aboutsummaryrefslogtreecommitdiff
path: root/hw/lpc.c
blob: e682557bb049ab493347bb9b044afb41af5aee89 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/* Copyright 2013-2014 IBM Corp.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * 	http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 * implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define pr_fmt(fmt)	"LPC: " fmt

#include <skiboot.h>
#include <xscom.h>
#include <io.h>
#include <lock.h>
#include <chip.h>
#include <lpc.h>
#include <timebase.h>
#include <errorlog.h>
#include <opal-api.h>
#include <platform.h>

//#define DBG_IRQ(fmt...) prerror(fmt)
#define DBG_IRQ(fmt...) do { } while(0)

DEFINE_LOG_ENTRY(OPAL_RC_LPC_READ, OPAL_PLATFORM_ERR_EVT, OPAL_LPC,
		 OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
		 OPAL_NA);

DEFINE_LOG_ENTRY(OPAL_RC_LPC_WRITE, OPAL_PLATFORM_ERR_EVT, OPAL_LPC,
		 OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
		 OPAL_NA);

DEFINE_LOG_ENTRY(OPAL_RC_LPC_SYNC, OPAL_PLATFORM_ERR_EVT, OPAL_LPC,
		 OPAL_MISC_SUBSYSTEM, OPAL_PREDICTIVE_ERR_GENERAL,
		 OPAL_NA);

/* Used exclusively in manufacturing mode */
DEFINE_LOG_ENTRY(OPAL_RC_LPC_SYNC_PERF, OPAL_PLATFORM_ERR_EVT, OPAL_LPC,
		 OPAL_MISC_SUBSYSTEM, OPAL_UNRECOVERABLE_ERR_DEGRADE_PERF,
		 OPAL_NA);

#define ECCB_CTL	0 /* b0020 -> b00200 */
#define ECCB_STAT	2 /* b0022 -> b00210 */
#define ECCB_DATA	3 /* b0023 -> b00218 */

#define ECCB_CTL_MAGIC		0xd000000000000000ul
#define ECCB_CTL_DATASZ		PPC_BITMASK(4,7)
#define ECCB_CTL_READ		PPC_BIT(15)
#define ECCB_CTL_ADDRLEN	PPC_BITMASK(23,25)
#define 	ECCB_ADDRLEN_4B	0x4
#define ECCB_CTL_ADDR		PPC_BITMASK(32,63)

#define ECCB_STAT_PIB_ERR	PPC_BITMASK(0,5)
#define ECCB_STAT_RD_DATA	PPC_BITMASK(6,37)
#define ECCB_STAT_BUSY		PPC_BIT(44)
#define ECCB_STAT_ERRORS1	PPC_BITMASK(45,51)
#define ECCB_STAT_OP_DONE	PPC_BIT(52)
#define ECCB_STAT_ERRORS2	PPC_BITMASK(53,55)

#define ECCB_STAT_ERR_MASK	(ECCB_STAT_PIB_ERR | \
				 ECCB_STAT_ERRORS1 | \
				 ECCB_STAT_ERRORS2)

#define ECCB_TIMEOUT	1000000

/* OPB Master LS registers */
#define OPB_MASTER_LS_IRQ_STAT	0x50
#define OPB_MASTER_LS_IRQ_MASK	0x54
#define OPB_MASTER_LS_IRQ_POL	0x58
#define   OPB_MASTER_IRQ_LPC	       	0x00000800

/* LPC HC registers */
#define LPC_HC_FW_SEG_IDSEL	0x24
#define LPC_HC_FW_RD_ACC_SIZE	0x28
#define   LPC_HC_FW_RD_1B		0x00000000
#define   LPC_HC_FW_RD_2B		0x01000000
#define   LPC_HC_FW_RD_4B		0x02000000
#define   LPC_HC_FW_RD_16B		0x04000000
#define   LPC_HC_FW_RD_128B		0x07000000
#define LPC_HC_IRQSER_CTRL	0x30
#define   LPC_HC_IRQSER_EN		0x80000000
#define   LPC_HC_IRQSER_QMODE		0x40000000
#define   LPC_HC_IRQSER_START_MASK	0x03000000
#define   LPC_HC_IRQSER_START_4CLK	0x00000000
#define   LPC_HC_IRQSER_START_6CLK	0x01000000
#define   LPC_HC_IRQSER_START_8CLK	0x02000000
#define LPC_HC_IRQMASK		0x34	/* same bit defs as LPC_HC_IRQSTAT */
#define LPC_HC_IRQSTAT		0x38
#define   LPC_HC_IRQ_SERIRQ0		0x80000000 /* all bits down to ... */
#define   LPC_HC_IRQ_SERIRQ16		0x00008000 /* IRQ16=IOCHK#, IRQ2=SMI# */
#define   LPC_HC_IRQ_SERIRQ_ALL		0xffff8000
#define   LPC_HC_IRQ_LRESET		0x00000400
#define   LPC_HC_IRQ_SYNC_ABNORM_ERR	0x00000080
#define   LPC_HC_IRQ_SYNC_NORESP_ERR	0x00000040
#define   LPC_HC_IRQ_SYNC_NORM_ERR	0x00000020
#define   LPC_HC_IRQ_SYNC_TIMEOUT_ERR	0x00000010
#define   LPC_HC_IRQ_TARG_TAR_ERR	0x00000008
#define   LPC_HC_IRQ_BM_TAR_ERR		0x00000004
#define   LPC_HC_IRQ_BM0_REQ		0x00000002
#define   LPC_HC_IRQ_BM1_REQ		0x00000001
#define   LPC_HC_IRQ_BASE_IRQS		(		     \
	LPC_HC_IRQ_LRESET |				     \
	LPC_HC_IRQ_SYNC_ABNORM_ERR |			     \
	LPC_HC_IRQ_SYNC_NORESP_ERR |			     \
	LPC_HC_IRQ_SYNC_NORM_ERR |			     \
	LPC_HC_IRQ_SYNC_TIMEOUT_ERR |			     \
	LPC_HC_IRQ_TARG_TAR_ERR |			     \
	LPC_HC_IRQ_BM_TAR_ERR)
#define LPC_HC_ERROR_ADDRESS	0x40


#define	LPC_BUS_DEGRADED_PERF_THRESHOLD		5

struct lpc_client_entry {
	struct list_node node;
	const struct lpc_client *clt;
};

/* Default LPC bus */
static int32_t lpc_default_chip_id = -1;

/*
 * These are expected to be the same on all chips and should probably
 * be read (or configured) dynamically. This is how things are configured
 * today on Tuletta.
 */
static uint32_t lpc_io_opb_base		= 0xd0010000;
static uint32_t lpc_mem_opb_base 	= 0xe0000000;
static uint32_t lpc_fw_opb_base 	= 0xf0000000;
static uint32_t lpc_reg_opb_base 	= 0xc0012000;
static uint32_t opb_master_reg_base 	= 0xc0010000;

static int64_t opb_mmio_write(struct proc_chip *chip, uint32_t addr, uint32_t data,
			      uint32_t sz)
{
	switch (sz) {
	case 1:
		out_8(chip->lpc_mbase + addr, data);
		return OPAL_SUCCESS;
	case 2:
		out_be16(chip->lpc_mbase + addr, data);
		return OPAL_SUCCESS;
	case 4:
		out_be32(chip->lpc_mbase + addr, data);
		return OPAL_SUCCESS;
	}
	prerror("LPC: Invalid data size %d\n", sz);
	return OPAL_PARAMETER;
}

static int64_t opb_write(struct proc_chip *chip, uint32_t addr, uint32_t data,
			 uint32_t sz)
{
	uint64_t ctl = ECCB_CTL_MAGIC, stat;
	int64_t rc, tout;
	uint64_t data_reg;

	if (chip->lpc_mbase)
		return opb_mmio_write(chip, addr, data, sz);

	switch(sz) {
	case 1:
		data_reg = ((uint64_t)data) << 56;
		break;
	case 2:
		data_reg = ((uint64_t)data) << 48;
		break;
	case 4:
		data_reg = ((uint64_t)data) << 32;
		break;
	default:
		prerror("Invalid data size %d\n", sz);
		return OPAL_PARAMETER;
	}

	rc = xscom_write(chip->id, chip->lpc_xbase + ECCB_DATA, data_reg);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_LPC_WRITE),
			"LPC: XSCOM write to ECCB DATA error %lld\n", rc);
		return rc;
	}

	ctl = SETFIELD(ECCB_CTL_DATASZ, ctl, sz);
	ctl = SETFIELD(ECCB_CTL_ADDRLEN, ctl, ECCB_ADDRLEN_4B);
	ctl = SETFIELD(ECCB_CTL_ADDR, ctl, addr);
	rc = xscom_write(chip->id, chip->lpc_xbase + ECCB_CTL, ctl);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_LPC_WRITE),
			"LPC: XSCOM write to ECCB CTL error %lld\n", rc);
		return rc;
	}

	for (tout = 0; tout < ECCB_TIMEOUT; tout++) {
		rc = xscom_read(chip->id, chip->lpc_xbase + ECCB_STAT, &stat);
		if (rc) {
			log_simple_error(&e_info(OPAL_RC_LPC_WRITE),
				"LPC: XSCOM read from ECCB STAT err %lld\n",
									rc);
			return rc;
		}
		if (stat & ECCB_STAT_OP_DONE) {
			if (stat & ECCB_STAT_ERR_MASK) {
				log_simple_error(&e_info(OPAL_RC_LPC_WRITE),
					"LPC: Error status: 0x%llx\n", stat);
				return OPAL_HARDWARE;
			}
			return OPAL_SUCCESS;
		}
		time_wait_nopoll(100);
	}
	log_simple_error(&e_info(OPAL_RC_LPC_WRITE), "LPC: Write timeout !\n");
	return OPAL_HARDWARE;
}

static int64_t opb_mmio_read(struct proc_chip *chip, uint32_t addr, uint32_t *data,
			     uint32_t sz)
{
	switch (sz) {
	case 1:
		*data = in_8(chip->lpc_mbase + addr);
		return OPAL_SUCCESS;
	case 2:
		*data = in_be16(chip->lpc_mbase + addr);
		return OPAL_SUCCESS;
	case 4:
		*data = in_be32(chip->lpc_mbase + addr);
		return OPAL_SUCCESS;
	}
	prerror("LPC: Invalid data size %d\n", sz);
	return OPAL_PARAMETER;
}

static int64_t opb_read(struct proc_chip *chip, uint32_t addr, uint32_t *data,
		        uint32_t sz)
{
	uint64_t ctl = ECCB_CTL_MAGIC | ECCB_CTL_READ, stat;
	int64_t rc, tout;

	if (chip->lpc_mbase)
		return opb_mmio_read(chip, addr, data, sz);

	if (sz != 1 && sz != 2 && sz != 4) {
		prerror("Invalid data size %d\n", sz);
		return OPAL_PARAMETER;
	}

	ctl = SETFIELD(ECCB_CTL_DATASZ, ctl, sz);
	ctl = SETFIELD(ECCB_CTL_ADDRLEN, ctl, ECCB_ADDRLEN_4B);
	ctl = SETFIELD(ECCB_CTL_ADDR, ctl, addr);
	rc = xscom_write(chip->id, chip->lpc_xbase + ECCB_CTL, ctl);
	if (rc) {
		log_simple_error(&e_info(OPAL_RC_LPC_READ),
			"LPC: XSCOM write to ECCB CTL error %lld\n", rc);
		return rc;
	}

	for (tout = 0; tout < ECCB_TIMEOUT; tout++) {
		rc = xscom_read(chip->id, chip->lpc_xbase + ECCB_STAT, &stat);
		if (rc) {
			log_simple_error(&e_info(OPAL_RC_LPC_READ),
				"LPC: XSCOM read from ECCB STAT err %lld\n",
									rc);
			return rc;
		}
		if (stat & ECCB_STAT_OP_DONE) {
			uint32_t rdata = GETFIELD(ECCB_STAT_RD_DATA, stat);
			if (stat & ECCB_STAT_ERR_MASK) {
				log_simple_error(&e_info(OPAL_RC_LPC_READ),
					"LPC: Error status: 0x%llx\n", stat);
				return OPAL_HARDWARE;
			}
			switch(sz) {
			case 1:
				*data = rdata >> 24;
				break;
			case 2:
				*data = rdata >> 16;
				break;
			default:
				*data = rdata;
				break;
			}
			return 0;
		}
		time_wait_nopoll(100);
	}
	log_simple_error(&e_info(OPAL_RC_LPC_READ), "LPC: Read timeout !\n");
	return OPAL_HARDWARE;
}

static int64_t lpc_set_fw_idsel(struct proc_chip *chip, uint8_t idsel)
{
	uint32_t val;
	int64_t rc;

	if (idsel == chip->lpc_fw_idsel)
		return OPAL_SUCCESS;
	if (idsel > 0xf)
		return OPAL_PARAMETER;

	rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_FW_SEG_IDSEL,
		      &val, 4);
	if (rc) {
		prerror("Failed to read HC_FW_SEG_IDSEL register !\n");
		return rc;
	}
	val = (val & 0xfffffff0) | idsel;
	rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_FW_SEG_IDSEL,
		       val, 4);
	if (rc) {
		prerror("Failed to write HC_FW_SEG_IDSEL register !\n");
		return rc;
	}
	chip->lpc_fw_idsel = idsel;
	return OPAL_SUCCESS;
}

static int64_t lpc_set_fw_rdsz(struct proc_chip *chip, uint8_t rdsz)
{
	uint32_t val;
	int64_t rc;

	if (rdsz == chip->lpc_fw_rdsz)
		return OPAL_SUCCESS;
	switch(rdsz) {
	case 1:
		val = LPC_HC_FW_RD_1B;
		break;
	case 2:
		val = LPC_HC_FW_RD_2B;
		break;
	case 4:
		val = LPC_HC_FW_RD_4B;
		break;
	default:
		/*
		 * The HW supports 16 and 128 via a buffer/cache
		 * but I have never exprimented with it and am not
		 * sure it works the way we expect so let's leave it
		 * at that for now
		 */
		return OPAL_PARAMETER;
	}
	rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_FW_RD_ACC_SIZE,
		       val, 4);
	if (rc) {
		prerror("Failed to write LPC_HC_FW_RD_ACC_SIZE !\n");
		return rc;
	}
	chip->lpc_fw_rdsz = rdsz;
	return OPAL_SUCCESS;
}

static int64_t lpc_opb_prepare(struct proc_chip *chip,
			       enum OpalLPCAddressType addr_type,
			       uint32_t addr, uint32_t sz,
			       uint32_t *opb_base, bool is_write)
{
	uint32_t top = addr + sz;
	uint8_t fw_idsel;
	int64_t rc;

	/* Address wraparound */
	if (top < addr)
		return OPAL_PARAMETER;

	/*
	 * Bound check access and get the OPB base address for
	 * the window corresponding to the access type
	 */
	switch(addr_type) {
	case OPAL_LPC_IO:
		/* IO space is 64K */
		if (top > 0x10000)
			return OPAL_PARAMETER;
		/* And only supports byte accesses */
		if (sz != 1)
			return OPAL_PARAMETER;
		*opb_base = lpc_io_opb_base;
		break;
	case OPAL_LPC_MEM:
		/* MEM space is 256M */
		if (top > 0x10000000)
			return OPAL_PARAMETER;
		/* And only supports byte accesses */
		if (sz != 1)
			return OPAL_PARAMETER;
		*opb_base = lpc_mem_opb_base;
		break;
	case OPAL_LPC_FW:
		/*
		 * FW space is in segments of 256M controlled
		 * by IDSEL, make sure we don't cross segments
		 */
		*opb_base = lpc_fw_opb_base;
		fw_idsel = (addr >> 28);
		if (((top - 1) >> 28) != fw_idsel)
			return OPAL_PARAMETER;

		/* Set segment */
		rc = lpc_set_fw_idsel(chip, fw_idsel);
		if (rc)
			return rc;
		/* Set read access size */
		if (!is_write) {
			rc = lpc_set_fw_rdsz(chip, sz);
			if (rc)
				return rc;
		}
		break;
	default:
		return OPAL_PARAMETER;
	}
	return OPAL_SUCCESS;
}

static int64_t __lpc_write(uint32_t chip_id, enum OpalLPCAddressType addr_type,
			   uint32_t addr, uint32_t data, uint32_t sz)
{
	struct proc_chip *chip = get_chip(chip_id);
	uint32_t opb_base;
	int64_t rc;

	if (!chip || (!chip->lpc_xbase && !chip->lpc_mbase))
		return OPAL_PARAMETER;

	lock(&chip->lpc_lock);

	/*
	 * Convert to an OPB access and handle LPC HC configuration
	 * for FW accesses (IDSEL)
	 */
	rc = lpc_opb_prepare(chip, addr_type, addr, sz, &opb_base, true);
	if (rc)
		goto bail;

	/* Perform OPB access */
	rc = opb_write(chip, opb_base + addr, data, sz);

	/* XXX Add LPC error handling/recovery */
 bail:
	unlock(&chip->lpc_lock);
	return rc;
}

int64_t lpc_write(enum OpalLPCAddressType addr_type, uint32_t addr,
		  uint32_t data, uint32_t sz)
{
	if (lpc_default_chip_id < 0)
		return OPAL_PARAMETER;
	return __lpc_write(lpc_default_chip_id, addr_type, addr, data, sz);
}

/*
 * The "OPAL" variant add the emulation of 2 and 4 byte accesses using
 * byte accesses for IO and MEM space in order to be compatible with
 * existing Linux expectations
 */
static int64_t opal_lpc_write(uint32_t chip_id, enum OpalLPCAddressType addr_type,
			      uint32_t addr, uint32_t data, uint32_t sz)
{
	int64_t rc;

	if (addr_type == OPAL_LPC_FW || sz == 1)
		return __lpc_write(chip_id, addr_type, addr, data, sz);
	while(sz--) {
		rc = __lpc_write(chip_id, addr_type, addr, data & 0xff, 1);
		if (rc)
			return rc;
		addr++;
		data >>= 8;
	}
	return OPAL_SUCCESS;
}

static int64_t __lpc_read(uint32_t chip_id, enum OpalLPCAddressType addr_type,
			  uint32_t addr, uint32_t *data, uint32_t sz)
{
	struct proc_chip *chip = get_chip(chip_id);
	uint32_t opb_base;
	int64_t rc;

	if (!chip || (!chip->lpc_xbase && !chip->lpc_mbase))
		return OPAL_PARAMETER;

	lock(&chip->lpc_lock);

	/*
	 * Convert to an OPB access and handle LPC HC configuration
	 * for FW accesses (IDSEL and read size)
	 */
	rc = lpc_opb_prepare(chip, addr_type, addr, sz, &opb_base, false);
	if (rc)
		goto bail;

	/* Perform OPB access */
	rc = opb_read(chip, opb_base + addr, data, sz);

	/* XXX Add LPC error handling/recovery */
 bail:
	unlock(&chip->lpc_lock);
	return rc;
}

int64_t lpc_read(enum OpalLPCAddressType addr_type, uint32_t addr,
		 uint32_t *data, uint32_t sz)
{
	if (lpc_default_chip_id < 0)
		return OPAL_PARAMETER;
	return __lpc_read(lpc_default_chip_id, addr_type, addr, data, sz);
}

/*
 * The "OPAL" variant add the emulation of 2 and 4 byte accesses using
 * byte accesses for IO and MEM space in order to be compatible with
 * existing Linux expectations
 */
static int64_t opal_lpc_read(uint32_t chip_id, enum OpalLPCAddressType addr_type,
			     uint32_t addr, uint32_t *data, uint32_t sz)
{
	int64_t rc;

	if (addr_type == OPAL_LPC_FW || sz == 1)
		return __lpc_read(chip_id, addr_type, addr, data, sz);
	*data = 0;
	while(sz--) {
		uint32_t byte;

		rc = __lpc_read(chip_id, addr_type, addr, &byte, 1);
		if (rc)
			return rc;
		*data = *data | (byte << (8 * sz));
		addr++;
	}
	return OPAL_SUCCESS;
}

bool lpc_present(void)
{
	return lpc_default_chip_id >= 0;
}

/* Called with LPC lock held */
static void lpc_setup_serirq(struct proc_chip *chip)
{
	struct lpc_client_entry *ent;
	uint32_t mask = LPC_HC_IRQ_BASE_IRQS;
	int rc;

	/* Collect serirq enable bits */
	list_for_each(&chip->lpc_clients, ent, node)
		mask |= ent->clt->interrupts & LPC_HC_IRQ_SERIRQ_ALL;

	rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQMASK, mask, 4);
	if (rc) {
		prerror("Failed to update irq mask\n");
		return;
	}
	DBG_IRQ("LPC: IRQ mask set to 0x%08x\n", mask);

	/* Enable the LPC interrupt in the OPB Master */
	opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_POL, 0, 4);
	rc = opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_MASK,
		       OPB_MASTER_IRQ_LPC, 4);
	if (rc)
		prerror("Failed to enable IRQs in OPB\n");

	/* Check whether we should enable serirq */
	if (mask & LPC_HC_IRQ_SERIRQ_ALL) {
		rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL,
			       LPC_HC_IRQSER_EN | LPC_HC_IRQSER_START_4CLK, 4);
		DBG_IRQ("LPC: SerIRQ enabled\n");
	} else {
		rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL,
			       0, 4);
		DBG_IRQ("LPC: SerIRQ disabled\n");
	}
	if (rc)
		prerror("Failed to configure SerIRQ\n");
	{
		u32 val;
		rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_IRQMASK, &val, 4);
		if (rc)
			prerror("Failed to readback mask");
		else
			DBG_IRQ("LPC: MASK READBACK=%x\n", val);

		rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL, &val, 4);
		if (rc)
			prerror("Failed to readback ctrl");
		else
			DBG_IRQ("LPC: CTRL READBACK=%x\n", val);
	}
}

static void lpc_init_interrupts(struct proc_chip *chip)
{
	int rc;

	/* First mask them all */
	rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQMASK, 0, 4);
	if (rc) {
		prerror("Failed to init interrutps\n");
		return;
	}

	switch(chip->type) {
	case PROC_CHIP_P8_MURANO:
	case PROC_CHIP_P8_VENICE:
		/* On Murano/Venice, there is no SerIRQ, only enable error
		 * interrupts
		 */
		rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQMASK,
			       LPC_HC_IRQ_BASE_IRQS, 4);
		if (rc) {
			prerror("Failed to set interrupt mask\n");
			return;
		}
		opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSER_CTRL, 0, 4);
		break;
	case PROC_CHIP_P8_NAPLES:
		/* On Naples, we support LPC interrupts, enable them based
		 * on what clients requests. This will setup the mask and
		 * enable processing
		 */
		lock(&chip->lpc_lock);
		lpc_setup_serirq(chip);
		unlock(&chip->lpc_lock);
		break;
	default:
		/* We aren't getting here, are we ? */
		return;
	}
}

static void lpc_dispatch_reset(struct proc_chip *chip)
{
	struct lpc_client_entry *ent;

	/* XXX We are going to hit this repeatedly while reset is
	 * asserted which might be sub-optimal. We should instead
	 * detect assertion and start a poller that will wait for
	 * de-assertion. We could notify clients of LPC being
	 * on/off rather than just reset
	 */

	prerror("Got LPC reset!\n");

	/* Collect serirq enable bits */
	list_for_each(&chip->lpc_clients, ent, node) {
		if (!ent->clt->reset)
			continue;
		unlock(&chip->lpc_lock);
		ent->clt->reset(chip->id);
		lock(&chip->lpc_lock);
	}

	/* Reconfigure serial interrupts */
	if (chip->type == PROC_CHIP_P8_NAPLES)
		lpc_setup_serirq(chip);
}

static void lpc_dispatch_err_irqs(struct proc_chip *chip, uint32_t irqs)
{
	int rc;
	struct opal_err_info *info;
	const char *sync_err = "Unknown LPC error";
	uint32_t err_addr;
	static int lpc_bus_err_count;

	/* Write back to clear error interrupts, we clear SerIRQ later
	 * as they are handled as level interrupts
	 */
	rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSTAT,
		       LPC_HC_IRQ_BASE_IRQS, 4);
	if (rc)
		prerror("Failed to clear IRQ error latches !\n");

	if (irqs & LPC_HC_IRQ_LRESET)
		lpc_dispatch_reset(chip);
	if (irqs & LPC_HC_IRQ_SYNC_ABNORM_ERR)
		sync_err = "LPC: Got SYNC abnormal error.";
	if (irqs & LPC_HC_IRQ_SYNC_NORESP_ERR)
		sync_err = "LPC: Got SYNC no-response error.";
	if (irqs & LPC_HC_IRQ_SYNC_NORM_ERR)
		sync_err = "LPC: Got SYNC normal error.";
	if (irqs & LPC_HC_IRQ_SYNC_TIMEOUT_ERR)
		sync_err = "LPC: Got SYNC timeout error.";
	if (irqs & LPC_HC_IRQ_TARG_TAR_ERR)
		sync_err = "LPC: Got abnormal TAR error.";
	if (irqs & LPC_HC_IRQ_BM_TAR_ERR)
		sync_err = "LPC: Got bus master TAR error.";

	rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_ERROR_ADDRESS,
		      &err_addr, 4);

	lpc_bus_err_count++;
	if (manufacturing_mode && (lpc_bus_err_count > LPC_BUS_DEGRADED_PERF_THRESHOLD))
		info = &e_info(OPAL_RC_LPC_SYNC_PERF);
	else
		info = &e_info(OPAL_RC_LPC_SYNC);

	if (rc)
		log_simple_error(info, "%s Error address: Unknown\n",
					sync_err);
	else
		log_simple_error(info, "%s Error address: 0x%08x\n",
					sync_err, err_addr);
}

static void lpc_dispatch_ser_irqs(struct proc_chip *chip, uint32_t irqs,
				  bool clear_latch)
{
	struct lpc_client_entry *ent;
	uint32_t cirqs;
	int rc;

	irqs &= LPC_HC_IRQ_SERIRQ_ALL;

	/* Collect serirq enable bits */
	list_for_each(&chip->lpc_clients, ent, node) {
		if (!ent->clt->interrupt)
			continue;
		cirqs = ent->clt->interrupts & irqs;
		if (cirqs) {
			unlock(&chip->lpc_lock);
			ent->clt->interrupt(chip->id, cirqs);
			lock(&chip->lpc_lock);
		}
	}

	/* Our SerIRQ are level sensitive, we clear the latch after
	 * we call the handler.
	 */
	if (!clear_latch)
		return;

	rc = opb_write(chip, lpc_reg_opb_base + LPC_HC_IRQSTAT,
		       irqs, 4);
	if (rc)
		prerror("Failed to clear SerIRQ latches !\n");
}

void lpc_interrupt(uint32_t chip_id)
{
	struct proc_chip *chip = get_chip(chip_id);
	uint32_t irqs, opb_irqs;
	int rc;

	/* No initialized LPC controller on that chip */
	if (!chip || (!chip->lpc_xbase && !chip->lpc_mbase))
		return;

	lock(&chip->lpc_lock);

	/* Grab OPB Master LS interrupt status */
	rc = opb_read(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_STAT,
		      &opb_irqs, 4);
	if (rc) {
		prerror("Failed to read OPB IRQ state\n");
		goto bail;
	}

	/* Check if it's an LPC interrupt */
	if (!(opb_irqs & OPB_MASTER_IRQ_LPC)) {
		/* Something we don't support ? Ack it anyway... */
		opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_STAT,
			  opb_irqs, 4);
		goto bail;
	}

	/* Handle the lpc interrupt source (errors etc...) */
	rc = opb_read(chip, lpc_reg_opb_base + LPC_HC_IRQSTAT, &irqs, 4);
	if (rc) {
		prerror("Failed to read LPC IRQ state\n");
		goto bail;
	}

	DBG_IRQ("LPC: IRQ on chip 0x%x, irqs=0x%08x\n", chip_id, irqs);

	/* Handle error interrupts */
	if (irqs & LPC_HC_IRQ_BASE_IRQS)
		lpc_dispatch_err_irqs(chip, irqs);

	/* Handle SerIRQ interrupts */
	if (irqs & LPC_HC_IRQ_SERIRQ_ALL)
		lpc_dispatch_ser_irqs(chip, irqs, true);

	/* Ack it at the OPB level */
	opb_write(chip, opb_master_reg_base + OPB_MASTER_LS_IRQ_STAT,
		  opb_irqs, 4);
 bail:
	unlock(&chip->lpc_lock);
}

void lpc_all_interrupts(uint32_t chip_id)
{
	struct proc_chip *chip = get_chip(chip_id);

	/* Dispatch all */
	lock(&chip->lpc_lock);
	lpc_dispatch_ser_irqs(chip, LPC_HC_IRQ_SERIRQ_ALL, false);
	unlock(&chip->lpc_lock);
}

static void lpc_init_chip_p8(struct dt_node *xn)
 {
	uint32_t gcid = dt_get_chip_id(xn);
	struct proc_chip *chip;

	chip = get_chip(gcid);
	assert(chip);

	chip->lpc_xbase = dt_get_address(xn, 0, NULL);
	chip->lpc_fw_idsel = 0xff;
	chip->lpc_fw_rdsz = 0xff;
	init_lock(&chip->lpc_lock);

	if (lpc_default_chip_id < 0 ||
	    dt_has_node_property(xn, "primary", NULL)) {
		lpc_default_chip_id = chip->id;
	}

	prlog(PR_NOTICE, "Bus on chip %d, access via XSCOM, PCB_Addr=0x%x\n",
	      chip->id, chip->lpc_xbase);

	lpc_init_interrupts(chip);
	dt_add_property(xn, "interrupt-controller", NULL, 0);
	dt_add_property_cells(xn, "#interrupt-cells", 1);
	assert(dt_prop_get_u32(xn, "#address-cells") == 2);
}

static void lpc_init_chip_p9(struct dt_node *opb_node)
{
	uint32_t gcid = dt_get_chip_id(opb_node);
	struct proc_chip *chip;
	u64 addr;

	chip = get_chip(gcid);
	assert(chip);

	/* Grab OPB base address */
	addr = dt_prop_get_cell(opb_node, "ranges", 1);
	addr <<= 32;
	addr |= dt_prop_get_cell(opb_node, "ranges", 2);

	chip->lpc_mbase = (void *)addr;
	chip->lpc_fw_idsel = 0xff;
	chip->lpc_fw_rdsz = 0xff;
	init_lock(&chip->lpc_lock);

	if (lpc_default_chip_id < 0 ||
	    dt_has_node_property(opb_node, "primary", NULL)) {
		lpc_default_chip_id = chip->id;
	}

	prlog(PR_NOTICE, "Bus on chip %d, access via MMIO @%p\n",
	       chip->id, chip->lpc_mbase);

	// XXX TODO
	//lpc_init_interrupts(chip);
}

void lpc_init(void)
{
	struct dt_node *xn;
	bool has_lpc = false;

	dt_for_each_compatible(dt_root, xn, "ibm,power8-lpc") {
		lpc_init_chip_p8(xn);
		has_lpc = true;
	}
	dt_for_each_compatible(dt_root, xn, "ibm,power9-lpcm-opb") {
		lpc_init_chip_p9(xn);
		has_lpc = true;
	}
	if (lpc_default_chip_id >= 0)
		prlog(PR_NOTICE, "Default bus on chip %d\n",
					lpc_default_chip_id);

	if (has_lpc) {
		opal_register(OPAL_LPC_WRITE, opal_lpc_write, 5);
		opal_register(OPAL_LPC_READ, opal_lpc_read, 5);
	}
}

void lpc_used_by_console(void)
{
	struct proc_chip *chip;

	xscom_used_by_console();

	for_each_chip(chip) {
		chip->lpc_lock.in_con_path = true;
		lock(&chip->lpc_lock);
		unlock(&chip->lpc_lock);
	}
}

bool lpc_ok(void)
{
	struct proc_chip *chip;

	if (lpc_default_chip_id < 0)
		return false;
	if (!xscom_ok())
		return false;
	chip = get_chip(lpc_default_chip_id);
	return !lock_held_by_me(&chip->lpc_lock);
}

void lpc_register_client(uint32_t chip_id,
			 const struct lpc_client *clt)
{
	struct lpc_client_entry *ent;
	struct proc_chip *chip;

	chip = get_chip(chip_id);
	assert(chip);
	ent = malloc(sizeof(*ent));
	assert(ent);
	ent->clt = clt;
	lock(&chip->lpc_lock);
	list_add(&chip->lpc_clients, &ent->node);
	/* Re-evaluate ser irqs on Naples */
	if (chip->type == PROC_CHIP_P8_NAPLES)
		lpc_setup_serirq(chip);
	unlock(&chip->lpc_lock);
}