aboutsummaryrefslogtreecommitdiff
path: root/library/bignum_core.h
blob: 92c8d47db56bb0ae331248031c466439e2203d25 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
/**
 *  Core bignum functions
 *
 *  This interface should only be used by the legacy bignum module (bignum.h)
 *  and the modular bignum modules (bignum_mod.c, bignum_mod_raw.c). All other
 *  modules should use the high-level modular bignum interface (bignum_mod.h)
 *  or the legacy bignum interface (bignum.h).
 *
 * This module is about processing non-negative integers with a fixed upper
 * bound that's of the form 2^n-1 where n is a multiple of #biL.
 * These can be thought of integers written in base 2^#biL with a fixed
 * number of digits. Digits in this base are called *limbs*.
 * Many operations treat these numbers as the principal representation of
 * a number modulo 2^n or a smaller bound.
 *
 * The functions in this module obey the following conventions unless
 * explicitly indicated otherwise:
 *
 * - **Overflow**: some functions indicate overflow from the range
 *   [0, 2^n-1] by returning carry parameters, while others operate
 *   modulo and so cannot overflow. This should be clear from the function
 *   documentation.
 * - **Bignum parameters**: Bignums are passed as pointers to an array of
 *   limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified:
 *     - Bignum parameters called \p A, \p B, ... are inputs, and are
 *       not modified by the function.
 *     - For operations modulo some number, the modulus is called \p N
 *       and is input-only.
 *     - Bignum parameters called \p X, \p Y are outputs or input-output.
 *       The initial content of output-only parameters is ignored.
 *     - Some functions use different names that reflect traditional
 *       naming of operands of certain operations (e.g.
 *       divisor/dividend/quotient/remainder).
 *     - \p T is a temporary storage area. The initial content of such
 *       parameter is ignored and the final content is unspecified.
 * - **Bignum sizes**: bignum sizes are always expressed in limbs.
 *   Most functions work on bignums of a given size and take a single
 *   \p limbs parameter that applies to all parameters that are limb arrays.
 *   All bignum sizes must be at least 1 and must be significantly less than
 *   #SIZE_MAX. The behavior if a size is 0 is undefined. The behavior if the
 *   total size of all parameters overflows #SIZE_MAX is undefined.
 * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
 *   Temporaries come last.
 * - **Aliasing**: in general, output bignums may be aliased to one or more
 *   inputs. As an exception, parameters that are documented as a modulus value
 *   may not be aliased to an output. Outputs may not be aliased to one another.
 *   Temporaries may not be aliased to any other parameter.
 * - **Overlap**: apart from aliasing of limb array pointers (where two
 *   arguments are equal pointers), overlap is not supported and may result
 *   in undefined behavior.
 * - **Error handling**: This is a low-level module. Functions generally do not
 *   try to protect against invalid arguments such as nonsensical sizes or
 *   null pointers. Note that some functions that operate on bignums of
 *   different sizes have constraints about their size, and violating those
 *   constraints may lead to buffer overflows.
 * - **Modular representatives**: functions that operate modulo \p N expect
 *   all modular inputs to be in the range [0, \p N - 1] and guarantee outputs
 *   in the range [0, \p N - 1]. If an input is out of range, outputs are
 *   fully unspecified, though bignum values out of range should not cause
 *   buffer overflows (beware that this is not extensively tested).
 */

/*
 *  Copyright The Mbed TLS Contributors
 *  SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
 */

#ifndef MBEDTLS_BIGNUM_CORE_H
#define MBEDTLS_BIGNUM_CORE_H

#include "common.h"

#if defined(MBEDTLS_BIGNUM_C)
#include "mbedtls/bignum.h"
#endif

#include "constant_time_internal.h"

#define ciL    (sizeof(mbedtls_mpi_uint))     /** chars in limb  */
#define biL    (ciL << 3)                     /** bits  in limb  */
#define biH    (ciL << 2)                     /** half limb size */

/*
 * Convert between bits/chars and number of limbs
 * Divide first in order to avoid potential overflows
 */
#define BITS_TO_LIMBS(i)  ((i) / biL + ((i) % biL != 0))
#define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
/* Get a specific byte, without range checks. */
#define GET_BYTE(X, i)                                \
    (((X)[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)

/** Count leading zero bits in a given integer.
 *
 * \warning     The result is undefined if \p a == 0
 *
 * \param a     Integer to count leading zero bits.
 *
 * \return      The number of leading zero bits in \p a, if \p a != 0.
 *              If \p a == 0, the result is undefined.
 */
size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a);

/** Return the minimum number of bits required to represent the value held
 * in the MPI.
 *
 * \note This function returns 0 if all the limbs of \p A are 0.
 *
 * \param[in] A     The address of the MPI.
 * \param A_limbs   The number of limbs of \p A.
 *
 * \return      The number of bits in \p A.
 */
size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs);

/** Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
 * into the storage form used by mbedtls_mpi.
 *
 * \param[in,out] A     The address of the MPI.
 * \param A_limbs       The number of limbs of \p A.
 */
void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
                                        size_t A_limbs);

/** \brief         Compare a machine integer with an MPI.
 *
 *                 This function operates in constant time with respect
 *                 to the values of \p min and \p A.
 *
 * \param min      A machine integer.
 * \param[in] A    An MPI.
 * \param A_limbs  The number of limbs of \p A.
 *                 This must be at least 1.
 *
 * \return         MBEDTLS_CT_TRUE if \p min is less than or equal to \p A, otherwise MBEDTLS_CT_FALSE.
 */
mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
                                                    const mbedtls_mpi_uint *A,
                                                    size_t A_limbs);

/**
 * \brief          Check if one unsigned MPI is less than another in constant
 *                 time.
 *
 * \param A        The left-hand MPI. This must point to an array of limbs
 *                 with the same allocated length as \p B.
 * \param B        The right-hand MPI. This must point to an array of limbs
 *                 with the same allocated length as \p A.
 * \param limbs    The number of limbs in \p A and \p B.
 *                 This must not be 0.
 *
 * \return         MBEDTLS_CT_TRUE  if \p A is less than \p B.
 *                 MBEDTLS_CT_FALSE if \p A is greater than or equal to \p B.
 */
mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
                                              const mbedtls_mpi_uint *B,
                                              size_t limbs);

/**
 * \brief   Perform a safe conditional copy of an MPI which doesn't reveal
 *          whether assignment was done or not.
 *
 * \param[out] X        The address of the destination MPI.
 *                      This must be initialized. Must have enough limbs to
 *                      store the full value of \p A.
 * \param[in]  A        The address of the source MPI. This must be initialized.
 * \param      limbs    The number of limbs of \p A.
 * \param      assign   The condition deciding whether to perform the
 *                      assignment or not. Callers will need to use
 *                      the constant time interface (e.g. `mbedtls_ct_bool()`)
 *                      to construct this argument.
 *
 * \note           This function avoids leaking any information about whether
 *                 the assignment was done or not.
 */
void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
                                  const mbedtls_mpi_uint *A,
                                  size_t limbs,
                                  mbedtls_ct_condition_t assign);

/**
 * \brief   Perform a safe conditional swap of two MPIs which doesn't reveal
 *          whether the swap was done or not.
 *
 * \param[in,out] X         The address of the first MPI.
 *                          This must be initialized.
 * \param[in,out] Y         The address of the second MPI.
 *                          This must be initialized.
 * \param         limbs     The number of limbs of \p X and \p Y.
 * \param         swap      The condition deciding whether to perform
 *                          the swap or not.
 *
 * \note           This function avoids leaking any information about whether
 *                 the swap was done or not.
 */
void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
                                mbedtls_mpi_uint *Y,
                                size_t limbs,
                                mbedtls_ct_condition_t swap);

/** Import X from unsigned binary data, little-endian.
 *
 * The MPI needs to have enough limbs to store the full value (including any
 * most significant zero bytes in the input).
 *
 * \param[out] X         The address of the MPI.
 * \param X_limbs        The number of limbs of \p X.
 * \param[in] input      The input buffer to import from.
 * \param input_length   The length bytes of \p input.
 *
 * \return       \c 0 if successful.
 * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
 *               large enough to hold the value in \p input.
 */
int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
                             size_t X_limbs,
                             const unsigned char *input,
                             size_t input_length);

/** Import X from unsigned binary data, big-endian.
 *
 * The MPI needs to have enough limbs to store the full value (including any
 * most significant zero bytes in the input).
 *
 * \param[out] X        The address of the MPI.
 *                      May only be #NULL if \p X_limbs is 0 and \p input_length
 *                      is 0.
 * \param X_limbs       The number of limbs of \p X.
 * \param[in] input     The input buffer to import from.
 *                      May only be #NULL if \p input_length is 0.
 * \param input_length  The length in bytes of \p input.
 *
 * \return       \c 0 if successful.
 * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
 *               large enough to hold the value in \p input.
 */
int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
                             size_t X_limbs,
                             const unsigned char *input,
                             size_t input_length);

/** Export A into unsigned binary data, little-endian.
 *
 * \note If \p output is shorter than \p A the export is still successful if the
 *       value held in \p A fits in the buffer (that is, if enough of the most
 *       significant bytes of \p A are 0).
 *
 * \param[in] A         The address of the MPI.
 * \param A_limbs       The number of limbs of \p A.
 * \param[out] output   The output buffer to export to.
 * \param output_length The length in bytes of \p output.
 *
 * \return       \c 0 if successful.
 * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
 *               large enough to hold the value of \p A.
 */
int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
                              size_t A_limbs,
                              unsigned char *output,
                              size_t output_length);

/** Export A into unsigned binary data, big-endian.
 *
 * \note If \p output is shorter than \p A the export is still successful if the
 *       value held in \p A fits in the buffer (that is, if enough of the most
 *       significant bytes of \p A are 0).
 *
 * \param[in] A         The address of the MPI.
 * \param A_limbs       The number of limbs of \p A.
 * \param[out] output   The output buffer to export to.
 * \param output_length The length in bytes of \p output.
 *
 * \return       \c 0 if successful.
 * \return       #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
 *               large enough to hold the value of \p A.
 */
int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *A,
                              size_t A_limbs,
                              unsigned char *output,
                              size_t output_length);

/** \brief              Shift an MPI in-place right by a number of bits.
 *
 *                      Shifting by more bits than there are bit positions
 *                      in \p X is valid and results in setting \p X to 0.
 *
 *                      This function's execution time depends on the value
 *                      of \p count (and of course \p limbs).
 *
 * \param[in,out] X     The number to shift.
 * \param limbs         The number of limbs of \p X. This must be at least 1.
 * \param count         The number of bits to shift by.
 */
void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
                              size_t count);

/**
 * \brief               Shift an MPI in-place left by a number of bits.
 *
 *                      Shifting by more bits than there are bit positions
 *                      in \p X will produce an unspecified result.
 *
 *                      This function's execution time depends on the value
 *                      of \p count (and of course \p limbs).
 * \param[in,out] X     The number to shift.
 * \param limbs         The number of limbs of \p X. This must be at least 1.
 * \param count         The number of bits to shift by.
 */
void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
                              size_t count);

/**
 * \brief Add two fixed-size large unsigned integers, returning the carry.
 *
 * Calculates `A + B` where `A` and `B` have the same size.
 *
 * This function operates modulo `2^(biL*limbs)` and returns the carry
 * (1 if there was a wraparound, and 0 otherwise).
 *
 * \p X may be aliased to \p A or \p B.
 *
 * \param[out] X    The result of the addition.
 * \param[in] A     Little-endian presentation of the left operand.
 * \param[in] B     Little-endian presentation of the right operand.
 * \param limbs     Number of limbs of \p X, \p A and \p B.
 *
 * \return          1 if `A + B >= 2^(biL*limbs)`, 0 otherwise.
 */
mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
                                      const mbedtls_mpi_uint *A,
                                      const mbedtls_mpi_uint *B,
                                      size_t limbs);

/**
 * \brief Conditional addition of two fixed-size large unsigned integers,
 *        returning the carry.
 *
 * Functionally equivalent to
 *
 * ```
 * if( cond )
 *    X += A;
 * return carry;
 * ```
 *
 * This function operates modulo `2^(biL*limbs)`.
 *
 * \param[in,out] X  The pointer to the (little-endian) array
 *                   representing the bignum to accumulate onto.
 * \param[in] A      The pointer to the (little-endian) array
 *                   representing the bignum to conditionally add
 *                   to \p X. This may be aliased to \p X but may not
 *                   overlap otherwise.
 * \param limbs      Number of limbs of \p X and \p A.
 * \param cond       Condition bit dictating whether addition should
 *                   happen or not. This must be \c 0 or \c 1.
 *
 * \warning          If \p cond is neither 0 nor 1, the result of this function
 *                   is unspecified, and the resulting value in \p X might be
 *                   neither its original value nor \p X + \p A.
 *
 * \return           1 if `X + cond * A >= 2^(biL*limbs)`, 0 otherwise.
 */
mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
                                         const mbedtls_mpi_uint *A,
                                         size_t limbs,
                                         unsigned cond);

/**
 * \brief Subtract two fixed-size large unsigned integers, returning the borrow.
 *
 * Calculate `A - B` where \p A and \p B have the same size.
 * This function operates modulo `2^(biL*limbs)` and returns the carry
 * (1 if there was a wraparound, i.e. if `A < B`, and 0 otherwise).
 *
 * \p X may be aliased to \p A or \p B, or even both, but may not overlap
 * either otherwise.
 *
 * \param[out] X    The result of the subtraction.
 * \param[in] A     Little-endian presentation of left operand.
 * \param[in] B     Little-endian presentation of right operand.
 * \param limbs     Number of limbs of \p X, \p A and \p B.
 *
 * \return          1 if `A < B`.
 *                  0 if `A >= B`.
 */
mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
                                      const mbedtls_mpi_uint *A,
                                      const mbedtls_mpi_uint *B,
                                      size_t limbs);

/**
 * \brief Perform a fixed-size multiply accumulate operation: X += b * A
 *
 * \p X may be aliased to \p A (when \p X_limbs == \p A_limbs), but may not
 * otherwise overlap.
 *
 * This function operates modulo `2^(biL*X_limbs)`.
 *
 * \param[in,out] X  The pointer to the (little-endian) array
 *                   representing the bignum to accumulate onto.
 * \param X_limbs    The number of limbs of \p X. This must be
 *                   at least \p A_limbs.
 * \param[in] A      The pointer to the (little-endian) array
 *                   representing the bignum to multiply with.
 *                   This may be aliased to \p X but may not overlap
 *                   otherwise.
 * \param A_limbs    The number of limbs of \p A.
 * \param b          X scalar to multiply with.
 *
 * \return           The carry at the end of the operation.
 */
mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *X, size_t X_limbs,
                                      const mbedtls_mpi_uint *A, size_t A_limbs,
                                      mbedtls_mpi_uint b);

/**
 * \brief Perform a known-size multiplication
 *
 * \p X may not be aliased to any of the inputs for this function.
 * \p A may be aliased to \p B.
 *
 * \param[out] X     The pointer to the (little-endian) array to receive
 *                   the product of \p A_limbs and \p B_limbs.
 *                   This must be of length \p A_limbs + \p B_limbs.
 * \param[in] A      The pointer to the (little-endian) array
 *                   representing the first factor.
 * \param A_limbs    The number of limbs in \p A.
 * \param[in] B      The pointer to the (little-endian) array
 *                   representing the second factor.
 * \param B_limbs    The number of limbs in \p B.
 */
void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
                          const mbedtls_mpi_uint *A, size_t A_limbs,
                          const mbedtls_mpi_uint *B, size_t B_limbs);

/**
 * \brief Calculate initialisation value for fast Montgomery modular
 *        multiplication
 *
 * \param[in] N  Little-endian presentation of the modulus. This must have
 *               at least one limb.
 *
 * \return       The initialisation value for fast Montgomery modular multiplication
 */
mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N);

/**
 * \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
 *
 * \p A and \p B must be in canonical form. That is, < \p N.
 *
 * \p X may be aliased to \p A or \p N, or even \p B (if \p AN_limbs ==
 * \p B_limbs) but may not overlap any parameters otherwise.
 *
 * \p A and \p B may alias each other, if \p AN_limbs == \p B_limbs. They may
 * not alias \p N (since they must be in canonical form, they cannot == \p N).
 *
 * \param[out]    X         The destination MPI, as a little-endian array of
 *                          length \p AN_limbs.
 *                          On successful completion, X contains the result of
 *                          the multiplication `A * B * R^-1` mod N where
 *                          `R = 2^(biL*AN_limbs)`.
 * \param[in]     A         Little-endian presentation of first operand.
 *                          Must have the same number of limbs as \p N.
 * \param[in]     B         Little-endian presentation of second operand.
 * \param[in]     B_limbs   The number of limbs in \p B.
 *                          Must be <= \p AN_limbs.
 * \param[in]     N         Little-endian presentation of the modulus.
 *                          This must be odd, and have exactly the same number
 *                          of limbs as \p A.
 *                          It may alias \p X, but must not alias or otherwise
 *                          overlap any of the other parameters.
 * \param[in]     AN_limbs  The number of limbs in \p X, \p A and \p N.
 * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
 *                          This can be calculated by `mbedtls_mpi_core_montmul_init()`.
 * \param[in,out] T         Temporary storage of size at least 2*AN_limbs+1 limbs.
 *                          Its initial content is unused and
 *                          its final content is indeterminate.
 *                          It must not alias or otherwise overlap any of the
 *                          other parameters.
 */
void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
                              const mbedtls_mpi_uint *A,
                              const mbedtls_mpi_uint *B, size_t B_limbs,
                              const mbedtls_mpi_uint *N, size_t AN_limbs,
                              mbedtls_mpi_uint mm, mbedtls_mpi_uint *T);

/**
 * \brief Calculate the square of the Montgomery constant. (Needed
 *        for conversion and operations in Montgomery form.)
 *
 * \param[out] X  A pointer to the result of the calculation of
 *                the square of the Montgomery constant:
 *                2^{2*n*biL} mod N.
 * \param[in]  N  Little-endian presentation of the modulus, which must be odd.
 *
 * \return        0 if successful.
 * \return        #MBEDTLS_ERR_MPI_ALLOC_FAILED if there is not enough space
 *                to store the value of Montgomery constant squared.
 * \return        #MBEDTLS_ERR_MPI_DIVISION_BY_ZERO if \p N modulus is zero.
 * \return        #MBEDTLS_ERR_MPI_NEGATIVE_VALUE if \p N modulus is negative.
 */
int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
                                        const mbedtls_mpi *N);

#if defined(MBEDTLS_TEST_HOOKS)
/**
 * Copy an MPI from a table without leaking the index.
 *
 * \param dest              The destination buffer. This must point to a writable
 *                          buffer of at least \p limbs limbs.
 * \param table             The address of the table. This must point to a readable
 *                          array of \p count elements of \p limbs limbs each.
 * \param limbs             The number of limbs in each table entry.
 * \param count             The number of entries in \p table.
 * \param index             The (secret) table index to look up. This must be in the
 *                          range `0 .. count-1`.
 */
void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
                                           const mbedtls_mpi_uint *table,
                                           size_t limbs,
                                           size_t count,
                                           size_t index);
#endif /* MBEDTLS_TEST_HOOKS */

/**
 * \brief          Fill an integer with a number of random bytes.
 *
 * \param X        The destination MPI.
 * \param X_limbs  The number of limbs of \p X.
 * \param bytes    The number of random bytes to generate.
 * \param f_rng    The RNG function to use. This must not be \c NULL.
 * \param p_rng    The RNG parameter to be passed to \p f_rng. This may be
 *                 \c NULL if \p f_rng doesn't need a context argument.
 *
 * \return         \c 0 if successful.
 * \return         #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p X does not have
 *                 enough room for \p bytes bytes.
 * \return         A negative error code on RNG failure.
 *
 * \note           The bytes obtained from the RNG are interpreted
 *                 as a big-endian representation of an MPI; this can
 *                 be relevant in applications like deterministic ECDSA.
 */
int mbedtls_mpi_core_fill_random(mbedtls_mpi_uint *X, size_t X_limbs,
                                 size_t bytes,
                                 int (*f_rng)(void *, unsigned char *, size_t),
                                 void *p_rng);

/** Generate a random number uniformly in a range.
 *
 * This function generates a random number between \p min inclusive and
 * \p N exclusive.
 *
 * The procedure complies with RFC 6979 ยง3.3 (deterministic ECDSA)
 * when the RNG is a suitably parametrized instance of HMAC_DRBG
 * and \p min is \c 1.
 *
 * \note           There are `N - min` possible outputs. The lower bound
 *                 \p min can be reached, but the upper bound \p N cannot.
 *
 * \param X        The destination MPI, with \p limbs limbs.
 *                 It must not be aliased with \p N or otherwise overlap it.
 * \param min      The minimum value to return.
 * \param N        The upper bound of the range, exclusive, with \p limbs limbs.
 *                 In other words, this is one plus the maximum value to return.
 *                 \p N must be strictly larger than \p min.
 * \param limbs    The number of limbs of \p N and \p X.
 *                 This must not be 0.
 * \param f_rng    The RNG function to use. This must not be \c NULL.
 * \param p_rng    The RNG parameter to be passed to \p f_rng.
 *
 * \return         \c 0 if successful.
 * \return         #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
 *                 unable to find a suitable value within a limited number
 *                 of attempts. This has a negligible probability if \p N
 *                 is significantly larger than \p min, which is the case
 *                 for all usual cryptographic applications.
 */
int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
                            mbedtls_mpi_uint min,
                            const mbedtls_mpi_uint *N,
                            size_t limbs,
                            int (*f_rng)(void *, unsigned char *, size_t),
                            void *p_rng);

/**
 * \brief          Returns the number of limbs of working memory required for
 *                 a call to `mbedtls_mpi_core_exp_mod()`.
 *
 * \note           This will always be at least
 *                 `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`,
 *                 i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`.
 *
 * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
 *                 (they must be the same size) that will be given to
 *                 `mbedtls_mpi_core_exp_mod()`.
 * \param E_limbs  The number of limbs in the exponent `E` that will be given
 *                 to `mbedtls_mpi_core_exp_mod()`.
 *
 * \return         The number of limbs of working memory required by
 *                 `mbedtls_mpi_core_exp_mod()`.
 */
size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs);

/**
 * \brief            Perform a modular exponentiation with secret exponent:
 *                   X = A^E mod N, where \p A is already in Montgomery form.
 *
 * \p X may be aliased to \p A, but not to \p RR or \p E, even if \p E_limbs ==
 * \p AN_limbs.
 *
 * \param[out] X     The destination MPI, as a little endian array of length
 *                   \p AN_limbs.
 * \param[in] A      The base MPI, as a little endian array of length \p AN_limbs.
 *                   Must be in Montgomery form.
 * \param[in] N      The modulus, as a little endian array of length \p AN_limbs.
 * \param AN_limbs   The number of limbs in \p X, \p A, \p N, \p RR.
 * \param[in] E      The exponent, as a little endian array of length \p E_limbs.
 * \param E_limbs    The number of limbs in \p E.
 * \param[in] RR     The precomputed residue of 2^{2*biL} modulo N, as a little
 *                   endian array of length \p AN_limbs.
 * \param[in,out] T  Temporary storage of at least the number of limbs returned
 *                   by `mbedtls_mpi_core_exp_mod_working_limbs()`.
 *                   Its initial content is unused and its final content is
 *                   indeterminate.
 *                   It must not alias or otherwise overlap any of the other
 *                   parameters.
 *                   It is up to the caller to zeroize \p T when it is no
 *                   longer needed, and before freeing it if it was dynamically
 *                   allocated.
 */
void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
                              const mbedtls_mpi_uint *A,
                              const mbedtls_mpi_uint *N, size_t AN_limbs,
                              const mbedtls_mpi_uint *E, size_t E_limbs,
                              const mbedtls_mpi_uint *RR,
                              mbedtls_mpi_uint *T);

/**
 * \brief Subtract unsigned integer from known-size large unsigned integers.
 *        Return the borrow.
 *
 * \param[out] X    The result of the subtraction.
 * \param[in] A     The left operand.
 * \param b         The unsigned scalar to subtract.
 * \param limbs     Number of limbs of \p X and \p A.
 *
 * \return          1 if `A < b`.
 *                  0 if `A >= b`.
 */
mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
                                          const mbedtls_mpi_uint *A,
                                          mbedtls_mpi_uint b,
                                          size_t limbs);

/**
 * \brief Determine if a given MPI has the value \c 0 in constant time with
 *        respect to the value (but not with respect to the number of limbs).
 *
 * \param[in] A   The MPI to test.
 * \param limbs   Number of limbs in \p A.
 *
 * \return        MBEDTLS_CT_FALSE if `A == 0`
 *                MBEDTLS_CT_TRUE  if `A != 0`.
 */
mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
                                                      size_t limbs);

/**
 * \brief          Returns the number of limbs of working memory required for
 *                 a call to `mbedtls_mpi_core_montmul()`.
 *
 * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
 *                 (they must be the same size) that will be given to
 *                 `mbedtls_mpi_core_montmul()` or one of the other functions
 *                 that specifies this as the amount of working memory needed.
 *
 * \return         The number of limbs of working memory required by
 *                 `mbedtls_mpi_core_montmul()` (or other similar function).
 */
static inline size_t mbedtls_mpi_core_montmul_working_limbs(size_t AN_limbs)
{
    return 2 * AN_limbs + 1;
}

/** Convert an MPI into Montgomery form.
 *
 * \p X may be aliased to \p A, but may not otherwise overlap it.
 *
 * \p X may not alias \p N (it is in canonical form, so must be strictly less
 * than \p N). Nor may it alias or overlap \p rr (this is unlikely to be
 * required in practice.)
 *
 * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
 * an alternative to calling `mbedtls_mpi_mod_raw_to_mont_rep()` when we
 * don't want to allocate memory.
 *
 * \param[out]    X         The result of the conversion.
 *                          Must have the same number of limbs as \p A.
 * \param[in]     A         The MPI to convert into Montgomery form.
 *                          Must have the same number of limbs as the modulus.
 * \param[in]     N         The address of the modulus, which gives the size of
 *                          the base `R` = 2^(biL*N->limbs).
 * \param[in]     AN_limbs  The number of limbs in \p X, \p A, \p N and \p rr.
 * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
 *                          This can be determined by calling
 *                          `mbedtls_mpi_core_montmul_init()`.
 * \param[in]     rr        The residue for `2^{2*n*biL} mod N`.
 * \param[in,out] T         Temporary storage of size at least
 *                          `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
 *                          limbs.
 *                          Its initial content is unused and
 *                          its final content is indeterminate.
 *                          It must not alias or otherwise overlap any of the
 *                          other parameters.
 */
void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
                                  const mbedtls_mpi_uint *A,
                                  const mbedtls_mpi_uint *N,
                                  size_t AN_limbs,
                                  mbedtls_mpi_uint mm,
                                  const mbedtls_mpi_uint *rr,
                                  mbedtls_mpi_uint *T);

/** Convert an MPI from Montgomery form.
 *
 * \p X may be aliased to \p A, but may not otherwise overlap it.
 *
 * \p X may not alias \p N (it is in canonical form, so must be strictly less
 * than \p N).
 *
 * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
 * an alternative to calling `mbedtls_mpi_mod_raw_from_mont_rep()` when we
 * don't want to allocate memory.
 *
 * \param[out]    X         The result of the conversion.
 *                          Must have the same number of limbs as \p A.
 * \param[in]     A         The MPI to convert from Montgomery form.
 *                          Must have the same number of limbs as the modulus.
 * \param[in]     N         The address of the modulus, which gives the size of
 *                          the base `R` = 2^(biL*N->limbs).
 * \param[in]     AN_limbs  The number of limbs in \p X, \p A and \p N.
 * \param         mm        The Montgomery constant for \p N: -N^-1 mod 2^biL.
 *                          This can be determined by calling
 *                          `mbedtls_mpi_core_montmul_init()`.
 * \param[in,out] T         Temporary storage of size at least
 *                          `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
 *                          limbs.
 *                          Its initial content is unused and
 *                          its final content is indeterminate.
 *                          It must not alias or otherwise overlap any of the
 *                          other parameters.
 */
void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
                                    const mbedtls_mpi_uint *A,
                                    const mbedtls_mpi_uint *N,
                                    size_t AN_limbs,
                                    mbedtls_mpi_uint mm,
                                    mbedtls_mpi_uint *T);

#endif /* MBEDTLS_BIGNUM_CORE_H */