type);
if (attr == SENSOR_SAMPLE) {
handler = sensor_handler(occ_num, i, SENSOR_CSM_MAX);
dt_add_property_cells(node, "sensor-data-max", handler);
handler = sensor_handler(occ_num, i, SENSOR_CSM_MIN);
dt_add_property_cells(node, "sensor-data-min", handler);
}
dt_add_property_string(node, "compatible", "ibm,opal-sensor");
*phandle = cpu_to_be32(node->phandle);
}
bool occ_sensors_init(void)
{
struct proc_chip *chip;
struct dt_node *sg, *exports;
int occ_num = 0, i;
bool has_gpu = false;
/* OCC inband sensors is only supported in P9/10 */
if (proc_gen < proc_gen_p9)
return false;
/* Sensors are copied to BAR2 OCC Common Area */
chip = next_chip(NULL);
if (!chip->occ_common_base) {
prerror("OCC: Unassigned OCC Common Area. No sensors found\n");
return false;
}
occ_sensor_base = chip->occ_common_base + OCC_SENSOR_DATA_BLOCK_OFFSET;
sg = dt_new(opal_node, "sensor-groups");
if (!sg) {
prerror("OCC: Failed to create sensor groups node\n");
return false;
}
dt_add_property_string(sg, "compatible", "ibm,opal-sensor-group");
dt_add_property_cells(sg, "#address-cells", 1);
dt_add_property_cells(sg, "#size-cells", 0);
/*
* On POWER9, ibm,ioda2-npu2-phb indicates the presence of a
* GPU NVlink.
*/
if (dt_find_compatible_node(dt_root, NULL, "ibm,ioda2-npu2-phb")) {
for_each_chip(chip) {
int max_gpus_per_chip = 3, i;
for(i = 0; i < max_gpus_per_chip; i++) {
has_gpu = occ_get_gpu_presence(chip, i);
if (has_gpu)
break;
}
if (has_gpu)
break;
}
}
for_each_chip(chip) {
struct occ_sensor_data_header *hb;
struct occ_sensor_name *md;
__be32 *phandles;
u32 *ptype, phcount = 0;
unsigned int nr_sensors;
hb = get_sensor_header_block(occ_num);
md = get_names_block(hb);
/* Sanity check of the Sensor Data Header Block */
if (!occ_sensor_sanity(hb, chip->id))
continue;
nr_sensors = be16_to_cpu(hb->nr_sensors);
phandles = malloc(nr_sensors * sizeof(__be32));
assert(phandles);
ptype = malloc(nr_sensors * sizeof(u32));
assert(ptype);
for (i = 0; i < nr_sensors; i++) {
const char *type_name, *loc;
struct cpu_thread *c = NULL;
uint32_t pir = 0;
uint16_t type = be16_to_cpu(md[i].type);
uint16_t location = be16_to_cpu(md[i].location);
if (md[i].structure_type != OCC_SENSOR_READING_FULL)
continue;
if (!(type & HWMON_SENSORS_MASK))
continue;
if (location == OCC_SENSOR_LOC_GPU && !has_gpu)
continue;
if (type == OCC_SENSOR_TYPE_POWER &&
!check_sensor_sample(hb, be32_to_cpu(md[i].reading_offset)))
continue;
if (location == OCC_SENSOR_LOC_CORE) {
int num = parse_entity(md[i].name, NULL);
for_each_available_core_in_chip(c, chip->id)
if (pir_to_core_id(c->pir) == num)
break;
if (!c)
continue;
pir = c->pir;
}
type_name = get_sensor_type_string(type);
loc = get_sensor_loc_string(location);
add_sensor_node(loc, type_name, i, SENSOR_SAMPLE, &md[i],
&phandles[phcount], &ptype[phcount],
pir, occ_num, chip->id);
phcount++;
/* Add energy sensors */
if (type == OCC_SENSOR_TYPE_POWER &&
md[i].structure_type == OCC_SENSOR_READING_FULL) {
add_sensor_node(loc, "energy", i,
SENSOR_ACCUMULATOR, &md[i],
&phandles[phcount], &ptype[phcount],
pir, occ_num, chip->id);
phcount++;
}
}
occ_num++;
occ_add_sensor_groups(sg, phandles, ptype, phcount, chip->id);
free(phandles);
free(ptype);
}
/* clear the device tree property if no sensors */
if (list_empty(&sg->children)) {
dt_free(sg);
}
if (!occ_num)
return false;
exports = dt_find_by_path(dt_root, "/ibm,opal/firmware/exports");
if (!exports) {
prerror("OCC: dt node /ibm,opal/firmware/exports not found\n");
return false;
}
dt_add_property_u64s(exports, "occ_inband_sensors", occ_sensor_base,
OCC_SENSOR_DATA_BLOCK_SIZE * occ_num);
return true;
}
|