aboutsummaryrefslogtreecommitdiff
path: root/tf-psa-crypto/drivers/builtin/src
diff options
context:
space:
mode:
Diffstat (limited to 'tf-psa-crypto/drivers/builtin/src')
-rw-r--r--tf-psa-crypto/drivers/builtin/src/.gitignore4
-rw-r--r--tf-psa-crypto/drivers/builtin/src/CMakeLists.txt0
-rw-r--r--tf-psa-crypto/drivers/builtin/src/aes.c2244
-rw-r--r--tf-psa-crypto/drivers/builtin/src/aesce.c618
-rw-r--r--tf-psa-crypto/drivers/builtin/src/aesce.h136
-rw-r--r--tf-psa-crypto/drivers/builtin/src/aesni.c835
-rw-r--r--tf-psa-crypto/drivers/builtin/src/aesni.h162
-rw-r--r--tf-psa-crypto/drivers/builtin/src/aria.c969
-rw-r--r--tf-psa-crypto/drivers/builtin/src/asn1parse.c468
-rw-r--r--tf-psa-crypto/drivers/builtin/src/asn1write.c437
-rw-r--r--tf-psa-crypto/drivers/builtin/src/base64.c299
-rw-r--r--tf-psa-crypto/drivers/builtin/src/base64_internal.h45
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum.c2464
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum_core.c895
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum_core.h763
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum_mod.c394
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum_mod.h452
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.c276
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.h416
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bignum_mod_raw_invasive.h34
-rw-r--r--tf-psa-crypto/drivers/builtin/src/block_cipher.c207
-rw-r--r--tf-psa-crypto/drivers/builtin/src/block_cipher_internal.h99
-rw-r--r--tf-psa-crypto/drivers/builtin/src/bn_mul.h1094
-rw-r--r--tf-psa-crypto/drivers/builtin/src/camellia.c1058
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ccm.c763
-rw-r--r--tf-psa-crypto/drivers/builtin/src/chacha20.c497
-rw-r--r--tf-psa-crypto/drivers/builtin/src/chachapoly.c478
-rw-r--r--tf-psa-crypto/drivers/builtin/src/check_crypto_config.h141
-rw-r--r--tf-psa-crypto/drivers/builtin/src/cipher.c1683
-rw-r--r--tf-psa-crypto/drivers/builtin/src/cipher_wrap.c2482
-rw-r--r--tf-psa-crypto/drivers/builtin/src/cipher_wrap.h178
-rw-r--r--tf-psa-crypto/drivers/builtin/src/cmac.c1067
-rw-r--r--tf-psa-crypto/drivers/builtin/src/constant_time.c248
-rw-r--r--tf-psa-crypto/drivers/builtin/src/constant_time_impl.h556
-rw-r--r--tf-psa-crypto/drivers/builtin/src/constant_time_internal.h579
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ctr.h35
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ctr_drbg.c1016
-rw-r--r--tf-psa-crypto/drivers/builtin/src/des.c1042
-rw-r--r--tf-psa-crypto/drivers/builtin/src/dhm.c709
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ecdh.c694
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ecdsa.c867
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ecjpake.c1206
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ecp.c3558
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ecp_curves.c5456
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ecp_curves_new.c6033
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ecp_invasive.h325
-rw-r--r--tf-psa-crypto/drivers/builtin/src/entropy.c680
-rw-r--r--tf-psa-crypto/drivers/builtin/src/entropy_poll.c231
-rw-r--r--tf-psa-crypto/drivers/builtin/src/entropy_poll.h64
-rw-r--r--tf-psa-crypto/drivers/builtin/src/gcm.c1330
-rw-r--r--tf-psa-crypto/drivers/builtin/src/hkdf.c161
-rw-r--r--tf-psa-crypto/drivers/builtin/src/hmac_drbg.c633
-rw-r--r--tf-psa-crypto/drivers/builtin/src/lmots.c786
-rw-r--r--tf-psa-crypto/drivers/builtin/src/lmots.h288
-rw-r--r--tf-psa-crypto/drivers/builtin/src/lms.c769
-rw-r--r--tf-psa-crypto/drivers/builtin/src/md.c1108
-rw-r--r--tf-psa-crypto/drivers/builtin/src/md5.c426
-rw-r--r--tf-psa-crypto/drivers/builtin/src/md_psa.h26
-rw-r--r--tf-psa-crypto/drivers/builtin/src/md_wrap.h46
-rw-r--r--tf-psa-crypto/drivers/builtin/src/memory_buffer_alloc.c745
-rw-r--r--tf-psa-crypto/drivers/builtin/src/nist_kw.c729
-rw-r--r--tf-psa-crypto/drivers/builtin/src/oid.c1166
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pem.c551
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pk.c1507
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pk_ecc.c255
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pk_internal.h207
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pk_wrap.c1578
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pk_wrap.h138
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pkcs12.c437
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pkcs5.c500
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pkparse.c1392
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pkwrite.c621
-rw-r--r--tf-psa-crypto/drivers/builtin/src/pkwrite.h121
-rw-r--r--tf-psa-crypto/drivers/builtin/src/platform.c402
-rw-r--r--tf-psa-crypto/drivers/builtin/src/platform_util.c263
-rw-r--r--tf-psa-crypto/drivers/builtin/src/poly1305.c492
-rw-r--r--tf-psa-crypto/drivers/builtin/src/ripemd160.c490
-rw-r--r--tf-psa-crypto/drivers/builtin/src/rsa.c3061
-rw-r--r--tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.c447
-rw-r--r--tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.h212
-rw-r--r--tf-psa-crypto/drivers/builtin/src/rsa_internal.h121
-rw-r--r--tf-psa-crypto/drivers/builtin/src/sha1.c480
-rw-r--r--tf-psa-crypto/drivers/builtin/src/sha256.c978
-rw-r--r--tf-psa-crypto/drivers/builtin/src/sha3.c721
-rw-r--r--tf-psa-crypto/drivers/builtin/src/sha512.c1112
-rw-r--r--tf-psa-crypto/drivers/builtin/src/threading.c195
-rw-r--r--tf-psa-crypto/drivers/builtin/src/timing.c154
-rw-r--r--tf-psa-crypto/drivers/builtin/src/version.c32
88 files changed, 69637 insertions, 0 deletions
diff --git a/tf-psa-crypto/drivers/builtin/src/.gitignore b/tf-psa-crypto/drivers/builtin/src/.gitignore
new file mode 100644
index 0000000..f3923b1
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/.gitignore
@@ -0,0 +1,4 @@
+###START_GENERATED_FILES###
+/error.c
+/version_features.c
+###END_GENERATED_FILES###
diff --git a/tf-psa-crypto/drivers/builtin/src/CMakeLists.txt b/tf-psa-crypto/drivers/builtin/src/CMakeLists.txt
new file mode 100644
index 0000000..e69de29
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/CMakeLists.txt
diff --git a/tf-psa-crypto/drivers/builtin/src/aes.c b/tf-psa-crypto/drivers/builtin/src/aes.c
new file mode 100644
index 0000000..72e2c57
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aes.c
@@ -0,0 +1,2244 @@
+/*
+ * FIPS-197 compliant AES implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The AES block cipher was designed by Vincent Rijmen and Joan Daemen.
+ *
+ * https://csrc.nist.gov/csrc/media/projects/cryptographic-standards-and-guidelines/documents/aes-development/rijndael-ammended.pdf
+ * http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_AES_C)
+
+#include <string.h>
+
+#include "mbedtls/aes.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+#if !((defined(MBEDTLS_ARCH_IS_ARMV8_A) && defined(MBEDTLS_AESCE_C)) || \
+ (defined(MBEDTLS_ARCH_IS_X64) && defined(MBEDTLS_AESNI_C)) || \
+ (defined(MBEDTLS_ARCH_IS_X86) && defined(MBEDTLS_AESNI_C)))
+#error "MBEDTLS_AES_USE_HARDWARE_ONLY defined, but not all prerequisites"
+#endif
+#endif
+
+#if defined(MBEDTLS_AESNI_C)
+#include "aesni.h"
+#endif
+#if defined(MBEDTLS_AESCE_C)
+#include "aesce.h"
+#endif
+
+#include "mbedtls/platform.h"
+#include "ctr.h"
+
+/*
+ * This is a convenience shorthand macro to check if we need reverse S-box and
+ * reverse tables. It's private and only defined in this file.
+ */
+#if (!defined(MBEDTLS_AES_DECRYPT_ALT) || \
+ (!defined(MBEDTLS_AES_SETKEY_DEC_ALT) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY))) && \
+ !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+#define MBEDTLS_AES_NEED_REVERSE_TABLES
+#endif
+
+#if !defined(MBEDTLS_AES_ALT)
+
+#if defined(MBEDTLS_AES_ROM_TABLES)
+/*
+ * Forward S-box
+ */
+MBEDTLS_MAYBE_UNUSED static const unsigned char FSb[256] =
+{
+ 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5,
+ 0x30, 0x01, 0x67, 0x2B, 0xFE, 0xD7, 0xAB, 0x76,
+ 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
+ 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0,
+ 0xB7, 0xFD, 0x93, 0x26, 0x36, 0x3F, 0xF7, 0xCC,
+ 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
+ 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A,
+ 0x07, 0x12, 0x80, 0xE2, 0xEB, 0x27, 0xB2, 0x75,
+ 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
+ 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84,
+ 0x53, 0xD1, 0x00, 0xED, 0x20, 0xFC, 0xB1, 0x5B,
+ 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
+ 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85,
+ 0x45, 0xF9, 0x02, 0x7F, 0x50, 0x3C, 0x9F, 0xA8,
+ 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
+ 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2,
+ 0xCD, 0x0C, 0x13, 0xEC, 0x5F, 0x97, 0x44, 0x17,
+ 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
+ 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88,
+ 0x46, 0xEE, 0xB8, 0x14, 0xDE, 0x5E, 0x0B, 0xDB,
+ 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
+ 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79,
+ 0xE7, 0xC8, 0x37, 0x6D, 0x8D, 0xD5, 0x4E, 0xA9,
+ 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
+ 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6,
+ 0xE8, 0xDD, 0x74, 0x1F, 0x4B, 0xBD, 0x8B, 0x8A,
+ 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
+ 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E,
+ 0xE1, 0xF8, 0x98, 0x11, 0x69, 0xD9, 0x8E, 0x94,
+ 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
+ 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68,
+ 0x41, 0x99, 0x2D, 0x0F, 0xB0, 0x54, 0xBB, 0x16
+};
+
+/*
+ * Forward tables
+ */
+#define FT \
+\
+ V(A5, 63, 63, C6), V(84, 7C, 7C, F8), V(99, 77, 77, EE), V(8D, 7B, 7B, F6), \
+ V(0D, F2, F2, FF), V(BD, 6B, 6B, D6), V(B1, 6F, 6F, DE), V(54, C5, C5, 91), \
+ V(50, 30, 30, 60), V(03, 01, 01, 02), V(A9, 67, 67, CE), V(7D, 2B, 2B, 56), \
+ V(19, FE, FE, E7), V(62, D7, D7, B5), V(E6, AB, AB, 4D), V(9A, 76, 76, EC), \
+ V(45, CA, CA, 8F), V(9D, 82, 82, 1F), V(40, C9, C9, 89), V(87, 7D, 7D, FA), \
+ V(15, FA, FA, EF), V(EB, 59, 59, B2), V(C9, 47, 47, 8E), V(0B, F0, F0, FB), \
+ V(EC, AD, AD, 41), V(67, D4, D4, B3), V(FD, A2, A2, 5F), V(EA, AF, AF, 45), \
+ V(BF, 9C, 9C, 23), V(F7, A4, A4, 53), V(96, 72, 72, E4), V(5B, C0, C0, 9B), \
+ V(C2, B7, B7, 75), V(1C, FD, FD, E1), V(AE, 93, 93, 3D), V(6A, 26, 26, 4C), \
+ V(5A, 36, 36, 6C), V(41, 3F, 3F, 7E), V(02, F7, F7, F5), V(4F, CC, CC, 83), \
+ V(5C, 34, 34, 68), V(F4, A5, A5, 51), V(34, E5, E5, D1), V(08, F1, F1, F9), \
+ V(93, 71, 71, E2), V(73, D8, D8, AB), V(53, 31, 31, 62), V(3F, 15, 15, 2A), \
+ V(0C, 04, 04, 08), V(52, C7, C7, 95), V(65, 23, 23, 46), V(5E, C3, C3, 9D), \
+ V(28, 18, 18, 30), V(A1, 96, 96, 37), V(0F, 05, 05, 0A), V(B5, 9A, 9A, 2F), \
+ V(09, 07, 07, 0E), V(36, 12, 12, 24), V(9B, 80, 80, 1B), V(3D, E2, E2, DF), \
+ V(26, EB, EB, CD), V(69, 27, 27, 4E), V(CD, B2, B2, 7F), V(9F, 75, 75, EA), \
+ V(1B, 09, 09, 12), V(9E, 83, 83, 1D), V(74, 2C, 2C, 58), V(2E, 1A, 1A, 34), \
+ V(2D, 1B, 1B, 36), V(B2, 6E, 6E, DC), V(EE, 5A, 5A, B4), V(FB, A0, A0, 5B), \
+ V(F6, 52, 52, A4), V(4D, 3B, 3B, 76), V(61, D6, D6, B7), V(CE, B3, B3, 7D), \
+ V(7B, 29, 29, 52), V(3E, E3, E3, DD), V(71, 2F, 2F, 5E), V(97, 84, 84, 13), \
+ V(F5, 53, 53, A6), V(68, D1, D1, B9), V(00, 00, 00, 00), V(2C, ED, ED, C1), \
+ V(60, 20, 20, 40), V(1F, FC, FC, E3), V(C8, B1, B1, 79), V(ED, 5B, 5B, B6), \
+ V(BE, 6A, 6A, D4), V(46, CB, CB, 8D), V(D9, BE, BE, 67), V(4B, 39, 39, 72), \
+ V(DE, 4A, 4A, 94), V(D4, 4C, 4C, 98), V(E8, 58, 58, B0), V(4A, CF, CF, 85), \
+ V(6B, D0, D0, BB), V(2A, EF, EF, C5), V(E5, AA, AA, 4F), V(16, FB, FB, ED), \
+ V(C5, 43, 43, 86), V(D7, 4D, 4D, 9A), V(55, 33, 33, 66), V(94, 85, 85, 11), \
+ V(CF, 45, 45, 8A), V(10, F9, F9, E9), V(06, 02, 02, 04), V(81, 7F, 7F, FE), \
+ V(F0, 50, 50, A0), V(44, 3C, 3C, 78), V(BA, 9F, 9F, 25), V(E3, A8, A8, 4B), \
+ V(F3, 51, 51, A2), V(FE, A3, A3, 5D), V(C0, 40, 40, 80), V(8A, 8F, 8F, 05), \
+ V(AD, 92, 92, 3F), V(BC, 9D, 9D, 21), V(48, 38, 38, 70), V(04, F5, F5, F1), \
+ V(DF, BC, BC, 63), V(C1, B6, B6, 77), V(75, DA, DA, AF), V(63, 21, 21, 42), \
+ V(30, 10, 10, 20), V(1A, FF, FF, E5), V(0E, F3, F3, FD), V(6D, D2, D2, BF), \
+ V(4C, CD, CD, 81), V(14, 0C, 0C, 18), V(35, 13, 13, 26), V(2F, EC, EC, C3), \
+ V(E1, 5F, 5F, BE), V(A2, 97, 97, 35), V(CC, 44, 44, 88), V(39, 17, 17, 2E), \
+ V(57, C4, C4, 93), V(F2, A7, A7, 55), V(82, 7E, 7E, FC), V(47, 3D, 3D, 7A), \
+ V(AC, 64, 64, C8), V(E7, 5D, 5D, BA), V(2B, 19, 19, 32), V(95, 73, 73, E6), \
+ V(A0, 60, 60, C0), V(98, 81, 81, 19), V(D1, 4F, 4F, 9E), V(7F, DC, DC, A3), \
+ V(66, 22, 22, 44), V(7E, 2A, 2A, 54), V(AB, 90, 90, 3B), V(83, 88, 88, 0B), \
+ V(CA, 46, 46, 8C), V(29, EE, EE, C7), V(D3, B8, B8, 6B), V(3C, 14, 14, 28), \
+ V(79, DE, DE, A7), V(E2, 5E, 5E, BC), V(1D, 0B, 0B, 16), V(76, DB, DB, AD), \
+ V(3B, E0, E0, DB), V(56, 32, 32, 64), V(4E, 3A, 3A, 74), V(1E, 0A, 0A, 14), \
+ V(DB, 49, 49, 92), V(0A, 06, 06, 0C), V(6C, 24, 24, 48), V(E4, 5C, 5C, B8), \
+ V(5D, C2, C2, 9F), V(6E, D3, D3, BD), V(EF, AC, AC, 43), V(A6, 62, 62, C4), \
+ V(A8, 91, 91, 39), V(A4, 95, 95, 31), V(37, E4, E4, D3), V(8B, 79, 79, F2), \
+ V(32, E7, E7, D5), V(43, C8, C8, 8B), V(59, 37, 37, 6E), V(B7, 6D, 6D, DA), \
+ V(8C, 8D, 8D, 01), V(64, D5, D5, B1), V(D2, 4E, 4E, 9C), V(E0, A9, A9, 49), \
+ V(B4, 6C, 6C, D8), V(FA, 56, 56, AC), V(07, F4, F4, F3), V(25, EA, EA, CF), \
+ V(AF, 65, 65, CA), V(8E, 7A, 7A, F4), V(E9, AE, AE, 47), V(18, 08, 08, 10), \
+ V(D5, BA, BA, 6F), V(88, 78, 78, F0), V(6F, 25, 25, 4A), V(72, 2E, 2E, 5C), \
+ V(24, 1C, 1C, 38), V(F1, A6, A6, 57), V(C7, B4, B4, 73), V(51, C6, C6, 97), \
+ V(23, E8, E8, CB), V(7C, DD, DD, A1), V(9C, 74, 74, E8), V(21, 1F, 1F, 3E), \
+ V(DD, 4B, 4B, 96), V(DC, BD, BD, 61), V(86, 8B, 8B, 0D), V(85, 8A, 8A, 0F), \
+ V(90, 70, 70, E0), V(42, 3E, 3E, 7C), V(C4, B5, B5, 71), V(AA, 66, 66, CC), \
+ V(D8, 48, 48, 90), V(05, 03, 03, 06), V(01, F6, F6, F7), V(12, 0E, 0E, 1C), \
+ V(A3, 61, 61, C2), V(5F, 35, 35, 6A), V(F9, 57, 57, AE), V(D0, B9, B9, 69), \
+ V(91, 86, 86, 17), V(58, C1, C1, 99), V(27, 1D, 1D, 3A), V(B9, 9E, 9E, 27), \
+ V(38, E1, E1, D9), V(13, F8, F8, EB), V(B3, 98, 98, 2B), V(33, 11, 11, 22), \
+ V(BB, 69, 69, D2), V(70, D9, D9, A9), V(89, 8E, 8E, 07), V(A7, 94, 94, 33), \
+ V(B6, 9B, 9B, 2D), V(22, 1E, 1E, 3C), V(92, 87, 87, 15), V(20, E9, E9, C9), \
+ V(49, CE, CE, 87), V(FF, 55, 55, AA), V(78, 28, 28, 50), V(7A, DF, DF, A5), \
+ V(8F, 8C, 8C, 03), V(F8, A1, A1, 59), V(80, 89, 89, 09), V(17, 0D, 0D, 1A), \
+ V(DA, BF, BF, 65), V(31, E6, E6, D7), V(C6, 42, 42, 84), V(B8, 68, 68, D0), \
+ V(C3, 41, 41, 82), V(B0, 99, 99, 29), V(77, 2D, 2D, 5A), V(11, 0F, 0F, 1E), \
+ V(CB, B0, B0, 7B), V(FC, 54, 54, A8), V(D6, BB, BB, 6D), V(3A, 16, 16, 2C)
+
+#define V(a, b, c, d) 0x##a##b##c##d
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT0[256] = { FT };
+#undef V
+
+#define V(a, b, c, d) 0x##b##c##d##a
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT1[256] = { FT };
+#undef V
+
+#define V(a, b, c, d) 0x##c##d##a##b
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT2[256] = { FT };
+#undef V
+
+#define V(a, b, c, d) 0x##d##a##b##c
+MBEDTLS_MAYBE_UNUSED static const uint32_t FT3[256] = { FT };
+#undef V
+
+#undef FT
+
+/*
+ * Reverse S-box
+ */
+MBEDTLS_MAYBE_UNUSED static const unsigned char RSb[256] =
+{
+ 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38,
+ 0xBF, 0x40, 0xA3, 0x9E, 0x81, 0xF3, 0xD7, 0xFB,
+ 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
+ 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB,
+ 0x54, 0x7B, 0x94, 0x32, 0xA6, 0xC2, 0x23, 0x3D,
+ 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
+ 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2,
+ 0x76, 0x5B, 0xA2, 0x49, 0x6D, 0x8B, 0xD1, 0x25,
+ 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
+ 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92,
+ 0x6C, 0x70, 0x48, 0x50, 0xFD, 0xED, 0xB9, 0xDA,
+ 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
+ 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A,
+ 0xF7, 0xE4, 0x58, 0x05, 0xB8, 0xB3, 0x45, 0x06,
+ 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
+ 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B,
+ 0x3A, 0x91, 0x11, 0x41, 0x4F, 0x67, 0xDC, 0xEA,
+ 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
+ 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85,
+ 0xE2, 0xF9, 0x37, 0xE8, 0x1C, 0x75, 0xDF, 0x6E,
+ 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
+ 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B,
+ 0xFC, 0x56, 0x3E, 0x4B, 0xC6, 0xD2, 0x79, 0x20,
+ 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
+ 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31,
+ 0xB1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xEC, 0x5F,
+ 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
+ 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF,
+ 0xA0, 0xE0, 0x3B, 0x4D, 0xAE, 0x2A, 0xF5, 0xB0,
+ 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
+ 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26,
+ 0xE1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0C, 0x7D
+};
+
+/*
+ * Reverse tables
+ */
+#define RT \
+\
+ V(50, A7, F4, 51), V(53, 65, 41, 7E), V(C3, A4, 17, 1A), V(96, 5E, 27, 3A), \
+ V(CB, 6B, AB, 3B), V(F1, 45, 9D, 1F), V(AB, 58, FA, AC), V(93, 03, E3, 4B), \
+ V(55, FA, 30, 20), V(F6, 6D, 76, AD), V(91, 76, CC, 88), V(25, 4C, 02, F5), \
+ V(FC, D7, E5, 4F), V(D7, CB, 2A, C5), V(80, 44, 35, 26), V(8F, A3, 62, B5), \
+ V(49, 5A, B1, DE), V(67, 1B, BA, 25), V(98, 0E, EA, 45), V(E1, C0, FE, 5D), \
+ V(02, 75, 2F, C3), V(12, F0, 4C, 81), V(A3, 97, 46, 8D), V(C6, F9, D3, 6B), \
+ V(E7, 5F, 8F, 03), V(95, 9C, 92, 15), V(EB, 7A, 6D, BF), V(DA, 59, 52, 95), \
+ V(2D, 83, BE, D4), V(D3, 21, 74, 58), V(29, 69, E0, 49), V(44, C8, C9, 8E), \
+ V(6A, 89, C2, 75), V(78, 79, 8E, F4), V(6B, 3E, 58, 99), V(DD, 71, B9, 27), \
+ V(B6, 4F, E1, BE), V(17, AD, 88, F0), V(66, AC, 20, C9), V(B4, 3A, CE, 7D), \
+ V(18, 4A, DF, 63), V(82, 31, 1A, E5), V(60, 33, 51, 97), V(45, 7F, 53, 62), \
+ V(E0, 77, 64, B1), V(84, AE, 6B, BB), V(1C, A0, 81, FE), V(94, 2B, 08, F9), \
+ V(58, 68, 48, 70), V(19, FD, 45, 8F), V(87, 6C, DE, 94), V(B7, F8, 7B, 52), \
+ V(23, D3, 73, AB), V(E2, 02, 4B, 72), V(57, 8F, 1F, E3), V(2A, AB, 55, 66), \
+ V(07, 28, EB, B2), V(03, C2, B5, 2F), V(9A, 7B, C5, 86), V(A5, 08, 37, D3), \
+ V(F2, 87, 28, 30), V(B2, A5, BF, 23), V(BA, 6A, 03, 02), V(5C, 82, 16, ED), \
+ V(2B, 1C, CF, 8A), V(92, B4, 79, A7), V(F0, F2, 07, F3), V(A1, E2, 69, 4E), \
+ V(CD, F4, DA, 65), V(D5, BE, 05, 06), V(1F, 62, 34, D1), V(8A, FE, A6, C4), \
+ V(9D, 53, 2E, 34), V(A0, 55, F3, A2), V(32, E1, 8A, 05), V(75, EB, F6, A4), \
+ V(39, EC, 83, 0B), V(AA, EF, 60, 40), V(06, 9F, 71, 5E), V(51, 10, 6E, BD), \
+ V(F9, 8A, 21, 3E), V(3D, 06, DD, 96), V(AE, 05, 3E, DD), V(46, BD, E6, 4D), \
+ V(B5, 8D, 54, 91), V(05, 5D, C4, 71), V(6F, D4, 06, 04), V(FF, 15, 50, 60), \
+ V(24, FB, 98, 19), V(97, E9, BD, D6), V(CC, 43, 40, 89), V(77, 9E, D9, 67), \
+ V(BD, 42, E8, B0), V(88, 8B, 89, 07), V(38, 5B, 19, E7), V(DB, EE, C8, 79), \
+ V(47, 0A, 7C, A1), V(E9, 0F, 42, 7C), V(C9, 1E, 84, F8), V(00, 00, 00, 00), \
+ V(83, 86, 80, 09), V(48, ED, 2B, 32), V(AC, 70, 11, 1E), V(4E, 72, 5A, 6C), \
+ V(FB, FF, 0E, FD), V(56, 38, 85, 0F), V(1E, D5, AE, 3D), V(27, 39, 2D, 36), \
+ V(64, D9, 0F, 0A), V(21, A6, 5C, 68), V(D1, 54, 5B, 9B), V(3A, 2E, 36, 24), \
+ V(B1, 67, 0A, 0C), V(0F, E7, 57, 93), V(D2, 96, EE, B4), V(9E, 91, 9B, 1B), \
+ V(4F, C5, C0, 80), V(A2, 20, DC, 61), V(69, 4B, 77, 5A), V(16, 1A, 12, 1C), \
+ V(0A, BA, 93, E2), V(E5, 2A, A0, C0), V(43, E0, 22, 3C), V(1D, 17, 1B, 12), \
+ V(0B, 0D, 09, 0E), V(AD, C7, 8B, F2), V(B9, A8, B6, 2D), V(C8, A9, 1E, 14), \
+ V(85, 19, F1, 57), V(4C, 07, 75, AF), V(BB, DD, 99, EE), V(FD, 60, 7F, A3), \
+ V(9F, 26, 01, F7), V(BC, F5, 72, 5C), V(C5, 3B, 66, 44), V(34, 7E, FB, 5B), \
+ V(76, 29, 43, 8B), V(DC, C6, 23, CB), V(68, FC, ED, B6), V(63, F1, E4, B8), \
+ V(CA, DC, 31, D7), V(10, 85, 63, 42), V(40, 22, 97, 13), V(20, 11, C6, 84), \
+ V(7D, 24, 4A, 85), V(F8, 3D, BB, D2), V(11, 32, F9, AE), V(6D, A1, 29, C7), \
+ V(4B, 2F, 9E, 1D), V(F3, 30, B2, DC), V(EC, 52, 86, 0D), V(D0, E3, C1, 77), \
+ V(6C, 16, B3, 2B), V(99, B9, 70, A9), V(FA, 48, 94, 11), V(22, 64, E9, 47), \
+ V(C4, 8C, FC, A8), V(1A, 3F, F0, A0), V(D8, 2C, 7D, 56), V(EF, 90, 33, 22), \
+ V(C7, 4E, 49, 87), V(C1, D1, 38, D9), V(FE, A2, CA, 8C), V(36, 0B, D4, 98), \
+ V(CF, 81, F5, A6), V(28, DE, 7A, A5), V(26, 8E, B7, DA), V(A4, BF, AD, 3F), \
+ V(E4, 9D, 3A, 2C), V(0D, 92, 78, 50), V(9B, CC, 5F, 6A), V(62, 46, 7E, 54), \
+ V(C2, 13, 8D, F6), V(E8, B8, D8, 90), V(5E, F7, 39, 2E), V(F5, AF, C3, 82), \
+ V(BE, 80, 5D, 9F), V(7C, 93, D0, 69), V(A9, 2D, D5, 6F), V(B3, 12, 25, CF), \
+ V(3B, 99, AC, C8), V(A7, 7D, 18, 10), V(6E, 63, 9C, E8), V(7B, BB, 3B, DB), \
+ V(09, 78, 26, CD), V(F4, 18, 59, 6E), V(01, B7, 9A, EC), V(A8, 9A, 4F, 83), \
+ V(65, 6E, 95, E6), V(7E, E6, FF, AA), V(08, CF, BC, 21), V(E6, E8, 15, EF), \
+ V(D9, 9B, E7, BA), V(CE, 36, 6F, 4A), V(D4, 09, 9F, EA), V(D6, 7C, B0, 29), \
+ V(AF, B2, A4, 31), V(31, 23, 3F, 2A), V(30, 94, A5, C6), V(C0, 66, A2, 35), \
+ V(37, BC, 4E, 74), V(A6, CA, 82, FC), V(B0, D0, 90, E0), V(15, D8, A7, 33), \
+ V(4A, 98, 04, F1), V(F7, DA, EC, 41), V(0E, 50, CD, 7F), V(2F, F6, 91, 17), \
+ V(8D, D6, 4D, 76), V(4D, B0, EF, 43), V(54, 4D, AA, CC), V(DF, 04, 96, E4), \
+ V(E3, B5, D1, 9E), V(1B, 88, 6A, 4C), V(B8, 1F, 2C, C1), V(7F, 51, 65, 46), \
+ V(04, EA, 5E, 9D), V(5D, 35, 8C, 01), V(73, 74, 87, FA), V(2E, 41, 0B, FB), \
+ V(5A, 1D, 67, B3), V(52, D2, DB, 92), V(33, 56, 10, E9), V(13, 47, D6, 6D), \
+ V(8C, 61, D7, 9A), V(7A, 0C, A1, 37), V(8E, 14, F8, 59), V(89, 3C, 13, EB), \
+ V(EE, 27, A9, CE), V(35, C9, 61, B7), V(ED, E5, 1C, E1), V(3C, B1, 47, 7A), \
+ V(59, DF, D2, 9C), V(3F, 73, F2, 55), V(79, CE, 14, 18), V(BF, 37, C7, 73), \
+ V(EA, CD, F7, 53), V(5B, AA, FD, 5F), V(14, 6F, 3D, DF), V(86, DB, 44, 78), \
+ V(81, F3, AF, CA), V(3E, C4, 68, B9), V(2C, 34, 24, 38), V(5F, 40, A3, C2), \
+ V(72, C3, 1D, 16), V(0C, 25, E2, BC), V(8B, 49, 3C, 28), V(41, 95, 0D, FF), \
+ V(71, 01, A8, 39), V(DE, B3, 0C, 08), V(9C, E4, B4, D8), V(90, C1, 56, 64), \
+ V(61, 84, CB, 7B), V(70, B6, 32, D5), V(74, 5C, 6C, 48), V(42, 57, B8, D0)
+
+
+#define V(a, b, c, d) 0x##a##b##c##d
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT0[256] = { RT };
+#undef V
+
+#define V(a, b, c, d) 0x##b##c##d##a
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT1[256] = { RT };
+#undef V
+
+#define V(a, b, c, d) 0x##c##d##a##b
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT2[256] = { RT };
+#undef V
+
+#define V(a, b, c, d) 0x##d##a##b##c
+MBEDTLS_MAYBE_UNUSED static const uint32_t RT3[256] = { RT };
+#undef V
+
+#undef RT
+
+/*
+ * Round constants
+ */
+MBEDTLS_MAYBE_UNUSED static const uint32_t round_constants[10] =
+{
+ 0x00000001, 0x00000002, 0x00000004, 0x00000008,
+ 0x00000010, 0x00000020, 0x00000040, 0x00000080,
+ 0x0000001B, 0x00000036
+};
+
+#else /* MBEDTLS_AES_ROM_TABLES */
+
+/*
+ * Forward S-box & tables
+ */
+MBEDTLS_MAYBE_UNUSED static unsigned char FSb[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT0[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT1[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT2[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t FT3[256];
+
+/*
+ * Reverse S-box & tables
+ */
+MBEDTLS_MAYBE_UNUSED static unsigned char RSb[256];
+
+MBEDTLS_MAYBE_UNUSED static uint32_t RT0[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t RT1[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t RT2[256];
+MBEDTLS_MAYBE_UNUSED static uint32_t RT3[256];
+
+/*
+ * Round constants
+ */
+MBEDTLS_MAYBE_UNUSED static uint32_t round_constants[10];
+
+/*
+ * Tables generation code
+ */
+#define ROTL8(x) (((x) << 8) & 0xFFFFFFFF) | ((x) >> 24)
+#define XTIME(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1B : 0x00))
+#define MUL(x, y) (((x) && (y)) ? pow[(log[(x)]+log[(y)]) % 255] : 0)
+
+MBEDTLS_MAYBE_UNUSED static int aes_init_done = 0;
+
+MBEDTLS_MAYBE_UNUSED static void aes_gen_tables(void)
+{
+ int i;
+ uint8_t x, y, z;
+ uint8_t pow[256];
+ uint8_t log[256];
+
+ /*
+ * compute pow and log tables over GF(2^8)
+ */
+ for (i = 0, x = 1; i < 256; i++) {
+ pow[i] = x;
+ log[x] = (uint8_t) i;
+ x ^= XTIME(x);
+ }
+
+ /*
+ * calculate the round constants
+ */
+ for (i = 0, x = 1; i < 10; i++) {
+ round_constants[i] = x;
+ x = XTIME(x);
+ }
+
+ /*
+ * generate the forward and reverse S-boxes
+ */
+ FSb[0x00] = 0x63;
+#if defined(MBEDTLS_AES_NEED_REVERSE_TABLES)
+ RSb[0x63] = 0x00;
+#endif
+
+ for (i = 1; i < 256; i++) {
+ x = pow[255 - log[i]];
+
+ y = x; y = (y << 1) | (y >> 7);
+ x ^= y; y = (y << 1) | (y >> 7);
+ x ^= y; y = (y << 1) | (y >> 7);
+ x ^= y; y = (y << 1) | (y >> 7);
+ x ^= y ^ 0x63;
+
+ FSb[i] = x;
+#if defined(MBEDTLS_AES_NEED_REVERSE_TABLES)
+ RSb[x] = (unsigned char) i;
+#endif
+ }
+
+ /*
+ * generate the forward and reverse tables
+ */
+ for (i = 0; i < 256; i++) {
+ x = FSb[i];
+ y = XTIME(x);
+ z = y ^ x;
+
+ FT0[i] = ((uint32_t) y) ^
+ ((uint32_t) x << 8) ^
+ ((uint32_t) x << 16) ^
+ ((uint32_t) z << 24);
+
+#if !defined(MBEDTLS_AES_FEWER_TABLES)
+ FT1[i] = ROTL8(FT0[i]);
+ FT2[i] = ROTL8(FT1[i]);
+ FT3[i] = ROTL8(FT2[i]);
+#endif /* !MBEDTLS_AES_FEWER_TABLES */
+
+#if defined(MBEDTLS_AES_NEED_REVERSE_TABLES)
+ x = RSb[i];
+
+ RT0[i] = ((uint32_t) MUL(0x0E, x)) ^
+ ((uint32_t) MUL(0x09, x) << 8) ^
+ ((uint32_t) MUL(0x0D, x) << 16) ^
+ ((uint32_t) MUL(0x0B, x) << 24);
+
+#if !defined(MBEDTLS_AES_FEWER_TABLES)
+ RT1[i] = ROTL8(RT0[i]);
+ RT2[i] = ROTL8(RT1[i]);
+ RT3[i] = ROTL8(RT2[i]);
+#endif /* !MBEDTLS_AES_FEWER_TABLES */
+#endif /* MBEDTLS_AES_NEED_REVERSE_TABLES */
+ }
+}
+
+#undef ROTL8
+
+#endif /* MBEDTLS_AES_ROM_TABLES */
+
+#if defined(MBEDTLS_AES_FEWER_TABLES)
+
+#define ROTL8(x) ((uint32_t) ((x) << 8) + (uint32_t) ((x) >> 24))
+#define ROTL16(x) ((uint32_t) ((x) << 16) + (uint32_t) ((x) >> 16))
+#define ROTL24(x) ((uint32_t) ((x) << 24) + (uint32_t) ((x) >> 8))
+
+#define AES_RT0(idx) RT0[idx]
+#define AES_RT1(idx) ROTL8(RT0[idx])
+#define AES_RT2(idx) ROTL16(RT0[idx])
+#define AES_RT3(idx) ROTL24(RT0[idx])
+
+#define AES_FT0(idx) FT0[idx]
+#define AES_FT1(idx) ROTL8(FT0[idx])
+#define AES_FT2(idx) ROTL16(FT0[idx])
+#define AES_FT3(idx) ROTL24(FT0[idx])
+
+#else /* MBEDTLS_AES_FEWER_TABLES */
+
+#define AES_RT0(idx) RT0[idx]
+#define AES_RT1(idx) RT1[idx]
+#define AES_RT2(idx) RT2[idx]
+#define AES_RT3(idx) RT3[idx]
+
+#define AES_FT0(idx) FT0[idx]
+#define AES_FT1(idx) FT1[idx]
+#define AES_FT2(idx) FT2[idx]
+#define AES_FT3(idx) FT3[idx]
+
+#endif /* MBEDTLS_AES_FEWER_TABLES */
+
+void mbedtls_aes_init(mbedtls_aes_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_aes_context));
+}
+
+void mbedtls_aes_free(mbedtls_aes_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_aes_context));
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+void mbedtls_aes_xts_init(mbedtls_aes_xts_context *ctx)
+{
+ mbedtls_aes_init(&ctx->crypt);
+ mbedtls_aes_init(&ctx->tweak);
+}
+
+void mbedtls_aes_xts_free(mbedtls_aes_xts_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_aes_free(&ctx->crypt);
+ mbedtls_aes_free(&ctx->tweak);
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+/* Some implementations need the round keys to be aligned.
+ * Return an offset to be added to buf, such that (buf + offset) is
+ * correctly aligned.
+ * Note that the offset is in units of elements of buf, i.e. 32-bit words,
+ * i.e. an offset of 1 means 4 bytes and so on.
+ */
+#if defined(MBEDTLS_AESNI_C) && MBEDTLS_AESNI_HAVE_CODE == 2
+#define MAY_NEED_TO_ALIGN
+#endif
+
+MBEDTLS_MAYBE_UNUSED static unsigned mbedtls_aes_rk_offset(uint32_t *buf)
+{
+#if defined(MAY_NEED_TO_ALIGN)
+ int align_16_bytes = 0;
+
+#if defined(MBEDTLS_AESNI_C) && MBEDTLS_AESNI_HAVE_CODE == 2
+ if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+ align_16_bytes = 1;
+ }
+#endif
+
+ if (align_16_bytes) {
+ /* These implementations needs 16-byte alignment
+ * for the round key array. */
+ unsigned delta = ((uintptr_t) buf & 0x0000000fU) / 4;
+ if (delta == 0) {
+ return 0;
+ } else {
+ return 4 - delta; // 16 bytes = 4 uint32_t
+ }
+ }
+#else /* MAY_NEED_TO_ALIGN */
+ (void) buf;
+#endif /* MAY_NEED_TO_ALIGN */
+
+ return 0;
+}
+
+/*
+ * AES key schedule (encryption)
+ */
+#if !defined(MBEDTLS_AES_SETKEY_ENC_ALT)
+int mbedtls_aes_setkey_enc(mbedtls_aes_context *ctx, const unsigned char *key,
+ unsigned int keybits)
+{
+ uint32_t *RK;
+
+ switch (keybits) {
+ case 128: ctx->nr = 10; break;
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ case 192: ctx->nr = 12; break;
+ case 256: ctx->nr = 14; break;
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+ default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+ }
+
+#if !defined(MBEDTLS_AES_ROM_TABLES)
+ if (aes_init_done == 0) {
+ aes_gen_tables();
+ aes_init_done = 1;
+ }
+#endif
+
+ ctx->rk_offset = mbedtls_aes_rk_offset(ctx->buf);
+ RK = ctx->buf + ctx->rk_offset;
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+ if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+ return mbedtls_aesni_setkey_enc((unsigned char *) RK, key, keybits);
+ }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+ return mbedtls_aesce_setkey_enc((unsigned char *) RK, key, keybits);
+ }
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+ for (unsigned int i = 0; i < (keybits >> 5); i++) {
+ RK[i] = MBEDTLS_GET_UINT32_LE(key, i << 2);
+ }
+
+ switch (ctx->nr) {
+ case 10:
+
+ for (unsigned int i = 0; i < 10; i++, RK += 4) {
+ RK[4] = RK[0] ^ round_constants[i] ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[3])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[3])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[3])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[3])] << 24);
+
+ RK[5] = RK[1] ^ RK[4];
+ RK[6] = RK[2] ^ RK[5];
+ RK[7] = RK[3] ^ RK[6];
+ }
+ break;
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ case 12:
+
+ for (unsigned int i = 0; i < 8; i++, RK += 6) {
+ RK[6] = RK[0] ^ round_constants[i] ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[5])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[5])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[5])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[5])] << 24);
+
+ RK[7] = RK[1] ^ RK[6];
+ RK[8] = RK[2] ^ RK[7];
+ RK[9] = RK[3] ^ RK[8];
+ RK[10] = RK[4] ^ RK[9];
+ RK[11] = RK[5] ^ RK[10];
+ }
+ break;
+
+ case 14:
+
+ for (unsigned int i = 0; i < 7; i++, RK += 8) {
+ RK[8] = RK[0] ^ round_constants[i] ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[7])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[7])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[7])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[7])] << 24);
+
+ RK[9] = RK[1] ^ RK[8];
+ RK[10] = RK[2] ^ RK[9];
+ RK[11] = RK[3] ^ RK[10];
+
+ RK[12] = RK[4] ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(RK[11])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(RK[11])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(RK[11])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(RK[11])] << 24);
+
+ RK[13] = RK[5] ^ RK[12];
+ RK[14] = RK[6] ^ RK[13];
+ RK[15] = RK[7] ^ RK[14];
+ }
+ break;
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+ }
+
+ return 0;
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+}
+#endif /* !MBEDTLS_AES_SETKEY_ENC_ALT */
+
+/*
+ * AES key schedule (decryption)
+ */
+#if !defined(MBEDTLS_AES_SETKEY_DEC_ALT) && !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_aes_setkey_dec(mbedtls_aes_context *ctx, const unsigned char *key,
+ unsigned int keybits)
+{
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+ uint32_t *SK;
+#endif
+ int ret;
+ mbedtls_aes_context cty;
+ uint32_t *RK;
+
+
+ mbedtls_aes_init(&cty);
+
+ ctx->rk_offset = mbedtls_aes_rk_offset(ctx->buf);
+ RK = ctx->buf + ctx->rk_offset;
+
+ /* Also checks keybits */
+ if ((ret = mbedtls_aes_setkey_enc(&cty, key, keybits)) != 0) {
+ goto exit;
+ }
+
+ ctx->nr = cty.nr;
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+ if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+ mbedtls_aesni_inverse_key((unsigned char *) RK,
+ (const unsigned char *) (cty.buf + cty.rk_offset), ctx->nr);
+ goto exit;
+ }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+ mbedtls_aesce_inverse_key(
+ (unsigned char *) RK,
+ (const unsigned char *) (cty.buf + cty.rk_offset),
+ ctx->nr);
+ goto exit;
+ }
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+ SK = cty.buf + cty.rk_offset + cty.nr * 4;
+
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ SK -= 8;
+ for (int i = ctx->nr - 1; i > 0; i--, SK -= 8) {
+ for (int j = 0; j < 4; j++, SK++) {
+ *RK++ = AES_RT0(FSb[MBEDTLS_BYTE_0(*SK)]) ^
+ AES_RT1(FSb[MBEDTLS_BYTE_1(*SK)]) ^
+ AES_RT2(FSb[MBEDTLS_BYTE_2(*SK)]) ^
+ AES_RT3(FSb[MBEDTLS_BYTE_3(*SK)]);
+ }
+ }
+
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+exit:
+ mbedtls_aes_free(&cty);
+
+ return ret;
+}
+#endif /* !MBEDTLS_AES_SETKEY_DEC_ALT && !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+static int mbedtls_aes_xts_decode_keys(const unsigned char *key,
+ unsigned int keybits,
+ const unsigned char **key1,
+ unsigned int *key1bits,
+ const unsigned char **key2,
+ unsigned int *key2bits)
+{
+ const unsigned int half_keybits = keybits / 2;
+ const unsigned int half_keybytes = half_keybits / 8;
+
+ switch (keybits) {
+ case 256: break;
+ case 512: break;
+ default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+ }
+
+ *key1bits = half_keybits;
+ *key2bits = half_keybits;
+ *key1 = &key[0];
+ *key2 = &key[half_keybytes];
+
+ return 0;
+}
+
+int mbedtls_aes_xts_setkey_enc(mbedtls_aes_xts_context *ctx,
+ const unsigned char *key,
+ unsigned int keybits)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const unsigned char *key1, *key2;
+ unsigned int key1bits, key2bits;
+
+ ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
+ &key2, &key2bits);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Set the tweak key. Always set tweak key for the encryption mode. */
+ ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Set crypt key for encryption. */
+ return mbedtls_aes_setkey_enc(&ctx->crypt, key1, key1bits);
+}
+
+int mbedtls_aes_xts_setkey_dec(mbedtls_aes_xts_context *ctx,
+ const unsigned char *key,
+ unsigned int keybits)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const unsigned char *key1, *key2;
+ unsigned int key1bits, key2bits;
+
+ ret = mbedtls_aes_xts_decode_keys(key, keybits, &key1, &key1bits,
+ &key2, &key2bits);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Set the tweak key. Always set tweak key for encryption. */
+ ret = mbedtls_aes_setkey_enc(&ctx->tweak, key2, key2bits);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Set crypt key for decryption. */
+ return mbedtls_aes_setkey_dec(&ctx->crypt, key1, key1bits);
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#define AES_FROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \
+ do \
+ { \
+ (X0) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y0)) ^ \
+ AES_FT1(MBEDTLS_BYTE_1(Y1)) ^ \
+ AES_FT2(MBEDTLS_BYTE_2(Y2)) ^ \
+ AES_FT3(MBEDTLS_BYTE_3(Y3)); \
+ \
+ (X1) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y1)) ^ \
+ AES_FT1(MBEDTLS_BYTE_1(Y2)) ^ \
+ AES_FT2(MBEDTLS_BYTE_2(Y3)) ^ \
+ AES_FT3(MBEDTLS_BYTE_3(Y0)); \
+ \
+ (X2) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y2)) ^ \
+ AES_FT1(MBEDTLS_BYTE_1(Y3)) ^ \
+ AES_FT2(MBEDTLS_BYTE_2(Y0)) ^ \
+ AES_FT3(MBEDTLS_BYTE_3(Y1)); \
+ \
+ (X3) = *RK++ ^ AES_FT0(MBEDTLS_BYTE_0(Y3)) ^ \
+ AES_FT1(MBEDTLS_BYTE_1(Y0)) ^ \
+ AES_FT2(MBEDTLS_BYTE_2(Y1)) ^ \
+ AES_FT3(MBEDTLS_BYTE_3(Y2)); \
+ } while (0)
+
+#define AES_RROUND(X0, X1, X2, X3, Y0, Y1, Y2, Y3) \
+ do \
+ { \
+ (X0) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y0)) ^ \
+ AES_RT1(MBEDTLS_BYTE_1(Y3)) ^ \
+ AES_RT2(MBEDTLS_BYTE_2(Y2)) ^ \
+ AES_RT3(MBEDTLS_BYTE_3(Y1)); \
+ \
+ (X1) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y1)) ^ \
+ AES_RT1(MBEDTLS_BYTE_1(Y0)) ^ \
+ AES_RT2(MBEDTLS_BYTE_2(Y3)) ^ \
+ AES_RT3(MBEDTLS_BYTE_3(Y2)); \
+ \
+ (X2) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y2)) ^ \
+ AES_RT1(MBEDTLS_BYTE_1(Y1)) ^ \
+ AES_RT2(MBEDTLS_BYTE_2(Y0)) ^ \
+ AES_RT3(MBEDTLS_BYTE_3(Y3)); \
+ \
+ (X3) = *RK++ ^ AES_RT0(MBEDTLS_BYTE_0(Y3)) ^ \
+ AES_RT1(MBEDTLS_BYTE_1(Y2)) ^ \
+ AES_RT2(MBEDTLS_BYTE_2(Y1)) ^ \
+ AES_RT3(MBEDTLS_BYTE_3(Y0)); \
+ } while (0)
+
+/*
+ * AES-ECB block encryption
+ */
+#if !defined(MBEDTLS_AES_ENCRYPT_ALT)
+int mbedtls_internal_aes_encrypt(mbedtls_aes_context *ctx,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ int i;
+ uint32_t *RK = ctx->buf + ctx->rk_offset;
+ struct {
+ uint32_t X[4];
+ uint32_t Y[4];
+ } t;
+
+ t.X[0] = MBEDTLS_GET_UINT32_LE(input, 0); t.X[0] ^= *RK++;
+ t.X[1] = MBEDTLS_GET_UINT32_LE(input, 4); t.X[1] ^= *RK++;
+ t.X[2] = MBEDTLS_GET_UINT32_LE(input, 8); t.X[2] ^= *RK++;
+ t.X[3] = MBEDTLS_GET_UINT32_LE(input, 12); t.X[3] ^= *RK++;
+
+ for (i = (ctx->nr >> 1) - 1; i > 0; i--) {
+ AES_FROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+ AES_FROUND(t.X[0], t.X[1], t.X[2], t.X[3], t.Y[0], t.Y[1], t.Y[2], t.Y[3]);
+ }
+
+ AES_FROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+
+ t.X[0] = *RK++ ^ \
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[0])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[1])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[2])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[3])] << 24);
+
+ t.X[1] = *RK++ ^ \
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[1])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[2])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[3])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[0])] << 24);
+
+ t.X[2] = *RK++ ^ \
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[2])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[3])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[0])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[1])] << 24);
+
+ t.X[3] = *RK++ ^ \
+ ((uint32_t) FSb[MBEDTLS_BYTE_0(t.Y[3])]) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_1(t.Y[0])] << 8) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_2(t.Y[1])] << 16) ^
+ ((uint32_t) FSb[MBEDTLS_BYTE_3(t.Y[2])] << 24);
+
+ MBEDTLS_PUT_UINT32_LE(t.X[0], output, 0);
+ MBEDTLS_PUT_UINT32_LE(t.X[1], output, 4);
+ MBEDTLS_PUT_UINT32_LE(t.X[2], output, 8);
+ MBEDTLS_PUT_UINT32_LE(t.X[3], output, 12);
+
+ mbedtls_platform_zeroize(&t, sizeof(t));
+
+ return 0;
+}
+#endif /* !MBEDTLS_AES_ENCRYPT_ALT */
+
+/*
+ * AES-ECB block decryption
+ */
+#if !defined(MBEDTLS_AES_DECRYPT_ALT) && !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_internal_aes_decrypt(mbedtls_aes_context *ctx,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ int i;
+ uint32_t *RK = ctx->buf + ctx->rk_offset;
+ struct {
+ uint32_t X[4];
+ uint32_t Y[4];
+ } t;
+
+ t.X[0] = MBEDTLS_GET_UINT32_LE(input, 0); t.X[0] ^= *RK++;
+ t.X[1] = MBEDTLS_GET_UINT32_LE(input, 4); t.X[1] ^= *RK++;
+ t.X[2] = MBEDTLS_GET_UINT32_LE(input, 8); t.X[2] ^= *RK++;
+ t.X[3] = MBEDTLS_GET_UINT32_LE(input, 12); t.X[3] ^= *RK++;
+
+ for (i = (ctx->nr >> 1) - 1; i > 0; i--) {
+ AES_RROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+ AES_RROUND(t.X[0], t.X[1], t.X[2], t.X[3], t.Y[0], t.Y[1], t.Y[2], t.Y[3]);
+ }
+
+ AES_RROUND(t.Y[0], t.Y[1], t.Y[2], t.Y[3], t.X[0], t.X[1], t.X[2], t.X[3]);
+
+ t.X[0] = *RK++ ^ \
+ ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[0])]) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[3])] << 8) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[2])] << 16) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[1])] << 24);
+
+ t.X[1] = *RK++ ^ \
+ ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[1])]) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[0])] << 8) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[3])] << 16) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[2])] << 24);
+
+ t.X[2] = *RK++ ^ \
+ ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[2])]) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[1])] << 8) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[0])] << 16) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[3])] << 24);
+
+ t.X[3] = *RK++ ^ \
+ ((uint32_t) RSb[MBEDTLS_BYTE_0(t.Y[3])]) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_1(t.Y[2])] << 8) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_2(t.Y[1])] << 16) ^
+ ((uint32_t) RSb[MBEDTLS_BYTE_3(t.Y[0])] << 24);
+
+ MBEDTLS_PUT_UINT32_LE(t.X[0], output, 0);
+ MBEDTLS_PUT_UINT32_LE(t.X[1], output, 4);
+ MBEDTLS_PUT_UINT32_LE(t.X[2], output, 8);
+ MBEDTLS_PUT_UINT32_LE(t.X[3], output, 12);
+
+ mbedtls_platform_zeroize(&t, sizeof(t));
+
+ return 0;
+}
+#endif /* !MBEDTLS_AES_DECRYPT_ALT && !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/*
+ * Our intrinsics-based implementation of AESNI requires the round keys to be
+ * aligned on a 16-byte boundary. We take care of this before creating them,
+ * but the AES context may have moved (this can happen if the library is
+ * called from a language with managed memory), and in later calls it might
+ * have a different alignment with respect to 16-byte memory. So we may need
+ * to realign.
+ */
+#if defined(MAY_NEED_TO_ALIGN)
+MBEDTLS_MAYBE_UNUSED static void aes_maybe_realign(mbedtls_aes_context *ctx)
+{
+ unsigned new_offset = mbedtls_aes_rk_offset(ctx->buf);
+ if (new_offset != ctx->rk_offset) {
+ memmove(ctx->buf + new_offset, // new address
+ ctx->buf + ctx->rk_offset, // current address
+ (ctx->nr + 1) * 16); // number of round keys * bytes per rk
+ ctx->rk_offset = new_offset;
+ }
+}
+#endif /* MAY_NEED_TO_ALIGN */
+/*
+ * AES-ECB block encryption/decryption
+ */
+int mbedtls_aes_crypt_ecb(mbedtls_aes_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+
+#if defined(MAY_NEED_TO_ALIGN)
+ aes_maybe_realign(ctx);
+#endif
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+ if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+ return mbedtls_aesni_crypt_ecb(ctx, mode, input, output);
+ }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+ return mbedtls_aesce_crypt_ecb(ctx, mode, input, output);
+ }
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ return mbedtls_internal_aes_decrypt(ctx, input, output);
+ } else
+#endif
+ {
+ return mbedtls_internal_aes_encrypt(ctx, input, output);
+ }
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+
+/*
+ * AES-CBC buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_cbc(mbedtls_aes_context *ctx,
+ int mode,
+ size_t length,
+ unsigned char iv[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char temp[16];
+
+ if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+
+ /* Nothing to do if length is zero. */
+ if (length == 0) {
+ return 0;
+ }
+
+ if (length % 16) {
+ return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
+ }
+
+ const unsigned char *ivp = iv;
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ while (length > 0) {
+ memcpy(temp, input, 16);
+ ret = mbedtls_aes_crypt_ecb(ctx, mode, input, output);
+ if (ret != 0) {
+ goto exit;
+ }
+ /* Avoid using the NEON implementation of mbedtls_xor. Because of the dependency on
+ * the result for the next block in CBC, and the cost of transferring that data from
+ * NEON registers, NEON is slower on aarch64. */
+ mbedtls_xor_no_simd(output, output, iv, 16);
+
+ memcpy(iv, temp, 16);
+
+ input += 16;
+ output += 16;
+ length -= 16;
+ }
+ } else {
+ while (length > 0) {
+ mbedtls_xor_no_simd(output, input, ivp, 16);
+
+ ret = mbedtls_aes_crypt_ecb(ctx, mode, output, output);
+ if (ret != 0) {
+ goto exit;
+ }
+ ivp = output;
+
+ input += 16;
+ output += 16;
+ length -= 16;
+ }
+ memcpy(iv, ivp, 16);
+ }
+ ret = 0;
+
+exit:
+ return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+
+typedef unsigned char mbedtls_be128[16];
+
+/*
+ * GF(2^128) multiplication function
+ *
+ * This function multiplies a field element by x in the polynomial field
+ * representation. It uses 64-bit word operations to gain speed but compensates
+ * for machine endianness and hence works correctly on both big and little
+ * endian machines.
+ */
+#if defined(MBEDTLS_AESCE_C) || defined(MBEDTLS_AESNI_C)
+MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+#endif
+static inline void mbedtls_gf128mul_x_ble(unsigned char r[16],
+ const unsigned char x[16])
+{
+ uint64_t a, b, ra, rb;
+
+ a = MBEDTLS_GET_UINT64_LE(x, 0);
+ b = MBEDTLS_GET_UINT64_LE(x, 8);
+
+ ra = (a << 1) ^ 0x0087 >> (8 - ((b >> 63) << 3));
+ rb = (a >> 63) | (b << 1);
+
+ MBEDTLS_PUT_UINT64_LE(ra, r, 0);
+ MBEDTLS_PUT_UINT64_LE(rb, r, 8);
+}
+
+/*
+ * AES-XTS buffer encryption/decryption
+ *
+ * Use of MBEDTLS_OPTIMIZE_FOR_PERFORMANCE here and for mbedtls_gf128mul_x_ble()
+ * is a 3x performance improvement for gcc -Os, if we have hardware AES support.
+ */
+#if defined(MBEDTLS_AESCE_C) || defined(MBEDTLS_AESNI_C)
+MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+#endif
+int mbedtls_aes_crypt_xts(mbedtls_aes_xts_context *ctx,
+ int mode,
+ size_t length,
+ const unsigned char data_unit[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t blocks = length / 16;
+ size_t leftover = length % 16;
+ unsigned char tweak[16];
+ unsigned char prev_tweak[16];
+ unsigned char tmp[16];
+
+ if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+
+ /* Data units must be at least 16 bytes long. */
+ if (length < 16) {
+ return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
+ }
+
+ /* NIST SP 800-38E disallows data units larger than 2**20 blocks. */
+ if (length > (1 << 20) * 16) {
+ return MBEDTLS_ERR_AES_INVALID_INPUT_LENGTH;
+ }
+
+ /* Compute the tweak. */
+ ret = mbedtls_aes_crypt_ecb(&ctx->tweak, MBEDTLS_AES_ENCRYPT,
+ data_unit, tweak);
+ if (ret != 0) {
+ return ret;
+ }
+
+ while (blocks--) {
+ if (MBEDTLS_UNLIKELY(leftover && (mode == MBEDTLS_AES_DECRYPT) && blocks == 0)) {
+ /* We are on the last block in a decrypt operation that has
+ * leftover bytes, so we need to use the next tweak for this block,
+ * and this tweak for the leftover bytes. Save the current tweak for
+ * the leftovers and then update the current tweak for use on this,
+ * the last full block. */
+ memcpy(prev_tweak, tweak, sizeof(tweak));
+ mbedtls_gf128mul_x_ble(tweak, tweak);
+ }
+
+ mbedtls_xor(tmp, input, tweak, 16);
+
+ ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
+ if (ret != 0) {
+ return ret;
+ }
+
+ mbedtls_xor(output, tmp, tweak, 16);
+
+ /* Update the tweak for the next block. */
+ mbedtls_gf128mul_x_ble(tweak, tweak);
+
+ output += 16;
+ input += 16;
+ }
+
+ if (leftover) {
+ /* If we are on the leftover bytes in a decrypt operation, we need to
+ * use the previous tweak for these bytes (as saved in prev_tweak). */
+ unsigned char *t = mode == MBEDTLS_AES_DECRYPT ? prev_tweak : tweak;
+
+ /* We are now on the final part of the data unit, which doesn't divide
+ * evenly by 16. It's time for ciphertext stealing. */
+ size_t i;
+ unsigned char *prev_output = output - 16;
+
+ /* Copy ciphertext bytes from the previous block to our output for each
+ * byte of ciphertext we won't steal. */
+ for (i = 0; i < leftover; i++) {
+ output[i] = prev_output[i];
+ }
+
+ /* Copy the remainder of the input for this final round. */
+ mbedtls_xor(tmp, input, t, leftover);
+
+ /* Copy ciphertext bytes from the previous block for input in this
+ * round. */
+ mbedtls_xor(tmp + i, prev_output + i, t + i, 16 - i);
+
+ ret = mbedtls_aes_crypt_ecb(&ctx->crypt, mode, tmp, tmp);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Write the result back to the previous block, overriding the previous
+ * output we copied. */
+ mbedtls_xor(prev_output, tmp, t, 16);
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * AES-CFB128 buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_cfb128(mbedtls_aes_context *ctx,
+ int mode,
+ size_t length,
+ size_t *iv_off,
+ unsigned char iv[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int c;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n;
+
+ if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+
+ n = *iv_off;
+
+ if (n > 15) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ while (length--) {
+ if (n == 0) {
+ ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+
+ c = *input++;
+ *output++ = (unsigned char) (c ^ iv[n]);
+ iv[n] = (unsigned char) c;
+
+ n = (n + 1) & 0x0F;
+ }
+ } else {
+ while (length--) {
+ if (n == 0) {
+ ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+
+ iv[n] = *output++ = (unsigned char) (iv[n] ^ *input++);
+
+ n = (n + 1) & 0x0F;
+ }
+ }
+
+ *iv_off = n;
+ ret = 0;
+
+exit:
+ return ret;
+}
+
+/*
+ * AES-CFB8 buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_cfb8(mbedtls_aes_context *ctx,
+ int mode,
+ size_t length,
+ unsigned char iv[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char c;
+ unsigned char ov[17];
+
+ if (mode != MBEDTLS_AES_ENCRYPT && mode != MBEDTLS_AES_DECRYPT) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+ while (length--) {
+ memcpy(ov, iv, 16);
+ ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ ov[16] = *input;
+ }
+
+ c = *output++ = (unsigned char) (iv[0] ^ *input++);
+
+ if (mode == MBEDTLS_AES_ENCRYPT) {
+ ov[16] = c;
+ }
+
+ memcpy(iv, ov + 1, 16);
+ }
+ ret = 0;
+
+exit:
+ return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+/*
+ * AES-OFB (Output Feedback Mode) buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_ofb(mbedtls_aes_context *ctx,
+ size_t length,
+ size_t *iv_off,
+ unsigned char iv[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = 0;
+ size_t n;
+
+ n = *iv_off;
+
+ if (n > 15) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+
+ while (length--) {
+ if (n == 0) {
+ ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, iv, iv);
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+ *output++ = *input++ ^ iv[n];
+
+ n = (n + 1) & 0x0F;
+ }
+
+ *iv_off = n;
+
+exit:
+ return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * AES-CTR buffer encryption/decryption
+ */
+int mbedtls_aes_crypt_ctr(mbedtls_aes_context *ctx,
+ size_t length,
+ size_t *nc_off,
+ unsigned char nonce_counter[16],
+ unsigned char stream_block[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ size_t offset = *nc_off;
+
+ if (offset > 0x0F) {
+ return MBEDTLS_ERR_AES_BAD_INPUT_DATA;
+ }
+
+ for (size_t i = 0; i < length;) {
+ size_t n = 16;
+ if (offset == 0) {
+ ret = mbedtls_aes_crypt_ecb(ctx, MBEDTLS_AES_ENCRYPT, nonce_counter, stream_block);
+ if (ret != 0) {
+ goto exit;
+ }
+ mbedtls_ctr_increment_counter(nonce_counter);
+ } else {
+ n -= offset;
+ }
+
+ if (n > (length - i)) {
+ n = (length - i);
+ }
+ mbedtls_xor(&output[i], &input[i], &stream_block[offset], n);
+ // offset might be non-zero for the last block, but in that case, we don't use it again
+ offset = 0;
+ i += n;
+ }
+
+ // capture offset for future resumption
+ *nc_off = (*nc_off + length) % 16;
+
+ ret = 0;
+
+exit:
+ return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#endif /* !MBEDTLS_AES_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * AES test vectors from:
+ *
+ * http://csrc.nist.gov/archive/aes/rijndael/rijndael-vals.zip
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static const unsigned char aes_test_ecb_dec[][16] =
+{
+ { 0x44, 0x41, 0x6A, 0xC2, 0xD1, 0xF5, 0x3C, 0x58,
+ 0x33, 0x03, 0x91, 0x7E, 0x6B, 0xE9, 0xEB, 0xE0 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x48, 0xE3, 0x1E, 0x9E, 0x25, 0x67, 0x18, 0xF2,
+ 0x92, 0x29, 0x31, 0x9C, 0x19, 0xF1, 0x5B, 0xA4 },
+ { 0x05, 0x8C, 0xCF, 0xFD, 0xBB, 0xCB, 0x38, 0x2D,
+ 0x1F, 0x6F, 0x56, 0x58, 0x5D, 0x8A, 0x4A, 0xDE }
+#endif
+};
+#endif
+
+static const unsigned char aes_test_ecb_enc[][16] =
+{
+ { 0xC3, 0x4C, 0x05, 0x2C, 0xC0, 0xDA, 0x8D, 0x73,
+ 0x45, 0x1A, 0xFE, 0x5F, 0x03, 0xBE, 0x29, 0x7F },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0xF3, 0xF6, 0x75, 0x2A, 0xE8, 0xD7, 0x83, 0x11,
+ 0x38, 0xF0, 0x41, 0x56, 0x06, 0x31, 0xB1, 0x14 },
+ { 0x8B, 0x79, 0xEE, 0xCC, 0x93, 0xA0, 0xEE, 0x5D,
+ 0xFF, 0x30, 0xB4, 0xEA, 0x21, 0x63, 0x6D, 0xA4 }
+#endif
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const unsigned char aes_test_cbc_dec[][16] =
+{
+ { 0xFA, 0xCA, 0x37, 0xE0, 0xB0, 0xC8, 0x53, 0x73,
+ 0xDF, 0x70, 0x6E, 0x73, 0xF7, 0xC9, 0xAF, 0x86 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x5D, 0xF6, 0x78, 0xDD, 0x17, 0xBA, 0x4E, 0x75,
+ 0xB6, 0x17, 0x68, 0xC6, 0xAD, 0xEF, 0x7C, 0x7B },
+ { 0x48, 0x04, 0xE1, 0x81, 0x8F, 0xE6, 0x29, 0x75,
+ 0x19, 0xA3, 0xE8, 0x8C, 0x57, 0x31, 0x04, 0x13 }
+#endif
+};
+
+static const unsigned char aes_test_cbc_enc[][16] =
+{
+ { 0x8A, 0x05, 0xFC, 0x5E, 0x09, 0x5A, 0xF4, 0x84,
+ 0x8A, 0x08, 0xD3, 0x28, 0xD3, 0x68, 0x8E, 0x3D },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x7B, 0xD9, 0x66, 0xD5, 0x3A, 0xD8, 0xC1, 0xBB,
+ 0x85, 0xD2, 0xAD, 0xFA, 0xE8, 0x7B, 0xB1, 0x04 },
+ { 0xFE, 0x3C, 0x53, 0x65, 0x3E, 0x2F, 0x45, 0xB5,
+ 0x6F, 0xCD, 0x88, 0xB2, 0xCC, 0x89, 0x8F, 0xF0 }
+#endif
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * AES-CFB128 test vectors from:
+ *
+ * http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
+ */
+static const unsigned char aes_test_cfb128_key[][32] =
+{
+ { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
+ 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52,
+ 0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5,
+ 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B },
+ { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
+ 0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
+ 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
+ 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 }
+#endif
+};
+
+static const unsigned char aes_test_cfb128_iv[16] =
+{
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
+};
+
+static const unsigned char aes_test_cfb128_pt[64] =
+{
+ 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
+ 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A,
+ 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C,
+ 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51,
+ 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11,
+ 0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF,
+ 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17,
+ 0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10
+};
+
+static const unsigned char aes_test_cfb128_ct[][64] =
+{
+ { 0x3B, 0x3F, 0xD9, 0x2E, 0xB7, 0x2D, 0xAD, 0x20,
+ 0x33, 0x34, 0x49, 0xF8, 0xE8, 0x3C, 0xFB, 0x4A,
+ 0xC8, 0xA6, 0x45, 0x37, 0xA0, 0xB3, 0xA9, 0x3F,
+ 0xCD, 0xE3, 0xCD, 0xAD, 0x9F, 0x1C, 0xE5, 0x8B,
+ 0x26, 0x75, 0x1F, 0x67, 0xA3, 0xCB, 0xB1, 0x40,
+ 0xB1, 0x80, 0x8C, 0xF1, 0x87, 0xA4, 0xF4, 0xDF,
+ 0xC0, 0x4B, 0x05, 0x35, 0x7C, 0x5D, 0x1C, 0x0E,
+ 0xEA, 0xC4, 0xC6, 0x6F, 0x9F, 0xF7, 0xF2, 0xE6 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0xCD, 0xC8, 0x0D, 0x6F, 0xDD, 0xF1, 0x8C, 0xAB,
+ 0x34, 0xC2, 0x59, 0x09, 0xC9, 0x9A, 0x41, 0x74,
+ 0x67, 0xCE, 0x7F, 0x7F, 0x81, 0x17, 0x36, 0x21,
+ 0x96, 0x1A, 0x2B, 0x70, 0x17, 0x1D, 0x3D, 0x7A,
+ 0x2E, 0x1E, 0x8A, 0x1D, 0xD5, 0x9B, 0x88, 0xB1,
+ 0xC8, 0xE6, 0x0F, 0xED, 0x1E, 0xFA, 0xC4, 0xC9,
+ 0xC0, 0x5F, 0x9F, 0x9C, 0xA9, 0x83, 0x4F, 0xA0,
+ 0x42, 0xAE, 0x8F, 0xBA, 0x58, 0x4B, 0x09, 0xFF },
+ { 0xDC, 0x7E, 0x84, 0xBF, 0xDA, 0x79, 0x16, 0x4B,
+ 0x7E, 0xCD, 0x84, 0x86, 0x98, 0x5D, 0x38, 0x60,
+ 0x39, 0xFF, 0xED, 0x14, 0x3B, 0x28, 0xB1, 0xC8,
+ 0x32, 0x11, 0x3C, 0x63, 0x31, 0xE5, 0x40, 0x7B,
+ 0xDF, 0x10, 0x13, 0x24, 0x15, 0xE5, 0x4B, 0x92,
+ 0xA1, 0x3E, 0xD0, 0xA8, 0x26, 0x7A, 0xE2, 0xF9,
+ 0x75, 0xA3, 0x85, 0x74, 0x1A, 0xB9, 0xCE, 0xF8,
+ 0x20, 0x31, 0x62, 0x3D, 0x55, 0xB1, 0xE4, 0x71 }
+#endif
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+/*
+ * AES-OFB test vectors from:
+ *
+ * https://csrc.nist.gov/publications/detail/sp/800-38a/final
+ */
+static const unsigned char aes_test_ofb_key[][32] =
+{
+ { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
+ 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52,
+ 0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5,
+ 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B },
+ { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
+ 0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
+ 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
+ 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 }
+#endif
+};
+
+static const unsigned char aes_test_ofb_iv[16] =
+{
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F
+};
+
+static const unsigned char aes_test_ofb_pt[64] =
+{
+ 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
+ 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A,
+ 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C,
+ 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51,
+ 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11,
+ 0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF,
+ 0xF6, 0x9F, 0x24, 0x45, 0xDF, 0x4F, 0x9B, 0x17,
+ 0xAD, 0x2B, 0x41, 0x7B, 0xE6, 0x6C, 0x37, 0x10
+};
+
+static const unsigned char aes_test_ofb_ct[][64] =
+{
+ { 0x3B, 0x3F, 0xD9, 0x2E, 0xB7, 0x2D, 0xAD, 0x20,
+ 0x33, 0x34, 0x49, 0xF8, 0xE8, 0x3C, 0xFB, 0x4A,
+ 0x77, 0x89, 0x50, 0x8d, 0x16, 0x91, 0x8f, 0x03,
+ 0xf5, 0x3c, 0x52, 0xda, 0xc5, 0x4e, 0xd8, 0x25,
+ 0x97, 0x40, 0x05, 0x1e, 0x9c, 0x5f, 0xec, 0xf6,
+ 0x43, 0x44, 0xf7, 0xa8, 0x22, 0x60, 0xed, 0xcc,
+ 0x30, 0x4c, 0x65, 0x28, 0xf6, 0x59, 0xc7, 0x78,
+ 0x66, 0xa5, 0x10, 0xd9, 0xc1, 0xd6, 0xae, 0x5e },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0xCD, 0xC8, 0x0D, 0x6F, 0xDD, 0xF1, 0x8C, 0xAB,
+ 0x34, 0xC2, 0x59, 0x09, 0xC9, 0x9A, 0x41, 0x74,
+ 0xfc, 0xc2, 0x8b, 0x8d, 0x4c, 0x63, 0x83, 0x7c,
+ 0x09, 0xe8, 0x17, 0x00, 0xc1, 0x10, 0x04, 0x01,
+ 0x8d, 0x9a, 0x9a, 0xea, 0xc0, 0xf6, 0x59, 0x6f,
+ 0x55, 0x9c, 0x6d, 0x4d, 0xaf, 0x59, 0xa5, 0xf2,
+ 0x6d, 0x9f, 0x20, 0x08, 0x57, 0xca, 0x6c, 0x3e,
+ 0x9c, 0xac, 0x52, 0x4b, 0xd9, 0xac, 0xc9, 0x2a },
+ { 0xDC, 0x7E, 0x84, 0xBF, 0xDA, 0x79, 0x16, 0x4B,
+ 0x7E, 0xCD, 0x84, 0x86, 0x98, 0x5D, 0x38, 0x60,
+ 0x4f, 0xeb, 0xdc, 0x67, 0x40, 0xd2, 0x0b, 0x3a,
+ 0xc8, 0x8f, 0x6a, 0xd8, 0x2a, 0x4f, 0xb0, 0x8d,
+ 0x71, 0xab, 0x47, 0xa0, 0x86, 0xe8, 0x6e, 0xed,
+ 0xf3, 0x9d, 0x1c, 0x5b, 0xba, 0x97, 0xc4, 0x08,
+ 0x01, 0x26, 0x14, 0x1d, 0x67, 0xf3, 0x7b, 0xe8,
+ 0x53, 0x8f, 0x5a, 0x8b, 0xe7, 0x40, 0xe4, 0x84 }
+#endif
+};
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * AES-CTR test vectors from:
+ *
+ * http://www.faqs.org/rfcs/rfc3686.html
+ */
+
+static const unsigned char aes_test_ctr_key[][16] =
+{
+ { 0xAE, 0x68, 0x52, 0xF8, 0x12, 0x10, 0x67, 0xCC,
+ 0x4B, 0xF7, 0xA5, 0x76, 0x55, 0x77, 0xF3, 0x9E },
+ { 0x7E, 0x24, 0x06, 0x78, 0x17, 0xFA, 0xE0, 0xD7,
+ 0x43, 0xD6, 0xCE, 0x1F, 0x32, 0x53, 0x91, 0x63 },
+ { 0x76, 0x91, 0xBE, 0x03, 0x5E, 0x50, 0x20, 0xA8,
+ 0xAC, 0x6E, 0x61, 0x85, 0x29, 0xF9, 0xA0, 0xDC }
+};
+
+static const unsigned char aes_test_ctr_nonce_counter[][16] =
+{
+ { 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
+ { 0x00, 0x6C, 0xB6, 0xDB, 0xC0, 0x54, 0x3B, 0x59,
+ 0xDA, 0x48, 0xD9, 0x0B, 0x00, 0x00, 0x00, 0x01 },
+ { 0x00, 0xE0, 0x01, 0x7B, 0x27, 0x77, 0x7F, 0x3F,
+ 0x4A, 0x17, 0x86, 0xF0, 0x00, 0x00, 0x00, 0x01 }
+};
+
+static const unsigned char aes_test_ctr_pt[][48] =
+{
+ { 0x53, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x62,
+ 0x6C, 0x6F, 0x63, 0x6B, 0x20, 0x6D, 0x73, 0x67 },
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F },
+
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
+ 0x20, 0x21, 0x22, 0x23 }
+};
+
+static const unsigned char aes_test_ctr_ct[][48] =
+{
+ { 0xE4, 0x09, 0x5D, 0x4F, 0xB7, 0xA7, 0xB3, 0x79,
+ 0x2D, 0x61, 0x75, 0xA3, 0x26, 0x13, 0x11, 0xB8 },
+ { 0x51, 0x04, 0xA1, 0x06, 0x16, 0x8A, 0x72, 0xD9,
+ 0x79, 0x0D, 0x41, 0xEE, 0x8E, 0xDA, 0xD3, 0x88,
+ 0xEB, 0x2E, 0x1E, 0xFC, 0x46, 0xDA, 0x57, 0xC8,
+ 0xFC, 0xE6, 0x30, 0xDF, 0x91, 0x41, 0xBE, 0x28 },
+ { 0xC1, 0xCF, 0x48, 0xA8, 0x9F, 0x2F, 0xFD, 0xD9,
+ 0xCF, 0x46, 0x52, 0xE9, 0xEF, 0xDB, 0x72, 0xD7,
+ 0x45, 0x40, 0xA4, 0x2B, 0xDE, 0x6D, 0x78, 0x36,
+ 0xD5, 0x9A, 0x5C, 0xEA, 0xAE, 0xF3, 0x10, 0x53,
+ 0x25, 0xB2, 0x07, 0x2F }
+};
+
+static const int aes_test_ctr_len[3] =
+{ 16, 32, 36 };
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+/*
+ * AES-XTS test vectors from:
+ *
+ * IEEE P1619/D16 Annex B
+ * https://web.archive.org/web/20150629024421/http://grouper.ieee.org/groups/1619/email/pdf00086.pdf
+ * (Archived from original at http://grouper.ieee.org/groups/1619/email/pdf00086.pdf)
+ */
+static const unsigned char aes_test_xts_key[][32] =
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
+ 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 },
+ { 0xff, 0xfe, 0xfd, 0xfc, 0xfb, 0xfa, 0xf9, 0xf8,
+ 0xf7, 0xf6, 0xf5, 0xf4, 0xf3, 0xf2, 0xf1, 0xf0,
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22,
+ 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22, 0x22 },
+};
+
+static const unsigned char aes_test_xts_pt32[][32] =
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+ 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+ 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+ 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44 },
+ { 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+ 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+ 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44,
+ 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44, 0x44 },
+};
+
+static const unsigned char aes_test_xts_ct32[][32] =
+{
+ { 0x91, 0x7c, 0xf6, 0x9e, 0xbd, 0x68, 0xb2, 0xec,
+ 0x9b, 0x9f, 0xe9, 0xa3, 0xea, 0xdd, 0xa6, 0x92,
+ 0xcd, 0x43, 0xd2, 0xf5, 0x95, 0x98, 0xed, 0x85,
+ 0x8c, 0x02, 0xc2, 0x65, 0x2f, 0xbf, 0x92, 0x2e },
+ { 0xc4, 0x54, 0x18, 0x5e, 0x6a, 0x16, 0x93, 0x6e,
+ 0x39, 0x33, 0x40, 0x38, 0xac, 0xef, 0x83, 0x8b,
+ 0xfb, 0x18, 0x6f, 0xff, 0x74, 0x80, 0xad, 0xc4,
+ 0x28, 0x93, 0x82, 0xec, 0xd6, 0xd3, 0x94, 0xf0 },
+ { 0xaf, 0x85, 0x33, 0x6b, 0x59, 0x7a, 0xfc, 0x1a,
+ 0x90, 0x0b, 0x2e, 0xb2, 0x1e, 0xc9, 0x49, 0xd2,
+ 0x92, 0xdf, 0x4c, 0x04, 0x7e, 0x0b, 0x21, 0x53,
+ 0x21, 0x86, 0xa5, 0x97, 0x1a, 0x22, 0x7a, 0x89 },
+};
+
+static const unsigned char aes_test_xts_data_unit[][16] =
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x33, 0x33, 0x33, 0x33, 0x33, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0x33, 0x33, 0x33, 0x33, 0x33, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+};
+
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_aes_self_test(int verbose)
+{
+ int ret = 0, i, j, u, mode;
+ unsigned int keybits;
+ unsigned char key[32];
+ unsigned char buf[64];
+ const unsigned char *aes_tests;
+#if defined(MBEDTLS_CIPHER_MODE_CBC) || defined(MBEDTLS_CIPHER_MODE_CFB) || \
+ defined(MBEDTLS_CIPHER_MODE_OFB)
+ unsigned char iv[16];
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ unsigned char prv[16];
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR) || defined(MBEDTLS_CIPHER_MODE_CFB) || \
+ defined(MBEDTLS_CIPHER_MODE_OFB)
+ size_t offset;
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR) || defined(MBEDTLS_CIPHER_MODE_XTS)
+ int len;
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ unsigned char nonce_counter[16];
+ unsigned char stream_block[16];
+#endif
+ mbedtls_aes_context ctx;
+
+ memset(key, 0, 32);
+ mbedtls_aes_init(&ctx);
+
+ if (verbose != 0) {
+#if defined(MBEDTLS_AES_ALT)
+ mbedtls_printf(" AES note: alternative implementation.\n");
+#else /* MBEDTLS_AES_ALT */
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+#if MBEDTLS_AESNI_HAVE_CODE == 1
+ mbedtls_printf(" AES note: AESNI code present (assembly implementation).\n");
+#elif MBEDTLS_AESNI_HAVE_CODE == 2
+ mbedtls_printf(" AES note: AESNI code present (intrinsics implementation).\n");
+#else
+#error "Unrecognised value for MBEDTLS_AESNI_HAVE_CODE"
+#endif
+ if (mbedtls_aesni_has_support(MBEDTLS_AESNI_AES)) {
+ mbedtls_printf(" AES note: using AESNI.\n");
+ } else
+#endif
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+ mbedtls_printf(" AES note: using AESCE.\n");
+ } else
+#endif
+ {
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+ mbedtls_printf(" AES note: built-in implementation.\n");
+#endif
+ }
+#endif /* MBEDTLS_AES_ALT */
+ }
+
+ /*
+ * ECB mode
+ */
+ {
+ static const int num_tests =
+ sizeof(aes_test_ecb_enc) / sizeof(*aes_test_ecb_enc);
+
+ for (i = 0; i < num_tests << 1; i++) {
+ u = i >> 1;
+ keybits = 128 + u * 64;
+ mode = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-ECB-%3u (%s): ", keybits,
+ (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+ }
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ if (verbose != 0) {
+ mbedtls_printf("skipped\n");
+ }
+ continue;
+ }
+#endif
+
+ memset(buf, 0, 16);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ ret = mbedtls_aes_setkey_dec(&ctx, key, keybits);
+ aes_tests = aes_test_ecb_dec[u];
+ } else
+#endif
+ {
+ ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+ aes_tests = aes_test_ecb_enc[u];
+ }
+
+ /*
+ * AES-192 is an optional feature that may be unavailable when
+ * there is an alternative underlying implementation i.e. when
+ * MBEDTLS_AES_ALT is defined.
+ */
+ if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+ mbedtls_printf("skipped\n");
+ continue;
+ } else if (ret != 0) {
+ goto exit;
+ }
+
+ for (j = 0; j < 10000; j++) {
+ ret = mbedtls_aes_crypt_ecb(&ctx, mode, buf, buf);
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+
+ if (memcmp(buf, aes_tests, 16) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ /*
+ * CBC mode
+ */
+ {
+ static const int num_tests =
+ sizeof(aes_test_cbc_dec) / sizeof(*aes_test_cbc_dec);
+
+ for (i = 0; i < num_tests << 1; i++) {
+ u = i >> 1;
+ keybits = 128 + u * 64;
+ mode = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-CBC-%3u (%s): ", keybits,
+ (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+ }
+
+ memset(iv, 0, 16);
+ memset(prv, 0, 16);
+ memset(buf, 0, 16);
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ ret = mbedtls_aes_setkey_dec(&ctx, key, keybits);
+ aes_tests = aes_test_cbc_dec[u];
+ } else {
+ ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+ aes_tests = aes_test_cbc_enc[u];
+ }
+
+ /*
+ * AES-192 is an optional feature that may be unavailable when
+ * there is an alternative underlying implementation i.e. when
+ * MBEDTLS_AES_ALT is defined.
+ */
+ if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+ mbedtls_printf("skipped\n");
+ continue;
+ } else if (ret != 0) {
+ goto exit;
+ }
+
+ for (j = 0; j < 10000; j++) {
+ if (mode == MBEDTLS_AES_ENCRYPT) {
+ unsigned char tmp[16];
+
+ memcpy(tmp, prv, 16);
+ memcpy(prv, buf, 16);
+ memcpy(buf, tmp, 16);
+ }
+
+ ret = mbedtls_aes_crypt_cbc(&ctx, mode, 16, iv, buf, buf);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ }
+
+ if (memcmp(buf, aes_tests, 16) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ /*
+ * CFB128 mode
+ */
+ {
+ static const int num_tests =
+ sizeof(aes_test_cfb128_key) / sizeof(*aes_test_cfb128_key);
+
+ for (i = 0; i < num_tests << 1; i++) {
+ u = i >> 1;
+ keybits = 128 + u * 64;
+ mode = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-CFB128-%3u (%s): ", keybits,
+ (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+ }
+
+ memcpy(iv, aes_test_cfb128_iv, 16);
+ memcpy(key, aes_test_cfb128_key[u], keybits / 8);
+
+ offset = 0;
+ ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+ /*
+ * AES-192 is an optional feature that may be unavailable when
+ * there is an alternative underlying implementation i.e. when
+ * MBEDTLS_AES_ALT is defined.
+ */
+ if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+ mbedtls_printf("skipped\n");
+ continue;
+ } else if (ret != 0) {
+ goto exit;
+ }
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ memcpy(buf, aes_test_cfb128_ct[u], 64);
+ aes_tests = aes_test_cfb128_pt;
+ } else {
+ memcpy(buf, aes_test_cfb128_pt, 64);
+ aes_tests = aes_test_cfb128_ct[u];
+ }
+
+ ret = mbedtls_aes_crypt_cfb128(&ctx, mode, 64, &offset, iv, buf, buf);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, aes_tests, 64) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ /*
+ * OFB mode
+ */
+ {
+ static const int num_tests =
+ sizeof(aes_test_ofb_key) / sizeof(*aes_test_ofb_key);
+
+ for (i = 0; i < num_tests << 1; i++) {
+ u = i >> 1;
+ keybits = 128 + u * 64;
+ mode = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-OFB-%3u (%s): ", keybits,
+ (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+ }
+
+ memcpy(iv, aes_test_ofb_iv, 16);
+ memcpy(key, aes_test_ofb_key[u], keybits / 8);
+
+ offset = 0;
+ ret = mbedtls_aes_setkey_enc(&ctx, key, keybits);
+ /*
+ * AES-192 is an optional feature that may be unavailable when
+ * there is an alternative underlying implementation i.e. when
+ * MBEDTLS_AES_ALT is defined.
+ */
+ if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && keybits == 192) {
+ mbedtls_printf("skipped\n");
+ continue;
+ } else if (ret != 0) {
+ goto exit;
+ }
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ memcpy(buf, aes_test_ofb_ct[u], 64);
+ aes_tests = aes_test_ofb_pt;
+ } else {
+ memcpy(buf, aes_test_ofb_pt, 64);
+ aes_tests = aes_test_ofb_ct[u];
+ }
+
+ ret = mbedtls_aes_crypt_ofb(&ctx, 64, &offset, iv, buf, buf);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, aes_tests, 64) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+ }
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ /*
+ * CTR mode
+ */
+ {
+ static const int num_tests =
+ sizeof(aes_test_ctr_key) / sizeof(*aes_test_ctr_key);
+
+ for (i = 0; i < num_tests << 1; i++) {
+ u = i >> 1;
+ mode = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-CTR-128 (%s): ",
+ (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+ }
+
+ memcpy(nonce_counter, aes_test_ctr_nonce_counter[u], 16);
+ memcpy(key, aes_test_ctr_key[u], 16);
+
+ offset = 0;
+ if ((ret = mbedtls_aes_setkey_enc(&ctx, key, 128)) != 0) {
+ goto exit;
+ }
+
+ len = aes_test_ctr_len[u];
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ memcpy(buf, aes_test_ctr_ct[u], len);
+ aes_tests = aes_test_ctr_pt[u];
+ } else {
+ memcpy(buf, aes_test_ctr_pt[u], len);
+ aes_tests = aes_test_ctr_ct[u];
+ }
+
+ ret = mbedtls_aes_crypt_ctr(&ctx, len, &offset, nonce_counter,
+ stream_block, buf, buf);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, aes_tests, len) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ /*
+ * XTS mode
+ */
+ {
+ static const int num_tests =
+ sizeof(aes_test_xts_key) / sizeof(*aes_test_xts_key);
+ mbedtls_aes_xts_context ctx_xts;
+
+ mbedtls_aes_xts_init(&ctx_xts);
+
+ for (i = 0; i < num_tests << 1; i++) {
+ const unsigned char *data_unit;
+ u = i >> 1;
+ mode = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-XTS-128 (%s): ",
+ (mode == MBEDTLS_AES_DECRYPT) ? "dec" : "enc");
+ }
+
+ memset(key, 0, sizeof(key));
+ memcpy(key, aes_test_xts_key[u], 32);
+ data_unit = aes_test_xts_data_unit[u];
+
+ len = sizeof(*aes_test_xts_ct32);
+
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ ret = mbedtls_aes_xts_setkey_dec(&ctx_xts, key, 256);
+ if (ret != 0) {
+ goto exit;
+ }
+ memcpy(buf, aes_test_xts_ct32[u], len);
+ aes_tests = aes_test_xts_pt32[u];
+ } else {
+ ret = mbedtls_aes_xts_setkey_enc(&ctx_xts, key, 256);
+ if (ret != 0) {
+ goto exit;
+ }
+ memcpy(buf, aes_test_xts_pt32[u], len);
+ aes_tests = aes_test_xts_ct32[u];
+ }
+
+
+ ret = mbedtls_aes_crypt_xts(&ctx_xts, mode, len, data_unit,
+ buf, buf);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, aes_tests, len) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ mbedtls_aes_xts_free(&ctx_xts);
+ }
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+ ret = 0;
+
+exit:
+ if (ret != 0 && verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ mbedtls_aes_free(&ctx);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_AES_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesce.c b/tf-psa-crypto/drivers/builtin/src/aesce.c
new file mode 100644
index 0000000..6a9e0a1
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesce.c
@@ -0,0 +1,618 @@
+/*
+ * Armv8-A Cryptographic Extension support functions for Aarch64
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#if defined(__clang__) && (__clang_major__ >= 4)
+
+/* Ideally, we would simply use MBEDTLS_ARCH_IS_ARMV8_A in the following #if,
+ * but that is defined by build_info.h, and we need this block to happen first. */
+#if defined(__ARM_ARCH)
+#if __ARM_ARCH >= 8
+#define MBEDTLS_AESCE_ARCH_IS_ARMV8_A
+#endif
+#endif
+
+#if defined(MBEDTLS_AESCE_ARCH_IS_ARMV8_A) && !defined(__ARM_FEATURE_CRYPTO)
+/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
+ *
+ * The intrinsic declaration are guarded by predefined ACLE macros in clang:
+ * these are normally only enabled by the -march option on the command line.
+ * By defining the macros ourselves we gain access to those declarations without
+ * requiring -march on the command line.
+ *
+ * `arm_neon.h` is included by common.h, so we put these defines
+ * at the top of this file, before any includes.
+ */
+#define __ARM_FEATURE_CRYPTO 1
+/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
+ *
+ * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
+ * for older compilers.
+ */
+#define __ARM_FEATURE_AES 1
+#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
+#endif
+
+#endif /* defined(__clang__) && (__clang_major__ >= 4) */
+
+#include <string.h>
+#include "common.h"
+
+#if defined(MBEDTLS_AESCE_C)
+
+#include "aesce.h"
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+
+/* Compiler version checks. */
+#if defined(__clang__)
+# if defined(MBEDTLS_ARCH_IS_ARM32) && (__clang_major__ < 11)
+# error "Minimum version of Clang for MBEDTLS_AESCE_C on 32-bit Arm or Thumb is 11.0."
+# elif defined(MBEDTLS_ARCH_IS_ARM64) && (__clang_major__ < 4)
+# error "Minimum version of Clang for MBEDTLS_AESCE_C on aarch64 is 4.0."
+# endif
+#elif defined(__GNUC__)
+# if __GNUC__ < 6
+# error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
+# endif
+#elif defined(_MSC_VER)
+/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
+ * please update this and document of `MBEDTLS_AESCE_C` in
+ * `mbedtls_config.h`. */
+# if _MSC_VER < 1929
+# error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
+# endif
+#elif defined(__ARMCC_VERSION)
+# if defined(MBEDTLS_ARCH_IS_ARM32) && (__ARMCC_VERSION < 6200002)
+/* TODO: We haven't verified armclang for 32-bit Arm/Thumb prior to 6.20.
+ * If someone verified that, please update this and document of
+ * `MBEDTLS_AESCE_C` in `mbedtls_config.h`. */
+# error "Minimum version of armclang for MBEDTLS_AESCE_C on 32-bit Arm is 6.20."
+# elif defined(MBEDTLS_ARCH_IS_ARM64) && (__ARMCC_VERSION < 6060000)
+# error "Minimum version of armclang for MBEDTLS_AESCE_C on aarch64 is 6.6."
+# endif
+#endif
+
+#if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
+ defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
+# if defined(__ARMCOMPILER_VERSION)
+# if __ARMCOMPILER_VERSION <= 6090000
+# error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C"
+# else
+# pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# endif
+# elif defined(__clang__)
+# pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# elif defined(__GNUC__)
+# pragma GCC push_options
+# pragma GCC target ("+crypto")
+# define MBEDTLS_POP_TARGET_PRAGMA
+# elif defined(_MSC_VER)
+# error "Required feature(__ARM_FEATURE_AES) is not enabled."
+# endif
+#endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
+ MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
+
+#if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+
+#include <sys/auxv.h>
+#if !defined(HWCAP_NEON)
+#define HWCAP_NEON (1 << 12)
+#endif
+#if !defined(HWCAP2_AES)
+#define HWCAP2_AES (1 << 0)
+#endif
+#if !defined(HWCAP_AES)
+#define HWCAP_AES (1 << 3)
+#endif
+#if !defined(HWCAP_ASIMD)
+#define HWCAP_ASIMD (1 << 1)
+#endif
+
+signed char mbedtls_aesce_has_support_result = -1;
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+/*
+ * AES instruction support detection routine
+ */
+int mbedtls_aesce_has_support_impl(void)
+{
+ /* To avoid many calls to getauxval, cache the result. This is
+ * thread-safe, because we store the result in a char so cannot
+ * be vulnerable to non-atomic updates.
+ * It is possible that we could end up setting result more than
+ * once, but that is harmless.
+ */
+ if (mbedtls_aesce_has_support_result == -1) {
+#if defined(MBEDTLS_ARCH_IS_ARM32)
+ unsigned long auxval = getauxval(AT_HWCAP);
+ unsigned long auxval2 = getauxval(AT_HWCAP2);
+ if (((auxval & HWCAP_NEON) == HWCAP_NEON) &&
+ ((auxval2 & HWCAP2_AES) == HWCAP2_AES)) {
+ mbedtls_aesce_has_support_result = 1;
+ } else {
+ mbedtls_aesce_has_support_result = 0;
+ }
+#else
+ unsigned long auxval = getauxval(AT_HWCAP);
+ if ((auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
+ (HWCAP_ASIMD | HWCAP_AES)) {
+ mbedtls_aesce_has_support_result = 1;
+ } else {
+ mbedtls_aesce_has_support_result = 0;
+ }
+#endif
+ }
+ return mbedtls_aesce_has_support_result;
+}
+#endif
+
+#endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
+
+/* Single round of AESCE encryption */
+#define AESCE_ENCRYPT_ROUND \
+ block = vaeseq_u8(block, vld1q_u8(keys)); \
+ block = vaesmcq_u8(block); \
+ keys += 16
+/* Two rounds of AESCE encryption */
+#define AESCE_ENCRYPT_ROUND_X2 AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
+
+MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+static uint8x16_t aesce_encrypt_block(uint8x16_t block,
+ unsigned char *keys,
+ int rounds)
+{
+ /* 10, 12 or 14 rounds. Unroll loop. */
+ if (rounds == 10) {
+ goto rounds_10;
+ }
+ if (rounds == 12) {
+ goto rounds_12;
+ }
+ AESCE_ENCRYPT_ROUND_X2;
+rounds_12:
+ AESCE_ENCRYPT_ROUND_X2;
+rounds_10:
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND;
+
+ /* AES AddRoundKey for the previous round.
+ * SubBytes, ShiftRows for the final round. */
+ block = vaeseq_u8(block, vld1q_u8(keys));
+ keys += 16;
+
+ /* Final round: no MixColumns */
+
+ /* Final AddRoundKey */
+ block = veorq_u8(block, vld1q_u8(keys));
+
+ return block;
+}
+
+/* Single round of AESCE decryption
+ *
+ * AES AddRoundKey, SubBytes, ShiftRows
+ *
+ * block = vaesdq_u8(block, vld1q_u8(keys));
+ *
+ * AES inverse MixColumns for the next round.
+ *
+ * This means that we switch the order of the inverse AddRoundKey and
+ * inverse MixColumns operations. We have to do this as AddRoundKey is
+ * done in an atomic instruction together with the inverses of SubBytes
+ * and ShiftRows.
+ *
+ * It works because MixColumns is a linear operation over GF(2^8) and
+ * AddRoundKey is an exclusive or, which is equivalent to addition over
+ * GF(2^8). (The inverse of MixColumns needs to be applied to the
+ * affected round keys separately which has been done when the
+ * decryption round keys were calculated.)
+ *
+ * block = vaesimcq_u8(block);
+ */
+#define AESCE_DECRYPT_ROUND \
+ block = vaesdq_u8(block, vld1q_u8(keys)); \
+ block = vaesimcq_u8(block); \
+ keys += 16
+/* Two rounds of AESCE decryption */
+#define AESCE_DECRYPT_ROUND_X2 AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static uint8x16_t aesce_decrypt_block(uint8x16_t block,
+ unsigned char *keys,
+ int rounds)
+{
+ /* 10, 12 or 14 rounds. Unroll loop. */
+ if (rounds == 10) {
+ goto rounds_10;
+ }
+ if (rounds == 12) {
+ goto rounds_12;
+ }
+ AESCE_DECRYPT_ROUND_X2;
+rounds_12:
+ AESCE_DECRYPT_ROUND_X2;
+rounds_10:
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND;
+
+ /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
+ * last full round. */
+ block = vaesdq_u8(block, vld1q_u8(keys));
+ keys += 16;
+
+ /* Inverse AddRoundKey for inverting the initial round key addition. */
+ block = veorq_u8(block, vld1q_u8(keys));
+
+ return block;
+}
+#endif
+
+/*
+ * AES-ECB block en(de)cryption
+ */
+int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ uint8x16_t block = vld1q_u8(&input[0]);
+ unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ block = aesce_decrypt_block(block, keys, ctx->nr);
+ } else
+#else
+ (void) mode;
+#endif
+ {
+ block = aesce_encrypt_block(block, keys, ctx->nr);
+ }
+ vst1q_u8(&output[0], block);
+
+ return 0;
+}
+
+/*
+ * Compute decryption round keys from encryption round keys
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+void mbedtls_aesce_inverse_key(unsigned char *invkey,
+ const unsigned char *fwdkey,
+ int nr)
+{
+ int i, j;
+ j = nr;
+ vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
+ for (i = 1, j--; j > 0; i++, j--) {
+ vst1q_u8(invkey + i * 16,
+ vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
+ }
+ vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
+
+}
+#endif
+
+static inline uint32_t aes_rot_word(uint32_t word)
+{
+ return (word << (32 - 8)) | (word >> 8);
+}
+
+static inline uint32_t aes_sub_word(uint32_t in)
+{
+ uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
+ uint8x16_t zero = vdupq_n_u8(0);
+
+ /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
+ * the correct result as ShiftRows doesn't change the first row. */
+ v = vaeseq_u8(zero, v);
+ return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
+}
+
+/*
+ * Key expansion function
+ */
+static void aesce_setkey_enc(unsigned char *rk,
+ const unsigned char *key,
+ const size_t key_bit_length)
+{
+ static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
+ 0x20, 0x40, 0x80, 0x1b, 0x36 };
+ /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
+ * - Section 5, Nr = Nk + 6
+ * - Section 5.2, the length of round keys is Nb*(Nr+1)
+ */
+ const size_t key_len_in_words = key_bit_length / 32; /* Nk */
+ const size_t round_key_len_in_words = 4; /* Nb */
+ const size_t rounds_needed = key_len_in_words + 6; /* Nr */
+ const size_t round_keys_len_in_words =
+ round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
+ const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
+
+ memcpy(rk, key, key_len_in_words * 4);
+
+ for (uint32_t *rki = (uint32_t *) rk;
+ rki + key_len_in_words < rko_end;
+ rki += key_len_in_words) {
+
+ size_t iteration = (size_t) (rki - (uint32_t *) rk) / key_len_in_words;
+ uint32_t *rko;
+ rko = rki + key_len_in_words;
+ rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
+ rko[0] ^= rcon[iteration] ^ rki[0];
+ rko[1] = rko[0] ^ rki[1];
+ rko[2] = rko[1] ^ rki[2];
+ rko[3] = rko[2] ^ rki[3];
+ if (rko + key_len_in_words > rko_end) {
+ /* Do not write overflow words.*/
+ continue;
+ }
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ switch (key_bit_length) {
+ case 128:
+ break;
+ case 192:
+ rko[4] = rko[3] ^ rki[4];
+ rko[5] = rko[4] ^ rki[5];
+ break;
+ case 256:
+ rko[4] = aes_sub_word(rko[3]) ^ rki[4];
+ rko[5] = rko[4] ^ rki[5];
+ rko[6] = rko[5] ^ rki[6];
+ rko[7] = rko[6] ^ rki[7];
+ break;
+ }
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+ }
+}
+
+/*
+ * Key expansion, wrapper
+ */
+int mbedtls_aesce_setkey_enc(unsigned char *rk,
+ const unsigned char *key,
+ size_t bits)
+{
+ switch (bits) {
+ case 128:
+ case 192:
+ case 256:
+ aesce_setkey_enc(rk, key, bits);
+ break;
+ default:
+ return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_GCM_C)
+
+#if defined(MBEDTLS_ARCH_IS_ARM32)
+
+#if defined(__clang__)
+/* On clang for A32/T32, work around some missing intrinsics and types which are listed in
+ * [ACLE](https://arm-software.github.io/acle/neon_intrinsics/advsimd.html#polynomial-1)
+ * These are only required for GCM.
+ */
+#define vreinterpretq_u64_p64(a) ((uint64x2_t) a)
+
+typedef uint8x16_t poly128_t;
+
+static inline poly128_t vmull_p64(poly64_t a, poly64_t b)
+{
+ poly128_t r;
+ asm ("vmull.p64 %[r], %[a], %[b]" : [r] "=w" (r) : [a] "w" (a), [b] "w" (b) :);
+ return r;
+}
+
+/* This is set to cause some more missing intrinsics to be defined below */
+#define COMMON_MISSING_INTRINSICS
+
+static inline poly128_t vmull_high_p64(poly64x2_t a, poly64x2_t b)
+{
+ return vmull_p64((poly64_t) (vget_high_u64((uint64x2_t) a)),
+ (poly64_t) (vget_high_u64((uint64x2_t) b)));
+}
+
+#endif /* defined(__clang__) */
+
+static inline uint8x16_t vrbitq_u8(uint8x16_t x)
+{
+ /* There is no vrbitq_u8 instruction in A32/T32, so provide
+ * an equivalent non-Neon implementation. Reverse bit order in each
+ * byte with 4x rbit, rev. */
+ asm ("ldm %[p], { r2-r5 } \n\t"
+ "rbit r2, r2 \n\t"
+ "rev r2, r2 \n\t"
+ "rbit r3, r3 \n\t"
+ "rev r3, r3 \n\t"
+ "rbit r4, r4 \n\t"
+ "rev r4, r4 \n\t"
+ "rbit r5, r5 \n\t"
+ "rev r5, r5 \n\t"
+ "stm %[p], { r2-r5 } \n\t"
+ :
+ /* Output: 16 bytes of memory pointed to by &x */
+ "+m" (*(uint8_t(*)[16]) &x)
+ :
+ [p] "r" (&x)
+ :
+ "r2", "r3", "r4", "r5"
+ );
+ return x;
+}
+
+#endif /* defined(MBEDTLS_ARCH_IS_ARM32) */
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && __GNUC__ == 5
+/* Some intrinsics are not available for GCC 5.X. */
+#define COMMON_MISSING_INTRINSICS
+#endif /* MBEDTLS_COMPILER_IS_GCC && __GNUC__ == 5 */
+
+
+#if defined(COMMON_MISSING_INTRINSICS)
+
+/* Missing intrinsics common to both GCC 5, and Clang on 32-bit */
+
+#define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
+#define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
+
+static inline poly64x1_t vget_low_p64(poly64x2_t a)
+{
+ uint64x1_t r = vget_low_u64(vreinterpretq_u64_p64(a));
+ return (poly64x1_t) r;
+
+}
+
+#endif /* COMMON_MISSING_INTRINSICS */
+
+/* vmull_p64/vmull_high_p64 wrappers.
+ *
+ * Older compilers miss some intrinsic functions for `poly*_t`. We use
+ * uint8x16_t and uint8x16x3_t as input/output parameters.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC)
+/* GCC reports incompatible type error without cast. GCC think poly64_t and
+ * poly64x1_t are different, that is different with MSVC and Clang. */
+#define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
+#else
+/* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
+ * error with/without cast. And I think poly64_t and poly64x1_t are same, no
+ * cast for clang also. */
+#define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
+#endif /* MBEDTLS_COMPILER_IS_GCC */
+
+static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
+{
+
+ return vreinterpretq_u8_p128(
+ MBEDTLS_VMULL_P64(
+ (poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)),
+ (poly64_t) vget_low_p64(vreinterpretq_p64_u8(b))
+ ));
+}
+
+static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
+{
+ return vreinterpretq_u8_p128(
+ vmull_high_p64(vreinterpretq_p64_u8(a),
+ vreinterpretq_p64_u8(b)));
+}
+
+/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
+ * `x^128 + x^7 + x^2 + x + 1`.
+ *
+ * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
+ * multiplies to generate a 128b.
+ *
+ * `poly_mult_128` executes polynomial multiplication and outputs 256b that
+ * represented by 3 128b due to code size optimization.
+ *
+ * Output layout:
+ * | | | |
+ * |------------|-------------|-------------|
+ * | ret.val[0] | h3:h2:00:00 | high 128b |
+ * | ret.val[1] | :m2:m1:00 | middle 128b |
+ * | ret.val[2] | : :l1:l0 | low 128b |
+ */
+static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
+{
+ uint8x16x3_t ret;
+ uint8x16_t h, m, l; /* retval high/middle/low */
+ uint8x16_t c, d, e;
+
+ h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
+ l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
+ c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
+ d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
+ e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
+ m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
+
+ ret.val[0] = h;
+ ret.val[1] = m;
+ ret.val[2] = l;
+ return ret;
+}
+
+/*
+ * Modulo reduction.
+ *
+ * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
+ *
+ * Section 4.3
+ *
+ * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
+ * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
+ * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
+ * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
+ * simply multiply the higher part of the operand by r(z) and add it to l(z). If
+ * the result is still larger than 128 bits, we reduce again.
+ */
+static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
+{
+ uint8x16_t const ZERO = vdupq_n_u8(0);
+
+ uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
+#if defined(__GNUC__)
+ /* use 'asm' as an optimisation barrier to prevent loading MODULO from
+ * memory. It is for GNUC compatible compilers.
+ */
+ asm volatile ("" : "+w" (r));
+#endif
+ uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
+ uint8x16_t h, m, l; /* input high/middle/low 128b */
+ uint8x16_t c, d, e, f, g, n, o;
+ h = input.val[0]; /* h3:h2:00:00 */
+ m = input.val[1]; /* :m2:m1:00 */
+ l = input.val[2]; /* : :l1:l0 */
+ c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
+ d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
+ e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
+ f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
+ g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
+ n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
+ o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
+ return veorq_u8(o, g); /* = o1:o0 + g1:00 */
+}
+
+/*
+ * GCM multiplication: c = a times b in GF(2^128)
+ */
+void mbedtls_aesce_gcm_mult(unsigned char c[16],
+ const unsigned char a[16],
+ const unsigned char b[16])
+{
+ uint8x16_t va, vb, vc;
+ va = vrbitq_u8(vld1q_u8(&a[0]));
+ vb = vrbitq_u8(vld1q_u8(&b[0]));
+ vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
+ vst1q_u8(&c[0], vc);
+}
+
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+#endif /* MBEDTLS_AESCE_HAVE_CODE */
+
+#endif /* MBEDTLS_AESCE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesce.h b/tf-psa-crypto/drivers/builtin/src/aesce.h
new file mode 100644
index 0000000..a14d085
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesce.h
@@ -0,0 +1,136 @@
+/**
+ * \file aesce.h
+ *
+ * \brief Support hardware AES acceleration on Armv8-A processors with
+ * the Armv8-A Cryptographic Extension.
+ *
+ * \warning These functions are only for internal use by other library
+ * functions; you must not call them directly.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_AESCE_H
+#define MBEDTLS_AESCE_H
+
+#include "mbedtls/build_info.h"
+#include "common.h"
+
+#include "mbedtls/aes.h"
+
+
+#if defined(MBEDTLS_AESCE_C) \
+ && defined(MBEDTLS_ARCH_IS_ARMV8_A) && defined(MBEDTLS_HAVE_NEON_INTRINSICS) \
+ && (defined(MBEDTLS_COMPILER_IS_GCC) || defined(__clang__) || defined(MSC_VER))
+
+/* MBEDTLS_AESCE_HAVE_CODE is defined if we have a suitable target platform, and a
+ * potentially suitable compiler (compiler version & flags are not checked when defining
+ * this). */
+#define MBEDTLS_AESCE_HAVE_CODE
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+
+extern signed char mbedtls_aesce_has_support_result;
+
+/**
+ * \brief Internal function to detect the crypto extension in CPUs.
+ *
+ * \return 1 if CPU has support for the feature, 0 otherwise
+ */
+int mbedtls_aesce_has_support_impl(void);
+
+#define MBEDTLS_AESCE_HAS_SUPPORT() (mbedtls_aesce_has_support_result == -1 ? \
+ mbedtls_aesce_has_support_impl() : \
+ mbedtls_aesce_has_support_result)
+
+#else /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
+
+/* If we are not on Linux, we can't detect support so assume that it's supported.
+ * Similarly, assume support if MBEDTLS_AES_USE_HARDWARE_ONLY is set.
+ */
+#define MBEDTLS_AESCE_HAS_SUPPORT() 1
+
+#endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
+
+/**
+ * \brief Internal AES-ECB block encryption and decryption
+ *
+ * \warning This assumes that the context specifies either 10, 12 or 14
+ * rounds and will behave incorrectly if this is not the case.
+ *
+ * \param ctx AES context
+ * \param mode MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT
+ * \param input 16-byte input block
+ * \param output 16-byte output block
+ *
+ * \return 0 on success (cannot fail)
+ */
+int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16]);
+
+/**
+ * \brief Internal GCM multiplication: c = a * b in GF(2^128)
+ *
+ * \note This function is only for internal use by other library
+ * functions; you must not call it directly.
+ *
+ * \param c Result
+ * \param a First operand
+ * \param b Second operand
+ *
+ * \note Both operands and result are bit strings interpreted as
+ * elements of GF(2^128) as per the GCM spec.
+ */
+void mbedtls_aesce_gcm_mult(unsigned char c[16],
+ const unsigned char a[16],
+ const unsigned char b[16]);
+
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+/**
+ * \brief Internal round key inversion. This function computes
+ * decryption round keys from the encryption round keys.
+ *
+ * \param invkey Round keys for the equivalent inverse cipher
+ * \param fwdkey Original round keys (for encryption)
+ * \param nr Number of rounds (that is, number of round keys minus one)
+ */
+void mbedtls_aesce_inverse_key(unsigned char *invkey,
+ const unsigned char *fwdkey,
+ int nr);
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/**
+ * \brief Internal key expansion for encryption
+ *
+ * \param rk Destination buffer where the round keys are written
+ * \param key Encryption key
+ * \param bits Key size in bits (must be 128, 192 or 256)
+ *
+ * \return 0 if successful, or MBEDTLS_ERR_AES_INVALID_KEY_LENGTH
+ */
+int mbedtls_aesce_setkey_enc(unsigned char *rk,
+ const unsigned char *key,
+ size_t bits);
+
+#ifdef __cplusplus
+}
+#endif
+
+#else
+
+#if defined(MBEDTLS_AES_USE_HARDWARE_ONLY) && defined(MBEDTLS_ARCH_IS_ARMV8_A)
+#error "AES hardware acceleration not supported on this platform / compiler"
+#endif
+
+#endif /* MBEDTLS_AESCE_C && MBEDTLS_ARCH_IS_ARMV8_A && MBEDTLS_HAVE_NEON_INTRINSICS &&
+ (MBEDTLS_COMPILER_IS_GCC || __clang__ || MSC_VER) */
+
+#endif /* MBEDTLS_AESCE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesni.c b/tf-psa-crypto/drivers/builtin/src/aesni.c
new file mode 100644
index 0000000..8e5bd55
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesni.c
@@ -0,0 +1,835 @@
+/*
+ * AES-NI support functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * [AES-WP] https://www.intel.com/content/www/us/en/developer/articles/tool/intel-advanced-encryption-standard-aes-instructions-set.html
+ * [CLMUL-WP] https://www.intel.com/content/www/us/en/develop/download/intel-carry-less-multiplication-instruction-and-its-usage-for-computing-the-gcm-mode.html
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_AESNI_C)
+
+#include "aesni.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+
+#if MBEDTLS_AESNI_HAVE_CODE == 2
+#if defined(__GNUC__)
+#include <cpuid.h>
+#elif defined(_MSC_VER)
+#include <intrin.h>
+#else
+#error "`__cpuid` required by MBEDTLS_AESNI_C is not supported by the compiler"
+#endif
+#include <immintrin.h>
+#endif
+
+#if defined(MBEDTLS_ARCH_IS_X86)
+#if defined(MBEDTLS_COMPILER_IS_GCC)
+#pragma GCC push_options
+#pragma GCC target ("pclmul,sse2,aes")
+#define MBEDTLS_POP_TARGET_PRAGMA
+#elif defined(__clang__) && (__clang_major__ >= 5)
+#pragma clang attribute push (__attribute__((target("pclmul,sse2,aes"))), apply_to=function)
+#define MBEDTLS_POP_TARGET_PRAGMA
+#endif
+#endif
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+/*
+ * AES-NI support detection routine
+ */
+int mbedtls_aesni_has_support(unsigned int what)
+{
+ static int done = 0;
+ static unsigned int c = 0;
+
+ if (!done) {
+#if MBEDTLS_AESNI_HAVE_CODE == 2
+ static int info[4] = { 0, 0, 0, 0 };
+#if defined(_MSC_VER)
+ __cpuid(info, 1);
+#else
+ __cpuid(1, info[0], info[1], info[2], info[3]);
+#endif
+ c = info[2];
+#else /* AESNI using asm */
+ asm ("movl $1, %%eax \n\t"
+ "cpuid \n\t"
+ : "=c" (c)
+ :
+ : "eax", "ebx", "edx");
+#endif /* MBEDTLS_AESNI_HAVE_CODE */
+ done = 1;
+ }
+
+ return (c & what) != 0;
+}
+#endif /* !MBEDTLS_AES_USE_HARDWARE_ONLY */
+
+#if MBEDTLS_AESNI_HAVE_CODE == 2
+
+/*
+ * AES-NI AES-ECB block en(de)cryption
+ */
+int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ const __m128i *rk = (const __m128i *) (ctx->buf + ctx->rk_offset);
+ unsigned nr = ctx->nr; // Number of remaining rounds
+
+ // Load round key 0
+ __m128i state;
+ memcpy(&state, input, 16);
+ state = _mm_xor_si128(state, rk[0]); // state ^= *rk;
+ ++rk;
+ --nr;
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ while (nr != 0) {
+ state = _mm_aesdec_si128(state, *rk);
+ ++rk;
+ --nr;
+ }
+ state = _mm_aesdeclast_si128(state, *rk);
+ } else
+#else
+ (void) mode;
+#endif
+ {
+ while (nr != 0) {
+ state = _mm_aesenc_si128(state, *rk);
+ ++rk;
+ --nr;
+ }
+ state = _mm_aesenclast_si128(state, *rk);
+ }
+
+ memcpy(output, &state, 16);
+ return 0;
+}
+
+/*
+ * GCM multiplication: c = a times b in GF(2^128)
+ * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
+ */
+
+static void gcm_clmul(const __m128i aa, const __m128i bb,
+ __m128i *cc, __m128i *dd)
+{
+ /*
+ * Caryless multiplication dd:cc = aa * bb
+ * using [CLMUL-WP] algorithm 1 (p. 12).
+ */
+ *cc = _mm_clmulepi64_si128(aa, bb, 0x00); // a0*b0 = c1:c0
+ *dd = _mm_clmulepi64_si128(aa, bb, 0x11); // a1*b1 = d1:d0
+ __m128i ee = _mm_clmulepi64_si128(aa, bb, 0x10); // a0*b1 = e1:e0
+ __m128i ff = _mm_clmulepi64_si128(aa, bb, 0x01); // a1*b0 = f1:f0
+ ff = _mm_xor_si128(ff, ee); // e1+f1:e0+f0
+ ee = ff; // e1+f1:e0+f0
+ ff = _mm_srli_si128(ff, 8); // 0:e1+f1
+ ee = _mm_slli_si128(ee, 8); // e0+f0:0
+ *dd = _mm_xor_si128(*dd, ff); // d1:d0+e1+f1
+ *cc = _mm_xor_si128(*cc, ee); // c1+e0+f0:c0
+}
+
+static void gcm_shift(__m128i *cc, __m128i *dd)
+{
+ /* [CMUCL-WP] Algorithm 5 Step 1: shift cc:dd one bit to the left,
+ * taking advantage of [CLMUL-WP] eq 27 (p. 18). */
+ // // *cc = r1:r0
+ // // *dd = r3:r2
+ __m128i cc_lo = _mm_slli_epi64(*cc, 1); // r1<<1:r0<<1
+ __m128i dd_lo = _mm_slli_epi64(*dd, 1); // r3<<1:r2<<1
+ __m128i cc_hi = _mm_srli_epi64(*cc, 63); // r1>>63:r0>>63
+ __m128i dd_hi = _mm_srli_epi64(*dd, 63); // r3>>63:r2>>63
+ __m128i xmm5 = _mm_srli_si128(cc_hi, 8); // 0:r1>>63
+ cc_hi = _mm_slli_si128(cc_hi, 8); // r0>>63:0
+ dd_hi = _mm_slli_si128(dd_hi, 8); // 0:r1>>63
+
+ *cc = _mm_or_si128(cc_lo, cc_hi); // r1<<1|r0>>63:r0<<1
+ *dd = _mm_or_si128(_mm_or_si128(dd_lo, dd_hi), xmm5); // r3<<1|r2>>62:r2<<1|r1>>63
+}
+
+static __m128i gcm_reduce(__m128i xx)
+{
+ // // xx = x1:x0
+ /* [CLMUL-WP] Algorithm 5 Step 2 */
+ __m128i aa = _mm_slli_epi64(xx, 63); // x1<<63:x0<<63 = stuff:a
+ __m128i bb = _mm_slli_epi64(xx, 62); // x1<<62:x0<<62 = stuff:b
+ __m128i cc = _mm_slli_epi64(xx, 57); // x1<<57:x0<<57 = stuff:c
+ __m128i dd = _mm_slli_si128(_mm_xor_si128(_mm_xor_si128(aa, bb), cc), 8); // a+b+c:0
+ return _mm_xor_si128(dd, xx); // x1+a+b+c:x0 = d:x0
+}
+
+static __m128i gcm_mix(__m128i dx)
+{
+ /* [CLMUL-WP] Algorithm 5 Steps 3 and 4 */
+ __m128i ee = _mm_srli_epi64(dx, 1); // e1:x0>>1 = e1:e0'
+ __m128i ff = _mm_srli_epi64(dx, 2); // f1:x0>>2 = f1:f0'
+ __m128i gg = _mm_srli_epi64(dx, 7); // g1:x0>>7 = g1:g0'
+
+ // e0'+f0'+g0' is almost e0+f0+g0, except for some missing
+ // bits carried from d. Now get those bits back in.
+ __m128i eh = _mm_slli_epi64(dx, 63); // d<<63:stuff
+ __m128i fh = _mm_slli_epi64(dx, 62); // d<<62:stuff
+ __m128i gh = _mm_slli_epi64(dx, 57); // d<<57:stuff
+ __m128i hh = _mm_srli_si128(_mm_xor_si128(_mm_xor_si128(eh, fh), gh), 8); // 0:missing bits of d
+
+ return _mm_xor_si128(_mm_xor_si128(_mm_xor_si128(_mm_xor_si128(ee, ff), gg), hh), dx);
+}
+
+void mbedtls_aesni_gcm_mult(unsigned char c[16],
+ const unsigned char a[16],
+ const unsigned char b[16])
+{
+ __m128i aa = { 0 }, bb = { 0 }, cc, dd;
+
+ /* The inputs are in big-endian order, so byte-reverse them */
+ for (size_t i = 0; i < 16; i++) {
+ ((uint8_t *) &aa)[i] = a[15 - i];
+ ((uint8_t *) &bb)[i] = b[15 - i];
+ }
+
+ gcm_clmul(aa, bb, &cc, &dd);
+ gcm_shift(&cc, &dd);
+ /*
+ * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
+ * using [CLMUL-WP] algorithm 5 (p. 18).
+ * Currently dd:cc holds x3:x2:x1:x0 (already shifted).
+ */
+ __m128i dx = gcm_reduce(cc);
+ __m128i xh = gcm_mix(dx);
+ cc = _mm_xor_si128(xh, dd); // x3+h1:x2+h0
+
+ /* Now byte-reverse the outputs */
+ for (size_t i = 0; i < 16; i++) {
+ c[i] = ((uint8_t *) &cc)[15 - i];
+ }
+
+ return;
+}
+
+/*
+ * Compute decryption round keys from encryption round keys
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+void mbedtls_aesni_inverse_key(unsigned char *invkey,
+ const unsigned char *fwdkey, int nr)
+{
+ __m128i *ik = (__m128i *) invkey;
+ const __m128i *fk = (const __m128i *) fwdkey + nr;
+
+ *ik = *fk;
+ for (--fk, ++ik; fk > (const __m128i *) fwdkey; --fk, ++ik) {
+ *ik = _mm_aesimc_si128(*fk);
+ }
+ *ik = *fk;
+}
+#endif
+
+/*
+ * Key expansion, 128-bit case
+ */
+static __m128i aesni_set_rk_128(__m128i state, __m128i xword)
+{
+ /*
+ * Finish generating the next round key.
+ *
+ * On entry state is r3:r2:r1:r0 and xword is X:stuff:stuff:stuff
+ * with X = rot( sub( r3 ) ) ^ RCON (obtained with AESKEYGENASSIST).
+ *
+ * On exit, xword is r7:r6:r5:r4
+ * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
+ * and this is returned, to be written to the round key buffer.
+ */
+ xword = _mm_shuffle_epi32(xword, 0xff); // X:X:X:X
+ xword = _mm_xor_si128(xword, state); // X+r3:X+r2:X+r1:r4
+ state = _mm_slli_si128(state, 4); // r2:r1:r0:0
+ xword = _mm_xor_si128(xword, state); // X+r3+r2:X+r2+r1:r5:r4
+ state = _mm_slli_si128(state, 4); // r1:r0:0:0
+ xword = _mm_xor_si128(xword, state); // X+r3+r2+r1:r6:r5:r4
+ state = _mm_slli_si128(state, 4); // r0:0:0:0
+ state = _mm_xor_si128(xword, state); // r7:r6:r5:r4
+ return state;
+}
+
+static void aesni_setkey_enc_128(unsigned char *rk_bytes,
+ const unsigned char *key)
+{
+ __m128i *rk = (__m128i *) rk_bytes;
+
+ memcpy(&rk[0], key, 16);
+ rk[1] = aesni_set_rk_128(rk[0], _mm_aeskeygenassist_si128(rk[0], 0x01));
+ rk[2] = aesni_set_rk_128(rk[1], _mm_aeskeygenassist_si128(rk[1], 0x02));
+ rk[3] = aesni_set_rk_128(rk[2], _mm_aeskeygenassist_si128(rk[2], 0x04));
+ rk[4] = aesni_set_rk_128(rk[3], _mm_aeskeygenassist_si128(rk[3], 0x08));
+ rk[5] = aesni_set_rk_128(rk[4], _mm_aeskeygenassist_si128(rk[4], 0x10));
+ rk[6] = aesni_set_rk_128(rk[5], _mm_aeskeygenassist_si128(rk[5], 0x20));
+ rk[7] = aesni_set_rk_128(rk[6], _mm_aeskeygenassist_si128(rk[6], 0x40));
+ rk[8] = aesni_set_rk_128(rk[7], _mm_aeskeygenassist_si128(rk[7], 0x80));
+ rk[9] = aesni_set_rk_128(rk[8], _mm_aeskeygenassist_si128(rk[8], 0x1B));
+ rk[10] = aesni_set_rk_128(rk[9], _mm_aeskeygenassist_si128(rk[9], 0x36));
+}
+
+/*
+ * Key expansion, 192-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_set_rk_192(__m128i *state0, __m128i *state1, __m128i xword,
+ unsigned char *rk)
+{
+ /*
+ * Finish generating the next 6 quarter-keys.
+ *
+ * On entry state0 is r3:r2:r1:r0, state1 is stuff:stuff:r5:r4
+ * and xword is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON
+ * (obtained with AESKEYGENASSIST).
+ *
+ * On exit, state0 is r9:r8:r7:r6 and state1 is stuff:stuff:r11:r10
+ * and those are written to the round key buffer.
+ */
+ xword = _mm_shuffle_epi32(xword, 0x55); // X:X:X:X
+ xword = _mm_xor_si128(xword, *state0); // X+r3:X+r2:X+r1:X+r0
+ *state0 = _mm_slli_si128(*state0, 4); // r2:r1:r0:0
+ xword = _mm_xor_si128(xword, *state0); // X+r3+r2:X+r2+r1:X+r1+r0:X+r0
+ *state0 = _mm_slli_si128(*state0, 4); // r1:r0:0:0
+ xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1:X+r2+r1+r0:X+r1+r0:X+r0
+ *state0 = _mm_slli_si128(*state0, 4); // r0:0:0:0
+ xword = _mm_xor_si128(xword, *state0); // X+r3+r2+r1+r0:X+r2+r1+r0:X+r1+r0:X+r0
+ *state0 = xword; // = r9:r8:r7:r6
+
+ xword = _mm_shuffle_epi32(xword, 0xff); // r9:r9:r9:r9
+ xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5:r9+r4
+ *state1 = _mm_slli_si128(*state1, 4); // stuff:stuff:r4:0
+ xword = _mm_xor_si128(xword, *state1); // stuff:stuff:r9+r5+r4:r9+r4
+ *state1 = xword; // = stuff:stuff:r11:r10
+
+ /* Store state0 and the low half of state1 into rk, which is conceptually
+ * an array of 24-byte elements. Since 24 is not a multiple of 16,
+ * rk is not necessarily aligned so just `*rk = *state0` doesn't work. */
+ memcpy(rk, state0, 16);
+ memcpy(rk + 16, state1, 8);
+}
+
+static void aesni_setkey_enc_192(unsigned char *rk,
+ const unsigned char *key)
+{
+ /* First round: use original key */
+ memcpy(rk, key, 24);
+ /* aes.c guarantees that rk is aligned on a 16-byte boundary. */
+ __m128i state0 = ((__m128i *) rk)[0];
+ __m128i state1 = _mm_loadl_epi64(((__m128i *) rk) + 1);
+
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x01), rk + 24 * 1);
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x02), rk + 24 * 2);
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x04), rk + 24 * 3);
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x08), rk + 24 * 4);
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x10), rk + 24 * 5);
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x20), rk + 24 * 6);
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x40), rk + 24 * 7);
+ aesni_set_rk_192(&state0, &state1, _mm_aeskeygenassist_si128(state1, 0x80), rk + 24 * 8);
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+/*
+ * Key expansion, 256-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_set_rk_256(__m128i state0, __m128i state1, __m128i xword,
+ __m128i *rk0, __m128i *rk1)
+{
+ /*
+ * Finish generating the next two round keys.
+ *
+ * On entry state0 is r3:r2:r1:r0, state1 is r7:r6:r5:r4 and
+ * xword is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
+ * (obtained with AESKEYGENASSIST).
+ *
+ * On exit, *rk0 is r11:r10:r9:r8 and *rk1 is r15:r14:r13:r12
+ */
+ xword = _mm_shuffle_epi32(xword, 0xff);
+ xword = _mm_xor_si128(xword, state0);
+ state0 = _mm_slli_si128(state0, 4);
+ xword = _mm_xor_si128(xword, state0);
+ state0 = _mm_slli_si128(state0, 4);
+ xword = _mm_xor_si128(xword, state0);
+ state0 = _mm_slli_si128(state0, 4);
+ state0 = _mm_xor_si128(state0, xword);
+ *rk0 = state0;
+
+ /* Set xword to stuff:Y:stuff:stuff with Y = subword( r11 )
+ * and proceed to generate next round key from there */
+ xword = _mm_aeskeygenassist_si128(state0, 0x00);
+ xword = _mm_shuffle_epi32(xword, 0xaa);
+ xword = _mm_xor_si128(xword, state1);
+ state1 = _mm_slli_si128(state1, 4);
+ xword = _mm_xor_si128(xword, state1);
+ state1 = _mm_slli_si128(state1, 4);
+ xword = _mm_xor_si128(xword, state1);
+ state1 = _mm_slli_si128(state1, 4);
+ state1 = _mm_xor_si128(state1, xword);
+ *rk1 = state1;
+}
+
+static void aesni_setkey_enc_256(unsigned char *rk_bytes,
+ const unsigned char *key)
+{
+ __m128i *rk = (__m128i *) rk_bytes;
+
+ memcpy(&rk[0], key, 16);
+ memcpy(&rk[1], key + 16, 16);
+
+ /*
+ * Main "loop" - Generating one more key than necessary,
+ * see definition of mbedtls_aes_context.buf
+ */
+ aesni_set_rk_256(rk[0], rk[1], _mm_aeskeygenassist_si128(rk[1], 0x01), &rk[2], &rk[3]);
+ aesni_set_rk_256(rk[2], rk[3], _mm_aeskeygenassist_si128(rk[3], 0x02), &rk[4], &rk[5]);
+ aesni_set_rk_256(rk[4], rk[5], _mm_aeskeygenassist_si128(rk[5], 0x04), &rk[6], &rk[7]);
+ aesni_set_rk_256(rk[6], rk[7], _mm_aeskeygenassist_si128(rk[7], 0x08), &rk[8], &rk[9]);
+ aesni_set_rk_256(rk[8], rk[9], _mm_aeskeygenassist_si128(rk[9], 0x10), &rk[10], &rk[11]);
+ aesni_set_rk_256(rk[10], rk[11], _mm_aeskeygenassist_si128(rk[11], 0x20), &rk[12], &rk[13]);
+ aesni_set_rk_256(rk[12], rk[13], _mm_aeskeygenassist_si128(rk[13], 0x40), &rk[14], &rk[15]);
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+#else /* MBEDTLS_AESNI_HAVE_CODE == 1 */
+
+#if defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+#warning \
+ "MBEDTLS_AESNI_C is known to cause spurious error reports with some memory sanitizers as they do not understand the assembly code."
+#endif
+#endif
+
+/*
+ * Binutils needs to be at least 2.19 to support AES-NI instructions.
+ * Unfortunately, a lot of users have a lower version now (2014-04).
+ * Emit bytecode directly in order to support "old" version of gas.
+ *
+ * Opcodes from the Intel architecture reference manual, vol. 3.
+ * We always use registers, so we don't need prefixes for memory operands.
+ * Operand macros are in gas order (src, dst) as opposed to Intel order
+ * (dst, src) in order to blend better into the surrounding assembly code.
+ */
+#define AESDEC(regs) ".byte 0x66,0x0F,0x38,0xDE," regs "\n\t"
+#define AESDECLAST(regs) ".byte 0x66,0x0F,0x38,0xDF," regs "\n\t"
+#define AESENC(regs) ".byte 0x66,0x0F,0x38,0xDC," regs "\n\t"
+#define AESENCLAST(regs) ".byte 0x66,0x0F,0x38,0xDD," regs "\n\t"
+#define AESIMC(regs) ".byte 0x66,0x0F,0x38,0xDB," regs "\n\t"
+#define AESKEYGENA(regs, imm) ".byte 0x66,0x0F,0x3A,0xDF," regs "," imm "\n\t"
+#define PCLMULQDQ(regs, imm) ".byte 0x66,0x0F,0x3A,0x44," regs "," imm "\n\t"
+
+#define xmm0_xmm0 "0xC0"
+#define xmm0_xmm1 "0xC8"
+#define xmm0_xmm2 "0xD0"
+#define xmm0_xmm3 "0xD8"
+#define xmm0_xmm4 "0xE0"
+#define xmm1_xmm0 "0xC1"
+#define xmm1_xmm2 "0xD1"
+
+/*
+ * AES-NI AES-ECB block en(de)cryption
+ */
+int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ asm ("movdqu (%3), %%xmm0 \n\t" // load input
+ "movdqu (%1), %%xmm1 \n\t" // load round key 0
+ "pxor %%xmm1, %%xmm0 \n\t" // round 0
+ "add $16, %1 \n\t" // point to next round key
+ "subl $1, %0 \n\t" // normal rounds = nr - 1
+ "test %2, %2 \n\t" // mode?
+ "jz 2f \n\t" // 0 = decrypt
+
+ "1: \n\t" // encryption loop
+ "movdqu (%1), %%xmm1 \n\t" // load round key
+ AESENC(xmm1_xmm0) // do round
+ "add $16, %1 \n\t" // point to next round key
+ "subl $1, %0 \n\t" // loop
+ "jnz 1b \n\t"
+ "movdqu (%1), %%xmm1 \n\t" // load round key
+ AESENCLAST(xmm1_xmm0) // last round
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ "jmp 3f \n\t"
+
+ "2: \n\t" // decryption loop
+ "movdqu (%1), %%xmm1 \n\t"
+ AESDEC(xmm1_xmm0) // do round
+ "add $16, %1 \n\t"
+ "subl $1, %0 \n\t"
+ "jnz 2b \n\t"
+ "movdqu (%1), %%xmm1 \n\t" // load round key
+ AESDECLAST(xmm1_xmm0) // last round
+#endif
+
+ "3: \n\t"
+ "movdqu %%xmm0, (%4) \n\t" // export output
+ :
+ : "r" (ctx->nr), "r" (ctx->buf + ctx->rk_offset), "r" (mode), "r" (input), "r" (output)
+ : "memory", "cc", "xmm0", "xmm1");
+
+
+ return 0;
+}
+
+/*
+ * GCM multiplication: c = a times b in GF(2^128)
+ * Based on [CLMUL-WP] algorithms 1 (with equation 27) and 5.
+ */
+void mbedtls_aesni_gcm_mult(unsigned char c[16],
+ const unsigned char a[16],
+ const unsigned char b[16])
+{
+ unsigned char aa[16], bb[16], cc[16];
+ size_t i;
+
+ /* The inputs are in big-endian order, so byte-reverse them */
+ for (i = 0; i < 16; i++) {
+ aa[i] = a[15 - i];
+ bb[i] = b[15 - i];
+ }
+
+ asm ("movdqu (%0), %%xmm0 \n\t" // a1:a0
+ "movdqu (%1), %%xmm1 \n\t" // b1:b0
+
+ /*
+ * Caryless multiplication xmm2:xmm1 = xmm0 * xmm1
+ * using [CLMUL-WP] algorithm 1 (p. 12).
+ */
+ "movdqa %%xmm1, %%xmm2 \n\t" // copy of b1:b0
+ "movdqa %%xmm1, %%xmm3 \n\t" // same
+ "movdqa %%xmm1, %%xmm4 \n\t" // same
+ PCLMULQDQ(xmm0_xmm1, "0x00") // a0*b0 = c1:c0
+ PCLMULQDQ(xmm0_xmm2, "0x11") // a1*b1 = d1:d0
+ PCLMULQDQ(xmm0_xmm3, "0x10") // a0*b1 = e1:e0
+ PCLMULQDQ(xmm0_xmm4, "0x01") // a1*b0 = f1:f0
+ "pxor %%xmm3, %%xmm4 \n\t" // e1+f1:e0+f0
+ "movdqa %%xmm4, %%xmm3 \n\t" // same
+ "psrldq $8, %%xmm4 \n\t" // 0:e1+f1
+ "pslldq $8, %%xmm3 \n\t" // e0+f0:0
+ "pxor %%xmm4, %%xmm2 \n\t" // d1:d0+e1+f1
+ "pxor %%xmm3, %%xmm1 \n\t" // c1+e0+f1:c0
+
+ /*
+ * Now shift the result one bit to the left,
+ * taking advantage of [CLMUL-WP] eq 27 (p. 18)
+ */
+ "movdqa %%xmm1, %%xmm3 \n\t" // r1:r0
+ "movdqa %%xmm2, %%xmm4 \n\t" // r3:r2
+ "psllq $1, %%xmm1 \n\t" // r1<<1:r0<<1
+ "psllq $1, %%xmm2 \n\t" // r3<<1:r2<<1
+ "psrlq $63, %%xmm3 \n\t" // r1>>63:r0>>63
+ "psrlq $63, %%xmm4 \n\t" // r3>>63:r2>>63
+ "movdqa %%xmm3, %%xmm5 \n\t" // r1>>63:r0>>63
+ "pslldq $8, %%xmm3 \n\t" // r0>>63:0
+ "pslldq $8, %%xmm4 \n\t" // r2>>63:0
+ "psrldq $8, %%xmm5 \n\t" // 0:r1>>63
+ "por %%xmm3, %%xmm1 \n\t" // r1<<1|r0>>63:r0<<1
+ "por %%xmm4, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1
+ "por %%xmm5, %%xmm2 \n\t" // r3<<1|r2>>62:r2<<1|r1>>63
+
+ /*
+ * Now reduce modulo the GCM polynomial x^128 + x^7 + x^2 + x + 1
+ * using [CLMUL-WP] algorithm 5 (p. 18).
+ * Currently xmm2:xmm1 holds x3:x2:x1:x0 (already shifted).
+ */
+ /* Step 2 (1) */
+ "movdqa %%xmm1, %%xmm3 \n\t" // x1:x0
+ "movdqa %%xmm1, %%xmm4 \n\t" // same
+ "movdqa %%xmm1, %%xmm5 \n\t" // same
+ "psllq $63, %%xmm3 \n\t" // x1<<63:x0<<63 = stuff:a
+ "psllq $62, %%xmm4 \n\t" // x1<<62:x0<<62 = stuff:b
+ "psllq $57, %%xmm5 \n\t" // x1<<57:x0<<57 = stuff:c
+
+ /* Step 2 (2) */
+ "pxor %%xmm4, %%xmm3 \n\t" // stuff:a+b
+ "pxor %%xmm5, %%xmm3 \n\t" // stuff:a+b+c
+ "pslldq $8, %%xmm3 \n\t" // a+b+c:0
+ "pxor %%xmm3, %%xmm1 \n\t" // x1+a+b+c:x0 = d:x0
+
+ /* Steps 3 and 4 */
+ "movdqa %%xmm1,%%xmm0 \n\t" // d:x0
+ "movdqa %%xmm1,%%xmm4 \n\t" // same
+ "movdqa %%xmm1,%%xmm5 \n\t" // same
+ "psrlq $1, %%xmm0 \n\t" // e1:x0>>1 = e1:e0'
+ "psrlq $2, %%xmm4 \n\t" // f1:x0>>2 = f1:f0'
+ "psrlq $7, %%xmm5 \n\t" // g1:x0>>7 = g1:g0'
+ "pxor %%xmm4, %%xmm0 \n\t" // e1+f1:e0'+f0'
+ "pxor %%xmm5, %%xmm0 \n\t" // e1+f1+g1:e0'+f0'+g0'
+ // e0'+f0'+g0' is almost e0+f0+g0, ex\tcept for some missing
+ // bits carried from d. Now get those\t bits back in.
+ "movdqa %%xmm1,%%xmm3 \n\t" // d:x0
+ "movdqa %%xmm1,%%xmm4 \n\t" // same
+ "movdqa %%xmm1,%%xmm5 \n\t" // same
+ "psllq $63, %%xmm3 \n\t" // d<<63:stuff
+ "psllq $62, %%xmm4 \n\t" // d<<62:stuff
+ "psllq $57, %%xmm5 \n\t" // d<<57:stuff
+ "pxor %%xmm4, %%xmm3 \n\t" // d<<63+d<<62:stuff
+ "pxor %%xmm5, %%xmm3 \n\t" // missing bits of d:stuff
+ "psrldq $8, %%xmm3 \n\t" // 0:missing bits of d
+ "pxor %%xmm3, %%xmm0 \n\t" // e1+f1+g1:e0+f0+g0
+ "pxor %%xmm1, %%xmm0 \n\t" // h1:h0
+ "pxor %%xmm2, %%xmm0 \n\t" // x3+h1:x2+h0
+
+ "movdqu %%xmm0, (%2) \n\t" // done
+ :
+ : "r" (aa), "r" (bb), "r" (cc)
+ : "memory", "cc", "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5");
+
+ /* Now byte-reverse the outputs */
+ for (i = 0; i < 16; i++) {
+ c[i] = cc[15 - i];
+ }
+
+ return;
+}
+
+/*
+ * Compute decryption round keys from encryption round keys
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+void mbedtls_aesni_inverse_key(unsigned char *invkey,
+ const unsigned char *fwdkey, int nr)
+{
+ unsigned char *ik = invkey;
+ const unsigned char *fk = fwdkey + 16 * nr;
+
+ memcpy(ik, fk, 16);
+
+ for (fk -= 16, ik += 16; fk > fwdkey; fk -= 16, ik += 16) {
+ asm ("movdqu (%0), %%xmm0 \n\t"
+ AESIMC(xmm0_xmm0)
+ "movdqu %%xmm0, (%1) \n\t"
+ :
+ : "r" (fk), "r" (ik)
+ : "memory", "xmm0");
+ }
+
+ memcpy(ik, fk, 16);
+}
+#endif
+
+/*
+ * Key expansion, 128-bit case
+ */
+static void aesni_setkey_enc_128(unsigned char *rk,
+ const unsigned char *key)
+{
+ asm ("movdqu (%1), %%xmm0 \n\t" // copy the original key
+ "movdqu %%xmm0, (%0) \n\t" // as round key 0
+ "jmp 2f \n\t" // skip auxiliary routine
+
+ /*
+ * Finish generating the next round key.
+ *
+ * On entry xmm0 is r3:r2:r1:r0 and xmm1 is X:stuff:stuff:stuff
+ * with X = rot( sub( r3 ) ) ^ RCON.
+ *
+ * On exit, xmm0 is r7:r6:r5:r4
+ * with r4 = X + r0, r5 = r4 + r1, r6 = r5 + r2, r7 = r6 + r3
+ * and those are written to the round key buffer.
+ */
+ "1: \n\t"
+ "pshufd $0xff, %%xmm1, %%xmm1 \n\t" // X:X:X:X
+ "pxor %%xmm0, %%xmm1 \n\t" // X+r3:X+r2:X+r1:r4
+ "pslldq $4, %%xmm0 \n\t" // r2:r1:r0:0
+ "pxor %%xmm0, %%xmm1 \n\t" // X+r3+r2:X+r2+r1:r5:r4
+ "pslldq $4, %%xmm0 \n\t" // etc
+ "pxor %%xmm0, %%xmm1 \n\t"
+ "pslldq $4, %%xmm0 \n\t"
+ "pxor %%xmm1, %%xmm0 \n\t" // update xmm0 for next time!
+ "add $16, %0 \n\t" // point to next round key
+ "movdqu %%xmm0, (%0) \n\t" // write it
+ "ret \n\t"
+
+ /* Main "loop" */
+ "2: \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x01") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x02") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x04") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x08") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x10") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x20") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x40") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x80") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x1B") "call 1b \n\t"
+ AESKEYGENA(xmm0_xmm1, "0x36") "call 1b \n\t"
+ :
+ : "r" (rk), "r" (key)
+ : "memory", "cc", "0");
+}
+
+/*
+ * Key expansion, 192-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_setkey_enc_192(unsigned char *rk,
+ const unsigned char *key)
+{
+ asm ("movdqu (%1), %%xmm0 \n\t" // copy original round key
+ "movdqu %%xmm0, (%0) \n\t"
+ "add $16, %0 \n\t"
+ "movq 16(%1), %%xmm1 \n\t"
+ "movq %%xmm1, (%0) \n\t"
+ "add $8, %0 \n\t"
+ "jmp 2f \n\t" // skip auxiliary routine
+
+ /*
+ * Finish generating the next 6 quarter-keys.
+ *
+ * On entry xmm0 is r3:r2:r1:r0, xmm1 is stuff:stuff:r5:r4
+ * and xmm2 is stuff:stuff:X:stuff with X = rot( sub( r3 ) ) ^ RCON.
+ *
+ * On exit, xmm0 is r9:r8:r7:r6 and xmm1 is stuff:stuff:r11:r10
+ * and those are written to the round key buffer.
+ */
+ "1: \n\t"
+ "pshufd $0x55, %%xmm2, %%xmm2 \n\t" // X:X:X:X
+ "pxor %%xmm0, %%xmm2 \n\t" // X+r3:X+r2:X+r1:r4
+ "pslldq $4, %%xmm0 \n\t" // etc
+ "pxor %%xmm0, %%xmm2 \n\t"
+ "pslldq $4, %%xmm0 \n\t"
+ "pxor %%xmm0, %%xmm2 \n\t"
+ "pslldq $4, %%xmm0 \n\t"
+ "pxor %%xmm2, %%xmm0 \n\t" // update xmm0 = r9:r8:r7:r6
+ "movdqu %%xmm0, (%0) \n\t"
+ "add $16, %0 \n\t"
+ "pshufd $0xff, %%xmm0, %%xmm2 \n\t" // r9:r9:r9:r9
+ "pxor %%xmm1, %%xmm2 \n\t" // stuff:stuff:r9+r5:r10
+ "pslldq $4, %%xmm1 \n\t" // r2:r1:r0:0
+ "pxor %%xmm2, %%xmm1 \n\t" // xmm1 = stuff:stuff:r11:r10
+ "movq %%xmm1, (%0) \n\t"
+ "add $8, %0 \n\t"
+ "ret \n\t"
+
+ "2: \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x80") "call 1b \n\t"
+
+ :
+ : "r" (rk), "r" (key)
+ : "memory", "cc", "0");
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+/*
+ * Key expansion, 256-bit case
+ */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static void aesni_setkey_enc_256(unsigned char *rk,
+ const unsigned char *key)
+{
+ asm ("movdqu (%1), %%xmm0 \n\t"
+ "movdqu %%xmm0, (%0) \n\t"
+ "add $16, %0 \n\t"
+ "movdqu 16(%1), %%xmm1 \n\t"
+ "movdqu %%xmm1, (%0) \n\t"
+ "jmp 2f \n\t" // skip auxiliary routine
+
+ /*
+ * Finish generating the next two round keys.
+ *
+ * On entry xmm0 is r3:r2:r1:r0, xmm1 is r7:r6:r5:r4 and
+ * xmm2 is X:stuff:stuff:stuff with X = rot( sub( r7 )) ^ RCON
+ *
+ * On exit, xmm0 is r11:r10:r9:r8 and xmm1 is r15:r14:r13:r12
+ * and those have been written to the output buffer.
+ */
+ "1: \n\t"
+ "pshufd $0xff, %%xmm2, %%xmm2 \n\t"
+ "pxor %%xmm0, %%xmm2 \n\t"
+ "pslldq $4, %%xmm0 \n\t"
+ "pxor %%xmm0, %%xmm2 \n\t"
+ "pslldq $4, %%xmm0 \n\t"
+ "pxor %%xmm0, %%xmm2 \n\t"
+ "pslldq $4, %%xmm0 \n\t"
+ "pxor %%xmm2, %%xmm0 \n\t"
+ "add $16, %0 \n\t"
+ "movdqu %%xmm0, (%0) \n\t"
+
+ /* Set xmm2 to stuff:Y:stuff:stuff with Y = subword( r11 )
+ * and proceed to generate next round key from there */
+ AESKEYGENA(xmm0_xmm2, "0x00")
+ "pshufd $0xaa, %%xmm2, %%xmm2 \n\t"
+ "pxor %%xmm1, %%xmm2 \n\t"
+ "pslldq $4, %%xmm1 \n\t"
+ "pxor %%xmm1, %%xmm2 \n\t"
+ "pslldq $4, %%xmm1 \n\t"
+ "pxor %%xmm1, %%xmm2 \n\t"
+ "pslldq $4, %%xmm1 \n\t"
+ "pxor %%xmm2, %%xmm1 \n\t"
+ "add $16, %0 \n\t"
+ "movdqu %%xmm1, (%0) \n\t"
+ "ret \n\t"
+
+ /*
+ * Main "loop" - Generating one more key than necessary,
+ * see definition of mbedtls_aes_context.buf
+ */
+ "2: \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x01") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x02") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x04") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x08") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x10") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x20") "call 1b \n\t"
+ AESKEYGENA(xmm1_xmm2, "0x40") "call 1b \n\t"
+ :
+ : "r" (rk), "r" (key)
+ : "memory", "cc", "0");
+}
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+#endif /* MBEDTLS_AESNI_HAVE_CODE */
+
+/*
+ * Key expansion, wrapper
+ */
+int mbedtls_aesni_setkey_enc(unsigned char *rk,
+ const unsigned char *key,
+ size_t bits)
+{
+ switch (bits) {
+ case 128: aesni_setkey_enc_128(rk, key); break;
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ case 192: aesni_setkey_enc_192(rk, key); break;
+ case 256: aesni_setkey_enc_256(rk, key); break;
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+ default: return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_AESNI_HAVE_CODE */
+
+#endif /* MBEDTLS_AESNI_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/aesni.h b/tf-psa-crypto/drivers/builtin/src/aesni.h
new file mode 100644
index 0000000..59e27af
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesni.h
@@ -0,0 +1,162 @@
+/**
+ * \file aesni.h
+ *
+ * \brief AES-NI for hardware AES acceleration on some Intel processors
+ *
+ * \warning These functions are only for internal use by other library
+ * functions; you must not call them directly.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_AESNI_H
+#define MBEDTLS_AESNI_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/aes.h"
+
+#define MBEDTLS_AESNI_AES 0x02000000u
+#define MBEDTLS_AESNI_CLMUL 0x00000002u
+
+#if defined(MBEDTLS_AESNI_C) && \
+ (defined(MBEDTLS_ARCH_IS_X64) || defined(MBEDTLS_ARCH_IS_X86))
+
+/* Can we do AESNI with intrinsics?
+ * (Only implemented with certain compilers, only for certain targets.)
+ */
+#undef MBEDTLS_AESNI_HAVE_INTRINSICS
+#if defined(_MSC_VER) && !defined(__clang__)
+/* Visual Studio supports AESNI intrinsics since VS 2008 SP1. We only support
+ * VS 2013 and up for other reasons anyway, so no need to check the version. */
+#define MBEDTLS_AESNI_HAVE_INTRINSICS
+#endif
+/* GCC-like compilers: currently, we only support intrinsics if the requisite
+ * target flag is enabled when building the library (e.g. `gcc -mpclmul -msse2`
+ * or `clang -maes -mpclmul`). */
+#if (defined(__GNUC__) || defined(__clang__)) && defined(__AES__) && defined(__PCLMUL__)
+#define MBEDTLS_AESNI_HAVE_INTRINSICS
+#endif
+/* For 32-bit, we only support intrinsics */
+#if defined(MBEDTLS_ARCH_IS_X86) && (defined(__GNUC__) || defined(__clang__))
+#define MBEDTLS_AESNI_HAVE_INTRINSICS
+#endif
+
+/* Choose the implementation of AESNI, if one is available.
+ *
+ * Favor the intrinsics-based implementation if it's available, for better
+ * maintainability.
+ * Performance is about the same (see #7380).
+ * In the long run, we will likely remove the assembly implementation. */
+#if defined(MBEDTLS_AESNI_HAVE_INTRINSICS)
+#define MBEDTLS_AESNI_HAVE_CODE 2 // via intrinsics
+#elif defined(MBEDTLS_HAVE_ASM) && \
+ (defined(__GNUC__) || defined(__clang__)) && defined(MBEDTLS_ARCH_IS_X64)
+/* Can we do AESNI with inline assembly?
+ * (Only implemented with gas syntax, only for 64-bit.)
+ */
+#define MBEDTLS_AESNI_HAVE_CODE 1 // via assembly
+#else
+#error "MBEDTLS_AESNI_C defined, but neither intrinsics nor assembly available"
+#endif
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * \brief Internal function to detect the AES-NI feature in CPUs.
+ *
+ * \note This function is only for internal use by other library
+ * functions; you must not call it directly.
+ *
+ * \param what The feature to detect
+ * (MBEDTLS_AESNI_AES or MBEDTLS_AESNI_CLMUL)
+ *
+ * \return 1 if CPU has support for the feature, 0 otherwise
+ */
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+int mbedtls_aesni_has_support(unsigned int what);
+#else
+#define mbedtls_aesni_has_support(what) 1
+#endif
+
+/**
+ * \brief Internal AES-NI AES-ECB block encryption and decryption
+ *
+ * \note This function is only for internal use by other library
+ * functions; you must not call it directly.
+ *
+ * \param ctx AES context
+ * \param mode MBEDTLS_AES_ENCRYPT or MBEDTLS_AES_DECRYPT
+ * \param input 16-byte input block
+ * \param output 16-byte output block
+ *
+ * \return 0 on success (cannot fail)
+ */
+int mbedtls_aesni_crypt_ecb(mbedtls_aes_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16]);
+
+/**
+ * \brief Internal GCM multiplication: c = a * b in GF(2^128)
+ *
+ * \note This function is only for internal use by other library
+ * functions; you must not call it directly.
+ *
+ * \param c Result
+ * \param a First operand
+ * \param b Second operand
+ *
+ * \note Both operands and result are bit strings interpreted as
+ * elements of GF(2^128) as per the GCM spec.
+ */
+void mbedtls_aesni_gcm_mult(unsigned char c[16],
+ const unsigned char a[16],
+ const unsigned char b[16]);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+/**
+ * \brief Internal round key inversion. This function computes
+ * decryption round keys from the encryption round keys.
+ *
+ * \note This function is only for internal use by other library
+ * functions; you must not call it directly.
+ *
+ * \param invkey Round keys for the equivalent inverse cipher
+ * \param fwdkey Original round keys (for encryption)
+ * \param nr Number of rounds (that is, number of round keys minus one)
+ */
+void mbedtls_aesni_inverse_key(unsigned char *invkey,
+ const unsigned char *fwdkey,
+ int nr);
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/**
+ * \brief Internal key expansion for encryption
+ *
+ * \note This function is only for internal use by other library
+ * functions; you must not call it directly.
+ *
+ * \param rk Destination buffer where the round keys are written
+ * \param key Encryption key
+ * \param bits Key size in bits (must be 128, 192 or 256)
+ *
+ * \return 0 if successful, or MBEDTLS_ERR_AES_INVALID_KEY_LENGTH
+ */
+int mbedtls_aesni_setkey_enc(unsigned char *rk,
+ const unsigned char *key,
+ size_t bits);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_AESNI_HAVE_CODE */
+#endif /* MBEDTLS_AESNI_C && (MBEDTLS_ARCH_IS_X64 || MBEDTLS_ARCH_IS_X86) */
+
+#endif /* MBEDTLS_AESNI_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/aria.c b/tf-psa-crypto/drivers/builtin/src/aria.c
new file mode 100644
index 0000000..d9f84cc
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aria.c
@@ -0,0 +1,969 @@
+/*
+ * ARIA implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * This implementation is based on the following standards:
+ * [1] http://210.104.33.10/ARIA/doc/ARIA-specification-e.pdf
+ * [2] https://tools.ietf.org/html/rfc5794
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ARIA_C)
+
+#include "mbedtls/aria.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_ARIA_ALT)
+
+#include "mbedtls/platform_util.h"
+
+/*
+ * modify byte order: ( A B C D ) -> ( B A D C ), i.e. swap pairs of bytes
+ *
+ * This is submatrix P1 in [1] Appendix B.1
+ *
+ * Common compilers fail to translate this to minimal number of instructions,
+ * so let's provide asm versions for common platforms with C fallback.
+ */
+#if defined(MBEDTLS_HAVE_ASM)
+#if defined(__arm__) /* rev16 available from v6 up */
+/* armcc5 --gnu defines __GNUC__ but doesn't support GNU's extended asm */
+#if defined(__GNUC__) && \
+ (!defined(__ARMCC_VERSION) || __ARMCC_VERSION >= 6000000) && \
+ __ARM_ARCH >= 6
+static inline uint32_t aria_p1(uint32_t x)
+{
+ uint32_t r;
+ __asm("rev16 %0, %1" : "=l" (r) : "l" (x));
+ return r;
+}
+#define ARIA_P1 aria_p1
+#elif defined(__ARMCC_VERSION) && __ARMCC_VERSION < 6000000 && \
+ (__TARGET_ARCH_ARM >= 6 || __TARGET_ARCH_THUMB >= 3)
+static inline uint32_t aria_p1(uint32_t x)
+{
+ uint32_t r;
+ __asm("rev16 r, x");
+ return r;
+}
+#define ARIA_P1 aria_p1
+#endif
+#endif /* arm */
+#if defined(__GNUC__) && \
+ defined(__i386__) || defined(__amd64__) || defined(__x86_64__)
+/* I couldn't find an Intel equivalent of rev16, so two instructions */
+#define ARIA_P1(x) ARIA_P2(ARIA_P3(x))
+#endif /* x86 gnuc */
+#endif /* MBEDTLS_HAVE_ASM && GNUC */
+#if !defined(ARIA_P1)
+#define ARIA_P1(x) ((((x) >> 8) & 0x00FF00FF) ^ (((x) & 0x00FF00FF) << 8))
+#endif
+
+/*
+ * modify byte order: ( A B C D ) -> ( C D A B ), i.e. rotate by 16 bits
+ *
+ * This is submatrix P2 in [1] Appendix B.1
+ *
+ * Common compilers will translate this to a single instruction.
+ */
+#define ARIA_P2(x) (((x) >> 16) ^ ((x) << 16))
+
+/*
+ * modify byte order: ( A B C D ) -> ( D C B A ), i.e. change endianness
+ *
+ * This is submatrix P3 in [1] Appendix B.1
+ */
+#define ARIA_P3(x) MBEDTLS_BSWAP32(x)
+
+/*
+ * ARIA Affine Transform
+ * (a, b, c, d) = state in/out
+ *
+ * If we denote the first byte of input by 0, ..., the last byte by f,
+ * then inputs are: a = 0123, b = 4567, c = 89ab, d = cdef.
+ *
+ * Reading [1] 2.4 or [2] 2.4.3 in columns and performing simple
+ * rearrangements on adjacent pairs, output is:
+ *
+ * a = 3210 + 4545 + 6767 + 88aa + 99bb + dccd + effe
+ * = 3210 + 4567 + 6745 + 89ab + 98ba + dcfe + efcd
+ * b = 0101 + 2323 + 5476 + 8998 + baab + eecc + ffdd
+ * = 0123 + 2301 + 5476 + 89ab + ba98 + efcd + fedc
+ * c = 0022 + 1133 + 4554 + 7667 + ab89 + dcdc + fefe
+ * = 0123 + 1032 + 4567 + 7654 + ab89 + dcfe + fedc
+ * d = 1001 + 2332 + 6644 + 7755 + 9898 + baba + cdef
+ * = 1032 + 2301 + 6745 + 7654 + 98ba + ba98 + cdef
+ *
+ * Note: another presentation of the A transform can be found as the first
+ * half of App. B.1 in [1] in terms of 4-byte operators P1, P2, P3 and P4.
+ * The implementation below uses only P1 and P2 as they are sufficient.
+ */
+static inline void aria_a(uint32_t *a, uint32_t *b,
+ uint32_t *c, uint32_t *d)
+{
+ uint32_t ta, tb, tc;
+ ta = *b; // 4567
+ *b = *a; // 0123
+ *a = ARIA_P2(ta); // 6745
+ tb = ARIA_P2(*d); // efcd
+ *d = ARIA_P1(*c); // 98ba
+ *c = ARIA_P1(tb); // fedc
+ ta ^= *d; // 4567+98ba
+ tc = ARIA_P2(*b); // 2301
+ ta = ARIA_P1(ta) ^ tc ^ *c; // 2301+5476+89ab+fedc
+ tb ^= ARIA_P2(*d); // ba98+efcd
+ tc ^= ARIA_P1(*a); // 2301+7654
+ *b ^= ta ^ tb; // 0123+2301+5476+89ab+ba98+efcd+fedc OUT
+ tb = ARIA_P2(tb) ^ ta; // 2301+5476+89ab+98ba+cdef+fedc
+ *a ^= ARIA_P1(tb); // 3210+4567+6745+89ab+98ba+dcfe+efcd OUT
+ ta = ARIA_P2(ta); // 0123+7654+ab89+dcfe
+ *d ^= ARIA_P1(ta) ^ tc; // 1032+2301+6745+7654+98ba+ba98+cdef OUT
+ tc = ARIA_P2(tc); // 0123+5476
+ *c ^= ARIA_P1(tc) ^ ta; // 0123+1032+4567+7654+ab89+dcfe+fedc OUT
+}
+
+/*
+ * ARIA Substitution Layer SL1 / SL2
+ * (a, b, c, d) = state in/out
+ * (sa, sb, sc, sd) = 256 8-bit S-Boxes (see below)
+ *
+ * By passing sb1, sb2, is1, is2 as S-Boxes you get SL1
+ * By passing is1, is2, sb1, sb2 as S-Boxes you get SL2
+ */
+static inline void aria_sl(uint32_t *a, uint32_t *b,
+ uint32_t *c, uint32_t *d,
+ const uint8_t sa[256], const uint8_t sb[256],
+ const uint8_t sc[256], const uint8_t sd[256])
+{
+ *a = ((uint32_t) sa[MBEDTLS_BYTE_0(*a)]) ^
+ (((uint32_t) sb[MBEDTLS_BYTE_1(*a)]) << 8) ^
+ (((uint32_t) sc[MBEDTLS_BYTE_2(*a)]) << 16) ^
+ (((uint32_t) sd[MBEDTLS_BYTE_3(*a)]) << 24);
+ *b = ((uint32_t) sa[MBEDTLS_BYTE_0(*b)]) ^
+ (((uint32_t) sb[MBEDTLS_BYTE_1(*b)]) << 8) ^
+ (((uint32_t) sc[MBEDTLS_BYTE_2(*b)]) << 16) ^
+ (((uint32_t) sd[MBEDTLS_BYTE_3(*b)]) << 24);
+ *c = ((uint32_t) sa[MBEDTLS_BYTE_0(*c)]) ^
+ (((uint32_t) sb[MBEDTLS_BYTE_1(*c)]) << 8) ^
+ (((uint32_t) sc[MBEDTLS_BYTE_2(*c)]) << 16) ^
+ (((uint32_t) sd[MBEDTLS_BYTE_3(*c)]) << 24);
+ *d = ((uint32_t) sa[MBEDTLS_BYTE_0(*d)]) ^
+ (((uint32_t) sb[MBEDTLS_BYTE_1(*d)]) << 8) ^
+ (((uint32_t) sc[MBEDTLS_BYTE_2(*d)]) << 16) ^
+ (((uint32_t) sd[MBEDTLS_BYTE_3(*d)]) << 24);
+}
+
+/*
+ * S-Boxes
+ */
+static const uint8_t aria_sb1[256] =
+{
+ 0x63, 0x7C, 0x77, 0x7B, 0xF2, 0x6B, 0x6F, 0xC5, 0x30, 0x01, 0x67, 0x2B,
+ 0xFE, 0xD7, 0xAB, 0x76, 0xCA, 0x82, 0xC9, 0x7D, 0xFA, 0x59, 0x47, 0xF0,
+ 0xAD, 0xD4, 0xA2, 0xAF, 0x9C, 0xA4, 0x72, 0xC0, 0xB7, 0xFD, 0x93, 0x26,
+ 0x36, 0x3F, 0xF7, 0xCC, 0x34, 0xA5, 0xE5, 0xF1, 0x71, 0xD8, 0x31, 0x15,
+ 0x04, 0xC7, 0x23, 0xC3, 0x18, 0x96, 0x05, 0x9A, 0x07, 0x12, 0x80, 0xE2,
+ 0xEB, 0x27, 0xB2, 0x75, 0x09, 0x83, 0x2C, 0x1A, 0x1B, 0x6E, 0x5A, 0xA0,
+ 0x52, 0x3B, 0xD6, 0xB3, 0x29, 0xE3, 0x2F, 0x84, 0x53, 0xD1, 0x00, 0xED,
+ 0x20, 0xFC, 0xB1, 0x5B, 0x6A, 0xCB, 0xBE, 0x39, 0x4A, 0x4C, 0x58, 0xCF,
+ 0xD0, 0xEF, 0xAA, 0xFB, 0x43, 0x4D, 0x33, 0x85, 0x45, 0xF9, 0x02, 0x7F,
+ 0x50, 0x3C, 0x9F, 0xA8, 0x51, 0xA3, 0x40, 0x8F, 0x92, 0x9D, 0x38, 0xF5,
+ 0xBC, 0xB6, 0xDA, 0x21, 0x10, 0xFF, 0xF3, 0xD2, 0xCD, 0x0C, 0x13, 0xEC,
+ 0x5F, 0x97, 0x44, 0x17, 0xC4, 0xA7, 0x7E, 0x3D, 0x64, 0x5D, 0x19, 0x73,
+ 0x60, 0x81, 0x4F, 0xDC, 0x22, 0x2A, 0x90, 0x88, 0x46, 0xEE, 0xB8, 0x14,
+ 0xDE, 0x5E, 0x0B, 0xDB, 0xE0, 0x32, 0x3A, 0x0A, 0x49, 0x06, 0x24, 0x5C,
+ 0xC2, 0xD3, 0xAC, 0x62, 0x91, 0x95, 0xE4, 0x79, 0xE7, 0xC8, 0x37, 0x6D,
+ 0x8D, 0xD5, 0x4E, 0xA9, 0x6C, 0x56, 0xF4, 0xEA, 0x65, 0x7A, 0xAE, 0x08,
+ 0xBA, 0x78, 0x25, 0x2E, 0x1C, 0xA6, 0xB4, 0xC6, 0xE8, 0xDD, 0x74, 0x1F,
+ 0x4B, 0xBD, 0x8B, 0x8A, 0x70, 0x3E, 0xB5, 0x66, 0x48, 0x03, 0xF6, 0x0E,
+ 0x61, 0x35, 0x57, 0xB9, 0x86, 0xC1, 0x1D, 0x9E, 0xE1, 0xF8, 0x98, 0x11,
+ 0x69, 0xD9, 0x8E, 0x94, 0x9B, 0x1E, 0x87, 0xE9, 0xCE, 0x55, 0x28, 0xDF,
+ 0x8C, 0xA1, 0x89, 0x0D, 0xBF, 0xE6, 0x42, 0x68, 0x41, 0x99, 0x2D, 0x0F,
+ 0xB0, 0x54, 0xBB, 0x16
+};
+
+static const uint8_t aria_sb2[256] =
+{
+ 0xE2, 0x4E, 0x54, 0xFC, 0x94, 0xC2, 0x4A, 0xCC, 0x62, 0x0D, 0x6A, 0x46,
+ 0x3C, 0x4D, 0x8B, 0xD1, 0x5E, 0xFA, 0x64, 0xCB, 0xB4, 0x97, 0xBE, 0x2B,
+ 0xBC, 0x77, 0x2E, 0x03, 0xD3, 0x19, 0x59, 0xC1, 0x1D, 0x06, 0x41, 0x6B,
+ 0x55, 0xF0, 0x99, 0x69, 0xEA, 0x9C, 0x18, 0xAE, 0x63, 0xDF, 0xE7, 0xBB,
+ 0x00, 0x73, 0x66, 0xFB, 0x96, 0x4C, 0x85, 0xE4, 0x3A, 0x09, 0x45, 0xAA,
+ 0x0F, 0xEE, 0x10, 0xEB, 0x2D, 0x7F, 0xF4, 0x29, 0xAC, 0xCF, 0xAD, 0x91,
+ 0x8D, 0x78, 0xC8, 0x95, 0xF9, 0x2F, 0xCE, 0xCD, 0x08, 0x7A, 0x88, 0x38,
+ 0x5C, 0x83, 0x2A, 0x28, 0x47, 0xDB, 0xB8, 0xC7, 0x93, 0xA4, 0x12, 0x53,
+ 0xFF, 0x87, 0x0E, 0x31, 0x36, 0x21, 0x58, 0x48, 0x01, 0x8E, 0x37, 0x74,
+ 0x32, 0xCA, 0xE9, 0xB1, 0xB7, 0xAB, 0x0C, 0xD7, 0xC4, 0x56, 0x42, 0x26,
+ 0x07, 0x98, 0x60, 0xD9, 0xB6, 0xB9, 0x11, 0x40, 0xEC, 0x20, 0x8C, 0xBD,
+ 0xA0, 0xC9, 0x84, 0x04, 0x49, 0x23, 0xF1, 0x4F, 0x50, 0x1F, 0x13, 0xDC,
+ 0xD8, 0xC0, 0x9E, 0x57, 0xE3, 0xC3, 0x7B, 0x65, 0x3B, 0x02, 0x8F, 0x3E,
+ 0xE8, 0x25, 0x92, 0xE5, 0x15, 0xDD, 0xFD, 0x17, 0xA9, 0xBF, 0xD4, 0x9A,
+ 0x7E, 0xC5, 0x39, 0x67, 0xFE, 0x76, 0x9D, 0x43, 0xA7, 0xE1, 0xD0, 0xF5,
+ 0x68, 0xF2, 0x1B, 0x34, 0x70, 0x05, 0xA3, 0x8A, 0xD5, 0x79, 0x86, 0xA8,
+ 0x30, 0xC6, 0x51, 0x4B, 0x1E, 0xA6, 0x27, 0xF6, 0x35, 0xD2, 0x6E, 0x24,
+ 0x16, 0x82, 0x5F, 0xDA, 0xE6, 0x75, 0xA2, 0xEF, 0x2C, 0xB2, 0x1C, 0x9F,
+ 0x5D, 0x6F, 0x80, 0x0A, 0x72, 0x44, 0x9B, 0x6C, 0x90, 0x0B, 0x5B, 0x33,
+ 0x7D, 0x5A, 0x52, 0xF3, 0x61, 0xA1, 0xF7, 0xB0, 0xD6, 0x3F, 0x7C, 0x6D,
+ 0xED, 0x14, 0xE0, 0xA5, 0x3D, 0x22, 0xB3, 0xF8, 0x89, 0xDE, 0x71, 0x1A,
+ 0xAF, 0xBA, 0xB5, 0x81
+};
+
+static const uint8_t aria_is1[256] =
+{
+ 0x52, 0x09, 0x6A, 0xD5, 0x30, 0x36, 0xA5, 0x38, 0xBF, 0x40, 0xA3, 0x9E,
+ 0x81, 0xF3, 0xD7, 0xFB, 0x7C, 0xE3, 0x39, 0x82, 0x9B, 0x2F, 0xFF, 0x87,
+ 0x34, 0x8E, 0x43, 0x44, 0xC4, 0xDE, 0xE9, 0xCB, 0x54, 0x7B, 0x94, 0x32,
+ 0xA6, 0xC2, 0x23, 0x3D, 0xEE, 0x4C, 0x95, 0x0B, 0x42, 0xFA, 0xC3, 0x4E,
+ 0x08, 0x2E, 0xA1, 0x66, 0x28, 0xD9, 0x24, 0xB2, 0x76, 0x5B, 0xA2, 0x49,
+ 0x6D, 0x8B, 0xD1, 0x25, 0x72, 0xF8, 0xF6, 0x64, 0x86, 0x68, 0x98, 0x16,
+ 0xD4, 0xA4, 0x5C, 0xCC, 0x5D, 0x65, 0xB6, 0x92, 0x6C, 0x70, 0x48, 0x50,
+ 0xFD, 0xED, 0xB9, 0xDA, 0x5E, 0x15, 0x46, 0x57, 0xA7, 0x8D, 0x9D, 0x84,
+ 0x90, 0xD8, 0xAB, 0x00, 0x8C, 0xBC, 0xD3, 0x0A, 0xF7, 0xE4, 0x58, 0x05,
+ 0xB8, 0xB3, 0x45, 0x06, 0xD0, 0x2C, 0x1E, 0x8F, 0xCA, 0x3F, 0x0F, 0x02,
+ 0xC1, 0xAF, 0xBD, 0x03, 0x01, 0x13, 0x8A, 0x6B, 0x3A, 0x91, 0x11, 0x41,
+ 0x4F, 0x67, 0xDC, 0xEA, 0x97, 0xF2, 0xCF, 0xCE, 0xF0, 0xB4, 0xE6, 0x73,
+ 0x96, 0xAC, 0x74, 0x22, 0xE7, 0xAD, 0x35, 0x85, 0xE2, 0xF9, 0x37, 0xE8,
+ 0x1C, 0x75, 0xDF, 0x6E, 0x47, 0xF1, 0x1A, 0x71, 0x1D, 0x29, 0xC5, 0x89,
+ 0x6F, 0xB7, 0x62, 0x0E, 0xAA, 0x18, 0xBE, 0x1B, 0xFC, 0x56, 0x3E, 0x4B,
+ 0xC6, 0xD2, 0x79, 0x20, 0x9A, 0xDB, 0xC0, 0xFE, 0x78, 0xCD, 0x5A, 0xF4,
+ 0x1F, 0xDD, 0xA8, 0x33, 0x88, 0x07, 0xC7, 0x31, 0xB1, 0x12, 0x10, 0x59,
+ 0x27, 0x80, 0xEC, 0x5F, 0x60, 0x51, 0x7F, 0xA9, 0x19, 0xB5, 0x4A, 0x0D,
+ 0x2D, 0xE5, 0x7A, 0x9F, 0x93, 0xC9, 0x9C, 0xEF, 0xA0, 0xE0, 0x3B, 0x4D,
+ 0xAE, 0x2A, 0xF5, 0xB0, 0xC8, 0xEB, 0xBB, 0x3C, 0x83, 0x53, 0x99, 0x61,
+ 0x17, 0x2B, 0x04, 0x7E, 0xBA, 0x77, 0xD6, 0x26, 0xE1, 0x69, 0x14, 0x63,
+ 0x55, 0x21, 0x0C, 0x7D
+};
+
+static const uint8_t aria_is2[256] =
+{
+ 0x30, 0x68, 0x99, 0x1B, 0x87, 0xB9, 0x21, 0x78, 0x50, 0x39, 0xDB, 0xE1,
+ 0x72, 0x09, 0x62, 0x3C, 0x3E, 0x7E, 0x5E, 0x8E, 0xF1, 0xA0, 0xCC, 0xA3,
+ 0x2A, 0x1D, 0xFB, 0xB6, 0xD6, 0x20, 0xC4, 0x8D, 0x81, 0x65, 0xF5, 0x89,
+ 0xCB, 0x9D, 0x77, 0xC6, 0x57, 0x43, 0x56, 0x17, 0xD4, 0x40, 0x1A, 0x4D,
+ 0xC0, 0x63, 0x6C, 0xE3, 0xB7, 0xC8, 0x64, 0x6A, 0x53, 0xAA, 0x38, 0x98,
+ 0x0C, 0xF4, 0x9B, 0xED, 0x7F, 0x22, 0x76, 0xAF, 0xDD, 0x3A, 0x0B, 0x58,
+ 0x67, 0x88, 0x06, 0xC3, 0x35, 0x0D, 0x01, 0x8B, 0x8C, 0xC2, 0xE6, 0x5F,
+ 0x02, 0x24, 0x75, 0x93, 0x66, 0x1E, 0xE5, 0xE2, 0x54, 0xD8, 0x10, 0xCE,
+ 0x7A, 0xE8, 0x08, 0x2C, 0x12, 0x97, 0x32, 0xAB, 0xB4, 0x27, 0x0A, 0x23,
+ 0xDF, 0xEF, 0xCA, 0xD9, 0xB8, 0xFA, 0xDC, 0x31, 0x6B, 0xD1, 0xAD, 0x19,
+ 0x49, 0xBD, 0x51, 0x96, 0xEE, 0xE4, 0xA8, 0x41, 0xDA, 0xFF, 0xCD, 0x55,
+ 0x86, 0x36, 0xBE, 0x61, 0x52, 0xF8, 0xBB, 0x0E, 0x82, 0x48, 0x69, 0x9A,
+ 0xE0, 0x47, 0x9E, 0x5C, 0x04, 0x4B, 0x34, 0x15, 0x79, 0x26, 0xA7, 0xDE,
+ 0x29, 0xAE, 0x92, 0xD7, 0x84, 0xE9, 0xD2, 0xBA, 0x5D, 0xF3, 0xC5, 0xB0,
+ 0xBF, 0xA4, 0x3B, 0x71, 0x44, 0x46, 0x2B, 0xFC, 0xEB, 0x6F, 0xD5, 0xF6,
+ 0x14, 0xFE, 0x7C, 0x70, 0x5A, 0x7D, 0xFD, 0x2F, 0x18, 0x83, 0x16, 0xA5,
+ 0x91, 0x1F, 0x05, 0x95, 0x74, 0xA9, 0xC1, 0x5B, 0x4A, 0x85, 0x6D, 0x13,
+ 0x07, 0x4F, 0x4E, 0x45, 0xB2, 0x0F, 0xC9, 0x1C, 0xA6, 0xBC, 0xEC, 0x73,
+ 0x90, 0x7B, 0xCF, 0x59, 0x8F, 0xA1, 0xF9, 0x2D, 0xF2, 0xB1, 0x00, 0x94,
+ 0x37, 0x9F, 0xD0, 0x2E, 0x9C, 0x6E, 0x28, 0x3F, 0x80, 0xF0, 0x3D, 0xD3,
+ 0x25, 0x8A, 0xB5, 0xE7, 0x42, 0xB3, 0xC7, 0xEA, 0xF7, 0x4C, 0x11, 0x33,
+ 0x03, 0xA2, 0xAC, 0x60
+};
+
+/*
+ * Helper for key schedule: r = FO( p, k ) ^ x
+ */
+static void aria_fo_xor(uint32_t r[4], const uint32_t p[4],
+ const uint32_t k[4], const uint32_t x[4])
+{
+ uint32_t a, b, c, d;
+
+ a = p[0] ^ k[0];
+ b = p[1] ^ k[1];
+ c = p[2] ^ k[2];
+ d = p[3] ^ k[3];
+
+ aria_sl(&a, &b, &c, &d, aria_sb1, aria_sb2, aria_is1, aria_is2);
+ aria_a(&a, &b, &c, &d);
+
+ r[0] = a ^ x[0];
+ r[1] = b ^ x[1];
+ r[2] = c ^ x[2];
+ r[3] = d ^ x[3];
+}
+
+/*
+ * Helper for key schedule: r = FE( p, k ) ^ x
+ */
+static void aria_fe_xor(uint32_t r[4], const uint32_t p[4],
+ const uint32_t k[4], const uint32_t x[4])
+{
+ uint32_t a, b, c, d;
+
+ a = p[0] ^ k[0];
+ b = p[1] ^ k[1];
+ c = p[2] ^ k[2];
+ d = p[3] ^ k[3];
+
+ aria_sl(&a, &b, &c, &d, aria_is1, aria_is2, aria_sb1, aria_sb2);
+ aria_a(&a, &b, &c, &d);
+
+ r[0] = a ^ x[0];
+ r[1] = b ^ x[1];
+ r[2] = c ^ x[2];
+ r[3] = d ^ x[3];
+}
+
+/*
+ * Big endian 128-bit rotation: r = a ^ (b <<< n), used only in key setup.
+ *
+ * We chose to store bytes into 32-bit words in little-endian format (see
+ * MBEDTLS_GET_UINT32_LE / MBEDTLS_PUT_UINT32_LE ) so we need to reverse
+ * bytes here.
+ */
+static void aria_rot128(uint32_t r[4], const uint32_t a[4],
+ const uint32_t b[4], uint8_t n)
+{
+ uint8_t i, j;
+ uint32_t t, u;
+
+ const uint8_t n1 = n % 32; // bit offset
+ const uint8_t n2 = n1 ? 32 - n1 : 0; // reverse bit offset
+
+ j = (n / 32) % 4; // initial word offset
+ t = ARIA_P3(b[j]); // big endian
+ for (i = 0; i < 4; i++) {
+ j = (j + 1) % 4; // get next word, big endian
+ u = ARIA_P3(b[j]);
+ t <<= n1; // rotate
+ t |= u >> n2;
+ t = ARIA_P3(t); // back to little endian
+ r[i] = a[i] ^ t; // store
+ t = u; // move to next word
+ }
+}
+
+/*
+ * Set encryption key
+ */
+int mbedtls_aria_setkey_enc(mbedtls_aria_context *ctx,
+ const unsigned char *key, unsigned int keybits)
+{
+ /* round constant masks */
+ const uint32_t rc[3][4] =
+ {
+ { 0xB7C17C51, 0x940A2227, 0xE8AB13FE, 0xE06E9AFA },
+ { 0xCC4AB16D, 0x20C8219E, 0xD5B128FF, 0xB0E25DEF },
+ { 0x1D3792DB, 0x70E92621, 0x75972403, 0x0EC9E804 }
+ };
+
+ int i;
+ uint32_t w[4][4], *w2;
+
+ if (keybits != 128 && keybits != 192 && keybits != 256) {
+ return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+ }
+
+ /* Copy key to W0 (and potential remainder to W1) */
+ w[0][0] = MBEDTLS_GET_UINT32_LE(key, 0);
+ w[0][1] = MBEDTLS_GET_UINT32_LE(key, 4);
+ w[0][2] = MBEDTLS_GET_UINT32_LE(key, 8);
+ w[0][3] = MBEDTLS_GET_UINT32_LE(key, 12);
+
+ memset(w[1], 0, 16);
+ if (keybits >= 192) {
+ w[1][0] = MBEDTLS_GET_UINT32_LE(key, 16); // 192 bit key
+ w[1][1] = MBEDTLS_GET_UINT32_LE(key, 20);
+ }
+ if (keybits == 256) {
+ w[1][2] = MBEDTLS_GET_UINT32_LE(key, 24); // 256 bit key
+ w[1][3] = MBEDTLS_GET_UINT32_LE(key, 28);
+ }
+
+ i = (keybits - 128) >> 6; // index: 0, 1, 2
+ ctx->nr = 12 + 2 * i; // no. rounds: 12, 14, 16
+
+ aria_fo_xor(w[1], w[0], rc[i], w[1]); // W1 = FO(W0, CK1) ^ KR
+ i = i < 2 ? i + 1 : 0;
+ aria_fe_xor(w[2], w[1], rc[i], w[0]); // W2 = FE(W1, CK2) ^ W0
+ i = i < 2 ? i + 1 : 0;
+ aria_fo_xor(w[3], w[2], rc[i], w[1]); // W3 = FO(W2, CK3) ^ W1
+
+ for (i = 0; i < 4; i++) { // create round keys
+ w2 = w[(i + 1) & 3];
+ aria_rot128(ctx->rk[i], w[i], w2, 128 - 19);
+ aria_rot128(ctx->rk[i + 4], w[i], w2, 128 - 31);
+ aria_rot128(ctx->rk[i + 8], w[i], w2, 61);
+ aria_rot128(ctx->rk[i + 12], w[i], w2, 31);
+ }
+ aria_rot128(ctx->rk[16], w[0], w[1], 19);
+
+ /* w holds enough info to reconstruct the round keys */
+ mbedtls_platform_zeroize(w, sizeof(w));
+
+ return 0;
+}
+
+/*
+ * Set decryption key
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_aria_setkey_dec(mbedtls_aria_context *ctx,
+ const unsigned char *key, unsigned int keybits)
+{
+ int i, j, k, ret;
+
+ ret = mbedtls_aria_setkey_enc(ctx, key, keybits);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* flip the order of round keys */
+ for (i = 0, j = ctx->nr; i < j; i++, j--) {
+ for (k = 0; k < 4; k++) {
+ uint32_t t = ctx->rk[i][k];
+ ctx->rk[i][k] = ctx->rk[j][k];
+ ctx->rk[j][k] = t;
+ }
+ }
+
+ /* apply affine transform to middle keys */
+ for (i = 1; i < ctx->nr; i++) {
+ aria_a(&ctx->rk[i][0], &ctx->rk[i][1],
+ &ctx->rk[i][2], &ctx->rk[i][3]);
+ }
+
+ return 0;
+}
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/*
+ * Encrypt a block
+ */
+int mbedtls_aria_crypt_ecb(mbedtls_aria_context *ctx,
+ const unsigned char input[MBEDTLS_ARIA_BLOCKSIZE],
+ unsigned char output[MBEDTLS_ARIA_BLOCKSIZE])
+{
+ int i;
+
+ uint32_t a, b, c, d;
+
+ a = MBEDTLS_GET_UINT32_LE(input, 0);
+ b = MBEDTLS_GET_UINT32_LE(input, 4);
+ c = MBEDTLS_GET_UINT32_LE(input, 8);
+ d = MBEDTLS_GET_UINT32_LE(input, 12);
+
+ i = 0;
+ while (1) {
+ a ^= ctx->rk[i][0];
+ b ^= ctx->rk[i][1];
+ c ^= ctx->rk[i][2];
+ d ^= ctx->rk[i][3];
+ i++;
+
+ aria_sl(&a, &b, &c, &d, aria_sb1, aria_sb2, aria_is1, aria_is2);
+ aria_a(&a, &b, &c, &d);
+
+ a ^= ctx->rk[i][0];
+ b ^= ctx->rk[i][1];
+ c ^= ctx->rk[i][2];
+ d ^= ctx->rk[i][3];
+ i++;
+
+ aria_sl(&a, &b, &c, &d, aria_is1, aria_is2, aria_sb1, aria_sb2);
+ if (i >= ctx->nr) {
+ break;
+ }
+ aria_a(&a, &b, &c, &d);
+ }
+
+ /* final key mixing */
+ a ^= ctx->rk[i][0];
+ b ^= ctx->rk[i][1];
+ c ^= ctx->rk[i][2];
+ d ^= ctx->rk[i][3];
+
+ MBEDTLS_PUT_UINT32_LE(a, output, 0);
+ MBEDTLS_PUT_UINT32_LE(b, output, 4);
+ MBEDTLS_PUT_UINT32_LE(c, output, 8);
+ MBEDTLS_PUT_UINT32_LE(d, output, 12);
+
+ return 0;
+}
+
+/* Initialize context */
+void mbedtls_aria_init(mbedtls_aria_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_aria_context));
+}
+
+/* Clear context */
+void mbedtls_aria_free(mbedtls_aria_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_aria_context));
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * ARIA-CBC buffer encryption/decryption
+ */
+int mbedtls_aria_crypt_cbc(mbedtls_aria_context *ctx,
+ int mode,
+ size_t length,
+ unsigned char iv[MBEDTLS_ARIA_BLOCKSIZE],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ unsigned char temp[MBEDTLS_ARIA_BLOCKSIZE];
+
+ if ((mode != MBEDTLS_ARIA_ENCRYPT) && (mode != MBEDTLS_ARIA_DECRYPT)) {
+ return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+ }
+
+ if (length % MBEDTLS_ARIA_BLOCKSIZE) {
+ return MBEDTLS_ERR_ARIA_INVALID_INPUT_LENGTH;
+ }
+
+ if (mode == MBEDTLS_ARIA_DECRYPT) {
+ while (length > 0) {
+ memcpy(temp, input, MBEDTLS_ARIA_BLOCKSIZE);
+ mbedtls_aria_crypt_ecb(ctx, input, output);
+
+ mbedtls_xor(output, output, iv, MBEDTLS_ARIA_BLOCKSIZE);
+
+ memcpy(iv, temp, MBEDTLS_ARIA_BLOCKSIZE);
+
+ input += MBEDTLS_ARIA_BLOCKSIZE;
+ output += MBEDTLS_ARIA_BLOCKSIZE;
+ length -= MBEDTLS_ARIA_BLOCKSIZE;
+ }
+ } else {
+ while (length > 0) {
+ mbedtls_xor(output, input, iv, MBEDTLS_ARIA_BLOCKSIZE);
+
+ mbedtls_aria_crypt_ecb(ctx, output, output);
+ memcpy(iv, output, MBEDTLS_ARIA_BLOCKSIZE);
+
+ input += MBEDTLS_ARIA_BLOCKSIZE;
+ output += MBEDTLS_ARIA_BLOCKSIZE;
+ length -= MBEDTLS_ARIA_BLOCKSIZE;
+ }
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * ARIA-CFB128 buffer encryption/decryption
+ */
+int mbedtls_aria_crypt_cfb128(mbedtls_aria_context *ctx,
+ int mode,
+ size_t length,
+ size_t *iv_off,
+ unsigned char iv[MBEDTLS_ARIA_BLOCKSIZE],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ unsigned char c;
+ size_t n;
+
+ if ((mode != MBEDTLS_ARIA_ENCRYPT) && (mode != MBEDTLS_ARIA_DECRYPT)) {
+ return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+ }
+
+ n = *iv_off;
+
+ /* An overly large value of n can lead to an unlimited
+ * buffer overflow. */
+ if (n >= MBEDTLS_ARIA_BLOCKSIZE) {
+ return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+ }
+
+ if (mode == MBEDTLS_ARIA_DECRYPT) {
+ while (length--) {
+ if (n == 0) {
+ mbedtls_aria_crypt_ecb(ctx, iv, iv);
+ }
+
+ c = *input++;
+ *output++ = c ^ iv[n];
+ iv[n] = c;
+
+ n = (n + 1) & 0x0F;
+ }
+ } else {
+ while (length--) {
+ if (n == 0) {
+ mbedtls_aria_crypt_ecb(ctx, iv, iv);
+ }
+
+ iv[n] = *output++ = (unsigned char) (iv[n] ^ *input++);
+
+ n = (n + 1) & 0x0F;
+ }
+ }
+
+ *iv_off = n;
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * ARIA-CTR buffer encryption/decryption
+ */
+int mbedtls_aria_crypt_ctr(mbedtls_aria_context *ctx,
+ size_t length,
+ size_t *nc_off,
+ unsigned char nonce_counter[MBEDTLS_ARIA_BLOCKSIZE],
+ unsigned char stream_block[MBEDTLS_ARIA_BLOCKSIZE],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int c, i;
+ size_t n;
+
+ n = *nc_off;
+ /* An overly large value of n can lead to an unlimited
+ * buffer overflow. */
+ if (n >= MBEDTLS_ARIA_BLOCKSIZE) {
+ return MBEDTLS_ERR_ARIA_BAD_INPUT_DATA;
+ }
+
+ while (length--) {
+ if (n == 0) {
+ mbedtls_aria_crypt_ecb(ctx, nonce_counter,
+ stream_block);
+
+ for (i = MBEDTLS_ARIA_BLOCKSIZE; i > 0; i--) {
+ if (++nonce_counter[i - 1] != 0) {
+ break;
+ }
+ }
+ }
+ c = *input++;
+ *output++ = (unsigned char) (c ^ stream_block[n]);
+
+ n = (n + 1) & 0x0F;
+ }
+
+ *nc_off = n;
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+#endif /* !MBEDTLS_ARIA_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/*
+ * Basic ARIA ECB test vectors from RFC 5794
+ */
+static const uint8_t aria_test1_ecb_key[32] = // test key
+{
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, // 128 bit
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, // 192 bit
+ 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F // 256 bit
+};
+
+static const uint8_t aria_test1_ecb_pt[MBEDTLS_ARIA_BLOCKSIZE] = // plaintext
+{
+ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, // same for all
+ 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF // key sizes
+};
+
+static const uint8_t aria_test1_ecb_ct[3][MBEDTLS_ARIA_BLOCKSIZE] = // ciphertext
+{
+ { 0xD7, 0x18, 0xFB, 0xD6, 0xAB, 0x64, 0x4C, 0x73, // 128 bit
+ 0x9D, 0xA9, 0x5F, 0x3B, 0xE6, 0x45, 0x17, 0x78 },
+ { 0x26, 0x44, 0x9C, 0x18, 0x05, 0xDB, 0xE7, 0xAA, // 192 bit
+ 0x25, 0xA4, 0x68, 0xCE, 0x26, 0x3A, 0x9E, 0x79 },
+ { 0xF9, 0x2B, 0xD7, 0xC7, 0x9F, 0xB7, 0x2E, 0x2F, // 256 bit
+ 0x2B, 0x8F, 0x80, 0xC1, 0x97, 0x2D, 0x24, 0xFC }
+};
+
+/*
+ * Mode tests from "Test Vectors for ARIA" Version 1.0
+ * http://210.104.33.10/ARIA/doc/ARIA-testvector-e.pdf
+ */
+#if (defined(MBEDTLS_CIPHER_MODE_CBC) || defined(MBEDTLS_CIPHER_MODE_CFB) || \
+ defined(MBEDTLS_CIPHER_MODE_CTR))
+static const uint8_t aria_test2_key[32] =
+{
+ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, // 128 bit
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff,
+ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, // 192 bit
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff // 256 bit
+};
+
+static const uint8_t aria_test2_pt[48] =
+{
+ 0x11, 0x11, 0x11, 0x11, 0xaa, 0xaa, 0xaa, 0xaa, // same for all
+ 0x11, 0x11, 0x11, 0x11, 0xbb, 0xbb, 0xbb, 0xbb,
+ 0x11, 0x11, 0x11, 0x11, 0xcc, 0xcc, 0xcc, 0xcc,
+ 0x11, 0x11, 0x11, 0x11, 0xdd, 0xdd, 0xdd, 0xdd,
+ 0x22, 0x22, 0x22, 0x22, 0xaa, 0xaa, 0xaa, 0xaa,
+ 0x22, 0x22, 0x22, 0x22, 0xbb, 0xbb, 0xbb, 0xbb,
+};
+#endif
+
+#if (defined(MBEDTLS_CIPHER_MODE_CBC) || defined(MBEDTLS_CIPHER_MODE_CFB))
+static const uint8_t aria_test2_iv[MBEDTLS_ARIA_BLOCKSIZE] =
+{
+ 0x0f, 0x1e, 0x2d, 0x3c, 0x4b, 0x5a, 0x69, 0x78, // same for CBC, CFB
+ 0x87, 0x96, 0xa5, 0xb4, 0xc3, 0xd2, 0xe1, 0xf0 // CTR has zero IV
+};
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const uint8_t aria_test2_cbc_ct[3][48] = // CBC ciphertext
+{
+ { 0x49, 0xd6, 0x18, 0x60, 0xb1, 0x49, 0x09, 0x10, // 128-bit key
+ 0x9c, 0xef, 0x0d, 0x22, 0xa9, 0x26, 0x81, 0x34,
+ 0xfa, 0xdf, 0x9f, 0xb2, 0x31, 0x51, 0xe9, 0x64,
+ 0x5f, 0xba, 0x75, 0x01, 0x8b, 0xdb, 0x15, 0x38,
+ 0xb5, 0x33, 0x34, 0x63, 0x4b, 0xbf, 0x7d, 0x4c,
+ 0xd4, 0xb5, 0x37, 0x70, 0x33, 0x06, 0x0c, 0x15 },
+ { 0xaf, 0xe6, 0xcf, 0x23, 0x97, 0x4b, 0x53, 0x3c, // 192-bit key
+ 0x67, 0x2a, 0x82, 0x62, 0x64, 0xea, 0x78, 0x5f,
+ 0x4e, 0x4f, 0x7f, 0x78, 0x0d, 0xc7, 0xf3, 0xf1,
+ 0xe0, 0x96, 0x2b, 0x80, 0x90, 0x23, 0x86, 0xd5,
+ 0x14, 0xe9, 0xc3, 0xe7, 0x72, 0x59, 0xde, 0x92,
+ 0xdd, 0x11, 0x02, 0xff, 0xab, 0x08, 0x6c, 0x1e },
+ { 0x52, 0x3a, 0x8a, 0x80, 0x6a, 0xe6, 0x21, 0xf1, // 256-bit key
+ 0x55, 0xfd, 0xd2, 0x8d, 0xbc, 0x34, 0xe1, 0xab,
+ 0x7b, 0x9b, 0x42, 0x43, 0x2a, 0xd8, 0xb2, 0xef,
+ 0xb9, 0x6e, 0x23, 0xb1, 0x3f, 0x0a, 0x6e, 0x52,
+ 0xf3, 0x61, 0x85, 0xd5, 0x0a, 0xd0, 0x02, 0xc5,
+ 0xf6, 0x01, 0xbe, 0xe5, 0x49, 0x3f, 0x11, 0x8b }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const uint8_t aria_test2_cfb_ct[3][48] = // CFB ciphertext
+{
+ { 0x37, 0x20, 0xe5, 0x3b, 0xa7, 0xd6, 0x15, 0x38, // 128-bit key
+ 0x34, 0x06, 0xb0, 0x9f, 0x0a, 0x05, 0xa2, 0x00,
+ 0xc0, 0x7c, 0x21, 0xe6, 0x37, 0x0f, 0x41, 0x3a,
+ 0x5d, 0x13, 0x25, 0x00, 0xa6, 0x82, 0x85, 0x01,
+ 0x7c, 0x61, 0xb4, 0x34, 0xc7, 0xb7, 0xca, 0x96,
+ 0x85, 0xa5, 0x10, 0x71, 0x86, 0x1e, 0x4d, 0x4b },
+ { 0x41, 0x71, 0xf7, 0x19, 0x2b, 0xf4, 0x49, 0x54, // 192-bit key
+ 0x94, 0xd2, 0x73, 0x61, 0x29, 0x64, 0x0f, 0x5c,
+ 0x4d, 0x87, 0xa9, 0xa2, 0x13, 0x66, 0x4c, 0x94,
+ 0x48, 0x47, 0x7c, 0x6e, 0xcc, 0x20, 0x13, 0x59,
+ 0x8d, 0x97, 0x66, 0x95, 0x2d, 0xd8, 0xc3, 0x86,
+ 0x8f, 0x17, 0xe3, 0x6e, 0xf6, 0x6f, 0xd8, 0x4b },
+ { 0x26, 0x83, 0x47, 0x05, 0xb0, 0xf2, 0xc0, 0xe2, // 256-bit key
+ 0x58, 0x8d, 0x4a, 0x7f, 0x09, 0x00, 0x96, 0x35,
+ 0xf2, 0x8b, 0xb9, 0x3d, 0x8c, 0x31, 0xf8, 0x70,
+ 0xec, 0x1e, 0x0b, 0xdb, 0x08, 0x2b, 0x66, 0xfa,
+ 0x40, 0x2d, 0xd9, 0xc2, 0x02, 0xbe, 0x30, 0x0c,
+ 0x45, 0x17, 0xd1, 0x96, 0xb1, 0x4d, 0x4c, 0xe1 }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const uint8_t aria_test2_ctr_ct[3][48] = // CTR ciphertext
+{
+ { 0xac, 0x5d, 0x7d, 0xe8, 0x05, 0xa0, 0xbf, 0x1c, // 128-bit key
+ 0x57, 0xc8, 0x54, 0x50, 0x1a, 0xf6, 0x0f, 0xa1,
+ 0x14, 0x97, 0xe2, 0xa3, 0x45, 0x19, 0xde, 0xa1,
+ 0x56, 0x9e, 0x91, 0xe5, 0xb5, 0xcc, 0xae, 0x2f,
+ 0xf3, 0xbf, 0xa1, 0xbf, 0x97, 0x5f, 0x45, 0x71,
+ 0xf4, 0x8b, 0xe1, 0x91, 0x61, 0x35, 0x46, 0xc3 },
+ { 0x08, 0x62, 0x5c, 0xa8, 0xfe, 0x56, 0x9c, 0x19, // 192-bit key
+ 0xba, 0x7a, 0xf3, 0x76, 0x0a, 0x6e, 0xd1, 0xce,
+ 0xf4, 0xd1, 0x99, 0x26, 0x3e, 0x99, 0x9d, 0xde,
+ 0x14, 0x08, 0x2d, 0xbb, 0xa7, 0x56, 0x0b, 0x79,
+ 0xa4, 0xc6, 0xb4, 0x56, 0xb8, 0x70, 0x7d, 0xce,
+ 0x75, 0x1f, 0x98, 0x54, 0xf1, 0x88, 0x93, 0xdf },
+ { 0x30, 0x02, 0x6c, 0x32, 0x96, 0x66, 0x14, 0x17, // 256-bit key
+ 0x21, 0x17, 0x8b, 0x99, 0xc0, 0xa1, 0xf1, 0xb2,
+ 0xf0, 0x69, 0x40, 0x25, 0x3f, 0x7b, 0x30, 0x89,
+ 0xe2, 0xa3, 0x0e, 0xa8, 0x6a, 0xa3, 0xc8, 0x8f,
+ 0x59, 0x40, 0xf0, 0x5a, 0xd7, 0xee, 0x41, 0xd7,
+ 0x13, 0x47, 0xbb, 0x72, 0x61, 0xe3, 0x48, 0xf1 }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#define ARIA_SELF_TEST_ASSERT(cond) \
+ do { \
+ if (cond) { \
+ if (verbose) \
+ mbedtls_printf("failed\n"); \
+ goto exit; \
+ } else { \
+ if (verbose) \
+ mbedtls_printf("passed\n"); \
+ } \
+ } while (0)
+
+/*
+ * Checkup routine
+ */
+int mbedtls_aria_self_test(int verbose)
+{
+ int i;
+ uint8_t blk[MBEDTLS_ARIA_BLOCKSIZE];
+ mbedtls_aria_context ctx;
+ int ret = 1;
+
+#if (defined(MBEDTLS_CIPHER_MODE_CFB) || defined(MBEDTLS_CIPHER_MODE_CTR))
+ size_t j;
+#endif
+
+#if (defined(MBEDTLS_CIPHER_MODE_CBC) || \
+ defined(MBEDTLS_CIPHER_MODE_CFB) || \
+ defined(MBEDTLS_CIPHER_MODE_CTR))
+ uint8_t buf[48], iv[MBEDTLS_ARIA_BLOCKSIZE];
+#endif
+
+ mbedtls_aria_init(&ctx);
+
+ /*
+ * Test set 1
+ */
+ for (i = 0; i < 3; i++) {
+ /* test ECB encryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-ECB-%d (enc): ", 128 + 64 * i);
+ }
+ mbedtls_aria_setkey_enc(&ctx, aria_test1_ecb_key, 128 + 64 * i);
+ mbedtls_aria_crypt_ecb(&ctx, aria_test1_ecb_pt, blk);
+ ARIA_SELF_TEST_ASSERT(
+ memcmp(blk, aria_test1_ecb_ct[i], MBEDTLS_ARIA_BLOCKSIZE)
+ != 0);
+
+ /* test ECB decryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-ECB-%d (dec): ", 128 + 64 * i);
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ mbedtls_printf("skipped\n");
+#endif
+ }
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ mbedtls_aria_setkey_dec(&ctx, aria_test1_ecb_key, 128 + 64 * i);
+ mbedtls_aria_crypt_ecb(&ctx, aria_test1_ecb_ct[i], blk);
+ ARIA_SELF_TEST_ASSERT(
+ memcmp(blk, aria_test1_ecb_pt, MBEDTLS_ARIA_BLOCKSIZE)
+ != 0);
+#endif
+ }
+ if (verbose) {
+ mbedtls_printf("\n");
+ }
+
+ /*
+ * Test set 2
+ */
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ for (i = 0; i < 3; i++) {
+ /* Test CBC encryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-CBC-%d (enc): ", 128 + 64 * i);
+ }
+ mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+ memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+ memset(buf, 0x55, sizeof(buf));
+ mbedtls_aria_crypt_cbc(&ctx, MBEDTLS_ARIA_ENCRYPT, 48, iv,
+ aria_test2_pt, buf);
+ ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_cbc_ct[i], 48)
+ != 0);
+
+ /* Test CBC decryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-CBC-%d (dec): ", 128 + 64 * i);
+ }
+ mbedtls_aria_setkey_dec(&ctx, aria_test2_key, 128 + 64 * i);
+ memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+ memset(buf, 0xAA, sizeof(buf));
+ mbedtls_aria_crypt_cbc(&ctx, MBEDTLS_ARIA_DECRYPT, 48, iv,
+ aria_test2_cbc_ct[i], buf);
+ ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_pt, 48) != 0);
+ }
+ if (verbose) {
+ mbedtls_printf("\n");
+ }
+
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ for (i = 0; i < 3; i++) {
+ /* Test CFB encryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-CFB-%d (enc): ", 128 + 64 * i);
+ }
+ mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+ memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+ memset(buf, 0x55, sizeof(buf));
+ j = 0;
+ mbedtls_aria_crypt_cfb128(&ctx, MBEDTLS_ARIA_ENCRYPT, 48, &j, iv,
+ aria_test2_pt, buf);
+ ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_cfb_ct[i], 48) != 0);
+
+ /* Test CFB decryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-CFB-%d (dec): ", 128 + 64 * i);
+ }
+ mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+ memcpy(iv, aria_test2_iv, MBEDTLS_ARIA_BLOCKSIZE);
+ memset(buf, 0xAA, sizeof(buf));
+ j = 0;
+ mbedtls_aria_crypt_cfb128(&ctx, MBEDTLS_ARIA_DECRYPT, 48, &j,
+ iv, aria_test2_cfb_ct[i], buf);
+ ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_pt, 48) != 0);
+ }
+ if (verbose) {
+ mbedtls_printf("\n");
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ for (i = 0; i < 3; i++) {
+ /* Test CTR encryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-CTR-%d (enc): ", 128 + 64 * i);
+ }
+ mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+ memset(iv, 0, MBEDTLS_ARIA_BLOCKSIZE); // IV = 0
+ memset(buf, 0x55, sizeof(buf));
+ j = 0;
+ mbedtls_aria_crypt_ctr(&ctx, 48, &j, iv, blk,
+ aria_test2_pt, buf);
+ ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_ctr_ct[i], 48) != 0);
+
+ /* Test CTR decryption */
+ if (verbose) {
+ mbedtls_printf(" ARIA-CTR-%d (dec): ", 128 + 64 * i);
+ }
+ mbedtls_aria_setkey_enc(&ctx, aria_test2_key, 128 + 64 * i);
+ memset(iv, 0, MBEDTLS_ARIA_BLOCKSIZE); // IV = 0
+ memset(buf, 0xAA, sizeof(buf));
+ j = 0;
+ mbedtls_aria_crypt_ctr(&ctx, 48, &j, iv, blk,
+ aria_test2_ctr_ct[i], buf);
+ ARIA_SELF_TEST_ASSERT(memcmp(buf, aria_test2_pt, 48) != 0);
+ }
+ if (verbose) {
+ mbedtls_printf("\n");
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+ ret = 0;
+
+exit:
+ mbedtls_aria_free(&ctx);
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ARIA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/asn1parse.c b/tf-psa-crypto/drivers/builtin/src/asn1parse.c
new file mode 100644
index 0000000..e33fdf7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/asn1parse.c
@@ -0,0 +1,468 @@
+/*
+ * Generic ASN.1 parsing
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C) || defined(MBEDTLS_X509_CREATE_C) || \
+ defined(MBEDTLS_PSA_UTIL_HAVE_ECDSA)
+
+#include "mbedtls/asn1.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * ASN.1 DER decoding routines
+ */
+int mbedtls_asn1_get_len(unsigned char **p,
+ const unsigned char *end,
+ size_t *len)
+{
+ if ((end - *p) < 1) {
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+
+ if ((**p & 0x80) == 0) {
+ *len = *(*p)++;
+ } else {
+ int n = (**p) & 0x7F;
+ if (n == 0 || n > 4) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+ if ((end - *p) <= n) {
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+ *len = 0;
+ (*p)++;
+ while (n--) {
+ *len = (*len << 8) | **p;
+ (*p)++;
+ }
+ }
+
+ if (*len > (size_t) (end - *p)) {
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+
+ return 0;
+}
+
+int mbedtls_asn1_get_tag(unsigned char **p,
+ const unsigned char *end,
+ size_t *len, int tag)
+{
+ if ((end - *p) < 1) {
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+
+ if (**p != tag) {
+ return MBEDTLS_ERR_ASN1_UNEXPECTED_TAG;
+ }
+
+ (*p)++;
+
+ return mbedtls_asn1_get_len(p, end, len);
+}
+#endif /* MBEDTLS_ASN1_PARSE_C || MBEDTLS_X509_CREATE_C || MBEDTLS_PSA_UTIL_HAVE_ECDSA */
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+int mbedtls_asn1_get_bool(unsigned char **p,
+ const unsigned char *end,
+ int *val)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &len, MBEDTLS_ASN1_BOOLEAN)) != 0) {
+ return ret;
+ }
+
+ if (len != 1) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+
+ *val = (**p != 0) ? 1 : 0;
+ (*p)++;
+
+ return 0;
+}
+
+static int asn1_get_tagged_int(unsigned char **p,
+ const unsigned char *end,
+ int tag, int *val)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &len, tag)) != 0) {
+ return ret;
+ }
+
+ /*
+ * len==0 is malformed (0 must be represented as 020100 for INTEGER,
+ * or 0A0100 for ENUMERATED tags
+ */
+ if (len == 0) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+ /* This is a cryptography library. Reject negative integers. */
+ if ((**p & 0x80) != 0) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+
+ /* Skip leading zeros. */
+ while (len > 0 && **p == 0) {
+ ++(*p);
+ --len;
+ }
+
+ /* Reject integers that don't fit in an int. This code assumes that
+ * the int type has no padding bit. */
+ if (len > sizeof(int)) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+ if (len == sizeof(int) && (**p & 0x80) != 0) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+
+ *val = 0;
+ while (len-- > 0) {
+ *val = (*val << 8) | **p;
+ (*p)++;
+ }
+
+ return 0;
+}
+
+int mbedtls_asn1_get_int(unsigned char **p,
+ const unsigned char *end,
+ int *val)
+{
+ return asn1_get_tagged_int(p, end, MBEDTLS_ASN1_INTEGER, val);
+}
+
+int mbedtls_asn1_get_enum(unsigned char **p,
+ const unsigned char *end,
+ int *val)
+{
+ return asn1_get_tagged_int(p, end, MBEDTLS_ASN1_ENUMERATED, val);
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+int mbedtls_asn1_get_mpi(unsigned char **p,
+ const unsigned char *end,
+ mbedtls_mpi *X)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
+ return ret;
+ }
+
+ ret = mbedtls_mpi_read_binary(X, *p, len);
+
+ *p += len;
+
+ return ret;
+}
+#endif /* MBEDTLS_BIGNUM_C */
+
+int mbedtls_asn1_get_bitstring(unsigned char **p, const unsigned char *end,
+ mbedtls_asn1_bitstring *bs)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Certificate type is a single byte bitstring */
+ if ((ret = mbedtls_asn1_get_tag(p, end, &bs->len, MBEDTLS_ASN1_BIT_STRING)) != 0) {
+ return ret;
+ }
+
+ /* Check length, subtract one for actual bit string length */
+ if (bs->len < 1) {
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+ bs->len -= 1;
+
+ /* Get number of unused bits, ensure unused bits <= 7 */
+ bs->unused_bits = **p;
+ if (bs->unused_bits > 7) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+ (*p)++;
+
+ /* Get actual bitstring */
+ bs->p = *p;
+ *p += bs->len;
+
+ if (*p != end) {
+ return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+ }
+
+ return 0;
+}
+
+/*
+ * Traverse an ASN.1 "SEQUENCE OF <tag>"
+ * and call a callback for each entry found.
+ */
+int mbedtls_asn1_traverse_sequence_of(
+ unsigned char **p,
+ const unsigned char *end,
+ unsigned char tag_must_mask, unsigned char tag_must_val,
+ unsigned char tag_may_mask, unsigned char tag_may_val,
+ int (*cb)(void *ctx, int tag,
+ unsigned char *start, size_t len),
+ void *ctx)
+{
+ int ret;
+ size_t len;
+
+ /* Get main sequence tag */
+ if ((ret = mbedtls_asn1_get_tag(p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return ret;
+ }
+
+ if (*p + len != end) {
+ return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+ }
+
+ while (*p < end) {
+ unsigned char const tag = *(*p)++;
+
+ if ((tag & tag_must_mask) != tag_must_val) {
+ return MBEDTLS_ERR_ASN1_UNEXPECTED_TAG;
+ }
+
+ if ((ret = mbedtls_asn1_get_len(p, end, &len)) != 0) {
+ return ret;
+ }
+
+ if ((tag & tag_may_mask) == tag_may_val) {
+ if (cb != NULL) {
+ ret = cb(ctx, tag, *p, len);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+ }
+
+ *p += len;
+ }
+
+ return 0;
+}
+
+/*
+ * Get a bit string without unused bits
+ */
+int mbedtls_asn1_get_bitstring_null(unsigned char **p, const unsigned char *end,
+ size_t *len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, len, MBEDTLS_ASN1_BIT_STRING)) != 0) {
+ return ret;
+ }
+
+ if (*len == 0) {
+ return MBEDTLS_ERR_ASN1_INVALID_DATA;
+ }
+ --(*len);
+
+ if (**p != 0) {
+ return MBEDTLS_ERR_ASN1_INVALID_DATA;
+ }
+ ++(*p);
+
+ return 0;
+}
+
+void mbedtls_asn1_sequence_free(mbedtls_asn1_sequence *seq)
+{
+ while (seq != NULL) {
+ mbedtls_asn1_sequence *next = seq->next;
+ mbedtls_free(seq);
+ seq = next;
+ }
+}
+
+typedef struct {
+ int tag;
+ mbedtls_asn1_sequence *cur;
+} asn1_get_sequence_of_cb_ctx_t;
+
+static int asn1_get_sequence_of_cb(void *ctx,
+ int tag,
+ unsigned char *start,
+ size_t len)
+{
+ asn1_get_sequence_of_cb_ctx_t *cb_ctx =
+ (asn1_get_sequence_of_cb_ctx_t *) ctx;
+ mbedtls_asn1_sequence *cur =
+ cb_ctx->cur;
+
+ if (cur->buf.p != NULL) {
+ cur->next =
+ mbedtls_calloc(1, sizeof(mbedtls_asn1_sequence));
+
+ if (cur->next == NULL) {
+ return MBEDTLS_ERR_ASN1_ALLOC_FAILED;
+ }
+
+ cur = cur->next;
+ }
+
+ cur->buf.p = start;
+ cur->buf.len = len;
+ cur->buf.tag = tag;
+
+ cb_ctx->cur = cur;
+ return 0;
+}
+
+/*
+ * Parses and splits an ASN.1 "SEQUENCE OF <tag>"
+ */
+int mbedtls_asn1_get_sequence_of(unsigned char **p,
+ const unsigned char *end,
+ mbedtls_asn1_sequence *cur,
+ int tag)
+{
+ asn1_get_sequence_of_cb_ctx_t cb_ctx = { tag, cur };
+ memset(cur, 0, sizeof(mbedtls_asn1_sequence));
+ return mbedtls_asn1_traverse_sequence_of(
+ p, end, 0xFF, tag, 0, 0,
+ asn1_get_sequence_of_cb, &cb_ctx);
+}
+
+int mbedtls_asn1_get_alg(unsigned char **p,
+ const unsigned char *end,
+ mbedtls_asn1_buf *alg, mbedtls_asn1_buf *params)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return ret;
+ }
+
+ if ((end - *p) < 1) {
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+
+ alg->tag = **p;
+ end = *p + len;
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &alg->len, MBEDTLS_ASN1_OID)) != 0) {
+ return ret;
+ }
+
+ alg->p = *p;
+ *p += alg->len;
+
+ if (*p == end) {
+ mbedtls_platform_zeroize(params, sizeof(mbedtls_asn1_buf));
+ return 0;
+ }
+
+ params->tag = **p;
+ (*p)++;
+
+ if ((ret = mbedtls_asn1_get_len(p, end, &params->len)) != 0) {
+ return ret;
+ }
+
+ params->p = *p;
+ *p += params->len;
+
+ if (*p != end) {
+ return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+ }
+
+ return 0;
+}
+
+int mbedtls_asn1_get_alg_null(unsigned char **p,
+ const unsigned char *end,
+ mbedtls_asn1_buf *alg)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_asn1_buf params;
+
+ memset(&params, 0, sizeof(mbedtls_asn1_buf));
+
+ if ((ret = mbedtls_asn1_get_alg(p, end, alg, &params)) != 0) {
+ return ret;
+ }
+
+ if ((params.tag != MBEDTLS_ASN1_NULL && params.tag != 0) || params.len != 0) {
+ return MBEDTLS_ERR_ASN1_INVALID_DATA;
+ }
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+void mbedtls_asn1_free_named_data(mbedtls_asn1_named_data *cur)
+{
+ if (cur == NULL) {
+ return;
+ }
+
+ mbedtls_free(cur->oid.p);
+ mbedtls_free(cur->val.p);
+
+ mbedtls_platform_zeroize(cur, sizeof(mbedtls_asn1_named_data));
+}
+#endif /* MBEDTLS_DEPRECATED_REMOVED */
+
+void mbedtls_asn1_free_named_data_list(mbedtls_asn1_named_data **head)
+{
+ mbedtls_asn1_named_data *cur;
+
+ while ((cur = *head) != NULL) {
+ *head = cur->next;
+ mbedtls_free(cur->oid.p);
+ mbedtls_free(cur->val.p);
+ mbedtls_free(cur);
+ }
+}
+
+void mbedtls_asn1_free_named_data_list_shallow(mbedtls_asn1_named_data *name)
+{
+ for (mbedtls_asn1_named_data *next; name != NULL; name = next) {
+ next = name->next;
+ mbedtls_free(name);
+ }
+}
+
+const mbedtls_asn1_named_data *mbedtls_asn1_find_named_data(const mbedtls_asn1_named_data *list,
+ const char *oid, size_t len)
+{
+ while (list != NULL) {
+ if (list->oid.len == len &&
+ memcmp(list->oid.p, oid, len) == 0) {
+ break;
+ }
+
+ list = list->next;
+ }
+
+ return list;
+}
+
+#endif /* MBEDTLS_ASN1_PARSE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/asn1write.c b/tf-psa-crypto/drivers/builtin/src/asn1write.c
new file mode 100644
index 0000000..775a9ef
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/asn1write.c
@@ -0,0 +1,437 @@
+/*
+ * ASN.1 buffer writing functionality
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ASN1_WRITE_C) || defined(MBEDTLS_X509_USE_C) || \
+ defined(MBEDTLS_PSA_UTIL_HAVE_ECDSA)
+
+#include "mbedtls/asn1write.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+#include "mbedtls/asn1.h"
+#endif
+
+int mbedtls_asn1_write_len(unsigned char **p, const unsigned char *start, size_t len)
+{
+#if SIZE_MAX > 0xFFFFFFFF
+ if (len > 0xFFFFFFFF) {
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+#endif
+
+ int required = 1;
+
+ if (len >= 0x80) {
+ for (size_t l = len; l != 0; l >>= 8) {
+ required++;
+ }
+ }
+
+ if (required > (*p - start)) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ do {
+ *--(*p) = MBEDTLS_BYTE_0(len);
+ len >>= 8;
+ } while (len);
+
+ if (required > 1) {
+ *--(*p) = (unsigned char) (0x80 + required - 1);
+ }
+
+ return required;
+}
+
+int mbedtls_asn1_write_tag(unsigned char **p, const unsigned char *start, unsigned char tag)
+{
+ if (*p - start < 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ *--(*p) = tag;
+
+ return 1;
+}
+#endif /* MBEDTLS_ASN1_WRITE_C || MBEDTLS_X509_USE_C || MBEDTLS_PSA_UTIL_HAVE_ECDSA */
+
+#if defined(MBEDTLS_ASN1_WRITE_C)
+static int mbedtls_asn1_write_len_and_tag(unsigned char **p,
+ const unsigned char *start,
+ size_t len,
+ unsigned char tag)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, tag));
+
+ return (int) len;
+}
+
+int mbedtls_asn1_write_raw_buffer(unsigned char **p, const unsigned char *start,
+ const unsigned char *buf, size_t size)
+{
+ size_t len = 0;
+
+ if (*p < start || (size_t) (*p - start) < size) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ len = size;
+ (*p) -= len;
+ memcpy(*p, buf, len);
+
+ return (int) len;
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+int mbedtls_asn1_write_mpi(unsigned char **p, const unsigned char *start, const mbedtls_mpi *X)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+
+ // Write the MPI
+ //
+ len = mbedtls_mpi_size(X);
+
+ /* DER represents 0 with a sign bit (0=nonnegative) and 7 value bits, not
+ * as 0 digits. We need to end up with 020100, not with 0200. */
+ if (len == 0) {
+ len = 1;
+ }
+
+ if (*p < start || (size_t) (*p - start) < len) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ (*p) -= len;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(X, *p, len));
+
+ // DER format assumes 2s complement for numbers, so the leftmost bit
+ // should be 0 for positive numbers and 1 for negative numbers.
+ //
+ if (X->s == 1 && **p & 0x80) {
+ if (*p - start < 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ *--(*p) = 0x00;
+ len += 1;
+ }
+
+ ret = mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_INTEGER);
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_BIGNUM_C */
+
+int mbedtls_asn1_write_null(unsigned char **p, const unsigned char *start)
+{
+ // Write NULL
+ //
+ return mbedtls_asn1_write_len_and_tag(p, start, 0, MBEDTLS_ASN1_NULL);
+}
+
+int mbedtls_asn1_write_oid(unsigned char **p, const unsigned char *start,
+ const char *oid, size_t oid_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(p, start,
+ (const unsigned char *) oid, oid_len));
+ return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_OID);
+}
+
+int mbedtls_asn1_write_algorithm_identifier(unsigned char **p, const unsigned char *start,
+ const char *oid, size_t oid_len,
+ size_t par_len)
+{
+ return mbedtls_asn1_write_algorithm_identifier_ext(p, start, oid, oid_len, par_len, 1);
+}
+
+int mbedtls_asn1_write_algorithm_identifier_ext(unsigned char **p, const unsigned char *start,
+ const char *oid, size_t oid_len,
+ size_t par_len, int has_par)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+
+ if (has_par) {
+ if (par_len == 0) {
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_null(p, start));
+ } else {
+ len += par_len;
+ }
+ }
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_oid(p, start, oid, oid_len));
+
+ return mbedtls_asn1_write_len_and_tag(p, start, len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
+}
+
+int mbedtls_asn1_write_bool(unsigned char **p, const unsigned char *start, int boolean)
+{
+ size_t len = 0;
+
+ if (*p - start < 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ *--(*p) = (boolean) ? 255 : 0;
+ len++;
+
+ return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_BOOLEAN);
+}
+
+static int asn1_write_tagged_int(unsigned char **p, const unsigned char *start, int val, int tag)
+{
+ size_t len = 0;
+
+ do {
+ if (*p - start < 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+ len += 1;
+ *--(*p) = val & 0xff;
+ val >>= 8;
+ } while (val > 0);
+
+ if (**p & 0x80) {
+ if (*p - start < 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+ *--(*p) = 0x00;
+ len += 1;
+ }
+
+ return mbedtls_asn1_write_len_and_tag(p, start, len, tag);
+}
+
+int mbedtls_asn1_write_int(unsigned char **p, const unsigned char *start, int val)
+{
+ return asn1_write_tagged_int(p, start, val, MBEDTLS_ASN1_INTEGER);
+}
+
+int mbedtls_asn1_write_enum(unsigned char **p, const unsigned char *start, int val)
+{
+ return asn1_write_tagged_int(p, start, val, MBEDTLS_ASN1_ENUMERATED);
+}
+
+int mbedtls_asn1_write_tagged_string(unsigned char **p, const unsigned char *start, int tag,
+ const char *text, size_t text_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(p, start,
+ (const unsigned char *) text,
+ text_len));
+
+ return mbedtls_asn1_write_len_and_tag(p, start, len, tag);
+}
+
+int mbedtls_asn1_write_utf8_string(unsigned char **p, const unsigned char *start,
+ const char *text, size_t text_len)
+{
+ return mbedtls_asn1_write_tagged_string(p, start, MBEDTLS_ASN1_UTF8_STRING, text, text_len);
+}
+
+int mbedtls_asn1_write_printable_string(unsigned char **p, const unsigned char *start,
+ const char *text, size_t text_len)
+{
+ return mbedtls_asn1_write_tagged_string(p, start, MBEDTLS_ASN1_PRINTABLE_STRING, text,
+ text_len);
+}
+
+int mbedtls_asn1_write_ia5_string(unsigned char **p, const unsigned char *start,
+ const char *text, size_t text_len)
+{
+ return mbedtls_asn1_write_tagged_string(p, start, MBEDTLS_ASN1_IA5_STRING, text, text_len);
+}
+
+int mbedtls_asn1_write_named_bitstring(unsigned char **p,
+ const unsigned char *start,
+ const unsigned char *buf,
+ size_t bits)
+{
+ size_t unused_bits, byte_len;
+ const unsigned char *cur_byte;
+ unsigned char cur_byte_shifted;
+ unsigned char bit;
+
+ byte_len = (bits + 7) / 8;
+ unused_bits = (byte_len * 8) - bits;
+
+ /*
+ * Named bitstrings require that trailing 0s are excluded in the encoding
+ * of the bitstring. Trailing 0s are considered part of the 'unused' bits
+ * when encoding this value in the first content octet
+ */
+ if (bits != 0) {
+ cur_byte = buf + byte_len - 1;
+ cur_byte_shifted = *cur_byte >> unused_bits;
+
+ for (;;) {
+ bit = cur_byte_shifted & 0x1;
+ cur_byte_shifted >>= 1;
+
+ if (bit != 0) {
+ break;
+ }
+
+ bits--;
+ if (bits == 0) {
+ break;
+ }
+
+ if (bits % 8 == 0) {
+ cur_byte_shifted = *--cur_byte;
+ }
+ }
+ }
+
+ return mbedtls_asn1_write_bitstring(p, start, buf, bits);
+}
+
+int mbedtls_asn1_write_bitstring(unsigned char **p, const unsigned char *start,
+ const unsigned char *buf, size_t bits)
+{
+ size_t len = 0;
+ size_t unused_bits, byte_len;
+
+ byte_len = (bits + 7) / 8;
+ unused_bits = (byte_len * 8) - bits;
+
+ if (*p < start || (size_t) (*p - start) < byte_len + 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ len = byte_len + 1;
+
+ /* Write the bitstring. Ensure the unused bits are zeroed */
+ if (byte_len > 0) {
+ byte_len--;
+ *--(*p) = buf[byte_len] & ~((0x1 << unused_bits) - 1);
+ (*p) -= byte_len;
+ memcpy(*p, buf, byte_len);
+ }
+
+ /* Write unused bits */
+ *--(*p) = (unsigned char) unused_bits;
+
+ return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_BIT_STRING);
+}
+
+int mbedtls_asn1_write_octet_string(unsigned char **p, const unsigned char *start,
+ const unsigned char *buf, size_t size)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_raw_buffer(p, start, buf, size));
+
+ return mbedtls_asn1_write_len_and_tag(p, start, len, MBEDTLS_ASN1_OCTET_STRING);
+}
+
+
+#if !defined(MBEDTLS_ASN1_PARSE_C)
+/* This is a copy of the ASN.1 parsing function mbedtls_asn1_find_named_data(),
+ * which is replicated to avoid a dependency ASN1_WRITE_C on ASN1_PARSE_C. */
+static mbedtls_asn1_named_data *asn1_find_named_data(
+ mbedtls_asn1_named_data *list,
+ const char *oid, size_t len)
+{
+ while (list != NULL) {
+ if (list->oid.len == len &&
+ memcmp(list->oid.p, oid, len) == 0) {
+ break;
+ }
+
+ list = list->next;
+ }
+
+ return list;
+}
+#else
+#define asn1_find_named_data(list, oid, len) \
+ ((mbedtls_asn1_named_data *) mbedtls_asn1_find_named_data(list, oid, len))
+#endif
+
+mbedtls_asn1_named_data *mbedtls_asn1_store_named_data(
+ mbedtls_asn1_named_data **head,
+ const char *oid, size_t oid_len,
+ const unsigned char *val,
+ size_t val_len)
+{
+ mbedtls_asn1_named_data *cur;
+
+ if ((cur = asn1_find_named_data(*head, oid, oid_len)) == NULL) {
+ // Add new entry if not present yet based on OID
+ //
+ cur = (mbedtls_asn1_named_data *) mbedtls_calloc(1,
+ sizeof(mbedtls_asn1_named_data));
+ if (cur == NULL) {
+ return NULL;
+ }
+
+ cur->oid.len = oid_len;
+ cur->oid.p = mbedtls_calloc(1, oid_len);
+ if (cur->oid.p == NULL) {
+ mbedtls_free(cur);
+ return NULL;
+ }
+
+ memcpy(cur->oid.p, oid, oid_len);
+
+ cur->val.len = val_len;
+ if (val_len != 0) {
+ cur->val.p = mbedtls_calloc(1, val_len);
+ if (cur->val.p == NULL) {
+ mbedtls_free(cur->oid.p);
+ mbedtls_free(cur);
+ return NULL;
+ }
+ }
+
+ cur->next = *head;
+ *head = cur;
+ } else if (val_len == 0) {
+ mbedtls_free(cur->val.p);
+ cur->val.p = NULL;
+ } else if (cur->val.len != val_len) {
+ /*
+ * Enlarge existing value buffer if needed
+ * Preserve old data until the allocation succeeded, to leave list in
+ * a consistent state in case allocation fails.
+ */
+ void *p = mbedtls_calloc(1, val_len);
+ if (p == NULL) {
+ return NULL;
+ }
+
+ mbedtls_free(cur->val.p);
+ cur->val.p = p;
+ cur->val.len = val_len;
+ }
+
+ if (val != NULL && val_len != 0) {
+ memcpy(cur->val.p, val, val_len);
+ }
+
+ return cur;
+}
+#endif /* MBEDTLS_ASN1_WRITE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/base64.c b/tf-psa-crypto/drivers/builtin/src/base64.c
new file mode 100644
index 0000000..9677dee
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/base64.c
@@ -0,0 +1,299 @@
+/*
+ * RFC 1521 base64 encoding/decoding
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include <limits.h>
+
+#include "common.h"
+
+#if defined(MBEDTLS_BASE64_C)
+
+#include "mbedtls/base64.h"
+#include "base64_internal.h"
+#include "constant_time_internal.h"
+
+#include <stdint.h>
+
+#if defined(MBEDTLS_SELF_TEST)
+#include <string.h>
+#include "mbedtls/platform.h"
+#endif /* MBEDTLS_SELF_TEST */
+
+MBEDTLS_STATIC_TESTABLE
+unsigned char mbedtls_ct_base64_enc_char(unsigned char value)
+{
+ unsigned char digit = 0;
+ /* For each range of values, if value is in that range, mask digit with
+ * the corresponding value. Since value can only be in a single range,
+ * only at most one masking will change digit. */
+ digit |= mbedtls_ct_uchar_in_range_if(0, 25, value, 'A' + value);
+ digit |= mbedtls_ct_uchar_in_range_if(26, 51, value, 'a' + value - 26);
+ digit |= mbedtls_ct_uchar_in_range_if(52, 61, value, '0' + value - 52);
+ digit |= mbedtls_ct_uchar_in_range_if(62, 62, value, '+');
+ digit |= mbedtls_ct_uchar_in_range_if(63, 63, value, '/');
+ return digit;
+}
+
+MBEDTLS_STATIC_TESTABLE
+signed char mbedtls_ct_base64_dec_value(unsigned char c)
+{
+ unsigned char val = 0;
+ /* For each range of digits, if c is in that range, mask val with
+ * the corresponding value. Since c can only be in a single range,
+ * only at most one masking will change val. Set val to one plus
+ * the desired value so that it stays 0 if c is in none of the ranges. */
+ val |= mbedtls_ct_uchar_in_range_if('A', 'Z', c, c - 'A' + 0 + 1);
+ val |= mbedtls_ct_uchar_in_range_if('a', 'z', c, c - 'a' + 26 + 1);
+ val |= mbedtls_ct_uchar_in_range_if('0', '9', c, c - '0' + 52 + 1);
+ val |= mbedtls_ct_uchar_in_range_if('+', '+', c, c - '+' + 62 + 1);
+ val |= mbedtls_ct_uchar_in_range_if('/', '/', c, c - '/' + 63 + 1);
+ /* At this point, val is 0 if c is an invalid digit and v+1 if c is
+ * a digit with the value v. */
+ return val - 1;
+}
+
+/*
+ * Encode a buffer into base64 format
+ */
+int mbedtls_base64_encode(unsigned char *dst, size_t dlen, size_t *olen,
+ const unsigned char *src, size_t slen)
+{
+ size_t i, n;
+ int C1, C2, C3;
+ unsigned char *p;
+
+ if (slen == 0) {
+ *olen = 0;
+ return 0;
+ }
+
+ n = slen / 3 + (slen % 3 != 0);
+
+ if (n > (SIZE_MAX - 1) / 4) {
+ *olen = SIZE_MAX;
+ return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+ }
+
+ n *= 4;
+
+ if ((dlen < n + 1) || (NULL == dst)) {
+ *olen = n + 1;
+ return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+ }
+
+ n = (slen / 3) * 3;
+
+ for (i = 0, p = dst; i < n; i += 3) {
+ C1 = *src++;
+ C2 = *src++;
+ C3 = *src++;
+
+ *p++ = mbedtls_ct_base64_enc_char((C1 >> 2) & 0x3F);
+ *p++ = mbedtls_ct_base64_enc_char((((C1 & 3) << 4) + (C2 >> 4))
+ & 0x3F);
+ *p++ = mbedtls_ct_base64_enc_char((((C2 & 15) << 2) + (C3 >> 6))
+ & 0x3F);
+ *p++ = mbedtls_ct_base64_enc_char(C3 & 0x3F);
+ }
+
+ if (i < slen) {
+ C1 = *src++;
+ C2 = ((i + 1) < slen) ? *src++ : 0;
+
+ *p++ = mbedtls_ct_base64_enc_char((C1 >> 2) & 0x3F);
+ *p++ = mbedtls_ct_base64_enc_char((((C1 & 3) << 4) + (C2 >> 4))
+ & 0x3F);
+
+ if ((i + 1) < slen) {
+ *p++ = mbedtls_ct_base64_enc_char(((C2 & 15) << 2) & 0x3F);
+ } else {
+ *p++ = '=';
+ }
+
+ *p++ = '=';
+ }
+
+ *olen = (size_t) (p - dst);
+ *p = 0;
+
+ return 0;
+}
+
+/*
+ * Decode a base64-formatted buffer
+ */
+int mbedtls_base64_decode(unsigned char *dst, size_t dlen, size_t *olen,
+ const unsigned char *src, size_t slen)
+{
+ size_t i; /* index in source */
+ size_t n; /* number of digits or trailing = in source */
+ uint32_t x; /* value accumulator */
+ unsigned accumulated_digits = 0;
+ unsigned equals = 0;
+ int spaces_present = 0;
+ unsigned char *p;
+
+ /* First pass: check for validity and get output length */
+ for (i = n = 0; i < slen; i++) {
+ /* Skip spaces before checking for EOL */
+ spaces_present = 0;
+ while (i < slen && src[i] == ' ') {
+ ++i;
+ spaces_present = 1;
+ }
+
+ /* Spaces at end of buffer are OK */
+ if (i == slen) {
+ break;
+ }
+
+ if ((slen - i) >= 2 &&
+ src[i] == '\r' && src[i + 1] == '\n') {
+ continue;
+ }
+
+ if (src[i] == '\n') {
+ continue;
+ }
+
+ /* Space inside a line is an error */
+ if (spaces_present) {
+ return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+ }
+
+ if (src[i] > 127) {
+ return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+ }
+
+ if (src[i] == '=') {
+ if (++equals > 2) {
+ return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+ }
+ } else {
+ if (equals != 0) {
+ return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+ }
+ if (mbedtls_ct_base64_dec_value(src[i]) < 0) {
+ return MBEDTLS_ERR_BASE64_INVALID_CHARACTER;
+ }
+ }
+ n++;
+ }
+
+ if (n == 0) {
+ *olen = 0;
+ return 0;
+ }
+
+ /* The following expression is to calculate the following formula without
+ * risk of integer overflow in n:
+ * n = ( ( n * 6 ) + 7 ) >> 3;
+ */
+ n = (6 * (n >> 3)) + ((6 * (n & 0x7) + 7) >> 3);
+ n -= equals;
+
+ if (dst == NULL || dlen < n) {
+ *olen = n;
+ return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+ }
+
+ equals = 0;
+ for (x = 0, p = dst; i > 0; i--, src++) {
+ if (*src == '\r' || *src == '\n' || *src == ' ') {
+ continue;
+ }
+
+ x = x << 6;
+ if (*src == '=') {
+ ++equals;
+ } else {
+ x |= mbedtls_ct_base64_dec_value(*src);
+ }
+
+ if (++accumulated_digits == 4) {
+ accumulated_digits = 0;
+ *p++ = MBEDTLS_BYTE_2(x);
+ if (equals <= 1) {
+ *p++ = MBEDTLS_BYTE_1(x);
+ }
+ if (equals <= 0) {
+ *p++ = MBEDTLS_BYTE_0(x);
+ }
+ }
+ }
+
+ *olen = (size_t) (p - dst);
+
+ return 0;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char base64_test_dec[64] =
+{
+ 0x24, 0x48, 0x6E, 0x56, 0x87, 0x62, 0x5A, 0xBD,
+ 0xBF, 0x17, 0xD9, 0xA2, 0xC4, 0x17, 0x1A, 0x01,
+ 0x94, 0xED, 0x8F, 0x1E, 0x11, 0xB3, 0xD7, 0x09,
+ 0x0C, 0xB6, 0xE9, 0x10, 0x6F, 0x22, 0xEE, 0x13,
+ 0xCA, 0xB3, 0x07, 0x05, 0x76, 0xC9, 0xFA, 0x31,
+ 0x6C, 0x08, 0x34, 0xFF, 0x8D, 0xC2, 0x6C, 0x38,
+ 0x00, 0x43, 0xE9, 0x54, 0x97, 0xAF, 0x50, 0x4B,
+ 0xD1, 0x41, 0xBA, 0x95, 0x31, 0x5A, 0x0B, 0x97
+};
+
+static const unsigned char base64_test_enc[] =
+ "JEhuVodiWr2/F9mixBcaAZTtjx4Rs9cJDLbpEG8i7hPK"
+ "swcFdsn6MWwINP+Nwmw4AEPpVJevUEvRQbqVMVoLlw==";
+
+/*
+ * Checkup routine
+ */
+int mbedtls_base64_self_test(int verbose)
+{
+ size_t len;
+ const unsigned char *src;
+ unsigned char buffer[128];
+
+ if (verbose != 0) {
+ mbedtls_printf(" Base64 encoding test: ");
+ }
+
+ src = base64_test_dec;
+
+ if (mbedtls_base64_encode(buffer, sizeof(buffer), &len, src, 64) != 0 ||
+ memcmp(base64_test_enc, buffer, 88) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return 1;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n Base64 decoding test: ");
+ }
+
+ src = base64_test_enc;
+
+ if (mbedtls_base64_decode(buffer, sizeof(buffer), &len, src, 88) != 0 ||
+ memcmp(base64_test_dec, buffer, 64) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return 1;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n\n");
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_BASE64_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/base64_internal.h b/tf-psa-crypto/drivers/builtin/src/base64_internal.h
new file mode 100644
index 0000000..a09bd23
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/base64_internal.h
@@ -0,0 +1,45 @@
+/**
+ * \file base64_internal.h
+ *
+ * \brief RFC 1521 base64 encoding/decoding: interfaces for invasive testing
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BASE64_INTERNAL
+#define MBEDTLS_BASE64_INTERNAL
+
+#include "common.h"
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+/** Given a value in the range 0..63, return the corresponding Base64 digit.
+ *
+ * The implementation assumes that letters are consecutive (e.g. ASCII
+ * but not EBCDIC).
+ *
+ * \param value A value in the range 0..63.
+ *
+ * \return A base64 digit converted from \p value.
+ */
+unsigned char mbedtls_ct_base64_enc_char(unsigned char value);
+
+/** Given a Base64 digit, return its value.
+ *
+ * If c is not a Base64 digit ('A'..'Z', 'a'..'z', '0'..'9', '+' or '/'),
+ * return -1.
+ *
+ * The implementation assumes that letters are consecutive (e.g. ASCII
+ * but not EBCDIC).
+ *
+ * \param c A base64 digit.
+ *
+ * \return The value of the base64 digit \p c.
+ */
+signed char mbedtls_ct_base64_dec_value(unsigned char c);
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_BASE64_INTERNAL */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum.c b/tf-psa-crypto/drivers/builtin/src/bignum.c
new file mode 100644
index 0000000..c45fd5b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum.c
@@ -0,0 +1,2464 @@
+/*
+ * Multi-precision integer library
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The following sources were referenced in the design of this Multi-precision
+ * Integer library:
+ *
+ * [1] Handbook of Applied Cryptography - 1997
+ * Menezes, van Oorschot and Vanstone
+ *
+ * [2] Multi-Precision Math
+ * Tom St Denis
+ * https://github.com/libtom/libtommath/blob/develop/tommath.pdf
+ *
+ * [3] GNU Multi-Precision Arithmetic Library
+ * https://gmplib.org/manual/index.html
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+#include "mbedtls/bignum.h"
+#include "bignum_core.h"
+#include "bn_mul.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "constant_time_internal.h"
+
+#include <limits.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+
+
+/*
+ * Conditionally select an MPI sign in constant time.
+ * (MPI sign is the field s in mbedtls_mpi. It is unsigned short and only 1 and -1 are valid
+ * values.)
+ */
+static inline signed short mbedtls_ct_mpi_sign_if(mbedtls_ct_condition_t cond,
+ signed short sign1, signed short sign2)
+{
+ return (signed short) mbedtls_ct_uint_if(cond, sign1 + 1, sign2 + 1) - 1;
+}
+
+/*
+ * Compare signed values in constant time
+ */
+int mbedtls_mpi_lt_mpi_ct(const mbedtls_mpi *X,
+ const mbedtls_mpi *Y,
+ unsigned *ret)
+{
+ mbedtls_ct_condition_t different_sign, X_is_negative, Y_is_negative, result;
+
+ if (X->n != Y->n) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Set N_is_negative to MBEDTLS_CT_FALSE if N >= 0, MBEDTLS_CT_TRUE if N < 0.
+ * We know that N->s == 1 if N >= 0 and N->s == -1 if N < 0.
+ */
+ X_is_negative = mbedtls_ct_bool((X->s & 2) >> 1);
+ Y_is_negative = mbedtls_ct_bool((Y->s & 2) >> 1);
+
+ /*
+ * If the signs are different, then the positive operand is the bigger.
+ * That is if X is negative (X_is_negative == 1), then X < Y is true and it
+ * is false if X is positive (X_is_negative == 0).
+ */
+ different_sign = mbedtls_ct_bool_ne(X_is_negative, Y_is_negative); // true if different sign
+ result = mbedtls_ct_bool_and(different_sign, X_is_negative);
+
+ /*
+ * Assuming signs are the same, compare X and Y. We switch the comparison
+ * order if they are negative so that we get the right result, regardles of
+ * sign.
+ */
+
+ /* This array is used to conditionally swap the pointers in const time */
+ void * const p[2] = { X->p, Y->p };
+ size_t i = mbedtls_ct_size_if_else_0(X_is_negative, 1);
+ mbedtls_ct_condition_t lt = mbedtls_mpi_core_lt_ct(p[i], p[i ^ 1], X->n);
+
+ /*
+ * Store in result iff the signs are the same (i.e., iff different_sign == false). If
+ * the signs differ, result has already been set, so we don't change it.
+ */
+ result = mbedtls_ct_bool_or(result,
+ mbedtls_ct_bool_and(mbedtls_ct_bool_not(different_sign), lt));
+
+ *ret = mbedtls_ct_uint_if_else_0(result, 1);
+
+ return 0;
+}
+
+/*
+ * Conditionally assign X = Y, without leaking information
+ * about whether the assignment was made or not.
+ * (Leaking information about the respective sizes of X and Y is ok however.)
+ */
+#if defined(_MSC_VER) && defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64) && \
+ (_MSC_FULL_VER < 193131103)
+/*
+ * MSVC miscompiles this function if it's inlined prior to Visual Studio 2022 version 17.1. See:
+ * https://developercommunity.visualstudio.com/t/c-compiler-miscompiles-part-of-mbedtls-library-on/1646989
+ */
+__declspec(noinline)
+#endif
+int mbedtls_mpi_safe_cond_assign(mbedtls_mpi *X,
+ const mbedtls_mpi *Y,
+ unsigned char assign)
+{
+ int ret = 0;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+
+ {
+ mbedtls_ct_condition_t do_assign = mbedtls_ct_bool(assign);
+
+ X->s = mbedtls_ct_mpi_sign_if(do_assign, Y->s, X->s);
+
+ mbedtls_mpi_core_cond_assign(X->p, Y->p, Y->n, do_assign);
+
+ mbedtls_ct_condition_t do_not_assign = mbedtls_ct_bool_not(do_assign);
+ for (size_t i = Y->n; i < X->n; i++) {
+ X->p[i] = mbedtls_ct_mpi_uint_if_else_0(do_not_assign, X->p[i]);
+ }
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Conditionally swap X and Y, without leaking information
+ * about whether the swap was made or not.
+ * Here it is not ok to simply swap the pointers, which would lead to
+ * different memory access patterns when X and Y are used afterwards.
+ */
+int mbedtls_mpi_safe_cond_swap(mbedtls_mpi *X,
+ mbedtls_mpi *Y,
+ unsigned char swap)
+{
+ int ret = 0;
+ int s;
+
+ if (X == Y) {
+ return 0;
+ }
+
+ mbedtls_ct_condition_t do_swap = mbedtls_ct_bool(swap);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, Y->n));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Y, X->n));
+
+ s = X->s;
+ X->s = mbedtls_ct_mpi_sign_if(do_swap, Y->s, X->s);
+ Y->s = mbedtls_ct_mpi_sign_if(do_swap, s, Y->s);
+
+ mbedtls_mpi_core_cond_swap(X->p, Y->p, X->n, do_swap);
+
+cleanup:
+ return ret;
+}
+
+/* Implementation that should never be optimized out by the compiler */
+#define mbedtls_mpi_zeroize_and_free(v, n) mbedtls_zeroize_and_free(v, ciL * (n))
+
+/*
+ * Initialize one MPI
+ */
+void mbedtls_mpi_init(mbedtls_mpi *X)
+{
+ X->s = 1;
+ X->n = 0;
+ X->p = NULL;
+}
+
+/*
+ * Unallocate one MPI
+ */
+void mbedtls_mpi_free(mbedtls_mpi *X)
+{
+ if (X == NULL) {
+ return;
+ }
+
+ if (X->p != NULL) {
+ mbedtls_mpi_zeroize_and_free(X->p, X->n);
+ }
+
+ X->s = 1;
+ X->n = 0;
+ X->p = NULL;
+}
+
+/*
+ * Enlarge to the specified number of limbs
+ */
+int mbedtls_mpi_grow(mbedtls_mpi *X, size_t nblimbs)
+{
+ mbedtls_mpi_uint *p;
+
+ if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ if (X->n < nblimbs) {
+ if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(nblimbs, ciL)) == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ if (X->p != NULL) {
+ memcpy(p, X->p, X->n * ciL);
+ mbedtls_mpi_zeroize_and_free(X->p, X->n);
+ }
+
+ /* nblimbs fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
+ * fits, and we've checked that nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
+ X->n = (unsigned short) nblimbs;
+ X->p = p;
+ }
+
+ return 0;
+}
+
+/*
+ * Resize down as much as possible,
+ * while keeping at least the specified number of limbs
+ */
+int mbedtls_mpi_shrink(mbedtls_mpi *X, size_t nblimbs)
+{
+ mbedtls_mpi_uint *p;
+ size_t i;
+
+ if (nblimbs > MBEDTLS_MPI_MAX_LIMBS) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ /* Actually resize up if there are currently fewer than nblimbs limbs. */
+ if (X->n <= nblimbs) {
+ return mbedtls_mpi_grow(X, nblimbs);
+ }
+ /* After this point, then X->n > nblimbs and in particular X->n > 0. */
+
+ for (i = X->n - 1; i > 0; i--) {
+ if (X->p[i] != 0) {
+ break;
+ }
+ }
+ i++;
+
+ if (i < nblimbs) {
+ i = nblimbs;
+ }
+
+ if ((p = (mbedtls_mpi_uint *) mbedtls_calloc(i, ciL)) == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ if (X->p != NULL) {
+ memcpy(p, X->p, i * ciL);
+ mbedtls_mpi_zeroize_and_free(X->p, X->n);
+ }
+
+ /* i fits in n because we ensure that MBEDTLS_MPI_MAX_LIMBS
+ * fits, and we've checked that i <= nblimbs <= MBEDTLS_MPI_MAX_LIMBS. */
+ X->n = (unsigned short) i;
+ X->p = p;
+
+ return 0;
+}
+
+/* Resize X to have exactly n limbs and set it to 0. */
+static int mbedtls_mpi_resize_clear(mbedtls_mpi *X, size_t limbs)
+{
+ if (limbs == 0) {
+ mbedtls_mpi_free(X);
+ return 0;
+ } else if (X->n == limbs) {
+ memset(X->p, 0, limbs * ciL);
+ X->s = 1;
+ return 0;
+ } else {
+ mbedtls_mpi_free(X);
+ return mbedtls_mpi_grow(X, limbs);
+ }
+}
+
+/*
+ * Copy the contents of Y into X.
+ *
+ * This function is not constant-time. Leading zeros in Y may be removed.
+ *
+ * Ensure that X does not shrink. This is not guaranteed by the public API,
+ * but some code in the bignum module might still rely on this property.
+ */
+int mbedtls_mpi_copy(mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+ int ret = 0;
+ size_t i;
+
+ if (X == Y) {
+ return 0;
+ }
+
+ if (Y->n == 0) {
+ if (X->n != 0) {
+ X->s = 1;
+ memset(X->p, 0, X->n * ciL);
+ }
+ return 0;
+ }
+
+ for (i = Y->n - 1; i > 0; i--) {
+ if (Y->p[i] != 0) {
+ break;
+ }
+ }
+ i++;
+
+ X->s = Y->s;
+
+ if (X->n < i) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i));
+ } else {
+ memset(X->p + i, 0, (X->n - i) * ciL);
+ }
+
+ memcpy(X->p, Y->p, i * ciL);
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Swap the contents of X and Y
+ */
+void mbedtls_mpi_swap(mbedtls_mpi *X, mbedtls_mpi *Y)
+{
+ mbedtls_mpi T;
+
+ memcpy(&T, X, sizeof(mbedtls_mpi));
+ memcpy(X, Y, sizeof(mbedtls_mpi));
+ memcpy(Y, &T, sizeof(mbedtls_mpi));
+}
+
+static inline mbedtls_mpi_uint mpi_sint_abs(mbedtls_mpi_sint z)
+{
+ if (z >= 0) {
+ return z;
+ }
+ /* Take care to handle the most negative value (-2^(biL-1)) correctly.
+ * A naive -z would have undefined behavior.
+ * Write this in a way that makes popular compilers happy (GCC, Clang,
+ * MSVC). */
+ return (mbedtls_mpi_uint) 0 - (mbedtls_mpi_uint) z;
+}
+
+/* Convert x to a sign, i.e. to 1, if x is positive, or -1, if x is negative.
+ * This looks awkward but generates smaller code than (x < 0 ? -1 : 1) */
+#define TO_SIGN(x) ((mbedtls_mpi_sint) (((mbedtls_mpi_uint) x) >> (biL - 1)) * -2 + 1)
+
+/*
+ * Set value from integer
+ */
+int mbedtls_mpi_lset(mbedtls_mpi *X, mbedtls_mpi_sint z)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, 1));
+ memset(X->p, 0, X->n * ciL);
+
+ X->p[0] = mpi_sint_abs(z);
+ X->s = TO_SIGN(z);
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Get a specific bit
+ */
+int mbedtls_mpi_get_bit(const mbedtls_mpi *X, size_t pos)
+{
+ if (X->n * biL <= pos) {
+ return 0;
+ }
+
+ return (X->p[pos / biL] >> (pos % biL)) & 0x01;
+}
+
+/*
+ * Set a bit to a specific value of 0 or 1
+ */
+int mbedtls_mpi_set_bit(mbedtls_mpi *X, size_t pos, unsigned char val)
+{
+ int ret = 0;
+ size_t off = pos / biL;
+ size_t idx = pos % biL;
+
+ if (val != 0 && val != 1) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (X->n * biL <= pos) {
+ if (val == 0) {
+ return 0;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, off + 1));
+ }
+
+ X->p[off] &= ~((mbedtls_mpi_uint) 0x01 << idx);
+ X->p[off] |= (mbedtls_mpi_uint) val << idx;
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Return the number of less significant zero-bits
+ */
+size_t mbedtls_mpi_lsb(const mbedtls_mpi *X)
+{
+ size_t i;
+
+#if defined(__has_builtin)
+#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_ctz)
+ #define mbedtls_mpi_uint_ctz __builtin_ctz
+#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_ctzl)
+ #define mbedtls_mpi_uint_ctz __builtin_ctzl
+#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_ctzll)
+ #define mbedtls_mpi_uint_ctz __builtin_ctzll
+#endif
+#endif
+
+#if defined(mbedtls_mpi_uint_ctz)
+ for (i = 0; i < X->n; i++) {
+ if (X->p[i] != 0) {
+ return i * biL + mbedtls_mpi_uint_ctz(X->p[i]);
+ }
+ }
+#else
+ size_t count = 0;
+ for (i = 0; i < X->n; i++) {
+ for (size_t j = 0; j < biL; j++, count++) {
+ if (((X->p[i] >> j) & 1) != 0) {
+ return count;
+ }
+ }
+ }
+#endif
+
+ return 0;
+}
+
+/*
+ * Return the number of bits
+ */
+size_t mbedtls_mpi_bitlen(const mbedtls_mpi *X)
+{
+ return mbedtls_mpi_core_bitlen(X->p, X->n);
+}
+
+/*
+ * Return the total size in bytes
+ */
+size_t mbedtls_mpi_size(const mbedtls_mpi *X)
+{
+ return (mbedtls_mpi_bitlen(X) + 7) >> 3;
+}
+
+/*
+ * Convert an ASCII character to digit value
+ */
+static int mpi_get_digit(mbedtls_mpi_uint *d, int radix, char c)
+{
+ *d = 255;
+
+ if (c >= 0x30 && c <= 0x39) {
+ *d = c - 0x30;
+ }
+ if (c >= 0x41 && c <= 0x46) {
+ *d = c - 0x37;
+ }
+ if (c >= 0x61 && c <= 0x66) {
+ *d = c - 0x57;
+ }
+
+ if (*d >= (mbedtls_mpi_uint) radix) {
+ return MBEDTLS_ERR_MPI_INVALID_CHARACTER;
+ }
+
+ return 0;
+}
+
+/*
+ * Import from an ASCII string
+ */
+int mbedtls_mpi_read_string(mbedtls_mpi *X, int radix, const char *s)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, j, slen, n;
+ int sign = 1;
+ mbedtls_mpi_uint d;
+ mbedtls_mpi T;
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&T);
+
+ if (s[0] == 0) {
+ mbedtls_mpi_free(X);
+ return 0;
+ }
+
+ if (s[0] == '-') {
+ ++s;
+ sign = -1;
+ }
+
+ slen = strlen(s);
+
+ if (radix == 16) {
+ if (slen > SIZE_MAX >> 2) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ n = BITS_TO_LIMBS(slen << 2);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+ for (i = slen, j = 0; i > 0; i--, j++) {
+ MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i - 1]));
+ X->p[j / (2 * ciL)] |= d << ((j % (2 * ciL)) << 2);
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+ for (i = 0; i < slen; i++) {
+ MBEDTLS_MPI_CHK(mpi_get_digit(&d, radix, s[i]));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T, X, radix));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, &T, d));
+ }
+ }
+
+ if (sign < 0 && mbedtls_mpi_bitlen(X) != 0) {
+ X->s = -1;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&T);
+
+ return ret;
+}
+
+/*
+ * Helper to write the digits high-order first.
+ */
+static int mpi_write_hlp(mbedtls_mpi *X, int radix,
+ char **p, const size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi_uint r;
+ size_t length = 0;
+ char *p_end = *p + buflen;
+
+ do {
+ if (length >= buflen) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, radix));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_int(X, NULL, X, radix));
+ /*
+ * Write the residue in the current position, as an ASCII character.
+ */
+ if (r < 0xA) {
+ *(--p_end) = (char) ('0' + r);
+ } else {
+ *(--p_end) = (char) ('A' + (r - 0xA));
+ }
+
+ length++;
+ } while (mbedtls_mpi_cmp_int(X, 0) != 0);
+
+ memmove(*p, p_end, length);
+ *p += length;
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Export into an ASCII string
+ */
+int mbedtls_mpi_write_string(const mbedtls_mpi *X, int radix,
+ char *buf, size_t buflen, size_t *olen)
+{
+ int ret = 0;
+ size_t n;
+ char *p;
+ mbedtls_mpi T;
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ n = mbedtls_mpi_bitlen(X); /* Number of bits necessary to present `n`. */
+ if (radix >= 4) {
+ n >>= 1; /* Number of 4-adic digits necessary to present
+ * `n`. If radix > 4, this might be a strict
+ * overapproximation of the number of
+ * radix-adic digits needed to present `n`. */
+ }
+ if (radix >= 16) {
+ n >>= 1; /* Number of hexadecimal digits necessary to
+ * present `n`. */
+
+ }
+ n += 1; /* Terminating null byte */
+ n += 1; /* Compensate for the divisions above, which round down `n`
+ * in case it's not even. */
+ n += 1; /* Potential '-'-sign. */
+ n += (n & 1); /* Make n even to have enough space for hexadecimal writing,
+ * which always uses an even number of hex-digits. */
+
+ if (buflen < n) {
+ *olen = n;
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ p = buf;
+ mbedtls_mpi_init(&T);
+
+ if (X->s == -1) {
+ *p++ = '-';
+ buflen--;
+ }
+
+ if (radix == 16) {
+ int c;
+ size_t i, j, k;
+
+ for (i = X->n, k = 0; i > 0; i--) {
+ for (j = ciL; j > 0; j--) {
+ c = (X->p[i - 1] >> ((j - 1) << 3)) & 0xFF;
+
+ if (c == 0 && k == 0 && (i + j) != 2) {
+ continue;
+ }
+
+ *(p++) = "0123456789ABCDEF" [c / 16];
+ *(p++) = "0123456789ABCDEF" [c % 16];
+ k = 1;
+ }
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T, X));
+
+ if (T.s == -1) {
+ T.s = 1;
+ }
+
+ MBEDTLS_MPI_CHK(mpi_write_hlp(&T, radix, &p, buflen));
+ }
+
+ *p++ = '\0';
+ *olen = (size_t) (p - buf);
+
+cleanup:
+
+ mbedtls_mpi_free(&T);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Read X from an opened file
+ */
+int mbedtls_mpi_read_file(mbedtls_mpi *X, int radix, FILE *fin)
+{
+ mbedtls_mpi_uint d;
+ size_t slen;
+ char *p;
+ /*
+ * Buffer should have space for (short) label and decimal formatted MPI,
+ * newline characters and '\0'
+ */
+ char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ memset(s, 0, sizeof(s));
+ if (fgets(s, sizeof(s) - 1, fin) == NULL) {
+ return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
+ }
+
+ slen = strlen(s);
+ if (slen == sizeof(s) - 2) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ if (slen > 0 && s[slen - 1] == '\n') {
+ slen--; s[slen] = '\0';
+ }
+ if (slen > 0 && s[slen - 1] == '\r') {
+ slen--; s[slen] = '\0';
+ }
+
+ p = s + slen;
+ while (p-- > s) {
+ if (mpi_get_digit(&d, radix, *p) != 0) {
+ break;
+ }
+ }
+
+ return mbedtls_mpi_read_string(X, radix, p + 1);
+}
+
+/*
+ * Write X into an opened file (or stdout if fout == NULL)
+ */
+int mbedtls_mpi_write_file(const char *p, const mbedtls_mpi *X, int radix, FILE *fout)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n, slen, plen;
+ /*
+ * Buffer should have space for (short) label and decimal formatted MPI,
+ * newline characters and '\0'
+ */
+ char s[MBEDTLS_MPI_RW_BUFFER_SIZE];
+
+ if (radix < 2 || radix > 16) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ memset(s, 0, sizeof(s));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_string(X, radix, s, sizeof(s) - 2, &n));
+
+ if (p == NULL) {
+ p = "";
+ }
+
+ plen = strlen(p);
+ slen = strlen(s);
+ s[slen++] = '\r';
+ s[slen++] = '\n';
+
+ if (fout != NULL) {
+ if (fwrite(p, 1, plen, fout) != plen ||
+ fwrite(s, 1, slen, fout) != slen) {
+ return MBEDTLS_ERR_MPI_FILE_IO_ERROR;
+ }
+ } else {
+ mbedtls_printf("%s%s", p, s);
+ }
+
+cleanup:
+
+ return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+
+/*
+ * Import X from unsigned binary data, little endian
+ *
+ * This function is guaranteed to return an MPI with exactly the necessary
+ * number of limbs (in particular, it does not skip 0s in the input).
+ */
+int mbedtls_mpi_read_binary_le(mbedtls_mpi *X,
+ const unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(buflen);
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_le(X->p, X->n, buf, buflen));
+
+cleanup:
+
+ /*
+ * This function is also used to import keys. However, wiping the buffers
+ * upon failure is not necessary because failure only can happen before any
+ * input is copied.
+ */
+ return ret;
+}
+
+/*
+ * Import X from unsigned binary data, big endian
+ *
+ * This function is guaranteed to return an MPI with exactly the necessary
+ * number of limbs (in particular, it does not skip 0s in the input).
+ */
+int mbedtls_mpi_read_binary(mbedtls_mpi *X, const unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(buflen);
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_read_be(X->p, X->n, buf, buflen));
+
+cleanup:
+
+ /*
+ * This function is also used to import keys. However, wiping the buffers
+ * upon failure is not necessary because failure only can happen before any
+ * input is copied.
+ */
+ return ret;
+}
+
+/*
+ * Export X into unsigned binary data, little endian
+ */
+int mbedtls_mpi_write_binary_le(const mbedtls_mpi *X,
+ unsigned char *buf, size_t buflen)
+{
+ return mbedtls_mpi_core_write_le(X->p, X->n, buf, buflen);
+}
+
+/*
+ * Export X into unsigned binary data, big endian
+ */
+int mbedtls_mpi_write_binary(const mbedtls_mpi *X,
+ unsigned char *buf, size_t buflen)
+{
+ return mbedtls_mpi_core_write_be(X->p, X->n, buf, buflen);
+}
+
+/*
+ * Left-shift: X <<= count
+ */
+int mbedtls_mpi_shift_l(mbedtls_mpi *X, size_t count)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+
+ i = mbedtls_mpi_bitlen(X) + count;
+
+ if (X->n * biL < i) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, BITS_TO_LIMBS(i)));
+ }
+
+ ret = 0;
+
+ mbedtls_mpi_core_shift_l(X->p, X->n, count);
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Right-shift: X >>= count
+ */
+int mbedtls_mpi_shift_r(mbedtls_mpi *X, size_t count)
+{
+ if (X->n != 0) {
+ mbedtls_mpi_core_shift_r(X->p, X->n, count);
+ }
+ return 0;
+}
+
+/*
+ * Compare unsigned values
+ */
+int mbedtls_mpi_cmp_abs(const mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+ size_t i, j;
+
+ for (i = X->n; i > 0; i--) {
+ if (X->p[i - 1] != 0) {
+ break;
+ }
+ }
+
+ for (j = Y->n; j > 0; j--) {
+ if (Y->p[j - 1] != 0) {
+ break;
+ }
+ }
+
+ /* If i == j == 0, i.e. abs(X) == abs(Y),
+ * we end up returning 0 at the end of the function. */
+
+ if (i > j) {
+ return 1;
+ }
+ if (j > i) {
+ return -1;
+ }
+
+ for (; i > 0; i--) {
+ if (X->p[i - 1] > Y->p[i - 1]) {
+ return 1;
+ }
+ if (X->p[i - 1] < Y->p[i - 1]) {
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_mpi(const mbedtls_mpi *X, const mbedtls_mpi *Y)
+{
+ size_t i, j;
+
+ for (i = X->n; i > 0; i--) {
+ if (X->p[i - 1] != 0) {
+ break;
+ }
+ }
+
+ for (j = Y->n; j > 0; j--) {
+ if (Y->p[j - 1] != 0) {
+ break;
+ }
+ }
+
+ if (i == 0 && j == 0) {
+ return 0;
+ }
+
+ if (i > j) {
+ return X->s;
+ }
+ if (j > i) {
+ return -Y->s;
+ }
+
+ if (X->s > 0 && Y->s < 0) {
+ return 1;
+ }
+ if (Y->s > 0 && X->s < 0) {
+ return -1;
+ }
+
+ for (; i > 0; i--) {
+ if (X->p[i - 1] > Y->p[i - 1]) {
+ return X->s;
+ }
+ if (X->p[i - 1] < Y->p[i - 1]) {
+ return -X->s;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Compare signed values
+ */
+int mbedtls_mpi_cmp_int(const mbedtls_mpi *X, mbedtls_mpi_sint z)
+{
+ mbedtls_mpi Y;
+ mbedtls_mpi_uint p[1];
+
+ *p = mpi_sint_abs(z);
+ Y.s = TO_SIGN(z);
+ Y.n = 1;
+ Y.p = p;
+
+ return mbedtls_mpi_cmp_mpi(X, &Y);
+}
+
+/*
+ * Unsigned addition: X = |A| + |B| (HAC 14.7)
+ */
+int mbedtls_mpi_add_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t j;
+ mbedtls_mpi_uint *p;
+ mbedtls_mpi_uint c;
+
+ if (X == B) {
+ const mbedtls_mpi *T = A; A = X; B = T;
+ }
+
+ if (X != A) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+ }
+
+ /*
+ * X must always be positive as a result of unsigned additions.
+ */
+ X->s = 1;
+
+ for (j = B->n; j > 0; j--) {
+ if (B->p[j - 1] != 0) {
+ break;
+ }
+ }
+
+ /* Exit early to avoid undefined behavior on NULL+0 when X->n == 0
+ * and B is 0 (of any size). */
+ if (j == 0) {
+ return 0;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j));
+
+ /* j is the number of non-zero limbs of B. Add those to X. */
+
+ p = X->p;
+
+ c = mbedtls_mpi_core_add(p, p, B->p, j);
+
+ p += j;
+
+ /* Now propagate any carry */
+
+ while (c != 0) {
+ if (j >= X->n) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, j + 1));
+ p = X->p + j;
+ }
+
+ *p += c; c = (*p < c); j++; p++;
+ }
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Unsigned subtraction: X = |A| - |B| (HAC 14.9, 14.10)
+ */
+int mbedtls_mpi_sub_abs(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n;
+ mbedtls_mpi_uint carry;
+
+ for (n = B->n; n > 0; n--) {
+ if (B->p[n - 1] != 0) {
+ break;
+ }
+ }
+ if (n > A->n) {
+ /* B >= (2^ciL)^n > A */
+ ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, A->n));
+
+ /* Set the high limbs of X to match A. Don't touch the lower limbs
+ * because X might be aliased to B, and we must not overwrite the
+ * significant digits of B. */
+ if (A->n > n && A != X) {
+ memcpy(X->p + n, A->p + n, (A->n - n) * ciL);
+ }
+ if (X->n > A->n) {
+ memset(X->p + A->n, 0, (X->n - A->n) * ciL);
+ }
+
+ carry = mbedtls_mpi_core_sub(X->p, A->p, B->p, n);
+ if (carry != 0) {
+ /* Propagate the carry through the rest of X. */
+ carry = mbedtls_mpi_core_sub_int(X->p + n, X->p + n, carry, X->n - n);
+
+ /* If we have further carry/borrow, the result is negative. */
+ if (carry != 0) {
+ ret = MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ goto cleanup;
+ }
+ }
+
+ /* X should always be positive as a result of unsigned subtractions. */
+ X->s = 1;
+
+cleanup:
+ return ret;
+}
+
+/* Common function for signed addition and subtraction.
+ * Calculate A + B * flip_B where flip_B is 1 or -1.
+ */
+static int add_sub_mpi(mbedtls_mpi *X,
+ const mbedtls_mpi *A, const mbedtls_mpi *B,
+ int flip_B)
+{
+ int ret, s;
+
+ s = A->s;
+ if (A->s * B->s * flip_B < 0) {
+ int cmp = mbedtls_mpi_cmp_abs(A, B);
+ if (cmp >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, A, B));
+ /* If |A| = |B|, the result is 0 and we must set the sign bit
+ * to +1 regardless of which of A or B was negative. Otherwise,
+ * since |A| > |B|, the sign is the sign of A. */
+ X->s = cmp == 0 ? 1 : s;
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(X, B, A));
+ /* Since |A| < |B|, the sign is the opposite of A. */
+ X->s = -s;
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(X, A, B));
+ X->s = s;
+ }
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Signed addition: X = A + B
+ */
+int mbedtls_mpi_add_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ return add_sub_mpi(X, A, B, 1);
+}
+
+/*
+ * Signed subtraction: X = A - B
+ */
+int mbedtls_mpi_sub_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ return add_sub_mpi(X, A, B, -1);
+}
+
+/*
+ * Signed addition: X = A + b
+ */
+int mbedtls_mpi_add_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+ mbedtls_mpi B;
+ mbedtls_mpi_uint p[1];
+
+ p[0] = mpi_sint_abs(b);
+ B.s = TO_SIGN(b);
+ B.n = 1;
+ B.p = p;
+
+ return mbedtls_mpi_add_mpi(X, A, &B);
+}
+
+/*
+ * Signed subtraction: X = A - b
+ */
+int mbedtls_mpi_sub_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+ mbedtls_mpi B;
+ mbedtls_mpi_uint p[1];
+
+ p[0] = mpi_sint_abs(b);
+ B.s = TO_SIGN(b);
+ B.n = 1;
+ B.p = p;
+
+ return mbedtls_mpi_sub_mpi(X, A, &B);
+}
+
+/*
+ * Baseline multiplication: X = A * B (HAC 14.12)
+ */
+int mbedtls_mpi_mul_mpi(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, j;
+ mbedtls_mpi TA, TB;
+ int result_is_zero = 0;
+
+ mbedtls_mpi_init(&TA);
+ mbedtls_mpi_init(&TB);
+
+ if (X == A) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A)); A = &TA;
+ }
+ if (X == B) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B)); B = &TB;
+ }
+
+ for (i = A->n; i > 0; i--) {
+ if (A->p[i - 1] != 0) {
+ break;
+ }
+ }
+ if (i == 0) {
+ result_is_zero = 1;
+ }
+
+ for (j = B->n; j > 0; j--) {
+ if (B->p[j - 1] != 0) {
+ break;
+ }
+ }
+ if (j == 0) {
+ result_is_zero = 1;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, i + j));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 0));
+
+ mbedtls_mpi_core_mul(X->p, A->p, i, B->p, j);
+
+ /* If the result is 0, we don't shortcut the operation, which reduces
+ * but does not eliminate side channels leaking the zero-ness. We do
+ * need to take care to set the sign bit properly since the library does
+ * not fully support an MPI object with a value of 0 and s == -1. */
+ if (result_is_zero) {
+ X->s = 1;
+ } else {
+ X->s = A->s * B->s;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TA);
+
+ return ret;
+}
+
+/*
+ * Baseline multiplication: X = A * b
+ */
+int mbedtls_mpi_mul_int(mbedtls_mpi *X, const mbedtls_mpi *A, mbedtls_mpi_uint b)
+{
+ size_t n = A->n;
+ while (n > 0 && A->p[n - 1] == 0) {
+ --n;
+ }
+
+ /* The general method below doesn't work if b==0. */
+ if (b == 0 || n == 0) {
+ return mbedtls_mpi_lset(X, 0);
+ }
+
+ /* Calculate A*b as A + A*(b-1) to take advantage of mbedtls_mpi_core_mla */
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ /* In general, A * b requires 1 limb more than b. If
+ * A->p[n - 1] * b / b == A->p[n - 1], then A * b fits in the same
+ * number of limbs as A and the call to grow() is not required since
+ * copy() will take care of the growth if needed. However, experimentally,
+ * making the call to grow() unconditional causes slightly fewer
+ * calls to calloc() in ECP code, presumably because it reuses the
+ * same mpi for a while and this way the mpi is more likely to directly
+ * grow to its final size.
+ *
+ * Note that calculating A*b as 0 + A*b doesn't work as-is because
+ * A,X can be the same. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, n + 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+ mbedtls_mpi_core_mla(X->p, X->n, A->p, n, b - 1);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Unsigned integer divide - double mbedtls_mpi_uint dividend, u1/u0, and
+ * mbedtls_mpi_uint divisor, d
+ */
+static mbedtls_mpi_uint mbedtls_int_div_int(mbedtls_mpi_uint u1,
+ mbedtls_mpi_uint u0,
+ mbedtls_mpi_uint d,
+ mbedtls_mpi_uint *r)
+{
+#if defined(MBEDTLS_HAVE_UDBL)
+ mbedtls_t_udbl dividend, quotient;
+#else
+ const mbedtls_mpi_uint radix = (mbedtls_mpi_uint) 1 << biH;
+ const mbedtls_mpi_uint uint_halfword_mask = ((mbedtls_mpi_uint) 1 << biH) - 1;
+ mbedtls_mpi_uint d0, d1, q0, q1, rAX, r0, quotient;
+ mbedtls_mpi_uint u0_msw, u0_lsw;
+ size_t s;
+#endif
+
+ /*
+ * Check for overflow
+ */
+ if (0 == d || u1 >= d) {
+ if (r != NULL) {
+ *r = ~(mbedtls_mpi_uint) 0u;
+ }
+
+ return ~(mbedtls_mpi_uint) 0u;
+ }
+
+#if defined(MBEDTLS_HAVE_UDBL)
+ dividend = (mbedtls_t_udbl) u1 << biL;
+ dividend |= (mbedtls_t_udbl) u0;
+ quotient = dividend / d;
+ if (quotient > ((mbedtls_t_udbl) 1 << biL) - 1) {
+ quotient = ((mbedtls_t_udbl) 1 << biL) - 1;
+ }
+
+ if (r != NULL) {
+ *r = (mbedtls_mpi_uint) (dividend - (quotient * d));
+ }
+
+ return (mbedtls_mpi_uint) quotient;
+#else
+
+ /*
+ * Algorithm D, Section 4.3.1 - The Art of Computer Programming
+ * Vol. 2 - Seminumerical Algorithms, Knuth
+ */
+
+ /*
+ * Normalize the divisor, d, and dividend, u0, u1
+ */
+ s = mbedtls_mpi_core_clz(d);
+ d = d << s;
+
+ u1 = u1 << s;
+ u1 |= (u0 >> (biL - s)) & (-(mbedtls_mpi_sint) s >> (biL - 1));
+ u0 = u0 << s;
+
+ d1 = d >> biH;
+ d0 = d & uint_halfword_mask;
+
+ u0_msw = u0 >> biH;
+ u0_lsw = u0 & uint_halfword_mask;
+
+ /*
+ * Find the first quotient and remainder
+ */
+ q1 = u1 / d1;
+ r0 = u1 - d1 * q1;
+
+ while (q1 >= radix || (q1 * d0 > radix * r0 + u0_msw)) {
+ q1 -= 1;
+ r0 += d1;
+
+ if (r0 >= radix) {
+ break;
+ }
+ }
+
+ rAX = (u1 * radix) + (u0_msw - q1 * d);
+ q0 = rAX / d1;
+ r0 = rAX - q0 * d1;
+
+ while (q0 >= radix || (q0 * d0 > radix * r0 + u0_lsw)) {
+ q0 -= 1;
+ r0 += d1;
+
+ if (r0 >= radix) {
+ break;
+ }
+ }
+
+ if (r != NULL) {
+ *r = (rAX * radix + u0_lsw - q0 * d) >> s;
+ }
+
+ quotient = q1 * radix + q0;
+
+ return quotient;
+#endif
+}
+
+/*
+ * Division by mbedtls_mpi: A = Q * B + R (HAC 14.20)
+ */
+int mbedtls_mpi_div_mpi(mbedtls_mpi *Q, mbedtls_mpi *R, const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, n, t, k;
+ mbedtls_mpi X, Y, Z, T1, T2;
+ mbedtls_mpi_uint TP2[3];
+
+ if (mbedtls_mpi_cmp_int(B, 0) == 0) {
+ return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
+ }
+
+ mbedtls_mpi_init(&X); mbedtls_mpi_init(&Y); mbedtls_mpi_init(&Z);
+ mbedtls_mpi_init(&T1);
+ /*
+ * Avoid dynamic memory allocations for constant-size T2.
+ *
+ * T2 is used for comparison only and the 3 limbs are assigned explicitly,
+ * so nobody increase the size of the MPI and we're safe to use an on-stack
+ * buffer.
+ */
+ T2.s = 1;
+ T2.n = sizeof(TP2) / sizeof(*TP2);
+ T2.p = TP2;
+
+ if (mbedtls_mpi_cmp_abs(A, B) < 0) {
+ if (Q != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(Q, 0));
+ }
+ if (R != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, A));
+ }
+ return 0;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&X, A));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, B));
+ X.s = Y.s = 1;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&Z, A->n + 2));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Z, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&T1, A->n + 2));
+
+ k = mbedtls_mpi_bitlen(&Y) % biL;
+ if (k < biL - 1) {
+ k = biL - 1 - k;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&X, k));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, k));
+ } else {
+ k = 0;
+ }
+
+ n = X.n - 1;
+ t = Y.n - 1;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&Y, biL * (n - t)));
+
+ while (mbedtls_mpi_cmp_mpi(&X, &Y) >= 0) {
+ Z.p[n - t]++;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &Y));
+ }
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, biL * (n - t)));
+
+ for (i = n; i > t; i--) {
+ if (X.p[i] >= Y.p[t]) {
+ Z.p[i - t - 1] = ~(mbedtls_mpi_uint) 0u;
+ } else {
+ Z.p[i - t - 1] = mbedtls_int_div_int(X.p[i], X.p[i - 1],
+ Y.p[t], NULL);
+ }
+
+ T2.p[0] = (i < 2) ? 0 : X.p[i - 2];
+ T2.p[1] = (i < 1) ? 0 : X.p[i - 1];
+ T2.p[2] = X.p[i];
+
+ Z.p[i - t - 1]++;
+ do {
+ Z.p[i - t - 1]--;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&T1, 0));
+ T1.p[0] = (t < 1) ? 0 : Y.p[t - 1];
+ T1.p[1] = Y.p[t];
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &T1, Z.p[i - t - 1]));
+ } while (mbedtls_mpi_cmp_mpi(&T1, &T2) > 0);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(&T1, &Y, Z.p[i - t - 1]));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&X, &X, &T1));
+
+ if (mbedtls_mpi_cmp_int(&X, 0) < 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&T1, &Y));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&T1, biL * (i - t - 1)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&X, &X, &T1));
+ Z.p[i - t - 1]--;
+ }
+ }
+
+ if (Q != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(Q, &Z));
+ Q->s = A->s * B->s;
+ }
+
+ if (R != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&X, k));
+ X.s = A->s;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(R, &X));
+
+ if (mbedtls_mpi_cmp_int(R, 0) == 0) {
+ R->s = 1;
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&X); mbedtls_mpi_free(&Y); mbedtls_mpi_free(&Z);
+ mbedtls_mpi_free(&T1);
+ mbedtls_platform_zeroize(TP2, sizeof(TP2));
+
+ return ret;
+}
+
+/*
+ * Division by int: A = Q * b + R
+ */
+int mbedtls_mpi_div_int(mbedtls_mpi *Q, mbedtls_mpi *R,
+ const mbedtls_mpi *A,
+ mbedtls_mpi_sint b)
+{
+ mbedtls_mpi B;
+ mbedtls_mpi_uint p[1];
+
+ p[0] = mpi_sint_abs(b);
+ B.s = TO_SIGN(b);
+ B.n = 1;
+ B.p = p;
+
+ return mbedtls_mpi_div_mpi(Q, R, A, &B);
+}
+
+/*
+ * Modulo: R = A mod B
+ */
+int mbedtls_mpi_mod_mpi(mbedtls_mpi *R, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (mbedtls_mpi_cmp_int(B, 0) < 0) {
+ return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(NULL, R, A, B));
+
+ while (mbedtls_mpi_cmp_int(R, 0) < 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(R, R, B));
+ }
+
+ while (mbedtls_mpi_cmp_mpi(R, B) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(R, R, B));
+ }
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Modulo: r = A mod b
+ */
+int mbedtls_mpi_mod_int(mbedtls_mpi_uint *r, const mbedtls_mpi *A, mbedtls_mpi_sint b)
+{
+ size_t i;
+ mbedtls_mpi_uint x, y, z;
+
+ if (b == 0) {
+ return MBEDTLS_ERR_MPI_DIVISION_BY_ZERO;
+ }
+
+ if (b < 0) {
+ return MBEDTLS_ERR_MPI_NEGATIVE_VALUE;
+ }
+
+ /*
+ * handle trivial cases
+ */
+ if (b == 1 || A->n == 0) {
+ *r = 0;
+ return 0;
+ }
+
+ if (b == 2) {
+ *r = A->p[0] & 1;
+ return 0;
+ }
+
+ /*
+ * general case
+ */
+ for (i = A->n, y = 0; i > 0; i--) {
+ x = A->p[i - 1];
+ y = (y << biH) | (x >> biH);
+ z = y / b;
+ y -= z * b;
+
+ x <<= biH;
+ y = (y << biH) | (x >> biH);
+ z = y / b;
+ y -= z * b;
+ }
+
+ /*
+ * If A is negative, then the current y represents a negative value.
+ * Flipping it to the positive side.
+ */
+ if (A->s < 0 && y != 0) {
+ y = b - y;
+ }
+
+ *r = y;
+
+ return 0;
+}
+
+int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
+ const mbedtls_mpi *E, const mbedtls_mpi *N,
+ mbedtls_mpi *prec_RR)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (mbedtls_mpi_cmp_int(N, 0) <= 0 || (N->p[0] & 1) == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_cmp_int(E, 0) < 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_bitlen(E) > MBEDTLS_MPI_MAX_BITS ||
+ mbedtls_mpi_bitlen(N) > MBEDTLS_MPI_MAX_BITS) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Ensure that the exponent that we are passing to the core is not NULL.
+ */
+ if (E->n == 0) {
+ ret = mbedtls_mpi_lset(X, 1);
+ return ret;
+ }
+
+ /*
+ * Allocate working memory for mbedtls_mpi_core_exp_mod()
+ */
+ size_t T_limbs = mbedtls_mpi_core_exp_mod_working_limbs(N->n, E->n);
+ mbedtls_mpi_uint *T = (mbedtls_mpi_uint *) mbedtls_calloc(T_limbs, sizeof(mbedtls_mpi_uint));
+ if (T == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ mbedtls_mpi RR;
+ mbedtls_mpi_init(&RR);
+
+ /*
+ * If 1st call, pre-compute R^2 mod N
+ */
+ if (prec_RR == NULL || prec_RR->p == NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
+
+ if (prec_RR != NULL) {
+ *prec_RR = RR;
+ }
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(prec_RR, N->n));
+ RR = *prec_RR;
+ }
+
+ /*
+ * To preserve constness we need to make a copy of A. Using X for this to
+ * save memory.
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A));
+
+ /*
+ * Compensate for negative A (and correct at the end).
+ */
+ X->s = 1;
+
+ /*
+ * Make sure that X is in a form that is safe for consumption by
+ * the core functions.
+ *
+ * - The core functions will not touch the limbs of X above N->n. The
+ * result will be correct if those limbs are 0, which the mod call
+ * ensures.
+ * - Also, X must have at least as many limbs as N for the calls to the
+ * core functions.
+ */
+ if (mbedtls_mpi_cmp_mpi(X, N) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
+ }
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(X, N->n));
+
+ /*
+ * Convert to and from Montgomery around mbedtls_mpi_core_exp_mod().
+ */
+ {
+ mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
+ mbedtls_mpi_core_to_mont_rep(X->p, X->p, N->p, N->n, mm, RR.p, T);
+ mbedtls_mpi_core_exp_mod(X->p, X->p, N->p, N->n, E->p, E->n, RR.p, T);
+ mbedtls_mpi_core_from_mont_rep(X->p, X->p, N->p, N->n, mm, T);
+ }
+
+ /*
+ * Correct for negative A.
+ */
+ if (A->s == -1 && (E->p[0] & 1) != 0) {
+ mbedtls_ct_condition_t is_x_non_zero = mbedtls_mpi_core_check_zero_ct(X->p, X->n);
+ X->s = mbedtls_ct_mpi_sign_if(is_x_non_zero, -1, 1);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, N, X));
+ }
+
+cleanup:
+
+ mbedtls_mpi_zeroize_and_free(T, T_limbs);
+
+ if (prec_RR == NULL || prec_RR->p == NULL) {
+ mbedtls_mpi_free(&RR);
+ }
+
+ return ret;
+}
+
+/*
+ * Greatest common divisor: G = gcd(A, B) (HAC 14.54)
+ */
+int mbedtls_mpi_gcd(mbedtls_mpi *G, const mbedtls_mpi *A, const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t lz, lzt;
+ mbedtls_mpi TA, TB;
+
+ mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TB);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TA, A));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, B));
+
+ lz = mbedtls_mpi_lsb(&TA);
+ lzt = mbedtls_mpi_lsb(&TB);
+
+ /* The loop below gives the correct result when A==0 but not when B==0.
+ * So have a special case for B==0. Leverage the fact that we just
+ * calculated the lsb and lsb(B)==0 iff B is odd or 0 to make the test
+ * slightly more efficient than cmp_int(). */
+ if (lzt == 0 && mbedtls_mpi_get_bit(&TB, 0) == 0) {
+ ret = mbedtls_mpi_copy(G, A);
+ goto cleanup;
+ }
+
+ if (lzt < lz) {
+ lz = lzt;
+ }
+
+ TA.s = TB.s = 1;
+
+ /* We mostly follow the procedure described in HAC 14.54, but with some
+ * minor differences:
+ * - Sequences of multiplications or divisions by 2 are grouped into a
+ * single shift operation.
+ * - The procedure in HAC assumes that 0 < TB <= TA.
+ * - The condition TB <= TA is not actually necessary for correctness.
+ * TA and TB have symmetric roles except for the loop termination
+ * condition, and the shifts at the beginning of the loop body
+ * remove any significance from the ordering of TA vs TB before
+ * the shifts.
+ * - If TA = 0, the loop goes through 0 iterations and the result is
+ * correctly TB.
+ * - The case TB = 0 was short-circuited above.
+ *
+ * For the correctness proof below, decompose the original values of
+ * A and B as
+ * A = sa * 2^a * A' with A'=0 or A' odd, and sa = +-1
+ * B = sb * 2^b * B' with B'=0 or B' odd, and sb = +-1
+ * Then gcd(A, B) = 2^{min(a,b)} * gcd(A',B'),
+ * and gcd(A',B') is odd or 0.
+ *
+ * At the beginning, we have TA = |A| and TB = |B| so gcd(A,B) = gcd(TA,TB).
+ * The code maintains the following invariant:
+ * gcd(A,B) = 2^k * gcd(TA,TB) for some k (I)
+ */
+
+ /* Proof that the loop terminates:
+ * At each iteration, either the right-shift by 1 is made on a nonzero
+ * value and the nonnegative integer bitlen(TA) + bitlen(TB) decreases
+ * by at least 1, or the right-shift by 1 is made on zero and then
+ * TA becomes 0 which ends the loop (TB cannot be 0 if it is right-shifted
+ * since in that case TB is calculated from TB-TA with the condition TB>TA).
+ */
+ while (mbedtls_mpi_cmp_int(&TA, 0) != 0) {
+ /* Divisions by 2 preserve the invariant (I). */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, mbedtls_mpi_lsb(&TA)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, mbedtls_mpi_lsb(&TB)));
+
+ /* Set either TA or TB to |TA-TB|/2. Since TA and TB are both odd,
+ * TA-TB is even so the division by 2 has an integer result.
+ * Invariant (I) is preserved since any odd divisor of both TA and TB
+ * also divides |TA-TB|/2, and any odd divisor of both TA and |TA-TB|/2
+ * also divides TB, and any odd divisor of both TB and |TA-TB|/2 also
+ * divides TA.
+ */
+ if (mbedtls_mpi_cmp_mpi(&TA, &TB) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TA, &TA, &TB));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TA, 1));
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(&TB, &TB, &TA));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TB, 1));
+ }
+ /* Note that one of TA or TB is still odd. */
+ }
+
+ /* By invariant (I), gcd(A,B) = 2^k * gcd(TA,TB) for some k.
+ * At the loop exit, TA = 0, so gcd(TA,TB) = TB.
+ * - If there was at least one loop iteration, then one of TA or TB is odd,
+ * and TA = 0, so TB is odd and gcd(TA,TB) = gcd(A',B'). In this case,
+ * lz = min(a,b) so gcd(A,B) = 2^lz * TB.
+ * - If there was no loop iteration, then A was 0, and gcd(A,B) = B.
+ * In this case, lz = 0 and B = TB so gcd(A,B) = B = 2^lz * TB as well.
+ */
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&TB, lz));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(G, &TB));
+
+cleanup:
+
+ mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TB);
+
+ return ret;
+}
+
+/*
+ * Fill X with size bytes of random.
+ * The bytes returned from the RNG are used in a specific order which
+ * is suitable for deterministic ECDSA (see the specification of
+ * mbedtls_mpi_random() and the implementation in mbedtls_mpi_fill_random()).
+ */
+int mbedtls_mpi_fill_random(mbedtls_mpi *X, size_t size,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(size);
+
+ /* Ensure that target MPI has exactly the necessary number of limbs */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_resize_clear(X, limbs));
+ if (size == 0) {
+ return 0;
+ }
+
+ ret = mbedtls_mpi_core_fill_random(X->p, X->n, size, f_rng, p_rng);
+
+cleanup:
+ return ret;
+}
+
+int mbedtls_mpi_random(mbedtls_mpi *X,
+ mbedtls_mpi_sint min,
+ const mbedtls_mpi *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ if (min < 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+ if (mbedtls_mpi_cmp_int(N, min) <= 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /* Ensure that target MPI has exactly the same number of limbs
+ * as the upper bound, even if the upper bound has leading zeros.
+ * This is necessary for mbedtls_mpi_core_random. */
+ int ret = mbedtls_mpi_resize_clear(X, N->n);
+ if (ret != 0) {
+ return ret;
+ }
+
+ return mbedtls_mpi_core_random(X->p, min, N->p, X->n, f_rng, p_rng);
+}
+
+/*
+ * Modular inverse: X = A^-1 mod N (HAC 14.61 / 14.64)
+ */
+int mbedtls_mpi_inv_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi G, TA, TU, U1, U2, TB, TV, V1, V2;
+
+ if (mbedtls_mpi_cmp_int(N, 1) <= 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&TA); mbedtls_mpi_init(&TU); mbedtls_mpi_init(&U1); mbedtls_mpi_init(&U2);
+ mbedtls_mpi_init(&G); mbedtls_mpi_init(&TB); mbedtls_mpi_init(&TV);
+ mbedtls_mpi_init(&V1); mbedtls_mpi_init(&V2);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, A, N));
+
+ if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&TA, A, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TU, &TA));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TB, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&TV, N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U1, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&U2, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V1, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&V2, 1));
+
+ do {
+ while ((TU.p[0] & 1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TU, 1));
+
+ if ((U1.p[0] & 1) != 0 || (U2.p[0] & 1) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&U1, &U1, &TB));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &TA));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U1, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&U2, 1));
+ }
+
+ while ((TV.p[0] & 1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&TV, 1));
+
+ if ((V1.p[0] & 1) != 0 || (V2.p[0] & 1) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, &TB));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &TA));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V1, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&V2, 1));
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&TU, &TV) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TU, &TU, &TV));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U1, &U1, &V1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&U2, &U2, &V2));
+ } else {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&TV, &TV, &TU));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, &U1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V2, &V2, &U2));
+ }
+ } while (mbedtls_mpi_cmp_int(&TU, 0) != 0);
+
+ while (mbedtls_mpi_cmp_int(&V1, 0) < 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&V1, &V1, N));
+ }
+
+ while (mbedtls_mpi_cmp_mpi(&V1, N) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&V1, &V1, N));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, &V1));
+
+cleanup:
+
+ mbedtls_mpi_free(&TA); mbedtls_mpi_free(&TU); mbedtls_mpi_free(&U1); mbedtls_mpi_free(&U2);
+ mbedtls_mpi_free(&G); mbedtls_mpi_free(&TB); mbedtls_mpi_free(&TV);
+ mbedtls_mpi_free(&V1); mbedtls_mpi_free(&V2);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_GENPRIME)
+
+/* Gaps between primes, starting at 3. https://oeis.org/A001223 */
+static const unsigned char small_prime_gaps[] = {
+ 2, 2, 4, 2, 4, 2, 4, 6,
+ 2, 6, 4, 2, 4, 6, 6, 2,
+ 6, 4, 2, 6, 4, 6, 8, 4,
+ 2, 4, 2, 4, 14, 4, 6, 2,
+ 10, 2, 6, 6, 4, 6, 6, 2,
+ 10, 2, 4, 2, 12, 12, 4, 2,
+ 4, 6, 2, 10, 6, 6, 6, 2,
+ 6, 4, 2, 10, 14, 4, 2, 4,
+ 14, 6, 10, 2, 4, 6, 8, 6,
+ 6, 4, 6, 8, 4, 8, 10, 2,
+ 10, 2, 6, 4, 6, 8, 4, 2,
+ 4, 12, 8, 4, 8, 4, 6, 12,
+ 2, 18, 6, 10, 6, 6, 2, 6,
+ 10, 6, 6, 2, 6, 6, 4, 2,
+ 12, 10, 2, 4, 6, 6, 2, 12,
+ 4, 6, 8, 10, 8, 10, 8, 6,
+ 6, 4, 8, 6, 4, 8, 4, 14,
+ 10, 12, 2, 10, 2, 4, 2, 10,
+ 14, 4, 2, 4, 14, 4, 2, 4,
+ 20, 4, 8, 10, 8, 4, 6, 6,
+ 14, 4, 6, 6, 8, 6, /*reaches 997*/
+ 0 /* the last entry is effectively unused */
+};
+
+/*
+ * Small divisors test (X must be positive)
+ *
+ * Return values:
+ * 0: no small factor (possible prime, more tests needed)
+ * 1: certain prime
+ * MBEDTLS_ERR_MPI_NOT_ACCEPTABLE: certain non-prime
+ * other negative: error
+ */
+static int mpi_check_small_factors(const mbedtls_mpi *X)
+{
+ int ret = 0;
+ size_t i;
+ mbedtls_mpi_uint r;
+ unsigned p = 3; /* The first odd prime */
+
+ if ((X->p[0] & 1) == 0) {
+ return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ }
+
+ for (i = 0; i < sizeof(small_prime_gaps); p += small_prime_gaps[i], i++) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, p));
+ if (r == 0) {
+ if (mbedtls_mpi_cmp_int(X, p) == 0) {
+ return 1;
+ } else {
+ return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ }
+ }
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Miller-Rabin pseudo-primality test (HAC 4.24)
+ */
+static int mpi_miller_rabin(const mbedtls_mpi *X, size_t rounds,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret, count;
+ size_t i, j, k, s;
+ mbedtls_mpi W, R, T, A, RR;
+
+ mbedtls_mpi_init(&W); mbedtls_mpi_init(&R);
+ mbedtls_mpi_init(&T); mbedtls_mpi_init(&A);
+ mbedtls_mpi_init(&RR);
+
+ /*
+ * W = |X| - 1
+ * R = W >> lsb( W )
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&W, X, 1));
+ s = mbedtls_mpi_lsb(&W);
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&R, &W));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&R, s));
+
+ for (i = 0; i < rounds; i++) {
+ /*
+ * pick a random A, 1 < A < |X| - 1
+ */
+ count = 0;
+ do {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&A, X->n * ciL, f_rng, p_rng));
+
+ j = mbedtls_mpi_bitlen(&A);
+ k = mbedtls_mpi_bitlen(&W);
+ if (j > k) {
+ A.p[A.n - 1] &= ((mbedtls_mpi_uint) 1 << (k - (A.n - 1) * biL - 1)) - 1;
+ }
+
+ if (count++ > 30) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ } while (mbedtls_mpi_cmp_mpi(&A, &W) >= 0 ||
+ mbedtls_mpi_cmp_int(&A, 1) <= 0);
+
+ /*
+ * A = A^R mod |X|
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&A, &A, &R, X, &RR));
+
+ if (mbedtls_mpi_cmp_mpi(&A, &W) == 0 ||
+ mbedtls_mpi_cmp_int(&A, 1) == 0) {
+ continue;
+ }
+
+ j = 1;
+ while (j < s && mbedtls_mpi_cmp_mpi(&A, &W) != 0) {
+ /*
+ * A = A * A mod |X|
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &A, &A));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&A, &T, X));
+
+ if (mbedtls_mpi_cmp_int(&A, 1) == 0) {
+ break;
+ }
+
+ j++;
+ }
+
+ /*
+ * not prime if A != |X| - 1 or A == 1
+ */
+ if (mbedtls_mpi_cmp_mpi(&A, &W) != 0 ||
+ mbedtls_mpi_cmp_int(&A, 1) == 0) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ break;
+ }
+ }
+
+cleanup:
+ mbedtls_mpi_free(&W); mbedtls_mpi_free(&R);
+ mbedtls_mpi_free(&T); mbedtls_mpi_free(&A);
+ mbedtls_mpi_free(&RR);
+
+ return ret;
+}
+
+/*
+ * Pseudo-primality test: small factors, then Miller-Rabin
+ */
+int mbedtls_mpi_is_prime_ext(const mbedtls_mpi *X, int rounds,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi XX;
+
+ XX.s = 1;
+ XX.n = X->n;
+ XX.p = X->p;
+
+ if (mbedtls_mpi_cmp_int(&XX, 0) == 0 ||
+ mbedtls_mpi_cmp_int(&XX, 1) == 0) {
+ return MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ }
+
+ if (mbedtls_mpi_cmp_int(&XX, 2) == 0) {
+ return 0;
+ }
+
+ if ((ret = mpi_check_small_factors(&XX)) != 0) {
+ if (ret == 1) {
+ return 0;
+ }
+
+ return ret;
+ }
+
+ return mpi_miller_rabin(&XX, rounds, f_rng, p_rng);
+}
+
+/*
+ * Prime number generation
+ *
+ * To generate an RSA key in a way recommended by FIPS 186-4, both primes must
+ * be either 1024 bits or 1536 bits long, and flags must contain
+ * MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR.
+ */
+int mbedtls_mpi_gen_prime(mbedtls_mpi *X, size_t nbits, int flags,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+#ifdef MBEDTLS_HAVE_INT64
+// ceil(2^63.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f333f9de6485ULL
+#else
+// ceil(2^31.5)
+#define CEIL_MAXUINT_DIV_SQRT2 0xb504f334U
+#endif
+ int ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ size_t k, n;
+ int rounds;
+ mbedtls_mpi_uint r;
+ mbedtls_mpi Y;
+
+ if (nbits < 3 || nbits > MBEDTLS_MPI_MAX_BITS) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&Y);
+
+ n = BITS_TO_LIMBS(nbits);
+
+ if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR) == 0) {
+ /*
+ * 2^-80 error probability, number of rounds chosen per HAC, table 4.4
+ */
+ rounds = ((nbits >= 1300) ? 2 : (nbits >= 850) ? 3 :
+ (nbits >= 650) ? 4 : (nbits >= 350) ? 8 :
+ (nbits >= 250) ? 12 : (nbits >= 150) ? 18 : 27);
+ } else {
+ /*
+ * 2^-100 error probability, number of rounds computed based on HAC,
+ * fact 4.48
+ */
+ rounds = ((nbits >= 1450) ? 4 : (nbits >= 1150) ? 5 :
+ (nbits >= 1000) ? 6 : (nbits >= 850) ? 7 :
+ (nbits >= 750) ? 8 : (nbits >= 500) ? 13 :
+ (nbits >= 250) ? 28 : (nbits >= 150) ? 40 : 51);
+ }
+
+ while (1) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(X, n * ciL, f_rng, p_rng));
+ /* make sure generated number is at least (nbits-1)+0.5 bits (FIPS 186-4 §B.3.3 steps 4.4, 5.5) */
+ if (X->p[n-1] < CEIL_MAXUINT_DIV_SQRT2) {
+ continue;
+ }
+
+ k = n * biL;
+ if (k > nbits) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(X, k - nbits));
+ }
+ X->p[0] |= 1;
+
+ if ((flags & MBEDTLS_MPI_GEN_PRIME_FLAG_DH) == 0) {
+ ret = mbedtls_mpi_is_prime_ext(X, rounds, f_rng, p_rng);
+
+ if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ goto cleanup;
+ }
+ } else {
+ /*
+ * A necessary condition for Y and X = 2Y + 1 to be prime
+ * is X = 2 mod 3 (which is equivalent to Y = 2 mod 3).
+ * Make sure it is satisfied, while keeping X = 3 mod 4
+ */
+
+ X->p[0] |= 2;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_int(&r, X, 3));
+ if (r == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 8));
+ } else if (r == 1) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 4));
+ }
+
+ /* Set Y = (X-1) / 2, which is X / 2 because X is odd */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&Y, X));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Y, 1));
+
+ while (1) {
+ /*
+ * First, check small factors for X and Y
+ * before doing Miller-Rabin on any of them
+ */
+ if ((ret = mpi_check_small_factors(X)) == 0 &&
+ (ret = mpi_check_small_factors(&Y)) == 0 &&
+ (ret = mpi_miller_rabin(X, rounds, f_rng, p_rng))
+ == 0 &&
+ (ret = mpi_miller_rabin(&Y, rounds, f_rng, p_rng))
+ == 0) {
+ goto cleanup;
+ }
+
+ if (ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ goto cleanup;
+ }
+
+ /*
+ * Next candidates. We want to preserve Y = (X-1) / 2 and
+ * Y = 1 mod 2 and Y = 2 mod 3 (eq X = 3 mod 4 and X = 2 mod 3)
+ * so up Y by 6 and X by 12.
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(X, X, 12));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&Y, &Y, 6));
+ }
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&Y);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_GENPRIME */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#define GCD_PAIR_COUNT 3
+
+static const int gcd_pairs[GCD_PAIR_COUNT][3] =
+{
+ { 693, 609, 21 },
+ { 1764, 868, 28 },
+ { 768454923, 542167814, 1 }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_mpi_self_test(int verbose)
+{
+ int ret, i;
+ mbedtls_mpi A, E, N, X, Y, U, V;
+
+ mbedtls_mpi_init(&A); mbedtls_mpi_init(&E); mbedtls_mpi_init(&N); mbedtls_mpi_init(&X);
+ mbedtls_mpi_init(&Y); mbedtls_mpi_init(&U); mbedtls_mpi_init(&V);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&A, 16,
+ "EFE021C2645FD1DC586E69184AF4A31E" \
+ "D5F53E93B5F123FA41680867BA110131" \
+ "944FE7952E2517337780CB0DB80E61AA" \
+ "E7C8DDC6C5C6AADEB34EB38A2F40D5E6"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&E, 16,
+ "B2E7EFD37075B9F03FF989C7C5051C20" \
+ "34D2A323810251127E7BF8625A4F49A5" \
+ "F3E27F4DA8BD59C47D6DAABA4C8127BD" \
+ "5B5C25763222FEFCCFC38B832366C29E"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&N, 16,
+ "0066A198186C18C10B2F5ED9B522752A" \
+ "9830B69916E535C8F047518A889A43A5" \
+ "94B6BED27A168D31D4A52F88925AA8F5"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&X, &A, &N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "602AB7ECA597A3D6B56FF9829A5E8B85" \
+ "9E857EA95A03512E2BAE7391688D264A" \
+ "A5663B0341DB9CCFD2C4C5F421FEC814" \
+ "8001B72E848A38CAE1C65F78E56ABDEF" \
+ "E12D3C039B8A02D6BE593F0BBBDA56F1" \
+ "ECF677152EF804370C1A305CAF3B5BF1" \
+ "30879B56C61DE584A0F53A2447A51E"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #1 (mul_mpi): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&X, &Y, &A, &N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "256567336059E52CAE22925474705F39A94"));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&V, 16,
+ "6613F26162223DF488E9CD48CC132C7A" \
+ "0AC93C701B001B092E4E5B9F73BCD27B" \
+ "9EE50D0657C77F374E903CDFA4C642"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #2 (div_mpi): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0 ||
+ mbedtls_mpi_cmp_mpi(&Y, &V) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&X, &A, &E, &N, NULL));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "36E139AEA55215609D2816998ED020BB" \
+ "BD96C37890F65171D948E9BC7CBAA4D9" \
+ "325D24D6A3C12710F10A09FA08AB87"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #3 (exp_mod): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&X, &A, &N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&U, 16,
+ "003A0AAEDD7E784FC07D8F9EC6E3BFD5" \
+ "C3DBA76456363A10869622EAC2DD84EC" \
+ "C5B8A74DAC4D09E03B5E0BE779F2DF61"));
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #4 (inv_mod): ");
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&X, &U) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" MPI test #5 (simple gcd): ");
+ }
+
+ for (i = 0; i < GCD_PAIR_COUNT; i++) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&X, gcd_pairs[i][0]));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&Y, gcd_pairs[i][1]));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&A, &X, &Y));
+
+ if (mbedtls_mpi_cmp_int(&A, gcd_pairs[i][2]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed at %d\n", i);
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+cleanup:
+
+ if (ret != 0 && verbose != 0) {
+ mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
+ }
+
+ mbedtls_mpi_free(&A); mbedtls_mpi_free(&E); mbedtls_mpi_free(&N); mbedtls_mpi_free(&X);
+ mbedtls_mpi_free(&Y); mbedtls_mpi_free(&U); mbedtls_mpi_free(&V);
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_BIGNUM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_core.c b/tf-psa-crypto/drivers/builtin/src/bignum_core.c
new file mode 100644
index 0000000..1a3e0b9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_core.c
@@ -0,0 +1,895 @@
+/*
+ * Core bignum functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+#include <string.h>
+
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+#include "constant_time_internal.h"
+
+#include "mbedtls/platform.h"
+
+#include "bignum_core.h"
+#include "bn_mul.h"
+#include "constant_time_internal.h"
+
+size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a)
+{
+#if defined(__has_builtin)
+#if (MBEDTLS_MPI_UINT_MAX == UINT_MAX) && __has_builtin(__builtin_clz)
+ #define core_clz __builtin_clz
+#elif (MBEDTLS_MPI_UINT_MAX == ULONG_MAX) && __has_builtin(__builtin_clzl)
+ #define core_clz __builtin_clzl
+#elif (MBEDTLS_MPI_UINT_MAX == ULLONG_MAX) && __has_builtin(__builtin_clzll)
+ #define core_clz __builtin_clzll
+#endif
+#endif
+#if defined(core_clz)
+ return (size_t) core_clz(a);
+#else
+ size_t j;
+ mbedtls_mpi_uint mask = (mbedtls_mpi_uint) 1 << (biL - 1);
+
+ for (j = 0; j < biL; j++) {
+ if (a & mask) {
+ break;
+ }
+
+ mask >>= 1;
+ }
+
+ return j;
+#endif
+}
+
+size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs)
+{
+ int i;
+ size_t j;
+
+ for (i = ((int) A_limbs) - 1; i >= 0; i--) {
+ if (A[i] != 0) {
+ j = biL - mbedtls_mpi_core_clz(A[i]);
+ return (i * biL) + j;
+ }
+ }
+
+ return 0;
+}
+
+static mbedtls_mpi_uint mpi_bigendian_to_host(mbedtls_mpi_uint a)
+{
+ if (MBEDTLS_IS_BIG_ENDIAN) {
+ /* Nothing to do on bigendian systems. */
+ return a;
+ } else {
+#if defined(MBEDTLS_HAVE_INT32)
+ return (mbedtls_mpi_uint) MBEDTLS_BSWAP32(a);
+#elif defined(MBEDTLS_HAVE_INT64)
+ return (mbedtls_mpi_uint) MBEDTLS_BSWAP64(a);
+#endif
+ }
+}
+
+void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
+ size_t A_limbs)
+{
+ mbedtls_mpi_uint *cur_limb_left;
+ mbedtls_mpi_uint *cur_limb_right;
+ if (A_limbs == 0) {
+ return;
+ }
+
+ /*
+ * Traverse limbs and
+ * - adapt byte-order in each limb
+ * - swap the limbs themselves.
+ * For that, simultaneously traverse the limbs from left to right
+ * and from right to left, as long as the left index is not bigger
+ * than the right index (it's not a problem if limbs is odd and the
+ * indices coincide in the last iteration).
+ */
+ for (cur_limb_left = A, cur_limb_right = A + (A_limbs - 1);
+ cur_limb_left <= cur_limb_right;
+ cur_limb_left++, cur_limb_right--) {
+ mbedtls_mpi_uint tmp;
+ /* Note that if cur_limb_left == cur_limb_right,
+ * this code effectively swaps the bytes only once. */
+ tmp = mpi_bigendian_to_host(*cur_limb_left);
+ *cur_limb_left = mpi_bigendian_to_host(*cur_limb_right);
+ *cur_limb_right = tmp;
+ }
+}
+
+/* Whether min <= A, in constant time.
+ * A_limbs must be at least 1. */
+mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *A,
+ size_t A_limbs)
+{
+ /* min <= least significant limb? */
+ mbedtls_ct_condition_t min_le_lsl = mbedtls_ct_uint_ge(A[0], min);
+
+ /* limbs other than the least significant one are all zero? */
+ mbedtls_ct_condition_t msll_mask = MBEDTLS_CT_FALSE;
+ for (size_t i = 1; i < A_limbs; i++) {
+ msll_mask = mbedtls_ct_bool_or(msll_mask, mbedtls_ct_bool(A[i]));
+ }
+
+ /* min <= A iff the lowest limb of A is >= min or the other limbs
+ * are not all zero. */
+ return mbedtls_ct_bool_or(msll_mask, min_le_lsl);
+}
+
+mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs)
+{
+ mbedtls_ct_condition_t ret = MBEDTLS_CT_FALSE, cond = MBEDTLS_CT_FALSE, done = MBEDTLS_CT_FALSE;
+
+ for (size_t i = limbs; i > 0; i--) {
+ /*
+ * If B[i - 1] < A[i - 1] then A < B is false and the result must
+ * remain 0.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = mbedtls_ct_uint_lt(B[i - 1], A[i - 1]);
+ done = mbedtls_ct_bool_or(done, cond);
+
+ /*
+ * If A[i - 1] < B[i - 1] then A < B is true.
+ *
+ * Again even if we can make a decision, we just mark the result and
+ * the fact that we are done and continue looping.
+ */
+ cond = mbedtls_ct_uint_lt(A[i - 1], B[i - 1]);
+ ret = mbedtls_ct_bool_or(ret, mbedtls_ct_bool_and(cond, mbedtls_ct_bool_not(done)));
+ done = mbedtls_ct_bool_or(done, cond);
+ }
+
+ /*
+ * If all the limbs were equal, then the numbers are equal, A < B is false
+ * and leaving the result 0 is correct.
+ */
+
+ return ret;
+}
+
+void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ mbedtls_ct_condition_t assign)
+{
+ if (X == A) {
+ return;
+ }
+
+ /* This function is very performance-sensitive for RSA. For this reason
+ * we have the loop below, instead of calling mbedtls_ct_memcpy_if
+ * (this is more optimal since here we don't have to handle the case where
+ * we copy awkwardly sized data).
+ */
+ for (size_t i = 0; i < limbs; i++) {
+ X[i] = mbedtls_ct_mpi_uint_if(assign, A[i], X[i]);
+ }
+}
+
+void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint *Y,
+ size_t limbs,
+ mbedtls_ct_condition_t swap)
+{
+ if (X == Y) {
+ return;
+ }
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint tmp = X[i];
+ X[i] = mbedtls_ct_mpi_uint_if(swap, Y[i], X[i]);
+ Y[i] = mbedtls_ct_mpi_uint_if(swap, tmp, Y[i]);
+ }
+}
+
+int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length)
+{
+ const size_t limbs = CHARS_TO_LIMBS(input_length);
+
+ if (X_limbs < limbs) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ if (X != NULL) {
+ memset(X, 0, X_limbs * ciL);
+
+ for (size_t i = 0; i < input_length; i++) {
+ size_t offset = ((i % ciL) << 3);
+ X[i / ciL] |= ((mbedtls_mpi_uint) input[i]) << offset;
+ }
+ }
+
+ return 0;
+}
+
+int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length)
+{
+ const size_t limbs = CHARS_TO_LIMBS(input_length);
+
+ if (X_limbs < limbs) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+
+ /* If X_limbs is 0, input_length must also be 0 (from previous test).
+ * Nothing to do. */
+ if (X_limbs == 0) {
+ return 0;
+ }
+
+ memset(X, 0, X_limbs * ciL);
+
+ /* memcpy() with (NULL, 0) is undefined behaviour */
+ if (input_length != 0) {
+ size_t overhead = (X_limbs * ciL) - input_length;
+ unsigned char *Xp = (unsigned char *) X;
+ memcpy(Xp + overhead, input, input_length);
+ }
+
+ mbedtls_mpi_core_bigendian_to_host(X, X_limbs);
+
+ return 0;
+}
+
+int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
+ size_t A_limbs,
+ unsigned char *output,
+ size_t output_length)
+{
+ size_t stored_bytes = A_limbs * ciL;
+ size_t bytes_to_copy;
+
+ if (stored_bytes < output_length) {
+ bytes_to_copy = stored_bytes;
+ } else {
+ bytes_to_copy = output_length;
+
+ /* The output buffer is smaller than the allocated size of A.
+ * However A may fit if its leading bytes are zero. */
+ for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
+ if (GET_BYTE(A, i) != 0) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+ }
+ }
+
+ for (size_t i = 0; i < bytes_to_copy; i++) {
+ output[i] = GET_BYTE(A, i);
+ }
+
+ if (stored_bytes < output_length) {
+ /* Write trailing 0 bytes */
+ memset(output + stored_bytes, 0, output_length - stored_bytes);
+ }
+
+ return 0;
+}
+
+int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ unsigned char *output,
+ size_t output_length)
+{
+ size_t stored_bytes;
+ size_t bytes_to_copy;
+ unsigned char *p;
+
+ stored_bytes = X_limbs * ciL;
+
+ if (stored_bytes < output_length) {
+ /* There is enough space in the output buffer. Write initial
+ * null bytes and record the position at which to start
+ * writing the significant bytes. In this case, the execution
+ * trace of this function does not depend on the value of the
+ * number. */
+ bytes_to_copy = stored_bytes;
+ p = output + output_length - stored_bytes;
+ memset(output, 0, output_length - stored_bytes);
+ } else {
+ /* The output buffer is smaller than the allocated size of X.
+ * However X may fit if its leading bytes are zero. */
+ bytes_to_copy = output_length;
+ p = output;
+ for (size_t i = bytes_to_copy; i < stored_bytes; i++) {
+ if (GET_BYTE(X, i) != 0) {
+ return MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL;
+ }
+ }
+ }
+
+ for (size_t i = 0; i < bytes_to_copy; i++) {
+ p[bytes_to_copy - i - 1] = GET_BYTE(X, i);
+ }
+
+ return 0;
+}
+
+void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count)
+{
+ size_t i, v0, v1;
+ mbedtls_mpi_uint r0 = 0, r1;
+
+ v0 = count / biL;
+ v1 = count & (biL - 1);
+
+ if (v0 > limbs || (v0 == limbs && v1 > 0)) {
+ memset(X, 0, limbs * ciL);
+ return;
+ }
+
+ /*
+ * shift by count / limb_size
+ */
+ if (v0 > 0) {
+ for (i = 0; i < limbs - v0; i++) {
+ X[i] = X[i + v0];
+ }
+
+ for (; i < limbs; i++) {
+ X[i] = 0;
+ }
+ }
+
+ /*
+ * shift by count % limb_size
+ */
+ if (v1 > 0) {
+ for (i = limbs; i > 0; i--) {
+ r1 = X[i - 1] << (biL - v1);
+ X[i - 1] >>= v1;
+ X[i - 1] |= r0;
+ r0 = r1;
+ }
+ }
+}
+
+void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count)
+{
+ size_t i, v0, v1;
+ mbedtls_mpi_uint r0 = 0, r1;
+
+ v0 = count / (biL);
+ v1 = count & (biL - 1);
+
+ /*
+ * shift by count / limb_size
+ */
+ if (v0 > 0) {
+ for (i = limbs; i > v0; i--) {
+ X[i - 1] = X[i - v0 - 1];
+ }
+
+ for (; i > 0; i--) {
+ X[i - 1] = 0;
+ }
+ }
+
+ /*
+ * shift by count % limb_size
+ */
+ if (v1 > 0) {
+ for (i = v0; i < limbs; i++) {
+ r1 = X[i] >> (biL - v1);
+ X[i] <<= v1;
+ X[i] |= r0;
+ r0 = r1;
+ }
+ }
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs)
+{
+ mbedtls_mpi_uint c = 0;
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint t = c + A[i];
+ c = (t < A[i]);
+ t += B[i];
+ c += (t < B[i]);
+ X[i] = t;
+ }
+
+ return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ unsigned cond)
+{
+ mbedtls_mpi_uint c = 0;
+
+ mbedtls_ct_condition_t do_add = mbedtls_ct_bool(cond);
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint add = mbedtls_ct_mpi_uint_if_else_0(do_add, A[i]);
+ mbedtls_mpi_uint t = c + X[i];
+ c = (t < X[i]);
+ t += add;
+ c += (t < add);
+ X[i] = t;
+ }
+
+ return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs)
+{
+ mbedtls_mpi_uint c = 0;
+
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint z = (A[i] < c);
+ mbedtls_mpi_uint t = A[i] - c;
+ c = (t < B[i]) + z;
+ X[i] = t - B[i];
+ }
+
+ return c;
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *d, size_t d_len,
+ const mbedtls_mpi_uint *s, size_t s_len,
+ mbedtls_mpi_uint b)
+{
+ mbedtls_mpi_uint c = 0; /* carry */
+ /*
+ * It is a documented precondition of this function that d_len >= s_len.
+ * If that's not the case, we swap these round: this turns what would be
+ * a buffer overflow into an incorrect result.
+ */
+ if (d_len < s_len) {
+ s_len = d_len;
+ }
+ size_t excess_len = d_len - s_len;
+ size_t steps_x8 = s_len / 8;
+ size_t steps_x1 = s_len & 7;
+
+ while (steps_x8--) {
+ MULADDC_X8_INIT
+ MULADDC_X8_CORE
+ MULADDC_X8_STOP
+ }
+
+ while (steps_x1--) {
+ MULADDC_X1_INIT
+ MULADDC_X1_CORE
+ MULADDC_X1_STOP
+ }
+
+ while (excess_len--) {
+ *d += c;
+ c = (*d < c);
+ d++;
+ }
+
+ return c;
+}
+
+void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A, size_t A_limbs,
+ const mbedtls_mpi_uint *B, size_t B_limbs)
+{
+ memset(X, 0, (A_limbs + B_limbs) * ciL);
+
+ for (size_t i = 0; i < B_limbs; i++) {
+ (void) mbedtls_mpi_core_mla(X + i, A_limbs + 1, A, A_limbs, B[i]);
+ }
+}
+
+/*
+ * Fast Montgomery initialization (thanks to Tom St Denis).
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N)
+{
+ mbedtls_mpi_uint x = N[0];
+
+ x += ((N[0] + 2) & 4) << 1;
+
+ for (unsigned int i = biL; i >= 8; i /= 2) {
+ x *= (2 - (N[0] * x));
+ }
+
+ return ~x + 1;
+}
+
+void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t B_limbs,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ mbedtls_mpi_uint *T)
+{
+ memset(T, 0, (2 * AN_limbs + 1) * ciL);
+
+ for (size_t i = 0; i < AN_limbs; i++) {
+ /* T = (T + u0*B + u1*N) / 2^biL */
+ mbedtls_mpi_uint u0 = A[i];
+ mbedtls_mpi_uint u1 = (T[0] + u0 * B[0]) * mm;
+
+ (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, B, B_limbs, u0);
+ (void) mbedtls_mpi_core_mla(T, AN_limbs + 2, N, AN_limbs, u1);
+
+ T++;
+ }
+
+ /*
+ * The result we want is (T >= N) ? T - N : T.
+ *
+ * For better constant-time properties in this function, we always do the
+ * subtraction, with the result in X.
+ *
+ * We also look to see if there was any carry in the final additions in the
+ * loop above.
+ */
+
+ mbedtls_mpi_uint carry = T[AN_limbs];
+ mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, T, N, AN_limbs);
+
+ /*
+ * Using R as the Montgomery radix (auxiliary modulus) i.e. 2^(biL*AN_limbs):
+ *
+ * T can be in one of 3 ranges:
+ *
+ * 1) T < N : (carry, borrow) = (0, 1): we want T
+ * 2) N <= T < R : (carry, borrow) = (0, 0): we want X
+ * 3) T >= R : (carry, borrow) = (1, 1): we want X
+ *
+ * and (carry, borrow) = (1, 0) can't happen.
+ *
+ * So the correct return value is already in X if (carry ^ borrow) = 0,
+ * but is in (the lower AN_limbs limbs of) T if (carry ^ borrow) = 1.
+ */
+ mbedtls_ct_memcpy_if(mbedtls_ct_bool(carry ^ borrow),
+ (unsigned char *) X,
+ (unsigned char *) T,
+ NULL,
+ AN_limbs * sizeof(mbedtls_mpi_uint));
+}
+
+int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
+ const mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, N->n * 2 * biL));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(X, X, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(X, N->n));
+
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
+ const mbedtls_mpi_uint *table,
+ size_t limbs,
+ size_t count,
+ size_t index)
+{
+ for (size_t i = 0; i < count; i++, table += limbs) {
+ mbedtls_ct_condition_t assign = mbedtls_ct_uint_eq(i, index);
+ mbedtls_mpi_core_cond_assign(dest, table, limbs, assign);
+ }
+}
+
+/* Fill X with n_bytes random bytes.
+ * X must already have room for those bytes.
+ * The ordering of the bytes returned from the RNG is suitable for
+ * deterministic ECDSA (see RFC 6979 §3.3 and the specification of
+ * mbedtls_mpi_core_random()).
+ */
+int mbedtls_mpi_core_fill_random(
+ mbedtls_mpi_uint *X, size_t X_limbs,
+ size_t n_bytes,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const size_t limbs = CHARS_TO_LIMBS(n_bytes);
+ const size_t overhead = (limbs * ciL) - n_bytes;
+
+ if (X_limbs < limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ memset(X, 0, overhead);
+ memset((unsigned char *) X + limbs * ciL, 0, (X_limbs - limbs) * ciL);
+ MBEDTLS_MPI_CHK(f_rng(p_rng, (unsigned char *) X + overhead, n_bytes));
+ mbedtls_mpi_core_bigendian_to_host(X, limbs);
+
+cleanup:
+ return ret;
+}
+
+int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *N,
+ size_t limbs,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ mbedtls_ct_condition_t ge_lower = MBEDTLS_CT_TRUE, lt_upper = MBEDTLS_CT_FALSE;
+ size_t n_bits = mbedtls_mpi_core_bitlen(N, limbs);
+ size_t n_bytes = (n_bits + 7) / 8;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /*
+ * When min == 0, each try has at worst a probability 1/2 of failing
+ * (the msb has a probability 1/2 of being 0, and then the result will
+ * be < N), so after 30 tries failure probability is a most 2**(-30).
+ *
+ * When N is just below a power of 2, as is the case when generating
+ * a random scalar on most elliptic curves, 1 try is enough with
+ * overwhelming probability. When N is just above a power of 2,
+ * as when generating a random scalar on secp224k1, each try has
+ * a probability of failing that is almost 1/2.
+ *
+ * The probabilities are almost the same if min is nonzero but negligible
+ * compared to N. This is always the case when N is crypto-sized, but
+ * it's convenient to support small N for testing purposes. When N
+ * is small, use a higher repeat count, otherwise the probability of
+ * failure is macroscopic.
+ */
+ int count = (n_bytes > 4 ? 30 : 250);
+
+ /*
+ * Match the procedure given in RFC 6979 §3.3 (deterministic ECDSA)
+ * when f_rng is a suitably parametrized instance of HMAC_DRBG:
+ * - use the same byte ordering;
+ * - keep the leftmost n_bits bits of the generated octet string;
+ * - try until result is in the desired range.
+ * This also avoids any bias, which is especially important for ECDSA.
+ */
+ do {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_fill_random(X, limbs,
+ n_bytes,
+ f_rng, p_rng));
+ mbedtls_mpi_core_shift_r(X, limbs, 8 * n_bytes - n_bits);
+
+ if (--count == 0) {
+ ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
+ goto cleanup;
+ }
+
+ ge_lower = mbedtls_mpi_core_uint_le_mpi(min, X, limbs);
+ lt_upper = mbedtls_mpi_core_lt_ct(X, N, limbs);
+ } while (mbedtls_ct_bool_and(ge_lower, lt_upper) == MBEDTLS_CT_FALSE);
+
+cleanup:
+ return ret;
+}
+
+static size_t exp_mod_get_window_size(size_t Ebits)
+{
+#if MBEDTLS_MPI_WINDOW_SIZE >= 6
+ return (Ebits > 671) ? 6 : (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
+#elif MBEDTLS_MPI_WINDOW_SIZE == 5
+ return (Ebits > 239) ? 5 : (Ebits > 79) ? 4 : 1;
+#elif MBEDTLS_MPI_WINDOW_SIZE > 1
+ return (Ebits > 79) ? MBEDTLS_MPI_WINDOW_SIZE : 1;
+#else
+ (void) Ebits;
+ return 1;
+#endif
+}
+
+size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs)
+{
+ const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
+ const size_t welem = ((size_t) 1) << wsize;
+
+ /* How big does each part of the working memory pool need to be? */
+ const size_t table_limbs = welem * AN_limbs;
+ const size_t select_limbs = AN_limbs;
+ const size_t temp_limbs = 2 * AN_limbs + 1;
+
+ return table_limbs + select_limbs + temp_limbs;
+}
+
+static void exp_mod_precompute_window(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ const mbedtls_mpi_uint *RR,
+ size_t welem,
+ mbedtls_mpi_uint *Wtable,
+ mbedtls_mpi_uint *temp)
+{
+ /* W[0] = 1 (in Montgomery presentation) */
+ memset(Wtable, 0, AN_limbs * ciL);
+ Wtable[0] = 1;
+ mbedtls_mpi_core_montmul(Wtable, Wtable, RR, AN_limbs, N, AN_limbs, mm, temp);
+
+ /* W[1] = A (already in Montgomery presentation) */
+ mbedtls_mpi_uint *W1 = Wtable + AN_limbs;
+ memcpy(W1, A, AN_limbs * ciL);
+
+ /* W[i+1] = W[i] * W[1], i >= 2 */
+ mbedtls_mpi_uint *Wprev = W1;
+ for (size_t i = 2; i < welem; i++) {
+ mbedtls_mpi_uint *Wcur = Wprev + AN_limbs;
+ mbedtls_mpi_core_montmul(Wcur, Wprev, W1, AN_limbs, N, AN_limbs, mm, temp);
+ Wprev = Wcur;
+ }
+}
+
+/* Exponentiation: X := A^E mod N.
+ *
+ * A must already be in Montgomery form.
+ *
+ * As in other bignum functions, assume that AN_limbs and E_limbs are nonzero.
+ *
+ * RR must contain 2^{2*biL} mod N.
+ *
+ * The algorithm is a variant of Left-to-right k-ary exponentiation: HAC 14.82
+ * (The difference is that the body in our loop processes a single bit instead
+ * of a full window.)
+ */
+void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ const mbedtls_mpi_uint *E,
+ size_t E_limbs,
+ const mbedtls_mpi_uint *RR,
+ mbedtls_mpi_uint *T)
+{
+ const size_t wsize = exp_mod_get_window_size(E_limbs * biL);
+ const size_t welem = ((size_t) 1) << wsize;
+
+ /* This is how we will use the temporary storage T, which must have space
+ * for table_limbs, select_limbs and (2 * AN_limbs + 1) for montmul. */
+ const size_t table_limbs = welem * AN_limbs;
+ const size_t select_limbs = AN_limbs;
+
+ /* Pointers to specific parts of the temporary working memory pool */
+ mbedtls_mpi_uint *const Wtable = T;
+ mbedtls_mpi_uint *const Wselect = Wtable + table_limbs;
+ mbedtls_mpi_uint *const temp = Wselect + select_limbs;
+
+ /*
+ * Window precomputation
+ */
+
+ const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N);
+
+ /* Set Wtable[i] = A^(2^i) (in Montgomery representation) */
+ exp_mod_precompute_window(A, N, AN_limbs,
+ mm, RR,
+ welem, Wtable, temp);
+
+ /*
+ * Fixed window exponentiation
+ */
+
+ /* X = 1 (in Montgomery presentation) initially */
+ memcpy(X, Wtable, AN_limbs * ciL);
+
+ /* We'll process the bits of E from most significant
+ * (limb_index=E_limbs-1, E_bit_index=biL-1) to least significant
+ * (limb_index=0, E_bit_index=0). */
+ size_t E_limb_index = E_limbs;
+ size_t E_bit_index = 0;
+ /* At any given time, window contains window_bits bits from E.
+ * window_bits can go up to wsize. */
+ size_t window_bits = 0;
+ mbedtls_mpi_uint window = 0;
+
+ do {
+ /* Square */
+ mbedtls_mpi_core_montmul(X, X, X, AN_limbs, N, AN_limbs, mm, temp);
+
+ /* Move to the next bit of the exponent */
+ if (E_bit_index == 0) {
+ --E_limb_index;
+ E_bit_index = biL - 1;
+ } else {
+ --E_bit_index;
+ }
+ /* Insert next exponent bit into window */
+ ++window_bits;
+ window <<= 1;
+ window |= (E[E_limb_index] >> E_bit_index) & 1;
+
+ /* Clear window if it's full. Also clear the window at the end,
+ * when we've finished processing the exponent. */
+ if (window_bits == wsize ||
+ (E_bit_index == 0 && E_limb_index == 0)) {
+ /* Select Wtable[window] without leaking window through
+ * memory access patterns. */
+ mbedtls_mpi_core_ct_uint_table_lookup(Wselect, Wtable,
+ AN_limbs, welem, window);
+ /* Multiply X by the selected element. */
+ mbedtls_mpi_core_montmul(X, X, Wselect, AN_limbs, N, AN_limbs, mm,
+ temp);
+ window = 0;
+ window_bits = 0;
+ }
+ } while (!(E_bit_index == 0 && E_limb_index == 0));
+}
+
+mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ mbedtls_mpi_uint c, /* doubles as carry */
+ size_t limbs)
+{
+ for (size_t i = 0; i < limbs; i++) {
+ mbedtls_mpi_uint s = A[i];
+ mbedtls_mpi_uint t = s - c;
+ c = (t > s);
+ X[i] = t;
+ }
+
+ return c;
+}
+
+mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
+ size_t limbs)
+{
+ volatile const mbedtls_mpi_uint *force_read_A = A;
+ mbedtls_mpi_uint bits = 0;
+
+ for (size_t i = 0; i < limbs; i++) {
+ bits |= force_read_A[i];
+ }
+
+ return mbedtls_ct_bool(bits);
+}
+
+void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ const mbedtls_mpi_uint *rr,
+ mbedtls_mpi_uint *T)
+{
+ mbedtls_mpi_core_montmul(X, A, rr, AN_limbs, N, AN_limbs, mm, T);
+}
+
+void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ mbedtls_mpi_uint *T)
+{
+ const mbedtls_mpi_uint Rinv = 1; /* 1/R in Mont. rep => 1 */
+
+ mbedtls_mpi_core_montmul(X, A, &Rinv, 1, N, AN_limbs, mm, T);
+}
+
+#endif /* MBEDTLS_BIGNUM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_core.h b/tf-psa-crypto/drivers/builtin/src/bignum_core.h
new file mode 100644
index 0000000..92c8d47
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_core.h
@@ -0,0 +1,763 @@
+/**
+ * Core bignum functions
+ *
+ * This interface should only be used by the legacy bignum module (bignum.h)
+ * and the modular bignum modules (bignum_mod.c, bignum_mod_raw.c). All other
+ * modules should use the high-level modular bignum interface (bignum_mod.h)
+ * or the legacy bignum interface (bignum.h).
+ *
+ * This module is about processing non-negative integers with a fixed upper
+ * bound that's of the form 2^n-1 where n is a multiple of #biL.
+ * These can be thought of integers written in base 2^#biL with a fixed
+ * number of digits. Digits in this base are called *limbs*.
+ * Many operations treat these numbers as the principal representation of
+ * a number modulo 2^n or a smaller bound.
+ *
+ * The functions in this module obey the following conventions unless
+ * explicitly indicated otherwise:
+ *
+ * - **Overflow**: some functions indicate overflow from the range
+ * [0, 2^n-1] by returning carry parameters, while others operate
+ * modulo and so cannot overflow. This should be clear from the function
+ * documentation.
+ * - **Bignum parameters**: Bignums are passed as pointers to an array of
+ * limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified:
+ * - Bignum parameters called \p A, \p B, ... are inputs, and are
+ * not modified by the function.
+ * - For operations modulo some number, the modulus is called \p N
+ * and is input-only.
+ * - Bignum parameters called \p X, \p Y are outputs or input-output.
+ * The initial content of output-only parameters is ignored.
+ * - Some functions use different names that reflect traditional
+ * naming of operands of certain operations (e.g.
+ * divisor/dividend/quotient/remainder).
+ * - \p T is a temporary storage area. The initial content of such
+ * parameter is ignored and the final content is unspecified.
+ * - **Bignum sizes**: bignum sizes are always expressed in limbs.
+ * Most functions work on bignums of a given size and take a single
+ * \p limbs parameter that applies to all parameters that are limb arrays.
+ * All bignum sizes must be at least 1 and must be significantly less than
+ * #SIZE_MAX. The behavior if a size is 0 is undefined. The behavior if the
+ * total size of all parameters overflows #SIZE_MAX is undefined.
+ * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
+ * Temporaries come last.
+ * - **Aliasing**: in general, output bignums may be aliased to one or more
+ * inputs. As an exception, parameters that are documented as a modulus value
+ * may not be aliased to an output. Outputs may not be aliased to one another.
+ * Temporaries may not be aliased to any other parameter.
+ * - **Overlap**: apart from aliasing of limb array pointers (where two
+ * arguments are equal pointers), overlap is not supported and may result
+ * in undefined behavior.
+ * - **Error handling**: This is a low-level module. Functions generally do not
+ * try to protect against invalid arguments such as nonsensical sizes or
+ * null pointers. Note that some functions that operate on bignums of
+ * different sizes have constraints about their size, and violating those
+ * constraints may lead to buffer overflows.
+ * - **Modular representatives**: functions that operate modulo \p N expect
+ * all modular inputs to be in the range [0, \p N - 1] and guarantee outputs
+ * in the range [0, \p N - 1]. If an input is out of range, outputs are
+ * fully unspecified, though bignum values out of range should not cause
+ * buffer overflows (beware that this is not extensively tested).
+ */
+
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_CORE_H
+#define MBEDTLS_BIGNUM_CORE_H
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+#include "constant_time_internal.h"
+
+#define ciL (sizeof(mbedtls_mpi_uint)) /** chars in limb */
+#define biL (ciL << 3) /** bits in limb */
+#define biH (ciL << 2) /** half limb size */
+
+/*
+ * Convert between bits/chars and number of limbs
+ * Divide first in order to avoid potential overflows
+ */
+#define BITS_TO_LIMBS(i) ((i) / biL + ((i) % biL != 0))
+#define CHARS_TO_LIMBS(i) ((i) / ciL + ((i) % ciL != 0))
+/* Get a specific byte, without range checks. */
+#define GET_BYTE(X, i) \
+ (((X)[(i) / ciL] >> (((i) % ciL) * 8)) & 0xff)
+
+/** Count leading zero bits in a given integer.
+ *
+ * \warning The result is undefined if \p a == 0
+ *
+ * \param a Integer to count leading zero bits.
+ *
+ * \return The number of leading zero bits in \p a, if \p a != 0.
+ * If \p a == 0, the result is undefined.
+ */
+size_t mbedtls_mpi_core_clz(mbedtls_mpi_uint a);
+
+/** Return the minimum number of bits required to represent the value held
+ * in the MPI.
+ *
+ * \note This function returns 0 if all the limbs of \p A are 0.
+ *
+ * \param[in] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ *
+ * \return The number of bits in \p A.
+ */
+size_t mbedtls_mpi_core_bitlen(const mbedtls_mpi_uint *A, size_t A_limbs);
+
+/** Convert a big-endian byte array aligned to the size of mbedtls_mpi_uint
+ * into the storage form used by mbedtls_mpi.
+ *
+ * \param[in,out] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ */
+void mbedtls_mpi_core_bigendian_to_host(mbedtls_mpi_uint *A,
+ size_t A_limbs);
+
+/** \brief Compare a machine integer with an MPI.
+ *
+ * This function operates in constant time with respect
+ * to the values of \p min and \p A.
+ *
+ * \param min A machine integer.
+ * \param[in] A An MPI.
+ * \param A_limbs The number of limbs of \p A.
+ * This must be at least 1.
+ *
+ * \return MBEDTLS_CT_TRUE if \p min is less than or equal to \p A, otherwise MBEDTLS_CT_FALSE.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_uint_le_mpi(mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *A,
+ size_t A_limbs);
+
+/**
+ * \brief Check if one unsigned MPI is less than another in constant
+ * time.
+ *
+ * \param A The left-hand MPI. This must point to an array of limbs
+ * with the same allocated length as \p B.
+ * \param B The right-hand MPI. This must point to an array of limbs
+ * with the same allocated length as \p A.
+ * \param limbs The number of limbs in \p A and \p B.
+ * This must not be 0.
+ *
+ * \return MBEDTLS_CT_TRUE if \p A is less than \p B.
+ * MBEDTLS_CT_FALSE if \p A is greater than or equal to \p B.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_lt_ct(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs);
+
+/**
+ * \brief Perform a safe conditional copy of an MPI which doesn't reveal
+ * whether assignment was done or not.
+ *
+ * \param[out] X The address of the destination MPI.
+ * This must be initialized. Must have enough limbs to
+ * store the full value of \p A.
+ * \param[in] A The address of the source MPI. This must be initialized.
+ * \param limbs The number of limbs of \p A.
+ * \param assign The condition deciding whether to perform the
+ * assignment or not. Callers will need to use
+ * the constant time interface (e.g. `mbedtls_ct_bool()`)
+ * to construct this argument.
+ *
+ * \note This function avoids leaking any information about whether
+ * the assignment was done or not.
+ */
+void mbedtls_mpi_core_cond_assign(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ mbedtls_ct_condition_t assign);
+
+/**
+ * \brief Perform a safe conditional swap of two MPIs which doesn't reveal
+ * whether the swap was done or not.
+ *
+ * \param[in,out] X The address of the first MPI.
+ * This must be initialized.
+ * \param[in,out] Y The address of the second MPI.
+ * This must be initialized.
+ * \param limbs The number of limbs of \p X and \p Y.
+ * \param swap The condition deciding whether to perform
+ * the swap or not.
+ *
+ * \note This function avoids leaking any information about whether
+ * the swap was done or not.
+ */
+void mbedtls_mpi_core_cond_swap(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint *Y,
+ size_t limbs,
+ mbedtls_ct_condition_t swap);
+
+/** Import X from unsigned binary data, little-endian.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X The address of the MPI.
+ * \param X_limbs The number of limbs of \p X.
+ * \param[in] input The input buffer to import from.
+ * \param input_length The length bytes of \p input.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ * large enough to hold the value in \p input.
+ */
+int mbedtls_mpi_core_read_le(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length);
+
+/** Import X from unsigned binary data, big-endian.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X The address of the MPI.
+ * May only be #NULL if \p X_limbs is 0 and \p input_length
+ * is 0.
+ * \param X_limbs The number of limbs of \p X.
+ * \param[in] input The input buffer to import from.
+ * May only be #NULL if \p input_length is 0.
+ * \param input_length The length in bytes of \p input.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ * large enough to hold the value in \p input.
+ */
+int mbedtls_mpi_core_read_be(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ const unsigned char *input,
+ size_t input_length);
+
+/** Export A into unsigned binary data, little-endian.
+ *
+ * \note If \p output is shorter than \p A the export is still successful if the
+ * value held in \p A fits in the buffer (that is, if enough of the most
+ * significant bytes of \p A are 0).
+ *
+ * \param[in] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ * \param[out] output The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ * large enough to hold the value of \p A.
+ */
+int mbedtls_mpi_core_write_le(const mbedtls_mpi_uint *A,
+ size_t A_limbs,
+ unsigned char *output,
+ size_t output_length);
+
+/** Export A into unsigned binary data, big-endian.
+ *
+ * \note If \p output is shorter than \p A the export is still successful if the
+ * value held in \p A fits in the buffer (that is, if enough of the most
+ * significant bytes of \p A are 0).
+ *
+ * \param[in] A The address of the MPI.
+ * \param A_limbs The number of limbs of \p A.
+ * \param[out] output The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ * large enough to hold the value of \p A.
+ */
+int mbedtls_mpi_core_write_be(const mbedtls_mpi_uint *A,
+ size_t A_limbs,
+ unsigned char *output,
+ size_t output_length);
+
+/** \brief Shift an MPI in-place right by a number of bits.
+ *
+ * Shifting by more bits than there are bit positions
+ * in \p X is valid and results in setting \p X to 0.
+ *
+ * This function's execution time depends on the value
+ * of \p count (and of course \p limbs).
+ *
+ * \param[in,out] X The number to shift.
+ * \param limbs The number of limbs of \p X. This must be at least 1.
+ * \param count The number of bits to shift by.
+ */
+void mbedtls_mpi_core_shift_r(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count);
+
+/**
+ * \brief Shift an MPI in-place left by a number of bits.
+ *
+ * Shifting by more bits than there are bit positions
+ * in \p X will produce an unspecified result.
+ *
+ * This function's execution time depends on the value
+ * of \p count (and of course \p limbs).
+ * \param[in,out] X The number to shift.
+ * \param limbs The number of limbs of \p X. This must be at least 1.
+ * \param count The number of bits to shift by.
+ */
+void mbedtls_mpi_core_shift_l(mbedtls_mpi_uint *X, size_t limbs,
+ size_t count);
+
+/**
+ * \brief Add two fixed-size large unsigned integers, returning the carry.
+ *
+ * Calculates `A + B` where `A` and `B` have the same size.
+ *
+ * This function operates modulo `2^(biL*limbs)` and returns the carry
+ * (1 if there was a wraparound, and 0 otherwise).
+ *
+ * \p X may be aliased to \p A or \p B.
+ *
+ * \param[out] X The result of the addition.
+ * \param[in] A Little-endian presentation of the left operand.
+ * \param[in] B Little-endian presentation of the right operand.
+ * \param limbs Number of limbs of \p X, \p A and \p B.
+ *
+ * \return 1 if `A + B >= 2^(biL*limbs)`, 0 otherwise.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_add(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs);
+
+/**
+ * \brief Conditional addition of two fixed-size large unsigned integers,
+ * returning the carry.
+ *
+ * Functionally equivalent to
+ *
+ * ```
+ * if( cond )
+ * X += A;
+ * return carry;
+ * ```
+ *
+ * This function operates modulo `2^(biL*limbs)`.
+ *
+ * \param[in,out] X The pointer to the (little-endian) array
+ * representing the bignum to accumulate onto.
+ * \param[in] A The pointer to the (little-endian) array
+ * representing the bignum to conditionally add
+ * to \p X. This may be aliased to \p X but may not
+ * overlap otherwise.
+ * \param limbs Number of limbs of \p X and \p A.
+ * \param cond Condition bit dictating whether addition should
+ * happen or not. This must be \c 0 or \c 1.
+ *
+ * \warning If \p cond is neither 0 nor 1, the result of this function
+ * is unspecified, and the resulting value in \p X might be
+ * neither its original value nor \p X + \p A.
+ *
+ * \return 1 if `X + cond * A >= 2^(biL*limbs)`, 0 otherwise.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_add_if(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs,
+ unsigned cond);
+
+/**
+ * \brief Subtract two fixed-size large unsigned integers, returning the borrow.
+ *
+ * Calculate `A - B` where \p A and \p B have the same size.
+ * This function operates modulo `2^(biL*limbs)` and returns the carry
+ * (1 if there was a wraparound, i.e. if `A < B`, and 0 otherwise).
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \param[out] X The result of the subtraction.
+ * \param[in] A Little-endian presentation of left operand.
+ * \param[in] B Little-endian presentation of right operand.
+ * \param limbs Number of limbs of \p X, \p A and \p B.
+ *
+ * \return 1 if `A < B`.
+ * 0 if `A >= B`.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_sub(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ size_t limbs);
+
+/**
+ * \brief Perform a fixed-size multiply accumulate operation: X += b * A
+ *
+ * \p X may be aliased to \p A (when \p X_limbs == \p A_limbs), but may not
+ * otherwise overlap.
+ *
+ * This function operates modulo `2^(biL*X_limbs)`.
+ *
+ * \param[in,out] X The pointer to the (little-endian) array
+ * representing the bignum to accumulate onto.
+ * \param X_limbs The number of limbs of \p X. This must be
+ * at least \p A_limbs.
+ * \param[in] A The pointer to the (little-endian) array
+ * representing the bignum to multiply with.
+ * This may be aliased to \p X but may not overlap
+ * otherwise.
+ * \param A_limbs The number of limbs of \p A.
+ * \param b X scalar to multiply with.
+ *
+ * \return The carry at the end of the operation.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_mla(mbedtls_mpi_uint *X, size_t X_limbs,
+ const mbedtls_mpi_uint *A, size_t A_limbs,
+ mbedtls_mpi_uint b);
+
+/**
+ * \brief Perform a known-size multiplication
+ *
+ * \p X may not be aliased to any of the inputs for this function.
+ * \p A may be aliased to \p B.
+ *
+ * \param[out] X The pointer to the (little-endian) array to receive
+ * the product of \p A_limbs and \p B_limbs.
+ * This must be of length \p A_limbs + \p B_limbs.
+ * \param[in] A The pointer to the (little-endian) array
+ * representing the first factor.
+ * \param A_limbs The number of limbs in \p A.
+ * \param[in] B The pointer to the (little-endian) array
+ * representing the second factor.
+ * \param B_limbs The number of limbs in \p B.
+ */
+void mbedtls_mpi_core_mul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A, size_t A_limbs,
+ const mbedtls_mpi_uint *B, size_t B_limbs);
+
+/**
+ * \brief Calculate initialisation value for fast Montgomery modular
+ * multiplication
+ *
+ * \param[in] N Little-endian presentation of the modulus. This must have
+ * at least one limb.
+ *
+ * \return The initialisation value for fast Montgomery modular multiplication
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_montmul_init(const mbedtls_mpi_uint *N);
+
+/**
+ * \brief Montgomery multiplication: X = A * B * R^-1 mod N (HAC 14.36)
+ *
+ * \p A and \p B must be in canonical form. That is, < \p N.
+ *
+ * \p X may be aliased to \p A or \p N, or even \p B (if \p AN_limbs ==
+ * \p B_limbs) but may not overlap any parameters otherwise.
+ *
+ * \p A and \p B may alias each other, if \p AN_limbs == \p B_limbs. They may
+ * not alias \p N (since they must be in canonical form, they cannot == \p N).
+ *
+ * \param[out] X The destination MPI, as a little-endian array of
+ * length \p AN_limbs.
+ * On successful completion, X contains the result of
+ * the multiplication `A * B * R^-1` mod N where
+ * `R = 2^(biL*AN_limbs)`.
+ * \param[in] A Little-endian presentation of first operand.
+ * Must have the same number of limbs as \p N.
+ * \param[in] B Little-endian presentation of second operand.
+ * \param[in] B_limbs The number of limbs in \p B.
+ * Must be <= \p AN_limbs.
+ * \param[in] N Little-endian presentation of the modulus.
+ * This must be odd, and have exactly the same number
+ * of limbs as \p A.
+ * It may alias \p X, but must not alias or otherwise
+ * overlap any of the other parameters.
+ * \param[in] AN_limbs The number of limbs in \p X, \p A and \p N.
+ * \param mm The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ * This can be calculated by `mbedtls_mpi_core_montmul_init()`.
+ * \param[in,out] T Temporary storage of size at least 2*AN_limbs+1 limbs.
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ * It must not alias or otherwise overlap any of the
+ * other parameters.
+ */
+void mbedtls_mpi_core_montmul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B, size_t B_limbs,
+ const mbedtls_mpi_uint *N, size_t AN_limbs,
+ mbedtls_mpi_uint mm, mbedtls_mpi_uint *T);
+
+/**
+ * \brief Calculate the square of the Montgomery constant. (Needed
+ * for conversion and operations in Montgomery form.)
+ *
+ * \param[out] X A pointer to the result of the calculation of
+ * the square of the Montgomery constant:
+ * 2^{2*n*biL} mod N.
+ * \param[in] N Little-endian presentation of the modulus, which must be odd.
+ *
+ * \return 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if there is not enough space
+ * to store the value of Montgomery constant squared.
+ * \return #MBEDTLS_ERR_MPI_DIVISION_BY_ZERO if \p N modulus is zero.
+ * \return #MBEDTLS_ERR_MPI_NEGATIVE_VALUE if \p N modulus is negative.
+ */
+int mbedtls_mpi_core_get_mont_r2_unsafe(mbedtls_mpi *X,
+ const mbedtls_mpi *N);
+
+#if defined(MBEDTLS_TEST_HOOKS)
+/**
+ * Copy an MPI from a table without leaking the index.
+ *
+ * \param dest The destination buffer. This must point to a writable
+ * buffer of at least \p limbs limbs.
+ * \param table The address of the table. This must point to a readable
+ * array of \p count elements of \p limbs limbs each.
+ * \param limbs The number of limbs in each table entry.
+ * \param count The number of entries in \p table.
+ * \param index The (secret) table index to look up. This must be in the
+ * range `0 .. count-1`.
+ */
+void mbedtls_mpi_core_ct_uint_table_lookup(mbedtls_mpi_uint *dest,
+ const mbedtls_mpi_uint *table,
+ size_t limbs,
+ size_t count,
+ size_t index);
+#endif /* MBEDTLS_TEST_HOOKS */
+
+/**
+ * \brief Fill an integer with a number of random bytes.
+ *
+ * \param X The destination MPI.
+ * \param X_limbs The number of limbs of \p X.
+ * \param bytes The number of random bytes to generate.
+ * \param f_rng The RNG function to use. This must not be \c NULL.
+ * \param p_rng The RNG parameter to be passed to \p f_rng. This may be
+ * \c NULL if \p f_rng doesn't need a context argument.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p X does not have
+ * enough room for \p bytes bytes.
+ * \return A negative error code on RNG failure.
+ *
+ * \note The bytes obtained from the RNG are interpreted
+ * as a big-endian representation of an MPI; this can
+ * be relevant in applications like deterministic ECDSA.
+ */
+int mbedtls_mpi_core_fill_random(mbedtls_mpi_uint *X, size_t X_limbs,
+ size_t bytes,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+/** Generate a random number uniformly in a range.
+ *
+ * This function generates a random number between \p min inclusive and
+ * \p N exclusive.
+ *
+ * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
+ * when the RNG is a suitably parametrized instance of HMAC_DRBG
+ * and \p min is \c 1.
+ *
+ * \note There are `N - min` possible outputs. The lower bound
+ * \p min can be reached, but the upper bound \p N cannot.
+ *
+ * \param X The destination MPI, with \p limbs limbs.
+ * It must not be aliased with \p N or otherwise overlap it.
+ * \param min The minimum value to return.
+ * \param N The upper bound of the range, exclusive, with \p limbs limbs.
+ * In other words, this is one plus the maximum value to return.
+ * \p N must be strictly larger than \p min.
+ * \param limbs The number of limbs of \p N and \p X.
+ * This must not be 0.
+ * \param f_rng The RNG function to use. This must not be \c NULL.
+ * \param p_rng The RNG parameter to be passed to \p f_rng.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
+ * unable to find a suitable value within a limited number
+ * of attempts. This has a negligible probability if \p N
+ * is significantly larger than \p min, which is the case
+ * for all usual cryptographic applications.
+ */
+int mbedtls_mpi_core_random(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_uint *N,
+ size_t limbs,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+/**
+ * \brief Returns the number of limbs of working memory required for
+ * a call to `mbedtls_mpi_core_exp_mod()`.
+ *
+ * \note This will always be at least
+ * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`,
+ * i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ * (they must be the same size) that will be given to
+ * `mbedtls_mpi_core_exp_mod()`.
+ * \param E_limbs The number of limbs in the exponent `E` that will be given
+ * to `mbedtls_mpi_core_exp_mod()`.
+ *
+ * \return The number of limbs of working memory required by
+ * `mbedtls_mpi_core_exp_mod()`.
+ */
+size_t mbedtls_mpi_core_exp_mod_working_limbs(size_t AN_limbs, size_t E_limbs);
+
+/**
+ * \brief Perform a modular exponentiation with secret exponent:
+ * X = A^E mod N, where \p A is already in Montgomery form.
+ *
+ * \p X may be aliased to \p A, but not to \p RR or \p E, even if \p E_limbs ==
+ * \p AN_limbs.
+ *
+ * \param[out] X The destination MPI, as a little endian array of length
+ * \p AN_limbs.
+ * \param[in] A The base MPI, as a little endian array of length \p AN_limbs.
+ * Must be in Montgomery form.
+ * \param[in] N The modulus, as a little endian array of length \p AN_limbs.
+ * \param AN_limbs The number of limbs in \p X, \p A, \p N, \p RR.
+ * \param[in] E The exponent, as a little endian array of length \p E_limbs.
+ * \param E_limbs The number of limbs in \p E.
+ * \param[in] RR The precomputed residue of 2^{2*biL} modulo N, as a little
+ * endian array of length \p AN_limbs.
+ * \param[in,out] T Temporary storage of at least the number of limbs returned
+ * by `mbedtls_mpi_core_exp_mod_working_limbs()`.
+ * Its initial content is unused and its final content is
+ * indeterminate.
+ * It must not alias or otherwise overlap any of the other
+ * parameters.
+ * It is up to the caller to zeroize \p T when it is no
+ * longer needed, and before freeing it if it was dynamically
+ * allocated.
+ */
+void mbedtls_mpi_core_exp_mod(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N, size_t AN_limbs,
+ const mbedtls_mpi_uint *E, size_t E_limbs,
+ const mbedtls_mpi_uint *RR,
+ mbedtls_mpi_uint *T);
+
+/**
+ * \brief Subtract unsigned integer from known-size large unsigned integers.
+ * Return the borrow.
+ *
+ * \param[out] X The result of the subtraction.
+ * \param[in] A The left operand.
+ * \param b The unsigned scalar to subtract.
+ * \param limbs Number of limbs of \p X and \p A.
+ *
+ * \return 1 if `A < b`.
+ * 0 if `A >= b`.
+ */
+mbedtls_mpi_uint mbedtls_mpi_core_sub_int(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ mbedtls_mpi_uint b,
+ size_t limbs);
+
+/**
+ * \brief Determine if a given MPI has the value \c 0 in constant time with
+ * respect to the value (but not with respect to the number of limbs).
+ *
+ * \param[in] A The MPI to test.
+ * \param limbs Number of limbs in \p A.
+ *
+ * \return MBEDTLS_CT_FALSE if `A == 0`
+ * MBEDTLS_CT_TRUE if `A != 0`.
+ */
+mbedtls_ct_condition_t mbedtls_mpi_core_check_zero_ct(const mbedtls_mpi_uint *A,
+ size_t limbs);
+
+/**
+ * \brief Returns the number of limbs of working memory required for
+ * a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ * (they must be the same size) that will be given to
+ * `mbedtls_mpi_core_montmul()` or one of the other functions
+ * that specifies this as the amount of working memory needed.
+ *
+ * \return The number of limbs of working memory required by
+ * `mbedtls_mpi_core_montmul()` (or other similar function).
+ */
+static inline size_t mbedtls_mpi_core_montmul_working_limbs(size_t AN_limbs)
+{
+ return 2 * AN_limbs + 1;
+}
+
+/** Convert an MPI into Montgomery form.
+ *
+ * \p X may be aliased to \p A, but may not otherwise overlap it.
+ *
+ * \p X may not alias \p N (it is in canonical form, so must be strictly less
+ * than \p N). Nor may it alias or overlap \p rr (this is unlikely to be
+ * required in practice.)
+ *
+ * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
+ * an alternative to calling `mbedtls_mpi_mod_raw_to_mont_rep()` when we
+ * don't want to allocate memory.
+ *
+ * \param[out] X The result of the conversion.
+ * Must have the same number of limbs as \p A.
+ * \param[in] A The MPI to convert into Montgomery form.
+ * Must have the same number of limbs as the modulus.
+ * \param[in] N The address of the modulus, which gives the size of
+ * the base `R` = 2^(biL*N->limbs).
+ * \param[in] AN_limbs The number of limbs in \p X, \p A, \p N and \p rr.
+ * \param mm The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ * This can be determined by calling
+ * `mbedtls_mpi_core_montmul_init()`.
+ * \param[in] rr The residue for `2^{2*n*biL} mod N`.
+ * \param[in,out] T Temporary storage of size at least
+ * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
+ * limbs.
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ * It must not alias or otherwise overlap any of the
+ * other parameters.
+ */
+void mbedtls_mpi_core_to_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ const mbedtls_mpi_uint *rr,
+ mbedtls_mpi_uint *T);
+
+/** Convert an MPI from Montgomery form.
+ *
+ * \p X may be aliased to \p A, but may not otherwise overlap it.
+ *
+ * \p X may not alias \p N (it is in canonical form, so must be strictly less
+ * than \p N).
+ *
+ * This function is a thin wrapper around `mbedtls_mpi_core_montmul()` that is
+ * an alternative to calling `mbedtls_mpi_mod_raw_from_mont_rep()` when we
+ * don't want to allocate memory.
+ *
+ * \param[out] X The result of the conversion.
+ * Must have the same number of limbs as \p A.
+ * \param[in] A The MPI to convert from Montgomery form.
+ * Must have the same number of limbs as the modulus.
+ * \param[in] N The address of the modulus, which gives the size of
+ * the base `R` = 2^(biL*N->limbs).
+ * \param[in] AN_limbs The number of limbs in \p X, \p A and \p N.
+ * \param mm The Montgomery constant for \p N: -N^-1 mod 2^biL.
+ * This can be determined by calling
+ * `mbedtls_mpi_core_montmul_init()`.
+ * \param[in,out] T Temporary storage of size at least
+ * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`
+ * limbs.
+ * Its initial content is unused and
+ * its final content is indeterminate.
+ * It must not alias or otherwise overlap any of the
+ * other parameters.
+ */
+void mbedtls_mpi_core_from_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ mbedtls_mpi_uint mm,
+ mbedtls_mpi_uint *T);
+
+#endif /* MBEDTLS_BIGNUM_CORE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod.c b/tf-psa-crypto/drivers/builtin/src/bignum_mod.c
new file mode 100644
index 0000000..dfd332a
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod.c
@@ -0,0 +1,394 @@
+/**
+ * Modular bignum functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C) && defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#include <string.h>
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/bignum.h"
+
+#include "mbedtls/platform.h"
+
+#include "bignum_core.h"
+#include "bignum_mod.h"
+#include "bignum_mod_raw.h"
+#include "constant_time_internal.h"
+
+int mbedtls_mpi_mod_residue_setup(mbedtls_mpi_mod_residue *r,
+ const mbedtls_mpi_mod_modulus *N,
+ mbedtls_mpi_uint *p,
+ size_t p_limbs)
+{
+ if (p_limbs != N->limbs || !mbedtls_mpi_core_lt_ct(p, N->p, N->limbs)) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ r->limbs = N->limbs;
+ r->p = p;
+
+ return 0;
+}
+
+void mbedtls_mpi_mod_residue_release(mbedtls_mpi_mod_residue *r)
+{
+ if (r == NULL) {
+ return;
+ }
+
+ r->limbs = 0;
+ r->p = NULL;
+}
+
+void mbedtls_mpi_mod_modulus_init(mbedtls_mpi_mod_modulus *N)
+{
+ if (N == NULL) {
+ return;
+ }
+
+ N->p = NULL;
+ N->limbs = 0;
+ N->bits = 0;
+ N->int_rep = MBEDTLS_MPI_MOD_REP_INVALID;
+}
+
+void mbedtls_mpi_mod_modulus_free(mbedtls_mpi_mod_modulus *N)
+{
+ if (N == NULL) {
+ return;
+ }
+
+ switch (N->int_rep) {
+ case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+ if (N->rep.mont.rr != NULL) {
+ mbedtls_zeroize_and_free((mbedtls_mpi_uint *) N->rep.mont.rr,
+ N->limbs * sizeof(mbedtls_mpi_uint));
+ N->rep.mont.rr = NULL;
+ }
+ N->rep.mont.mm = 0;
+ break;
+ case MBEDTLS_MPI_MOD_REP_OPT_RED:
+ N->rep.ored.modp = NULL;
+ break;
+ case MBEDTLS_MPI_MOD_REP_INVALID:
+ break;
+ }
+
+ N->p = NULL;
+ N->limbs = 0;
+ N->bits = 0;
+ N->int_rep = MBEDTLS_MPI_MOD_REP_INVALID;
+}
+
+static int set_mont_const_square(const mbedtls_mpi_uint **X,
+ const mbedtls_mpi_uint *A,
+ size_t limbs)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi N;
+ mbedtls_mpi RR;
+ *X = NULL;
+
+ mbedtls_mpi_init(&N);
+ mbedtls_mpi_init(&RR);
+
+ if (A == NULL || limbs == 0 || limbs >= (MBEDTLS_MPI_MAX_LIMBS / 2) - 2) {
+ goto cleanup;
+ }
+
+ if (mbedtls_mpi_grow(&N, limbs)) {
+ goto cleanup;
+ }
+
+ memcpy(N.p, A, sizeof(mbedtls_mpi_uint) * limbs);
+
+ ret = mbedtls_mpi_core_get_mont_r2_unsafe(&RR, &N);
+
+ if (ret == 0) {
+ *X = RR.p;
+ RR.p = NULL;
+ }
+
+cleanup:
+ mbedtls_mpi_free(&N);
+ mbedtls_mpi_free(&RR);
+ ret = (ret != 0) ? MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED : 0;
+ return ret;
+}
+
+static inline void standard_modulus_setup(mbedtls_mpi_mod_modulus *N,
+ const mbedtls_mpi_uint *p,
+ size_t p_limbs,
+ mbedtls_mpi_mod_rep_selector int_rep)
+{
+ N->p = p;
+ N->limbs = p_limbs;
+ N->bits = mbedtls_mpi_core_bitlen(p, p_limbs);
+ N->int_rep = int_rep;
+}
+
+int mbedtls_mpi_mod_modulus_setup(mbedtls_mpi_mod_modulus *N,
+ const mbedtls_mpi_uint *p,
+ size_t p_limbs)
+{
+ int ret = 0;
+ standard_modulus_setup(N, p, p_limbs, MBEDTLS_MPI_MOD_REP_MONTGOMERY);
+ N->rep.mont.mm = mbedtls_mpi_core_montmul_init(N->p);
+ ret = set_mont_const_square(&N->rep.mont.rr, N->p, N->limbs);
+
+ if (ret != 0) {
+ mbedtls_mpi_mod_modulus_free(N);
+ }
+
+ return ret;
+}
+
+int mbedtls_mpi_mod_optred_modulus_setup(mbedtls_mpi_mod_modulus *N,
+ const mbedtls_mpi_uint *p,
+ size_t p_limbs,
+ mbedtls_mpi_modp_fn modp)
+{
+ standard_modulus_setup(N, p, p_limbs, MBEDTLS_MPI_MOD_REP_OPT_RED);
+ N->rep.ored.modp = modp;
+ return 0;
+}
+
+int mbedtls_mpi_mod_mul(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_residue *B,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ if (N->limbs == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (X->limbs != N->limbs || A->limbs != N->limbs || B->limbs != N->limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_uint *T = mbedtls_calloc(N->limbs * 2 + 1, ciL);
+ if (T == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ mbedtls_mpi_mod_raw_mul(X->p, A->p, B->p, N, T);
+
+ mbedtls_free(T);
+
+ return 0;
+}
+
+int mbedtls_mpi_mod_sub(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_residue *B,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ if (X->limbs != N->limbs || A->limbs != N->limbs || B->limbs != N->limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_mod_raw_sub(X->p, A->p, B->p, N);
+
+ return 0;
+}
+
+static int mbedtls_mpi_mod_inv_mont(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_modulus *N,
+ mbedtls_mpi_uint *working_memory)
+{
+ /* Input already in Montgomery form, so there's little to do */
+ mbedtls_mpi_mod_raw_inv_prime(X->p, A->p,
+ N->p, N->limbs,
+ N->rep.mont.rr,
+ working_memory);
+ return 0;
+}
+
+static int mbedtls_mpi_mod_inv_non_mont(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_modulus *N,
+ mbedtls_mpi_uint *working_memory)
+{
+ /* Need to convert input into Montgomery form */
+
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_mpi_mod_modulus Nmont;
+ mbedtls_mpi_mod_modulus_init(&Nmont);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_modulus_setup(&Nmont, N->p, N->limbs));
+
+ /* We'll use X->p to hold the Montgomery form of the input A->p */
+ mbedtls_mpi_core_to_mont_rep(X->p, A->p, Nmont.p, Nmont.limbs,
+ Nmont.rep.mont.mm, Nmont.rep.mont.rr,
+ working_memory);
+
+ mbedtls_mpi_mod_raw_inv_prime(X->p, X->p,
+ Nmont.p, Nmont.limbs,
+ Nmont.rep.mont.rr,
+ working_memory);
+
+ /* And convert back from Montgomery form */
+
+ mbedtls_mpi_core_from_mont_rep(X->p, X->p, Nmont.p, Nmont.limbs,
+ Nmont.rep.mont.mm, working_memory);
+
+cleanup:
+ mbedtls_mpi_mod_modulus_free(&Nmont);
+ return ret;
+}
+
+int mbedtls_mpi_mod_inv(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ if (X->limbs != N->limbs || A->limbs != N->limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /* Zero has the same value regardless of Montgomery form or not */
+ if (mbedtls_mpi_core_check_zero_ct(A->p, A->limbs) == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ size_t working_limbs =
+ mbedtls_mpi_mod_raw_inv_prime_working_limbs(N->limbs);
+
+ mbedtls_mpi_uint *working_memory = mbedtls_calloc(working_limbs,
+ sizeof(mbedtls_mpi_uint));
+ if (working_memory == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ switch (N->int_rep) {
+ case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+ ret = mbedtls_mpi_mod_inv_mont(X, A, N, working_memory);
+ break;
+ case MBEDTLS_MPI_MOD_REP_OPT_RED:
+ ret = mbedtls_mpi_mod_inv_non_mont(X, A, N, working_memory);
+ break;
+ default:
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ break;
+ }
+
+ mbedtls_zeroize_and_free(working_memory,
+ working_limbs * sizeof(mbedtls_mpi_uint));
+
+ return ret;
+}
+
+int mbedtls_mpi_mod_add(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_residue *B,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ if (X->limbs != N->limbs || A->limbs != N->limbs || B->limbs != N->limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_mod_raw_add(X->p, A->p, B->p, N);
+
+ return 0;
+}
+
+int mbedtls_mpi_mod_random(mbedtls_mpi_mod_residue *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_mod_modulus *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ if (X->limbs != N->limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+ return mbedtls_mpi_mod_raw_random(X->p, min, N, f_rng, p_rng);
+}
+
+int mbedtls_mpi_mod_read(mbedtls_mpi_mod_residue *r,
+ const mbedtls_mpi_mod_modulus *N,
+ const unsigned char *buf,
+ size_t buflen,
+ mbedtls_mpi_mod_ext_rep ext_rep)
+{
+ int ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+
+ /* Do our best to check if r and m have been set up */
+ if (r->limbs == 0 || N->limbs == 0) {
+ goto cleanup;
+ }
+ if (r->limbs != N->limbs) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_mpi_mod_raw_read(r->p, N, buf, buflen, ext_rep);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ r->limbs = N->limbs;
+
+ ret = mbedtls_mpi_mod_raw_canonical_to_modulus_rep(r->p, N);
+
+cleanup:
+ return ret;
+}
+
+int mbedtls_mpi_mod_write(const mbedtls_mpi_mod_residue *r,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char *buf,
+ size_t buflen,
+ mbedtls_mpi_mod_ext_rep ext_rep)
+{
+ /* Do our best to check if r and m have been set up */
+ if (r->limbs == 0 || N->limbs == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+ if (r->limbs != N->limbs) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi_uint *working_memory = r->p;
+ size_t working_memory_len = sizeof(mbedtls_mpi_uint) * r->limbs;
+
+ if (N->int_rep == MBEDTLS_MPI_MOD_REP_MONTGOMERY) {
+
+ working_memory = mbedtls_calloc(r->limbs, sizeof(mbedtls_mpi_uint));
+
+ if (working_memory == NULL) {
+ ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ goto cleanup;
+ }
+
+ memcpy(working_memory, r->p, working_memory_len);
+
+ ret = mbedtls_mpi_mod_raw_from_mont_rep(working_memory, N);
+ if (ret != 0) {
+ goto cleanup;
+ }
+ }
+
+ ret = mbedtls_mpi_mod_raw_write(working_memory, N, buf, buflen, ext_rep);
+
+cleanup:
+
+ if (N->int_rep == MBEDTLS_MPI_MOD_REP_MONTGOMERY &&
+ working_memory != NULL) {
+
+ mbedtls_zeroize_and_free(working_memory, working_memory_len);
+ }
+
+ return ret;
+}
+
+#endif /* MBEDTLS_BIGNUM_C && MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod.h b/tf-psa-crypto/drivers/builtin/src/bignum_mod.h
new file mode 100644
index 0000000..963d888
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod.h
@@ -0,0 +1,452 @@
+/**
+ * Modular bignum functions
+ *
+ * This module implements operations on integers modulo some fixed modulus.
+ *
+ * The functions in this module obey the following conventions unless
+ * explicitly indicated otherwise:
+ *
+ * - **Modulus parameters**: the modulus is passed as a pointer to a structure
+ * of type #mbedtls_mpi_mod_modulus. The structure must be set up with an
+ * array of limbs storing the bignum value of the modulus. The modulus must
+ * be odd and is assumed to have no leading zeroes. The modulus is usually
+ * named \c N and is usually input-only. Functions which take a parameter
+ * of type \c const #mbedtls_mpi_mod_modulus* must not modify its value.
+ * - **Bignum parameters**: Bignums are passed as pointers to an array of
+ * limbs or to a #mbedtls_mpi_mod_residue structure. A limb has the type
+ * #mbedtls_mpi_uint. Residues must be initialized before use, and must be
+ * associated with the modulus \c N. Unless otherwise specified:
+ * - Bignum parameters called \c A, \c B, ... are inputs and are not
+ * modified by the function. Functions which take a parameter of
+ * type \c const #mbedtls_mpi_mod_residue* must not modify its value.
+ * - Bignum parameters called \c X, \c Y, ... are outputs or input-output.
+ * The initial bignum value of output-only parameters is ignored, but
+ * they must be set up and associated with the modulus \c N. Some
+ * functions (typically constant-flow) require that the limbs in an
+ * output residue are initialized.
+ * - Bignum parameters called \c p are inputs used to set up a modulus or
+ * residue. These must be pointers to an array of limbs.
+ * - \c T is a temporary storage area. The initial content of such a
+ * parameter is ignored and the final content is unspecified.
+ * - Some functions use different names, such as \c r for the residue.
+ * - **Bignum sizes**: bignum sizes are always expressed in limbs. Both
+ * #mbedtls_mpi_mod_modulus and #mbedtls_mpi_mod_residue have a \c limbs
+ * member storing its size. All bignum parameters must have the same
+ * number of limbs as the modulus. All bignum sizes must be at least 1 and
+ * must be significantly less than #SIZE_MAX. The behavior if a size is 0 is
+ * undefined.
+ * - **Bignum representation**: the representation of inputs and outputs is
+ * specified by the \c int_rep field of the modulus.
+ * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
+ * The modulus is passed after residues. Temporaries come last.
+ * - **Aliasing**: in general, output bignums may be aliased to one or more
+ * inputs. Modulus values may not be aliased to any other parameter. Outputs
+ * may not be aliased to one another. Temporaries may not be aliased to any
+ * other parameter.
+ * - **Overlap**: apart from aliasing of residue pointers (where two residue
+ * arguments are equal pointers), overlap is not supported and may result
+ * in undefined behavior.
+ * - **Error handling**: functions generally check compatibility of input
+ * sizes. Most functions will not check that input values are in canonical
+ * form (i.e. that \c A < \c N), this is only checked during setup of a
+ * residue structure.
+ * - **Modular representatives**: all functions expect inputs to be in the
+ * range [0, \c N - 1] and guarantee outputs in the range [0, \c N - 1].
+ * Residues are set up with an associated modulus, and operations are only
+ * guaranteed to work if the modulus is associated with all residue
+ * parameters. If a residue is passed with a modulus other than the one it
+ * is associated with, then it may be out of range. If an input is out of
+ * range, outputs are fully unspecified, though bignum values out of range
+ * should not cause buffer overflows (beware that this is not extensively
+ * tested).
+ */
+
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_MOD_H
+#define MBEDTLS_BIGNUM_MOD_H
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+/** How residues associated with a modulus are represented.
+ *
+ * This also determines which fields of the modulus structure are valid and
+ * what their contents are (see #mbedtls_mpi_mod_modulus).
+ */
+typedef enum {
+ /** Representation not chosen (makes the modulus structure invalid). */
+ MBEDTLS_MPI_MOD_REP_INVALID = 0,
+ /* Skip 1 as it is slightly easier to accidentally pass to functions. */
+ /** Montgomery representation. */
+ MBEDTLS_MPI_MOD_REP_MONTGOMERY = 2,
+ /* Optimised reduction available. This indicates a coordinate modulus (P)
+ * and one or more of the following have been configured:
+ * - A nist curve (MBEDTLS_ECP_DP_SECPXXXR1_ENABLED) & MBEDTLS_ECP_NIST_OPTIM.
+ * - A Kobliz Curve.
+ * - A Fast Reduction Curve CURVE25519 or CURVE448. */
+ MBEDTLS_MPI_MOD_REP_OPT_RED,
+} mbedtls_mpi_mod_rep_selector;
+
+/* Make mbedtls_mpi_mod_rep_selector and mbedtls_mpi_mod_ext_rep disjoint to
+ * make it easier to catch when they are accidentally swapped. */
+typedef enum {
+ MBEDTLS_MPI_MOD_EXT_REP_INVALID = 0,
+ MBEDTLS_MPI_MOD_EXT_REP_LE = 8,
+ MBEDTLS_MPI_MOD_EXT_REP_BE
+} mbedtls_mpi_mod_ext_rep;
+
+typedef struct {
+ mbedtls_mpi_uint *p;
+ size_t limbs;
+} mbedtls_mpi_mod_residue;
+
+typedef struct {
+ mbedtls_mpi_uint const *rr; /* The residue for 2^{2*n*biL} mod N */
+ mbedtls_mpi_uint mm; /* Montgomery const for -N^{-1} mod 2^{ciL} */
+} mbedtls_mpi_mont_struct;
+
+typedef int (*mbedtls_mpi_modp_fn)(mbedtls_mpi_uint *X, size_t X_limbs);
+
+typedef struct {
+ mbedtls_mpi_modp_fn modp; /* The optimised reduction function pointer */
+} mbedtls_mpi_opt_red_struct;
+
+typedef struct {
+ const mbedtls_mpi_uint *p;
+ size_t limbs; // number of limbs
+ size_t bits; // bitlen of p
+ mbedtls_mpi_mod_rep_selector int_rep; // selector to signal the active member of the union
+ union rep {
+ /* if int_rep == #MBEDTLS_MPI_MOD_REP_MONTGOMERY */
+ mbedtls_mpi_mont_struct mont;
+ /* if int_rep == #MBEDTLS_MPI_MOD_REP_OPT_RED */
+ mbedtls_mpi_opt_red_struct ored;
+ } rep;
+} mbedtls_mpi_mod_modulus;
+
+/** Setup a residue structure.
+ *
+ * The residue will be set up with the buffer \p p and modulus \p N.
+ *
+ * The memory pointed to by \p p will be used by the resulting residue structure.
+ * The value at the pointed-to memory will be the initial value of \p r and must
+ * hold a value that is less than the modulus. This value will be used as-is
+ * and interpreted according to the value of the `N->int_rep` field.
+ *
+ * The modulus \p N will be the modulus associated with \p r. The residue \p r
+ * should only be used in operations where the modulus is \p N.
+ *
+ * \param[out] r The address of the residue to setup.
+ * \param[in] N The address of the modulus related to \p r.
+ * \param[in] p The address of the limb array containing the value of \p r.
+ * The memory pointed to by \p p will be used by \p r and must
+ * not be modified in any way until after
+ * mbedtls_mpi_mod_residue_release() is called. The data
+ * pointed to by \p p must be less than the modulus (the value
+ * pointed to by `N->p`) and already in the representation
+ * indicated by `N->int_rep`.
+ * \param p_limbs The number of limbs of \p p. Must be the same as the number
+ * of limbs in the modulus \p N.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p p_limbs is less than the
+ * limbs in \p N or if \p p is not less than \p N.
+ */
+int mbedtls_mpi_mod_residue_setup(mbedtls_mpi_mod_residue *r,
+ const mbedtls_mpi_mod_modulus *N,
+ mbedtls_mpi_uint *p,
+ size_t p_limbs);
+
+/** Unbind elements of a residue structure.
+ *
+ * This function removes the reference to the limb array that was passed to
+ * mbedtls_mpi_mod_residue_setup() to make it safe to free or use again.
+ *
+ * This function invalidates \p r and it must not be used until after
+ * mbedtls_mpi_mod_residue_setup() is called on it again.
+ *
+ * \param[out] r The address of residue to release.
+ */
+void mbedtls_mpi_mod_residue_release(mbedtls_mpi_mod_residue *r);
+
+/** Initialize a modulus structure.
+ *
+ * \param[out] N The address of the modulus structure to initialize.
+ */
+void mbedtls_mpi_mod_modulus_init(mbedtls_mpi_mod_modulus *N);
+
+/** Setup a modulus structure.
+ *
+ * \param[out] N The address of the modulus structure to populate.
+ * \param[in] p The address of the limb array storing the value of \p N.
+ * The memory pointed to by \p p will be used by \p N and must
+ * not be modified in any way until after
+ * mbedtls_mpi_mod_modulus_free() is called.
+ * \param p_limbs The number of limbs of \p p.
+ *
+ * \return \c 0 if successful.
+ */
+int mbedtls_mpi_mod_modulus_setup(mbedtls_mpi_mod_modulus *N,
+ const mbedtls_mpi_uint *p,
+ size_t p_limbs);
+
+/** Setup an optimised-reduction compatible modulus structure.
+ *
+ * \param[out] N The address of the modulus structure to populate.
+ * \param[in] p The address of the limb array storing the value of \p N.
+ * The memory pointed to by \p p will be used by \p N and must
+ * not be modified in any way until after
+ * mbedtls_mpi_mod_modulus_free() is called.
+ * \param p_limbs The number of limbs of \p p.
+ * \param modp A pointer to the optimised reduction function to use. \p p.
+ *
+ * \return \c 0 if successful.
+ */
+int mbedtls_mpi_mod_optred_modulus_setup(mbedtls_mpi_mod_modulus *N,
+ const mbedtls_mpi_uint *p,
+ size_t p_limbs,
+ mbedtls_mpi_modp_fn modp);
+
+/** Free elements of a modulus structure.
+ *
+ * This function frees any memory allocated by mbedtls_mpi_mod_modulus_setup().
+ *
+ * \warning This function does not free the limb array passed to
+ * mbedtls_mpi_mod_modulus_setup() only removes the reference to it,
+ * making it safe to free or to use it again.
+ *
+ * \param[in,out] N The address of the modulus structure to free.
+ */
+void mbedtls_mpi_mod_modulus_free(mbedtls_mpi_mod_modulus *N);
+
+/** \brief Multiply two residues, returning the residue modulo the specified
+ * modulus.
+ *
+ * \note Currently handles the case when `N->int_rep` is
+ * MBEDTLS_MPI_MOD_REP_MONTGOMERY.
+ *
+ * The size of the operation is determined by \p N. \p A, \p B and \p X must
+ * all be associated with the modulus \p N and must all have the same number
+ * of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise. They may not alias \p N (since they must be in canonical
+ * form, they cannot == \p N).
+ *
+ * \param[out] X The address of the result MPI. Must have the same
+ * number of limbs as \p N.
+ * On successful completion, \p X contains the result of
+ * the multiplication `A * B * R^-1` mod N where
+ * `R = 2^(biL * N->limbs)`.
+ * \param[in] A The address of the first MPI.
+ * \param[in] B The address of the second MPI.
+ * \param[in] N The address of the modulus. Used to perform a modulo
+ * operation on the result of the multiplication.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if all the parameters do not
+ * have the same number of limbs or \p N is invalid.
+ * \return #MBEDTLS_ERR_MPI_ALLOC_FAILED on memory-allocation failure.
+ */
+int mbedtls_mpi_mod_mul(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_residue *B,
+ const mbedtls_mpi_mod_modulus *N);
+
+/**
+ * \brief Perform a fixed-size modular subtraction.
+ *
+ * Calculate `A - B modulo N`.
+ *
+ * \p A, \p B and \p X must all have the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \note This function does not check that \p A or \p B are in canonical
+ * form (that is, are < \p N) - that will have been done by
+ * mbedtls_mpi_mod_residue_setup().
+ *
+ * \param[out] X The address of the result MPI. Must be initialized.
+ * Must have the same number of limbs as the modulus \p N.
+ * \param[in] A The address of the first MPI.
+ * \param[in] B The address of the second MPI.
+ * \param[in] N The address of the modulus. Used to perform a modulo
+ * operation on the result of the subtraction.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the given MPIs do not
+ * have the correct number of limbs.
+ */
+int mbedtls_mpi_mod_sub(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_residue *B,
+ const mbedtls_mpi_mod_modulus *N);
+
+/**
+ * \brief Perform modular inversion of an MPI with respect to a modulus \p N.
+ *
+ * \p A and \p X must be associated with the modulus \p N and will therefore
+ * have the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A.
+ *
+ * \warning Currently only supports prime moduli, but does not check for them.
+ *
+ * \param[out] X The modular inverse of \p A with respect to \p N.
+ * \param[in] A The number to calculate the modular inverse of.
+ * Must not be 0.
+ * \param[in] N The modulus to use.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p A and \p N do not
+ * have the same number of limbs.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p A is zero.
+ * \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if couldn't allocate enough
+ * memory (needed for conversion to and from Mongtomery form
+ * when not in Montgomery form already, and for temporary use
+ * by the inversion calculation itself).
+ */
+
+int mbedtls_mpi_mod_inv(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_modulus *N);
+/**
+ * \brief Perform a fixed-size modular addition.
+ *
+ * Calculate `A + B modulo N`.
+ *
+ * \p A, \p B and \p X must all be associated with the modulus \p N and must
+ * all have the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \note This function does not check that \p A or \p B are in canonical
+ * form (that is, are < \p N) - that will have been done by
+ * mbedtls_mpi_mod_residue_setup().
+ *
+ * \param[out] X The address of the result residue. Must be initialized.
+ * Must have the same number of limbs as the modulus \p N.
+ * \param[in] A The address of the first input residue.
+ * \param[in] B The address of the second input residue.
+ * \param[in] N The address of the modulus. Used to perform a modulo
+ * operation on the result of the addition.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the given MPIs do not
+ * have the correct number of limbs.
+ */
+int mbedtls_mpi_mod_add(mbedtls_mpi_mod_residue *X,
+ const mbedtls_mpi_mod_residue *A,
+ const mbedtls_mpi_mod_residue *B,
+ const mbedtls_mpi_mod_modulus *N);
+
+/** Generate a random number uniformly in a range.
+ *
+ * This function generates a random number between \p min inclusive and
+ * \p N exclusive.
+ *
+ * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
+ * when the RNG is a suitably parametrized instance of HMAC_DRBG
+ * and \p min is \c 1.
+ *
+ * \note There are `N - min` possible outputs. The lower bound
+ * \p min can be reached, but the upper bound \p N cannot.
+ *
+ * \param X The destination residue.
+ * \param min The minimum value to return. It must be strictly smaller
+ * than \b N.
+ * \param N The modulus.
+ * This is the upper bound of the output range, exclusive.
+ * \param f_rng The RNG function to use. This must not be \c NULL.
+ * \param p_rng The RNG parameter to be passed to \p f_rng.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
+ * unable to find a suitable value within a limited number
+ * of attempts. This has a negligible probability if \p N
+ * is significantly larger than \p min, which is the case
+ * for all usual cryptographic applications.
+ */
+int mbedtls_mpi_mod_random(mbedtls_mpi_mod_residue *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_mod_modulus *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+/** Read a residue from a byte buffer.
+ *
+ * The residue will be automatically converted to the internal representation
+ * based on the value of the `N->int_rep` field.
+ *
+ * The modulus \p N will be the modulus associated with \p r. The residue \p r
+ * should only be used in operations where the modulus is \p N or a modulus
+ * equivalent to \p N (in the sense that all their fields or memory pointed by
+ * their fields hold the same value).
+ *
+ * \param[out] r The address of the residue. It must have exactly the same
+ * number of limbs as the modulus \p N.
+ * \param[in] N The address of the modulus.
+ * \param[in] buf The input buffer to import from.
+ * \param buflen The length in bytes of \p buf.
+ * \param ext_rep The endianness of the number in the input buffer.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p r isn't
+ * large enough to hold the value in \p buf.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p ext_rep
+ * is invalid or the value in the buffer is not less than \p N.
+ */
+int mbedtls_mpi_mod_read(mbedtls_mpi_mod_residue *r,
+ const mbedtls_mpi_mod_modulus *N,
+ const unsigned char *buf,
+ size_t buflen,
+ mbedtls_mpi_mod_ext_rep ext_rep);
+
+/** Write a residue into a byte buffer.
+ *
+ * The modulus \p N must be the modulus associated with \p r (see
+ * mbedtls_mpi_mod_residue_setup() and mbedtls_mpi_mod_read()).
+ *
+ * The residue will be automatically converted from the internal representation
+ * based on the value of `N->int_rep` field.
+ *
+ * \warning If the buffer is smaller than `N->bits`, the number of
+ * leading zeroes is leaked through timing. If \p r is
+ * secret, the caller must ensure that \p buflen is at least
+ * (`N->bits`+7)/8.
+ *
+ * \param[in] r The address of the residue. It must have the same number of
+ * limbs as the modulus \p N. (\p r is an input parameter, but
+ * its value will be modified during execution and restored
+ * before the function returns.)
+ * \param[in] N The address of the modulus associated with \p r.
+ * \param[out] buf The output buffer to export to.
+ * \param buflen The length in bytes of \p buf.
+ * \param ext_rep The endianness in which the number should be written into
+ * the output buffer.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p buf isn't
+ * large enough to hold the value of \p r (without leading
+ * zeroes).
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if \p ext_rep is invalid.
+ * \return #MBEDTLS_ERR_MPI_ALLOC_FAILED if couldn't allocate enough
+ * memory for conversion. Can occur only for moduli with
+ * MBEDTLS_MPI_MOD_REP_MONTGOMERY.
+ */
+int mbedtls_mpi_mod_write(const mbedtls_mpi_mod_residue *r,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char *buf,
+ size_t buflen,
+ mbedtls_mpi_mod_ext_rep ext_rep);
+
+#endif /* MBEDTLS_BIGNUM_MOD_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.c b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.c
new file mode 100644
index 0000000..5343bc6
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.c
@@ -0,0 +1,276 @@
+/*
+ * Low-level modular bignum functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C) && defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#include <string.h>
+
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include "mbedtls/platform.h"
+
+#include "bignum_core.h"
+#include "bignum_mod_raw.h"
+#include "bignum_mod.h"
+#include "constant_time_internal.h"
+
+#include "bignum_mod_raw_invasive.h"
+
+void mbedtls_mpi_mod_raw_cond_assign(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char assign)
+{
+ mbedtls_mpi_core_cond_assign(X, A, N->limbs, mbedtls_ct_bool(assign));
+}
+
+void mbedtls_mpi_mod_raw_cond_swap(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint *Y,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char swap)
+{
+ mbedtls_mpi_core_cond_swap(X, Y, N->limbs, mbedtls_ct_bool(swap));
+}
+
+int mbedtls_mpi_mod_raw_read(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N,
+ const unsigned char *input,
+ size_t input_length,
+ mbedtls_mpi_mod_ext_rep ext_rep)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ switch (ext_rep) {
+ case MBEDTLS_MPI_MOD_EXT_REP_LE:
+ ret = mbedtls_mpi_core_read_le(X, N->limbs,
+ input, input_length);
+ break;
+ case MBEDTLS_MPI_MOD_EXT_REP_BE:
+ ret = mbedtls_mpi_core_read_be(X, N->limbs,
+ input, input_length);
+ break;
+ default:
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ if (!mbedtls_mpi_core_lt_ct(X, N->p, N->limbs)) {
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+cleanup:
+
+ return ret;
+}
+
+int mbedtls_mpi_mod_raw_write(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char *output,
+ size_t output_length,
+ mbedtls_mpi_mod_ext_rep ext_rep)
+{
+ switch (ext_rep) {
+ case MBEDTLS_MPI_MOD_EXT_REP_LE:
+ return mbedtls_mpi_core_write_le(A, N->limbs,
+ output, output_length);
+ case MBEDTLS_MPI_MOD_EXT_REP_BE:
+ return mbedtls_mpi_core_write_be(A, N->limbs,
+ output, output_length);
+ default:
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+}
+
+void mbedtls_mpi_mod_raw_sub(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, A, B, N->limbs);
+
+ (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) c);
+}
+
+MBEDTLS_STATIC_TESTABLE
+void mbedtls_mpi_mod_raw_fix_quasi_reduction(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ mbedtls_mpi_uint c = mbedtls_mpi_core_sub(X, X, N->p, N->limbs);
+
+ (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) c);
+}
+
+
+void mbedtls_mpi_mod_raw_mul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ const mbedtls_mpi_mod_modulus *N,
+ mbedtls_mpi_uint *T)
+{
+ /* Standard (A * B) multiplication stored into pre-allocated T
+ * buffer of fixed limb size of (2N + 1).
+ *
+ * The space may not not fully filled by when
+ * MBEDTLS_MPI_MOD_REP_OPT_RED is used. */
+ const size_t T_limbs = BITS_TO_LIMBS(N->bits) * 2;
+ switch (N->int_rep) {
+ case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+ mbedtls_mpi_core_montmul(X, A, B, N->limbs, N->p, N->limbs,
+ N->rep.mont.mm, T);
+ break;
+ case MBEDTLS_MPI_MOD_REP_OPT_RED:
+ mbedtls_mpi_core_mul(T, A, N->limbs, B, N->limbs);
+
+ /* Optimised Reduction */
+ (*N->rep.ored.modp)(T, T_limbs);
+
+ /* Convert back to canonical representation */
+ mbedtls_mpi_mod_raw_fix_quasi_reduction(T, N);
+ memcpy(X, T, N->limbs * sizeof(mbedtls_mpi_uint));
+ break;
+ default:
+ break;
+ }
+
+}
+
+size_t mbedtls_mpi_mod_raw_inv_prime_working_limbs(size_t AN_limbs)
+{
+ /* mbedtls_mpi_mod_raw_inv_prime() needs a temporary for the exponent,
+ * which will be the same size as the modulus and input (AN_limbs),
+ * and additional space to pass to mbedtls_mpi_core_exp_mod(). */
+ return AN_limbs +
+ mbedtls_mpi_core_exp_mod_working_limbs(AN_limbs, AN_limbs);
+}
+
+void mbedtls_mpi_mod_raw_inv_prime(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ const mbedtls_mpi_uint *RR,
+ mbedtls_mpi_uint *T)
+{
+ /* Inversion by power: g^|G| = 1 => g^(-1) = g^(|G|-1), and
+ * |G| = N - 1, so we want
+ * g^(|G|-1) = g^(N - 2)
+ */
+
+ /* Use the first AN_limbs of T to hold N - 2 */
+ mbedtls_mpi_uint *Nminus2 = T;
+ (void) mbedtls_mpi_core_sub_int(Nminus2, N, 2, AN_limbs);
+
+ /* Rest of T is given to exp_mod for its working space */
+ mbedtls_mpi_core_exp_mod(X,
+ A, N, AN_limbs, Nminus2, AN_limbs,
+ RR, T + AN_limbs);
+}
+
+void mbedtls_mpi_mod_raw_add(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ mbedtls_mpi_uint carry, borrow;
+ carry = mbedtls_mpi_core_add(X, A, B, N->limbs);
+ borrow = mbedtls_mpi_core_sub(X, X, N->p, N->limbs);
+ (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) (carry ^ borrow));
+}
+
+int mbedtls_mpi_mod_raw_canonical_to_modulus_rep(
+ mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ switch (N->int_rep) {
+ case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+ return mbedtls_mpi_mod_raw_to_mont_rep(X, N);
+ case MBEDTLS_MPI_MOD_REP_OPT_RED:
+ return 0;
+ default:
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+}
+
+int mbedtls_mpi_mod_raw_modulus_to_canonical_rep(
+ mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ switch (N->int_rep) {
+ case MBEDTLS_MPI_MOD_REP_MONTGOMERY:
+ return mbedtls_mpi_mod_raw_from_mont_rep(X, N);
+ case MBEDTLS_MPI_MOD_REP_OPT_RED:
+ return 0;
+ default:
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+}
+
+int mbedtls_mpi_mod_raw_random(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_mod_modulus *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = mbedtls_mpi_core_random(X, min, N->p, N->limbs, f_rng, p_rng);
+ if (ret != 0) {
+ return ret;
+ }
+ return mbedtls_mpi_mod_raw_canonical_to_modulus_rep(X, N);
+}
+
+int mbedtls_mpi_mod_raw_to_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ mbedtls_mpi_uint *T;
+ const size_t t_limbs = mbedtls_mpi_core_montmul_working_limbs(N->limbs);
+
+ if ((T = (mbedtls_mpi_uint *) mbedtls_calloc(t_limbs, ciL)) == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ mbedtls_mpi_core_to_mont_rep(X, X, N->p, N->limbs,
+ N->rep.mont.mm, N->rep.mont.rr, T);
+
+ mbedtls_zeroize_and_free(T, t_limbs * ciL);
+ return 0;
+}
+
+int mbedtls_mpi_mod_raw_from_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ const size_t t_limbs = mbedtls_mpi_core_montmul_working_limbs(N->limbs);
+ mbedtls_mpi_uint *T;
+
+ if ((T = (mbedtls_mpi_uint *) mbedtls_calloc(t_limbs, ciL)) == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ mbedtls_mpi_core_from_mont_rep(X, X, N->p, N->limbs, N->rep.mont.mm, T);
+
+ mbedtls_zeroize_and_free(T, t_limbs * ciL);
+ return 0;
+}
+
+void mbedtls_mpi_mod_raw_neg(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_mod_modulus *N)
+{
+ mbedtls_mpi_core_sub(X, N->p, A, N->limbs);
+
+ /* If A=0 initially, then X=N now. Detect this by
+ * subtracting N and catching the carry. */
+ mbedtls_mpi_uint borrow = mbedtls_mpi_core_sub(X, X, N->p, N->limbs);
+ (void) mbedtls_mpi_core_add_if(X, N->p, N->limbs, (unsigned) borrow);
+}
+
+#endif /* MBEDTLS_BIGNUM_C && MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.h b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.h
new file mode 100644
index 0000000..7bb4ca3
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw.h
@@ -0,0 +1,416 @@
+/**
+ * Low-level modular bignum functions
+ *
+ * This interface should only be used by the higher-level modular bignum
+ * module (bignum_mod.c) and the ECP module (ecp.c, ecp_curves.c). All other
+ * modules should use the high-level modular bignum interface (bignum_mod.h)
+ * or the legacy bignum interface (bignum.h).
+ *
+ * This is a low-level interface to operations on integers modulo which
+ * has no protection against passing invalid arguments such as arrays of
+ * the wrong size. The functions in bignum_mod.h provide a higher-level
+ * interface that includes protections against accidental misuse, at the
+ * expense of code size and sometimes more cumbersome memory management.
+ *
+ * The functions in this module obey the following conventions unless
+ * explicitly indicated otherwise:
+ * - **Modulus parameters**: the modulus is passed as a pointer to a structure
+ * of type #mbedtls_mpi_mod_modulus. The structure must be set up with an
+ * array of limbs storing the bignum value of the modulus. The modulus must
+ * be odd and is assumed to have no leading zeroes. The modulus is usually
+ * named \c N and is usually input-only.
+ * - **Bignum parameters**: Bignums are passed as pointers to an array of
+ * limbs. A limb has the type #mbedtls_mpi_uint. Unless otherwise specified:
+ * - Bignum parameters called \c A, \c B, ... are inputs, and are not
+ * modified by the function.
+ * - Bignum parameters called \c X, \c Y are outputs or input-output.
+ * The initial content of output-only parameters is ignored.
+ * - \c T is a temporary storage area. The initial content of such a
+ * parameter is ignored and the final content is unspecified.
+ * - **Bignum sizes**: bignum sizes are usually expressed by the \c limbs
+ * member of the modulus argument. All bignum parameters must have the same
+ * number of limbs as the modulus. All bignum sizes must be at least 1 and
+ * must be significantly less than #SIZE_MAX. The behavior if a size is 0 is
+ * undefined.
+ * - **Bignum representation**: the representation of inputs and outputs is
+ * specified by the \c int_rep field of the modulus for arithmetic
+ * functions. Utility functions may allow for different representation.
+ * - **Parameter ordering**: for bignum parameters, outputs come before inputs.
+ * The modulus is passed after other bignum input parameters. Temporaries
+ * come last.
+ * - **Aliasing**: in general, output bignums may be aliased to one or more
+ * inputs. Modulus values may not be aliased to any other parameter. Outputs
+ * may not be aliased to one another. Temporaries may not be aliased to any
+ * other parameter.
+ * - **Overlap**: apart from aliasing of limb array pointers (where two
+ * arguments are equal pointers), overlap is not supported and may result
+ * in undefined behavior.
+ * - **Error handling**: This is a low-level module. Functions generally do not
+ * try to protect against invalid arguments such as nonsensical sizes or
+ * null pointers. Note that passing bignums with a different size than the
+ * modulus may lead to buffer overflows. Some functions which allocate
+ * memory or handle reading/writing of bignums will return an error if
+ * memory allocation fails or if buffer sizes are invalid.
+ * - **Modular representatives**: all functions expect inputs to be in the
+ * range [0, \c N - 1] and guarantee outputs in the range [0, \c N - 1]. If
+ * an input is out of range, outputs are fully unspecified, though bignum
+ * values out of range should not cause buffer overflows (beware that this is
+ * not extensively tested).
+ */
+
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_MOD_RAW_H
+#define MBEDTLS_BIGNUM_MOD_RAW_H
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+#include "bignum_mod.h"
+
+/**
+ * \brief Perform a safe conditional copy of an MPI which doesn't reveal
+ * whether the assignment was done or not.
+ *
+ * The size to copy is determined by \p N.
+ *
+ * \param[out] X The address of the destination MPI.
+ * This must be initialized. Must have enough limbs to
+ * store the full value of \p A.
+ * \param[in] A The address of the source MPI. This must be initialized.
+ * \param[in] N The address of the modulus related to \p X and \p A.
+ * \param assign The condition deciding whether to perform the
+ * assignment or not. Must be either 0 or 1:
+ * * \c 1: Perform the assignment `X = A`.
+ * * \c 0: Keep the original value of \p X.
+ *
+ * \note This function avoids leaking any information about whether
+ * the assignment was done or not.
+ *
+ * \warning If \p assign is neither 0 nor 1, the result of this function
+ * is indeterminate, and the resulting value in \p X might be
+ * neither its original value nor the value in \p A.
+ */
+void mbedtls_mpi_mod_raw_cond_assign(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char assign);
+
+/**
+ * \brief Perform a safe conditional swap of two MPIs which doesn't reveal
+ * whether the swap was done or not.
+ *
+ * The size to swap is determined by \p N.
+ *
+ * \param[in,out] X The address of the first MPI. This must be initialized.
+ * \param[in,out] Y The address of the second MPI. This must be initialized.
+ * \param[in] N The address of the modulus related to \p X and \p Y.
+ * \param swap The condition deciding whether to perform
+ * the swap or not. Must be either 0 or 1:
+ * * \c 1: Swap the values of \p X and \p Y.
+ * * \c 0: Keep the original values of \p X and \p Y.
+ *
+ * \note This function avoids leaking any information about whether
+ * the swap was done or not.
+ *
+ * \warning If \p swap is neither 0 nor 1, the result of this function
+ * is indeterminate, and both \p X and \p Y might end up with
+ * values different to either of the original ones.
+ */
+void mbedtls_mpi_mod_raw_cond_swap(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint *Y,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char swap);
+
+/** Import X from unsigned binary data.
+ *
+ * The MPI needs to have enough limbs to store the full value (including any
+ * most significant zero bytes in the input).
+ *
+ * \param[out] X The address of the MPI. The size is determined by \p N.
+ * (In particular, it must have at least as many limbs as
+ * the modulus \p N.)
+ * \param[in] N The address of the modulus related to \p X.
+ * \param[in] input The input buffer to import from.
+ * \param input_length The length in bytes of \p input.
+ * \param ext_rep The endianness of the number in the input buffer.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p X isn't
+ * large enough to hold the value in \p input.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation
+ * of \p N is invalid or \p X is not less than \p N.
+ */
+int mbedtls_mpi_mod_raw_read(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N,
+ const unsigned char *input,
+ size_t input_length,
+ mbedtls_mpi_mod_ext_rep ext_rep);
+
+/** Export A into unsigned binary data.
+ *
+ * \param[in] A The address of the MPI. The size is determined by \p N.
+ * (In particular, it must have at least as many limbs as
+ * the modulus \p N.)
+ * \param[in] N The address of the modulus related to \p A.
+ * \param[out] output The output buffer to export to.
+ * \param output_length The length in bytes of \p output.
+ * \param ext_rep The endianness in which the number should be written into the output buffer.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_BUFFER_TOO_SMALL if \p output isn't
+ * large enough to hold the value of \p A.
+ * \return #MBEDTLS_ERR_MPI_BAD_INPUT_DATA if the external representation
+ * of \p N is invalid.
+ */
+int mbedtls_mpi_mod_raw_write(const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_mod_modulus *N,
+ unsigned char *output,
+ size_t output_length,
+ mbedtls_mpi_mod_ext_rep ext_rep);
+
+/** \brief Subtract two MPIs, returning the residue modulo the specified
+ * modulus.
+ *
+ * The size of the operation is determined by \p N. \p A and \p B must have
+ * the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \param[out] X The address of the result MPI.
+ * This must be initialized. Must have enough limbs to
+ * store the full value of the result.
+ * \param[in] A The address of the first MPI. This must be initialized.
+ * \param[in] B The address of the second MPI. This must be initialized.
+ * \param[in] N The address of the modulus. Used to perform a modulo
+ * operation on the result of the subtraction.
+ */
+void mbedtls_mpi_mod_raw_sub(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ const mbedtls_mpi_mod_modulus *N);
+
+/** \brief Multiply two MPIs, returning the residue modulo the specified
+ * modulus.
+ *
+ * \note Currently handles the case when `N->int_rep` is
+ * MBEDTLS_MPI_MOD_REP_MONTGOMERY.
+ *
+ * The size of the operation is determined by \p N. \p A, \p B and \p X must
+ * all be associated with the modulus \p N and must all have the same number
+ * of limbs as \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise. They may not alias \p N (since they must be in canonical
+ * form, they cannot == \p N).
+ *
+ * \param[out] X The address of the result MPI. Must have the same
+ * number of limbs as \p N.
+ * On successful completion, \p X contains the result of
+ * the multiplication `A * B * R^-1` mod N where
+ * `R = 2^(biL * N->limbs)`.
+ * \param[in] A The address of the first MPI.
+ * \param[in] B The address of the second MPI.
+ * \param[in] N The address of the modulus. Used to perform a modulo
+ * operation on the result of the multiplication.
+ * \param[in,out] T Temporary storage of size at least 2 * N->limbs + 1
+ * limbs. Its initial content is unused and
+ * its final content is indeterminate.
+ * It must not alias or otherwise overlap any of the
+ * other parameters.
+ */
+void mbedtls_mpi_mod_raw_mul(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ const mbedtls_mpi_mod_modulus *N,
+ mbedtls_mpi_uint *T);
+
+/**
+ * \brief Returns the number of limbs of working memory required for
+ * a call to `mbedtls_mpi_mod_raw_inv_prime()`.
+ *
+ * \note This will always be at least
+ * `mbedtls_mpi_core_montmul_working_limbs(AN_limbs)`,
+ * i.e. sufficient for a call to `mbedtls_mpi_core_montmul()`.
+ *
+ * \param AN_limbs The number of limbs in the input `A` and the modulus `N`
+ * (they must be the same size) that will be given to
+ * `mbedtls_mpi_mod_raw_inv_prime()`.
+ *
+ * \return The number of limbs of working memory required by
+ * `mbedtls_mpi_mod_raw_inv_prime()`.
+ */
+size_t mbedtls_mpi_mod_raw_inv_prime_working_limbs(size_t AN_limbs);
+
+/**
+ * \brief Perform fixed-width modular inversion of a Montgomery-form MPI with
+ * respect to a modulus \p N that must be prime.
+ *
+ * \p X may be aliased to \p A, but not to \p N or \p RR.
+ *
+ * \param[out] X The modular inverse of \p A with respect to \p N.
+ * Will be in Montgomery form.
+ * \param[in] A The number to calculate the modular inverse of.
+ * Must be in Montgomery form. Must not be 0.
+ * \param[in] N The modulus, as a little-endian array of length \p AN_limbs.
+ * Must be prime.
+ * \param AN_limbs The number of limbs in \p A, \p N and \p RR.
+ * \param[in] RR The precomputed residue of 2^{2*biL} modulo N, as a little-
+ * endian array of length \p AN_limbs.
+ * \param[in,out] T Temporary storage of at least the number of limbs returned
+ * by `mbedtls_mpi_mod_raw_inv_prime_working_limbs()`.
+ * Its initial content is unused and its final content is
+ * indeterminate.
+ * It must not alias or otherwise overlap any of the other
+ * parameters.
+ * It is up to the caller to zeroize \p T when it is no
+ * longer needed, and before freeing it if it was dynamically
+ * allocated.
+ */
+void mbedtls_mpi_mod_raw_inv_prime(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *N,
+ size_t AN_limbs,
+ const mbedtls_mpi_uint *RR,
+ mbedtls_mpi_uint *T);
+
+/**
+ * \brief Perform a known-size modular addition.
+ *
+ * Calculate `A + B modulo N`.
+ *
+ * The number of limbs in each operand, and the result, is given by the
+ * modulus \p N.
+ *
+ * \p X may be aliased to \p A or \p B, or even both, but may not overlap
+ * either otherwise.
+ *
+ * \param[out] X The result of the modular addition.
+ * \param[in] A Little-endian presentation of the left operand. This
+ * must be smaller than \p N.
+ * \param[in] B Little-endian presentation of the right operand. This
+ * must be smaller than \p N.
+ * \param[in] N The address of the modulus.
+ */
+void mbedtls_mpi_mod_raw_add(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_uint *B,
+ const mbedtls_mpi_mod_modulus *N);
+
+/** Convert an MPI from canonical representation (little-endian limb array)
+ * to the representation associated with the modulus.
+ *
+ * \param[in,out] X The limb array to convert.
+ * It must have as many limbs as \p N.
+ * It is converted in place.
+ * If this function returns an error, the content of \p X
+ * is unspecified.
+ * \param[in] N The modulus structure.
+ *
+ * \return \c 0 if successful.
+ * Otherwise an \c MBEDTLS_ERR_MPI_xxx error code.
+ */
+int mbedtls_mpi_mod_raw_canonical_to_modulus_rep(
+ mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N);
+
+/** Convert an MPI from the representation associated with the modulus
+ * to canonical representation (little-endian limb array).
+ *
+ * \param[in,out] X The limb array to convert.
+ * It must have as many limbs as \p N.
+ * It is converted in place.
+ * If this function returns an error, the content of \p X
+ * is unspecified.
+ * \param[in] N The modulus structure.
+ *
+ * \return \c 0 if successful.
+ * Otherwise an \c MBEDTLS_ERR_MPI_xxx error code.
+ */
+int mbedtls_mpi_mod_raw_modulus_to_canonical_rep(
+ mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N);
+
+/** Generate a random number uniformly in a range.
+ *
+ * This function generates a random number between \p min inclusive and
+ * \p N exclusive.
+ *
+ * The procedure complies with RFC 6979 §3.3 (deterministic ECDSA)
+ * when the RNG is a suitably parametrized instance of HMAC_DRBG
+ * and \p min is \c 1.
+ *
+ * \note There are `N - min` possible outputs. The lower bound
+ * \p min can be reached, but the upper bound \p N cannot.
+ *
+ * \param X The destination MPI, in canonical representation modulo \p N.
+ * It must not be aliased with \p N or otherwise overlap it.
+ * \param min The minimum value to return. It must be strictly smaller
+ * than \b N.
+ * \param N The modulus.
+ * This is the upper bound of the output range, exclusive.
+ * \param f_rng The RNG function to use. This must not be \c NULL.
+ * \param p_rng The RNG parameter to be passed to \p f_rng.
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_MPI_NOT_ACCEPTABLE if the implementation was
+ * unable to find a suitable value within a limited number
+ * of attempts. This has a negligible probability if \p N
+ * is significantly larger than \p min, which is the case
+ * for all usual cryptographic applications.
+ */
+int mbedtls_mpi_mod_raw_random(mbedtls_mpi_uint *X,
+ mbedtls_mpi_uint min,
+ const mbedtls_mpi_mod_modulus *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+/** Convert an MPI into Montgomery form.
+ *
+ * \param X The address of the MPI.
+ * Must have the same number of limbs as \p N.
+ * \param N The address of the modulus, which gives the size of
+ * the base `R` = 2^(biL*N->limbs).
+ *
+ * \return \c 0 if successful.
+ */
+int mbedtls_mpi_mod_raw_to_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N);
+
+/** Convert an MPI back from Montgomery representation.
+ *
+ * \param X The address of the MPI.
+ * Must have the same number of limbs as \p N.
+ * \param N The address of the modulus, which gives the size of
+ * the base `R`= 2^(biL*N->limbs).
+ *
+ * \return \c 0 if successful.
+ */
+int mbedtls_mpi_mod_raw_from_mont_rep(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N);
+
+/** \brief Perform fixed width modular negation.
+ *
+ * The size of the operation is determined by \p N. \p A must have
+ * the same number of limbs as \p N.
+ *
+ * \p X may be aliased to \p A.
+ *
+ * \param[out] X The result of the modular negation.
+ * This must be initialized.
+ * \param[in] A Little-endian presentation of the input operand. This
+ * must be less than or equal to \p N.
+ * \param[in] N The modulus to use.
+ */
+void mbedtls_mpi_mod_raw_neg(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_uint *A,
+ const mbedtls_mpi_mod_modulus *N);
+
+#endif /* MBEDTLS_BIGNUM_MOD_RAW_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw_invasive.h b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw_invasive.h
new file mode 100644
index 0000000..94a0d06
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bignum_mod_raw_invasive.h
@@ -0,0 +1,34 @@
+/**
+ * \file bignum_mod_raw_invasive.h
+ *
+ * \brief Function declarations for invasive functions of Low-level
+ * modular bignum.
+ */
+/**
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_BIGNUM_MOD_RAW_INVASIVE_H
+#define MBEDTLS_BIGNUM_MOD_RAW_INVASIVE_H
+
+#include "common.h"
+#include "mbedtls/bignum.h"
+#include "bignum_mod.h"
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+/** Convert the result of a quasi-reduction to its canonical representative.
+ *
+ * \param[in,out] X The address of the MPI to be converted. Must have the
+ * same number of limbs as \p N. The input value must
+ * be in range 0 <= X < 2N.
+ * \param[in] N The address of the modulus.
+ */
+MBEDTLS_STATIC_TESTABLE
+void mbedtls_mpi_mod_raw_fix_quasi_reduction(mbedtls_mpi_uint *X,
+ const mbedtls_mpi_mod_modulus *N);
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_BIGNUM_MOD_RAW_INVASIVE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/block_cipher.c b/tf-psa-crypto/drivers/builtin/src/block_cipher.c
new file mode 100644
index 0000000..51cdcdf
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/block_cipher.c
@@ -0,0 +1,207 @@
+/**
+ * \file block_cipher.c
+ *
+ * \brief Lightweight abstraction layer for block ciphers with 128 bit blocks,
+ * for use by the GCM and CCM modules.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+#include "psa/crypto.h"
+#include "psa_crypto_core.h"
+#include "psa_util_internal.h"
+#endif
+
+#include "block_cipher_internal.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+static psa_key_type_t psa_key_type_from_block_cipher_id(mbedtls_block_cipher_id_t cipher_id)
+{
+ switch (cipher_id) {
+#if defined(MBEDTLS_BLOCK_CIPHER_AES_VIA_PSA)
+ case MBEDTLS_BLOCK_CIPHER_ID_AES:
+ return PSA_KEY_TYPE_AES;
+#endif
+#if defined(MBEDTLS_BLOCK_CIPHER_ARIA_VIA_PSA)
+ case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+ return PSA_KEY_TYPE_ARIA;
+#endif
+#if defined(MBEDTLS_BLOCK_CIPHER_CAMELLIA_VIA_PSA)
+ case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+ return PSA_KEY_TYPE_CAMELLIA;
+#endif
+ default:
+ return PSA_KEY_TYPE_NONE;
+ }
+}
+
+static int mbedtls_cipher_error_from_psa(psa_status_t status)
+{
+ return PSA_TO_MBEDTLS_ERR_LIST(status, psa_to_cipher_errors,
+ psa_generic_status_to_mbedtls);
+}
+#endif /* MBEDTLS_BLOCK_CIPHER_SOME_PSA */
+
+void mbedtls_block_cipher_free(mbedtls_block_cipher_context_t *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+ if (ctx->engine == MBEDTLS_BLOCK_CIPHER_ENGINE_PSA) {
+ psa_destroy_key(ctx->psa_key_id);
+ return;
+ }
+#endif
+ switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_AES:
+ mbedtls_aes_free(&ctx->ctx.aes);
+ break;
+#endif
+#if defined(MBEDTLS_ARIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+ mbedtls_aria_free(&ctx->ctx.aria);
+ break;
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+ mbedtls_camellia_free(&ctx->ctx.camellia);
+ break;
+#endif
+ default:
+ break;
+ }
+ ctx->id = MBEDTLS_BLOCK_CIPHER_ID_NONE;
+}
+
+int mbedtls_block_cipher_setup(mbedtls_block_cipher_context_t *ctx,
+ mbedtls_cipher_id_t cipher_id)
+{
+ ctx->id = (cipher_id == MBEDTLS_CIPHER_ID_AES) ? MBEDTLS_BLOCK_CIPHER_ID_AES :
+ (cipher_id == MBEDTLS_CIPHER_ID_ARIA) ? MBEDTLS_BLOCK_CIPHER_ID_ARIA :
+ (cipher_id == MBEDTLS_CIPHER_ID_CAMELLIA) ? MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA :
+ MBEDTLS_BLOCK_CIPHER_ID_NONE;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+ psa_key_type_t psa_key_type = psa_key_type_from_block_cipher_id(ctx->id);
+ if (psa_key_type != PSA_KEY_TYPE_NONE &&
+ psa_can_do_cipher(psa_key_type, PSA_ALG_ECB_NO_PADDING)) {
+ ctx->engine = MBEDTLS_BLOCK_CIPHER_ENGINE_PSA;
+ return 0;
+ }
+ ctx->engine = MBEDTLS_BLOCK_CIPHER_ENGINE_LEGACY;
+#endif
+
+ switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_AES:
+ mbedtls_aes_init(&ctx->ctx.aes);
+ return 0;
+#endif
+#if defined(MBEDTLS_ARIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+ mbedtls_aria_init(&ctx->ctx.aria);
+ return 0;
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+ mbedtls_camellia_init(&ctx->ctx.camellia);
+ return 0;
+#endif
+ default:
+ ctx->id = MBEDTLS_BLOCK_CIPHER_ID_NONE;
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+}
+
+int mbedtls_block_cipher_setkey(mbedtls_block_cipher_context_t *ctx,
+ const unsigned char *key,
+ unsigned key_bitlen)
+{
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+ if (ctx->engine == MBEDTLS_BLOCK_CIPHER_ENGINE_PSA) {
+ psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+ psa_status_t status;
+
+ psa_set_key_type(&key_attr, psa_key_type_from_block_cipher_id(ctx->id));
+ psa_set_key_bits(&key_attr, key_bitlen);
+ psa_set_key_algorithm(&key_attr, PSA_ALG_ECB_NO_PADDING);
+ psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_ENCRYPT);
+
+ status = psa_import_key(&key_attr, key, PSA_BITS_TO_BYTES(key_bitlen), &ctx->psa_key_id);
+ if (status != PSA_SUCCESS) {
+ return mbedtls_cipher_error_from_psa(status);
+ }
+ psa_reset_key_attributes(&key_attr);
+
+ return 0;
+ }
+#endif /* MBEDTLS_BLOCK_CIPHER_SOME_PSA */
+
+ switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_AES:
+ return mbedtls_aes_setkey_enc(&ctx->ctx.aes, key, key_bitlen);
+#endif
+#if defined(MBEDTLS_ARIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+ return mbedtls_aria_setkey_enc(&ctx->ctx.aria, key, key_bitlen);
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+ return mbedtls_camellia_setkey_enc(&ctx->ctx.camellia, key, key_bitlen);
+#endif
+ default:
+ return MBEDTLS_ERR_CIPHER_INVALID_CONTEXT;
+ }
+}
+
+int mbedtls_block_cipher_encrypt(mbedtls_block_cipher_context_t *ctx,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+#if defined(MBEDTLS_BLOCK_CIPHER_SOME_PSA)
+ if (ctx->engine == MBEDTLS_BLOCK_CIPHER_ENGINE_PSA) {
+ psa_status_t status;
+ size_t olen;
+
+ status = psa_cipher_encrypt(ctx->psa_key_id, PSA_ALG_ECB_NO_PADDING,
+ input, 16, output, 16, &olen);
+ if (status != PSA_SUCCESS) {
+ return mbedtls_cipher_error_from_psa(status);
+ }
+ return 0;
+ }
+#endif /* MBEDTLS_BLOCK_CIPHER_SOME_PSA */
+
+ switch (ctx->id) {
+#if defined(MBEDTLS_AES_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_AES:
+ return mbedtls_aes_crypt_ecb(&ctx->ctx.aes, MBEDTLS_AES_ENCRYPT,
+ input, output);
+#endif
+#if defined(MBEDTLS_ARIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_ARIA:
+ return mbedtls_aria_crypt_ecb(&ctx->ctx.aria, input, output);
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+ case MBEDTLS_BLOCK_CIPHER_ID_CAMELLIA:
+ return mbedtls_camellia_crypt_ecb(&ctx->ctx.camellia,
+ MBEDTLS_CAMELLIA_ENCRYPT,
+ input, output);
+#endif
+ default:
+ return MBEDTLS_ERR_CIPHER_INVALID_CONTEXT;
+ }
+}
+
+#endif /* MBEDTLS_BLOCK_CIPHER_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/block_cipher_internal.h b/tf-psa-crypto/drivers/builtin/src/block_cipher_internal.h
new file mode 100644
index 0000000..c57338b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/block_cipher_internal.h
@@ -0,0 +1,99 @@
+/**
+ * \file block_cipher_internal.h
+ *
+ * \brief Lightweight abstraction layer for block ciphers with 128 bit blocks,
+ * for use by the GCM and CCM modules.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_BLOCK_CIPHER_INTERNAL_H
+#define MBEDTLS_BLOCK_CIPHER_INTERNAL_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/cipher.h"
+
+#include "mbedtls/block_cipher.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * \brief Initialize the context.
+ * This must be the first API call before using the context.
+ *
+ * \param ctx The context to initialize.
+ */
+static inline void mbedtls_block_cipher_init(mbedtls_block_cipher_context_t *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+}
+
+/**
+ * \brief Set the block cipher to use with this context.
+ * This must be called after mbedtls_block_cipher_init().
+ *
+ * \param ctx The context to set up.
+ * \param cipher_id The identifier of the cipher to use.
+ * This must be either AES, ARIA or Camellia.
+ * Warning: this is a ::mbedtls_cipher_id_t,
+ * not a ::mbedtls_block_cipher_id_t!
+ *
+ * \retval \c 0 on success.
+ * \retval #MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA if \p cipher_id was
+ * invalid.
+ */
+int mbedtls_block_cipher_setup(mbedtls_block_cipher_context_t *ctx,
+ mbedtls_cipher_id_t cipher_id);
+
+/**
+ * \brief Set the key into the context.
+ *
+ * \param ctx The context to configure.
+ * \param key The buffer holding the key material.
+ * \param key_bitlen The size of the key in bits.
+ *
+ * \retval \c 0 on success.
+ * \retval #MBEDTLS_ERR_CIPHER_INVALID_CONTEXT if the context was not
+ * properly set up before calling this function.
+ * \retval One of #MBEDTLS_ERR_AES_INVALID_KEY_LENGTH,
+ * #MBEDTLS_ERR_ARIA_BAD_INPUT_DATA,
+ * #MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA if \p key_bitlen is
+ * invalid.
+ */
+int mbedtls_block_cipher_setkey(mbedtls_block_cipher_context_t *ctx,
+ const unsigned char *key,
+ unsigned key_bitlen);
+
+/**
+ * \brief Encrypt one block (16 bytes) with the configured key.
+ *
+ * \param ctx The context holding the key.
+ * \param input The buffer holding the input block. Must be 16 bytes.
+ * \param output The buffer to which the output block will be written.
+ * Must be writable and 16 bytes long.
+ * This must either not overlap with \p input, or be equal.
+ *
+ * \retval \c 0 on success.
+ * \retval #MBEDTLS_ERR_CIPHER_INVALID_CONTEXT if the context was not
+ * properly set up before calling this function.
+ * \retval Another negative value if encryption failed.
+ */
+int mbedtls_block_cipher_encrypt(mbedtls_block_cipher_context_t *ctx,
+ const unsigned char input[16],
+ unsigned char output[16]);
+/**
+ * \brief Clear the context.
+ *
+ * \param ctx The context to clear.
+ */
+void mbedtls_block_cipher_free(mbedtls_block_cipher_context_t *ctx);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_BLOCK_CIPHER_INTERNAL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/bn_mul.h b/tf-psa-crypto/drivers/builtin/src/bn_mul.h
new file mode 100644
index 0000000..0738469
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/bn_mul.h
@@ -0,0 +1,1094 @@
+/**
+ * \file bn_mul.h
+ *
+ * \brief Multi-precision integer library
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * Multiply source vector [s] with b, add result
+ * to destination vector [d] and set carry c.
+ *
+ * Currently supports:
+ *
+ * . IA-32 (386+) . AMD64 / EM64T
+ * . IA-32 (SSE2) . Motorola 68000
+ * . PowerPC, 32-bit . MicroBlaze
+ * . PowerPC, 64-bit . TriCore
+ * . SPARC v8 . ARM v3+
+ * . Alpha . MIPS32
+ * . C, longlong . C, generic
+ */
+#ifndef MBEDTLS_BN_MUL_H
+#define MBEDTLS_BN_MUL_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/bignum.h"
+
+
+/*
+ * Conversion macros for embedded constants:
+ * build lists of mbedtls_mpi_uint's from lists of unsigned char's grouped by 8, 4 or 2
+ */
+#if defined(MBEDTLS_HAVE_INT32)
+
+#define MBEDTLS_BYTES_TO_T_UINT_4(a, b, c, d) \
+ ((mbedtls_mpi_uint) (a) << 0) | \
+ ((mbedtls_mpi_uint) (b) << 8) | \
+ ((mbedtls_mpi_uint) (c) << 16) | \
+ ((mbedtls_mpi_uint) (d) << 24)
+
+#define MBEDTLS_BYTES_TO_T_UINT_2(a, b) \
+ MBEDTLS_BYTES_TO_T_UINT_4(a, b, 0, 0)
+
+#define MBEDTLS_BYTES_TO_T_UINT_8(a, b, c, d, e, f, g, h) \
+ MBEDTLS_BYTES_TO_T_UINT_4(a, b, c, d), \
+ MBEDTLS_BYTES_TO_T_UINT_4(e, f, g, h)
+
+#else /* 64-bits */
+
+#define MBEDTLS_BYTES_TO_T_UINT_8(a, b, c, d, e, f, g, h) \
+ ((mbedtls_mpi_uint) (a) << 0) | \
+ ((mbedtls_mpi_uint) (b) << 8) | \
+ ((mbedtls_mpi_uint) (c) << 16) | \
+ ((mbedtls_mpi_uint) (d) << 24) | \
+ ((mbedtls_mpi_uint) (e) << 32) | \
+ ((mbedtls_mpi_uint) (f) << 40) | \
+ ((mbedtls_mpi_uint) (g) << 48) | \
+ ((mbedtls_mpi_uint) (h) << 56)
+
+#define MBEDTLS_BYTES_TO_T_UINT_4(a, b, c, d) \
+ MBEDTLS_BYTES_TO_T_UINT_8(a, b, c, d, 0, 0, 0, 0)
+
+#define MBEDTLS_BYTES_TO_T_UINT_2(a, b) \
+ MBEDTLS_BYTES_TO_T_UINT_8(a, b, 0, 0, 0, 0, 0, 0)
+
+#endif /* bits in mbedtls_mpi_uint */
+
+/* *INDENT-OFF* */
+#if defined(MBEDTLS_HAVE_ASM)
+
+/* armcc5 --gnu defines __GNUC__ but doesn't support GNU's extended asm */
+#if defined(__GNUC__) && \
+ ( !defined(__ARMCC_VERSION) || __ARMCC_VERSION >= 6000000 )
+
+/*
+ * GCC < 5.0 treated the x86 ebx (which is used for the GOT) as a
+ * fixed reserved register when building as PIC, leading to errors
+ * like: bn_mul.h:46:13: error: PIC register clobbered by 'ebx' in 'asm'
+ *
+ * This is fixed by an improved register allocator in GCC 5+. From the
+ * release notes:
+ * Register allocation improvements: Reuse of the PIC hard register,
+ * instead of using a fixed register, was implemented on x86/x86-64
+ * targets. This improves generated PIC code performance as more hard
+ * registers can be used.
+ */
+#if defined(__GNUC__) && __GNUC__ < 5 && defined(__PIC__)
+#define MULADDC_CANNOT_USE_EBX
+#endif
+
+/*
+ * Disable use of the i386 assembly code below if option -O0, to disable all
+ * compiler optimisations, is passed, detected with __OPTIMIZE__
+ * This is done as the number of registers used in the assembly code doesn't
+ * work with the -O0 option.
+ */
+#if defined(__i386__) && defined(__OPTIMIZE__) && !defined(MULADDC_CANNOT_USE_EBX)
+
+#define MULADDC_X1_INIT \
+ { mbedtls_mpi_uint t; \
+ asm( \
+ "movl %%ebx, %0 \n\t" \
+ "movl %5, %%esi \n\t" \
+ "movl %6, %%edi \n\t" \
+ "movl %7, %%ecx \n\t" \
+ "movl %8, %%ebx \n\t"
+
+#define MULADDC_X1_CORE \
+ "lodsl \n\t" \
+ "mull %%ebx \n\t" \
+ "addl %%ecx, %%eax \n\t" \
+ "adcl $0, %%edx \n\t" \
+ "addl (%%edi), %%eax \n\t" \
+ "adcl $0, %%edx \n\t" \
+ "movl %%edx, %%ecx \n\t" \
+ "stosl \n\t"
+
+#define MULADDC_X1_STOP \
+ "movl %4, %%ebx \n\t" \
+ "movl %%ecx, %1 \n\t" \
+ "movl %%edi, %2 \n\t" \
+ "movl %%esi, %3 \n\t" \
+ : "=m" (t), "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (t), "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "eax", "ebx", "ecx", "edx", "esi", "edi" \
+ ); }
+
+#if defined(MBEDTLS_HAVE_SSE2)
+
+#define MULADDC_X8_INIT MULADDC_X1_INIT
+
+#define MULADDC_X8_CORE \
+ "movd %%ecx, %%mm1 \n\t" \
+ "movd %%ebx, %%mm0 \n\t" \
+ "movd (%%edi), %%mm3 \n\t" \
+ "paddq %%mm3, %%mm1 \n\t" \
+ "movd (%%esi), %%mm2 \n\t" \
+ "pmuludq %%mm0, %%mm2 \n\t" \
+ "movd 4(%%esi), %%mm4 \n\t" \
+ "pmuludq %%mm0, %%mm4 \n\t" \
+ "movd 8(%%esi), %%mm6 \n\t" \
+ "pmuludq %%mm0, %%mm6 \n\t" \
+ "movd 12(%%esi), %%mm7 \n\t" \
+ "pmuludq %%mm0, %%mm7 \n\t" \
+ "paddq %%mm2, %%mm1 \n\t" \
+ "movd 4(%%edi), %%mm3 \n\t" \
+ "paddq %%mm4, %%mm3 \n\t" \
+ "movd 8(%%edi), %%mm5 \n\t" \
+ "paddq %%mm6, %%mm5 \n\t" \
+ "movd 12(%%edi), %%mm4 \n\t" \
+ "paddq %%mm4, %%mm7 \n\t" \
+ "movd %%mm1, (%%edi) \n\t" \
+ "movd 16(%%esi), %%mm2 \n\t" \
+ "pmuludq %%mm0, %%mm2 \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "movd 20(%%esi), %%mm4 \n\t" \
+ "pmuludq %%mm0, %%mm4 \n\t" \
+ "paddq %%mm3, %%mm1 \n\t" \
+ "movd 24(%%esi), %%mm6 \n\t" \
+ "pmuludq %%mm0, %%mm6 \n\t" \
+ "movd %%mm1, 4(%%edi) \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "movd 28(%%esi), %%mm3 \n\t" \
+ "pmuludq %%mm0, %%mm3 \n\t" \
+ "paddq %%mm5, %%mm1 \n\t" \
+ "movd 16(%%edi), %%mm5 \n\t" \
+ "paddq %%mm5, %%mm2 \n\t" \
+ "movd %%mm1, 8(%%edi) \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "paddq %%mm7, %%mm1 \n\t" \
+ "movd 20(%%edi), %%mm5 \n\t" \
+ "paddq %%mm5, %%mm4 \n\t" \
+ "movd %%mm1, 12(%%edi) \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "paddq %%mm2, %%mm1 \n\t" \
+ "movd 24(%%edi), %%mm5 \n\t" \
+ "paddq %%mm5, %%mm6 \n\t" \
+ "movd %%mm1, 16(%%edi) \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "paddq %%mm4, %%mm1 \n\t" \
+ "movd 28(%%edi), %%mm5 \n\t" \
+ "paddq %%mm5, %%mm3 \n\t" \
+ "movd %%mm1, 20(%%edi) \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "paddq %%mm6, %%mm1 \n\t" \
+ "movd %%mm1, 24(%%edi) \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "paddq %%mm3, %%mm1 \n\t" \
+ "movd %%mm1, 28(%%edi) \n\t" \
+ "addl $32, %%edi \n\t" \
+ "addl $32, %%esi \n\t" \
+ "psrlq $32, %%mm1 \n\t" \
+ "movd %%mm1, %%ecx \n\t"
+
+#define MULADDC_X8_STOP \
+ "emms \n\t" \
+ "movl %4, %%ebx \n\t" \
+ "movl %%ecx, %1 \n\t" \
+ "movl %%edi, %2 \n\t" \
+ "movl %%esi, %3 \n\t" \
+ : "=m" (t), "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (t), "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "eax", "ebx", "ecx", "edx", "esi", "edi" \
+ ); } \
+
+#endif /* SSE2 */
+
+#endif /* i386 */
+
+#if defined(__amd64__) || defined (__x86_64__)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "xorq %%r8, %%r8\n"
+
+#define MULADDC_X1_CORE \
+ "movq (%%rsi), %%rax\n" \
+ "mulq %%rbx\n" \
+ "addq $8, %%rsi\n" \
+ "addq %%rcx, %%rax\n" \
+ "movq %%r8, %%rcx\n" \
+ "adcq $0, %%rdx\n" \
+ "nop \n" \
+ "addq %%rax, (%%rdi)\n" \
+ "adcq %%rdx, %%rcx\n" \
+ "addq $8, %%rdi\n"
+
+#define MULADDC_X1_STOP \
+ : "+c" (c), "+D" (d), "+S" (s), "+m" (*(uint64_t (*)[16]) d) \
+ : "b" (b), "m" (*(const uint64_t (*)[16]) s) \
+ : "rax", "rdx", "r8" \
+ );
+
+#endif /* AMD64 */
+
+// The following assembly code assumes that a pointer will fit in a 64-bit register
+// (including ILP32 __aarch64__ ABIs such as on watchOS, hence the 2^32 - 1)
+#if defined(__aarch64__) && (UINTPTR_MAX == 0xfffffffful || UINTPTR_MAX == 0xfffffffffffffffful)
+
+/*
+ * There are some issues around different compilers requiring different constraint
+ * syntax for updating pointers from assembly code (see notes for
+ * MBEDTLS_ASM_AARCH64_PTR_CONSTRAINT in common.h), especially on aarch64_32 (aka ILP32).
+ *
+ * For this reason we cast the pointers to/from uintptr_t here.
+ */
+#define MULADDC_X1_INIT \
+ do { uintptr_t muladdc_d = (uintptr_t) d, muladdc_s = (uintptr_t) s; asm(
+
+#define MULADDC_X1_CORE \
+ "ldr x4, [%x2], #8 \n\t" \
+ "ldr x5, [%x1] \n\t" \
+ "mul x6, x4, %4 \n\t" \
+ "umulh x7, x4, %4 \n\t" \
+ "adds x5, x5, x6 \n\t" \
+ "adc x7, x7, xzr \n\t" \
+ "adds x5, x5, %0 \n\t" \
+ "adc %0, x7, xzr \n\t" \
+ "str x5, [%x1], #8 \n\t"
+
+#define MULADDC_X1_STOP \
+ : "+r" (c), \
+ "+r" (muladdc_d), \
+ "+r" (muladdc_s), \
+ "+m" (*(uint64_t (*)[16]) d) \
+ : "r" (b), "m" (*(const uint64_t (*)[16]) s) \
+ : "x4", "x5", "x6", "x7", "cc" \
+ ); d = (mbedtls_mpi_uint *)muladdc_d; s = (mbedtls_mpi_uint *)muladdc_s; } while (0);
+
+#endif /* Aarch64 */
+
+#if defined(__mc68020__) || defined(__mcpu32__)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "movl %3, %%a2 \n\t" \
+ "movl %4, %%a3 \n\t" \
+ "movl %5, %%d3 \n\t" \
+ "movl %6, %%d2 \n\t" \
+ "moveq #0, %%d0 \n\t"
+
+#define MULADDC_X1_CORE \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d4:%%d1 \n\t" \
+ "addl %%d3, %%d1 \n\t" \
+ "addxl %%d0, %%d4 \n\t" \
+ "moveq #0, %%d3 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "addxl %%d4, %%d3 \n\t"
+
+#define MULADDC_X1_STOP \
+ "movl %%d3, %0 \n\t" \
+ "movl %%a3, %1 \n\t" \
+ "movl %%a2, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "d0", "d1", "d2", "d3", "d4", "a2", "a3" \
+ );
+
+#define MULADDC_X8_INIT MULADDC_X1_INIT
+
+#define MULADDC_X8_CORE \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d4:%%d1 \n\t" \
+ "addxl %%d3, %%d1 \n\t" \
+ "addxl %%d0, %%d4 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d3:%%d1 \n\t" \
+ "addxl %%d4, %%d1 \n\t" \
+ "addxl %%d0, %%d3 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d4:%%d1 \n\t" \
+ "addxl %%d3, %%d1 \n\t" \
+ "addxl %%d0, %%d4 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d3:%%d1 \n\t" \
+ "addxl %%d4, %%d1 \n\t" \
+ "addxl %%d0, %%d3 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d4:%%d1 \n\t" \
+ "addxl %%d3, %%d1 \n\t" \
+ "addxl %%d0, %%d4 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d3:%%d1 \n\t" \
+ "addxl %%d4, %%d1 \n\t" \
+ "addxl %%d0, %%d3 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d4:%%d1 \n\t" \
+ "addxl %%d3, %%d1 \n\t" \
+ "addxl %%d0, %%d4 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "movel %%a2@+, %%d1 \n\t" \
+ "mulul %%d2, %%d3:%%d1 \n\t" \
+ "addxl %%d4, %%d1 \n\t" \
+ "addxl %%d0, %%d3 \n\t" \
+ "addl %%d1, %%a3@+ \n\t" \
+ "addxl %%d0, %%d3 \n\t"
+
+#define MULADDC_X8_STOP MULADDC_X1_STOP
+
+#endif /* MC68000 */
+
+#if defined(__powerpc64__) || defined(__ppc64__)
+
+#if defined(__MACH__) && defined(__APPLE__)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "ld r3, %3 \n\t" \
+ "ld r4, %4 \n\t" \
+ "ld r5, %5 \n\t" \
+ "ld r6, %6 \n\t" \
+ "addi r3, r3, -8 \n\t" \
+ "addi r4, r4, -8 \n\t" \
+ "addic r5, r5, 0 \n\t"
+
+#define MULADDC_X1_CORE \
+ "ldu r7, 8(r3) \n\t" \
+ "mulld r8, r7, r6 \n\t" \
+ "mulhdu r9, r7, r6 \n\t" \
+ "adde r8, r8, r5 \n\t" \
+ "ld r7, 8(r4) \n\t" \
+ "addze r5, r9 \n\t" \
+ "addc r8, r8, r7 \n\t" \
+ "stdu r8, 8(r4) \n\t"
+
+#define MULADDC_X1_STOP \
+ "addze r5, r5 \n\t" \
+ "addi r4, r4, 8 \n\t" \
+ "addi r3, r3, 8 \n\t" \
+ "std r5, %0 \n\t" \
+ "std r4, %1 \n\t" \
+ "std r3, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9" \
+ );
+
+
+#else /* __MACH__ && __APPLE__ */
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "ld %%r3, %3 \n\t" \
+ "ld %%r4, %4 \n\t" \
+ "ld %%r5, %5 \n\t" \
+ "ld %%r6, %6 \n\t" \
+ "addi %%r3, %%r3, -8 \n\t" \
+ "addi %%r4, %%r4, -8 \n\t" \
+ "addic %%r5, %%r5, 0 \n\t"
+
+#define MULADDC_X1_CORE \
+ "ldu %%r7, 8(%%r3) \n\t" \
+ "mulld %%r8, %%r7, %%r6 \n\t" \
+ "mulhdu %%r9, %%r7, %%r6 \n\t" \
+ "adde %%r8, %%r8, %%r5 \n\t" \
+ "ld %%r7, 8(%%r4) \n\t" \
+ "addze %%r5, %%r9 \n\t" \
+ "addc %%r8, %%r8, %%r7 \n\t" \
+ "stdu %%r8, 8(%%r4) \n\t"
+
+#define MULADDC_X1_STOP \
+ "addze %%r5, %%r5 \n\t" \
+ "addi %%r4, %%r4, 8 \n\t" \
+ "addi %%r3, %%r3, 8 \n\t" \
+ "std %%r5, %0 \n\t" \
+ "std %%r4, %1 \n\t" \
+ "std %%r3, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9" \
+ );
+
+#endif /* __MACH__ && __APPLE__ */
+
+#elif defined(__powerpc__) || defined(__ppc__) /* end PPC64/begin PPC32 */
+
+#if defined(__MACH__) && defined(__APPLE__)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "lwz r3, %3 \n\t" \
+ "lwz r4, %4 \n\t" \
+ "lwz r5, %5 \n\t" \
+ "lwz r6, %6 \n\t" \
+ "addi r3, r3, -4 \n\t" \
+ "addi r4, r4, -4 \n\t" \
+ "addic r5, r5, 0 \n\t"
+
+#define MULADDC_X1_CORE \
+ "lwzu r7, 4(r3) \n\t" \
+ "mullw r8, r7, r6 \n\t" \
+ "mulhwu r9, r7, r6 \n\t" \
+ "adde r8, r8, r5 \n\t" \
+ "lwz r7, 4(r4) \n\t" \
+ "addze r5, r9 \n\t" \
+ "addc r8, r8, r7 \n\t" \
+ "stwu r8, 4(r4) \n\t"
+
+#define MULADDC_X1_STOP \
+ "addze r5, r5 \n\t" \
+ "addi r4, r4, 4 \n\t" \
+ "addi r3, r3, 4 \n\t" \
+ "stw r5, %0 \n\t" \
+ "stw r4, %1 \n\t" \
+ "stw r3, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9" \
+ );
+
+#else /* __MACH__ && __APPLE__ */
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "lwz %%r3, %3 \n\t" \
+ "lwz %%r4, %4 \n\t" \
+ "lwz %%r5, %5 \n\t" \
+ "lwz %%r6, %6 \n\t" \
+ "addi %%r3, %%r3, -4 \n\t" \
+ "addi %%r4, %%r4, -4 \n\t" \
+ "addic %%r5, %%r5, 0 \n\t"
+
+#define MULADDC_X1_CORE \
+ "lwzu %%r7, 4(%%r3) \n\t" \
+ "mullw %%r8, %%r7, %%r6 \n\t" \
+ "mulhwu %%r9, %%r7, %%r6 \n\t" \
+ "adde %%r8, %%r8, %%r5 \n\t" \
+ "lwz %%r7, 4(%%r4) \n\t" \
+ "addze %%r5, %%r9 \n\t" \
+ "addc %%r8, %%r8, %%r7 \n\t" \
+ "stwu %%r8, 4(%%r4) \n\t"
+
+#define MULADDC_X1_STOP \
+ "addze %%r5, %%r5 \n\t" \
+ "addi %%r4, %%r4, 4 \n\t" \
+ "addi %%r3, %%r3, 4 \n\t" \
+ "stw %%r5, %0 \n\t" \
+ "stw %%r4, %1 \n\t" \
+ "stw %%r3, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "r3", "r4", "r5", "r6", "r7", "r8", "r9" \
+ );
+
+#endif /* __MACH__ && __APPLE__ */
+
+#endif /* PPC32 */
+
+/*
+ * The Sparc(64) assembly is reported to be broken.
+ * Disable it for now, until we're able to fix it.
+ */
+#if 0 && defined(__sparc__)
+#if defined(__sparc64__)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "ldx %3, %%o0 \n\t" \
+ "ldx %4, %%o1 \n\t" \
+ "ld %5, %%o2 \n\t" \
+ "ld %6, %%o3 \n\t"
+
+#define MULADDC_X1_CORE \
+ "ld [%%o0], %%o4 \n\t" \
+ "inc 4, %%o0 \n\t" \
+ "ld [%%o1], %%o5 \n\t" \
+ "umul %%o3, %%o4, %%o4 \n\t" \
+ "addcc %%o4, %%o2, %%o4 \n\t" \
+ "rd %%y, %%g1 \n\t" \
+ "addx %%g1, 0, %%g1 \n\t" \
+ "addcc %%o4, %%o5, %%o4 \n\t" \
+ "st %%o4, [%%o1] \n\t" \
+ "addx %%g1, 0, %%o2 \n\t" \
+ "inc 4, %%o1 \n\t"
+
+#define MULADDC_X1_STOP \
+ "st %%o2, %0 \n\t" \
+ "stx %%o1, %1 \n\t" \
+ "stx %%o0, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "g1", "o0", "o1", "o2", "o3", "o4", \
+ "o5" \
+ );
+
+#else /* __sparc64__ */
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "ld %3, %%o0 \n\t" \
+ "ld %4, %%o1 \n\t" \
+ "ld %5, %%o2 \n\t" \
+ "ld %6, %%o3 \n\t"
+
+#define MULADDC_X1_CORE \
+ "ld [%%o0], %%o4 \n\t" \
+ "inc 4, %%o0 \n\t" \
+ "ld [%%o1], %%o5 \n\t" \
+ "umul %%o3, %%o4, %%o4 \n\t" \
+ "addcc %%o4, %%o2, %%o4 \n\t" \
+ "rd %%y, %%g1 \n\t" \
+ "addx %%g1, 0, %%g1 \n\t" \
+ "addcc %%o4, %%o5, %%o4 \n\t" \
+ "st %%o4, [%%o1] \n\t" \
+ "addx %%g1, 0, %%o2 \n\t" \
+ "inc 4, %%o1 \n\t"
+
+#define MULADDC_X1_STOP \
+ "st %%o2, %0 \n\t" \
+ "st %%o1, %1 \n\t" \
+ "st %%o0, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "g1", "o0", "o1", "o2", "o3", "o4", \
+ "o5" \
+ );
+
+#endif /* __sparc64__ */
+#endif /* __sparc__ */
+
+#if defined(__microblaze__) || defined(microblaze)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "lwi r3, %3 \n\t" \
+ "lwi r4, %4 \n\t" \
+ "lwi r5, %5 \n\t" \
+ "lwi r6, %6 \n\t" \
+ "andi r7, r6, 0xffff \n\t" \
+ "bsrli r6, r6, 16 \n\t"
+
+#if(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)
+#define MULADDC_LHUI \
+ "lhui r9, r3, 0 \n\t" \
+ "addi r3, r3, 2 \n\t" \
+ "lhui r8, r3, 0 \n\t"
+#else
+#define MULADDC_LHUI \
+ "lhui r8, r3, 0 \n\t" \
+ "addi r3, r3, 2 \n\t" \
+ "lhui r9, r3, 0 \n\t"
+#endif
+
+#define MULADDC_X1_CORE \
+ MULADDC_LHUI \
+ "addi r3, r3, 2 \n\t" \
+ "mul r10, r9, r6 \n\t" \
+ "mul r11, r8, r7 \n\t" \
+ "mul r12, r9, r7 \n\t" \
+ "mul r13, r8, r6 \n\t" \
+ "bsrli r8, r10, 16 \n\t" \
+ "bsrli r9, r11, 16 \n\t" \
+ "add r13, r13, r8 \n\t" \
+ "add r13, r13, r9 \n\t" \
+ "bslli r10, r10, 16 \n\t" \
+ "bslli r11, r11, 16 \n\t" \
+ "add r12, r12, r10 \n\t" \
+ "addc r13, r13, r0 \n\t" \
+ "add r12, r12, r11 \n\t" \
+ "addc r13, r13, r0 \n\t" \
+ "lwi r10, r4, 0 \n\t" \
+ "add r12, r12, r10 \n\t" \
+ "addc r13, r13, r0 \n\t" \
+ "add r12, r12, r5 \n\t" \
+ "addc r5, r13, r0 \n\t" \
+ "swi r12, r4, 0 \n\t" \
+ "addi r4, r4, 4 \n\t"
+
+#define MULADDC_X1_STOP \
+ "swi r5, %0 \n\t" \
+ "swi r4, %1 \n\t" \
+ "swi r3, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "r3", "r4", "r5", "r6", "r7", "r8", \
+ "r9", "r10", "r11", "r12", "r13" \
+ );
+
+#endif /* MicroBlaze */
+
+#if defined(__tricore__)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "ld.a %%a2, %3 \n\t" \
+ "ld.a %%a3, %4 \n\t" \
+ "ld.w %%d4, %5 \n\t" \
+ "ld.w %%d1, %6 \n\t" \
+ "xor %%d5, %%d5 \n\t"
+
+#define MULADDC_X1_CORE \
+ "ld.w %%d0, [%%a2+] \n\t" \
+ "madd.u %%e2, %%e4, %%d0, %%d1 \n\t" \
+ "ld.w %%d0, [%%a3] \n\t" \
+ "addx %%d2, %%d2, %%d0 \n\t" \
+ "addc %%d3, %%d3, 0 \n\t" \
+ "mov %%d4, %%d3 \n\t" \
+ "st.w [%%a3+], %%d2 \n\t"
+
+#define MULADDC_X1_STOP \
+ "st.w %0, %%d4 \n\t" \
+ "st.a %1, %%a3 \n\t" \
+ "st.a %2, %%a2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "d0", "d1", "e2", "d4", "a2", "a3" \
+ );
+
+#endif /* TriCore */
+
+#if defined(__arm__)
+
+#if defined(__thumb__) && !defined(__thumb2__)
+#if defined(MBEDTLS_COMPILER_IS_GCC)
+/*
+ * Thumb 1 ISA. This code path has only been tested successfully on gcc;
+ * it does not compile on clang or armclang.
+ */
+
+#if !defined(__OPTIMIZE__) && defined(__GNUC__)
+/*
+ * Note, gcc -O0 by default uses r7 for the frame pointer, so it complains about
+ * our use of r7 below, unless -fomit-frame-pointer is passed.
+ *
+ * On the other hand, -fomit-frame-pointer is implied by any -Ox options with
+ * x !=0, which we can detect using __OPTIMIZE__ (which is also defined by
+ * clang and armcc5 under the same conditions).
+ *
+ * If gcc needs to use r7, we use r1 as a scratch register and have a few extra
+ * instructions to preserve/restore it; otherwise, we can use r7 and avoid
+ * the preserve/restore overhead.
+ */
+#define MULADDC_SCRATCH "RS .req r1 \n\t"
+#define MULADDC_PRESERVE_SCRATCH "mov r10, r1 \n\t"
+#define MULADDC_RESTORE_SCRATCH "mov r1, r10 \n\t"
+#define MULADDC_SCRATCH_CLOBBER "r10"
+#else /* !defined(__OPTIMIZE__) && defined(__GNUC__) */
+#define MULADDC_SCRATCH "RS .req r7 \n\t"
+#define MULADDC_PRESERVE_SCRATCH ""
+#define MULADDC_RESTORE_SCRATCH ""
+#define MULADDC_SCRATCH_CLOBBER "r7"
+#endif /* !defined(__OPTIMIZE__) && defined(__GNUC__) */
+
+#define MULADDC_X1_INIT \
+ asm( \
+ MULADDC_SCRATCH \
+ "ldr r0, %3 \n\t" \
+ "ldr r1, %4 \n\t" \
+ "ldr r2, %5 \n\t" \
+ "ldr r3, %6 \n\t" \
+ "lsr r4, r3, #16 \n\t" \
+ "mov r9, r4 \n\t" \
+ "lsl r4, r3, #16 \n\t" \
+ "lsr r4, r4, #16 \n\t" \
+ "mov r8, r4 \n\t" \
+
+
+#define MULADDC_X1_CORE \
+ MULADDC_PRESERVE_SCRATCH \
+ "ldmia r0!, {r6} \n\t" \
+ "lsr RS, r6, #16 \n\t" \
+ "lsl r6, r6, #16 \n\t" \
+ "lsr r6, r6, #16 \n\t" \
+ "mov r4, r8 \n\t" \
+ "mul r4, r6 \n\t" \
+ "mov r3, r9 \n\t" \
+ "mul r6, r3 \n\t" \
+ "mov r5, r9 \n\t" \
+ "mul r5, RS \n\t" \
+ "mov r3, r8 \n\t" \
+ "mul RS, r3 \n\t" \
+ "lsr r3, r6, #16 \n\t" \
+ "add r5, r5, r3 \n\t" \
+ "lsr r3, RS, #16 \n\t" \
+ "add r5, r5, r3 \n\t" \
+ "add r4, r4, r2 \n\t" \
+ "mov r2, #0 \n\t" \
+ "adc r5, r2 \n\t" \
+ "lsl r3, r6, #16 \n\t" \
+ "add r4, r4, r3 \n\t" \
+ "adc r5, r2 \n\t" \
+ "lsl r3, RS, #16 \n\t" \
+ "add r4, r4, r3 \n\t" \
+ "adc r5, r2 \n\t" \
+ MULADDC_RESTORE_SCRATCH \
+ "ldr r3, [r1] \n\t" \
+ "add r4, r4, r3 \n\t" \
+ "adc r2, r5 \n\t" \
+ "stmia r1!, {r4} \n\t"
+
+#define MULADDC_X1_STOP \
+ "str r2, %0 \n\t" \
+ "str r1, %1 \n\t" \
+ "str r0, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "r0", "r1", "r2", "r3", "r4", "r5", \
+ "r6", MULADDC_SCRATCH_CLOBBER, "r8", "r9", "cc" \
+ );
+#endif /* !defined(__ARMCC_VERSION) && !defined(__clang__) */
+
+#elif (__ARM_ARCH >= 6) && \
+ defined (__ARM_FEATURE_DSP) && (__ARM_FEATURE_DSP == 1)
+/* Armv6-M (or later) with DSP Instruction Set Extensions.
+ * Requires support for either Thumb 2 or Arm ISA.
+ */
+
+#define MULADDC_X1_INIT \
+ { \
+ mbedtls_mpi_uint tmp_a, tmp_b; \
+ asm volatile (
+
+#define MULADDC_X1_CORE \
+ ".p2align 2 \n\t" \
+ "ldr %[a], [%[in]], #4 \n\t" \
+ "ldr %[b], [%[acc]] \n\t" \
+ "umaal %[b], %[carry], %[scalar], %[a] \n\t" \
+ "str %[b], [%[acc]], #4 \n\t"
+
+#define MULADDC_X1_STOP \
+ : [a] "=&r" (tmp_a), \
+ [b] "=&r" (tmp_b), \
+ [in] "+r" (s), \
+ [acc] "+r" (d), \
+ [carry] "+l" (c) \
+ : [scalar] "r" (b) \
+ : "memory" \
+ ); \
+ }
+
+#define MULADDC_X2_INIT \
+ { \
+ mbedtls_mpi_uint tmp_a0, tmp_b0; \
+ mbedtls_mpi_uint tmp_a1, tmp_b1; \
+ asm volatile (
+
+ /* - Make sure loop is 4-byte aligned to avoid stalls
+ * upon repeated non-word aligned instructions in
+ * some microarchitectures.
+ * - Don't use ldm with post-increment or back-to-back
+ * loads with post-increment and same address register
+ * to avoid stalls on some microarchitectures.
+ * - Bunch loads and stores to reduce latency on some
+ * microarchitectures. E.g., on Cortex-M4, the first
+ * in a series of load/store operations has latency
+ * 2 cycles, while subsequent loads/stores are single-cycle. */
+#define MULADDC_X2_CORE \
+ ".p2align 2 \n\t" \
+ "ldr %[a0], [%[in]], #+8 \n\t" \
+ "ldr %[b0], [%[acc]], #+8 \n\t" \
+ "ldr %[a1], [%[in], #-4] \n\t" \
+ "ldr %[b1], [%[acc], #-4] \n\t" \
+ "umaal %[b0], %[carry], %[scalar], %[a0] \n\t" \
+ "umaal %[b1], %[carry], %[scalar], %[a1] \n\t" \
+ "str %[b0], [%[acc], #-8] \n\t" \
+ "str %[b1], [%[acc], #-4] \n\t"
+
+#define MULADDC_X2_STOP \
+ : [a0] "=&r" (tmp_a0), \
+ [b0] "=&r" (tmp_b0), \
+ [a1] "=&r" (tmp_a1), \
+ [b1] "=&r" (tmp_b1), \
+ [in] "+r" (s), \
+ [acc] "+r" (d), \
+ [carry] "+l" (c) \
+ : [scalar] "r" (b) \
+ : "memory" \
+ ); \
+ }
+
+#else /* Thumb 2 or Arm ISA, without DSP extensions */
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "ldr r0, %3 \n\t" \
+ "ldr r1, %4 \n\t" \
+ "ldr r2, %5 \n\t" \
+ "ldr r3, %6 \n\t"
+
+#define MULADDC_X1_CORE \
+ "ldr r4, [r0], #4 \n\t" \
+ "mov r5, #0 \n\t" \
+ "ldr r6, [r1] \n\t" \
+ "umlal r2, r5, r3, r4 \n\t" \
+ "adds r4, r6, r2 \n\t" \
+ "adc r2, r5, #0 \n\t" \
+ "str r4, [r1], #4 \n\t"
+
+#define MULADDC_X1_STOP \
+ "str r2, %0 \n\t" \
+ "str r1, %1 \n\t" \
+ "str r0, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "r0", "r1", "r2", "r3", "r4", "r5", \
+ "r6", "cc" \
+ );
+
+#endif /* ISA codepath selection */
+
+#endif /* defined(__arm__) */
+
+#if defined(__alpha__)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "ldq $1, %3 \n\t" \
+ "ldq $2, %4 \n\t" \
+ "ldq $3, %5 \n\t" \
+ "ldq $4, %6 \n\t"
+
+#define MULADDC_X1_CORE \
+ "ldq $6, 0($1) \n\t" \
+ "addq $1, 8, $1 \n\t" \
+ "mulq $6, $4, $7 \n\t" \
+ "umulh $6, $4, $6 \n\t" \
+ "addq $7, $3, $7 \n\t" \
+ "cmpult $7, $3, $3 \n\t" \
+ "ldq $5, 0($2) \n\t" \
+ "addq $7, $5, $7 \n\t" \
+ "cmpult $7, $5, $5 \n\t" \
+ "stq $7, 0($2) \n\t" \
+ "addq $2, 8, $2 \n\t" \
+ "addq $6, $3, $3 \n\t" \
+ "addq $5, $3, $3 \n\t"
+
+#define MULADDC_X1_STOP \
+ "stq $3, %0 \n\t" \
+ "stq $2, %1 \n\t" \
+ "stq $1, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "$1", "$2", "$3", "$4", "$5", "$6", "$7" \
+ );
+#endif /* Alpha */
+
+#if defined(__mips__) && !defined(__mips64)
+
+#define MULADDC_X1_INIT \
+ asm( \
+ "lw $10, %3 \n\t" \
+ "lw $11, %4 \n\t" \
+ "lw $12, %5 \n\t" \
+ "lw $13, %6 \n\t"
+
+#define MULADDC_X1_CORE \
+ "lw $14, 0($10) \n\t" \
+ "multu $13, $14 \n\t" \
+ "addi $10, $10, 4 \n\t" \
+ "mflo $14 \n\t" \
+ "mfhi $9 \n\t" \
+ "addu $14, $12, $14 \n\t" \
+ "lw $15, 0($11) \n\t" \
+ "sltu $12, $14, $12 \n\t" \
+ "addu $15, $14, $15 \n\t" \
+ "sltu $14, $15, $14 \n\t" \
+ "addu $12, $12, $9 \n\t" \
+ "sw $15, 0($11) \n\t" \
+ "addu $12, $12, $14 \n\t" \
+ "addi $11, $11, 4 \n\t"
+
+#define MULADDC_X1_STOP \
+ "sw $12, %0 \n\t" \
+ "sw $11, %1 \n\t" \
+ "sw $10, %2 \n\t" \
+ : "=m" (c), "=m" (d), "=m" (s) \
+ : "m" (s), "m" (d), "m" (c), "m" (b) \
+ : "$9", "$10", "$11", "$12", "$13", "$14", "$15", "lo", "hi" \
+ );
+
+#endif /* MIPS */
+#endif /* GNUC */
+
+#if (defined(_MSC_VER) && defined(_M_IX86)) || defined(__WATCOMC__)
+
+#define MULADDC_X1_INIT \
+ __asm mov esi, s \
+ __asm mov edi, d \
+ __asm mov ecx, c \
+ __asm mov ebx, b
+
+#define MULADDC_X1_CORE \
+ __asm lodsd \
+ __asm mul ebx \
+ __asm add eax, ecx \
+ __asm adc edx, 0 \
+ __asm add eax, [edi] \
+ __asm adc edx, 0 \
+ __asm mov ecx, edx \
+ __asm stosd
+
+#define MULADDC_X1_STOP \
+ __asm mov c, ecx \
+ __asm mov d, edi \
+ __asm mov s, esi
+
+#if defined(MBEDTLS_HAVE_SSE2)
+
+#define EMIT __asm _emit
+
+#define MULADDC_X8_INIT MULADDC_X1_INIT
+
+#define MULADDC_X8_CORE \
+ EMIT 0x0F EMIT 0x6E EMIT 0xC9 \
+ EMIT 0x0F EMIT 0x6E EMIT 0xC3 \
+ EMIT 0x0F EMIT 0x6E EMIT 0x1F \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCB \
+ EMIT 0x0F EMIT 0x6E EMIT 0x16 \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xD0 \
+ EMIT 0x0F EMIT 0x6E EMIT 0x66 EMIT 0x04 \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xE0 \
+ EMIT 0x0F EMIT 0x6E EMIT 0x76 EMIT 0x08 \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xF0 \
+ EMIT 0x0F EMIT 0x6E EMIT 0x7E EMIT 0x0C \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xF8 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCA \
+ EMIT 0x0F EMIT 0x6E EMIT 0x5F EMIT 0x04 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xDC \
+ EMIT 0x0F EMIT 0x6E EMIT 0x6F EMIT 0x08 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xEE \
+ EMIT 0x0F EMIT 0x6E EMIT 0x67 EMIT 0x0C \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xFC \
+ EMIT 0x0F EMIT 0x7E EMIT 0x0F \
+ EMIT 0x0F EMIT 0x6E EMIT 0x56 EMIT 0x10 \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xD0 \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0x6E EMIT 0x66 EMIT 0x14 \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xE0 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCB \
+ EMIT 0x0F EMIT 0x6E EMIT 0x76 EMIT 0x18 \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xF0 \
+ EMIT 0x0F EMIT 0x7E EMIT 0x4F EMIT 0x04 \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0x6E EMIT 0x5E EMIT 0x1C \
+ EMIT 0x0F EMIT 0xF4 EMIT 0xD8 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCD \
+ EMIT 0x0F EMIT 0x6E EMIT 0x6F EMIT 0x10 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xD5 \
+ EMIT 0x0F EMIT 0x7E EMIT 0x4F EMIT 0x08 \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCF \
+ EMIT 0x0F EMIT 0x6E EMIT 0x6F EMIT 0x14 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xE5 \
+ EMIT 0x0F EMIT 0x7E EMIT 0x4F EMIT 0x0C \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCA \
+ EMIT 0x0F EMIT 0x6E EMIT 0x6F EMIT 0x18 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xF5 \
+ EMIT 0x0F EMIT 0x7E EMIT 0x4F EMIT 0x10 \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCC \
+ EMIT 0x0F EMIT 0x6E EMIT 0x6F EMIT 0x1C \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xDD \
+ EMIT 0x0F EMIT 0x7E EMIT 0x4F EMIT 0x14 \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCE \
+ EMIT 0x0F EMIT 0x7E EMIT 0x4F EMIT 0x18 \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0xD4 EMIT 0xCB \
+ EMIT 0x0F EMIT 0x7E EMIT 0x4F EMIT 0x1C \
+ EMIT 0x83 EMIT 0xC7 EMIT 0x20 \
+ EMIT 0x83 EMIT 0xC6 EMIT 0x20 \
+ EMIT 0x0F EMIT 0x73 EMIT 0xD1 EMIT 0x20 \
+ EMIT 0x0F EMIT 0x7E EMIT 0xC9
+
+#define MULADDC_X8_STOP \
+ EMIT 0x0F EMIT 0x77 \
+ __asm mov c, ecx \
+ __asm mov d, edi \
+ __asm mov s, esi
+
+#endif /* SSE2 */
+#endif /* MSVC */
+
+#endif /* MBEDTLS_HAVE_ASM */
+
+#if !defined(MULADDC_X1_CORE)
+#if defined(MBEDTLS_HAVE_UDBL)
+
+#define MULADDC_X1_INIT \
+{ \
+ mbedtls_t_udbl r; \
+ mbedtls_mpi_uint r0, r1;
+
+#define MULADDC_X1_CORE \
+ r = *(s++) * (mbedtls_t_udbl) b; \
+ r0 = (mbedtls_mpi_uint) r; \
+ r1 = (mbedtls_mpi_uint)( r >> biL ); \
+ r0 += c; r1 += (r0 < c); \
+ r0 += *d; r1 += (r0 < *d); \
+ c = r1; *(d++) = r0;
+
+#define MULADDC_X1_STOP \
+}
+
+#else /* MBEDTLS_HAVE_UDBL */
+
+#define MULADDC_X1_INIT \
+{ \
+ mbedtls_mpi_uint s0, s1, b0, b1; \
+ mbedtls_mpi_uint r0, r1, rx, ry; \
+ b0 = ( b << biH ) >> biH; \
+ b1 = ( b >> biH );
+
+#define MULADDC_X1_CORE \
+ s0 = ( *s << biH ) >> biH; \
+ s1 = ( *s >> biH ); s++; \
+ rx = s0 * b1; r0 = s0 * b0; \
+ ry = s1 * b0; r1 = s1 * b1; \
+ r1 += ( rx >> biH ); \
+ r1 += ( ry >> biH ); \
+ rx <<= biH; ry <<= biH; \
+ r0 += rx; r1 += (r0 < rx); \
+ r0 += ry; r1 += (r0 < ry); \
+ r0 += c; r1 += (r0 < c); \
+ r0 += *d; r1 += (r0 < *d); \
+ c = r1; *(d++) = r0;
+
+#define MULADDC_X1_STOP \
+}
+
+#endif /* C (longlong) */
+#endif /* C (generic) */
+
+#if !defined(MULADDC_X2_CORE)
+#define MULADDC_X2_INIT MULADDC_X1_INIT
+#define MULADDC_X2_STOP MULADDC_X1_STOP
+#define MULADDC_X2_CORE MULADDC_X1_CORE MULADDC_X1_CORE
+#endif /* MULADDC_X2_CORE */
+
+#if !defined(MULADDC_X4_CORE)
+#define MULADDC_X4_INIT MULADDC_X2_INIT
+#define MULADDC_X4_STOP MULADDC_X2_STOP
+#define MULADDC_X4_CORE MULADDC_X2_CORE MULADDC_X2_CORE
+#endif /* MULADDC_X4_CORE */
+
+#if !defined(MULADDC_X8_CORE)
+#define MULADDC_X8_INIT MULADDC_X4_INIT
+#define MULADDC_X8_STOP MULADDC_X4_STOP
+#define MULADDC_X8_CORE MULADDC_X4_CORE MULADDC_X4_CORE
+#endif /* MULADDC_X8_CORE */
+
+/* *INDENT-ON* */
+#endif /* bn_mul.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/camellia.c b/tf-psa-crypto/drivers/builtin/src/camellia.c
new file mode 100644
index 0000000..b1c0a08
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/camellia.c
@@ -0,0 +1,1058 @@
+/*
+ * Camellia implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The Camellia block cipher was designed by NTT and Mitsubishi Electric
+ * Corporation.
+ *
+ * http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/01espec.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CAMELLIA_C)
+
+#include "mbedtls/camellia.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_CAMELLIA_ALT)
+
+static const unsigned char SIGMA_CHARS[6][8] =
+{
+ { 0xa0, 0x9e, 0x66, 0x7f, 0x3b, 0xcc, 0x90, 0x8b },
+ { 0xb6, 0x7a, 0xe8, 0x58, 0x4c, 0xaa, 0x73, 0xb2 },
+ { 0xc6, 0xef, 0x37, 0x2f, 0xe9, 0x4f, 0x82, 0xbe },
+ { 0x54, 0xff, 0x53, 0xa5, 0xf1, 0xd3, 0x6f, 0x1c },
+ { 0x10, 0xe5, 0x27, 0xfa, 0xde, 0x68, 0x2d, 0x1d },
+ { 0xb0, 0x56, 0x88, 0xc2, 0xb3, 0xe6, 0xc1, 0xfd }
+};
+
+#if defined(MBEDTLS_CAMELLIA_SMALL_MEMORY)
+
+static const unsigned char FSb[256] =
+{
+ 112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65,
+ 35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189,
+ 134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26,
+ 166, 225, 57, 202, 213, 71, 93, 61, 217, 1, 90, 214, 81, 86, 108, 77,
+ 139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153,
+ 223, 76, 203, 194, 52, 126, 118, 5, 109, 183, 169, 49, 209, 23, 4, 215,
+ 20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34,
+ 254, 68, 207, 178, 195, 181, 122, 145, 36, 8, 232, 168, 96, 252, 105, 80,
+ 170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210,
+ 16, 196, 0, 72, 163, 247, 117, 219, 138, 3, 230, 218, 9, 63, 221, 148,
+ 135, 92, 131, 2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226,
+ 82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46,
+ 233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89,
+ 120, 152, 6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250,
+ 114, 7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164,
+ 64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158
+};
+
+#define SBOX1(n) FSb[(n)]
+#define SBOX2(n) (unsigned char) ((FSb[(n)] >> 7 ^ FSb[(n)] << 1) & 0xff)
+#define SBOX3(n) (unsigned char) ((FSb[(n)] >> 1 ^ FSb[(n)] << 7) & 0xff)
+#define SBOX4(n) FSb[((n) << 1 ^ (n) >> 7) &0xff]
+
+#else /* MBEDTLS_CAMELLIA_SMALL_MEMORY */
+
+static const unsigned char FSb[256] =
+{
+ 112, 130, 44, 236, 179, 39, 192, 229, 228, 133, 87, 53, 234, 12, 174, 65,
+ 35, 239, 107, 147, 69, 25, 165, 33, 237, 14, 79, 78, 29, 101, 146, 189,
+ 134, 184, 175, 143, 124, 235, 31, 206, 62, 48, 220, 95, 94, 197, 11, 26,
+ 166, 225, 57, 202, 213, 71, 93, 61, 217, 1, 90, 214, 81, 86, 108, 77,
+ 139, 13, 154, 102, 251, 204, 176, 45, 116, 18, 43, 32, 240, 177, 132, 153,
+ 223, 76, 203, 194, 52, 126, 118, 5, 109, 183, 169, 49, 209, 23, 4, 215,
+ 20, 88, 58, 97, 222, 27, 17, 28, 50, 15, 156, 22, 83, 24, 242, 34,
+ 254, 68, 207, 178, 195, 181, 122, 145, 36, 8, 232, 168, 96, 252, 105, 80,
+ 170, 208, 160, 125, 161, 137, 98, 151, 84, 91, 30, 149, 224, 255, 100, 210,
+ 16, 196, 0, 72, 163, 247, 117, 219, 138, 3, 230, 218, 9, 63, 221, 148,
+ 135, 92, 131, 2, 205, 74, 144, 51, 115, 103, 246, 243, 157, 127, 191, 226,
+ 82, 155, 216, 38, 200, 55, 198, 59, 129, 150, 111, 75, 19, 190, 99, 46,
+ 233, 121, 167, 140, 159, 110, 188, 142, 41, 245, 249, 182, 47, 253, 180, 89,
+ 120, 152, 6, 106, 231, 70, 113, 186, 212, 37, 171, 66, 136, 162, 141, 250,
+ 114, 7, 185, 85, 248, 238, 172, 10, 54, 73, 42, 104, 60, 56, 241, 164,
+ 64, 40, 211, 123, 187, 201, 67, 193, 21, 227, 173, 244, 119, 199, 128, 158
+};
+
+static const unsigned char FSb2[256] =
+{
+ 224, 5, 88, 217, 103, 78, 129, 203, 201, 11, 174, 106, 213, 24, 93, 130,
+ 70, 223, 214, 39, 138, 50, 75, 66, 219, 28, 158, 156, 58, 202, 37, 123,
+ 13, 113, 95, 31, 248, 215, 62, 157, 124, 96, 185, 190, 188, 139, 22, 52,
+ 77, 195, 114, 149, 171, 142, 186, 122, 179, 2, 180, 173, 162, 172, 216, 154,
+ 23, 26, 53, 204, 247, 153, 97, 90, 232, 36, 86, 64, 225, 99, 9, 51,
+ 191, 152, 151, 133, 104, 252, 236, 10, 218, 111, 83, 98, 163, 46, 8, 175,
+ 40, 176, 116, 194, 189, 54, 34, 56, 100, 30, 57, 44, 166, 48, 229, 68,
+ 253, 136, 159, 101, 135, 107, 244, 35, 72, 16, 209, 81, 192, 249, 210, 160,
+ 85, 161, 65, 250, 67, 19, 196, 47, 168, 182, 60, 43, 193, 255, 200, 165,
+ 32, 137, 0, 144, 71, 239, 234, 183, 21, 6, 205, 181, 18, 126, 187, 41,
+ 15, 184, 7, 4, 155, 148, 33, 102, 230, 206, 237, 231, 59, 254, 127, 197,
+ 164, 55, 177, 76, 145, 110, 141, 118, 3, 45, 222, 150, 38, 125, 198, 92,
+ 211, 242, 79, 25, 63, 220, 121, 29, 82, 235, 243, 109, 94, 251, 105, 178,
+ 240, 49, 12, 212, 207, 140, 226, 117, 169, 74, 87, 132, 17, 69, 27, 245,
+ 228, 14, 115, 170, 241, 221, 89, 20, 108, 146, 84, 208, 120, 112, 227, 73,
+ 128, 80, 167, 246, 119, 147, 134, 131, 42, 199, 91, 233, 238, 143, 1, 61
+};
+
+static const unsigned char FSb3[256] =
+{
+ 56, 65, 22, 118, 217, 147, 96, 242, 114, 194, 171, 154, 117, 6, 87, 160,
+ 145, 247, 181, 201, 162, 140, 210, 144, 246, 7, 167, 39, 142, 178, 73, 222,
+ 67, 92, 215, 199, 62, 245, 143, 103, 31, 24, 110, 175, 47, 226, 133, 13,
+ 83, 240, 156, 101, 234, 163, 174, 158, 236, 128, 45, 107, 168, 43, 54, 166,
+ 197, 134, 77, 51, 253, 102, 88, 150, 58, 9, 149, 16, 120, 216, 66, 204,
+ 239, 38, 229, 97, 26, 63, 59, 130, 182, 219, 212, 152, 232, 139, 2, 235,
+ 10, 44, 29, 176, 111, 141, 136, 14, 25, 135, 78, 11, 169, 12, 121, 17,
+ 127, 34, 231, 89, 225, 218, 61, 200, 18, 4, 116, 84, 48, 126, 180, 40,
+ 85, 104, 80, 190, 208, 196, 49, 203, 42, 173, 15, 202, 112, 255, 50, 105,
+ 8, 98, 0, 36, 209, 251, 186, 237, 69, 129, 115, 109, 132, 159, 238, 74,
+ 195, 46, 193, 1, 230, 37, 72, 153, 185, 179, 123, 249, 206, 191, 223, 113,
+ 41, 205, 108, 19, 100, 155, 99, 157, 192, 75, 183, 165, 137, 95, 177, 23,
+ 244, 188, 211, 70, 207, 55, 94, 71, 148, 250, 252, 91, 151, 254, 90, 172,
+ 60, 76, 3, 53, 243, 35, 184, 93, 106, 146, 213, 33, 68, 81, 198, 125,
+ 57, 131, 220, 170, 124, 119, 86, 5, 27, 164, 21, 52, 30, 28, 248, 82,
+ 32, 20, 233, 189, 221, 228, 161, 224, 138, 241, 214, 122, 187, 227, 64, 79
+};
+
+static const unsigned char FSb4[256] =
+{
+ 112, 44, 179, 192, 228, 87, 234, 174, 35, 107, 69, 165, 237, 79, 29, 146,
+ 134, 175, 124, 31, 62, 220, 94, 11, 166, 57, 213, 93, 217, 90, 81, 108,
+ 139, 154, 251, 176, 116, 43, 240, 132, 223, 203, 52, 118, 109, 169, 209, 4,
+ 20, 58, 222, 17, 50, 156, 83, 242, 254, 207, 195, 122, 36, 232, 96, 105,
+ 170, 160, 161, 98, 84, 30, 224, 100, 16, 0, 163, 117, 138, 230, 9, 221,
+ 135, 131, 205, 144, 115, 246, 157, 191, 82, 216, 200, 198, 129, 111, 19, 99,
+ 233, 167, 159, 188, 41, 249, 47, 180, 120, 6, 231, 113, 212, 171, 136, 141,
+ 114, 185, 248, 172, 54, 42, 60, 241, 64, 211, 187, 67, 21, 173, 119, 128,
+ 130, 236, 39, 229, 133, 53, 12, 65, 239, 147, 25, 33, 14, 78, 101, 189,
+ 184, 143, 235, 206, 48, 95, 197, 26, 225, 202, 71, 61, 1, 214, 86, 77,
+ 13, 102, 204, 45, 18, 32, 177, 153, 76, 194, 126, 5, 183, 49, 23, 215,
+ 88, 97, 27, 28, 15, 22, 24, 34, 68, 178, 181, 145, 8, 168, 252, 80,
+ 208, 125, 137, 151, 91, 149, 255, 210, 196, 72, 247, 219, 3, 218, 63, 148,
+ 92, 2, 74, 51, 103, 243, 127, 226, 155, 38, 55, 59, 150, 75, 190, 46,
+ 121, 140, 110, 142, 245, 182, 253, 89, 152, 106, 70, 186, 37, 66, 162, 250,
+ 7, 85, 238, 10, 73, 104, 56, 164, 40, 123, 201, 193, 227, 244, 199, 158
+};
+
+#define SBOX1(n) FSb[(n)]
+#define SBOX2(n) FSb2[(n)]
+#define SBOX3(n) FSb3[(n)]
+#define SBOX4(n) FSb4[(n)]
+
+#endif /* MBEDTLS_CAMELLIA_SMALL_MEMORY */
+
+static const unsigned char shifts[2][4][4] =
+{
+ {
+ { 1, 1, 1, 1 }, /* KL */
+ { 0, 0, 0, 0 }, /* KR */
+ { 1, 1, 1, 1 }, /* KA */
+ { 0, 0, 0, 0 } /* KB */
+ },
+ {
+ { 1, 0, 1, 1 }, /* KL */
+ { 1, 1, 0, 1 }, /* KR */
+ { 1, 1, 1, 0 }, /* KA */
+ { 1, 1, 0, 1 } /* KB */
+ }
+};
+
+static const signed char indexes[2][4][20] =
+{
+ {
+ { 0, 1, 2, 3, 8, 9, 10, 11, 38, 39,
+ 36, 37, 23, 20, 21, 22, 27, -1, -1, 26 }, /* KL -> RK */
+ { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, /* KR -> RK */
+ { 4, 5, 6, 7, 12, 13, 14, 15, 16, 17,
+ 18, 19, -1, 24, 25, -1, 31, 28, 29, 30 }, /* KA -> RK */
+ { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } /* KB -> RK */
+ },
+ {
+ { 0, 1, 2, 3, 61, 62, 63, 60, -1, -1,
+ -1, -1, 27, 24, 25, 26, 35, 32, 33, 34 }, /* KL -> RK */
+ { -1, -1, -1, -1, 8, 9, 10, 11, 16, 17,
+ 18, 19, -1, -1, -1, -1, 39, 36, 37, 38 }, /* KR -> RK */
+ { -1, -1, -1, -1, 12, 13, 14, 15, 58, 59,
+ 56, 57, 31, 28, 29, 30, -1, -1, -1, -1 }, /* KA -> RK */
+ { 4, 5, 6, 7, 65, 66, 67, 64, 20, 21,
+ 22, 23, -1, -1, -1, -1, 43, 40, 41, 42 } /* KB -> RK */
+ }
+};
+
+static const signed char transposes[2][20] =
+{
+ {
+ 21, 22, 23, 20,
+ -1, -1, -1, -1,
+ 18, 19, 16, 17,
+ 11, 8, 9, 10,
+ 15, 12, 13, 14
+ },
+ {
+ 25, 26, 27, 24,
+ 29, 30, 31, 28,
+ 18, 19, 16, 17,
+ -1, -1, -1, -1,
+ -1, -1, -1, -1
+ }
+};
+
+/* Shift macro for 128 bit strings with rotation smaller than 32 bits (!) */
+#define ROTL(DEST, SRC, SHIFT) \
+ { \
+ (DEST)[0] = (SRC)[0] << (SHIFT) ^ (SRC)[1] >> (32 - (SHIFT)); \
+ (DEST)[1] = (SRC)[1] << (SHIFT) ^ (SRC)[2] >> (32 - (SHIFT)); \
+ (DEST)[2] = (SRC)[2] << (SHIFT) ^ (SRC)[3] >> (32 - (SHIFT)); \
+ (DEST)[3] = (SRC)[3] << (SHIFT) ^ (SRC)[0] >> (32 - (SHIFT)); \
+ }
+
+#define FL(XL, XR, KL, KR) \
+ { \
+ (XR) = ((((XL) &(KL)) << 1) | (((XL) &(KL)) >> 31)) ^ (XR); \
+ (XL) = ((XR) | (KR)) ^ (XL); \
+ }
+
+#define FLInv(YL, YR, KL, KR) \
+ { \
+ (YL) = ((YR) | (KR)) ^ (YL); \
+ (YR) = ((((YL) &(KL)) << 1) | (((YL) &(KL)) >> 31)) ^ (YR); \
+ }
+
+#define SHIFT_AND_PLACE(INDEX, OFFSET) \
+ { \
+ TK[0] = KC[(OFFSET) * 4 + 0]; \
+ TK[1] = KC[(OFFSET) * 4 + 1]; \
+ TK[2] = KC[(OFFSET) * 4 + 2]; \
+ TK[3] = KC[(OFFSET) * 4 + 3]; \
+ \
+ for (i = 1; i <= 4; i++) \
+ if (shifts[(INDEX)][(OFFSET)][i -1]) \
+ ROTL(TK + i * 4, TK, (15 * i) % 32); \
+ \
+ for (i = 0; i < 20; i++) \
+ if (indexes[(INDEX)][(OFFSET)][i] != -1) { \
+ RK[indexes[(INDEX)][(OFFSET)][i]] = TK[i]; \
+ } \
+ }
+
+static void camellia_feistel(const uint32_t x[2], const uint32_t k[2],
+ uint32_t z[2])
+{
+ uint32_t I0, I1;
+ I0 = x[0] ^ k[0];
+ I1 = x[1] ^ k[1];
+
+ I0 = ((uint32_t) SBOX1(MBEDTLS_BYTE_3(I0)) << 24) |
+ ((uint32_t) SBOX2(MBEDTLS_BYTE_2(I0)) << 16) |
+ ((uint32_t) SBOX3(MBEDTLS_BYTE_1(I0)) << 8) |
+ ((uint32_t) SBOX4(MBEDTLS_BYTE_0(I0)));
+ I1 = ((uint32_t) SBOX2(MBEDTLS_BYTE_3(I1)) << 24) |
+ ((uint32_t) SBOX3(MBEDTLS_BYTE_2(I1)) << 16) |
+ ((uint32_t) SBOX4(MBEDTLS_BYTE_1(I1)) << 8) |
+ ((uint32_t) SBOX1(MBEDTLS_BYTE_0(I1)));
+
+ I0 ^= (I1 << 8) | (I1 >> 24);
+ I1 ^= (I0 << 16) | (I0 >> 16);
+ I0 ^= (I1 >> 8) | (I1 << 24);
+ I1 ^= (I0 >> 8) | (I0 << 24);
+
+ z[0] ^= I1;
+ z[1] ^= I0;
+}
+
+void mbedtls_camellia_init(mbedtls_camellia_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_camellia_context));
+}
+
+void mbedtls_camellia_free(mbedtls_camellia_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_camellia_context));
+}
+
+/*
+ * Camellia key schedule (encryption)
+ */
+int mbedtls_camellia_setkey_enc(mbedtls_camellia_context *ctx,
+ const unsigned char *key,
+ unsigned int keybits)
+{
+ int idx;
+ size_t i;
+ uint32_t *RK;
+ unsigned char t[64];
+ uint32_t SIGMA[6][2];
+ uint32_t KC[16];
+ uint32_t TK[20];
+
+ RK = ctx->rk;
+
+ memset(t, 0, 64);
+ memset(RK, 0, sizeof(ctx->rk));
+
+ switch (keybits) {
+ case 128: ctx->nr = 3; idx = 0; break;
+ case 192:
+ case 256: ctx->nr = 4; idx = 1; break;
+ default: return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+ }
+
+ for (i = 0; i < keybits / 8; ++i) {
+ t[i] = key[i];
+ }
+
+ if (keybits == 192) {
+ for (i = 0; i < 8; i++) {
+ t[24 + i] = ~t[16 + i];
+ }
+ }
+
+ /*
+ * Prepare SIGMA values
+ */
+ for (i = 0; i < 6; i++) {
+ SIGMA[i][0] = MBEDTLS_GET_UINT32_BE(SIGMA_CHARS[i], 0);
+ SIGMA[i][1] = MBEDTLS_GET_UINT32_BE(SIGMA_CHARS[i], 4);
+ }
+
+ /*
+ * Key storage in KC
+ * Order: KL, KR, KA, KB
+ */
+ memset(KC, 0, sizeof(KC));
+
+ /* Store KL, KR */
+ for (i = 0; i < 8; i++) {
+ KC[i] = MBEDTLS_GET_UINT32_BE(t, i * 4);
+ }
+
+ /* Generate KA */
+ for (i = 0; i < 4; ++i) {
+ KC[8 + i] = KC[i] ^ KC[4 + i];
+ }
+
+ camellia_feistel(KC + 8, SIGMA[0], KC + 10);
+ camellia_feistel(KC + 10, SIGMA[1], KC + 8);
+
+ for (i = 0; i < 4; ++i) {
+ KC[8 + i] ^= KC[i];
+ }
+
+ camellia_feistel(KC + 8, SIGMA[2], KC + 10);
+ camellia_feistel(KC + 10, SIGMA[3], KC + 8);
+
+ if (keybits > 128) {
+ /* Generate KB */
+ for (i = 0; i < 4; ++i) {
+ KC[12 + i] = KC[4 + i] ^ KC[8 + i];
+ }
+
+ camellia_feistel(KC + 12, SIGMA[4], KC + 14);
+ camellia_feistel(KC + 14, SIGMA[5], KC + 12);
+ }
+
+ /*
+ * Generating subkeys
+ */
+
+ /* Manipulating KL */
+ SHIFT_AND_PLACE(idx, 0);
+
+ /* Manipulating KR */
+ if (keybits > 128) {
+ SHIFT_AND_PLACE(idx, 1);
+ }
+
+ /* Manipulating KA */
+ SHIFT_AND_PLACE(idx, 2);
+
+ /* Manipulating KB */
+ if (keybits > 128) {
+ SHIFT_AND_PLACE(idx, 3);
+ }
+
+ /* Do transpositions */
+ for (i = 0; i < 20; i++) {
+ if (transposes[idx][i] != -1) {
+ RK[32 + 12 * idx + i] = RK[transposes[idx][i]];
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Camellia key schedule (decryption)
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+int mbedtls_camellia_setkey_dec(mbedtls_camellia_context *ctx,
+ const unsigned char *key,
+ unsigned int keybits)
+{
+ int idx, ret;
+ size_t i;
+ mbedtls_camellia_context cty;
+ uint32_t *RK;
+ uint32_t *SK;
+
+ mbedtls_camellia_init(&cty);
+
+ /* Also checks keybits */
+ if ((ret = mbedtls_camellia_setkey_enc(&cty, key, keybits)) != 0) {
+ goto exit;
+ }
+
+ ctx->nr = cty.nr;
+ idx = (ctx->nr == 4);
+
+ RK = ctx->rk;
+ SK = cty.rk + 24 * 2 + 8 * idx * 2;
+
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+
+ for (i = 22 + 8 * idx, SK -= 6; i > 0; i--, SK -= 4) {
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ }
+
+ SK -= 2;
+
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+ *RK++ = *SK++;
+
+exit:
+ mbedtls_camellia_free(&cty);
+
+ return ret;
+}
+#endif /* !MBEDTLS_BLOCK_CIPHER_NO_DECRYPT */
+
+/*
+ * Camellia-ECB block encryption/decryption
+ */
+int mbedtls_camellia_crypt_ecb(mbedtls_camellia_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ int NR;
+ uint32_t *RK, X[4];
+ if (mode != MBEDTLS_CAMELLIA_ENCRYPT && mode != MBEDTLS_CAMELLIA_DECRYPT) {
+ return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+ }
+
+ ((void) mode);
+
+ NR = ctx->nr;
+ RK = ctx->rk;
+
+ X[0] = MBEDTLS_GET_UINT32_BE(input, 0);
+ X[1] = MBEDTLS_GET_UINT32_BE(input, 4);
+ X[2] = MBEDTLS_GET_UINT32_BE(input, 8);
+ X[3] = MBEDTLS_GET_UINT32_BE(input, 12);
+
+ X[0] ^= *RK++;
+ X[1] ^= *RK++;
+ X[2] ^= *RK++;
+ X[3] ^= *RK++;
+
+ while (NR) {
+ --NR;
+ camellia_feistel(X, RK, X + 2);
+ RK += 2;
+ camellia_feistel(X + 2, RK, X);
+ RK += 2;
+ camellia_feistel(X, RK, X + 2);
+ RK += 2;
+ camellia_feistel(X + 2, RK, X);
+ RK += 2;
+ camellia_feistel(X, RK, X + 2);
+ RK += 2;
+ camellia_feistel(X + 2, RK, X);
+ RK += 2;
+
+ if (NR) {
+ FL(X[0], X[1], RK[0], RK[1]);
+ RK += 2;
+ FLInv(X[2], X[3], RK[0], RK[1]);
+ RK += 2;
+ }
+ }
+
+ X[2] ^= *RK++;
+ X[3] ^= *RK++;
+ X[0] ^= *RK++;
+ X[1] ^= *RK++;
+
+ MBEDTLS_PUT_UINT32_BE(X[2], output, 0);
+ MBEDTLS_PUT_UINT32_BE(X[3], output, 4);
+ MBEDTLS_PUT_UINT32_BE(X[0], output, 8);
+ MBEDTLS_PUT_UINT32_BE(X[1], output, 12);
+
+ return 0;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * Camellia-CBC buffer encryption/decryption
+ */
+int mbedtls_camellia_crypt_cbc(mbedtls_camellia_context *ctx,
+ int mode,
+ size_t length,
+ unsigned char iv[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ unsigned char temp[16];
+ if (mode != MBEDTLS_CAMELLIA_ENCRYPT && mode != MBEDTLS_CAMELLIA_DECRYPT) {
+ return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+ }
+
+ if (length % 16) {
+ return MBEDTLS_ERR_CAMELLIA_INVALID_INPUT_LENGTH;
+ }
+
+ if (mode == MBEDTLS_CAMELLIA_DECRYPT) {
+ while (length > 0) {
+ memcpy(temp, input, 16);
+ mbedtls_camellia_crypt_ecb(ctx, mode, input, output);
+
+ mbedtls_xor(output, output, iv, 16);
+
+ memcpy(iv, temp, 16);
+
+ input += 16;
+ output += 16;
+ length -= 16;
+ }
+ } else {
+ while (length > 0) {
+ mbedtls_xor(output, input, iv, 16);
+
+ mbedtls_camellia_crypt_ecb(ctx, mode, output, output);
+ memcpy(iv, output, 16);
+
+ input += 16;
+ output += 16;
+ length -= 16;
+ }
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+/*
+ * Camellia-CFB128 buffer encryption/decryption
+ */
+int mbedtls_camellia_crypt_cfb128(mbedtls_camellia_context *ctx,
+ int mode,
+ size_t length,
+ size_t *iv_off,
+ unsigned char iv[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int c;
+ size_t n;
+ if (mode != MBEDTLS_CAMELLIA_ENCRYPT && mode != MBEDTLS_CAMELLIA_DECRYPT) {
+ return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+ }
+
+ n = *iv_off;
+ if (n >= 16) {
+ return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+ }
+
+ if (mode == MBEDTLS_CAMELLIA_DECRYPT) {
+ while (length--) {
+ if (n == 0) {
+ mbedtls_camellia_crypt_ecb(ctx, MBEDTLS_CAMELLIA_ENCRYPT, iv, iv);
+ }
+
+ c = *input++;
+ *output++ = (unsigned char) (c ^ iv[n]);
+ iv[n] = (unsigned char) c;
+
+ n = (n + 1) & 0x0F;
+ }
+ } else {
+ while (length--) {
+ if (n == 0) {
+ mbedtls_camellia_crypt_ecb(ctx, MBEDTLS_CAMELLIA_ENCRYPT, iv, iv);
+ }
+
+ iv[n] = *output++ = (unsigned char) (iv[n] ^ *input++);
+
+ n = (n + 1) & 0x0F;
+ }
+ }
+
+ *iv_off = n;
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * Camellia-CTR buffer encryption/decryption
+ */
+int mbedtls_camellia_crypt_ctr(mbedtls_camellia_context *ctx,
+ size_t length,
+ size_t *nc_off,
+ unsigned char nonce_counter[16],
+ unsigned char stream_block[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int c, i;
+ size_t n;
+
+ n = *nc_off;
+ if (n >= 16) {
+ return MBEDTLS_ERR_CAMELLIA_BAD_INPUT_DATA;
+ }
+
+ while (length--) {
+ if (n == 0) {
+ mbedtls_camellia_crypt_ecb(ctx, MBEDTLS_CAMELLIA_ENCRYPT, nonce_counter,
+ stream_block);
+
+ for (i = 16; i > 0; i--) {
+ if (++nonce_counter[i - 1] != 0) {
+ break;
+ }
+ }
+ }
+ c = *input++;
+ *output++ = (unsigned char) (c ^ stream_block[n]);
+
+ n = (n + 1) & 0x0F;
+ }
+
+ *nc_off = n;
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+#endif /* !MBEDTLS_CAMELLIA_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/*
+ * Camellia test vectors from:
+ *
+ * http://info.isl.ntt.co.jp/crypt/eng/camellia/technology.html:
+ * http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/cryptrec/intermediate.txt
+ * http://info.isl.ntt.co.jp/crypt/eng/camellia/dl/cryptrec/t_camellia.txt
+ * (For each bitlength: Key 0, Nr 39)
+ */
+#define CAMELLIA_TESTS_ECB 2
+
+static const unsigned char camellia_test_ecb_key[3][CAMELLIA_TESTS_ECB][32] =
+{
+ {
+ { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+ 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+ },
+ {
+ { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+ 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
+ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77 },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+ },
+ {
+ { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+ 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10,
+ 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
+ 0x88, 0x99, 0xaa, 0xbb, 0xcc, 0xdd, 0xee, 0xff },
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+ },
+};
+
+static const unsigned char camellia_test_ecb_plain[CAMELLIA_TESTS_ECB][16] =
+{
+ { 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+ 0xfe, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10 },
+ { 0x00, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
+};
+
+static const unsigned char camellia_test_ecb_cipher[3][CAMELLIA_TESTS_ECB][16] =
+{
+ {
+ { 0x67, 0x67, 0x31, 0x38, 0x54, 0x96, 0x69, 0x73,
+ 0x08, 0x57, 0x06, 0x56, 0x48, 0xea, 0xbe, 0x43 },
+ { 0x38, 0x3C, 0x6C, 0x2A, 0xAB, 0xEF, 0x7F, 0xDE,
+ 0x25, 0xCD, 0x47, 0x0B, 0xF7, 0x74, 0xA3, 0x31 }
+ },
+ {
+ { 0xb4, 0x99, 0x34, 0x01, 0xb3, 0xe9, 0x96, 0xf8,
+ 0x4e, 0xe5, 0xce, 0xe7, 0xd7, 0x9b, 0x09, 0xb9 },
+ { 0xD1, 0x76, 0x3F, 0xC0, 0x19, 0xD7, 0x7C, 0xC9,
+ 0x30, 0xBF, 0xF2, 0xA5, 0x6F, 0x7C, 0x93, 0x64 }
+ },
+ {
+ { 0x9a, 0xcc, 0x23, 0x7d, 0xff, 0x16, 0xd7, 0x6c,
+ 0x20, 0xef, 0x7c, 0x91, 0x9e, 0x3a, 0x75, 0x09 },
+ { 0x05, 0x03, 0xFB, 0x10, 0xAB, 0x24, 0x1E, 0x7C,
+ 0xF4, 0x5D, 0x8C, 0xDE, 0xEE, 0x47, 0x43, 0x35 }
+ }
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+#define CAMELLIA_TESTS_CBC 3
+
+static const unsigned char camellia_test_cbc_key[3][32] =
+{
+ { 0x2B, 0x7E, 0x15, 0x16, 0x28, 0xAE, 0xD2, 0xA6,
+ 0xAB, 0xF7, 0x15, 0x88, 0x09, 0xCF, 0x4F, 0x3C }
+ ,
+ { 0x8E, 0x73, 0xB0, 0xF7, 0xDA, 0x0E, 0x64, 0x52,
+ 0xC8, 0x10, 0xF3, 0x2B, 0x80, 0x90, 0x79, 0xE5,
+ 0x62, 0xF8, 0xEA, 0xD2, 0x52, 0x2C, 0x6B, 0x7B }
+ ,
+ { 0x60, 0x3D, 0xEB, 0x10, 0x15, 0xCA, 0x71, 0xBE,
+ 0x2B, 0x73, 0xAE, 0xF0, 0x85, 0x7D, 0x77, 0x81,
+ 0x1F, 0x35, 0x2C, 0x07, 0x3B, 0x61, 0x08, 0xD7,
+ 0x2D, 0x98, 0x10, 0xA3, 0x09, 0x14, 0xDF, 0xF4 }
+};
+
+static const unsigned char camellia_test_cbc_iv[16] =
+
+{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F }
+;
+
+static const unsigned char camellia_test_cbc_plain[CAMELLIA_TESTS_CBC][16] =
+{
+ { 0x6B, 0xC1, 0xBE, 0xE2, 0x2E, 0x40, 0x9F, 0x96,
+ 0xE9, 0x3D, 0x7E, 0x11, 0x73, 0x93, 0x17, 0x2A },
+ { 0xAE, 0x2D, 0x8A, 0x57, 0x1E, 0x03, 0xAC, 0x9C,
+ 0x9E, 0xB7, 0x6F, 0xAC, 0x45, 0xAF, 0x8E, 0x51 },
+ { 0x30, 0xC8, 0x1C, 0x46, 0xA3, 0x5C, 0xE4, 0x11,
+ 0xE5, 0xFB, 0xC1, 0x19, 0x1A, 0x0A, 0x52, 0xEF }
+
+};
+
+static const unsigned char camellia_test_cbc_cipher[3][CAMELLIA_TESTS_CBC][16] =
+{
+ {
+ { 0x16, 0x07, 0xCF, 0x49, 0x4B, 0x36, 0xBB, 0xF0,
+ 0x0D, 0xAE, 0xB0, 0xB5, 0x03, 0xC8, 0x31, 0xAB },
+ { 0xA2, 0xF2, 0xCF, 0x67, 0x16, 0x29, 0xEF, 0x78,
+ 0x40, 0xC5, 0xA5, 0xDF, 0xB5, 0x07, 0x48, 0x87 },
+ { 0x0F, 0x06, 0x16, 0x50, 0x08, 0xCF, 0x8B, 0x8B,
+ 0x5A, 0x63, 0x58, 0x63, 0x62, 0x54, 0x3E, 0x54 }
+ },
+ {
+ { 0x2A, 0x48, 0x30, 0xAB, 0x5A, 0xC4, 0xA1, 0xA2,
+ 0x40, 0x59, 0x55, 0xFD, 0x21, 0x95, 0xCF, 0x93 },
+ { 0x5D, 0x5A, 0x86, 0x9B, 0xD1, 0x4C, 0xE5, 0x42,
+ 0x64, 0xF8, 0x92, 0xA6, 0xDD, 0x2E, 0xC3, 0xD5 },
+ { 0x37, 0xD3, 0x59, 0xC3, 0x34, 0x98, 0x36, 0xD8,
+ 0x84, 0xE3, 0x10, 0xAD, 0xDF, 0x68, 0xC4, 0x49 }
+ },
+ {
+ { 0xE6, 0xCF, 0xA3, 0x5F, 0xC0, 0x2B, 0x13, 0x4A,
+ 0x4D, 0x2C, 0x0B, 0x67, 0x37, 0xAC, 0x3E, 0xDA },
+ { 0x36, 0xCB, 0xEB, 0x73, 0xBD, 0x50, 0x4B, 0x40,
+ 0x70, 0xB1, 0xB7, 0xDE, 0x2B, 0x21, 0xEB, 0x50 },
+ { 0xE3, 0x1A, 0x60, 0x55, 0x29, 0x7D, 0x96, 0xCA,
+ 0x33, 0x30, 0xCD, 0xF1, 0xB1, 0x86, 0x0A, 0x83 }
+ }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+/*
+ * Camellia-CTR test vectors from:
+ *
+ * http://www.faqs.org/rfcs/rfc5528.html
+ */
+
+static const unsigned char camellia_test_ctr_key[3][16] =
+{
+ { 0xAE, 0x68, 0x52, 0xF8, 0x12, 0x10, 0x67, 0xCC,
+ 0x4B, 0xF7, 0xA5, 0x76, 0x55, 0x77, 0xF3, 0x9E },
+ { 0x7E, 0x24, 0x06, 0x78, 0x17, 0xFA, 0xE0, 0xD7,
+ 0x43, 0xD6, 0xCE, 0x1F, 0x32, 0x53, 0x91, 0x63 },
+ { 0x76, 0x91, 0xBE, 0x03, 0x5E, 0x50, 0x20, 0xA8,
+ 0xAC, 0x6E, 0x61, 0x85, 0x29, 0xF9, 0xA0, 0xDC }
+};
+
+static const unsigned char camellia_test_ctr_nonce_counter[3][16] =
+{
+ { 0x00, 0x00, 0x00, 0x30, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01 },
+ { 0x00, 0x6C, 0xB6, 0xDB, 0xC0, 0x54, 0x3B, 0x59,
+ 0xDA, 0x48, 0xD9, 0x0B, 0x00, 0x00, 0x00, 0x01 },
+ { 0x00, 0xE0, 0x01, 0x7B, 0x27, 0x77, 0x7F, 0x3F,
+ 0x4A, 0x17, 0x86, 0xF0, 0x00, 0x00, 0x00, 0x01 }
+};
+
+static const unsigned char camellia_test_ctr_pt[3][48] =
+{
+ { 0x53, 0x69, 0x6E, 0x67, 0x6C, 0x65, 0x20, 0x62,
+ 0x6C, 0x6F, 0x63, 0x6B, 0x20, 0x6D, 0x73, 0x67 },
+
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F },
+
+ { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F,
+ 0x20, 0x21, 0x22, 0x23 }
+};
+
+static const unsigned char camellia_test_ctr_ct[3][48] =
+{
+ { 0xD0, 0x9D, 0xC2, 0x9A, 0x82, 0x14, 0x61, 0x9A,
+ 0x20, 0x87, 0x7C, 0x76, 0xDB, 0x1F, 0x0B, 0x3F },
+ { 0xDB, 0xF3, 0xC7, 0x8D, 0xC0, 0x83, 0x96, 0xD4,
+ 0xDA, 0x7C, 0x90, 0x77, 0x65, 0xBB, 0xCB, 0x44,
+ 0x2B, 0x8E, 0x8E, 0x0F, 0x31, 0xF0, 0xDC, 0xA7,
+ 0x2C, 0x74, 0x17, 0xE3, 0x53, 0x60, 0xE0, 0x48 },
+ { 0xB1, 0x9D, 0x1F, 0xCD, 0xCB, 0x75, 0xEB, 0x88,
+ 0x2F, 0x84, 0x9C, 0xE2, 0x4D, 0x85, 0xCF, 0x73,
+ 0x9C, 0xE6, 0x4B, 0x2B, 0x5C, 0x9D, 0x73, 0xF1,
+ 0x4F, 0x2D, 0x5D, 0x9D, 0xCE, 0x98, 0x89, 0xCD,
+ 0xDF, 0x50, 0x86, 0x96 }
+};
+
+static const int camellia_test_ctr_len[3] =
+{ 16, 32, 36 };
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_camellia_self_test(int verbose)
+{
+ int i, j, u, v;
+ unsigned char key[32];
+ unsigned char buf[64];
+ unsigned char src[16];
+ unsigned char dst[16];
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ unsigned char iv[16];
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ size_t offset, len;
+ unsigned char nonce_counter[16];
+ unsigned char stream_block[16];
+#endif
+ int ret = 1;
+
+ mbedtls_camellia_context ctx;
+
+ mbedtls_camellia_init(&ctx);
+ memset(key, 0, 32);
+
+ for (j = 0; j < 6; j++) {
+ u = j >> 1;
+ v = j & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" CAMELLIA-ECB-%3d (%s): ", 128 + u * 64,
+ (v == MBEDTLS_CAMELLIA_DECRYPT) ? "dec" : "enc");
+ }
+
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+ if (verbose != 0) {
+ mbedtls_printf("skipped\n");
+ }
+ continue;
+ }
+#endif
+
+ for (i = 0; i < CAMELLIA_TESTS_ECB; i++) {
+ memcpy(key, camellia_test_ecb_key[u][i], 16 + 8 * u);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+ mbedtls_camellia_setkey_dec(&ctx, key, 128 + u * 64);
+ memcpy(src, camellia_test_ecb_cipher[u][i], 16);
+ memcpy(dst, camellia_test_ecb_plain[i], 16);
+ } else
+#endif
+ { /* MBEDTLS_CAMELLIA_ENCRYPT */
+ mbedtls_camellia_setkey_enc(&ctx, key, 128 + u * 64);
+ memcpy(src, camellia_test_ecb_plain[i], 16);
+ memcpy(dst, camellia_test_ecb_cipher[u][i], 16);
+ }
+
+ mbedtls_camellia_crypt_ecb(&ctx, v, src, buf);
+
+ if (memcmp(buf, dst, 16) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ goto exit;
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ /*
+ * CBC mode
+ */
+ for (j = 0; j < 6; j++) {
+ u = j >> 1;
+ v = j & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" CAMELLIA-CBC-%3d (%s): ", 128 + u * 64,
+ (v == MBEDTLS_CAMELLIA_DECRYPT) ? "dec" : "enc");
+ }
+
+ memcpy(src, camellia_test_cbc_iv, 16);
+ memcpy(dst, camellia_test_cbc_iv, 16);
+ memcpy(key, camellia_test_cbc_key[u], 16 + 8 * u);
+
+ if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+ mbedtls_camellia_setkey_dec(&ctx, key, 128 + u * 64);
+ } else {
+ mbedtls_camellia_setkey_enc(&ctx, key, 128 + u * 64);
+ }
+
+ for (i = 0; i < CAMELLIA_TESTS_CBC; i++) {
+
+ if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+ memcpy(iv, src, 16);
+ memcpy(src, camellia_test_cbc_cipher[u][i], 16);
+ memcpy(dst, camellia_test_cbc_plain[i], 16);
+ } else { /* MBEDTLS_CAMELLIA_ENCRYPT */
+ memcpy(iv, dst, 16);
+ memcpy(src, camellia_test_cbc_plain[i], 16);
+ memcpy(dst, camellia_test_cbc_cipher[u][i], 16);
+ }
+
+ mbedtls_camellia_crypt_cbc(&ctx, v, 16, iv, src, buf);
+
+ if (memcmp(buf, dst, 16) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ goto exit;
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ /*
+ * CTR mode
+ */
+ for (i = 0; i < 6; i++) {
+ u = i >> 1;
+ v = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" CAMELLIA-CTR-128 (%s): ",
+ (v == MBEDTLS_CAMELLIA_DECRYPT) ? "dec" : "enc");
+ }
+
+ memcpy(nonce_counter, camellia_test_ctr_nonce_counter[u], 16);
+ memcpy(key, camellia_test_ctr_key[u], 16);
+
+ offset = 0;
+ mbedtls_camellia_setkey_enc(&ctx, key, 128);
+
+ if (v == MBEDTLS_CAMELLIA_DECRYPT) {
+ len = camellia_test_ctr_len[u];
+ memcpy(buf, camellia_test_ctr_ct[u], len);
+
+ mbedtls_camellia_crypt_ctr(&ctx, len, &offset, nonce_counter, stream_block,
+ buf, buf);
+
+ if (memcmp(buf, camellia_test_ctr_pt[u], len) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ goto exit;
+ }
+ } else {
+ len = camellia_test_ctr_len[u];
+ memcpy(buf, camellia_test_ctr_pt[u], len);
+
+ mbedtls_camellia_crypt_ctr(&ctx, len, &offset, nonce_counter, stream_block,
+ buf, buf);
+
+ if (memcmp(buf, camellia_test_ctr_ct[u], len) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ goto exit;
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+ ret = 0;
+
+exit:
+ mbedtls_camellia_free(&ctx);
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CAMELLIA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ccm.c b/tf-psa-crypto/drivers/builtin/src/ccm.c
new file mode 100644
index 0000000..45ed697
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ccm.c
@@ -0,0 +1,763 @@
+/*
+ * NIST SP800-38C compliant CCM implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * Definition of CCM:
+ * http://csrc.nist.gov/publications/nistpubs/800-38C/SP800-38C_updated-July20_2007.pdf
+ * RFC 3610 "Counter with CBC-MAC (CCM)"
+ *
+ * Related:
+ * RFC 5116 "An Interface and Algorithms for Authenticated Encryption"
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CCM_C)
+
+#include "mbedtls/ccm.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+#include "block_cipher_internal.h"
+#endif
+
+#include <string.h>
+
+#if defined(MBEDTLS_PLATFORM_C)
+#include "mbedtls/platform.h"
+#else
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
+#include <stdio.h>
+#define mbedtls_printf printf
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+#endif /* MBEDTLS_PLATFORM_C */
+
+#if !defined(MBEDTLS_CCM_ALT)
+
+
+/*
+ * Initialize context
+ */
+void mbedtls_ccm_init(mbedtls_ccm_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_ccm_context));
+}
+
+int mbedtls_ccm_setkey(mbedtls_ccm_context *ctx,
+ mbedtls_cipher_id_t cipher,
+ const unsigned char *key,
+ unsigned int keybits)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+
+ if ((ret = mbedtls_block_cipher_setup(&ctx->block_cipher_ctx, cipher)) != 0) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ if ((ret = mbedtls_block_cipher_setkey(&ctx->block_cipher_ctx, key, keybits)) != 0) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+#else
+ const mbedtls_cipher_info_t *cipher_info;
+
+ cipher_info = mbedtls_cipher_info_from_values(cipher, keybits,
+ MBEDTLS_MODE_ECB);
+ if (cipher_info == NULL) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ if (mbedtls_cipher_info_get_block_size(cipher_info) != 16) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ mbedtls_cipher_free(&ctx->cipher_ctx);
+
+ if ((ret = mbedtls_cipher_setup(&ctx->cipher_ctx, cipher_info)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_cipher_setkey(&ctx->cipher_ctx, key, keybits,
+ MBEDTLS_ENCRYPT)) != 0) {
+ return ret;
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Free context
+ */
+void mbedtls_ccm_free(mbedtls_ccm_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+#else
+ mbedtls_cipher_free(&ctx->cipher_ctx);
+#endif
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ccm_context));
+}
+
+#define CCM_STATE__CLEAR 0
+#define CCM_STATE__STARTED (1 << 0)
+#define CCM_STATE__LENGTHS_SET (1 << 1)
+#define CCM_STATE__AUTH_DATA_STARTED (1 << 2)
+#define CCM_STATE__AUTH_DATA_FINISHED (1 << 3)
+#define CCM_STATE__ERROR (1 << 4)
+
+/*
+ * Encrypt or decrypt a partial block with CTR
+ */
+static int mbedtls_ccm_crypt(mbedtls_ccm_context *ctx,
+ size_t offset, size_t use_len,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char tmp_buf[16] = { 0 };
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->ctr, tmp_buf);
+#else
+ size_t olen = 0;
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->ctr, 16, tmp_buf, &olen);
+#endif
+ if (ret != 0) {
+ ctx->state |= CCM_STATE__ERROR;
+ mbedtls_platform_zeroize(tmp_buf, sizeof(tmp_buf));
+ return ret;
+ }
+
+ mbedtls_xor(output, input, tmp_buf + offset, use_len);
+
+ mbedtls_platform_zeroize(tmp_buf, sizeof(tmp_buf));
+ return ret;
+}
+
+static void mbedtls_ccm_clear_state(mbedtls_ccm_context *ctx)
+{
+ ctx->state = CCM_STATE__CLEAR;
+ memset(ctx->y, 0, 16);
+ memset(ctx->ctr, 0, 16);
+}
+
+static int ccm_calculate_first_block_if_ready(mbedtls_ccm_context *ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char i;
+ size_t len_left;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+ size_t olen;
+#endif
+
+ /* length calculation can be done only after both
+ * mbedtls_ccm_starts() and mbedtls_ccm_set_lengths() have been executed
+ */
+ if (!(ctx->state & CCM_STATE__STARTED) || !(ctx->state & CCM_STATE__LENGTHS_SET)) {
+ return 0;
+ }
+
+ /* CCM expects non-empty tag.
+ * CCM* allows empty tag. For CCM* without tag, ignore plaintext length.
+ */
+ if (ctx->tag_len == 0) {
+ if (ctx->mode == MBEDTLS_CCM_STAR_ENCRYPT || ctx->mode == MBEDTLS_CCM_STAR_DECRYPT) {
+ ctx->plaintext_len = 0;
+ } else {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+ }
+
+ /*
+ * First block:
+ * 0 .. 0 flags
+ * 1 .. iv_len nonce (aka iv) - set by: mbedtls_ccm_starts()
+ * iv_len+1 .. 15 length
+ *
+ * With flags as (bits):
+ * 7 0
+ * 6 add present?
+ * 5 .. 3 (t - 2) / 2
+ * 2 .. 0 q - 1
+ */
+ ctx->y[0] |= (ctx->add_len > 0) << 6;
+ ctx->y[0] |= ((ctx->tag_len - 2) / 2) << 3;
+ ctx->y[0] |= ctx->q - 1;
+
+ for (i = 0, len_left = ctx->plaintext_len; i < ctx->q; i++, len_left >>= 8) {
+ ctx->y[15-i] = MBEDTLS_BYTE_0(len_left);
+ }
+
+ if (len_left > 0) {
+ ctx->state |= CCM_STATE__ERROR;
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ /* Start CBC-MAC with first block*/
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+ if (ret != 0) {
+ ctx->state |= CCM_STATE__ERROR;
+ return ret;
+ }
+
+ return 0;
+}
+
+int mbedtls_ccm_starts(mbedtls_ccm_context *ctx,
+ int mode,
+ const unsigned char *iv,
+ size_t iv_len)
+{
+ /* Also implies q is within bounds */
+ if (iv_len < 7 || iv_len > 13) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ ctx->mode = mode;
+ ctx->q = 16 - 1 - (unsigned char) iv_len;
+
+ /*
+ * Prepare counter block for encryption:
+ * 0 .. 0 flags
+ * 1 .. iv_len nonce (aka iv)
+ * iv_len+1 .. 15 counter (initially 1)
+ *
+ * With flags as (bits):
+ * 7 .. 3 0
+ * 2 .. 0 q - 1
+ */
+ memset(ctx->ctr, 0, 16);
+ ctx->ctr[0] = ctx->q - 1;
+ memcpy(ctx->ctr + 1, iv, iv_len);
+ memset(ctx->ctr + 1 + iv_len, 0, ctx->q);
+ ctx->ctr[15] = 1;
+
+ /*
+ * See ccm_calculate_first_block_if_ready() for block layout description
+ */
+ memcpy(ctx->y + 1, iv, iv_len);
+
+ ctx->state |= CCM_STATE__STARTED;
+ return ccm_calculate_first_block_if_ready(ctx);
+}
+
+int mbedtls_ccm_set_lengths(mbedtls_ccm_context *ctx,
+ size_t total_ad_len,
+ size_t plaintext_len,
+ size_t tag_len)
+{
+ /*
+ * Check length requirements: SP800-38C A.1
+ * Additional requirement: a < 2^16 - 2^8 to simplify the code.
+ * 'length' checked later (when writing it to the first block)
+ *
+ * Also, loosen the requirements to enable support for CCM* (IEEE 802.15.4).
+ */
+ if (tag_len == 2 || tag_len > 16 || tag_len % 2 != 0) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ if (total_ad_len >= 0xFF00) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ ctx->plaintext_len = plaintext_len;
+ ctx->add_len = total_ad_len;
+ ctx->tag_len = tag_len;
+ ctx->processed = 0;
+
+ ctx->state |= CCM_STATE__LENGTHS_SET;
+ return ccm_calculate_first_block_if_ready(ctx);
+}
+
+int mbedtls_ccm_update_ad(mbedtls_ccm_context *ctx,
+ const unsigned char *add,
+ size_t add_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t use_len, offset;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+ size_t olen;
+#endif
+
+ if (ctx->state & CCM_STATE__ERROR) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ if (add_len > 0) {
+ if (ctx->state & CCM_STATE__AUTH_DATA_FINISHED) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ if (!(ctx->state & CCM_STATE__AUTH_DATA_STARTED)) {
+ if (add_len > ctx->add_len) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ ctx->y[0] ^= (unsigned char) ((ctx->add_len >> 8) & 0xFF);
+ ctx->y[1] ^= (unsigned char) ((ctx->add_len) & 0xFF);
+
+ ctx->state |= CCM_STATE__AUTH_DATA_STARTED;
+ } else if (ctx->processed + add_len > ctx->add_len) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ while (add_len > 0) {
+ offset = (ctx->processed + 2) % 16; /* account for y[0] and y[1]
+ * holding total auth data length */
+ use_len = 16 - offset;
+
+ if (use_len > add_len) {
+ use_len = add_len;
+ }
+
+ mbedtls_xor(ctx->y + offset, ctx->y + offset, add, use_len);
+
+ ctx->processed += use_len;
+ add_len -= use_len;
+ add += use_len;
+
+ if (use_len + offset == 16 || ctx->processed == ctx->add_len) {
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+ if (ret != 0) {
+ ctx->state |= CCM_STATE__ERROR;
+ return ret;
+ }
+ }
+ }
+
+ if (ctx->processed == ctx->add_len) {
+ ctx->state |= CCM_STATE__AUTH_DATA_FINISHED;
+ ctx->processed = 0; // prepare for mbedtls_ccm_update()
+ }
+ }
+
+ return 0;
+}
+
+int mbedtls_ccm_update(mbedtls_ccm_context *ctx,
+ const unsigned char *input, size_t input_len,
+ unsigned char *output, size_t output_size,
+ size_t *output_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char i;
+ size_t use_len, offset;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+ size_t olen;
+#endif
+
+ unsigned char local_output[16];
+
+ if (ctx->state & CCM_STATE__ERROR) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ /* Check against plaintext length only if performing operation with
+ * authentication
+ */
+ if (ctx->tag_len != 0 && ctx->processed + input_len > ctx->plaintext_len) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ if (output_size < input_len) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+ *output_len = input_len;
+
+ ret = 0;
+
+ while (input_len > 0) {
+ offset = ctx->processed % 16;
+
+ use_len = 16 - offset;
+
+ if (use_len > input_len) {
+ use_len = input_len;
+ }
+
+ ctx->processed += use_len;
+
+ if (ctx->mode == MBEDTLS_CCM_ENCRYPT || \
+ ctx->mode == MBEDTLS_CCM_STAR_ENCRYPT) {
+ mbedtls_xor(ctx->y + offset, ctx->y + offset, input, use_len);
+
+ if (use_len + offset == 16 || ctx->processed == ctx->plaintext_len) {
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+ if (ret != 0) {
+ ctx->state |= CCM_STATE__ERROR;
+ goto exit;
+ }
+ }
+
+ ret = mbedtls_ccm_crypt(ctx, offset, use_len, input, output);
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+
+ if (ctx->mode == MBEDTLS_CCM_DECRYPT || \
+ ctx->mode == MBEDTLS_CCM_STAR_DECRYPT) {
+ /* Since output may be in shared memory, we cannot be sure that
+ * it will contain what we wrote to it. Therefore, we should avoid using
+ * it as input to any operations.
+ * Write decrypted data to local_output to avoid using output variable as
+ * input in the XOR operation for Y.
+ */
+ ret = mbedtls_ccm_crypt(ctx, offset, use_len, input, local_output);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ mbedtls_xor(ctx->y + offset, ctx->y + offset, local_output, use_len);
+
+ memcpy(output, local_output, use_len);
+
+ if (use_len + offset == 16 || ctx->processed == ctx->plaintext_len) {
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->y);
+#else
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->y, &olen);
+#endif
+ if (ret != 0) {
+ ctx->state |= CCM_STATE__ERROR;
+ goto exit;
+ }
+ }
+ }
+
+ if (use_len + offset == 16 || ctx->processed == ctx->plaintext_len) {
+ for (i = 0; i < ctx->q; i++) {
+ if (++(ctx->ctr)[15-i] != 0) {
+ break;
+ }
+ }
+ }
+
+ input_len -= use_len;
+ input += use_len;
+ output += use_len;
+ }
+
+exit:
+ mbedtls_platform_zeroize(local_output, 16);
+
+ return ret;
+}
+
+int mbedtls_ccm_finish(mbedtls_ccm_context *ctx,
+ unsigned char *tag, size_t tag_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char i;
+
+ if (ctx->state & CCM_STATE__ERROR) {
+ return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ }
+
+ if (ctx->add_len > 0 && !(ctx->state & CCM_STATE__AUTH_DATA_FINISHED)) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ if (ctx->plaintext_len > 0 && ctx->processed != ctx->plaintext_len) {
+ return MBEDTLS_ERR_CCM_BAD_INPUT;
+ }
+
+ /*
+ * Authentication: reset counter and crypt/mask internal tag
+ */
+ for (i = 0; i < ctx->q; i++) {
+ ctx->ctr[15-i] = 0;
+ }
+
+ ret = mbedtls_ccm_crypt(ctx, 0, 16, ctx->y, ctx->y);
+ if (ret != 0) {
+ return ret;
+ }
+ if (tag != NULL) {
+ memcpy(tag, ctx->y, tag_len);
+ }
+ mbedtls_ccm_clear_state(ctx);
+
+ return 0;
+}
+
+/*
+ * Authenticated encryption or decryption
+ */
+static int ccm_auth_crypt(mbedtls_ccm_context *ctx, int mode, size_t length,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *add, size_t add_len,
+ const unsigned char *input, unsigned char *output,
+ unsigned char *tag, size_t tag_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t olen;
+
+ if ((ret = mbedtls_ccm_starts(ctx, mode, iv, iv_len)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_ccm_set_lengths(ctx, add_len, length, tag_len)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_ccm_update_ad(ctx, add, add_len)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_ccm_update(ctx, input, length,
+ output, length, &olen)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_ccm_finish(ctx, tag, tag_len)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Authenticated encryption
+ */
+int mbedtls_ccm_star_encrypt_and_tag(mbedtls_ccm_context *ctx, size_t length,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *add, size_t add_len,
+ const unsigned char *input, unsigned char *output,
+ unsigned char *tag, size_t tag_len)
+{
+ return ccm_auth_crypt(ctx, MBEDTLS_CCM_STAR_ENCRYPT, length, iv, iv_len,
+ add, add_len, input, output, tag, tag_len);
+}
+
+int mbedtls_ccm_encrypt_and_tag(mbedtls_ccm_context *ctx, size_t length,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *add, size_t add_len,
+ const unsigned char *input, unsigned char *output,
+ unsigned char *tag, size_t tag_len)
+{
+ return ccm_auth_crypt(ctx, MBEDTLS_CCM_ENCRYPT, length, iv, iv_len,
+ add, add_len, input, output, tag, tag_len);
+}
+
+/*
+ * Authenticated decryption
+ */
+static int mbedtls_ccm_compare_tags(const unsigned char *tag1,
+ const unsigned char *tag2,
+ size_t tag_len)
+{
+ /* Check tag in "constant-time" */
+ int diff = mbedtls_ct_memcmp(tag1, tag2, tag_len);
+
+ if (diff != 0) {
+ return MBEDTLS_ERR_CCM_AUTH_FAILED;
+ }
+
+ return 0;
+}
+
+static int ccm_auth_decrypt(mbedtls_ccm_context *ctx, int mode, size_t length,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *add, size_t add_len,
+ const unsigned char *input, unsigned char *output,
+ const unsigned char *tag, size_t tag_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char check_tag[16];
+
+ if ((ret = ccm_auth_crypt(ctx, mode, length,
+ iv, iv_len, add, add_len,
+ input, output, check_tag, tag_len)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_ccm_compare_tags(tag, check_tag, tag_len)) != 0) {
+ mbedtls_platform_zeroize(output, length);
+ return ret;
+ }
+
+ return 0;
+}
+
+int mbedtls_ccm_star_auth_decrypt(mbedtls_ccm_context *ctx, size_t length,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *add, size_t add_len,
+ const unsigned char *input, unsigned char *output,
+ const unsigned char *tag, size_t tag_len)
+{
+ return ccm_auth_decrypt(ctx, MBEDTLS_CCM_STAR_DECRYPT, length,
+ iv, iv_len, add, add_len,
+ input, output, tag, tag_len);
+}
+
+int mbedtls_ccm_auth_decrypt(mbedtls_ccm_context *ctx, size_t length,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *add, size_t add_len,
+ const unsigned char *input, unsigned char *output,
+ const unsigned char *tag, size_t tag_len)
+{
+ return ccm_auth_decrypt(ctx, MBEDTLS_CCM_DECRYPT, length,
+ iv, iv_len, add, add_len,
+ input, output, tag, tag_len);
+}
+#endif /* !MBEDTLS_CCM_ALT */
+
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+/*
+ * Examples 1 to 3 from SP800-38C Appendix C
+ */
+
+#define NB_TESTS 3
+#define CCM_SELFTEST_PT_MAX_LEN 24
+#define CCM_SELFTEST_CT_MAX_LEN 32
+/*
+ * The data is the same for all tests, only the used length changes
+ */
+static const unsigned char key_test_data[] = {
+ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f
+};
+
+static const unsigned char iv_test_data[] = {
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+ 0x18, 0x19, 0x1a, 0x1b
+};
+
+static const unsigned char ad_test_data[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13
+};
+
+static const unsigned char msg_test_data[CCM_SELFTEST_PT_MAX_LEN] = {
+ 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+};
+
+static const size_t iv_len_test_data[NB_TESTS] = { 7, 8, 12 };
+static const size_t add_len_test_data[NB_TESTS] = { 8, 16, 20 };
+static const size_t msg_len_test_data[NB_TESTS] = { 4, 16, 24 };
+static const size_t tag_len_test_data[NB_TESTS] = { 4, 6, 8 };
+
+static const unsigned char res_test_data[NB_TESTS][CCM_SELFTEST_CT_MAX_LEN] = {
+ { 0x71, 0x62, 0x01, 0x5b, 0x4d, 0xac, 0x25, 0x5d },
+ { 0xd2, 0xa1, 0xf0, 0xe0, 0x51, 0xea, 0x5f, 0x62,
+ 0x08, 0x1a, 0x77, 0x92, 0x07, 0x3d, 0x59, 0x3d,
+ 0x1f, 0xc6, 0x4f, 0xbf, 0xac, 0xcd },
+ { 0xe3, 0xb2, 0x01, 0xa9, 0xf5, 0xb7, 0x1a, 0x7a,
+ 0x9b, 0x1c, 0xea, 0xec, 0xcd, 0x97, 0xe7, 0x0b,
+ 0x61, 0x76, 0xaa, 0xd9, 0xa4, 0x42, 0x8a, 0xa5,
+ 0x48, 0x43, 0x92, 0xfb, 0xc1, 0xb0, 0x99, 0x51 }
+};
+
+int mbedtls_ccm_self_test(int verbose)
+{
+ mbedtls_ccm_context ctx;
+ /*
+ * Some hardware accelerators require the input and output buffers
+ * would be in RAM, because the flash is not accessible.
+ * Use buffers on the stack to hold the test vectors data.
+ */
+ unsigned char plaintext[CCM_SELFTEST_PT_MAX_LEN];
+ unsigned char ciphertext[CCM_SELFTEST_CT_MAX_LEN];
+ size_t i;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_ccm_init(&ctx);
+
+ if (mbedtls_ccm_setkey(&ctx, MBEDTLS_CIPHER_ID_AES, key_test_data,
+ 8 * sizeof(key_test_data)) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf(" CCM: setup failed");
+ }
+
+ return 1;
+ }
+
+ for (i = 0; i < NB_TESTS; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" CCM-AES #%u: ", (unsigned int) i + 1);
+ }
+
+ memset(plaintext, 0, CCM_SELFTEST_PT_MAX_LEN);
+ memset(ciphertext, 0, CCM_SELFTEST_CT_MAX_LEN);
+ memcpy(plaintext, msg_test_data, msg_len_test_data[i]);
+
+ ret = mbedtls_ccm_encrypt_and_tag(&ctx, msg_len_test_data[i],
+ iv_test_data, iv_len_test_data[i],
+ ad_test_data, add_len_test_data[i],
+ plaintext, ciphertext,
+ ciphertext + msg_len_test_data[i],
+ tag_len_test_data[i]);
+
+ if (ret != 0 ||
+ memcmp(ciphertext, res_test_data[i],
+ msg_len_test_data[i] + tag_len_test_data[i]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return 1;
+ }
+ memset(plaintext, 0, CCM_SELFTEST_PT_MAX_LEN);
+
+ ret = mbedtls_ccm_auth_decrypt(&ctx, msg_len_test_data[i],
+ iv_test_data, iv_len_test_data[i],
+ ad_test_data, add_len_test_data[i],
+ ciphertext, plaintext,
+ ciphertext + msg_len_test_data[i],
+ tag_len_test_data[i]);
+
+ if (ret != 0 ||
+ memcmp(plaintext, msg_test_data, msg_len_test_data[i]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return 1;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ mbedtls_ccm_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+
+#endif /* MBEDTLS_CCM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/chacha20.c b/tf-psa-crypto/drivers/builtin/src/chacha20.c
new file mode 100644
index 0000000..acaae5b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/chacha20.c
@@ -0,0 +1,497 @@
+/**
+ * \file chacha20.c
+ *
+ * \brief ChaCha20 cipher.
+ *
+ * \author Daniel King <damaki.gh@gmail.com>
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CHACHA20_C)
+
+#include "mbedtls/chacha20.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <stddef.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_CHACHA20_ALT)
+
+#define ROTL32(value, amount) \
+ ((uint32_t) ((value) << (amount)) | ((value) >> (32 - (amount))))
+
+#define CHACHA20_CTR_INDEX (12U)
+
+#define CHACHA20_BLOCK_SIZE_BYTES (4U * 16U)
+
+/**
+ * \brief ChaCha20 quarter round operation.
+ *
+ * The quarter round is defined as follows (from RFC 7539):
+ * 1. a += b; d ^= a; d <<<= 16;
+ * 2. c += d; b ^= c; b <<<= 12;
+ * 3. a += b; d ^= a; d <<<= 8;
+ * 4. c += d; b ^= c; b <<<= 7;
+ *
+ * \param state ChaCha20 state to modify.
+ * \param a The index of 'a' in the state.
+ * \param b The index of 'b' in the state.
+ * \param c The index of 'c' in the state.
+ * \param d The index of 'd' in the state.
+ */
+static inline void chacha20_quarter_round(uint32_t state[16],
+ size_t a,
+ size_t b,
+ size_t c,
+ size_t d)
+{
+ /* a += b; d ^= a; d <<<= 16; */
+ state[a] += state[b];
+ state[d] ^= state[a];
+ state[d] = ROTL32(state[d], 16);
+
+ /* c += d; b ^= c; b <<<= 12 */
+ state[c] += state[d];
+ state[b] ^= state[c];
+ state[b] = ROTL32(state[b], 12);
+
+ /* a += b; d ^= a; d <<<= 8; */
+ state[a] += state[b];
+ state[d] ^= state[a];
+ state[d] = ROTL32(state[d], 8);
+
+ /* c += d; b ^= c; b <<<= 7; */
+ state[c] += state[d];
+ state[b] ^= state[c];
+ state[b] = ROTL32(state[b], 7);
+}
+
+/**
+ * \brief Perform the ChaCha20 inner block operation.
+ *
+ * This function performs two rounds: the column round and the
+ * diagonal round.
+ *
+ * \param state The ChaCha20 state to update.
+ */
+static void chacha20_inner_block(uint32_t state[16])
+{
+ chacha20_quarter_round(state, 0, 4, 8, 12);
+ chacha20_quarter_round(state, 1, 5, 9, 13);
+ chacha20_quarter_round(state, 2, 6, 10, 14);
+ chacha20_quarter_round(state, 3, 7, 11, 15);
+
+ chacha20_quarter_round(state, 0, 5, 10, 15);
+ chacha20_quarter_round(state, 1, 6, 11, 12);
+ chacha20_quarter_round(state, 2, 7, 8, 13);
+ chacha20_quarter_round(state, 3, 4, 9, 14);
+}
+
+/**
+ * \brief Generates a keystream block.
+ *
+ * \param initial_state The initial ChaCha20 state (key, nonce, counter).
+ * \param keystream Generated keystream bytes are written to this buffer.
+ */
+static void chacha20_block(const uint32_t initial_state[16],
+ unsigned char keystream[64])
+{
+ uint32_t working_state[16];
+ size_t i;
+
+ memcpy(working_state,
+ initial_state,
+ CHACHA20_BLOCK_SIZE_BYTES);
+
+ for (i = 0U; i < 10U; i++) {
+ chacha20_inner_block(working_state);
+ }
+
+ working_state[0] += initial_state[0];
+ working_state[1] += initial_state[1];
+ working_state[2] += initial_state[2];
+ working_state[3] += initial_state[3];
+ working_state[4] += initial_state[4];
+ working_state[5] += initial_state[5];
+ working_state[6] += initial_state[6];
+ working_state[7] += initial_state[7];
+ working_state[8] += initial_state[8];
+ working_state[9] += initial_state[9];
+ working_state[10] += initial_state[10];
+ working_state[11] += initial_state[11];
+ working_state[12] += initial_state[12];
+ working_state[13] += initial_state[13];
+ working_state[14] += initial_state[14];
+ working_state[15] += initial_state[15];
+
+ for (i = 0U; i < 16; i++) {
+ size_t offset = i * 4U;
+
+ MBEDTLS_PUT_UINT32_LE(working_state[i], keystream, offset);
+ }
+
+ mbedtls_platform_zeroize(working_state, sizeof(working_state));
+}
+
+void mbedtls_chacha20_init(mbedtls_chacha20_context *ctx)
+{
+ mbedtls_platform_zeroize(ctx->state, sizeof(ctx->state));
+ mbedtls_platform_zeroize(ctx->keystream8, sizeof(ctx->keystream8));
+
+ /* Initially, there's no keystream bytes available */
+ ctx->keystream_bytes_used = CHACHA20_BLOCK_SIZE_BYTES;
+}
+
+void mbedtls_chacha20_free(mbedtls_chacha20_context *ctx)
+{
+ if (ctx != NULL) {
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_chacha20_context));
+ }
+}
+
+int mbedtls_chacha20_setkey(mbedtls_chacha20_context *ctx,
+ const unsigned char key[32])
+{
+ /* ChaCha20 constants - the string "expand 32-byte k" */
+ ctx->state[0] = 0x61707865;
+ ctx->state[1] = 0x3320646e;
+ ctx->state[2] = 0x79622d32;
+ ctx->state[3] = 0x6b206574;
+
+ /* Set key */
+ ctx->state[4] = MBEDTLS_GET_UINT32_LE(key, 0);
+ ctx->state[5] = MBEDTLS_GET_UINT32_LE(key, 4);
+ ctx->state[6] = MBEDTLS_GET_UINT32_LE(key, 8);
+ ctx->state[7] = MBEDTLS_GET_UINT32_LE(key, 12);
+ ctx->state[8] = MBEDTLS_GET_UINT32_LE(key, 16);
+ ctx->state[9] = MBEDTLS_GET_UINT32_LE(key, 20);
+ ctx->state[10] = MBEDTLS_GET_UINT32_LE(key, 24);
+ ctx->state[11] = MBEDTLS_GET_UINT32_LE(key, 28);
+
+ return 0;
+}
+
+int mbedtls_chacha20_starts(mbedtls_chacha20_context *ctx,
+ const unsigned char nonce[12],
+ uint32_t counter)
+{
+ /* Counter */
+ ctx->state[12] = counter;
+
+ /* Nonce */
+ ctx->state[13] = MBEDTLS_GET_UINT32_LE(nonce, 0);
+ ctx->state[14] = MBEDTLS_GET_UINT32_LE(nonce, 4);
+ ctx->state[15] = MBEDTLS_GET_UINT32_LE(nonce, 8);
+
+ mbedtls_platform_zeroize(ctx->keystream8, sizeof(ctx->keystream8));
+
+ /* Initially, there's no keystream bytes available */
+ ctx->keystream_bytes_used = CHACHA20_BLOCK_SIZE_BYTES;
+
+ return 0;
+}
+
+int mbedtls_chacha20_update(mbedtls_chacha20_context *ctx,
+ size_t size,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ size_t offset = 0U;
+
+ /* Use leftover keystream bytes, if available */
+ while (size > 0U && ctx->keystream_bytes_used < CHACHA20_BLOCK_SIZE_BYTES) {
+ output[offset] = input[offset]
+ ^ ctx->keystream8[ctx->keystream_bytes_used];
+
+ ctx->keystream_bytes_used++;
+ offset++;
+ size--;
+ }
+
+ /* Process full blocks */
+ while (size >= CHACHA20_BLOCK_SIZE_BYTES) {
+ /* Generate new keystream block and increment counter */
+ chacha20_block(ctx->state, ctx->keystream8);
+ ctx->state[CHACHA20_CTR_INDEX]++;
+
+ mbedtls_xor(output + offset, input + offset, ctx->keystream8, 64U);
+
+ offset += CHACHA20_BLOCK_SIZE_BYTES;
+ size -= CHACHA20_BLOCK_SIZE_BYTES;
+ }
+
+ /* Last (partial) block */
+ if (size > 0U) {
+ /* Generate new keystream block and increment counter */
+ chacha20_block(ctx->state, ctx->keystream8);
+ ctx->state[CHACHA20_CTR_INDEX]++;
+
+ mbedtls_xor(output + offset, input + offset, ctx->keystream8, size);
+
+ ctx->keystream_bytes_used = size;
+
+ }
+
+ return 0;
+}
+
+int mbedtls_chacha20_crypt(const unsigned char key[32],
+ const unsigned char nonce[12],
+ uint32_t counter,
+ size_t data_len,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ mbedtls_chacha20_context ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_chacha20_init(&ctx);
+
+ ret = mbedtls_chacha20_setkey(&ctx, key);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_chacha20_starts(&ctx, nonce, counter);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_chacha20_update(&ctx, data_len, input, output);
+
+cleanup:
+ mbedtls_chacha20_free(&ctx);
+ return ret;
+}
+
+#endif /* !MBEDTLS_CHACHA20_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_keys[2][32] =
+{
+ {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ },
+ {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01
+ }
+};
+
+static const unsigned char test_nonces[2][12] =
+{
+ {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00
+ },
+ {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x02
+ }
+};
+
+static const uint32_t test_counters[2] =
+{
+ 0U,
+ 1U
+};
+
+static const unsigned char test_input[2][375] =
+{
+ {
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+ },
+ {
+ 0x41, 0x6e, 0x79, 0x20, 0x73, 0x75, 0x62, 0x6d,
+ 0x69, 0x73, 0x73, 0x69, 0x6f, 0x6e, 0x20, 0x74,
+ 0x6f, 0x20, 0x74, 0x68, 0x65, 0x20, 0x49, 0x45,
+ 0x54, 0x46, 0x20, 0x69, 0x6e, 0x74, 0x65, 0x6e,
+ 0x64, 0x65, 0x64, 0x20, 0x62, 0x79, 0x20, 0x74,
+ 0x68, 0x65, 0x20, 0x43, 0x6f, 0x6e, 0x74, 0x72,
+ 0x69, 0x62, 0x75, 0x74, 0x6f, 0x72, 0x20, 0x66,
+ 0x6f, 0x72, 0x20, 0x70, 0x75, 0x62, 0x6c, 0x69,
+ 0x63, 0x61, 0x74, 0x69, 0x6f, 0x6e, 0x20, 0x61,
+ 0x73, 0x20, 0x61, 0x6c, 0x6c, 0x20, 0x6f, 0x72,
+ 0x20, 0x70, 0x61, 0x72, 0x74, 0x20, 0x6f, 0x66,
+ 0x20, 0x61, 0x6e, 0x20, 0x49, 0x45, 0x54, 0x46,
+ 0x20, 0x49, 0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65,
+ 0x74, 0x2d, 0x44, 0x72, 0x61, 0x66, 0x74, 0x20,
+ 0x6f, 0x72, 0x20, 0x52, 0x46, 0x43, 0x20, 0x61,
+ 0x6e, 0x64, 0x20, 0x61, 0x6e, 0x79, 0x20, 0x73,
+ 0x74, 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e, 0x74,
+ 0x20, 0x6d, 0x61, 0x64, 0x65, 0x20, 0x77, 0x69,
+ 0x74, 0x68, 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65,
+ 0x20, 0x63, 0x6f, 0x6e, 0x74, 0x65, 0x78, 0x74,
+ 0x20, 0x6f, 0x66, 0x20, 0x61, 0x6e, 0x20, 0x49,
+ 0x45, 0x54, 0x46, 0x20, 0x61, 0x63, 0x74, 0x69,
+ 0x76, 0x69, 0x74, 0x79, 0x20, 0x69, 0x73, 0x20,
+ 0x63, 0x6f, 0x6e, 0x73, 0x69, 0x64, 0x65, 0x72,
+ 0x65, 0x64, 0x20, 0x61, 0x6e, 0x20, 0x22, 0x49,
+ 0x45, 0x54, 0x46, 0x20, 0x43, 0x6f, 0x6e, 0x74,
+ 0x72, 0x69, 0x62, 0x75, 0x74, 0x69, 0x6f, 0x6e,
+ 0x22, 0x2e, 0x20, 0x53, 0x75, 0x63, 0x68, 0x20,
+ 0x73, 0x74, 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e,
+ 0x74, 0x73, 0x20, 0x69, 0x6e, 0x63, 0x6c, 0x75,
+ 0x64, 0x65, 0x20, 0x6f, 0x72, 0x61, 0x6c, 0x20,
+ 0x73, 0x74, 0x61, 0x74, 0x65, 0x6d, 0x65, 0x6e,
+ 0x74, 0x73, 0x20, 0x69, 0x6e, 0x20, 0x49, 0x45,
+ 0x54, 0x46, 0x20, 0x73, 0x65, 0x73, 0x73, 0x69,
+ 0x6f, 0x6e, 0x73, 0x2c, 0x20, 0x61, 0x73, 0x20,
+ 0x77, 0x65, 0x6c, 0x6c, 0x20, 0x61, 0x73, 0x20,
+ 0x77, 0x72, 0x69, 0x74, 0x74, 0x65, 0x6e, 0x20,
+ 0x61, 0x6e, 0x64, 0x20, 0x65, 0x6c, 0x65, 0x63,
+ 0x74, 0x72, 0x6f, 0x6e, 0x69, 0x63, 0x20, 0x63,
+ 0x6f, 0x6d, 0x6d, 0x75, 0x6e, 0x69, 0x63, 0x61,
+ 0x74, 0x69, 0x6f, 0x6e, 0x73, 0x20, 0x6d, 0x61,
+ 0x64, 0x65, 0x20, 0x61, 0x74, 0x20, 0x61, 0x6e,
+ 0x79, 0x20, 0x74, 0x69, 0x6d, 0x65, 0x20, 0x6f,
+ 0x72, 0x20, 0x70, 0x6c, 0x61, 0x63, 0x65, 0x2c,
+ 0x20, 0x77, 0x68, 0x69, 0x63, 0x68, 0x20, 0x61,
+ 0x72, 0x65, 0x20, 0x61, 0x64, 0x64, 0x72, 0x65,
+ 0x73, 0x73, 0x65, 0x64, 0x20, 0x74, 0x6f
+ }
+};
+
+static const unsigned char test_output[2][375] =
+{
+ {
+ 0x76, 0xb8, 0xe0, 0xad, 0xa0, 0xf1, 0x3d, 0x90,
+ 0x40, 0x5d, 0x6a, 0xe5, 0x53, 0x86, 0xbd, 0x28,
+ 0xbd, 0xd2, 0x19, 0xb8, 0xa0, 0x8d, 0xed, 0x1a,
+ 0xa8, 0x36, 0xef, 0xcc, 0x8b, 0x77, 0x0d, 0xc7,
+ 0xda, 0x41, 0x59, 0x7c, 0x51, 0x57, 0x48, 0x8d,
+ 0x77, 0x24, 0xe0, 0x3f, 0xb8, 0xd8, 0x4a, 0x37,
+ 0x6a, 0x43, 0xb8, 0xf4, 0x15, 0x18, 0xa1, 0x1c,
+ 0xc3, 0x87, 0xb6, 0x69, 0xb2, 0xee, 0x65, 0x86
+ },
+ {
+ 0xa3, 0xfb, 0xf0, 0x7d, 0xf3, 0xfa, 0x2f, 0xde,
+ 0x4f, 0x37, 0x6c, 0xa2, 0x3e, 0x82, 0x73, 0x70,
+ 0x41, 0x60, 0x5d, 0x9f, 0x4f, 0x4f, 0x57, 0xbd,
+ 0x8c, 0xff, 0x2c, 0x1d, 0x4b, 0x79, 0x55, 0xec,
+ 0x2a, 0x97, 0x94, 0x8b, 0xd3, 0x72, 0x29, 0x15,
+ 0xc8, 0xf3, 0xd3, 0x37, 0xf7, 0xd3, 0x70, 0x05,
+ 0x0e, 0x9e, 0x96, 0xd6, 0x47, 0xb7, 0xc3, 0x9f,
+ 0x56, 0xe0, 0x31, 0xca, 0x5e, 0xb6, 0x25, 0x0d,
+ 0x40, 0x42, 0xe0, 0x27, 0x85, 0xec, 0xec, 0xfa,
+ 0x4b, 0x4b, 0xb5, 0xe8, 0xea, 0xd0, 0x44, 0x0e,
+ 0x20, 0xb6, 0xe8, 0xdb, 0x09, 0xd8, 0x81, 0xa7,
+ 0xc6, 0x13, 0x2f, 0x42, 0x0e, 0x52, 0x79, 0x50,
+ 0x42, 0xbd, 0xfa, 0x77, 0x73, 0xd8, 0xa9, 0x05,
+ 0x14, 0x47, 0xb3, 0x29, 0x1c, 0xe1, 0x41, 0x1c,
+ 0x68, 0x04, 0x65, 0x55, 0x2a, 0xa6, 0xc4, 0x05,
+ 0xb7, 0x76, 0x4d, 0x5e, 0x87, 0xbe, 0xa8, 0x5a,
+ 0xd0, 0x0f, 0x84, 0x49, 0xed, 0x8f, 0x72, 0xd0,
+ 0xd6, 0x62, 0xab, 0x05, 0x26, 0x91, 0xca, 0x66,
+ 0x42, 0x4b, 0xc8, 0x6d, 0x2d, 0xf8, 0x0e, 0xa4,
+ 0x1f, 0x43, 0xab, 0xf9, 0x37, 0xd3, 0x25, 0x9d,
+ 0xc4, 0xb2, 0xd0, 0xdf, 0xb4, 0x8a, 0x6c, 0x91,
+ 0x39, 0xdd, 0xd7, 0xf7, 0x69, 0x66, 0xe9, 0x28,
+ 0xe6, 0x35, 0x55, 0x3b, 0xa7, 0x6c, 0x5c, 0x87,
+ 0x9d, 0x7b, 0x35, 0xd4, 0x9e, 0xb2, 0xe6, 0x2b,
+ 0x08, 0x71, 0xcd, 0xac, 0x63, 0x89, 0x39, 0xe2,
+ 0x5e, 0x8a, 0x1e, 0x0e, 0xf9, 0xd5, 0x28, 0x0f,
+ 0xa8, 0xca, 0x32, 0x8b, 0x35, 0x1c, 0x3c, 0x76,
+ 0x59, 0x89, 0xcb, 0xcf, 0x3d, 0xaa, 0x8b, 0x6c,
+ 0xcc, 0x3a, 0xaf, 0x9f, 0x39, 0x79, 0xc9, 0x2b,
+ 0x37, 0x20, 0xfc, 0x88, 0xdc, 0x95, 0xed, 0x84,
+ 0xa1, 0xbe, 0x05, 0x9c, 0x64, 0x99, 0xb9, 0xfd,
+ 0xa2, 0x36, 0xe7, 0xe8, 0x18, 0xb0, 0x4b, 0x0b,
+ 0xc3, 0x9c, 0x1e, 0x87, 0x6b, 0x19, 0x3b, 0xfe,
+ 0x55, 0x69, 0x75, 0x3f, 0x88, 0x12, 0x8c, 0xc0,
+ 0x8a, 0xaa, 0x9b, 0x63, 0xd1, 0xa1, 0x6f, 0x80,
+ 0xef, 0x25, 0x54, 0xd7, 0x18, 0x9c, 0x41, 0x1f,
+ 0x58, 0x69, 0xca, 0x52, 0xc5, 0xb8, 0x3f, 0xa3,
+ 0x6f, 0xf2, 0x16, 0xb9, 0xc1, 0xd3, 0x00, 0x62,
+ 0xbe, 0xbc, 0xfd, 0x2d, 0xc5, 0xbc, 0xe0, 0x91,
+ 0x19, 0x34, 0xfd, 0xa7, 0x9a, 0x86, 0xf6, 0xe6,
+ 0x98, 0xce, 0xd7, 0x59, 0xc3, 0xff, 0x9b, 0x64,
+ 0x77, 0x33, 0x8f, 0x3d, 0xa4, 0xf9, 0xcd, 0x85,
+ 0x14, 0xea, 0x99, 0x82, 0xcc, 0xaf, 0xb3, 0x41,
+ 0xb2, 0x38, 0x4d, 0xd9, 0x02, 0xf3, 0xd1, 0xab,
+ 0x7a, 0xc6, 0x1d, 0xd2, 0x9c, 0x6f, 0x21, 0xba,
+ 0x5b, 0x86, 0x2f, 0x37, 0x30, 0xe3, 0x7c, 0xfd,
+ 0xc4, 0xfd, 0x80, 0x6c, 0x22, 0xf2, 0x21
+ }
+};
+
+static const size_t test_lengths[2] =
+{
+ 64U,
+ 375U
+};
+
+/* Make sure no other definition is already present. */
+#undef ASSERT
+
+#define ASSERT(cond, args) \
+ do \
+ { \
+ if (!(cond)) \
+ { \
+ if (verbose != 0) \
+ mbedtls_printf args; \
+ \
+ return -1; \
+ } \
+ } \
+ while (0)
+
+int mbedtls_chacha20_self_test(int verbose)
+{
+ unsigned char output[381];
+ unsigned i;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ for (i = 0U; i < 2U; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" ChaCha20 test %u ", i);
+ }
+
+ ret = mbedtls_chacha20_crypt(test_keys[i],
+ test_nonces[i],
+ test_counters[i],
+ test_lengths[i],
+ test_input[i],
+ output);
+
+ ASSERT(0 == ret, ("error code: %i\n", ret));
+
+ ASSERT(0 == memcmp(output, test_output[i], test_lengths[i]),
+ ("failed (output)\n"));
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* !MBEDTLS_CHACHA20_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/chachapoly.c b/tf-psa-crypto/drivers/builtin/src/chachapoly.c
new file mode 100644
index 0000000..a1314ea
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/chachapoly.c
@@ -0,0 +1,478 @@
+/**
+ * \file chachapoly.c
+ *
+ * \brief ChaCha20-Poly1305 AEAD construction based on RFC 7539.
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#include "common.h"
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+
+#include "mbedtls/chachapoly.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_CHACHAPOLY_ALT)
+
+#define CHACHAPOLY_STATE_INIT (0)
+#define CHACHAPOLY_STATE_AAD (1)
+#define CHACHAPOLY_STATE_CIPHERTEXT (2) /* Encrypting or decrypting */
+#define CHACHAPOLY_STATE_FINISHED (3)
+
+/**
+ * \brief Adds nul bytes to pad the AAD for Poly1305.
+ *
+ * \param ctx The ChaCha20-Poly1305 context.
+ */
+static int chachapoly_pad_aad(mbedtls_chachapoly_context *ctx)
+{
+ uint32_t partial_block_len = (uint32_t) (ctx->aad_len % 16U);
+ unsigned char zeroes[15];
+
+ if (partial_block_len == 0U) {
+ return 0;
+ }
+
+ memset(zeroes, 0, sizeof(zeroes));
+
+ return mbedtls_poly1305_update(&ctx->poly1305_ctx,
+ zeroes,
+ 16U - partial_block_len);
+}
+
+/**
+ * \brief Adds nul bytes to pad the ciphertext for Poly1305.
+ *
+ * \param ctx The ChaCha20-Poly1305 context.
+ */
+static int chachapoly_pad_ciphertext(mbedtls_chachapoly_context *ctx)
+{
+ uint32_t partial_block_len = (uint32_t) (ctx->ciphertext_len % 16U);
+ unsigned char zeroes[15];
+
+ if (partial_block_len == 0U) {
+ return 0;
+ }
+
+ memset(zeroes, 0, sizeof(zeroes));
+ return mbedtls_poly1305_update(&ctx->poly1305_ctx,
+ zeroes,
+ 16U - partial_block_len);
+}
+
+void mbedtls_chachapoly_init(mbedtls_chachapoly_context *ctx)
+{
+ mbedtls_chacha20_init(&ctx->chacha20_ctx);
+ mbedtls_poly1305_init(&ctx->poly1305_ctx);
+ ctx->aad_len = 0U;
+ ctx->ciphertext_len = 0U;
+ ctx->state = CHACHAPOLY_STATE_INIT;
+ ctx->mode = MBEDTLS_CHACHAPOLY_ENCRYPT;
+}
+
+void mbedtls_chachapoly_free(mbedtls_chachapoly_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_chacha20_free(&ctx->chacha20_ctx);
+ mbedtls_poly1305_free(&ctx->poly1305_ctx);
+ ctx->aad_len = 0U;
+ ctx->ciphertext_len = 0U;
+ ctx->state = CHACHAPOLY_STATE_INIT;
+ ctx->mode = MBEDTLS_CHACHAPOLY_ENCRYPT;
+}
+
+int mbedtls_chachapoly_setkey(mbedtls_chachapoly_context *ctx,
+ const unsigned char key[32])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ ret = mbedtls_chacha20_setkey(&ctx->chacha20_ctx, key);
+
+ return ret;
+}
+
+int mbedtls_chachapoly_starts(mbedtls_chachapoly_context *ctx,
+ const unsigned char nonce[12],
+ mbedtls_chachapoly_mode_t mode)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char poly1305_key[64];
+
+ /* Set counter = 0, will be update to 1 when generating Poly1305 key */
+ ret = mbedtls_chacha20_starts(&ctx->chacha20_ctx, nonce, 0U);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ /* Generate the Poly1305 key by getting the ChaCha20 keystream output with
+ * counter = 0. This is the same as encrypting a buffer of zeroes.
+ * Only the first 256-bits (32 bytes) of the key is used for Poly1305.
+ * The other 256 bits are discarded.
+ */
+ memset(poly1305_key, 0, sizeof(poly1305_key));
+ ret = mbedtls_chacha20_update(&ctx->chacha20_ctx, sizeof(poly1305_key),
+ poly1305_key, poly1305_key);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_poly1305_starts(&ctx->poly1305_ctx, poly1305_key);
+
+ if (ret == 0) {
+ ctx->aad_len = 0U;
+ ctx->ciphertext_len = 0U;
+ ctx->state = CHACHAPOLY_STATE_AAD;
+ ctx->mode = mode;
+ }
+
+cleanup:
+ mbedtls_platform_zeroize(poly1305_key, 64U);
+ return ret;
+}
+
+int mbedtls_chachapoly_update_aad(mbedtls_chachapoly_context *ctx,
+ const unsigned char *aad,
+ size_t aad_len)
+{
+ if (ctx->state != CHACHAPOLY_STATE_AAD) {
+ return MBEDTLS_ERR_CHACHAPOLY_BAD_STATE;
+ }
+
+ ctx->aad_len += aad_len;
+
+ return mbedtls_poly1305_update(&ctx->poly1305_ctx, aad, aad_len);
+}
+
+int mbedtls_chachapoly_update(mbedtls_chachapoly_context *ctx,
+ size_t len,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ctx->state != CHACHAPOLY_STATE_AAD) &&
+ (ctx->state != CHACHAPOLY_STATE_CIPHERTEXT)) {
+ return MBEDTLS_ERR_CHACHAPOLY_BAD_STATE;
+ }
+
+ if (ctx->state == CHACHAPOLY_STATE_AAD) {
+ ctx->state = CHACHAPOLY_STATE_CIPHERTEXT;
+
+ ret = chachapoly_pad_aad(ctx);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ ctx->ciphertext_len += len;
+
+ if (ctx->mode == MBEDTLS_CHACHAPOLY_ENCRYPT) {
+ ret = mbedtls_chacha20_update(&ctx->chacha20_ctx, len, input, output);
+ if (ret != 0) {
+ return ret;
+ }
+
+ ret = mbedtls_poly1305_update(&ctx->poly1305_ctx, output, len);
+ if (ret != 0) {
+ return ret;
+ }
+ } else { /* DECRYPT */
+ ret = mbedtls_poly1305_update(&ctx->poly1305_ctx, input, len);
+ if (ret != 0) {
+ return ret;
+ }
+
+ ret = mbedtls_chacha20_update(&ctx->chacha20_ctx, len, input, output);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+int mbedtls_chachapoly_finish(mbedtls_chachapoly_context *ctx,
+ unsigned char mac[16])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char len_block[16];
+
+ if (ctx->state == CHACHAPOLY_STATE_INIT) {
+ return MBEDTLS_ERR_CHACHAPOLY_BAD_STATE;
+ }
+
+ if (ctx->state == CHACHAPOLY_STATE_AAD) {
+ ret = chachapoly_pad_aad(ctx);
+ if (ret != 0) {
+ return ret;
+ }
+ } else if (ctx->state == CHACHAPOLY_STATE_CIPHERTEXT) {
+ ret = chachapoly_pad_ciphertext(ctx);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ ctx->state = CHACHAPOLY_STATE_FINISHED;
+
+ /* The lengths of the AAD and ciphertext are processed by
+ * Poly1305 as the final 128-bit block, encoded as little-endian integers.
+ */
+ MBEDTLS_PUT_UINT64_LE(ctx->aad_len, len_block, 0);
+ MBEDTLS_PUT_UINT64_LE(ctx->ciphertext_len, len_block, 8);
+
+ ret = mbedtls_poly1305_update(&ctx->poly1305_ctx, len_block, 16U);
+ if (ret != 0) {
+ return ret;
+ }
+
+ ret = mbedtls_poly1305_finish(&ctx->poly1305_ctx, mac);
+
+ return ret;
+}
+
+static int chachapoly_crypt_and_tag(mbedtls_chachapoly_context *ctx,
+ mbedtls_chachapoly_mode_t mode,
+ size_t length,
+ const unsigned char nonce[12],
+ const unsigned char *aad,
+ size_t aad_len,
+ const unsigned char *input,
+ unsigned char *output,
+ unsigned char tag[16])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ ret = mbedtls_chachapoly_starts(ctx, nonce, mode);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_chachapoly_update_aad(ctx, aad, aad_len);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_chachapoly_update(ctx, length, input, output);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_chachapoly_finish(ctx, tag);
+
+cleanup:
+ return ret;
+}
+
+int mbedtls_chachapoly_encrypt_and_tag(mbedtls_chachapoly_context *ctx,
+ size_t length,
+ const unsigned char nonce[12],
+ const unsigned char *aad,
+ size_t aad_len,
+ const unsigned char *input,
+ unsigned char *output,
+ unsigned char tag[16])
+{
+ return chachapoly_crypt_and_tag(ctx, MBEDTLS_CHACHAPOLY_ENCRYPT,
+ length, nonce, aad, aad_len,
+ input, output, tag);
+}
+
+int mbedtls_chachapoly_auth_decrypt(mbedtls_chachapoly_context *ctx,
+ size_t length,
+ const unsigned char nonce[12],
+ const unsigned char *aad,
+ size_t aad_len,
+ const unsigned char tag[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char check_tag[16];
+ int diff;
+
+ if ((ret = chachapoly_crypt_and_tag(ctx,
+ MBEDTLS_CHACHAPOLY_DECRYPT, length, nonce,
+ aad, aad_len, input, output, check_tag)) != 0) {
+ return ret;
+ }
+
+ /* Check tag in "constant-time" */
+ diff = mbedtls_ct_memcmp(tag, check_tag, sizeof(check_tag));
+
+ if (diff != 0) {
+ mbedtls_platform_zeroize(output, length);
+ return MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED;
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_CHACHAPOLY_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_key[1][32] =
+{
+ {
+ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f
+ }
+};
+
+static const unsigned char test_nonce[1][12] =
+{
+ {
+ 0x07, 0x00, 0x00, 0x00, /* 32-bit common part */
+ 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47 /* 64-bit IV */
+ }
+};
+
+static const unsigned char test_aad[1][12] =
+{
+ {
+ 0x50, 0x51, 0x52, 0x53, 0xc0, 0xc1, 0xc2, 0xc3,
+ 0xc4, 0xc5, 0xc6, 0xc7
+ }
+};
+
+static const size_t test_aad_len[1] =
+{
+ 12U
+};
+
+static const unsigned char test_input[1][114] =
+{
+ {
+ 0x4c, 0x61, 0x64, 0x69, 0x65, 0x73, 0x20, 0x61,
+ 0x6e, 0x64, 0x20, 0x47, 0x65, 0x6e, 0x74, 0x6c,
+ 0x65, 0x6d, 0x65, 0x6e, 0x20, 0x6f, 0x66, 0x20,
+ 0x74, 0x68, 0x65, 0x20, 0x63, 0x6c, 0x61, 0x73,
+ 0x73, 0x20, 0x6f, 0x66, 0x20, 0x27, 0x39, 0x39,
+ 0x3a, 0x20, 0x49, 0x66, 0x20, 0x49, 0x20, 0x63,
+ 0x6f, 0x75, 0x6c, 0x64, 0x20, 0x6f, 0x66, 0x66,
+ 0x65, 0x72, 0x20, 0x79, 0x6f, 0x75, 0x20, 0x6f,
+ 0x6e, 0x6c, 0x79, 0x20, 0x6f, 0x6e, 0x65, 0x20,
+ 0x74, 0x69, 0x70, 0x20, 0x66, 0x6f, 0x72, 0x20,
+ 0x74, 0x68, 0x65, 0x20, 0x66, 0x75, 0x74, 0x75,
+ 0x72, 0x65, 0x2c, 0x20, 0x73, 0x75, 0x6e, 0x73,
+ 0x63, 0x72, 0x65, 0x65, 0x6e, 0x20, 0x77, 0x6f,
+ 0x75, 0x6c, 0x64, 0x20, 0x62, 0x65, 0x20, 0x69,
+ 0x74, 0x2e
+ }
+};
+
+static const unsigned char test_output[1][114] =
+{
+ {
+ 0xd3, 0x1a, 0x8d, 0x34, 0x64, 0x8e, 0x60, 0xdb,
+ 0x7b, 0x86, 0xaf, 0xbc, 0x53, 0xef, 0x7e, 0xc2,
+ 0xa4, 0xad, 0xed, 0x51, 0x29, 0x6e, 0x08, 0xfe,
+ 0xa9, 0xe2, 0xb5, 0xa7, 0x36, 0xee, 0x62, 0xd6,
+ 0x3d, 0xbe, 0xa4, 0x5e, 0x8c, 0xa9, 0x67, 0x12,
+ 0x82, 0xfa, 0xfb, 0x69, 0xda, 0x92, 0x72, 0x8b,
+ 0x1a, 0x71, 0xde, 0x0a, 0x9e, 0x06, 0x0b, 0x29,
+ 0x05, 0xd6, 0xa5, 0xb6, 0x7e, 0xcd, 0x3b, 0x36,
+ 0x92, 0xdd, 0xbd, 0x7f, 0x2d, 0x77, 0x8b, 0x8c,
+ 0x98, 0x03, 0xae, 0xe3, 0x28, 0x09, 0x1b, 0x58,
+ 0xfa, 0xb3, 0x24, 0xe4, 0xfa, 0xd6, 0x75, 0x94,
+ 0x55, 0x85, 0x80, 0x8b, 0x48, 0x31, 0xd7, 0xbc,
+ 0x3f, 0xf4, 0xde, 0xf0, 0x8e, 0x4b, 0x7a, 0x9d,
+ 0xe5, 0x76, 0xd2, 0x65, 0x86, 0xce, 0xc6, 0x4b,
+ 0x61, 0x16
+ }
+};
+
+static const size_t test_input_len[1] =
+{
+ 114U
+};
+
+static const unsigned char test_mac[1][16] =
+{
+ {
+ 0x1a, 0xe1, 0x0b, 0x59, 0x4f, 0x09, 0xe2, 0x6a,
+ 0x7e, 0x90, 0x2e, 0xcb, 0xd0, 0x60, 0x06, 0x91
+ }
+};
+
+/* Make sure no other definition is already present. */
+#undef ASSERT
+
+#define ASSERT(cond, args) \
+ do \
+ { \
+ if (!(cond)) \
+ { \
+ if (verbose != 0) \
+ mbedtls_printf args; \
+ \
+ return -1; \
+ } \
+ } \
+ while (0)
+
+int mbedtls_chachapoly_self_test(int verbose)
+{
+ mbedtls_chachapoly_context ctx;
+ unsigned i;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char output[200];
+ unsigned char mac[16];
+
+ for (i = 0U; i < 1U; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" ChaCha20-Poly1305 test %u ", i);
+ }
+
+ mbedtls_chachapoly_init(&ctx);
+
+ ret = mbedtls_chachapoly_setkey(&ctx, test_key[i]);
+ ASSERT(0 == ret, ("setkey() error code: %i\n", ret));
+
+ ret = mbedtls_chachapoly_encrypt_and_tag(&ctx,
+ test_input_len[i],
+ test_nonce[i],
+ test_aad[i],
+ test_aad_len[i],
+ test_input[i],
+ output,
+ mac);
+
+ ASSERT(0 == ret, ("crypt_and_tag() error code: %i\n", ret));
+
+ ASSERT(0 == memcmp(output, test_output[i], test_input_len[i]),
+ ("failure (wrong output)\n"));
+
+ ASSERT(0 == memcmp(mac, test_mac[i], 16U),
+ ("failure (wrong MAC)\n"));
+
+ mbedtls_chachapoly_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CHACHAPOLY_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/check_crypto_config.h b/tf-psa-crypto/drivers/builtin/src/check_crypto_config.h
new file mode 100644
index 0000000..6469e9f
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/check_crypto_config.h
@@ -0,0 +1,141 @@
+/**
+ * \file check_crypto_config.h
+ *
+ * \brief Consistency checks for PSA configuration options
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * It is recommended to include this file from your crypto_config.h
+ * in order to catch dependency issues early.
+ */
+
+#ifndef MBEDTLS_CHECK_CRYPTO_CONFIG_H
+#define MBEDTLS_CHECK_CRYPTO_CONFIG_H
+
+#if defined(PSA_WANT_ALG_CCM) && \
+ !(defined(PSA_WANT_KEY_TYPE_AES) || \
+ defined(PSA_WANT_KEY_TYPE_CAMELLIA))
+#error "PSA_WANT_ALG_CCM defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_CMAC) && \
+ !(defined(PSA_WANT_KEY_TYPE_AES) || \
+ defined(PSA_WANT_KEY_TYPE_CAMELLIA) || \
+ defined(PSA_WANT_KEY_TYPE_DES))
+#error "PSA_WANT_ALG_CMAC defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_DETERMINISTIC_ECDSA) && \
+ !(defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY))
+#error "PSA_WANT_ALG_DETERMINISTIC_ECDSA defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_ECDSA) && \
+ !(defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY))
+#error "PSA_WANT_ALG_ECDSA defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_GCM) && \
+ !(defined(PSA_WANT_KEY_TYPE_AES) || \
+ defined(PSA_WANT_KEY_TYPE_CAMELLIA))
+#error "PSA_WANT_ALG_GCM defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_PKCS1V15_CRYPT) && \
+ !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_PKCS1V15_CRYPT defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_PKCS1V15_SIGN) && \
+ !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_PKCS1V15_SIGN defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_OAEP) && \
+ !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_OAEP defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_RSA_PSS) && \
+ !(defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY))
+#error "PSA_WANT_ALG_RSA_PSS defined, but not all prerequisites"
+#endif
+
+#if (defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_IMPORT) || \
+ defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_EXPORT) || \
+ defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_GENERATE) || \
+ defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_DERIVE)) && \
+ !defined(PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY)
+#error "PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_xxx defined, but not all prerequisites"
+#endif
+
+#if (defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_IMPORT) || \
+ defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_EXPORT) || \
+ defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_GENERATE)) && \
+ !defined(PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY)
+#error "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_xxx defined, but not all prerequisites"
+#endif
+
+#if (defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_BASIC) || \
+ defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_IMPORT) || \
+ defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_EXPORT) || \
+ defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_GENERATE)) && \
+ !defined(PSA_WANT_KEY_TYPE_DH_PUBLIC_KEY)
+#error "PSA_WANT_KEY_TYPE_DH_KEY_PAIR_xxx defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_KEY_TYPE_ECC_KEY_PAIR)
+#if defined(MBEDTLS_DEPRECATED_REMOVED)
+#error "PSA_WANT_KEY_TYPE_ECC_KEY_PAIR is deprecated and will be removed in a \
+ future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_xxx \
+ symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#elif defined(MBEDTLS_DEPRECATED_WARNING)
+#warning "PSA_WANT_KEY_TYPE_ECC_KEY_PAIR is deprecated and will be removed in a \
+ future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_ECC_KEY_PAIR_xxx \
+ symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#endif /* MBEDTLS_DEPRECATED_WARNING */
+#endif /* PSA_WANT_KEY_TYPE_ECC_KEY_PAIR */
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR)
+#if defined(MBEDTLS_DEPRECATED_REMOVED)
+#error "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR is deprecated and will be removed in a \
+ future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_xxx \
+ symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#elif defined(MBEDTLS_DEPRECATED_WARNING)
+#warning "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR is deprecated and will be removed in a \
+ future version of Mbed TLS. Please switch to new PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_xxx \
+ symbols, where xxx can be: USE, IMPORT, EXPORT, GENERATE, DERIVE"
+#endif /* MBEDTLS_DEPRECATED_WARNING */
+#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR */
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_DERIVE)
+#error "PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_DERIVE defined, but feature is not supported"
+#endif
+
+#if defined(PSA_WANT_KEY_TYPE_DH_KEY_PAIR_DERIVE)
+#error "PSA_WANT_KEY_TYPE_DH_KEY_PAIR_DERIVE defined, but feature is not supported"
+#endif
+
+#if defined(MBEDTLS_SSL_PROTO_TLS1_2) && defined(MBEDTLS_USE_PSA_CRYPTO) && \
+ !(defined(PSA_WANT_ALG_SHA_1) || defined(PSA_WANT_ALG_SHA_256) || defined(PSA_WANT_ALG_SHA_512))
+#error "MBEDTLS_SSL_PROTO_TLS1_2 defined, but not all prerequisites"
+#endif
+
+#if defined(PSA_WANT_ALG_TLS12_ECJPAKE_TO_PMS) && \
+ !defined(PSA_WANT_ALG_SHA_256)
+#error "PSA_WANT_ALG_TLS12_ECJPAKE_TO_PMS defined, but not all prerequisites"
+#endif
+
+#endif /* MBEDTLS_CHECK_CRYPTO_CONFIG_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/cipher.c b/tf-psa-crypto/drivers/builtin/src/cipher.c
new file mode 100644
index 0000000..7f4c121
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cipher.c
@@ -0,0 +1,1683 @@
+/**
+ * \file cipher.c
+ *
+ * \brief Generic cipher wrapper for Mbed TLS
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CIPHER_C)
+
+#include "mbedtls/cipher.h"
+#include "cipher_wrap.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+#include "constant_time_internal.h"
+
+#include <stdlib.h>
+#include <string.h>
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+#include "mbedtls/chachapoly.h"
+#endif
+
+#if defined(MBEDTLS_GCM_C)
+#include "mbedtls/gcm.h"
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+#include "mbedtls/ccm.h"
+#endif
+
+#if defined(MBEDTLS_CHACHA20_C)
+#include "mbedtls/chacha20.h"
+#endif
+
+#if defined(MBEDTLS_CMAC_C)
+#include "mbedtls/cmac.h"
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+#include "psa/crypto.h"
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_NIST_KW_C)
+#include "mbedtls/nist_kw.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+static int supported_init = 0;
+
+static inline const mbedtls_cipher_base_t *mbedtls_cipher_get_base(
+ const mbedtls_cipher_info_t *info)
+{
+ return mbedtls_cipher_base_lookup_table[info->base_idx];
+}
+
+const int *mbedtls_cipher_list(void)
+{
+ const mbedtls_cipher_definition_t *def;
+ int *type;
+
+ if (!supported_init) {
+ def = mbedtls_cipher_definitions;
+ type = mbedtls_cipher_supported;
+
+ while (def->type != 0) {
+ *type++ = (*def++).type;
+ }
+
+ *type = 0;
+
+ supported_init = 1;
+ }
+
+ return mbedtls_cipher_supported;
+}
+
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_type(
+ const mbedtls_cipher_type_t cipher_type)
+{
+ const mbedtls_cipher_definition_t *def;
+
+ for (def = mbedtls_cipher_definitions; def->info != NULL; def++) {
+ if (def->type == cipher_type) {
+ return def->info;
+ }
+ }
+
+ return NULL;
+}
+
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_string(
+ const char *cipher_name)
+{
+ const mbedtls_cipher_definition_t *def;
+
+ if (NULL == cipher_name) {
+ return NULL;
+ }
+
+ for (def = mbedtls_cipher_definitions; def->info != NULL; def++) {
+ if (!strcmp(def->info->name, cipher_name)) {
+ return def->info;
+ }
+ }
+
+ return NULL;
+}
+
+const mbedtls_cipher_info_t *mbedtls_cipher_info_from_values(
+ const mbedtls_cipher_id_t cipher_id,
+ int key_bitlen,
+ const mbedtls_cipher_mode_t mode)
+{
+ const mbedtls_cipher_definition_t *def;
+
+ for (def = mbedtls_cipher_definitions; def->info != NULL; def++) {
+ if (mbedtls_cipher_get_base(def->info)->cipher == cipher_id &&
+ mbedtls_cipher_info_get_key_bitlen(def->info) == (unsigned) key_bitlen &&
+ def->info->mode == mode) {
+ return def->info;
+ }
+ }
+
+ return NULL;
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+static inline psa_key_type_t mbedtls_psa_translate_cipher_type(
+ mbedtls_cipher_type_t cipher)
+{
+ switch (cipher) {
+ case MBEDTLS_CIPHER_AES_128_CCM:
+ case MBEDTLS_CIPHER_AES_192_CCM:
+ case MBEDTLS_CIPHER_AES_256_CCM:
+ case MBEDTLS_CIPHER_AES_128_CCM_STAR_NO_TAG:
+ case MBEDTLS_CIPHER_AES_192_CCM_STAR_NO_TAG:
+ case MBEDTLS_CIPHER_AES_256_CCM_STAR_NO_TAG:
+ case MBEDTLS_CIPHER_AES_128_GCM:
+ case MBEDTLS_CIPHER_AES_192_GCM:
+ case MBEDTLS_CIPHER_AES_256_GCM:
+ case MBEDTLS_CIPHER_AES_128_CBC:
+ case MBEDTLS_CIPHER_AES_192_CBC:
+ case MBEDTLS_CIPHER_AES_256_CBC:
+ case MBEDTLS_CIPHER_AES_128_ECB:
+ case MBEDTLS_CIPHER_AES_192_ECB:
+ case MBEDTLS_CIPHER_AES_256_ECB:
+ return PSA_KEY_TYPE_AES;
+
+ /* ARIA not yet supported in PSA. */
+ /* case MBEDTLS_CIPHER_ARIA_128_CCM:
+ case MBEDTLS_CIPHER_ARIA_192_CCM:
+ case MBEDTLS_CIPHER_ARIA_256_CCM:
+ case MBEDTLS_CIPHER_ARIA_128_CCM_STAR_NO_TAG:
+ case MBEDTLS_CIPHER_ARIA_192_CCM_STAR_NO_TAG:
+ case MBEDTLS_CIPHER_ARIA_256_CCM_STAR_NO_TAG:
+ case MBEDTLS_CIPHER_ARIA_128_GCM:
+ case MBEDTLS_CIPHER_ARIA_192_GCM:
+ case MBEDTLS_CIPHER_ARIA_256_GCM:
+ case MBEDTLS_CIPHER_ARIA_128_CBC:
+ case MBEDTLS_CIPHER_ARIA_192_CBC:
+ case MBEDTLS_CIPHER_ARIA_256_CBC:
+ return( PSA_KEY_TYPE_ARIA ); */
+
+ default:
+ return 0;
+ }
+}
+
+static inline psa_algorithm_t mbedtls_psa_translate_cipher_mode(
+ mbedtls_cipher_mode_t mode, size_t taglen)
+{
+ switch (mode) {
+ case MBEDTLS_MODE_ECB:
+ return PSA_ALG_ECB_NO_PADDING;
+ case MBEDTLS_MODE_GCM:
+ return PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_GCM, taglen);
+ case MBEDTLS_MODE_CCM:
+ return PSA_ALG_AEAD_WITH_SHORTENED_TAG(PSA_ALG_CCM, taglen);
+ case MBEDTLS_MODE_CCM_STAR_NO_TAG:
+ return PSA_ALG_CCM_STAR_NO_TAG;
+ case MBEDTLS_MODE_CBC:
+ if (taglen == 0) {
+ return PSA_ALG_CBC_NO_PADDING;
+ } else {
+ return 0;
+ }
+ default:
+ return 0;
+ }
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+void mbedtls_cipher_init(mbedtls_cipher_context_t *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_cipher_context_t));
+}
+
+void mbedtls_cipher_free(mbedtls_cipher_context_t *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ if (ctx->cipher_ctx != NULL) {
+ mbedtls_cipher_context_psa * const cipher_psa =
+ (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+ if (cipher_psa->slot_state == MBEDTLS_CIPHER_PSA_KEY_OWNED) {
+ /* xxx_free() doesn't allow to return failures. */
+ (void) psa_destroy_key(cipher_psa->slot);
+ }
+
+ mbedtls_zeroize_and_free(cipher_psa, sizeof(*cipher_psa));
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_cipher_context_t));
+ return;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_CMAC_C)
+ if (ctx->cmac_ctx) {
+ mbedtls_zeroize_and_free(ctx->cmac_ctx,
+ sizeof(mbedtls_cmac_context_t));
+ }
+#endif
+
+ if (ctx->cipher_ctx) {
+ mbedtls_cipher_get_base(ctx->cipher_info)->ctx_free_func(ctx->cipher_ctx);
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_cipher_context_t));
+}
+
+int mbedtls_cipher_setup(mbedtls_cipher_context_t *ctx,
+ const mbedtls_cipher_info_t *cipher_info)
+{
+ if (cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ memset(ctx, 0, sizeof(mbedtls_cipher_context_t));
+
+ if (mbedtls_cipher_get_base(cipher_info)->ctx_alloc_func != NULL) {
+ ctx->cipher_ctx = mbedtls_cipher_get_base(cipher_info)->ctx_alloc_func();
+ if (ctx->cipher_ctx == NULL) {
+ return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+ }
+ }
+
+ ctx->cipher_info = cipher_info;
+
+ return 0;
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_cipher_setup_psa(mbedtls_cipher_context_t *ctx,
+ const mbedtls_cipher_info_t *cipher_info,
+ size_t taglen)
+{
+ psa_algorithm_t alg;
+ mbedtls_cipher_context_psa *cipher_psa;
+
+ if (NULL == cipher_info || NULL == ctx) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ /* Check that the underlying cipher mode and cipher type are
+ * supported by the underlying PSA Crypto implementation. */
+ alg = mbedtls_psa_translate_cipher_mode(((mbedtls_cipher_mode_t) cipher_info->mode), taglen);
+ if (alg == 0) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+ if (mbedtls_psa_translate_cipher_type(((mbedtls_cipher_type_t) cipher_info->type)) == 0) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ memset(ctx, 0, sizeof(mbedtls_cipher_context_t));
+
+ cipher_psa = mbedtls_calloc(1, sizeof(mbedtls_cipher_context_psa));
+ if (cipher_psa == NULL) {
+ return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+ }
+ cipher_psa->alg = alg;
+ ctx->cipher_ctx = cipher_psa;
+ ctx->cipher_info = cipher_info;
+ ctx->psa_enabled = 1;
+ return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+int mbedtls_cipher_setkey(mbedtls_cipher_context_t *ctx,
+ const unsigned char *key,
+ int key_bitlen,
+ const mbedtls_operation_t operation)
+{
+ if (operation != MBEDTLS_ENCRYPT && operation != MBEDTLS_DECRYPT) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+#if defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (MBEDTLS_MODE_ECB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) &&
+ MBEDTLS_DECRYPT == operation) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ mbedtls_cipher_context_psa * const cipher_psa =
+ (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+ size_t const key_bytelen = ((size_t) key_bitlen + 7) / 8;
+
+ psa_status_t status;
+ psa_key_type_t key_type;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+
+ /* PSA Crypto API only accepts byte-aligned keys. */
+ if (key_bitlen % 8 != 0) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ /* Don't allow keys to be set multiple times. */
+ if (cipher_psa->slot_state != MBEDTLS_CIPHER_PSA_KEY_UNSET) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ key_type = mbedtls_psa_translate_cipher_type(
+ ((mbedtls_cipher_type_t) ctx->cipher_info->type));
+ if (key_type == 0) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+ psa_set_key_type(&attributes, key_type);
+
+ /* Mbed TLS' cipher layer doesn't enforce the mode of operation
+ * (encrypt vs. decrypt): it is possible to setup a key for encryption
+ * and use it for AEAD decryption. Until tests relying on this
+ * are changed, allow any usage in PSA. */
+ psa_set_key_usage_flags(&attributes,
+ PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT);
+ psa_set_key_algorithm(&attributes, cipher_psa->alg);
+
+ status = psa_import_key(&attributes, key, key_bytelen,
+ &cipher_psa->slot);
+ switch (status) {
+ case PSA_SUCCESS:
+ break;
+ case PSA_ERROR_INSUFFICIENT_MEMORY:
+ return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+ case PSA_ERROR_NOT_SUPPORTED:
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ default:
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ }
+ /* Indicate that we own the key slot and need to
+ * destroy it in mbedtls_cipher_free(). */
+ cipher_psa->slot_state = MBEDTLS_CIPHER_PSA_KEY_OWNED;
+
+ ctx->key_bitlen = key_bitlen;
+ ctx->operation = operation;
+ return 0;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ if ((ctx->cipher_info->flags & MBEDTLS_CIPHER_VARIABLE_KEY_LEN) == 0 &&
+ (int) mbedtls_cipher_info_get_key_bitlen(ctx->cipher_info) != key_bitlen) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ ctx->key_bitlen = key_bitlen;
+ ctx->operation = operation;
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ /*
+ * For OFB, CFB and CTR mode always use the encryption key schedule
+ */
+ if (MBEDTLS_ENCRYPT == operation ||
+ MBEDTLS_MODE_CFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_OFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_CTR == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ return mbedtls_cipher_get_base(ctx->cipher_info)->setkey_enc_func(ctx->cipher_ctx, key,
+ ctx->key_bitlen);
+ }
+
+ if (MBEDTLS_DECRYPT == operation) {
+ return mbedtls_cipher_get_base(ctx->cipher_info)->setkey_dec_func(ctx->cipher_ctx, key,
+ ctx->key_bitlen);
+ }
+#else
+ if (operation == MBEDTLS_ENCRYPT || operation == MBEDTLS_DECRYPT) {
+ return mbedtls_cipher_get_base(ctx->cipher_info)->setkey_enc_func(ctx->cipher_ctx, key,
+ ctx->key_bitlen);
+ }
+#endif
+
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+}
+
+int mbedtls_cipher_set_iv(mbedtls_cipher_context_t *ctx,
+ const unsigned char *iv,
+ size_t iv_len)
+{
+ size_t actual_iv_size;
+
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* While PSA Crypto has an API for multipart
+ * operations, we currently don't make it
+ * accessible through the cipher layer. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ /* avoid buffer overflow in ctx->iv */
+ if (iv_len > MBEDTLS_MAX_IV_LENGTH) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ if ((ctx->cipher_info->flags & MBEDTLS_CIPHER_VARIABLE_IV_LEN) != 0) {
+ actual_iv_size = iv_len;
+ } else {
+ actual_iv_size = mbedtls_cipher_info_get_iv_size(ctx->cipher_info);
+
+ /* avoid reading past the end of input buffer */
+ if (actual_iv_size > iv_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+ }
+
+#if defined(MBEDTLS_CHACHA20_C)
+ if (((mbedtls_cipher_type_t) ctx->cipher_info->type) == MBEDTLS_CIPHER_CHACHA20) {
+ /* Even though the actual_iv_size is overwritten with a correct value
+ * of 12 from the cipher info, return an error to indicate that
+ * the input iv_len is wrong. */
+ if (iv_len != 12) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (0 != mbedtls_chacha20_starts((mbedtls_chacha20_context *) ctx->cipher_ctx,
+ iv,
+ 0U)) { /* Initial counter value */
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+ }
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ if (((mbedtls_cipher_type_t) ctx->cipher_info->type) == MBEDTLS_CIPHER_CHACHA20_POLY1305 &&
+ iv_len != 12) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+#endif
+#endif
+
+#if defined(MBEDTLS_GCM_C)
+ if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ return mbedtls_gcm_starts((mbedtls_gcm_context *) ctx->cipher_ctx,
+ ctx->operation,
+ iv, iv_len);
+ }
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+ if (MBEDTLS_MODE_CCM_STAR_NO_TAG == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ int set_lengths_result;
+ int ccm_star_mode;
+
+ set_lengths_result = mbedtls_ccm_set_lengths(
+ (mbedtls_ccm_context *) ctx->cipher_ctx,
+ 0, 0, 0);
+ if (set_lengths_result != 0) {
+ return set_lengths_result;
+ }
+
+ if (ctx->operation == MBEDTLS_DECRYPT) {
+ ccm_star_mode = MBEDTLS_CCM_STAR_DECRYPT;
+ } else if (ctx->operation == MBEDTLS_ENCRYPT) {
+ ccm_star_mode = MBEDTLS_CCM_STAR_ENCRYPT;
+ } else {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_ccm_starts((mbedtls_ccm_context *) ctx->cipher_ctx,
+ ccm_star_mode,
+ iv, iv_len);
+ }
+#endif
+
+ if (actual_iv_size != 0) {
+ memcpy(ctx->iv, iv, actual_iv_size);
+ ctx->iv_size = actual_iv_size;
+ }
+
+ return 0;
+}
+
+int mbedtls_cipher_reset(mbedtls_cipher_context_t *ctx)
+{
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* We don't support resetting PSA-based
+ * cipher contexts, yet. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ ctx->unprocessed_len = 0;
+
+ return 0;
+}
+
+#if defined(MBEDTLS_GCM_C) || defined(MBEDTLS_CHACHAPOLY_C)
+int mbedtls_cipher_update_ad(mbedtls_cipher_context_t *ctx,
+ const unsigned char *ad, size_t ad_len)
+{
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* While PSA Crypto has an API for multipart
+ * operations, we currently don't make it
+ * accessible through the cipher layer. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+ if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ return mbedtls_gcm_update_ad((mbedtls_gcm_context *) ctx->cipher_ctx,
+ ad, ad_len);
+ }
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+ int result;
+ mbedtls_chachapoly_mode_t mode;
+
+ mode = (ctx->operation == MBEDTLS_ENCRYPT)
+ ? MBEDTLS_CHACHAPOLY_ENCRYPT
+ : MBEDTLS_CHACHAPOLY_DECRYPT;
+
+ result = mbedtls_chachapoly_starts((mbedtls_chachapoly_context *) ctx->cipher_ctx,
+ ctx->iv,
+ mode);
+ if (result != 0) {
+ return result;
+ }
+
+ return mbedtls_chachapoly_update_aad((mbedtls_chachapoly_context *) ctx->cipher_ctx,
+ ad, ad_len);
+ }
+#endif
+
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+#endif /* MBEDTLS_GCM_C || MBEDTLS_CHACHAPOLY_C */
+
+int mbedtls_cipher_update(mbedtls_cipher_context_t *ctx, const unsigned char *input,
+ size_t ilen, unsigned char *output, size_t *olen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t block_size;
+
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* While PSA Crypto has an API for multipart
+ * operations, we currently don't make it
+ * accessible through the cipher layer. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ *olen = 0;
+ block_size = mbedtls_cipher_get_block_size(ctx);
+ if (0 == block_size) {
+ return MBEDTLS_ERR_CIPHER_INVALID_CONTEXT;
+ }
+
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_ECB) {
+ if (ilen != block_size) {
+ return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+ }
+
+ *olen = ilen;
+
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->ecb_func(ctx->cipher_ctx,
+ ctx->operation, input,
+ output))) {
+ return ret;
+ }
+
+ return 0;
+ }
+
+#if defined(MBEDTLS_GCM_C)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_GCM) {
+ return mbedtls_gcm_update((mbedtls_gcm_context *) ctx->cipher_ctx,
+ input, ilen,
+ output, ilen, olen);
+ }
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CCM_STAR_NO_TAG) {
+ return mbedtls_ccm_update((mbedtls_ccm_context *) ctx->cipher_ctx,
+ input, ilen,
+ output, ilen, olen);
+ }
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ if (((mbedtls_cipher_type_t) ctx->cipher_info->type) == MBEDTLS_CIPHER_CHACHA20_POLY1305) {
+ *olen = ilen;
+ return mbedtls_chachapoly_update((mbedtls_chachapoly_context *) ctx->cipher_ctx,
+ ilen, input, output);
+ }
+#endif
+
+ if (input == output &&
+ (ctx->unprocessed_len != 0 || ilen % block_size)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CBC) {
+ size_t copy_len = 0;
+
+ /*
+ * If there is not enough data for a full block, cache it.
+ */
+ if ((ctx->operation == MBEDTLS_DECRYPT && NULL != ctx->add_padding &&
+ ilen <= block_size - ctx->unprocessed_len) ||
+ (ctx->operation == MBEDTLS_DECRYPT && NULL == ctx->add_padding &&
+ ilen < block_size - ctx->unprocessed_len) ||
+ (ctx->operation == MBEDTLS_ENCRYPT &&
+ ilen < block_size - ctx->unprocessed_len)) {
+ memcpy(&(ctx->unprocessed_data[ctx->unprocessed_len]), input,
+ ilen);
+
+ ctx->unprocessed_len += ilen;
+ return 0;
+ }
+
+ /*
+ * Process cached data first
+ */
+ if (0 != ctx->unprocessed_len) {
+ copy_len = block_size - ctx->unprocessed_len;
+
+ memcpy(&(ctx->unprocessed_data[ctx->unprocessed_len]), input,
+ copy_len);
+
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cbc_func(ctx->cipher_ctx,
+ ctx->operation,
+ block_size, ctx->iv,
+ ctx->
+ unprocessed_data,
+ output))) {
+ return ret;
+ }
+
+ *olen += block_size;
+ output += block_size;
+ ctx->unprocessed_len = 0;
+
+ input += copy_len;
+ ilen -= copy_len;
+ }
+
+ /*
+ * Cache final, incomplete block
+ */
+ if (0 != ilen) {
+ /* Encryption: only cache partial blocks
+ * Decryption w/ padding: always keep at least one whole block
+ * Decryption w/o padding: only cache partial blocks
+ */
+ copy_len = ilen % block_size;
+ if (copy_len == 0 &&
+ ctx->operation == MBEDTLS_DECRYPT &&
+ NULL != ctx->add_padding) {
+ copy_len = block_size;
+ }
+
+ memcpy(ctx->unprocessed_data, &(input[ilen - copy_len]),
+ copy_len);
+
+ ctx->unprocessed_len += copy_len;
+ ilen -= copy_len;
+ }
+
+ /*
+ * Process remaining full blocks
+ */
+ if (ilen) {
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cbc_func(ctx->cipher_ctx,
+ ctx->operation,
+ ilen, ctx->iv,
+ input,
+ output))) {
+ return ret;
+ }
+
+ *olen += ilen;
+ }
+
+ return 0;
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CFB) {
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cfb_func(ctx->cipher_ctx,
+ ctx->operation, ilen,
+ &ctx->unprocessed_len,
+ ctx->iv,
+ input, output))) {
+ return ret;
+ }
+
+ *olen = ilen;
+
+ return 0;
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_OFB) {
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->ofb_func(ctx->cipher_ctx,
+ ilen,
+ &ctx->unprocessed_len,
+ ctx->iv,
+ input, output))) {
+ return ret;
+ }
+
+ *olen = ilen;
+
+ return 0;
+ }
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_CTR) {
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->ctr_func(ctx->cipher_ctx,
+ ilen,
+ &ctx->unprocessed_len,
+ ctx->iv,
+ ctx->unprocessed_data,
+ input, output))) {
+ return ret;
+ }
+
+ *olen = ilen;
+
+ return 0;
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_XTS) {
+ if (ctx->unprocessed_len > 0) {
+ /* We can only process an entire data unit at a time. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ ret = mbedtls_cipher_get_base(ctx->cipher_info)->xts_func(ctx->cipher_ctx,
+ ctx->operation,
+ ilen,
+ ctx->iv,
+ input,
+ output);
+ if (ret != 0) {
+ return ret;
+ }
+
+ *olen = ilen;
+
+ return 0;
+ }
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) == MBEDTLS_MODE_STREAM) {
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->stream_func(ctx->cipher_ctx,
+ ilen, input,
+ output))) {
+ return ret;
+ }
+
+ *olen = ilen;
+
+ return 0;
+ }
+#endif /* MBEDTLS_CIPHER_MODE_STREAM */
+
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+#if defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+/*
+ * PKCS7 (and PKCS5) padding: fill with ll bytes, with ll = padding_len
+ */
+static void add_pkcs_padding(unsigned char *output, size_t output_len,
+ size_t data_len)
+{
+ size_t padding_len = output_len - data_len;
+ unsigned char i;
+
+ for (i = 0; i < padding_len; i++) {
+ output[data_len + i] = (unsigned char) padding_len;
+ }
+}
+
+static int get_pkcs_padding(unsigned char *input, size_t input_len,
+ size_t *data_len)
+{
+ size_t i, pad_idx;
+ unsigned char padding_len;
+
+ if (NULL == input || NULL == data_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ padding_len = input[input_len - 1];
+ if (padding_len == 0 || padding_len > input_len) {
+ return MBEDTLS_ERR_CIPHER_INVALID_PADDING;
+ }
+ *data_len = input_len - padding_len;
+
+ mbedtls_ct_condition_t bad = mbedtls_ct_uint_gt(padding_len, input_len);
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_eq(padding_len, 0));
+
+ /* The number of bytes checked must be independent of padding_len,
+ * so pick input_len, which is usually 8 or 16 (one block) */
+ pad_idx = input_len - padding_len;
+ for (i = 0; i < input_len; i++) {
+ mbedtls_ct_condition_t in_padding = mbedtls_ct_uint_ge(i, pad_idx);
+ mbedtls_ct_condition_t different = mbedtls_ct_uint_ne(input[i], padding_len);
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_and(in_padding, different));
+ }
+
+ return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
+}
+#endif /* MBEDTLS_CIPHER_PADDING_PKCS7 */
+
+#if defined(MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS)
+/*
+ * One and zeros padding: fill with 80 00 ... 00
+ */
+static void add_one_and_zeros_padding(unsigned char *output,
+ size_t output_len, size_t data_len)
+{
+ size_t padding_len = output_len - data_len;
+ unsigned char i = 0;
+
+ output[data_len] = 0x80;
+ for (i = 1; i < padding_len; i++) {
+ output[data_len + i] = 0x00;
+ }
+}
+
+static int get_one_and_zeros_padding(unsigned char *input, size_t input_len,
+ size_t *data_len)
+{
+ if (NULL == input || NULL == data_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ mbedtls_ct_condition_t in_padding = MBEDTLS_CT_TRUE;
+ mbedtls_ct_condition_t bad = MBEDTLS_CT_TRUE;
+
+ *data_len = 0;
+
+ for (ptrdiff_t i = (ptrdiff_t) (input_len) - 1; i >= 0; i--) {
+ mbedtls_ct_condition_t is_nonzero = mbedtls_ct_bool(input[i]);
+
+ mbedtls_ct_condition_t hit_first_nonzero = mbedtls_ct_bool_and(is_nonzero, in_padding);
+
+ *data_len = mbedtls_ct_size_if(hit_first_nonzero, i, *data_len);
+
+ bad = mbedtls_ct_bool_if(hit_first_nonzero, mbedtls_ct_uint_ne(input[i], 0x80), bad);
+
+ in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_bool_not(is_nonzero));
+ }
+
+ return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
+}
+#endif /* MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS */
+
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN)
+/*
+ * Zeros and len padding: fill with 00 ... 00 ll, where ll is padding length
+ */
+static void add_zeros_and_len_padding(unsigned char *output,
+ size_t output_len, size_t data_len)
+{
+ size_t padding_len = output_len - data_len;
+ unsigned char i = 0;
+
+ for (i = 1; i < padding_len; i++) {
+ output[data_len + i - 1] = 0x00;
+ }
+ output[output_len - 1] = (unsigned char) padding_len;
+}
+
+static int get_zeros_and_len_padding(unsigned char *input, size_t input_len,
+ size_t *data_len)
+{
+ size_t i, pad_idx;
+ unsigned char padding_len;
+ mbedtls_ct_condition_t bad;
+
+ if (NULL == input || NULL == data_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ padding_len = input[input_len - 1];
+ *data_len = input_len - padding_len;
+
+ /* Avoid logical || since it results in a branch */
+ bad = mbedtls_ct_uint_gt(padding_len, input_len);
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_eq(padding_len, 0));
+
+ /* The number of bytes checked must be independent of padding_len */
+ pad_idx = input_len - padding_len;
+ for (i = 0; i < input_len - 1; i++) {
+ mbedtls_ct_condition_t is_padding = mbedtls_ct_uint_ge(i, pad_idx);
+ mbedtls_ct_condition_t nonzero_pad_byte;
+ nonzero_pad_byte = mbedtls_ct_bool_if_else_0(is_padding, mbedtls_ct_bool(input[i]));
+ bad = mbedtls_ct_bool_or(bad, nonzero_pad_byte);
+ }
+
+ return mbedtls_ct_error_if_else_0(bad, MBEDTLS_ERR_CIPHER_INVALID_PADDING);
+}
+#endif /* MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN */
+
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS)
+/*
+ * Zero padding: fill with 00 ... 00
+ */
+static void add_zeros_padding(unsigned char *output,
+ size_t output_len, size_t data_len)
+{
+ memset(output + data_len, 0, output_len - data_len);
+}
+
+static int get_zeros_padding(unsigned char *input, size_t input_len,
+ size_t *data_len)
+{
+ size_t i;
+ mbedtls_ct_condition_t done = MBEDTLS_CT_FALSE, prev_done;
+
+ if (NULL == input || NULL == data_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ *data_len = 0;
+ for (i = input_len; i > 0; i--) {
+ prev_done = done;
+ done = mbedtls_ct_bool_or(done, mbedtls_ct_uint_ne(input[i-1], 0));
+ *data_len = mbedtls_ct_size_if(mbedtls_ct_bool_ne(done, prev_done), i, *data_len);
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_PADDING_ZEROS */
+
+/*
+ * No padding: don't pad :)
+ *
+ * There is no add_padding function (check for NULL in mbedtls_cipher_finish)
+ * but a trivial get_padding function
+ */
+static int get_no_padding(unsigned char *input, size_t input_len,
+ size_t *data_len)
+{
+ if (NULL == input || NULL == data_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ *data_len = input_len;
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+
+int mbedtls_cipher_finish(mbedtls_cipher_context_t *ctx,
+ unsigned char *output, size_t *olen)
+{
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* While PSA Crypto has an API for multipart
+ * operations, we currently don't make it
+ * accessible through the cipher layer. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ *olen = 0;
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+ /* CBC mode requires padding so we make sure a call to
+ * mbedtls_cipher_set_padding_mode has been done successfully. */
+ if (MBEDTLS_MODE_CBC == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ if (ctx->get_padding == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+ }
+#endif
+
+ if (MBEDTLS_MODE_CFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_OFB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_CTR == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_CCM_STAR_NO_TAG == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_XTS == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_STREAM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ return 0;
+ }
+
+ if ((MBEDTLS_CIPHER_CHACHA20 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) ||
+ (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type))) {
+ return 0;
+ }
+
+ if (MBEDTLS_MODE_ECB == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ if (ctx->unprocessed_len != 0) {
+ return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+ }
+
+ return 0;
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ if (MBEDTLS_MODE_CBC == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ int ret = 0;
+
+ if (MBEDTLS_ENCRYPT == ctx->operation) {
+ /* check for 'no padding' mode */
+ if (NULL == ctx->add_padding) {
+ if (0 != ctx->unprocessed_len) {
+ return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+ }
+
+ return 0;
+ }
+
+ ctx->add_padding(ctx->unprocessed_data, mbedtls_cipher_get_iv_size(ctx),
+ ctx->unprocessed_len);
+ } else if (mbedtls_cipher_get_block_size(ctx) != ctx->unprocessed_len) {
+ /*
+ * For decrypt operations, expect a full block,
+ * or an empty block if no padding
+ */
+ if (NULL == ctx->add_padding && 0 == ctx->unprocessed_len) {
+ return 0;
+ }
+
+ return MBEDTLS_ERR_CIPHER_FULL_BLOCK_EXPECTED;
+ }
+
+ /* cipher block */
+ if (0 != (ret = mbedtls_cipher_get_base(ctx->cipher_info)->cbc_func(ctx->cipher_ctx,
+ ctx->operation,
+ mbedtls_cipher_get_block_size(
+ ctx),
+ ctx->iv,
+ ctx->unprocessed_data,
+ output))) {
+ return ret;
+ }
+
+ /* Set output size for decryption */
+ if (MBEDTLS_DECRYPT == ctx->operation) {
+ return ctx->get_padding(output, mbedtls_cipher_get_block_size(ctx),
+ olen);
+ }
+
+ /* Set output size for encryption */
+ *olen = mbedtls_cipher_get_block_size(ctx);
+ return 0;
+ }
+#else
+ ((void) output);
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+int mbedtls_cipher_set_padding_mode(mbedtls_cipher_context_t *ctx,
+ mbedtls_cipher_padding_t mode)
+{
+ if (NULL == ctx->cipher_info ||
+ MBEDTLS_MODE_CBC != ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* While PSA Crypto knows about CBC padding
+ * schemes, we currently don't make them
+ * accessible through the cipher layer. */
+ if (mode != MBEDTLS_PADDING_NONE) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ return 0;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ switch (mode) {
+#if defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+ case MBEDTLS_PADDING_PKCS7:
+ ctx->add_padding = add_pkcs_padding;
+ ctx->get_padding = get_pkcs_padding;
+ break;
+#endif
+#if defined(MBEDTLS_CIPHER_PADDING_ONE_AND_ZEROS)
+ case MBEDTLS_PADDING_ONE_AND_ZEROS:
+ ctx->add_padding = add_one_and_zeros_padding;
+ ctx->get_padding = get_one_and_zeros_padding;
+ break;
+#endif
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS_AND_LEN)
+ case MBEDTLS_PADDING_ZEROS_AND_LEN:
+ ctx->add_padding = add_zeros_and_len_padding;
+ ctx->get_padding = get_zeros_and_len_padding;
+ break;
+#endif
+#if defined(MBEDTLS_CIPHER_PADDING_ZEROS)
+ case MBEDTLS_PADDING_ZEROS:
+ ctx->add_padding = add_zeros_padding;
+ ctx->get_padding = get_zeros_padding;
+ break;
+#endif
+ case MBEDTLS_PADDING_NONE:
+ ctx->add_padding = NULL;
+ ctx->get_padding = get_no_padding;
+ break;
+
+ default:
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+
+#if defined(MBEDTLS_GCM_C) || defined(MBEDTLS_CHACHAPOLY_C)
+int mbedtls_cipher_write_tag(mbedtls_cipher_context_t *ctx,
+ unsigned char *tag, size_t tag_len)
+{
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (MBEDTLS_ENCRYPT != ctx->operation) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* While PSA Crypto has an API for multipart
+ * operations, we currently don't make it
+ * accessible through the cipher layer. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+ if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ size_t output_length;
+ /* The code here doesn't yet support alternative implementations
+ * that can delay up to a block of output. */
+ return mbedtls_gcm_finish((mbedtls_gcm_context *) ctx->cipher_ctx,
+ NULL, 0, &output_length,
+ tag, tag_len);
+ }
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+ /* Don't allow truncated MAC for Poly1305 */
+ if (tag_len != 16U) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_chachapoly_finish(
+ (mbedtls_chachapoly_context *) ctx->cipher_ctx, tag);
+ }
+#endif
+
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+int mbedtls_cipher_check_tag(mbedtls_cipher_context_t *ctx,
+ const unsigned char *tag, size_t tag_len)
+{
+ unsigned char check_tag[16];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (ctx->cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (MBEDTLS_DECRYPT != ctx->operation) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* While PSA Crypto has an API for multipart
+ * operations, we currently don't make it
+ * accessible through the cipher layer. */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ /* Status to return on a non-authenticated algorithm. */
+ ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+
+#if defined(MBEDTLS_GCM_C)
+ if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ size_t output_length;
+ /* The code here doesn't yet support alternative implementations
+ * that can delay up to a block of output. */
+
+ if (tag_len > sizeof(check_tag)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (0 != (ret = mbedtls_gcm_finish(
+ (mbedtls_gcm_context *) ctx->cipher_ctx,
+ NULL, 0, &output_length,
+ check_tag, tag_len))) {
+ return ret;
+ }
+
+ /* Check the tag in "constant-time" */
+ if (mbedtls_ct_memcmp(tag, check_tag, tag_len) != 0) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ goto exit;
+ }
+ }
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+ /* Don't allow truncated MAC for Poly1305 */
+ if (tag_len != sizeof(check_tag)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ ret = mbedtls_chachapoly_finish(
+ (mbedtls_chachapoly_context *) ctx->cipher_ctx, check_tag);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Check the tag in "constant-time" */
+ if (mbedtls_ct_memcmp(tag, check_tag, tag_len) != 0) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ goto exit;
+ }
+ }
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+exit:
+ mbedtls_platform_zeroize(check_tag, tag_len);
+ return ret;
+}
+#endif /* MBEDTLS_GCM_C || MBEDTLS_CHACHAPOLY_C */
+
+/*
+ * Packet-oriented wrapper for non-AEAD modes
+ */
+int mbedtls_cipher_crypt(mbedtls_cipher_context_t *ctx,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t finish_olen;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* As in the non-PSA case, we don't check that
+ * a key has been set. If not, the key slot will
+ * still be in its default state of 0, which is
+ * guaranteed to be invalid, hence the PSA-call
+ * below will gracefully fail. */
+ mbedtls_cipher_context_psa * const cipher_psa =
+ (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+ psa_status_t status;
+ psa_cipher_operation_t cipher_op = PSA_CIPHER_OPERATION_INIT;
+ size_t part_len;
+
+ if (ctx->operation == MBEDTLS_DECRYPT) {
+ status = psa_cipher_decrypt_setup(&cipher_op,
+ cipher_psa->slot,
+ cipher_psa->alg);
+ } else if (ctx->operation == MBEDTLS_ENCRYPT) {
+ status = psa_cipher_encrypt_setup(&cipher_op,
+ cipher_psa->slot,
+ cipher_psa->alg);
+ } else {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ /* In the following, we can immediately return on an error,
+ * because the PSA Crypto API guarantees that cipher operations
+ * are terminated by unsuccessful calls to psa_cipher_update(),
+ * and by any call to psa_cipher_finish(). */
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ }
+
+ if (((mbedtls_cipher_mode_t) ctx->cipher_info->mode) != MBEDTLS_MODE_ECB) {
+ status = psa_cipher_set_iv(&cipher_op, iv, iv_len);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ }
+ }
+
+ status = psa_cipher_update(&cipher_op,
+ input, ilen,
+ output, ilen, olen);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ }
+
+ status = psa_cipher_finish(&cipher_op,
+ output + *olen, ilen - *olen,
+ &part_len);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ }
+
+ *olen += part_len;
+ return 0;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+ if ((ret = mbedtls_cipher_set_iv(ctx, iv, iv_len)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_cipher_reset(ctx)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_cipher_update(ctx, input, ilen,
+ output, olen)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_cipher_finish(ctx, output + *olen,
+ &finish_olen)) != 0) {
+ return ret;
+ }
+
+ *olen += finish_olen;
+
+ return 0;
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD)
+/*
+ * Packet-oriented encryption for AEAD modes: internal function used by
+ * mbedtls_cipher_auth_encrypt_ext().
+ */
+static int mbedtls_cipher_aead_encrypt(mbedtls_cipher_context_t *ctx,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *ad, size_t ad_len,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen,
+ unsigned char *tag, size_t tag_len)
+{
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* As in the non-PSA case, we don't check that
+ * a key has been set. If not, the key slot will
+ * still be in its default state of 0, which is
+ * guaranteed to be invalid, hence the PSA-call
+ * below will gracefully fail. */
+ mbedtls_cipher_context_psa * const cipher_psa =
+ (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+ psa_status_t status;
+
+ /* PSA Crypto API always writes the authentication tag
+ * at the end of the encrypted message. */
+ if (output == NULL || tag != output + ilen) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ status = psa_aead_encrypt(cipher_psa->slot,
+ cipher_psa->alg,
+ iv, iv_len,
+ ad, ad_len,
+ input, ilen,
+ output, ilen + tag_len, olen);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ }
+
+ *olen -= tag_len;
+ return 0;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+ if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ *olen = ilen;
+ return mbedtls_gcm_crypt_and_tag(ctx->cipher_ctx, MBEDTLS_GCM_ENCRYPT,
+ ilen, iv, iv_len, ad, ad_len,
+ input, output, tag_len, tag);
+ }
+#endif /* MBEDTLS_GCM_C */
+#if defined(MBEDTLS_CCM_C)
+ if (MBEDTLS_MODE_CCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ *olen = ilen;
+ return mbedtls_ccm_encrypt_and_tag(ctx->cipher_ctx, ilen,
+ iv, iv_len, ad, ad_len, input, output,
+ tag, tag_len);
+ }
+#endif /* MBEDTLS_CCM_C */
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+ /* ChachaPoly has fixed length nonce and MAC (tag) */
+ if ((iv_len != mbedtls_cipher_info_get_iv_size(ctx->cipher_info)) ||
+ (tag_len != 16U)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ *olen = ilen;
+ return mbedtls_chachapoly_encrypt_and_tag(ctx->cipher_ctx,
+ ilen, iv, ad, ad_len, input, output, tag);
+ }
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+
+/*
+ * Packet-oriented encryption for AEAD modes: internal function used by
+ * mbedtls_cipher_auth_encrypt_ext().
+ */
+static int mbedtls_cipher_aead_decrypt(mbedtls_cipher_context_t *ctx,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *ad, size_t ad_len,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen,
+ const unsigned char *tag, size_t tag_len)
+{
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ if (ctx->psa_enabled == 1) {
+ /* As in the non-PSA case, we don't check that
+ * a key has been set. If not, the key slot will
+ * still be in its default state of 0, which is
+ * guaranteed to be invalid, hence the PSA-call
+ * below will gracefully fail. */
+ mbedtls_cipher_context_psa * const cipher_psa =
+ (mbedtls_cipher_context_psa *) ctx->cipher_ctx;
+
+ psa_status_t status;
+
+ /* PSA Crypto API always writes the authentication tag
+ * at the end of the encrypted message. */
+ if (input == NULL || tag != input + ilen) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ status = psa_aead_decrypt(cipher_psa->slot,
+ cipher_psa->alg,
+ iv, iv_len,
+ ad, ad_len,
+ input, ilen + tag_len,
+ output, ilen, olen);
+ if (status == PSA_ERROR_INVALID_SIGNATURE) {
+ return MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ } else if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ }
+
+ return 0;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO && !MBEDTLS_DEPRECATED_REMOVED */
+
+#if defined(MBEDTLS_GCM_C)
+ if (MBEDTLS_MODE_GCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ *olen = ilen;
+ ret = mbedtls_gcm_auth_decrypt(ctx->cipher_ctx, ilen,
+ iv, iv_len, ad, ad_len,
+ tag, tag_len, input, output);
+
+ if (ret == MBEDTLS_ERR_GCM_AUTH_FAILED) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ }
+
+ return ret;
+ }
+#endif /* MBEDTLS_GCM_C */
+#if defined(MBEDTLS_CCM_C)
+ if (MBEDTLS_MODE_CCM == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) {
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ *olen = ilen;
+ ret = mbedtls_ccm_auth_decrypt(ctx->cipher_ctx, ilen,
+ iv, iv_len, ad, ad_len,
+ input, output, tag, tag_len);
+
+ if (ret == MBEDTLS_ERR_CCM_AUTH_FAILED) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ }
+
+ return ret;
+ }
+#endif /* MBEDTLS_CCM_C */
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ if (MBEDTLS_CIPHER_CHACHA20_POLY1305 == ((mbedtls_cipher_type_t) ctx->cipher_info->type)) {
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* ChachaPoly has fixed length nonce and MAC (tag) */
+ if ((iv_len != mbedtls_cipher_info_get_iv_size(ctx->cipher_info)) ||
+ (tag_len != 16U)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ *olen = ilen;
+ ret = mbedtls_chachapoly_auth_decrypt(ctx->cipher_ctx, ilen,
+ iv, ad, ad_len, tag, input, output);
+
+ if (ret == MBEDTLS_ERR_CHACHAPOLY_AUTH_FAILED) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ }
+
+ return ret;
+ }
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+}
+#endif /* MBEDTLS_CIPHER_MODE_AEAD */
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD) || defined(MBEDTLS_NIST_KW_C)
+/*
+ * Packet-oriented encryption for AEAD/NIST_KW: public function.
+ */
+int mbedtls_cipher_auth_encrypt_ext(mbedtls_cipher_context_t *ctx,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *ad, size_t ad_len,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t output_len,
+ size_t *olen, size_t tag_len)
+{
+#if defined(MBEDTLS_NIST_KW_C)
+ if (
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ ctx->psa_enabled == 0 &&
+#endif
+ (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_KWP == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode))) {
+ mbedtls_nist_kw_mode_t mode =
+ (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) ?
+ MBEDTLS_KW_MODE_KW : MBEDTLS_KW_MODE_KWP;
+
+ /* There is no iv, tag or ad associated with KW and KWP,
+ * so these length should be 0 as documented. */
+ if (iv_len != 0 || tag_len != 0 || ad_len != 0) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ (void) iv;
+ (void) ad;
+
+ return mbedtls_nist_kw_wrap(ctx->cipher_ctx, mode, input, ilen,
+ output, olen, output_len);
+ }
+#endif /* MBEDTLS_NIST_KW_C */
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD)
+ /* AEAD case: check length before passing on to shared function */
+ if (output_len < ilen + tag_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ int ret = mbedtls_cipher_aead_encrypt(ctx, iv, iv_len, ad, ad_len,
+ input, ilen, output, olen,
+ output + ilen, tag_len);
+ *olen += tag_len;
+ return ret;
+#else
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_CIPHER_MODE_AEAD */
+}
+
+/*
+ * Packet-oriented decryption for AEAD/NIST_KW: public function.
+ */
+int mbedtls_cipher_auth_decrypt_ext(mbedtls_cipher_context_t *ctx,
+ const unsigned char *iv, size_t iv_len,
+ const unsigned char *ad, size_t ad_len,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t output_len,
+ size_t *olen, size_t tag_len)
+{
+#if defined(MBEDTLS_NIST_KW_C)
+ if (
+#if defined(MBEDTLS_USE_PSA_CRYPTO) && !defined(MBEDTLS_DEPRECATED_REMOVED)
+ ctx->psa_enabled == 0 &&
+#endif
+ (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode) ||
+ MBEDTLS_MODE_KWP == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode))) {
+ mbedtls_nist_kw_mode_t mode =
+ (MBEDTLS_MODE_KW == ((mbedtls_cipher_mode_t) ctx->cipher_info->mode)) ?
+ MBEDTLS_KW_MODE_KW : MBEDTLS_KW_MODE_KWP;
+
+ /* There is no iv, tag or ad associated with KW and KWP,
+ * so these length should be 0 as documented. */
+ if (iv_len != 0 || tag_len != 0 || ad_len != 0) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ (void) iv;
+ (void) ad;
+
+ return mbedtls_nist_kw_unwrap(ctx->cipher_ctx, mode, input, ilen,
+ output, olen, output_len);
+ }
+#endif /* MBEDTLS_NIST_KW_C */
+
+#if defined(MBEDTLS_CIPHER_MODE_AEAD)
+ /* AEAD case: check length before passing on to shared function */
+ if (ilen < tag_len || output_len < ilen - tag_len) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_cipher_aead_decrypt(ctx, iv, iv_len, ad, ad_len,
+ input, ilen - tag_len, output, olen,
+ input + ilen - tag_len, tag_len);
+#else
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_CIPHER_MODE_AEAD */
+}
+#endif /* MBEDTLS_CIPHER_MODE_AEAD || MBEDTLS_NIST_KW_C */
+
+#endif /* MBEDTLS_CIPHER_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/cipher_wrap.c b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.c
new file mode 100644
index 0000000..d2fee22
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.c
@@ -0,0 +1,2482 @@
+/**
+ * \file cipher_wrap.c
+ *
+ * \brief Generic cipher wrapper for Mbed TLS
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CIPHER_C)
+
+#include "cipher_wrap.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+#include "mbedtls/chachapoly.h"
+#endif
+
+#if defined(MBEDTLS_AES_C)
+#include "mbedtls/aes.h"
+#endif
+
+#if defined(MBEDTLS_CAMELLIA_C)
+#include "mbedtls/camellia.h"
+#endif
+
+#if defined(MBEDTLS_ARIA_C)
+#include "mbedtls/aria.h"
+#endif
+
+#if defined(MBEDTLS_DES_C)
+#include "mbedtls/des.h"
+#endif
+
+#if defined(MBEDTLS_CHACHA20_C)
+#include "mbedtls/chacha20.h"
+#endif
+
+#if defined(MBEDTLS_GCM_C)
+#include "mbedtls/gcm.h"
+#endif
+
+#if defined(MBEDTLS_CCM_C)
+#include "mbedtls/ccm.h"
+#endif
+
+#if defined(MBEDTLS_NIST_KW_C)
+#include "mbedtls/nist_kw.h"
+#endif
+
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+#include <string.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+enum mbedtls_cipher_base_index {
+#if defined(MBEDTLS_AES_C)
+ MBEDTLS_CIPHER_BASE_INDEX_AES,
+#endif
+#if defined(MBEDTLS_ARIA_C)
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA,
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_AES,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_ARIA_C)
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_CAMELLIA_C)
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA,
+#endif
+#if defined(MBEDTLS_CHACHA20_C)
+ MBEDTLS_CIPHER_BASE_INDEX_CHACHA20_BASE,
+#endif
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ MBEDTLS_CIPHER_BASE_INDEX_CHACHAPOLY_BASE,
+#endif
+#if defined(MBEDTLS_DES_C)
+ MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3,
+#endif
+#if defined(MBEDTLS_DES_C)
+ MBEDTLS_CIPHER_BASE_INDEX_DES_EDE,
+#endif
+#if defined(MBEDTLS_DES_C)
+ MBEDTLS_CIPHER_BASE_INDEX_DES,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_AES,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_ARIA_C)
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_CAMELLIA_C)
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA,
+#endif
+#if defined(MBEDTLS_NIST_KW_C)
+ MBEDTLS_CIPHER_BASE_INDEX_KW_AES,
+#endif
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+ MBEDTLS_CIPHER_BASE_INDEX_NULL_BASE,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS) && defined(MBEDTLS_AES_C)
+ MBEDTLS_CIPHER_BASE_INDEX_XTS_AES,
+#endif
+ /* Prevent compile failure due to empty enum */
+ MBEDTLS_CIPHER_BASE_PREVENT_EMPTY_ENUM
+};
+
+#if defined(MBEDTLS_GCM_C) && \
+ (defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA) || \
+ defined(MBEDTLS_ARIA_C) || defined(MBEDTLS_CAMELLIA_C))
+/* shared by all GCM ciphers */
+static void *gcm_ctx_alloc(void)
+{
+ void *ctx = mbedtls_calloc(1, sizeof(mbedtls_gcm_context));
+
+ if (ctx != NULL) {
+ mbedtls_gcm_init((mbedtls_gcm_context *) ctx);
+ }
+
+ return ctx;
+}
+
+static void gcm_ctx_free(void *ctx)
+{
+ mbedtls_gcm_free(ctx);
+ mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CCM_C) && \
+ (defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA) || \
+ defined(MBEDTLS_ARIA_C) || defined(MBEDTLS_CAMELLIA_C))
+/* shared by all CCM ciphers */
+static void *ccm_ctx_alloc(void)
+{
+ void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ccm_context));
+
+ if (ctx != NULL) {
+ mbedtls_ccm_init((mbedtls_ccm_context *) ctx);
+ }
+
+ return ctx;
+}
+
+static void ccm_ctx_free(void *ctx)
+{
+ mbedtls_ccm_free(ctx);
+ mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_CCM_C */
+
+#if defined(MBEDTLS_AES_C)
+
+static int aes_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aes_crypt_ecb((mbedtls_aes_context *) ctx, operation, input, output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int aes_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation, size_t length,
+ unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aes_crypt_cbc((mbedtls_aes_context *) ctx, operation, length, iv, input,
+ output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static int aes_crypt_cfb128_wrap(void *ctx, mbedtls_operation_t operation,
+ size_t length, size_t *iv_off, unsigned char *iv,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aes_crypt_cfb128((mbedtls_aes_context *) ctx, operation, length, iv_off, iv,
+ input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+static int aes_crypt_ofb_wrap(void *ctx, size_t length, size_t *iv_off,
+ unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aes_crypt_ofb((mbedtls_aes_context *) ctx, length, iv_off,
+ iv, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static int aes_crypt_ctr_wrap(void *ctx, size_t length, size_t *nc_off,
+ unsigned char *nonce_counter, unsigned char *stream_block,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aes_crypt_ctr((mbedtls_aes_context *) ctx, length, nc_off, nonce_counter,
+ stream_block, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+static int aes_crypt_xts_wrap(void *ctx, mbedtls_operation_t operation,
+ size_t length,
+ const unsigned char data_unit[16],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ mbedtls_aes_xts_context *xts_ctx = ctx;
+ int mode;
+
+ switch (operation) {
+ case MBEDTLS_ENCRYPT:
+ mode = MBEDTLS_AES_ENCRYPT;
+ break;
+ case MBEDTLS_DECRYPT:
+ mode = MBEDTLS_AES_DECRYPT;
+ break;
+ default:
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_aes_crypt_xts(xts_ctx, mode, length,
+ data_unit, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static int aes_setkey_dec_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_aes_setkey_dec((mbedtls_aes_context *) ctx, key, key_bitlen);
+}
+#endif
+
+static int aes_setkey_enc_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_aes_setkey_enc((mbedtls_aes_context *) ctx, key, key_bitlen);
+}
+
+static void *aes_ctx_alloc(void)
+{
+ mbedtls_aes_context *aes = mbedtls_calloc(1, sizeof(mbedtls_aes_context));
+
+ if (aes == NULL) {
+ return NULL;
+ }
+
+ mbedtls_aes_init(aes);
+
+ return aes;
+}
+
+static void aes_ctx_free(void *ctx)
+{
+ mbedtls_aes_free((mbedtls_aes_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t aes_info = {
+ MBEDTLS_CIPHER_ID_AES,
+ aes_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ aes_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ aes_crypt_cfb128_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ aes_crypt_ofb_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ aes_crypt_ctr_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ aes_setkey_enc_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ aes_setkey_dec_wrap,
+#endif
+ aes_ctx_alloc,
+ aes_ctx_free
+};
+
+static const mbedtls_cipher_info_t aes_128_ecb_info = {
+ "AES-128-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_AES_128_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ecb_info = {
+ "AES-192-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_AES_192_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ecb_info = {
+ "AES-256-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_AES_256_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t aes_128_cbc_info = {
+ "AES-128-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_AES_128_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_cbc_info = {
+ "AES-192-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_AES_192_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_cbc_info = {
+ "AES-256-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_AES_256_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const mbedtls_cipher_info_t aes_128_cfb128_info = {
+ "AES-128-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_AES_128_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_cfb128_info = {
+ "AES-192-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_AES_192_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_cfb128_info = {
+ "AES-256-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_AES_256_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+static const mbedtls_cipher_info_t aes_128_ofb_info = {
+ "AES-128-OFB",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_OFB,
+ MBEDTLS_CIPHER_AES_128_OFB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ofb_info = {
+ "AES-192-OFB",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_OFB,
+ MBEDTLS_CIPHER_AES_192_OFB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ofb_info = {
+ "AES-256-OFB",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_OFB,
+ MBEDTLS_CIPHER_AES_256_OFB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_OFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const mbedtls_cipher_info_t aes_128_ctr_info = {
+ "AES-128-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_AES_128_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ctr_info = {
+ "AES-192-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_AES_192_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ctr_info = {
+ "AES-256-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_AES_256_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+static int xts_aes_setkey_enc_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ mbedtls_aes_xts_context *xts_ctx = ctx;
+ return mbedtls_aes_xts_setkey_enc(xts_ctx, key, key_bitlen);
+}
+
+static int xts_aes_setkey_dec_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ mbedtls_aes_xts_context *xts_ctx = ctx;
+ return mbedtls_aes_xts_setkey_dec(xts_ctx, key, key_bitlen);
+}
+
+static void *xts_aes_ctx_alloc(void)
+{
+ mbedtls_aes_xts_context *xts_ctx = mbedtls_calloc(1, sizeof(*xts_ctx));
+
+ if (xts_ctx != NULL) {
+ mbedtls_aes_xts_init(xts_ctx);
+ }
+
+ return xts_ctx;
+}
+
+static void xts_aes_ctx_free(void *ctx)
+{
+ mbedtls_aes_xts_context *xts_ctx = ctx;
+
+ if (xts_ctx == NULL) {
+ return;
+ }
+
+ mbedtls_aes_xts_free(xts_ctx);
+ mbedtls_free(xts_ctx);
+}
+
+static const mbedtls_cipher_base_t xts_aes_info = {
+ MBEDTLS_CIPHER_ID_AES,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ aes_crypt_xts_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ xts_aes_setkey_enc_wrap,
+ xts_aes_setkey_dec_wrap,
+ xts_aes_ctx_alloc,
+ xts_aes_ctx_free
+};
+
+static const mbedtls_cipher_info_t aes_128_xts_info = {
+ "AES-128-XTS",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_XTS,
+ MBEDTLS_CIPHER_AES_128_XTS,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_XTS_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_256_xts_info = {
+ "AES-256-XTS",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 512 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_XTS,
+ MBEDTLS_CIPHER_AES_256_XTS,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_XTS_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_MODE_XTS */
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+static int gcm_aes_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_gcm_setkey((mbedtls_gcm_context *) ctx, MBEDTLS_CIPHER_ID_AES,
+ key, key_bitlen);
+}
+#endif /* MBEDTLS_GCM_C && MBEDTLS_CCM_GCM_CAN_AES */
+
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_base_t gcm_aes_info = {
+ MBEDTLS_CIPHER_ID_AES,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+#if defined(MBEDTLS_GCM_C)
+ gcm_aes_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ gcm_aes_setkey_wrap,
+#endif
+ gcm_ctx_alloc,
+ gcm_ctx_free,
+#else
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+#endif /* MBEDTLS_GCM_C */
+};
+#endif /* MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_info_t aes_128_gcm_info = {
+ "AES-128-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_AES_128_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_gcm_info = {
+ "AES-192-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_AES_192_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_gcm_info = {
+ "AES-256-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_AES_256_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+static int ccm_aes_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_ccm_setkey((mbedtls_ccm_context *) ctx, MBEDTLS_CIPHER_ID_AES,
+ key, key_bitlen);
+}
+#endif /* MBEDTLS_CCM_C && MBEDTLS_CCM_GCM_CAN_AES */
+
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_base_t ccm_aes_info = {
+ MBEDTLS_CIPHER_ID_AES,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+#if defined(MBEDTLS_CCM_C)
+ ccm_aes_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ ccm_aes_setkey_wrap,
+#endif
+ ccm_ctx_alloc,
+ ccm_ctx_free,
+#else
+ NULL,
+ NULL,
+ NULL,
+ NULL,
+#endif
+};
+#endif /* MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_info_t aes_128_ccm_info = {
+ "AES-128-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_AES_128_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ccm_info = {
+ "AES-192-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_AES_192_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ccm_info = {
+ "AES-256-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_AES_256_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA */
+
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA)
+static const mbedtls_cipher_info_t aes_128_ccm_star_no_tag_info = {
+ "AES-128-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_AES_128_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_ccm_star_no_tag_info = {
+ "AES-192-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_AES_192_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_ccm_star_no_tag_info = {
+ "AES-256-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_AES_256_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_AES
+};
+#endif
+#endif /* MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA */
+
+
+#if defined(MBEDTLS_CAMELLIA_C)
+
+static int camellia_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_camellia_crypt_ecb((mbedtls_camellia_context *) ctx, operation, input,
+ output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int camellia_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation,
+ size_t length, unsigned char *iv,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_camellia_crypt_cbc((mbedtls_camellia_context *) ctx, operation, length, iv,
+ input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static int camellia_crypt_cfb128_wrap(void *ctx, mbedtls_operation_t operation,
+ size_t length, size_t *iv_off, unsigned char *iv,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_camellia_crypt_cfb128((mbedtls_camellia_context *) ctx, operation, length,
+ iv_off, iv, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static int camellia_crypt_ctr_wrap(void *ctx, size_t length, size_t *nc_off,
+ unsigned char *nonce_counter, unsigned char *stream_block,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_camellia_crypt_ctr((mbedtls_camellia_context *) ctx, length, nc_off,
+ nonce_counter, stream_block, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static int camellia_setkey_dec_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_camellia_setkey_dec((mbedtls_camellia_context *) ctx, key, key_bitlen);
+}
+#endif
+
+static int camellia_setkey_enc_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_camellia_setkey_enc((mbedtls_camellia_context *) ctx, key, key_bitlen);
+}
+
+static void *camellia_ctx_alloc(void)
+{
+ mbedtls_camellia_context *ctx;
+ ctx = mbedtls_calloc(1, sizeof(mbedtls_camellia_context));
+
+ if (ctx == NULL) {
+ return NULL;
+ }
+
+ mbedtls_camellia_init(ctx);
+
+ return ctx;
+}
+
+static void camellia_ctx_free(void *ctx)
+{
+ mbedtls_camellia_free((mbedtls_camellia_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t camellia_info = {
+ MBEDTLS_CIPHER_ID_CAMELLIA,
+ camellia_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ camellia_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ camellia_crypt_cfb128_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ camellia_crypt_ctr_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ camellia_setkey_enc_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ camellia_setkey_dec_wrap,
+#endif
+ camellia_ctx_alloc,
+ camellia_ctx_free
+};
+
+static const mbedtls_cipher_info_t camellia_128_ecb_info = {
+ "CAMELLIA-128-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_CAMELLIA_128_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ecb_info = {
+ "CAMELLIA-192-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_CAMELLIA_192_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ecb_info = {
+ "CAMELLIA-256-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_CAMELLIA_256_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t camellia_128_cbc_info = {
+ "CAMELLIA-128-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_CAMELLIA_128_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_cbc_info = {
+ "CAMELLIA-192-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_CAMELLIA_192_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_cbc_info = {
+ "CAMELLIA-256-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_CAMELLIA_256_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const mbedtls_cipher_info_t camellia_128_cfb128_info = {
+ "CAMELLIA-128-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_CAMELLIA_128_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_cfb128_info = {
+ "CAMELLIA-192-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_CAMELLIA_192_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_cfb128_info = {
+ "CAMELLIA-256-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_CAMELLIA_256_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const mbedtls_cipher_info_t camellia_128_ctr_info = {
+ "CAMELLIA-128-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_CAMELLIA_128_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ctr_info = {
+ "CAMELLIA-192-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_CAMELLIA_192_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ctr_info = {
+ "CAMELLIA-256-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_CAMELLIA_256_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_GCM_C)
+static int gcm_camellia_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_gcm_setkey((mbedtls_gcm_context *) ctx, MBEDTLS_CIPHER_ID_CAMELLIA,
+ key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t gcm_camellia_info = {
+ MBEDTLS_CIPHER_ID_CAMELLIA,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ gcm_camellia_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ gcm_camellia_setkey_wrap,
+#endif
+ gcm_ctx_alloc,
+ gcm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t camellia_128_gcm_info = {
+ "CAMELLIA-128-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_CAMELLIA_128_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_gcm_info = {
+ "CAMELLIA-192-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_CAMELLIA_192_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_gcm_info = {
+ "CAMELLIA-256-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_CAMELLIA_256_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA
+};
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CCM_C)
+static int ccm_camellia_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_ccm_setkey((mbedtls_ccm_context *) ctx, MBEDTLS_CIPHER_ID_CAMELLIA,
+ key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t ccm_camellia_info = {
+ MBEDTLS_CIPHER_ID_CAMELLIA,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ ccm_camellia_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ ccm_camellia_setkey_wrap,
+#endif
+ ccm_ctx_alloc,
+ ccm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t camellia_128_ccm_info = {
+ "CAMELLIA-128-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_CAMELLIA_128_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ccm_info = {
+ "CAMELLIA-192-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_CAMELLIA_192_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ccm_info = {
+ "CAMELLIA-256-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_CAMELLIA_256_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_128_ccm_star_no_tag_info = {
+ "CAMELLIA-128-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_CAMELLIA_128_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_192_ccm_star_no_tag_info = {
+ "CAMELLIA-192-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_CAMELLIA_192_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+
+static const mbedtls_cipher_info_t camellia_256_ccm_star_no_tag_info = {
+ "CAMELLIA-256-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_CAMELLIA_256_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA
+};
+#endif /* MBEDTLS_CCM_C */
+
+#endif /* MBEDTLS_CAMELLIA_C */
+
+#if defined(MBEDTLS_ARIA_C)
+
+static int aria_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+ const unsigned char *input, unsigned char *output)
+{
+ (void) operation;
+ return mbedtls_aria_crypt_ecb((mbedtls_aria_context *) ctx, input,
+ output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int aria_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation,
+ size_t length, unsigned char *iv,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aria_crypt_cbc((mbedtls_aria_context *) ctx, operation, length, iv,
+ input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static int aria_crypt_cfb128_wrap(void *ctx, mbedtls_operation_t operation,
+ size_t length, size_t *iv_off, unsigned char *iv,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aria_crypt_cfb128((mbedtls_aria_context *) ctx, operation, length,
+ iv_off, iv, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static int aria_crypt_ctr_wrap(void *ctx, size_t length, size_t *nc_off,
+ unsigned char *nonce_counter, unsigned char *stream_block,
+ const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_aria_crypt_ctr((mbedtls_aria_context *) ctx, length, nc_off,
+ nonce_counter, stream_block, input, output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static int aria_setkey_dec_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_aria_setkey_dec((mbedtls_aria_context *) ctx, key, key_bitlen);
+}
+#endif
+
+static int aria_setkey_enc_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_aria_setkey_enc((mbedtls_aria_context *) ctx, key, key_bitlen);
+}
+
+static void *aria_ctx_alloc(void)
+{
+ mbedtls_aria_context *ctx;
+ ctx = mbedtls_calloc(1, sizeof(mbedtls_aria_context));
+
+ if (ctx == NULL) {
+ return NULL;
+ }
+
+ mbedtls_aria_init(ctx);
+
+ return ctx;
+}
+
+static void aria_ctx_free(void *ctx)
+{
+ mbedtls_aria_free((mbedtls_aria_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t aria_info = {
+ MBEDTLS_CIPHER_ID_ARIA,
+ aria_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ aria_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ aria_crypt_cfb128_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ aria_crypt_ctr_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ aria_setkey_enc_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ aria_setkey_dec_wrap,
+#endif
+ aria_ctx_alloc,
+ aria_ctx_free
+};
+
+static const mbedtls_cipher_info_t aria_128_ecb_info = {
+ "ARIA-128-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_ARIA_128_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ecb_info = {
+ "ARIA-192-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_ARIA_192_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ecb_info = {
+ "ARIA-256-ECB",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_ARIA_256_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t aria_128_cbc_info = {
+ "ARIA-128-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_ARIA_128_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_cbc_info = {
+ "ARIA-192-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_ARIA_192_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_cbc_info = {
+ "ARIA-256-CBC",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_ARIA_256_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+static const mbedtls_cipher_info_t aria_128_cfb128_info = {
+ "ARIA-128-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_ARIA_128_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_cfb128_info = {
+ "ARIA-192-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_ARIA_192_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_cfb128_info = {
+ "ARIA-256-CFB128",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CFB,
+ MBEDTLS_CIPHER_ARIA_256_CFB128,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CFB */
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+static const mbedtls_cipher_info_t aria_128_ctr_info = {
+ "ARIA-128-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_ARIA_128_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ctr_info = {
+ "ARIA-192-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_ARIA_192_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ctr_info = {
+ "ARIA-256-CTR",
+ 16,
+ 16 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CTR,
+ MBEDTLS_CIPHER_ARIA_256_CTR,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_ARIA
+};
+#endif /* MBEDTLS_CIPHER_MODE_CTR */
+
+#if defined(MBEDTLS_GCM_C)
+static int gcm_aria_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_gcm_setkey((mbedtls_gcm_context *) ctx, MBEDTLS_CIPHER_ID_ARIA,
+ key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t gcm_aria_info = {
+ MBEDTLS_CIPHER_ID_ARIA,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ gcm_aria_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ gcm_aria_setkey_wrap,
+#endif
+ gcm_ctx_alloc,
+ gcm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t aria_128_gcm_info = {
+ "ARIA-128-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_ARIA_128_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_gcm_info = {
+ "ARIA-192-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_ARIA_192_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_gcm_info = {
+ "ARIA-256-GCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_GCM,
+ MBEDTLS_CIPHER_ARIA_256_GCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA
+};
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_CCM_C)
+static int ccm_aria_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_ccm_setkey((mbedtls_ccm_context *) ctx, MBEDTLS_CIPHER_ID_ARIA,
+ key, key_bitlen);
+}
+
+static const mbedtls_cipher_base_t ccm_aria_info = {
+ MBEDTLS_CIPHER_ID_ARIA,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ ccm_aria_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ ccm_aria_setkey_wrap,
+#endif
+ ccm_ctx_alloc,
+ ccm_ctx_free,
+};
+
+static const mbedtls_cipher_info_t aria_128_ccm_info = {
+ "ARIA-128-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_ARIA_128_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ccm_info = {
+ "ARIA-192-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_ARIA_192_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ccm_info = {
+ "ARIA-256-CCM",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM,
+ MBEDTLS_CIPHER_ARIA_256_CCM,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_128_ccm_star_no_tag_info = {
+ "ARIA-128-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_ARIA_128_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_192_ccm_star_no_tag_info = {
+ "ARIA-192-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_ARIA_192_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+
+static const mbedtls_cipher_info_t aria_256_ccm_star_no_tag_info = {
+ "ARIA-256-CCM*-NO-TAG",
+ 16,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_ARIA_256_CCM_STAR_NO_TAG,
+ MBEDTLS_CIPHER_VARIABLE_IV_LEN,
+ MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA
+};
+#endif /* MBEDTLS_CCM_C */
+
+#endif /* MBEDTLS_ARIA_C */
+
+#if defined(MBEDTLS_DES_C)
+
+static int des_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+ const unsigned char *input, unsigned char *output)
+{
+ ((void) operation);
+ return mbedtls_des_crypt_ecb((mbedtls_des_context *) ctx, input, output);
+}
+
+static int des3_crypt_ecb_wrap(void *ctx, mbedtls_operation_t operation,
+ const unsigned char *input, unsigned char *output)
+{
+ ((void) operation);
+ return mbedtls_des3_crypt_ecb((mbedtls_des3_context *) ctx, input, output);
+}
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int des_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation, size_t length,
+ unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_des_crypt_cbc((mbedtls_des_context *) ctx, operation, length, iv, input,
+ output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static int des3_crypt_cbc_wrap(void *ctx, mbedtls_operation_t operation, size_t length,
+ unsigned char *iv, const unsigned char *input, unsigned char *output)
+{
+ return mbedtls_des3_crypt_cbc((mbedtls_des3_context *) ctx, operation, length, iv, input,
+ output);
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+static int des_setkey_dec_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ ((void) key_bitlen);
+
+ return mbedtls_des_setkey_dec((mbedtls_des_context *) ctx, key);
+}
+
+static int des_setkey_enc_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ ((void) key_bitlen);
+
+ return mbedtls_des_setkey_enc((mbedtls_des_context *) ctx, key);
+}
+
+static int des3_set2key_dec_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ ((void) key_bitlen);
+
+ return mbedtls_des3_set2key_dec((mbedtls_des3_context *) ctx, key);
+}
+
+static int des3_set2key_enc_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ ((void) key_bitlen);
+
+ return mbedtls_des3_set2key_enc((mbedtls_des3_context *) ctx, key);
+}
+
+static int des3_set3key_dec_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ ((void) key_bitlen);
+
+ return mbedtls_des3_set3key_dec((mbedtls_des3_context *) ctx, key);
+}
+
+static int des3_set3key_enc_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ ((void) key_bitlen);
+
+ return mbedtls_des3_set3key_enc((mbedtls_des3_context *) ctx, key);
+}
+
+static void *des_ctx_alloc(void)
+{
+ mbedtls_des_context *des = mbedtls_calloc(1, sizeof(mbedtls_des_context));
+
+ if (des == NULL) {
+ return NULL;
+ }
+
+ mbedtls_des_init(des);
+
+ return des;
+}
+
+static void des_ctx_free(void *ctx)
+{
+ mbedtls_des_free((mbedtls_des_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static void *des3_ctx_alloc(void)
+{
+ mbedtls_des3_context *des3;
+ des3 = mbedtls_calloc(1, sizeof(mbedtls_des3_context));
+
+ if (des3 == NULL) {
+ return NULL;
+ }
+
+ mbedtls_des3_init(des3);
+
+ return des3;
+}
+
+static void des3_ctx_free(void *ctx)
+{
+ mbedtls_des3_free((mbedtls_des3_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t des_info = {
+ MBEDTLS_CIPHER_ID_DES,
+ des_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ des_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ des_setkey_enc_wrap,
+ des_setkey_dec_wrap,
+ des_ctx_alloc,
+ des_ctx_free
+};
+
+static const mbedtls_cipher_info_t des_ecb_info = {
+ "DES-ECB",
+ 8,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ MBEDTLS_KEY_LENGTH_DES >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_DES_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_DES
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t des_cbc_info = {
+ "DES-CBC",
+ 8,
+ 8 >> MBEDTLS_IV_SIZE_SHIFT,
+ MBEDTLS_KEY_LENGTH_DES >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_DES_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_DES
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+static const mbedtls_cipher_base_t des_ede_info = {
+ MBEDTLS_CIPHER_ID_DES,
+ des3_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ des3_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ des3_set2key_enc_wrap,
+ des3_set2key_dec_wrap,
+ des3_ctx_alloc,
+ des3_ctx_free
+};
+
+static const mbedtls_cipher_info_t des_ede_ecb_info = {
+ "DES-EDE-ECB",
+ 8,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ MBEDTLS_KEY_LENGTH_DES_EDE >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_DES_EDE_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_DES_EDE
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t des_ede_cbc_info = {
+ "DES-EDE-CBC",
+ 8,
+ 8 >> MBEDTLS_IV_SIZE_SHIFT,
+ MBEDTLS_KEY_LENGTH_DES_EDE >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_DES_EDE_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_DES_EDE
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+static const mbedtls_cipher_base_t des_ede3_info = {
+ MBEDTLS_CIPHER_ID_3DES,
+ des3_crypt_ecb_wrap,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ des3_crypt_cbc_wrap,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ des3_set3key_enc_wrap,
+ des3_set3key_dec_wrap,
+ des3_ctx_alloc,
+ des3_ctx_free
+};
+
+static const mbedtls_cipher_info_t des_ede3_ecb_info = {
+ "DES-EDE3-ECB",
+ 8,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ MBEDTLS_KEY_LENGTH_DES_EDE3 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_ECB,
+ MBEDTLS_CIPHER_DES_EDE3_ECB,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3
+};
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const mbedtls_cipher_info_t des_ede3_cbc_info = {
+ "DES-EDE3-CBC",
+ 8,
+ 8 >> MBEDTLS_IV_SIZE_SHIFT,
+ MBEDTLS_KEY_LENGTH_DES_EDE3 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CBC,
+ MBEDTLS_CIPHER_DES_EDE3_CBC,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_CHACHA20_C)
+
+static int chacha20_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ if (key_bitlen != 256U) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (0 != mbedtls_chacha20_setkey((mbedtls_chacha20_context *) ctx, key)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+
+static int chacha20_stream_wrap(void *ctx, size_t length,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ ret = mbedtls_chacha20_update(ctx, length, input, output);
+ if (ret == MBEDTLS_ERR_CHACHA20_BAD_INPUT_DATA) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ return ret;
+}
+
+static void *chacha20_ctx_alloc(void)
+{
+ mbedtls_chacha20_context *ctx;
+ ctx = mbedtls_calloc(1, sizeof(mbedtls_chacha20_context));
+
+ if (ctx == NULL) {
+ return NULL;
+ }
+
+ mbedtls_chacha20_init(ctx);
+
+ return ctx;
+}
+
+static void chacha20_ctx_free(void *ctx)
+{
+ mbedtls_chacha20_free((mbedtls_chacha20_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t chacha20_base_info = {
+ MBEDTLS_CIPHER_ID_CHACHA20,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ chacha20_stream_wrap,
+#endif
+ chacha20_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ chacha20_setkey_wrap,
+#endif
+ chacha20_ctx_alloc,
+ chacha20_ctx_free
+};
+static const mbedtls_cipher_info_t chacha20_info = {
+ "CHACHA20",
+ 1,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_STREAM,
+ MBEDTLS_CIPHER_CHACHA20,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CHACHA20_BASE
+};
+#endif /* MBEDTLS_CHACHA20_C */
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+
+static int chachapoly_setkey_wrap(void *ctx,
+ const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ if (key_bitlen != 256U) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (0 != mbedtls_chachapoly_setkey((mbedtls_chachapoly_context *) ctx, key)) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+
+static void *chachapoly_ctx_alloc(void)
+{
+ mbedtls_chachapoly_context *ctx;
+ ctx = mbedtls_calloc(1, sizeof(mbedtls_chachapoly_context));
+
+ if (ctx == NULL) {
+ return NULL;
+ }
+
+ mbedtls_chachapoly_init(ctx);
+
+ return ctx;
+}
+
+static void chachapoly_ctx_free(void *ctx)
+{
+ mbedtls_chachapoly_free((mbedtls_chachapoly_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static const mbedtls_cipher_base_t chachapoly_base_info = {
+ MBEDTLS_CIPHER_ID_CHACHA20,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ chachapoly_setkey_wrap,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ chachapoly_setkey_wrap,
+#endif
+ chachapoly_ctx_alloc,
+ chachapoly_ctx_free
+};
+static const mbedtls_cipher_info_t chachapoly_info = {
+ "CHACHA20-POLY1305",
+ 1,
+ 12 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_CHACHAPOLY,
+ MBEDTLS_CIPHER_CHACHA20_POLY1305,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_CHACHAPOLY_BASE
+};
+#endif /* MBEDTLS_CHACHAPOLY_C */
+
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+static int null_crypt_stream(void *ctx, size_t length,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ ((void) ctx);
+ memmove(output, input, length);
+ return 0;
+}
+
+static int null_setkey(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ ((void) ctx);
+ ((void) key);
+ ((void) key_bitlen);
+
+ return 0;
+}
+
+static void *null_ctx_alloc(void)
+{
+ return (void *) 1;
+}
+
+static void null_ctx_free(void *ctx)
+{
+ ((void) ctx);
+}
+
+static const mbedtls_cipher_base_t null_base_info = {
+ MBEDTLS_CIPHER_ID_NULL,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ null_crypt_stream,
+#endif
+ null_setkey,
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ null_setkey,
+#endif
+ null_ctx_alloc,
+ null_ctx_free
+};
+
+static const mbedtls_cipher_info_t null_cipher_info = {
+ "NULL",
+ 1,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 0 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_STREAM,
+ MBEDTLS_CIPHER_NULL,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_NULL_BASE
+};
+#endif /* defined(MBEDTLS_CIPHER_NULL_CIPHER) */
+
+#if defined(MBEDTLS_NIST_KW_C)
+static void *kw_ctx_alloc(void)
+{
+ void *ctx = mbedtls_calloc(1, sizeof(mbedtls_nist_kw_context));
+
+ if (ctx != NULL) {
+ mbedtls_nist_kw_init((mbedtls_nist_kw_context *) ctx);
+ }
+
+ return ctx;
+}
+
+static void kw_ctx_free(void *ctx)
+{
+ mbedtls_nist_kw_free(ctx);
+ mbedtls_free(ctx);
+}
+
+static int kw_aes_setkey_wrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_nist_kw_setkey((mbedtls_nist_kw_context *) ctx,
+ MBEDTLS_CIPHER_ID_AES, key, key_bitlen, 1);
+}
+
+static int kw_aes_setkey_unwrap(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen)
+{
+ return mbedtls_nist_kw_setkey((mbedtls_nist_kw_context *) ctx,
+ MBEDTLS_CIPHER_ID_AES, key, key_bitlen, 0);
+}
+
+static const mbedtls_cipher_base_t kw_aes_info = {
+ MBEDTLS_CIPHER_ID_AES,
+ NULL,
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ NULL,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ NULL,
+#endif
+ kw_aes_setkey_wrap,
+ kw_aes_setkey_unwrap,
+ kw_ctx_alloc,
+ kw_ctx_free,
+};
+
+static const mbedtls_cipher_info_t aes_128_nist_kw_info = {
+ "AES-128-KW",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_KW,
+ MBEDTLS_CIPHER_AES_128_KW,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_nist_kw_info = {
+ "AES-192-KW",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_KW,
+ MBEDTLS_CIPHER_AES_192_KW,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_nist_kw_info = {
+ "AES-256-KW",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_KW,
+ MBEDTLS_CIPHER_AES_256_KW,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+#endif
+
+static const mbedtls_cipher_info_t aes_128_nist_kwp_info = {
+ "AES-128-KWP",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 128 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_KWP,
+ MBEDTLS_CIPHER_AES_128_KWP,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const mbedtls_cipher_info_t aes_192_nist_kwp_info = {
+ "AES-192-KWP",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 192 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_KWP,
+ MBEDTLS_CIPHER_AES_192_KWP,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+
+static const mbedtls_cipher_info_t aes_256_nist_kwp_info = {
+ "AES-256-KWP",
+ 16,
+ 0 >> MBEDTLS_IV_SIZE_SHIFT,
+ 256 >> MBEDTLS_KEY_BITLEN_SHIFT,
+ MBEDTLS_MODE_KWP,
+ MBEDTLS_CIPHER_AES_256_KWP,
+ 0,
+ MBEDTLS_CIPHER_BASE_INDEX_KW_AES
+};
+#endif
+#endif /* MBEDTLS_NIST_KW_C */
+
+const mbedtls_cipher_definition_t mbedtls_cipher_definitions[] =
+{
+#if defined(MBEDTLS_AES_C)
+ { MBEDTLS_CIPHER_AES_128_ECB, &aes_128_ecb_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_ECB, &aes_192_ecb_info },
+ { MBEDTLS_CIPHER_AES_256_ECB, &aes_256_ecb_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ { MBEDTLS_CIPHER_AES_128_CBC, &aes_128_cbc_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_CBC, &aes_192_cbc_info },
+ { MBEDTLS_CIPHER_AES_256_CBC, &aes_256_cbc_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ { MBEDTLS_CIPHER_AES_128_CFB128, &aes_128_cfb128_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_CFB128, &aes_192_cfb128_info },
+ { MBEDTLS_CIPHER_AES_256_CFB128, &aes_256_cfb128_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ { MBEDTLS_CIPHER_AES_128_OFB, &aes_128_ofb_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_OFB, &aes_192_ofb_info },
+ { MBEDTLS_CIPHER_AES_256_OFB, &aes_256_ofb_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ { MBEDTLS_CIPHER_AES_128_CTR, &aes_128_ctr_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_CTR, &aes_192_ctr_info },
+ { MBEDTLS_CIPHER_AES_256_CTR, &aes_256_ctr_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ { MBEDTLS_CIPHER_AES_128_XTS, &aes_128_xts_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_256_XTS, &aes_256_xts_info },
+#endif
+#endif
+#endif /* MBEDTLS_AES_C */
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+ { MBEDTLS_CIPHER_AES_128_GCM, &aes_128_gcm_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_GCM, &aes_192_gcm_info },
+ { MBEDTLS_CIPHER_AES_256_GCM, &aes_256_gcm_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+ { MBEDTLS_CIPHER_AES_128_CCM, &aes_128_ccm_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_CCM, &aes_192_ccm_info },
+ { MBEDTLS_CIPHER_AES_256_CCM, &aes_256_ccm_info },
+#endif
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA)
+ { MBEDTLS_CIPHER_AES_128_CCM_STAR_NO_TAG, &aes_128_ccm_star_no_tag_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_CCM_STAR_NO_TAG, &aes_192_ccm_star_no_tag_info },
+ { MBEDTLS_CIPHER_AES_256_CCM_STAR_NO_TAG, &aes_256_ccm_star_no_tag_info },
+#endif
+#endif
+
+#if defined(MBEDTLS_CAMELLIA_C)
+ { MBEDTLS_CIPHER_CAMELLIA_128_ECB, &camellia_128_ecb_info },
+ { MBEDTLS_CIPHER_CAMELLIA_192_ECB, &camellia_192_ecb_info },
+ { MBEDTLS_CIPHER_CAMELLIA_256_ECB, &camellia_256_ecb_info },
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ { MBEDTLS_CIPHER_CAMELLIA_128_CBC, &camellia_128_cbc_info },
+ { MBEDTLS_CIPHER_CAMELLIA_192_CBC, &camellia_192_cbc_info },
+ { MBEDTLS_CIPHER_CAMELLIA_256_CBC, &camellia_256_cbc_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ { MBEDTLS_CIPHER_CAMELLIA_128_CFB128, &camellia_128_cfb128_info },
+ { MBEDTLS_CIPHER_CAMELLIA_192_CFB128, &camellia_192_cfb128_info },
+ { MBEDTLS_CIPHER_CAMELLIA_256_CFB128, &camellia_256_cfb128_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ { MBEDTLS_CIPHER_CAMELLIA_128_CTR, &camellia_128_ctr_info },
+ { MBEDTLS_CIPHER_CAMELLIA_192_CTR, &camellia_192_ctr_info },
+ { MBEDTLS_CIPHER_CAMELLIA_256_CTR, &camellia_256_ctr_info },
+#endif
+#if defined(MBEDTLS_GCM_C)
+ { MBEDTLS_CIPHER_CAMELLIA_128_GCM, &camellia_128_gcm_info },
+ { MBEDTLS_CIPHER_CAMELLIA_192_GCM, &camellia_192_gcm_info },
+ { MBEDTLS_CIPHER_CAMELLIA_256_GCM, &camellia_256_gcm_info },
+#endif
+#if defined(MBEDTLS_CCM_C)
+ { MBEDTLS_CIPHER_CAMELLIA_128_CCM, &camellia_128_ccm_info },
+ { MBEDTLS_CIPHER_CAMELLIA_192_CCM, &camellia_192_ccm_info },
+ { MBEDTLS_CIPHER_CAMELLIA_256_CCM, &camellia_256_ccm_info },
+ { MBEDTLS_CIPHER_CAMELLIA_128_CCM_STAR_NO_TAG, &camellia_128_ccm_star_no_tag_info },
+ { MBEDTLS_CIPHER_CAMELLIA_192_CCM_STAR_NO_TAG, &camellia_192_ccm_star_no_tag_info },
+ { MBEDTLS_CIPHER_CAMELLIA_256_CCM_STAR_NO_TAG, &camellia_256_ccm_star_no_tag_info },
+#endif
+#endif /* MBEDTLS_CAMELLIA_C */
+
+#if defined(MBEDTLS_ARIA_C)
+ { MBEDTLS_CIPHER_ARIA_128_ECB, &aria_128_ecb_info },
+ { MBEDTLS_CIPHER_ARIA_192_ECB, &aria_192_ecb_info },
+ { MBEDTLS_CIPHER_ARIA_256_ECB, &aria_256_ecb_info },
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ { MBEDTLS_CIPHER_ARIA_128_CBC, &aria_128_cbc_info },
+ { MBEDTLS_CIPHER_ARIA_192_CBC, &aria_192_cbc_info },
+ { MBEDTLS_CIPHER_ARIA_256_CBC, &aria_256_cbc_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ { MBEDTLS_CIPHER_ARIA_128_CFB128, &aria_128_cfb128_info },
+ { MBEDTLS_CIPHER_ARIA_192_CFB128, &aria_192_cfb128_info },
+ { MBEDTLS_CIPHER_ARIA_256_CFB128, &aria_256_cfb128_info },
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ { MBEDTLS_CIPHER_ARIA_128_CTR, &aria_128_ctr_info },
+ { MBEDTLS_CIPHER_ARIA_192_CTR, &aria_192_ctr_info },
+ { MBEDTLS_CIPHER_ARIA_256_CTR, &aria_256_ctr_info },
+#endif
+#if defined(MBEDTLS_GCM_C)
+ { MBEDTLS_CIPHER_ARIA_128_GCM, &aria_128_gcm_info },
+ { MBEDTLS_CIPHER_ARIA_192_GCM, &aria_192_gcm_info },
+ { MBEDTLS_CIPHER_ARIA_256_GCM, &aria_256_gcm_info },
+#endif
+#if defined(MBEDTLS_CCM_C)
+ { MBEDTLS_CIPHER_ARIA_128_CCM, &aria_128_ccm_info },
+ { MBEDTLS_CIPHER_ARIA_192_CCM, &aria_192_ccm_info },
+ { MBEDTLS_CIPHER_ARIA_256_CCM, &aria_256_ccm_info },
+ { MBEDTLS_CIPHER_ARIA_128_CCM_STAR_NO_TAG, &aria_128_ccm_star_no_tag_info },
+ { MBEDTLS_CIPHER_ARIA_192_CCM_STAR_NO_TAG, &aria_192_ccm_star_no_tag_info },
+ { MBEDTLS_CIPHER_ARIA_256_CCM_STAR_NO_TAG, &aria_256_ccm_star_no_tag_info },
+#endif
+#endif /* MBEDTLS_ARIA_C */
+
+#if defined(MBEDTLS_DES_C)
+ { MBEDTLS_CIPHER_DES_ECB, &des_ecb_info },
+ { MBEDTLS_CIPHER_DES_EDE_ECB, &des_ede_ecb_info },
+ { MBEDTLS_CIPHER_DES_EDE3_ECB, &des_ede3_ecb_info },
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ { MBEDTLS_CIPHER_DES_CBC, &des_cbc_info },
+ { MBEDTLS_CIPHER_DES_EDE_CBC, &des_ede_cbc_info },
+ { MBEDTLS_CIPHER_DES_EDE3_CBC, &des_ede3_cbc_info },
+#endif
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_CHACHA20_C)
+ { MBEDTLS_CIPHER_CHACHA20, &chacha20_info },
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ { MBEDTLS_CIPHER_CHACHA20_POLY1305, &chachapoly_info },
+#endif
+
+#if defined(MBEDTLS_NIST_KW_C)
+ { MBEDTLS_CIPHER_AES_128_KW, &aes_128_nist_kw_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_KW, &aes_192_nist_kw_info },
+ { MBEDTLS_CIPHER_AES_256_KW, &aes_256_nist_kw_info },
+#endif
+ { MBEDTLS_CIPHER_AES_128_KWP, &aes_128_nist_kwp_info },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { MBEDTLS_CIPHER_AES_192_KWP, &aes_192_nist_kwp_info },
+ { MBEDTLS_CIPHER_AES_256_KWP, &aes_256_nist_kwp_info },
+#endif
+#endif
+
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+ { MBEDTLS_CIPHER_NULL, &null_cipher_info },
+#endif /* MBEDTLS_CIPHER_NULL_CIPHER */
+
+ { MBEDTLS_CIPHER_NONE, NULL }
+};
+
+#define NUM_CIPHERS (sizeof(mbedtls_cipher_definitions) / \
+ sizeof(mbedtls_cipher_definitions[0]))
+int mbedtls_cipher_supported[NUM_CIPHERS];
+
+const mbedtls_cipher_base_t *mbedtls_cipher_base_lookup_table[] = {
+#if defined(MBEDTLS_AES_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_AES] = &aes_info,
+#endif
+#if defined(MBEDTLS_ARIA_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_ARIA] = &aria_info,
+#endif
+#if defined(MBEDTLS_CAMELLIA_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_CAMELLIA] = &camellia_info,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA)
+ [MBEDTLS_CIPHER_BASE_INDEX_CCM_AES] = &ccm_aes_info,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_ARIA_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_CCM_ARIA] = &ccm_aria_info,
+#endif
+#if defined(MBEDTLS_CCM_C) && defined(MBEDTLS_CAMELLIA_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_CCM_CAMELLIA] = &ccm_camellia_info,
+#endif
+#if defined(MBEDTLS_CHACHA20_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_CHACHA20_BASE] = &chacha20_base_info,
+#endif
+#if defined(MBEDTLS_CHACHAPOLY_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_CHACHAPOLY_BASE] = &chachapoly_base_info,
+#endif
+#if defined(MBEDTLS_DES_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_DES_EDE3] = &des_ede3_info,
+#endif
+#if defined(MBEDTLS_DES_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_DES_EDE] = &des_ede_info,
+#endif
+#if defined(MBEDTLS_DES_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_DES] = &des_info,
+#endif
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA)
+ [MBEDTLS_CIPHER_BASE_INDEX_GCM_AES] = &gcm_aes_info,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_ARIA_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_GCM_ARIA] = &gcm_aria_info,
+#endif
+#if defined(MBEDTLS_GCM_C) && defined(MBEDTLS_CAMELLIA_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_GCM_CAMELLIA] = &gcm_camellia_info,
+#endif
+#if defined(MBEDTLS_NIST_KW_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_KW_AES] = &kw_aes_info,
+#endif
+#if defined(MBEDTLS_CIPHER_NULL_CIPHER)
+ [MBEDTLS_CIPHER_BASE_INDEX_NULL_BASE] = &null_base_info,
+#endif
+#if defined(MBEDTLS_CIPHER_MODE_XTS) && defined(MBEDTLS_AES_C)
+ [MBEDTLS_CIPHER_BASE_INDEX_XTS_AES] = &xts_aes_info
+#endif
+};
+
+#endif /* MBEDTLS_CIPHER_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/cipher_wrap.h b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.h
new file mode 100644
index 0000000..f229151
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cipher_wrap.h
@@ -0,0 +1,178 @@
+/**
+ * \file cipher_wrap.h
+ *
+ * \brief Cipher wrappers.
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_CIPHER_WRAP_H
+#define MBEDTLS_CIPHER_WRAP_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/cipher.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/* Support for GCM either through Mbed TLS SW implementation or PSA */
+#if defined(MBEDTLS_GCM_C) || \
+ (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_GCM))
+#define MBEDTLS_CIPHER_HAVE_GCM_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if (defined(MBEDTLS_GCM_C) && defined(MBEDTLS_AES_C)) || \
+ (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_GCM) && defined(PSA_WANT_KEY_TYPE_AES))
+#define MBEDTLS_CIPHER_HAVE_GCM_AES_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CCM_C) || \
+ (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM))
+#define MBEDTLS_CIPHER_HAVE_CCM_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if (defined(MBEDTLS_CCM_C) && defined(MBEDTLS_AES_C)) || \
+ (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM) && defined(PSA_WANT_KEY_TYPE_AES))
+#define MBEDTLS_CIPHER_HAVE_CCM_AES_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CCM_C) || \
+ (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM_STAR_NO_TAG))
+#define MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if (defined(MBEDTLS_CCM_C) && defined(MBEDTLS_AES_C)) || \
+ (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CCM_STAR_NO_TAG) && \
+ defined(PSA_WANT_KEY_TYPE_AES))
+#define MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_AES_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CHACHAPOLY_C) || \
+ (defined(MBEDTLS_USE_PSA_CRYPTO) && defined(PSA_WANT_ALG_CHACHA20_POLY1305))
+#define MBEDTLS_CIPHER_HAVE_CHACHAPOLY_VIA_LEGACY_OR_USE_PSA
+#endif
+
+#if defined(MBEDTLS_CIPHER_HAVE_GCM_VIA_LEGACY_OR_USE_PSA) || \
+ defined(MBEDTLS_CIPHER_HAVE_CCM_VIA_LEGACY_OR_USE_PSA) || \
+ defined(MBEDTLS_CIPHER_HAVE_CCM_STAR_NO_TAG_VIA_LEGACY_OR_USE_PSA) || \
+ defined(MBEDTLS_CIPHER_HAVE_CHACHAPOLY_VIA_LEGACY_OR_USE_PSA)
+#define MBEDTLS_CIPHER_HAVE_SOME_AEAD_VIA_LEGACY_OR_USE_PSA
+#endif
+
+/**
+ * Base cipher information. The non-mode specific functions and values.
+ */
+struct mbedtls_cipher_base_t {
+ /** Base Cipher type (e.g. MBEDTLS_CIPHER_ID_AES) */
+ mbedtls_cipher_id_t cipher;
+
+ /** Encrypt using ECB */
+ int (*ecb_func)(void *ctx, mbedtls_operation_t mode,
+ const unsigned char *input, unsigned char *output);
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ /** Encrypt using CBC */
+ int (*cbc_func)(void *ctx, mbedtls_operation_t mode, size_t length,
+ unsigned char *iv, const unsigned char *input,
+ unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CFB)
+ /** Encrypt using CFB (Full length) */
+ int (*cfb_func)(void *ctx, mbedtls_operation_t mode, size_t length, size_t *iv_off,
+ unsigned char *iv, const unsigned char *input,
+ unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_OFB)
+ /** Encrypt using OFB (Full length) */
+ int (*ofb_func)(void *ctx, size_t length, size_t *iv_off,
+ unsigned char *iv,
+ const unsigned char *input,
+ unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_CTR)
+ /** Encrypt using CTR */
+ int (*ctr_func)(void *ctx, size_t length, size_t *nc_off,
+ unsigned char *nonce_counter, unsigned char *stream_block,
+ const unsigned char *input, unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_XTS)
+ /** Encrypt or decrypt using XTS. */
+ int (*xts_func)(void *ctx, mbedtls_operation_t mode, size_t length,
+ const unsigned char data_unit[16],
+ const unsigned char *input, unsigned char *output);
+#endif
+
+#if defined(MBEDTLS_CIPHER_MODE_STREAM)
+ /** Encrypt using STREAM */
+ int (*stream_func)(void *ctx, size_t length,
+ const unsigned char *input, unsigned char *output);
+#endif
+
+ /** Set key for encryption purposes */
+ int (*setkey_enc_func)(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ /** Set key for decryption purposes */
+ int (*setkey_dec_func)(void *ctx, const unsigned char *key,
+ unsigned int key_bitlen);
+#endif
+
+ /** Allocate a new context */
+ void * (*ctx_alloc_func)(void);
+
+ /** Free the given context */
+ void (*ctx_free_func)(void *ctx);
+
+};
+
+typedef struct {
+ mbedtls_cipher_type_t type;
+ const mbedtls_cipher_info_t *info;
+} mbedtls_cipher_definition_t;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+typedef enum {
+ MBEDTLS_CIPHER_PSA_KEY_UNSET = 0,
+ MBEDTLS_CIPHER_PSA_KEY_OWNED, /* Used for PSA-based cipher contexts which */
+ /* use raw key material internally imported */
+ /* as a volatile key, and which hence need */
+ /* to destroy that key when the context is */
+ /* freed. */
+ MBEDTLS_CIPHER_PSA_KEY_NOT_OWNED, /* Used for PSA-based cipher contexts */
+ /* which use a key provided by the */
+ /* user, and which hence will not be */
+ /* destroyed when the context is freed. */
+} mbedtls_cipher_psa_key_ownership;
+
+typedef struct {
+ psa_algorithm_t alg;
+ mbedtls_svc_key_id_t slot;
+ mbedtls_cipher_psa_key_ownership slot_state;
+} mbedtls_cipher_context_psa;
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+extern const mbedtls_cipher_definition_t mbedtls_cipher_definitions[];
+
+extern int mbedtls_cipher_supported[];
+
+extern const mbedtls_cipher_base_t *mbedtls_cipher_base_lookup_table[];
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_CIPHER_WRAP_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/cmac.c b/tf-psa-crypto/drivers/builtin/src/cmac.c
new file mode 100644
index 0000000..eda10d0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/cmac.c
@@ -0,0 +1,1067 @@
+/**
+ * \file cmac.c
+ *
+ * \brief NIST SP800-38B compliant CMAC implementation for AES and 3DES
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * - NIST SP 800-38B Recommendation for Block Cipher Modes of Operation: The
+ * CMAC Mode for Authentication
+ * http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38b.pdf
+ *
+ * - RFC 4493 - The AES-CMAC Algorithm
+ * https://tools.ietf.org/html/rfc4493
+ *
+ * - RFC 4615 - The Advanced Encryption Standard-Cipher-based Message
+ * Authentication Code-Pseudo-Random Function-128 (AES-CMAC-PRF-128)
+ * Algorithm for the Internet Key Exchange Protocol (IKE)
+ * https://tools.ietf.org/html/rfc4615
+ *
+ * Additional test vectors: ISO/IEC 9797-1
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CMAC_C)
+
+#include "mbedtls/cmac.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform.h"
+#include "constant_time_internal.h"
+
+#include <string.h>
+
+#if !defined(MBEDTLS_CMAC_ALT) || defined(MBEDTLS_SELF_TEST)
+
+/*
+ * Multiplication by u in the Galois field of GF(2^n)
+ *
+ * As explained in NIST SP 800-38B, this can be computed:
+ *
+ * If MSB(p) = 0, then p = (p << 1)
+ * If MSB(p) = 1, then p = (p << 1) ^ R_n
+ * with R_64 = 0x1B and R_128 = 0x87
+ *
+ * Input and output MUST NOT point to the same buffer
+ * Block size must be 8 bytes or 16 bytes - the block sizes for DES and AES.
+ */
+static int cmac_multiply_by_u(unsigned char *output,
+ const unsigned char *input,
+ size_t blocksize)
+{
+ const unsigned char R_128 = 0x87;
+ unsigned char R_n;
+ uint32_t overflow = 0x00;
+ int i;
+
+ if (blocksize == MBEDTLS_AES_BLOCK_SIZE) {
+ R_n = R_128;
+ }
+#if defined(MBEDTLS_DES_C)
+ else if (blocksize == MBEDTLS_DES3_BLOCK_SIZE) {
+ const unsigned char R_64 = 0x1B;
+ R_n = R_64;
+ }
+#endif
+ else {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ for (i = (int) blocksize - 4; i >= 0; i -= 4) {
+ uint32_t i32 = MBEDTLS_GET_UINT32_BE(&input[i], 0);
+ uint32_t new_overflow = i32 >> 31;
+ i32 = (i32 << 1) | overflow;
+ MBEDTLS_PUT_UINT32_BE(i32, &output[i], 0);
+ overflow = new_overflow;
+ }
+
+ R_n = (unsigned char) mbedtls_ct_uint_if_else_0(mbedtls_ct_bool(input[0] >> 7), R_n);
+ output[blocksize - 1] ^= R_n;
+
+ return 0;
+}
+
+/*
+ * Generate subkeys
+ *
+ * - as specified by RFC 4493, section 2.3 Subkey Generation Algorithm
+ */
+static int cmac_generate_subkeys(mbedtls_cipher_context_t *ctx,
+ unsigned char *K1, unsigned char *K2)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char L[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+ size_t olen, block_size;
+
+ mbedtls_platform_zeroize(L, sizeof(L));
+
+ block_size = mbedtls_cipher_info_get_block_size(ctx->cipher_info);
+
+ /* Calculate Ek(0) */
+ if ((ret = mbedtls_cipher_update(ctx, L, block_size, L, &olen)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * Generate K1 and K2
+ */
+ if ((ret = cmac_multiply_by_u(K1, L, block_size)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = cmac_multiply_by_u(K2, K1, block_size)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_platform_zeroize(L, sizeof(L));
+
+ return ret;
+}
+#endif /* !defined(MBEDTLS_CMAC_ALT) || defined(MBEDTLS_SELF_TEST) */
+
+#if !defined(MBEDTLS_CMAC_ALT)
+
+/*
+ * Create padded last block from (partial) last block.
+ *
+ * We can't use the padding option from the cipher layer, as it only works for
+ * CBC and we use ECB mode, and anyway we need to XOR K1 or K2 in addition.
+ */
+static void cmac_pad(unsigned char padded_block[MBEDTLS_CMAC_MAX_BLOCK_SIZE],
+ size_t padded_block_len,
+ const unsigned char *last_block,
+ size_t last_block_len)
+{
+ size_t j;
+
+ for (j = 0; j < padded_block_len; j++) {
+ if (j < last_block_len) {
+ padded_block[j] = last_block[j];
+ } else if (j == last_block_len) {
+ padded_block[j] = 0x80;
+ } else {
+ padded_block[j] = 0x00;
+ }
+ }
+}
+
+int mbedtls_cipher_cmac_starts(mbedtls_cipher_context_t *ctx,
+ const unsigned char *key, size_t keybits)
+{
+ mbedtls_cipher_type_t type;
+ mbedtls_cmac_context_t *cmac_ctx;
+ int retval;
+
+ if (ctx == NULL || ctx->cipher_info == NULL || key == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if ((retval = mbedtls_cipher_setkey(ctx, key, (int) keybits,
+ MBEDTLS_ENCRYPT)) != 0) {
+ return retval;
+ }
+
+ type = mbedtls_cipher_info_get_type(ctx->cipher_info);
+
+ switch (type) {
+ case MBEDTLS_CIPHER_AES_128_ECB:
+ case MBEDTLS_CIPHER_AES_192_ECB:
+ case MBEDTLS_CIPHER_AES_256_ECB:
+ case MBEDTLS_CIPHER_DES_EDE3_ECB:
+ break;
+ default:
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ /* Allocated and initialise in the cipher context memory for the CMAC
+ * context */
+ cmac_ctx = mbedtls_calloc(1, sizeof(mbedtls_cmac_context_t));
+ if (cmac_ctx == NULL) {
+ return MBEDTLS_ERR_CIPHER_ALLOC_FAILED;
+ }
+
+ ctx->cmac_ctx = cmac_ctx;
+
+ mbedtls_platform_zeroize(cmac_ctx->state, sizeof(cmac_ctx->state));
+
+ return 0;
+}
+
+int mbedtls_cipher_cmac_update(mbedtls_cipher_context_t *ctx,
+ const unsigned char *input, size_t ilen)
+{
+ mbedtls_cmac_context_t *cmac_ctx;
+ unsigned char *state;
+ int ret = 0;
+ size_t n, j, olen, block_size;
+
+ if (ctx == NULL || ctx->cipher_info == NULL || input == NULL ||
+ ctx->cmac_ctx == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ cmac_ctx = ctx->cmac_ctx;
+ block_size = mbedtls_cipher_info_get_block_size(ctx->cipher_info);
+ state = ctx->cmac_ctx->state;
+
+ /* Without the MBEDTLS_ASSUME below, gcc -O3 will generate a warning of the form
+ * error: writing 16 bytes into a region of size 0 [-Werror=stringop-overflow=] */
+ MBEDTLS_ASSUME(block_size <= MBEDTLS_CMAC_MAX_BLOCK_SIZE);
+
+ /* Is there data still to process from the last call, that's greater in
+ * size than a block? */
+ if (cmac_ctx->unprocessed_len > 0 &&
+ ilen > block_size - cmac_ctx->unprocessed_len) {
+ memcpy(&cmac_ctx->unprocessed_block[cmac_ctx->unprocessed_len],
+ input,
+ block_size - cmac_ctx->unprocessed_len);
+
+ mbedtls_xor_no_simd(state, cmac_ctx->unprocessed_block, state, block_size);
+
+ if ((ret = mbedtls_cipher_update(ctx, state, block_size, state,
+ &olen)) != 0) {
+ goto exit;
+ }
+
+ input += block_size - cmac_ctx->unprocessed_len;
+ ilen -= block_size - cmac_ctx->unprocessed_len;
+ cmac_ctx->unprocessed_len = 0;
+ }
+
+ /* n is the number of blocks including any final partial block */
+ n = (ilen + block_size - 1) / block_size;
+
+ /* Iterate across the input data in block sized chunks, excluding any
+ * final partial or complete block */
+ for (j = 1; j < n; j++) {
+ mbedtls_xor_no_simd(state, input, state, block_size);
+
+ if ((ret = mbedtls_cipher_update(ctx, state, block_size, state,
+ &olen)) != 0) {
+ goto exit;
+ }
+
+ ilen -= block_size;
+ input += block_size;
+ }
+
+ /* If there is data left over that wasn't aligned to a block */
+ if (ilen > 0) {
+ memcpy(&cmac_ctx->unprocessed_block[cmac_ctx->unprocessed_len],
+ input,
+ ilen);
+ cmac_ctx->unprocessed_len += ilen;
+ }
+
+exit:
+ return ret;
+}
+
+int mbedtls_cipher_cmac_finish(mbedtls_cipher_context_t *ctx,
+ unsigned char *output)
+{
+ mbedtls_cmac_context_t *cmac_ctx;
+ unsigned char *state, *last_block;
+ unsigned char K1[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+ unsigned char K2[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+ unsigned char M_last[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t olen, block_size;
+
+ if (ctx == NULL || ctx->cipher_info == NULL || ctx->cmac_ctx == NULL ||
+ output == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ cmac_ctx = ctx->cmac_ctx;
+ block_size = mbedtls_cipher_info_get_block_size(ctx->cipher_info);
+ MBEDTLS_ASSUME(block_size <= MBEDTLS_CMAC_MAX_BLOCK_SIZE); // silence GCC warning
+ state = cmac_ctx->state;
+
+ mbedtls_platform_zeroize(K1, sizeof(K1));
+ mbedtls_platform_zeroize(K2, sizeof(K2));
+ cmac_generate_subkeys(ctx, K1, K2);
+
+ last_block = cmac_ctx->unprocessed_block;
+
+ /* Calculate last block */
+ if (cmac_ctx->unprocessed_len < block_size) {
+ cmac_pad(M_last, block_size, last_block, cmac_ctx->unprocessed_len);
+ mbedtls_xor(M_last, M_last, K2, block_size);
+ } else {
+ /* Last block is complete block */
+ mbedtls_xor(M_last, last_block, K1, block_size);
+ }
+
+
+ mbedtls_xor(state, M_last, state, block_size);
+ if ((ret = mbedtls_cipher_update(ctx, state, block_size, state,
+ &olen)) != 0) {
+ goto exit;
+ }
+
+ memcpy(output, state, block_size);
+
+exit:
+ /* Wipe the generated keys on the stack, and any other transients to avoid
+ * side channel leakage */
+ mbedtls_platform_zeroize(K1, sizeof(K1));
+ mbedtls_platform_zeroize(K2, sizeof(K2));
+
+ cmac_ctx->unprocessed_len = 0;
+ mbedtls_platform_zeroize(cmac_ctx->unprocessed_block,
+ sizeof(cmac_ctx->unprocessed_block));
+
+ mbedtls_platform_zeroize(state, MBEDTLS_CMAC_MAX_BLOCK_SIZE);
+ return ret;
+}
+
+int mbedtls_cipher_cmac_reset(mbedtls_cipher_context_t *ctx)
+{
+ mbedtls_cmac_context_t *cmac_ctx;
+
+ if (ctx == NULL || ctx->cipher_info == NULL || ctx->cmac_ctx == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ cmac_ctx = ctx->cmac_ctx;
+
+ /* Reset the internal state */
+ cmac_ctx->unprocessed_len = 0;
+ mbedtls_platform_zeroize(cmac_ctx->unprocessed_block,
+ sizeof(cmac_ctx->unprocessed_block));
+ mbedtls_platform_zeroize(cmac_ctx->state,
+ sizeof(cmac_ctx->state));
+
+ return 0;
+}
+
+int mbedtls_cipher_cmac(const mbedtls_cipher_info_t *cipher_info,
+ const unsigned char *key, size_t keylen,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output)
+{
+ mbedtls_cipher_context_t ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (cipher_info == NULL || key == NULL || input == NULL || output == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ mbedtls_cipher_init(&ctx);
+
+ if ((ret = mbedtls_cipher_setup(&ctx, cipher_info)) != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_cipher_cmac_starts(&ctx, key, keylen);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_cipher_cmac_update(&ctx, input, ilen);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_cipher_cmac_finish(&ctx, output);
+
+exit:
+ mbedtls_cipher_free(&ctx);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_AES_C)
+/*
+ * Implementation of AES-CMAC-PRF-128 defined in RFC 4615
+ */
+int mbedtls_aes_cmac_prf_128(const unsigned char *key, size_t key_length,
+ const unsigned char *input, size_t in_len,
+ unsigned char output[16])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const mbedtls_cipher_info_t *cipher_info;
+ unsigned char zero_key[MBEDTLS_AES_BLOCK_SIZE];
+ unsigned char int_key[MBEDTLS_AES_BLOCK_SIZE];
+
+ if (key == NULL || input == NULL || output == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ cipher_info = mbedtls_cipher_info_from_type(MBEDTLS_CIPHER_AES_128_ECB);
+ if (cipher_info == NULL) {
+ /* Failing at this point must be due to a build issue */
+ ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ goto exit;
+ }
+
+ if (key_length == MBEDTLS_AES_BLOCK_SIZE) {
+ /* Use key as is */
+ memcpy(int_key, key, MBEDTLS_AES_BLOCK_SIZE);
+ } else {
+ memset(zero_key, 0, MBEDTLS_AES_BLOCK_SIZE);
+
+ ret = mbedtls_cipher_cmac(cipher_info, zero_key, 128, key,
+ key_length, int_key);
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+
+ ret = mbedtls_cipher_cmac(cipher_info, int_key, 128, input, in_len,
+ output);
+
+exit:
+ mbedtls_platform_zeroize(int_key, sizeof(int_key));
+
+ return ret;
+}
+#endif /* MBEDTLS_AES_C */
+
+#endif /* !MBEDTLS_CMAC_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * CMAC test data for SP800-38B
+ * http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/AES_CMAC.pdf
+ * http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/TDES_CMAC.pdf
+ *
+ * AES-CMAC-PRF-128 test data from RFC 4615
+ * https://tools.ietf.org/html/rfc4615#page-4
+ */
+
+#define NB_CMAC_TESTS_PER_KEY 4
+#define NB_PRF_TESTS 3
+
+#if defined(MBEDTLS_AES_C) || defined(MBEDTLS_DES_C)
+/* All CMAC test inputs are truncated from the same 64 byte buffer. */
+static const unsigned char test_message[] = {
+ /* PT */
+ 0x6b, 0xc1, 0xbe, 0xe2, 0x2e, 0x40, 0x9f, 0x96,
+ 0xe9, 0x3d, 0x7e, 0x11, 0x73, 0x93, 0x17, 0x2a,
+ 0xae, 0x2d, 0x8a, 0x57, 0x1e, 0x03, 0xac, 0x9c,
+ 0x9e, 0xb7, 0x6f, 0xac, 0x45, 0xaf, 0x8e, 0x51,
+ 0x30, 0xc8, 0x1c, 0x46, 0xa3, 0x5c, 0xe4, 0x11,
+ 0xe5, 0xfb, 0xc1, 0x19, 0x1a, 0x0a, 0x52, 0xef,
+ 0xf6, 0x9f, 0x24, 0x45, 0xdf, 0x4f, 0x9b, 0x17,
+ 0xad, 0x2b, 0x41, 0x7b, 0xe6, 0x6c, 0x37, 0x10
+};
+#endif /* MBEDTLS_AES_C || MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+/* Truncation point of message for AES CMAC tests */
+static const unsigned int aes_message_lengths[NB_CMAC_TESTS_PER_KEY] = {
+ /* Mlen */
+ 0,
+ 16,
+ 20,
+ 64
+};
+
+/* CMAC-AES128 Test Data */
+static const unsigned char aes_128_key[16] = {
+ 0x2b, 0x7e, 0x15, 0x16, 0x28, 0xae, 0xd2, 0xa6,
+ 0xab, 0xf7, 0x15, 0x88, 0x09, 0xcf, 0x4f, 0x3c
+};
+static const unsigned char aes_128_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = {
+ {
+ /* K1 */
+ 0xfb, 0xee, 0xd6, 0x18, 0x35, 0x71, 0x33, 0x66,
+ 0x7c, 0x85, 0xe0, 0x8f, 0x72, 0x36, 0xa8, 0xde
+ },
+ {
+ /* K2 */
+ 0xf7, 0xdd, 0xac, 0x30, 0x6a, 0xe2, 0x66, 0xcc,
+ 0xf9, 0x0b, 0xc1, 0x1e, 0xe4, 0x6d, 0x51, 0x3b
+ }
+};
+static const unsigned char aes_128_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] =
+{
+ {
+ /* Example #1 */
+ 0xbb, 0x1d, 0x69, 0x29, 0xe9, 0x59, 0x37, 0x28,
+ 0x7f, 0xa3, 0x7d, 0x12, 0x9b, 0x75, 0x67, 0x46
+ },
+ {
+ /* Example #2 */
+ 0x07, 0x0a, 0x16, 0xb4, 0x6b, 0x4d, 0x41, 0x44,
+ 0xf7, 0x9b, 0xdd, 0x9d, 0xd0, 0x4a, 0x28, 0x7c
+ },
+ {
+ /* Example #3 */
+ 0x7d, 0x85, 0x44, 0x9e, 0xa6, 0xea, 0x19, 0xc8,
+ 0x23, 0xa7, 0xbf, 0x78, 0x83, 0x7d, 0xfa, 0xde
+ },
+ {
+ /* Example #4 */
+ 0x51, 0xf0, 0xbe, 0xbf, 0x7e, 0x3b, 0x9d, 0x92,
+ 0xfc, 0x49, 0x74, 0x17, 0x79, 0x36, 0x3c, 0xfe
+ }
+};
+
+/* CMAC-AES192 Test Data */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const unsigned char aes_192_key[24] = {
+ 0x8e, 0x73, 0xb0, 0xf7, 0xda, 0x0e, 0x64, 0x52,
+ 0xc8, 0x10, 0xf3, 0x2b, 0x80, 0x90, 0x79, 0xe5,
+ 0x62, 0xf8, 0xea, 0xd2, 0x52, 0x2c, 0x6b, 0x7b
+};
+static const unsigned char aes_192_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = {
+ {
+ /* K1 */
+ 0x44, 0x8a, 0x5b, 0x1c, 0x93, 0x51, 0x4b, 0x27,
+ 0x3e, 0xe6, 0x43, 0x9d, 0xd4, 0xda, 0xa2, 0x96
+ },
+ {
+ /* K2 */
+ 0x89, 0x14, 0xb6, 0x39, 0x26, 0xa2, 0x96, 0x4e,
+ 0x7d, 0xcc, 0x87, 0x3b, 0xa9, 0xb5, 0x45, 0x2c
+ }
+};
+static const unsigned char aes_192_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] =
+{
+ {
+ /* Example #1 */
+ 0xd1, 0x7d, 0xdf, 0x46, 0xad, 0xaa, 0xcd, 0xe5,
+ 0x31, 0xca, 0xc4, 0x83, 0xde, 0x7a, 0x93, 0x67
+ },
+ {
+ /* Example #2 */
+ 0x9e, 0x99, 0xa7, 0xbf, 0x31, 0xe7, 0x10, 0x90,
+ 0x06, 0x62, 0xf6, 0x5e, 0x61, 0x7c, 0x51, 0x84
+ },
+ {
+ /* Example #3 */
+ 0x3d, 0x75, 0xc1, 0x94, 0xed, 0x96, 0x07, 0x04,
+ 0x44, 0xa9, 0xfa, 0x7e, 0xc7, 0x40, 0xec, 0xf8
+ },
+ {
+ /* Example #4 */
+ 0xa1, 0xd5, 0xdf, 0x0e, 0xed, 0x79, 0x0f, 0x79,
+ 0x4d, 0x77, 0x58, 0x96, 0x59, 0xf3, 0x9a, 0x11
+ }
+};
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+/* CMAC-AES256 Test Data */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+static const unsigned char aes_256_key[32] = {
+ 0x60, 0x3d, 0xeb, 0x10, 0x15, 0xca, 0x71, 0xbe,
+ 0x2b, 0x73, 0xae, 0xf0, 0x85, 0x7d, 0x77, 0x81,
+ 0x1f, 0x35, 0x2c, 0x07, 0x3b, 0x61, 0x08, 0xd7,
+ 0x2d, 0x98, 0x10, 0xa3, 0x09, 0x14, 0xdf, 0xf4
+};
+static const unsigned char aes_256_subkeys[2][MBEDTLS_AES_BLOCK_SIZE] = {
+ {
+ /* K1 */
+ 0xca, 0xd1, 0xed, 0x03, 0x29, 0x9e, 0xed, 0xac,
+ 0x2e, 0x9a, 0x99, 0x80, 0x86, 0x21, 0x50, 0x2f
+ },
+ {
+ /* K2 */
+ 0x95, 0xa3, 0xda, 0x06, 0x53, 0x3d, 0xdb, 0x58,
+ 0x5d, 0x35, 0x33, 0x01, 0x0c, 0x42, 0xa0, 0xd9
+ }
+};
+static const unsigned char aes_256_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_AES_BLOCK_SIZE] =
+{
+ {
+ /* Example #1 */
+ 0x02, 0x89, 0x62, 0xf6, 0x1b, 0x7b, 0xf8, 0x9e,
+ 0xfc, 0x6b, 0x55, 0x1f, 0x46, 0x67, 0xd9, 0x83
+ },
+ {
+ /* Example #2 */
+ 0x28, 0xa7, 0x02, 0x3f, 0x45, 0x2e, 0x8f, 0x82,
+ 0xbd, 0x4b, 0xf2, 0x8d, 0x8c, 0x37, 0xc3, 0x5c
+ },
+ {
+ /* Example #3 */
+ 0x15, 0x67, 0x27, 0xdc, 0x08, 0x78, 0x94, 0x4a,
+ 0x02, 0x3c, 0x1f, 0xe0, 0x3b, 0xad, 0x6d, 0x93
+ },
+ {
+ /* Example #4 */
+ 0xe1, 0x99, 0x21, 0x90, 0x54, 0x9f, 0x6e, 0xd5,
+ 0x69, 0x6a, 0x2c, 0x05, 0x6c, 0x31, 0x54, 0x10
+ }
+};
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_DES_C)
+/* Truncation point of message for 3DES CMAC tests */
+static const unsigned int des3_message_lengths[NB_CMAC_TESTS_PER_KEY] = {
+ 0,
+ 16,
+ 20,
+ 32
+};
+
+/* CMAC-TDES (Generation) - 2 Key Test Data */
+static const unsigned char des3_2key_key[24] = {
+ /* Key1 */
+ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef,
+ /* Key2 */
+ 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xEF, 0x01,
+ /* Key3 */
+ 0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef
+};
+static const unsigned char des3_2key_subkeys[2][8] = {
+ {
+ /* K1 */
+ 0x0d, 0xd2, 0xcb, 0x7a, 0x3d, 0x88, 0x88, 0xd9
+ },
+ {
+ /* K2 */
+ 0x1b, 0xa5, 0x96, 0xf4, 0x7b, 0x11, 0x11, 0xb2
+ }
+};
+static const unsigned char des3_2key_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_DES3_BLOCK_SIZE]
+ = {
+ {
+ /* Sample #1 */
+ 0x79, 0xce, 0x52, 0xa7, 0xf7, 0x86, 0xa9, 0x60
+ },
+ {
+ /* Sample #2 */
+ 0xcc, 0x18, 0xa0, 0xb7, 0x9a, 0xf2, 0x41, 0x3b
+ },
+ {
+ /* Sample #3 */
+ 0xc0, 0x6d, 0x37, 0x7e, 0xcd, 0x10, 0x19, 0x69
+ },
+ {
+ /* Sample #4 */
+ 0x9c, 0xd3, 0x35, 0x80, 0xf9, 0xb6, 0x4d, 0xfb
+ }
+ };
+
+/* CMAC-TDES (Generation) - 3 Key Test Data */
+static const unsigned char des3_3key_key[24] = {
+ /* Key1 */
+ 0x01, 0x23, 0x45, 0x67, 0x89, 0xaa, 0xcd, 0xef,
+ /* Key2 */
+ 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01,
+ /* Key3 */
+ 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef, 0x01, 0x23
+};
+static const unsigned char des3_3key_subkeys[2][8] = {
+ {
+ /* K1 */
+ 0x9d, 0x74, 0xe7, 0x39, 0x33, 0x17, 0x96, 0xc0
+ },
+ {
+ /* K2 */
+ 0x3a, 0xe9, 0xce, 0x72, 0x66, 0x2f, 0x2d, 0x9b
+ }
+};
+static const unsigned char des3_3key_expected_result[NB_CMAC_TESTS_PER_KEY][MBEDTLS_DES3_BLOCK_SIZE]
+ = {
+ {
+ /* Sample #1 */
+ 0x7d, 0xb0, 0xd3, 0x7d, 0xf9, 0x36, 0xc5, 0x50
+ },
+ {
+ /* Sample #2 */
+ 0x30, 0x23, 0x9c, 0xf1, 0xf5, 0x2e, 0x66, 0x09
+ },
+ {
+ /* Sample #3 */
+ 0x6c, 0x9f, 0x3e, 0xe4, 0x92, 0x3f, 0x6b, 0xe2
+ },
+ {
+ /* Sample #4 */
+ 0x99, 0x42, 0x9b, 0xd0, 0xbF, 0x79, 0x04, 0xe5
+ }
+ };
+
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+/* AES AES-CMAC-PRF-128 Test Data */
+static const unsigned char PRFK[] = {
+ /* Key */
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0xed, 0xcb
+};
+
+/* Sizes in bytes */
+static const size_t PRFKlen[NB_PRF_TESTS] = {
+ 18,
+ 16,
+ 10
+};
+
+/* Message */
+static const unsigned char PRFM[] = {
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+ 0x10, 0x11, 0x12, 0x13
+};
+
+static const unsigned char PRFT[NB_PRF_TESTS][16] = {
+ {
+ 0x84, 0xa3, 0x48, 0xa4, 0xa4, 0x5d, 0x23, 0x5b,
+ 0xab, 0xff, 0xfc, 0x0d, 0x2b, 0x4d, 0xa0, 0x9a
+ },
+ {
+ 0x98, 0x0a, 0xe8, 0x7b, 0x5f, 0x4c, 0x9c, 0x52,
+ 0x14, 0xf5, 0xb6, 0xa8, 0x45, 0x5e, 0x4c, 0x2d
+ },
+ {
+ 0x29, 0x0d, 0x9e, 0x11, 0x2e, 0xdb, 0x09, 0xee,
+ 0x14, 0x1f, 0xcf, 0x64, 0xc0, 0xb7, 0x2f, 0x3d
+ }
+};
+#endif /* MBEDTLS_AES_C */
+
+static int cmac_test_subkeys(int verbose,
+ const char *testname,
+ const unsigned char *key,
+ int keybits,
+ const unsigned char *subkeys,
+ mbedtls_cipher_type_t cipher_type,
+ int block_size,
+ int num_tests)
+{
+ int i, ret = 0;
+ mbedtls_cipher_context_t ctx;
+ const mbedtls_cipher_info_t *cipher_info;
+ unsigned char K1[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+ unsigned char K2[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+
+ cipher_info = mbedtls_cipher_info_from_type(cipher_type);
+ if (cipher_info == NULL) {
+ /* Failing at this point must be due to a build issue */
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ for (i = 0; i < num_tests; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" %s CMAC subkey #%d: ", testname, i + 1);
+ }
+
+ mbedtls_cipher_init(&ctx);
+
+ if ((ret = mbedtls_cipher_setup(&ctx, cipher_info)) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("test execution failed\n");
+ }
+
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_cipher_setkey(&ctx, key, keybits,
+ MBEDTLS_ENCRYPT)) != 0) {
+ /* When CMAC is implemented by an alternative implementation, or
+ * the underlying primitive itself is implemented alternatively,
+ * AES-192 may be unavailable. This should not cause the selftest
+ * function to fail. */
+ if ((ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED ||
+ ret == MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE) &&
+ cipher_type == MBEDTLS_CIPHER_AES_192_ECB) {
+ if (verbose != 0) {
+ mbedtls_printf("skipped\n");
+ }
+ goto next_test;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("test execution failed\n");
+ }
+
+ goto cleanup;
+ }
+
+ ret = cmac_generate_subkeys(&ctx, K1, K2);
+ if (ret != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ goto cleanup;
+ }
+
+ if ((ret = memcmp(K1, subkeys, block_size)) != 0 ||
+ (ret = memcmp(K2, &subkeys[block_size], block_size)) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+next_test:
+ mbedtls_cipher_free(&ctx);
+ }
+
+ ret = 0;
+ goto exit;
+
+cleanup:
+ mbedtls_cipher_free(&ctx);
+
+exit:
+ return ret;
+}
+
+static int cmac_test_wth_cipher(int verbose,
+ const char *testname,
+ const unsigned char *key,
+ int keybits,
+ const unsigned char *messages,
+ const unsigned int message_lengths[4],
+ const unsigned char *expected_result,
+ mbedtls_cipher_type_t cipher_type,
+ int block_size,
+ int num_tests)
+{
+ const mbedtls_cipher_info_t *cipher_info;
+ int i, ret = 0;
+ unsigned char output[MBEDTLS_CMAC_MAX_BLOCK_SIZE];
+
+ cipher_info = mbedtls_cipher_info_from_type(cipher_type);
+ if (cipher_info == NULL) {
+ /* Failing at this point must be due to a build issue */
+ ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ goto exit;
+ }
+
+ for (i = 0; i < num_tests; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" %s CMAC #%d: ", testname, i + 1);
+ }
+
+ if ((ret = mbedtls_cipher_cmac(cipher_info, key, keybits, messages,
+ message_lengths[i], output)) != 0) {
+ /* When CMAC is implemented by an alternative implementation, or
+ * the underlying primitive itself is implemented alternatively,
+ * AES-192 and/or 3DES may be unavailable. This should not cause
+ * the selftest function to fail. */
+ if ((ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED ||
+ ret == MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE) &&
+ (cipher_type == MBEDTLS_CIPHER_AES_192_ECB ||
+ cipher_type == MBEDTLS_CIPHER_DES_EDE3_ECB)) {
+ if (verbose != 0) {
+ mbedtls_printf("skipped\n");
+ }
+ continue;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ goto exit;
+ }
+
+ if ((ret = memcmp(output, &expected_result[i * block_size], block_size)) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+ ret = 0;
+
+exit:
+ return ret;
+}
+
+#if defined(MBEDTLS_AES_C)
+static int test_aes128_cmac_prf(int verbose)
+{
+ int i;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char output[MBEDTLS_AES_BLOCK_SIZE];
+
+ for (i = 0; i < NB_PRF_TESTS; i++) {
+ mbedtls_printf(" AES CMAC 128 PRF #%d: ", i);
+ ret = mbedtls_aes_cmac_prf_128(PRFK, PRFKlen[i], PRFM, 20, output);
+ if (ret != 0 ||
+ memcmp(output, PRFT[i], MBEDTLS_AES_BLOCK_SIZE) != 0) {
+
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return ret;
+ } else if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+ return ret;
+}
+#endif /* MBEDTLS_AES_C */
+
+int mbedtls_cmac_self_test(int verbose)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_AES_C)
+ /* AES-128 */
+ if ((ret = cmac_test_subkeys(verbose,
+ "AES 128",
+ aes_128_key,
+ 128,
+ (const unsigned char *) aes_128_subkeys,
+ MBEDTLS_CIPHER_AES_128_ECB,
+ MBEDTLS_AES_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+
+ if ((ret = cmac_test_wth_cipher(verbose,
+ "AES 128",
+ aes_128_key,
+ 128,
+ test_message,
+ aes_message_lengths,
+ (const unsigned char *) aes_128_expected_result,
+ MBEDTLS_CIPHER_AES_128_ECB,
+ MBEDTLS_AES_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+
+ /* AES-192 */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ if ((ret = cmac_test_subkeys(verbose,
+ "AES 192",
+ aes_192_key,
+ 192,
+ (const unsigned char *) aes_192_subkeys,
+ MBEDTLS_CIPHER_AES_192_ECB,
+ MBEDTLS_AES_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+
+ if ((ret = cmac_test_wth_cipher(verbose,
+ "AES 192",
+ aes_192_key,
+ 192,
+ test_message,
+ aes_message_lengths,
+ (const unsigned char *) aes_192_expected_result,
+ MBEDTLS_CIPHER_AES_192_ECB,
+ MBEDTLS_AES_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+
+ /* AES-256 */
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ if ((ret = cmac_test_subkeys(verbose,
+ "AES 256",
+ aes_256_key,
+ 256,
+ (const unsigned char *) aes_256_subkeys,
+ MBEDTLS_CIPHER_AES_256_ECB,
+ MBEDTLS_AES_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+
+ if ((ret = cmac_test_wth_cipher(verbose,
+ "AES 256",
+ aes_256_key,
+ 256,
+ test_message,
+ aes_message_lengths,
+ (const unsigned char *) aes_256_expected_result,
+ MBEDTLS_CIPHER_AES_256_ECB,
+ MBEDTLS_AES_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_DES_C)
+ /* 3DES 2 key */
+ if ((ret = cmac_test_subkeys(verbose,
+ "3DES 2 key",
+ des3_2key_key,
+ 192,
+ (const unsigned char *) des3_2key_subkeys,
+ MBEDTLS_CIPHER_DES_EDE3_ECB,
+ MBEDTLS_DES3_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+
+ if ((ret = cmac_test_wth_cipher(verbose,
+ "3DES 2 key",
+ des3_2key_key,
+ 192,
+ test_message,
+ des3_message_lengths,
+ (const unsigned char *) des3_2key_expected_result,
+ MBEDTLS_CIPHER_DES_EDE3_ECB,
+ MBEDTLS_DES3_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+
+ /* 3DES 3 key */
+ if ((ret = cmac_test_subkeys(verbose,
+ "3DES 3 key",
+ des3_3key_key,
+ 192,
+ (const unsigned char *) des3_3key_subkeys,
+ MBEDTLS_CIPHER_DES_EDE3_ECB,
+ MBEDTLS_DES3_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+
+ if ((ret = cmac_test_wth_cipher(verbose,
+ "3DES 3 key",
+ des3_3key_key,
+ 192,
+ test_message,
+ des3_message_lengths,
+ (const unsigned char *) des3_3key_expected_result,
+ MBEDTLS_CIPHER_DES_EDE3_ECB,
+ MBEDTLS_DES3_BLOCK_SIZE,
+ NB_CMAC_TESTS_PER_KEY)) != 0) {
+ return ret;
+ }
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+ if ((ret = test_aes128_cmac_prf(verbose)) != 0) {
+ return ret;
+ }
+#endif /* MBEDTLS_AES_C */
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CMAC_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/constant_time.c b/tf-psa-crypto/drivers/builtin/src/constant_time.c
new file mode 100644
index 0000000..95b8122
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/constant_time.c
@@ -0,0 +1,248 @@
+/**
+ * Constant-time functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The following functions are implemented without using comparison operators, as those
+ * might be translated to branches by some compilers on some platforms.
+ */
+
+#include <stdint.h>
+#include <limits.h>
+
+#include "common.h"
+#include "constant_time_internal.h"
+#include "mbedtls/constant_time.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#if !defined(MBEDTLS_CT_ASM)
+/*
+ * Define an object with the value zero, such that the compiler cannot prove that it
+ * has the value zero (because it is volatile, it "may be modified in ways unknown to
+ * the implementation").
+ */
+volatile mbedtls_ct_uint_t mbedtls_ct_zero = 0;
+#endif
+
+/*
+ * Define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS where assembly is present to
+ * perform fast unaligned access to volatile data.
+ *
+ * This is needed because mbedtls_get_unaligned_uintXX etc don't support volatile
+ * memory accesses.
+ *
+ * Some of these definitions could be moved into alignment.h but for now they are
+ * only used here.
+ */
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) && \
+ ((defined(MBEDTLS_CT_ARM_ASM) && (UINTPTR_MAX == 0xfffffffful)) || \
+ defined(MBEDTLS_CT_AARCH64_ASM))
+/* We check pointer sizes to avoid issues with them not matching register size requirements */
+#define MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS
+
+static inline uint32_t mbedtls_get_unaligned_volatile_uint32(volatile const unsigned char *p)
+{
+ /* This is UB, even where it's safe:
+ * return *((volatile uint32_t*)p);
+ * so instead the same thing is expressed in assembly below.
+ */
+ uint32_t r;
+#if defined(MBEDTLS_CT_ARM_ASM)
+ asm volatile ("ldr %0, [%1]" : "=r" (r) : "r" (p) :);
+#elif defined(MBEDTLS_CT_AARCH64_ASM)
+ asm volatile ("ldr %w0, [%1]" : "=r" (r) : MBEDTLS_ASM_AARCH64_PTR_CONSTRAINT(p) :);
+#else
+#error "No assembly defined for mbedtls_get_unaligned_volatile_uint32"
+#endif
+ return r;
+}
+#endif /* defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS) &&
+ (defined(MBEDTLS_CT_ARM_ASM) || defined(MBEDTLS_CT_AARCH64_ASM)) */
+
+int mbedtls_ct_memcmp(const void *a,
+ const void *b,
+ size_t n)
+{
+ size_t i = 0;
+ /*
+ * `A` and `B` are cast to volatile to ensure that the compiler
+ * generates code that always fully reads both buffers.
+ * Otherwise it could generate a test to exit early if `diff` has all
+ * bits set early in the loop.
+ */
+ volatile const unsigned char *A = (volatile const unsigned char *) a;
+ volatile const unsigned char *B = (volatile const unsigned char *) b;
+ uint32_t diff = 0;
+
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_VOLATILE_ACCESS)
+ for (; (i + 4) <= n; i += 4) {
+ uint32_t x = mbedtls_get_unaligned_volatile_uint32(A + i);
+ uint32_t y = mbedtls_get_unaligned_volatile_uint32(B + i);
+ diff |= x ^ y;
+ }
+#endif
+
+ for (; i < n; i++) {
+ /* Read volatile data in order before computing diff.
+ * This avoids IAR compiler warning:
+ * 'the order of volatile accesses is undefined ..' */
+ unsigned char x = A[i], y = B[i];
+ diff |= x ^ y;
+ }
+
+
+#if (INT_MAX < INT32_MAX)
+ /* We don't support int smaller than 32-bits, but if someone tried to build
+ * with this configuration, there is a risk that, for differing data, the
+ * only bits set in diff are in the top 16-bits, and would be lost by a
+ * simple cast from uint32 to int.
+ * This would have significant security implications, so protect against it. */
+#error "mbedtls_ct_memcmp() requires minimum 32-bit ints"
+#else
+ /* The bit-twiddling ensures that when we cast uint32_t to int, we are casting
+ * a value that is in the range 0..INT_MAX - a value larger than this would
+ * result in implementation defined behaviour.
+ *
+ * This ensures that the value returned by the function is non-zero iff
+ * diff is non-zero.
+ */
+ return (int) ((diff & 0xffff) | (diff >> 16));
+#endif
+}
+
+#if defined(MBEDTLS_NIST_KW_C)
+
+int mbedtls_ct_memcmp_partial(const void *a,
+ const void *b,
+ size_t n,
+ size_t skip_head,
+ size_t skip_tail)
+{
+ unsigned int diff = 0;
+
+ volatile const unsigned char *A = (volatile const unsigned char *) a;
+ volatile const unsigned char *B = (volatile const unsigned char *) b;
+
+ size_t valid_end = n - skip_tail;
+
+ for (size_t i = 0; i < n; i++) {
+ unsigned char x = A[i], y = B[i];
+ unsigned int d = x ^ y;
+ mbedtls_ct_condition_t valid = mbedtls_ct_bool_and(mbedtls_ct_uint_ge(i, skip_head),
+ mbedtls_ct_uint_lt(i, valid_end));
+ diff |= mbedtls_ct_uint_if_else_0(valid, d);
+ }
+
+ /* Since we go byte-by-byte, the only bits set will be in the bottom 8 bits, so the
+ * cast from uint to int is safe. */
+ return (int) diff;
+}
+
+#endif
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+void mbedtls_ct_memmove_left(void *start, size_t total, size_t offset)
+{
+ volatile unsigned char *buf = start;
+ for (size_t i = 0; i < total; i++) {
+ mbedtls_ct_condition_t no_op = mbedtls_ct_uint_gt(total - offset, i);
+ /* The first `total - offset` passes are a no-op. The last
+ * `offset` passes shift the data one byte to the left and
+ * zero out the last byte. */
+ for (size_t n = 0; n < total - 1; n++) {
+ unsigned char current = buf[n];
+ unsigned char next = buf[n+1];
+ buf[n] = mbedtls_ct_uint_if(no_op, current, next);
+ }
+ buf[total-1] = mbedtls_ct_uint_if_else_0(no_op, buf[total-1]);
+ }
+}
+
+#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C */
+
+void mbedtls_ct_memcpy_if(mbedtls_ct_condition_t condition,
+ unsigned char *dest,
+ const unsigned char *src1,
+ const unsigned char *src2,
+ size_t len)
+{
+#if defined(MBEDTLS_CT_SIZE_64)
+ const uint64_t mask = (uint64_t) condition;
+ const uint64_t not_mask = (uint64_t) ~mbedtls_ct_compiler_opaque(condition);
+#else
+ const uint32_t mask = (uint32_t) condition;
+ const uint32_t not_mask = (uint32_t) ~mbedtls_ct_compiler_opaque(condition);
+#endif
+
+ /* If src2 is NULL, setup src2 so that we read from the destination address.
+ *
+ * This means that if src2 == NULL && condition is false, the result will be a
+ * no-op because we read from dest and write the same data back into dest.
+ */
+ if (src2 == NULL) {
+ src2 = dest;
+ }
+
+ /* dest[i] = c1 == c2 ? src[i] : dest[i] */
+ size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+#if defined(MBEDTLS_CT_SIZE_64)
+ for (; (i + 8) <= len; i += 8) {
+ uint64_t a = mbedtls_get_unaligned_uint64(src1 + i) & mask;
+ uint64_t b = mbedtls_get_unaligned_uint64(src2 + i) & not_mask;
+ mbedtls_put_unaligned_uint64(dest + i, a | b);
+ }
+#else
+ for (; (i + 4) <= len; i += 4) {
+ uint32_t a = mbedtls_get_unaligned_uint32(src1 + i) & mask;
+ uint32_t b = mbedtls_get_unaligned_uint32(src2 + i) & not_mask;
+ mbedtls_put_unaligned_uint32(dest + i, a | b);
+ }
+#endif /* defined(MBEDTLS_CT_SIZE_64) */
+#endif /* MBEDTLS_EFFICIENT_UNALIGNED_ACCESS */
+ for (; i < len; i++) {
+ dest[i] = (src1[i] & mask) | (src2[i] & not_mask);
+ }
+}
+
+void mbedtls_ct_memcpy_offset(unsigned char *dest,
+ const unsigned char *src,
+ size_t offset,
+ size_t offset_min,
+ size_t offset_max,
+ size_t len)
+{
+ size_t offsetval;
+
+ for (offsetval = offset_min; offsetval <= offset_max; offsetval++) {
+ mbedtls_ct_memcpy_if(mbedtls_ct_uint_eq(offsetval, offset), dest, src + offsetval, NULL,
+ len);
+ }
+}
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+void mbedtls_ct_zeroize_if(mbedtls_ct_condition_t condition, void *buf, size_t len)
+{
+ uint32_t mask = (uint32_t) ~condition;
+ uint8_t *p = (uint8_t *) buf;
+ size_t i = 0;
+#if defined(MBEDTLS_EFFICIENT_UNALIGNED_ACCESS)
+ for (; (i + 4) <= len; i += 4) {
+ mbedtls_put_unaligned_uint32((void *) (p + i),
+ mbedtls_get_unaligned_uint32((void *) (p + i)) & mask);
+ }
+#endif
+ for (; i < len; i++) {
+ p[i] = p[i] & mask;
+ }
+}
+
+#endif /* defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) */
diff --git a/tf-psa-crypto/drivers/builtin/src/constant_time_impl.h b/tf-psa-crypto/drivers/builtin/src/constant_time_impl.h
new file mode 100644
index 0000000..2a4574b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/constant_time_impl.h
@@ -0,0 +1,556 @@
+/**
+ * Constant-time functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_CONSTANT_TIME_IMPL_H
+#define MBEDTLS_CONSTANT_TIME_IMPL_H
+
+#include <stddef.h>
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+/*
+ * To improve readability of constant_time_internal.h, the static inline
+ * definitions are here, and constant_time_internal.h has only the declarations.
+ *
+ * This results in duplicate declarations of the form:
+ * static inline void f(); // from constant_time_internal.h
+ * static inline void f() { ... } // from constant_time_impl.h
+ * when constant_time_internal.h is included.
+ *
+ * This appears to behave as if the declaration-without-definition was not present
+ * (except for warnings if gcc -Wredundant-decls or similar is used).
+ *
+ * Disable -Wredundant-decls so that gcc does not warn about this. This is re-enabled
+ * at the bottom of this file.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (__GNUC__ > 4)
+ #pragma GCC diagnostic push
+ #pragma GCC diagnostic ignored "-Wredundant-decls"
+#endif
+
+/* Disable asm under Memsan because it confuses Memsan and generates false errors.
+ *
+ * We also disable under Valgrind by default, because it's more useful
+ * for Valgrind to test the plain C implementation. MBEDTLS_TEST_CONSTANT_FLOW_ASM //no-check-names
+ * may be set to permit building asm under Valgrind.
+ */
+#if defined(MBEDTLS_TEST_CONSTANT_FLOW_MEMSAN) || \
+ (defined(MBEDTLS_TEST_CONSTANT_FLOW_VALGRIND) && !defined(MBEDTLS_TEST_CONSTANT_FLOW_ASM)) //no-check-names
+#define MBEDTLS_CT_NO_ASM
+#elif defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+#define MBEDTLS_CT_NO_ASM
+#endif
+#endif
+
+/* armcc5 --gnu defines __GNUC__ but doesn't support GNU's extended asm */
+#if defined(MBEDTLS_HAVE_ASM) && defined(__GNUC__) && (!defined(__ARMCC_VERSION) || \
+ __ARMCC_VERSION >= 6000000) && !defined(MBEDTLS_CT_NO_ASM)
+#define MBEDTLS_CT_ASM
+#if (defined(__arm__) || defined(__thumb__) || defined(__thumb2__))
+#define MBEDTLS_CT_ARM_ASM
+#elif defined(__aarch64__)
+#define MBEDTLS_CT_AARCH64_ASM
+#elif defined(__amd64__) || defined(__x86_64__)
+#define MBEDTLS_CT_X86_64_ASM
+#elif defined(__i386__)
+#define MBEDTLS_CT_X86_ASM
+#endif
+#endif
+
+#define MBEDTLS_CT_SIZE (sizeof(mbedtls_ct_uint_t) * 8)
+
+
+/* ============================================================================
+ * Core const-time primitives
+ */
+
+/* Ensure that the compiler cannot know the value of x (i.e., cannot optimise
+ * based on its value) after this function is called.
+ *
+ * If we are not using assembly, this will be fairly inefficient, so its use
+ * should be minimised.
+ */
+
+#if !defined(MBEDTLS_CT_ASM)
+extern volatile mbedtls_ct_uint_t mbedtls_ct_zero;
+#endif
+
+/**
+ * \brief Ensure that a value cannot be known at compile time.
+ *
+ * \param x The value to hide from the compiler.
+ * \return The same value that was passed in, such that the compiler
+ * cannot prove its value (even for calls of the form
+ * x = mbedtls_ct_compiler_opaque(1), x will be unknown).
+ *
+ * \note This is mainly used in constructing mbedtls_ct_condition_t
+ * values and performing operations over them, to ensure that
+ * there is no way for the compiler to ever know anything about
+ * the value of an mbedtls_ct_condition_t.
+ */
+static inline mbedtls_ct_uint_t mbedtls_ct_compiler_opaque(mbedtls_ct_uint_t x)
+{
+#if defined(MBEDTLS_CT_ASM)
+ asm volatile ("" : [x] "+r" (x) :);
+ return x;
+#else
+ return x ^ mbedtls_ct_zero;
+#endif
+}
+
+/*
+ * Selecting unified syntax is needed for gcc, and harmless on clang.
+ *
+ * This is needed because on Thumb 1, condition flags are always set, so
+ * e.g. "negs" is supported but "neg" is not (on Thumb 2, both exist).
+ *
+ * Under Thumb 1 unified syntax, only the "negs" form is accepted, and
+ * under divided syntax, only the "neg" form is accepted. clang only
+ * supports unified syntax.
+ *
+ * On Thumb 2 and Arm, both compilers are happy with the "s" suffix,
+ * although we don't actually care about setting the flags.
+ *
+ * For old versions of gcc (see #8516 for details), restore divided
+ * syntax afterwards - otherwise old versions of gcc seem to apply
+ * unified syntax globally, which breaks other asm code.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC) && defined(__thumb__) && !defined(__thumb2__) && \
+ (__GNUC__ < 11) && !defined(__ARM_ARCH_2__)
+#define RESTORE_ASM_SYNTAX ".syntax divided \n\t"
+#else
+#define RESTORE_ASM_SYNTAX
+#endif
+
+/* Convert a number into a condition in constant time. */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool(mbedtls_ct_uint_t x)
+{
+ /*
+ * Define mask-generation code that, as far as possible, will not use branches or conditional instructions.
+ *
+ * For some platforms / type sizes, we define assembly to assure this.
+ *
+ * Otherwise, we define a plain C fallback which (in May 2023) does not get optimised into
+ * conditional instructions or branches by trunk clang, gcc, or MSVC v19.
+ */
+#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+ mbedtls_ct_uint_t s;
+ asm volatile ("neg %x[s], %x[x] \n\t"
+ "orr %x[x], %x[s], %x[x] \n\t"
+ "asr %x[x], %x[x], 63 \n\t"
+ :
+ [s] "=&r" (s),
+ [x] "+&r" (x)
+ :
+ :
+ );
+ return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
+ uint32_t s;
+ asm volatile (".syntax unified \n\t"
+ "negs %[s], %[x] \n\t"
+ "orrs %[x], %[x], %[s] \n\t"
+ "asrs %[x], %[x], #31 \n\t"
+ RESTORE_ASM_SYNTAX
+ :
+ [s] "=&l" (s),
+ [x] "+&l" (x)
+ :
+ :
+ "cc" /* clobbers flag bits */
+ );
+ return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+ uint64_t s;
+ asm volatile ("mov %[x], %[s] \n\t"
+ "neg %[s] \n\t"
+ "or %[x], %[s] \n\t"
+ "sar $63, %[s] \n\t"
+ :
+ [s] "=&a" (s)
+ :
+ [x] "D" (x)
+ :
+ );
+ return (mbedtls_ct_condition_t) s;
+#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
+ uint32_t s;
+ asm volatile ("mov %[x], %[s] \n\t"
+ "neg %[s] \n\t"
+ "or %[s], %[x] \n\t"
+ "sar $31, %[x] \n\t"
+ :
+ [s] "=&c" (s),
+ [x] "+&a" (x)
+ :
+ :
+ );
+ return (mbedtls_ct_condition_t) x;
+#else
+ const mbedtls_ct_uint_t xo = mbedtls_ct_compiler_opaque(x);
+#if defined(_MSC_VER)
+ /* MSVC has a warning about unary minus on unsigned, but this is
+ * well-defined and precisely what we want to do here */
+#pragma warning( push )
+#pragma warning( disable : 4146 )
+#endif
+ // y is negative (i.e., top bit set) iff x is non-zero
+ mbedtls_ct_int_t y = (-xo) | -(xo >> 1);
+
+ // extract only the sign bit of y so that y == 1 (if x is non-zero) or 0 (if x is zero)
+ y = (((mbedtls_ct_uint_t) y) >> (MBEDTLS_CT_SIZE - 1));
+
+ // -y has all bits set (if x is non-zero), or all bits clear (if x is zero)
+ return (mbedtls_ct_condition_t) (-y);
+#if defined(_MSC_VER)
+#pragma warning( pop )
+#endif
+#endif
+}
+
+static inline mbedtls_ct_uint_t mbedtls_ct_if(mbedtls_ct_condition_t condition,
+ mbedtls_ct_uint_t if1,
+ mbedtls_ct_uint_t if0)
+{
+#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+ asm volatile ("and %x[if1], %x[if1], %x[condition] \n\t"
+ "mvn %x[condition], %x[condition] \n\t"
+ "and %x[condition], %x[condition], %x[if0] \n\t"
+ "orr %x[condition], %x[if1], %x[condition]"
+ :
+ [condition] "+&r" (condition),
+ [if1] "+&r" (if1)
+ :
+ [if0] "r" (if0)
+ :
+ );
+ return (mbedtls_ct_uint_t) condition;
+#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
+ asm volatile (".syntax unified \n\t"
+ "ands %[if1], %[if1], %[condition] \n\t"
+ "mvns %[condition], %[condition] \n\t"
+ "ands %[condition], %[condition], %[if0] \n\t"
+ "orrs %[condition], %[if1], %[condition] \n\t"
+ RESTORE_ASM_SYNTAX
+ :
+ [condition] "+&l" (condition),
+ [if1] "+&l" (if1)
+ :
+ [if0] "l" (if0)
+ :
+ "cc"
+ );
+ return (mbedtls_ct_uint_t) condition;
+#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+ asm volatile ("and %[condition], %[if1] \n\t"
+ "not %[condition] \n\t"
+ "and %[condition], %[if0] \n\t"
+ "or %[if1], %[if0] \n\t"
+ :
+ [condition] "+&D" (condition),
+ [if1] "+&S" (if1),
+ [if0] "+&a" (if0)
+ :
+ :
+ );
+ return if0;
+#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
+ asm volatile ("and %[condition], %[if1] \n\t"
+ "not %[condition] \n\t"
+ "and %[if0], %[condition] \n\t"
+ "or %[condition], %[if1] \n\t"
+ :
+ [condition] "+&c" (condition),
+ [if1] "+&a" (if1)
+ :
+ [if0] "b" (if0)
+ :
+ );
+ return if1;
+#else
+ mbedtls_ct_condition_t not_cond =
+ (mbedtls_ct_condition_t) (~mbedtls_ct_compiler_opaque(condition));
+ return (mbedtls_ct_uint_t) ((condition & if1) | (not_cond & if0));
+#endif
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_lt(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y)
+{
+#if defined(MBEDTLS_CT_AARCH64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+ uint64_t s1;
+ asm volatile ("eor %x[s1], %x[y], %x[x] \n\t"
+ "sub %x[x], %x[x], %x[y] \n\t"
+ "bic %x[x], %x[x], %x[s1] \n\t"
+ "and %x[s1], %x[s1], %x[y] \n\t"
+ "orr %x[s1], %x[x], %x[s1] \n\t"
+ "asr %x[x], %x[s1], 63"
+ :
+ [s1] "=&r" (s1),
+ [x] "+&r" (x)
+ :
+ [y] "r" (y)
+ :
+ );
+ return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_ARM_ASM) && defined(MBEDTLS_CT_SIZE_32)
+ uint32_t s1;
+ asm volatile (
+ ".syntax unified \n\t"
+#if defined(__thumb__) && !defined(__thumb2__)
+ "movs %[s1], %[x] \n\t"
+ "eors %[s1], %[s1], %[y] \n\t"
+#else
+ "eors %[s1], %[x], %[y] \n\t"
+#endif
+ "subs %[x], %[x], %[y] \n\t"
+ "bics %[x], %[x], %[s1] \n\t"
+ "ands %[y], %[s1], %[y] \n\t"
+ "orrs %[x], %[x], %[y] \n\t"
+ "asrs %[x], %[x], #31 \n\t"
+ RESTORE_ASM_SYNTAX
+ :
+ [s1] "=&l" (s1),
+ [x] "+&l" (x),
+ [y] "+&l" (y)
+ :
+ :
+ "cc"
+ );
+ return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_X86_64_ASM) && (defined(MBEDTLS_CT_SIZE_32) || defined(MBEDTLS_CT_SIZE_64))
+ uint64_t s;
+ asm volatile ("mov %[x], %[s] \n\t"
+ "xor %[y], %[s] \n\t"
+ "sub %[y], %[x] \n\t"
+ "and %[s], %[y] \n\t"
+ "not %[s] \n\t"
+ "and %[s], %[x] \n\t"
+ "or %[y], %[x] \n\t"
+ "sar $63, %[x] \n\t"
+ :
+ [s] "=&a" (s),
+ [x] "+&D" (x),
+ [y] "+&S" (y)
+ :
+ :
+ );
+ return (mbedtls_ct_condition_t) x;
+#elif defined(MBEDTLS_CT_X86_ASM) && defined(MBEDTLS_CT_SIZE_32)
+ uint32_t s;
+ asm volatile ("mov %[x], %[s] \n\t"
+ "xor %[y], %[s] \n\t"
+ "sub %[y], %[x] \n\t"
+ "and %[s], %[y] \n\t"
+ "not %[s] \n\t"
+ "and %[s], %[x] \n\t"
+ "or %[y], %[x] \n\t"
+ "sar $31, %[x] \n\t"
+ :
+ [s] "=&b" (s),
+ [x] "+&a" (x),
+ [y] "+&c" (y)
+ :
+ :
+ );
+ return (mbedtls_ct_condition_t) x;
+#else
+ /* Ensure that the compiler cannot optimise the following operations over x and y,
+ * even if it knows the value of x and y.
+ */
+ const mbedtls_ct_uint_t xo = mbedtls_ct_compiler_opaque(x);
+ const mbedtls_ct_uint_t yo = mbedtls_ct_compiler_opaque(y);
+ /*
+ * Check if the most significant bits (MSB) of the operands are different.
+ * cond is true iff the MSBs differ.
+ */
+ mbedtls_ct_condition_t cond = mbedtls_ct_bool((xo ^ yo) >> (MBEDTLS_CT_SIZE - 1));
+
+ /*
+ * If the MSB are the same then the difference x-y will be negative (and
+ * have its MSB set to 1 during conversion to unsigned) if and only if x<y.
+ *
+ * If the MSB are different, then the operand with the MSB of 1 is the
+ * bigger. (That is if y has MSB of 1, then x<y is true and it is false if
+ * the MSB of y is 0.)
+ */
+
+ // Select either y, or x - y
+ mbedtls_ct_uint_t ret = mbedtls_ct_if(cond, yo, (mbedtls_ct_uint_t) (xo - yo));
+
+ // Extract only the MSB of ret
+ ret = ret >> (MBEDTLS_CT_SIZE - 1);
+
+ // Convert to a condition (i.e., all bits set iff non-zero)
+ return mbedtls_ct_bool(ret);
+#endif
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ne(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y)
+{
+ /* diff = 0 if x == y, non-zero otherwise */
+ const mbedtls_ct_uint_t diff = mbedtls_ct_compiler_opaque(x) ^ mbedtls_ct_compiler_opaque(y);
+
+ /* all ones if x != y, 0 otherwise */
+ return mbedtls_ct_bool(diff);
+}
+
+static inline unsigned char mbedtls_ct_uchar_in_range_if(unsigned char low,
+ unsigned char high,
+ unsigned char c,
+ unsigned char t)
+{
+ const unsigned char co = (unsigned char) mbedtls_ct_compiler_opaque(c);
+ const unsigned char to = (unsigned char) mbedtls_ct_compiler_opaque(t);
+
+ /* low_mask is: 0 if low <= c, 0x...ff if low > c */
+ unsigned low_mask = ((unsigned) co - low) >> 8;
+ /* high_mask is: 0 if c <= high, 0x...ff if c > high */
+ unsigned high_mask = ((unsigned) high - co) >> 8;
+
+ return (unsigned char) (~(low_mask | high_mask)) & to;
+}
+
+/* ============================================================================
+ * Everything below here is trivial wrapper functions
+ */
+
+static inline size_t mbedtls_ct_size_if(mbedtls_ct_condition_t condition,
+ size_t if1,
+ size_t if0)
+{
+ return (size_t) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1, (mbedtls_ct_uint_t) if0);
+}
+
+static inline unsigned mbedtls_ct_uint_if(mbedtls_ct_condition_t condition,
+ unsigned if1,
+ unsigned if0)
+{
+ return (unsigned) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1, (mbedtls_ct_uint_t) if0);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if(mbedtls_ct_condition_t condition,
+ mbedtls_ct_condition_t if1,
+ mbedtls_ct_condition_t if0)
+{
+ return (mbedtls_ct_condition_t) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) if1,
+ (mbedtls_ct_uint_t) if0);
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if(mbedtls_ct_condition_t condition,
+ mbedtls_mpi_uint if1,
+ mbedtls_mpi_uint if0)
+{
+ return (mbedtls_mpi_uint) mbedtls_ct_if(condition,
+ (mbedtls_ct_uint_t) if1,
+ (mbedtls_ct_uint_t) if0);
+}
+
+#endif
+
+static inline size_t mbedtls_ct_size_if_else_0(mbedtls_ct_condition_t condition, size_t if1)
+{
+ return (size_t) (condition & if1);
+}
+
+static inline unsigned mbedtls_ct_uint_if_else_0(mbedtls_ct_condition_t condition, unsigned if1)
+{
+ return (unsigned) (condition & if1);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if_else_0(mbedtls_ct_condition_t condition,
+ mbedtls_ct_condition_t if1)
+{
+ return (mbedtls_ct_condition_t) (condition & if1);
+}
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if_else_0(mbedtls_ct_condition_t condition,
+ mbedtls_mpi_uint if1)
+{
+ return (mbedtls_mpi_uint) (condition & if1);
+}
+
+#endif /* MBEDTLS_BIGNUM_C */
+
+static inline int mbedtls_ct_error_if(mbedtls_ct_condition_t condition, int if1, int if0)
+{
+ /* Coverting int -> uint -> int here is safe, because we require if1 and if0 to be
+ * in the range -32767..0, and we require 32-bit int and uint types.
+ *
+ * This means that (0 <= -if0 < INT_MAX), so negating if0 is safe, and similarly for
+ * converting back to int.
+ */
+ return -((int) mbedtls_ct_if(condition, (mbedtls_ct_uint_t) (-if1),
+ (mbedtls_ct_uint_t) (-if0)));
+}
+
+static inline int mbedtls_ct_error_if_else_0(mbedtls_ct_condition_t condition, int if1)
+{
+ return -((int) (condition & (-if1)));
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_eq(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y)
+{
+ return ~mbedtls_ct_uint_ne(x, y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_gt(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y)
+{
+ return mbedtls_ct_uint_lt(y, x);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ge(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y)
+{
+ return ~mbedtls_ct_uint_lt(x, y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_le(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y)
+{
+ return ~mbedtls_ct_uint_gt(x, y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_ne(mbedtls_ct_condition_t x,
+ mbedtls_ct_condition_t y)
+{
+ return (mbedtls_ct_condition_t) (x ^ y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_and(mbedtls_ct_condition_t x,
+ mbedtls_ct_condition_t y)
+{
+ return (mbedtls_ct_condition_t) (x & y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_or(mbedtls_ct_condition_t x,
+ mbedtls_ct_condition_t y)
+{
+ return (mbedtls_ct_condition_t) (x | y);
+}
+
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_not(mbedtls_ct_condition_t x)
+{
+ return (mbedtls_ct_condition_t) (~x);
+}
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (__GNUC__ > 4)
+/* Restore warnings for -Wredundant-decls on gcc */
+ #pragma GCC diagnostic pop
+#endif
+
+#endif /* MBEDTLS_CONSTANT_TIME_IMPL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/constant_time_internal.h b/tf-psa-crypto/drivers/builtin/src/constant_time_internal.h
new file mode 100644
index 0000000..26f6606
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/constant_time_internal.h
@@ -0,0 +1,579 @@
+/**
+ * Constant-time functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_CONSTANT_TIME_INTERNAL_H
+#define MBEDTLS_CONSTANT_TIME_INTERNAL_H
+
+#include <stdint.h>
+#include <stddef.h>
+
+#include "common.h"
+
+#if defined(MBEDTLS_BIGNUM_C)
+#include "mbedtls/bignum.h"
+#endif
+
+/* The constant-time interface provides various operations that are likely
+ * to result in constant-time code that does not branch or use conditional
+ * instructions for secret data (for secret pointers, this also applies to
+ * the data pointed to).
+ *
+ * It has three main parts:
+ *
+ * - boolean operations
+ * These are all named mbedtls_ct_<type>_<operation>.
+ * They operate over <type> and return mbedtls_ct_condition_t.
+ * All arguments are considered secret.
+ * example: bool x = y | z => x = mbedtls_ct_bool_or(y, z)
+ * example: bool x = y == z => x = mbedtls_ct_uint_eq(y, z)
+ *
+ * - conditional data selection
+ * These are all named mbedtls_ct_<type>_if and mbedtls_ct_<type>_if_else_0
+ * All arguments are considered secret.
+ * example: size_t a = x ? b : c => a = mbedtls_ct_size_if(x, b, c)
+ * example: unsigned a = x ? b : 0 => a = mbedtls_ct_uint_if_else_0(x, b)
+ *
+ * - block memory operations
+ * Only some arguments are considered secret, as documented for each
+ * function.
+ * example: if (x) memcpy(...) => mbedtls_ct_memcpy_if(x, ...)
+ *
+ * mbedtls_ct_condition_t must be treated as opaque and only created and
+ * manipulated via the functions in this header. The compiler should never
+ * be able to prove anything about its value at compile-time.
+ *
+ * mbedtls_ct_uint_t is an unsigned integer type over which constant time
+ * operations may be performed via the functions in this header. It is as big
+ * as the larger of size_t and mbedtls_mpi_uint, i.e. it is safe to cast
+ * to/from "unsigned int", "size_t", and "mbedtls_mpi_uint" (and any other
+ * not-larger integer types).
+ *
+ * For Arm (32-bit, 64-bit and Thumb), x86 and x86-64, assembly implementations
+ * are used to ensure that the generated code is constant time. For other
+ * architectures, it uses a plain C fallback designed to yield constant-time code
+ * (this has been observed to be constant-time on latest gcc, clang and MSVC
+ * as of May 2023).
+ *
+ * For readability, the static inline definitions are separated out into
+ * constant_time_impl.h.
+ */
+
+#if (SIZE_MAX > 0xffffffffffffffffULL)
+/* Pointer size > 64-bit */
+typedef size_t mbedtls_ct_condition_t;
+typedef size_t mbedtls_ct_uint_t;
+typedef ptrdiff_t mbedtls_ct_int_t;
+#define MBEDTLS_CT_TRUE ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(SIZE_MAX))
+#elif (SIZE_MAX > 0xffffffff) || defined(MBEDTLS_HAVE_INT64)
+/* 32-bit < pointer size <= 64-bit, or 64-bit MPI */
+typedef uint64_t mbedtls_ct_condition_t;
+typedef uint64_t mbedtls_ct_uint_t;
+typedef int64_t mbedtls_ct_int_t;
+#define MBEDTLS_CT_SIZE_64
+#define MBEDTLS_CT_TRUE ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(UINT64_MAX))
+#else
+/* Pointer size <= 32-bit, and no 64-bit MPIs */
+typedef uint32_t mbedtls_ct_condition_t;
+typedef uint32_t mbedtls_ct_uint_t;
+typedef int32_t mbedtls_ct_int_t;
+#define MBEDTLS_CT_SIZE_32
+#define MBEDTLS_CT_TRUE ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(UINT32_MAX))
+#endif
+#define MBEDTLS_CT_FALSE ((mbedtls_ct_condition_t) mbedtls_ct_compiler_opaque(0))
+
+/* ============================================================================
+ * Boolean operations
+ */
+
+/** Convert a number into a mbedtls_ct_condition_t.
+ *
+ * \param x Number to convert.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x != 0, or MBEDTLS_CT_FALSE if \p x == 0
+ *
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool(mbedtls_ct_uint_t x);
+
+/** Boolean "not equal" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x != \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x != \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ne(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y);
+
+/** Boolean "equals" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x == \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x == \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_eq(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y);
+
+/** Boolean "less than" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x < \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x < \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_lt(mbedtls_ct_uint_t x, mbedtls_ct_uint_t y);
+
+/** Boolean "greater than" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x > \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x > \p y, otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_gt(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y);
+
+/** Boolean "greater or equal" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x >= \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x >= \p y,
+ * otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_ge(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y);
+
+/** Boolean "less than or equal" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x <= \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x <= \p y,
+ * otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_uint_le(mbedtls_ct_uint_t x,
+ mbedtls_ct_uint_t y);
+
+/** Boolean not-equals operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x != \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \note This is more efficient than mbedtls_ct_uint_ne if both arguments are
+ * mbedtls_ct_condition_t.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x != \p y,
+ * otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_ne(mbedtls_ct_condition_t x,
+ mbedtls_ct_condition_t y);
+
+/** Boolean "and" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x && \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x && \p y,
+ * otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_and(mbedtls_ct_condition_t x,
+ mbedtls_ct_condition_t y);
+
+/** Boolean "or" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * \p x || \p y
+ *
+ * \param x The first value to analyze.
+ * \param y The second value to analyze.
+ *
+ * \return MBEDTLS_CT_TRUE if \p x || \p y,
+ * otherwise MBEDTLS_CT_FALSE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_or(mbedtls_ct_condition_t x,
+ mbedtls_ct_condition_t y);
+
+/** Boolean "not" operation.
+ *
+ * Functionally equivalent to:
+ *
+ * ! \p x
+ *
+ * \param x The value to invert
+ *
+ * \return MBEDTLS_CT_FALSE if \p x, otherwise MBEDTLS_CT_TRUE.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_not(mbedtls_ct_condition_t x);
+
+
+/* ============================================================================
+ * Data selection operations
+ */
+
+/** Choose between two size_t values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0 Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline size_t mbedtls_ct_size_if(mbedtls_ct_condition_t condition,
+ size_t if1,
+ size_t if0);
+
+/** Choose between two unsigned values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0 Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline unsigned mbedtls_ct_uint_if(mbedtls_ct_condition_t condition,
+ unsigned if1,
+ unsigned if0);
+
+/** Choose between two mbedtls_ct_condition_t values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0 Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if(mbedtls_ct_condition_t condition,
+ mbedtls_ct_condition_t if1,
+ mbedtls_ct_condition_t if0);
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+/** Choose between two mbedtls_mpi_uint values.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0 Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if(mbedtls_ct_condition_t condition, \
+ mbedtls_mpi_uint if1, \
+ mbedtls_mpi_uint if0);
+
+#endif
+
+/** Choose between an unsigned value and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_uint_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline unsigned mbedtls_ct_uint_if_else_0(mbedtls_ct_condition_t condition, unsigned if1);
+
+/** Choose between an mbedtls_ct_condition_t and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_bool_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline mbedtls_ct_condition_t mbedtls_ct_bool_if_else_0(mbedtls_ct_condition_t condition,
+ mbedtls_ct_condition_t if1);
+
+/** Choose between a size_t value and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_size_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline size_t mbedtls_ct_size_if_else_0(mbedtls_ct_condition_t condition, size_t if1);
+
+#if defined(MBEDTLS_BIGNUM_C)
+
+/** Choose between an mbedtls_mpi_uint value and 0.
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_mpi_uint_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline mbedtls_mpi_uint mbedtls_ct_mpi_uint_if_else_0(mbedtls_ct_condition_t condition,
+ mbedtls_mpi_uint if1);
+
+#endif
+
+/** Constant-flow char selection
+ *
+ * \param low Secret. Bottom of range
+ * \param high Secret. Top of range
+ * \param c Secret. Value to compare to range
+ * \param t Secret. Value to return, if in range
+ *
+ * \return \p t if \p low <= \p c <= \p high, 0 otherwise.
+ */
+static inline unsigned char mbedtls_ct_uchar_in_range_if(unsigned char low,
+ unsigned char high,
+ unsigned char c,
+ unsigned char t);
+
+/** Choose between two error values. The values must be in the range [-32767..0].
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : if0.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ * \param if0 Value to use if \p condition == MBEDTLS_CT_FALSE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise \c if0.
+ */
+static inline int mbedtls_ct_error_if(mbedtls_ct_condition_t condition, int if1, int if0);
+
+/** Choose between an error value and 0. The error value must be in the range [-32767..0].
+ *
+ * Functionally equivalent to:
+ *
+ * condition ? if1 : 0.
+ *
+ * Functionally equivalent to mbedtls_ct_error_if(condition, if1, 0) but
+ * results in smaller code size.
+ *
+ * \param condition Condition to test.
+ * \param if1 Value to use if \p condition == MBEDTLS_CT_TRUE.
+ *
+ * \return \c if1 if \p condition == MBEDTLS_CT_TRUE, otherwise 0.
+ */
+static inline int mbedtls_ct_error_if_else_0(mbedtls_ct_condition_t condition, int if1);
+
+/* ============================================================================
+ * Block memory operations
+ */
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+/** Conditionally set a block of memory to zero.
+ *
+ * Regardless of the condition, every byte will be read once and written to
+ * once.
+ *
+ * \param condition Secret. Condition to test.
+ * \param buf Secret. Pointer to the start of the buffer.
+ * \param len Number of bytes to set to zero.
+ *
+ * \warning Unlike mbedtls_platform_zeroize, this does not have the same guarantees
+ * about not being optimised away if the memory is never read again.
+ */
+void mbedtls_ct_zeroize_if(mbedtls_ct_condition_t condition, void *buf, size_t len);
+
+/** Shift some data towards the left inside a buffer.
+ *
+ * Functionally equivalent to:
+ *
+ * memmove(start, start + offset, total - offset);
+ * memset(start + (total - offset), 0, offset);
+ *
+ * Timing independence comes at the expense of performance.
+ *
+ * \param start Secret. Pointer to the start of the buffer.
+ * \param total Total size of the buffer.
+ * \param offset Secret. Offset from which to copy \p total - \p offset bytes.
+ */
+void mbedtls_ct_memmove_left(void *start,
+ size_t total,
+ size_t offset);
+
+#endif /* defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C) */
+
+/** Conditional memcpy.
+ *
+ * Functionally equivalent to:
+ *
+ * if (condition) {
+ * memcpy(dest, src1, len);
+ * } else {
+ * if (src2 != NULL)
+ * memcpy(dest, src2, len);
+ * }
+ *
+ * It will always read len bytes from src1.
+ * If src2 != NULL, it will always read len bytes from src2.
+ * If src2 == NULL, it will instead read len bytes from dest (as if src2 == dest).
+ *
+ * \param condition The condition
+ * \param dest Secret. Destination pointer.
+ * \param src1 Secret. Pointer to copy from (if \p condition == MBEDTLS_CT_TRUE).
+ * This may be equal to \p dest, but may not overlap in other ways.
+ * \param src2 Secret (contents only - may branch to determine if this parameter is NULL).
+ * Pointer to copy from (if \p condition == MBEDTLS_CT_FALSE and \p src2 is not NULL). May be NULL.
+ * This may be equal to \p dest, but may not overlap it in other ways. It may overlap with \p src1.
+ * \param len Number of bytes to copy.
+ */
+void mbedtls_ct_memcpy_if(mbedtls_ct_condition_t condition,
+ unsigned char *dest,
+ const unsigned char *src1,
+ const unsigned char *src2,
+ size_t len
+ );
+
+/** Copy data from a secret position.
+ *
+ * Functionally equivalent to:
+ *
+ * memcpy(dst, src + offset, len)
+ *
+ * This function copies \p len bytes from \p src + \p offset to
+ * \p dst, with a code flow and memory access pattern that does not depend on
+ * \p offset, but only on \p offset_min, \p offset_max and \p len.
+ *
+ * \note This function reads from \p dest, but the value that
+ * is read does not influence the result and this
+ * function's behavior is well-defined regardless of the
+ * contents of the buffers. This may result in false
+ * positives from static or dynamic analyzers, especially
+ * if \p dest is not initialized.
+ *
+ * \param dest Secret. The destination buffer. This must point to a writable
+ * buffer of at least \p len bytes.
+ * \param src Secret. The base of the source buffer. This must point to a
+ * readable buffer of at least \p offset_max + \p len
+ * bytes. Shouldn't overlap with \p dest
+ * \param offset Secret. The offset in the source buffer from which to copy.
+ * This must be no less than \p offset_min and no greater
+ * than \p offset_max.
+ * \param offset_min The minimal value of \p offset.
+ * \param offset_max The maximal value of \p offset.
+ * \param len The number of bytes to copy.
+ */
+void mbedtls_ct_memcpy_offset(unsigned char *dest,
+ const unsigned char *src,
+ size_t offset,
+ size_t offset_min,
+ size_t offset_max,
+ size_t len);
+
+/* Documented in include/mbedtls/constant_time.h. a and b are secret.
+
+ int mbedtls_ct_memcmp(const void *a,
+ const void *b,
+ size_t n);
+ */
+
+#if defined(MBEDTLS_NIST_KW_C)
+
+/** Constant-time buffer comparison without branches.
+ *
+ * Similar to mbedtls_ct_memcmp, except that the result only depends on part of
+ * the input data - differences in the head or tail are ignored. Functionally equivalent to:
+ *
+ * memcmp(a + skip_head, b + skip_head, size - skip_head - skip_tail)
+ *
+ * Time taken depends on \p n, but not on \p skip_head or \p skip_tail .
+ *
+ * Behaviour is undefined if ( \p skip_head + \p skip_tail) > \p n.
+ *
+ * \param a Secret. Pointer to the first buffer, containing at least \p n bytes. May not be NULL.
+ * \param b Secret. Pointer to the second buffer, containing at least \p n bytes. May not be NULL.
+ * \param n The number of bytes to examine (total size of the buffers).
+ * \param skip_head Secret. The number of bytes to treat as non-significant at the start of the buffer.
+ * These bytes will still be read.
+ * \param skip_tail Secret. The number of bytes to treat as non-significant at the end of the buffer.
+ * These bytes will still be read.
+ *
+ * \return Zero if the contents of the two buffers are the same, otherwise non-zero.
+ */
+int mbedtls_ct_memcmp_partial(const void *a,
+ const void *b,
+ size_t n,
+ size_t skip_head,
+ size_t skip_tail);
+
+#endif
+
+/* Include the implementation of static inline functions above. */
+#include "constant_time_impl.h"
+
+#endif /* MBEDTLS_CONSTANT_TIME_INTERNAL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/ctr.h b/tf-psa-crypto/drivers/builtin/src/ctr.h
new file mode 100644
index 0000000..aa48fb9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ctr.h
@@ -0,0 +1,35 @@
+/**
+ * \file ctr.h
+ *
+ * \brief This file contains common functionality for counter algorithms.
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_CTR_H
+#define MBEDTLS_CTR_H
+
+#include "common.h"
+
+/**
+ * \brief Increment a big-endian 16-byte value.
+ * This is quite performance-sensitive for AES-CTR and CTR-DRBG.
+ *
+ * \param n A 16-byte value to be incremented.
+ */
+static inline void mbedtls_ctr_increment_counter(uint8_t n[16])
+{
+ // The 32-bit version seems to perform about the same as a 64-bit version
+ // on 64-bit architectures, so no need to define a 64-bit version.
+ for (int i = 3;; i--) {
+ uint32_t x = MBEDTLS_GET_UINT32_BE(n, i << 2);
+ x += 1;
+ MBEDTLS_PUT_UINT32_BE(x, n, i << 2);
+ if (x != 0 || i == 0) {
+ break;
+ }
+ }
+}
+
+#endif /* MBEDTLS_CTR_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/ctr_drbg.c b/tf-psa-crypto/drivers/builtin/src/ctr_drbg.c
new file mode 100644
index 0000000..66d9d28
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ctr_drbg.c
@@ -0,0 +1,1016 @@
+/*
+ * CTR_DRBG implementation based on AES-256 (NIST SP 800-90)
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The NIST SP 800-90 DRBGs are described in the following publication.
+ *
+ * https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-90r.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_CTR_DRBG_C)
+
+#include "ctr.h"
+#include "mbedtls/ctr_drbg.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+/* Using error translation functions from PSA to MbedTLS */
+#if !defined(MBEDTLS_AES_C)
+#include "psa_util_internal.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_AES_C)
+static psa_status_t ctr_drbg_setup_psa_context(mbedtls_ctr_drbg_psa_context *psa_ctx,
+ unsigned char *key, size_t key_len)
+{
+ psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+ psa_status_t status;
+
+ psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_ENCRYPT);
+ psa_set_key_algorithm(&key_attr, PSA_ALG_ECB_NO_PADDING);
+ psa_set_key_type(&key_attr, PSA_KEY_TYPE_AES);
+ status = psa_import_key(&key_attr, key, key_len, &psa_ctx->key_id);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_cipher_encrypt_setup(&psa_ctx->operation, psa_ctx->key_id, PSA_ALG_ECB_NO_PADDING);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+exit:
+ psa_reset_key_attributes(&key_attr);
+ return status;
+}
+
+static void ctr_drbg_destroy_psa_contex(mbedtls_ctr_drbg_psa_context *psa_ctx)
+{
+ psa_cipher_abort(&psa_ctx->operation);
+ psa_destroy_key(psa_ctx->key_id);
+
+ psa_ctx->operation = psa_cipher_operation_init();
+ psa_ctx->key_id = MBEDTLS_SVC_KEY_ID_INIT;
+}
+#endif
+
+/*
+ * CTR_DRBG context initialization
+ */
+void mbedtls_ctr_drbg_init(mbedtls_ctr_drbg_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_ctr_drbg_context));
+#if defined(MBEDTLS_AES_C)
+ mbedtls_aes_init(&ctx->aes_ctx);
+#else
+ ctx->psa_ctx.key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ ctx->psa_ctx.operation = psa_cipher_operation_init();
+#endif
+ /* Indicate that the entropy nonce length is not set explicitly.
+ * See mbedtls_ctr_drbg_set_nonce_len(). */
+ ctx->reseed_counter = -1;
+
+ ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL;
+}
+
+/*
+ * This function resets CTR_DRBG context to the state immediately
+ * after initial call of mbedtls_ctr_drbg_init().
+ */
+void mbedtls_ctr_drbg_free(mbedtls_ctr_drbg_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ /* The mutex is initialized iff f_entropy is set. */
+ if (ctx->f_entropy != NULL) {
+ mbedtls_mutex_free(&ctx->mutex);
+ }
+#endif
+#if defined(MBEDTLS_AES_C)
+ mbedtls_aes_free(&ctx->aes_ctx);
+#else
+ ctr_drbg_destroy_psa_contex(&ctx->psa_ctx);
+#endif
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ctr_drbg_context));
+ ctx->reseed_interval = MBEDTLS_CTR_DRBG_RESEED_INTERVAL;
+ ctx->reseed_counter = -1;
+}
+
+void mbedtls_ctr_drbg_set_prediction_resistance(mbedtls_ctr_drbg_context *ctx,
+ int resistance)
+{
+ ctx->prediction_resistance = resistance;
+}
+
+void mbedtls_ctr_drbg_set_entropy_len(mbedtls_ctr_drbg_context *ctx,
+ size_t len)
+{
+ ctx->entropy_len = len;
+}
+
+int mbedtls_ctr_drbg_set_nonce_len(mbedtls_ctr_drbg_context *ctx,
+ size_t len)
+{
+ /* If mbedtls_ctr_drbg_seed() has already been called, it's
+ * too late. Return the error code that's closest to making sense. */
+ if (ctx->f_entropy != NULL) {
+ return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED;
+ }
+
+ if (len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) {
+ return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ }
+
+ /* This shouldn't be an issue because
+ * MBEDTLS_CTR_DRBG_MAX_SEED_INPUT < INT_MAX in any sensible
+ * configuration, but make sure anyway. */
+ if (len > INT_MAX) {
+ return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ }
+
+ /* For backward compatibility with Mbed TLS <= 2.19, store the
+ * entropy nonce length in a field that already exists, but isn't
+ * used until after the initial seeding. */
+ /* Due to the capping of len above, the value fits in an int. */
+ ctx->reseed_counter = (int) len;
+ return 0;
+}
+
+void mbedtls_ctr_drbg_set_reseed_interval(mbedtls_ctr_drbg_context *ctx,
+ int interval)
+{
+ ctx->reseed_interval = interval;
+}
+
+static int block_cipher_df(unsigned char *output,
+ const unsigned char *data, size_t data_len)
+{
+ unsigned char buf[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT +
+ MBEDTLS_CTR_DRBG_BLOCKSIZE + 16];
+ unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN];
+ unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE];
+ unsigned char chain[MBEDTLS_CTR_DRBG_BLOCKSIZE];
+ unsigned char *p, *iv;
+ int ret = 0;
+#if defined(MBEDTLS_AES_C)
+ mbedtls_aes_context aes_ctx;
+#else
+ psa_status_t status;
+ size_t tmp_len;
+ mbedtls_ctr_drbg_psa_context psa_ctx;
+
+ psa_ctx.key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_ctx.operation = psa_cipher_operation_init();
+#endif
+
+ int i, j;
+ size_t buf_len, use_len;
+
+ if (data_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) {
+ return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ }
+
+ memset(buf, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT +
+ MBEDTLS_CTR_DRBG_BLOCKSIZE + 16);
+
+ /*
+ * Construct IV (16 bytes) and S in buffer
+ * IV = Counter (in 32-bits) padded to 16 with zeroes
+ * S = Length input string (in 32-bits) || Length of output (in 32-bits) ||
+ * data || 0x80
+ * (Total is padded to a multiple of 16-bytes with zeroes)
+ */
+ p = buf + MBEDTLS_CTR_DRBG_BLOCKSIZE;
+ MBEDTLS_PUT_UINT32_BE(data_len, p, 0);
+ p += 4 + 3;
+ *p++ = MBEDTLS_CTR_DRBG_SEEDLEN;
+ memcpy(p, data, data_len);
+ p[data_len] = 0x80;
+
+ buf_len = MBEDTLS_CTR_DRBG_BLOCKSIZE + 8 + data_len + 1;
+
+ for (i = 0; i < MBEDTLS_CTR_DRBG_KEYSIZE; i++) {
+ key[i] = i;
+ }
+
+#if defined(MBEDTLS_AES_C)
+ mbedtls_aes_init(&aes_ctx);
+
+ if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, key,
+ MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+ goto exit;
+ }
+#else
+ status = ctr_drbg_setup_psa_context(&psa_ctx, key, sizeof(key));
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ goto exit;
+ }
+#endif
+
+ /*
+ * Reduce data to MBEDTLS_CTR_DRBG_SEEDLEN bytes of data
+ */
+ for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
+ p = buf;
+ memset(chain, 0, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+ use_len = buf_len;
+
+ while (use_len > 0) {
+ mbedtls_xor(chain, chain, p, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+ p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
+ use_len -= (use_len >= MBEDTLS_CTR_DRBG_BLOCKSIZE) ?
+ MBEDTLS_CTR_DRBG_BLOCKSIZE : use_len;
+
+#if defined(MBEDTLS_AES_C)
+ if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT,
+ chain, chain)) != 0) {
+ goto exit;
+ }
+#else
+ status = psa_cipher_update(&psa_ctx.operation, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE,
+ chain, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ goto exit;
+ }
+#endif
+ }
+
+ memcpy(tmp + j, chain, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+
+ /*
+ * Update IV
+ */
+ buf[3]++;
+ }
+
+ /*
+ * Do final encryption with reduced data
+ */
+#if defined(MBEDTLS_AES_C)
+ if ((ret = mbedtls_aes_setkey_enc(&aes_ctx, tmp,
+ MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+ goto exit;
+ }
+#else
+ ctr_drbg_destroy_psa_contex(&psa_ctx);
+
+ status = ctr_drbg_setup_psa_context(&psa_ctx, tmp, MBEDTLS_CTR_DRBG_KEYSIZE);
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ goto exit;
+ }
+#endif
+ iv = tmp + MBEDTLS_CTR_DRBG_KEYSIZE;
+ p = output;
+
+ for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
+#if defined(MBEDTLS_AES_C)
+ if ((ret = mbedtls_aes_crypt_ecb(&aes_ctx, MBEDTLS_AES_ENCRYPT,
+ iv, iv)) != 0) {
+ goto exit;
+ }
+#else
+ status = psa_cipher_update(&psa_ctx.operation, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE,
+ iv, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ goto exit;
+ }
+#endif
+ memcpy(p, iv, MBEDTLS_CTR_DRBG_BLOCKSIZE);
+ p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
+ }
+exit:
+#if defined(MBEDTLS_AES_C)
+ mbedtls_aes_free(&aes_ctx);
+#else
+ ctr_drbg_destroy_psa_contex(&psa_ctx);
+#endif
+ /*
+ * tidy up the stack
+ */
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+ mbedtls_platform_zeroize(tmp, sizeof(tmp));
+ mbedtls_platform_zeroize(key, sizeof(key));
+ mbedtls_platform_zeroize(chain, sizeof(chain));
+ if (0 != ret) {
+ /*
+ * wipe partial seed from memory
+ */
+ mbedtls_platform_zeroize(output, MBEDTLS_CTR_DRBG_SEEDLEN);
+ }
+
+ return ret;
+}
+
+/* CTR_DRBG_Update (SP 800-90A &sect;10.2.1.2)
+ * ctr_drbg_update_internal(ctx, provided_data)
+ * implements
+ * CTR_DRBG_Update(provided_data, Key, V)
+ * with inputs and outputs
+ * ctx->aes_ctx = Key
+ * ctx->counter = V
+ */
+static int ctr_drbg_update_internal(mbedtls_ctr_drbg_context *ctx,
+ const unsigned char data[MBEDTLS_CTR_DRBG_SEEDLEN])
+{
+ unsigned char tmp[MBEDTLS_CTR_DRBG_SEEDLEN];
+ unsigned char *p = tmp;
+ int j;
+ int ret = 0;
+#if !defined(MBEDTLS_AES_C)
+ psa_status_t status;
+ size_t tmp_len;
+#endif
+
+ memset(tmp, 0, MBEDTLS_CTR_DRBG_SEEDLEN);
+
+ for (j = 0; j < MBEDTLS_CTR_DRBG_SEEDLEN; j += MBEDTLS_CTR_DRBG_BLOCKSIZE) {
+ /*
+ * Increase counter
+ */
+ mbedtls_ctr_increment_counter(ctx->counter);
+
+ /*
+ * Crypt counter block
+ */
+#if defined(MBEDTLS_AES_C)
+ if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT,
+ ctx->counter, p)) != 0) {
+ goto exit;
+ }
+#else
+ status = psa_cipher_update(&ctx->psa_ctx.operation, ctx->counter, sizeof(ctx->counter),
+ p, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ goto exit;
+ }
+#endif
+
+ p += MBEDTLS_CTR_DRBG_BLOCKSIZE;
+ }
+
+ mbedtls_xor(tmp, tmp, data, MBEDTLS_CTR_DRBG_SEEDLEN);
+
+ /*
+ * Update key and counter
+ */
+#if defined(MBEDTLS_AES_C)
+ if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, tmp,
+ MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+ goto exit;
+ }
+#else
+ ctr_drbg_destroy_psa_contex(&ctx->psa_ctx);
+
+ status = ctr_drbg_setup_psa_context(&ctx->psa_ctx, tmp, MBEDTLS_CTR_DRBG_KEYSIZE);
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ goto exit;
+ }
+#endif
+ memcpy(ctx->counter, tmp + MBEDTLS_CTR_DRBG_KEYSIZE,
+ MBEDTLS_CTR_DRBG_BLOCKSIZE);
+
+exit:
+ mbedtls_platform_zeroize(tmp, sizeof(tmp));
+ return ret;
+}
+
+/* CTR_DRBG_Instantiate with derivation function (SP 800-90A &sect;10.2.1.3.2)
+ * mbedtls_ctr_drbg_update(ctx, additional, add_len)
+ * implements
+ * CTR_DRBG_Instantiate(entropy_input, nonce, personalization_string,
+ * security_strength) -> initial_working_state
+ * with inputs
+ * ctx->counter = all-bits-0
+ * ctx->aes_ctx = context from all-bits-0 key
+ * additional[:add_len] = entropy_input || nonce || personalization_string
+ * and with outputs
+ * ctx = initial_working_state
+ */
+int mbedtls_ctr_drbg_update(mbedtls_ctr_drbg_context *ctx,
+ const unsigned char *additional,
+ size_t add_len)
+{
+ unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (add_len == 0) {
+ return 0;
+ }
+
+ if ((ret = block_cipher_df(add_input, additional, add_len)) != 0) {
+ goto exit;
+ }
+ if ((ret = ctr_drbg_update_internal(ctx, add_input)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_platform_zeroize(add_input, sizeof(add_input));
+ return ret;
+}
+
+/* CTR_DRBG_Reseed with derivation function (SP 800-90A &sect;10.2.1.4.2)
+ * mbedtls_ctr_drbg_reseed(ctx, additional, len, nonce_len)
+ * implements
+ * CTR_DRBG_Reseed(working_state, entropy_input, additional_input)
+ * -> new_working_state
+ * with inputs
+ * ctx contains working_state
+ * additional[:len] = additional_input
+ * and entropy_input comes from calling ctx->f_entropy
+ * for (ctx->entropy_len + nonce_len) bytes
+ * and with output
+ * ctx contains new_working_state
+ */
+static int mbedtls_ctr_drbg_reseed_internal(mbedtls_ctr_drbg_context *ctx,
+ const unsigned char *additional,
+ size_t len,
+ size_t nonce_len)
+{
+ unsigned char seed[MBEDTLS_CTR_DRBG_MAX_SEED_INPUT];
+ size_t seedlen = 0;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (ctx->entropy_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT) {
+ return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ }
+ if (nonce_len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len) {
+ return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ }
+ if (len > MBEDTLS_CTR_DRBG_MAX_SEED_INPUT - ctx->entropy_len - nonce_len) {
+ return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ }
+
+ memset(seed, 0, MBEDTLS_CTR_DRBG_MAX_SEED_INPUT);
+
+ /* Gather entropy_len bytes of entropy to seed state. */
+ if (0 != ctx->f_entropy(ctx->p_entropy, seed, ctx->entropy_len)) {
+ return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED;
+ }
+ seedlen += ctx->entropy_len;
+
+ /* Gather entropy for a nonce if requested. */
+ if (nonce_len != 0) {
+ if (0 != ctx->f_entropy(ctx->p_entropy, seed + seedlen, nonce_len)) {
+ return MBEDTLS_ERR_CTR_DRBG_ENTROPY_SOURCE_FAILED;
+ }
+ seedlen += nonce_len;
+ }
+
+ /* Add additional data if provided. */
+ if (additional != NULL && len != 0) {
+ memcpy(seed + seedlen, additional, len);
+ seedlen += len;
+ }
+
+ /* Reduce to 384 bits. */
+ if ((ret = block_cipher_df(seed, seed, seedlen)) != 0) {
+ goto exit;
+ }
+
+ /* Update state. */
+ if ((ret = ctr_drbg_update_internal(ctx, seed)) != 0) {
+ goto exit;
+ }
+ ctx->reseed_counter = 1;
+
+exit:
+ mbedtls_platform_zeroize(seed, sizeof(seed));
+ return ret;
+}
+
+int mbedtls_ctr_drbg_reseed(mbedtls_ctr_drbg_context *ctx,
+ const unsigned char *additional, size_t len)
+{
+ return mbedtls_ctr_drbg_reseed_internal(ctx, additional, len, 0);
+}
+
+/* Return a "good" nonce length for CTR_DRBG. The chosen nonce length
+ * is sufficient to achieve the maximum security strength given the key
+ * size and entropy length. If there is enough entropy in the initial
+ * call to the entropy function to serve as both the entropy input and
+ * the nonce, don't make a second call to get a nonce. */
+static size_t good_nonce_len(size_t entropy_len)
+{
+ if (entropy_len >= MBEDTLS_CTR_DRBG_KEYSIZE * 3 / 2) {
+ return 0;
+ } else {
+ return (entropy_len + 1) / 2;
+ }
+}
+
+/* CTR_DRBG_Instantiate with derivation function (SP 800-90A &sect;10.2.1.3.2)
+ * mbedtls_ctr_drbg_seed(ctx, f_entropy, p_entropy, custom, len)
+ * implements
+ * CTR_DRBG_Instantiate(entropy_input, nonce, personalization_string,
+ * security_strength) -> initial_working_state
+ * with inputs
+ * custom[:len] = nonce || personalization_string
+ * where entropy_input comes from f_entropy for ctx->entropy_len bytes
+ * and with outputs
+ * ctx = initial_working_state
+ */
+int mbedtls_ctr_drbg_seed(mbedtls_ctr_drbg_context *ctx,
+ int (*f_entropy)(void *, unsigned char *, size_t),
+ void *p_entropy,
+ const unsigned char *custom,
+ size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char key[MBEDTLS_CTR_DRBG_KEYSIZE];
+ size_t nonce_len;
+
+ memset(key, 0, MBEDTLS_CTR_DRBG_KEYSIZE);
+
+ /* The mutex is initialized iff f_entropy is set. */
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+ ctx->f_entropy = f_entropy;
+ ctx->p_entropy = p_entropy;
+
+ if (ctx->entropy_len == 0) {
+ ctx->entropy_len = MBEDTLS_CTR_DRBG_ENTROPY_LEN;
+ }
+ /* ctx->reseed_counter contains the desired amount of entropy to
+ * grab for a nonce (see mbedtls_ctr_drbg_set_nonce_len()).
+ * If it's -1, indicating that the entropy nonce length was not set
+ * explicitly, use a sufficiently large nonce for security. */
+ nonce_len = (ctx->reseed_counter >= 0 ?
+ (size_t) ctx->reseed_counter :
+ good_nonce_len(ctx->entropy_len));
+
+ /* Initialize with an empty key. */
+#if defined(MBEDTLS_AES_C)
+ if ((ret = mbedtls_aes_setkey_enc(&ctx->aes_ctx, key,
+ MBEDTLS_CTR_DRBG_KEYBITS)) != 0) {
+ return ret;
+ }
+#else
+ psa_status_t status;
+
+ status = ctr_drbg_setup_psa_context(&ctx->psa_ctx, key, MBEDTLS_CTR_DRBG_KEYSIZE);
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ return status;
+ }
+#endif
+
+ /* Do the initial seeding. */
+ if ((ret = mbedtls_ctr_drbg_reseed_internal(ctx, custom, len,
+ nonce_len)) != 0) {
+ return ret;
+ }
+ return 0;
+}
+
+/* CTR_DRBG_Generate with derivation function (SP 800-90A &sect;10.2.1.5.2)
+ * mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, additional, add_len)
+ * implements
+ * CTR_DRBG_Reseed(working_state, entropy_input, additional[:add_len])
+ * -> working_state_after_reseed
+ * if required, then
+ * CTR_DRBG_Generate(working_state_after_reseed,
+ * requested_number_of_bits, additional_input)
+ * -> status, returned_bits, new_working_state
+ * with inputs
+ * ctx contains working_state
+ * requested_number_of_bits = 8 * output_len
+ * additional[:add_len] = additional_input
+ * and entropy_input comes from calling ctx->f_entropy
+ * and with outputs
+ * status = SUCCESS (this function does the reseed internally)
+ * returned_bits = output[:output_len]
+ * ctx contains new_working_state
+ */
+int mbedtls_ctr_drbg_random_with_add(void *p_rng,
+ unsigned char *output, size_t output_len,
+ const unsigned char *additional, size_t add_len)
+{
+ int ret = 0;
+ mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng;
+ unsigned char *p = output;
+ struct {
+ unsigned char add_input[MBEDTLS_CTR_DRBG_SEEDLEN];
+ unsigned char tmp[MBEDTLS_CTR_DRBG_BLOCKSIZE];
+ } locals;
+ size_t use_len;
+
+ if (output_len > MBEDTLS_CTR_DRBG_MAX_REQUEST) {
+ return MBEDTLS_ERR_CTR_DRBG_REQUEST_TOO_BIG;
+ }
+
+ if (add_len > MBEDTLS_CTR_DRBG_MAX_INPUT) {
+ return MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ }
+
+ memset(locals.add_input, 0, MBEDTLS_CTR_DRBG_SEEDLEN);
+
+ if (ctx->reseed_counter > ctx->reseed_interval ||
+ ctx->prediction_resistance) {
+ if ((ret = mbedtls_ctr_drbg_reseed(ctx, additional, add_len)) != 0) {
+ return ret;
+ }
+ add_len = 0;
+ }
+
+ if (add_len > 0) {
+ if ((ret = block_cipher_df(locals.add_input, additional, add_len)) != 0) {
+ goto exit;
+ }
+ if ((ret = ctr_drbg_update_internal(ctx, locals.add_input)) != 0) {
+ goto exit;
+ }
+ }
+
+ while (output_len > 0) {
+ /*
+ * Increase counter (treat it as a 128-bit big-endian integer).
+ */
+ mbedtls_ctr_increment_counter(ctx->counter);
+
+ /*
+ * Crypt counter block
+ */
+#if defined(MBEDTLS_AES_C)
+ if ((ret = mbedtls_aes_crypt_ecb(&ctx->aes_ctx, MBEDTLS_AES_ENCRYPT,
+ ctx->counter, locals.tmp)) != 0) {
+ goto exit;
+ }
+#else
+ psa_status_t status;
+ size_t tmp_len;
+
+ status = psa_cipher_update(&ctx->psa_ctx.operation, ctx->counter, sizeof(ctx->counter),
+ locals.tmp, MBEDTLS_CTR_DRBG_BLOCKSIZE, &tmp_len);
+ if (status != PSA_SUCCESS) {
+ ret = psa_generic_status_to_mbedtls(status);
+ goto exit;
+ }
+#endif
+
+ use_len = (output_len > MBEDTLS_CTR_DRBG_BLOCKSIZE)
+ ? MBEDTLS_CTR_DRBG_BLOCKSIZE : output_len;
+ /*
+ * Copy random block to destination
+ */
+ memcpy(p, locals.tmp, use_len);
+ p += use_len;
+ output_len -= use_len;
+ }
+
+ if ((ret = ctr_drbg_update_internal(ctx, locals.add_input)) != 0) {
+ goto exit;
+ }
+
+ ctx->reseed_counter++;
+
+exit:
+ mbedtls_platform_zeroize(&locals, sizeof(locals));
+ return ret;
+}
+
+int mbedtls_ctr_drbg_random(void *p_rng, unsigned char *output,
+ size_t output_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ctr_drbg_context *ctx = (mbedtls_ctr_drbg_context *) p_rng;
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ ret = mbedtls_ctr_drbg_random_with_add(ctx, output, output_len, NULL, 0);
+
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ return ret;
+}
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_ctr_drbg_write_seed_file(mbedtls_ctr_drbg_context *ctx,
+ const char *path)
+{
+ int ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+ FILE *f;
+ unsigned char buf[MBEDTLS_CTR_DRBG_MAX_INPUT];
+
+ if ((f = fopen(path, "wb")) == NULL) {
+ return MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ if ((ret = mbedtls_ctr_drbg_random(ctx, buf,
+ MBEDTLS_CTR_DRBG_MAX_INPUT)) != 0) {
+ goto exit;
+ }
+
+ if (fwrite(buf, 1, MBEDTLS_CTR_DRBG_MAX_INPUT, f) !=
+ MBEDTLS_CTR_DRBG_MAX_INPUT) {
+ ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+ } else {
+ ret = 0;
+ }
+
+exit:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+
+ fclose(f);
+ return ret;
+}
+
+int mbedtls_ctr_drbg_update_seed_file(mbedtls_ctr_drbg_context *ctx,
+ const char *path)
+{
+ int ret = 0;
+ FILE *f = NULL;
+ size_t n;
+ unsigned char buf[MBEDTLS_CTR_DRBG_MAX_INPUT];
+ unsigned char c;
+
+ if ((f = fopen(path, "rb")) == NULL) {
+ return MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ n = fread(buf, 1, sizeof(buf), f);
+ if (fread(&c, 1, 1, f) != 0) {
+ ret = MBEDTLS_ERR_CTR_DRBG_INPUT_TOO_BIG;
+ goto exit;
+ }
+ if (n == 0 || ferror(f)) {
+ ret = MBEDTLS_ERR_CTR_DRBG_FILE_IO_ERROR;
+ goto exit;
+ }
+ fclose(f);
+ f = NULL;
+
+ ret = mbedtls_ctr_drbg_update(ctx, buf, n);
+
+exit:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+ if (f != NULL) {
+ fclose(f);
+ }
+ if (ret != 0) {
+ return ret;
+ }
+ return mbedtls_ctr_drbg_write_seed_file(ctx, path);
+}
+#endif /* MBEDTLS_FS_IO */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/* The CTR_DRBG NIST test vectors used here are available at
+ * https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/drbg/drbgtestvectors.zip
+ *
+ * The parameters used to derive the test data are:
+ *
+ * [AES-128 use df]
+ * [PredictionResistance = True/False]
+ * [EntropyInputLen = 128]
+ * [NonceLen = 64]
+ * [PersonalizationStringLen = 128]
+ * [AdditionalInputLen = 0]
+ * [ReturnedBitsLen = 512]
+ *
+ * [AES-256 use df]
+ * [PredictionResistance = True/False]
+ * [EntropyInputLen = 256]
+ * [NonceLen = 128]
+ * [PersonalizationStringLen = 256]
+ * [AdditionalInputLen = 0]
+ * [ReturnedBitsLen = 512]
+ *
+ */
+
+#if defined(MBEDTLS_CTR_DRBG_USE_128_BIT_KEY)
+static const unsigned char entropy_source_pr[] =
+{ 0x04, 0xd9, 0x49, 0xa6, 0xdc, 0xe8, 0x6e, 0xbb,
+ 0xf1, 0x08, 0x77, 0x2b, 0x9e, 0x08, 0xca, 0x92,
+ 0x65, 0x16, 0xda, 0x99, 0xa2, 0x59, 0xf3, 0xe8,
+ 0x38, 0x7e, 0x3f, 0x6b, 0x51, 0x70, 0x7b, 0x20,
+ 0xec, 0x53, 0xd0, 0x66, 0xc3, 0x0f, 0xe3, 0xb0,
+ 0xe0, 0x86, 0xa6, 0xaa, 0x5f, 0x72, 0x2f, 0xad,
+ 0xf7, 0xef, 0x06, 0xb8, 0xd6, 0x9c, 0x9d, 0xe8 };
+
+static const unsigned char entropy_source_nopr[] =
+{ 0x07, 0x0d, 0x59, 0x63, 0x98, 0x73, 0xa5, 0x45,
+ 0x27, 0x38, 0x22, 0x7b, 0x76, 0x85, 0xd1, 0xa9,
+ 0x74, 0x18, 0x1f, 0x3c, 0x22, 0xf6, 0x49, 0x20,
+ 0x4a, 0x47, 0xc2, 0xf3, 0x85, 0x16, 0xb4, 0x6f,
+ 0x00, 0x2e, 0x71, 0xda, 0xed, 0x16, 0x9b, 0x5c };
+
+static const unsigned char pers_pr[] =
+{ 0xbf, 0xa4, 0x9a, 0x8f, 0x7b, 0xd8, 0xb1, 0x7a,
+ 0x9d, 0xfa, 0x45, 0xed, 0x21, 0x52, 0xb3, 0xad };
+
+static const unsigned char pers_nopr[] =
+{ 0x4e, 0x61, 0x79, 0xd4, 0xc2, 0x72, 0xa1, 0x4c,
+ 0xf1, 0x3d, 0xf6, 0x5e, 0xa3, 0xa6, 0xe5, 0x0f };
+
+static const unsigned char result_pr[] =
+{ 0xc9, 0x0a, 0xaf, 0x85, 0x89, 0x71, 0x44, 0x66,
+ 0x4f, 0x25, 0x0b, 0x2b, 0xde, 0xd8, 0xfa, 0xff,
+ 0x52, 0x5a, 0x1b, 0x32, 0x5e, 0x41, 0x7a, 0x10,
+ 0x1f, 0xef, 0x1e, 0x62, 0x23, 0xe9, 0x20, 0x30,
+ 0xc9, 0x0d, 0xad, 0x69, 0xb4, 0x9c, 0x5b, 0xf4,
+ 0x87, 0x42, 0xd5, 0xae, 0x5e, 0x5e, 0x43, 0xcc,
+ 0xd9, 0xfd, 0x0b, 0x93, 0x4a, 0xe3, 0xd4, 0x06,
+ 0x37, 0x36, 0x0f, 0x3f, 0x72, 0x82, 0x0c, 0xcf };
+
+static const unsigned char result_nopr[] =
+{ 0x31, 0xc9, 0x91, 0x09, 0xf8, 0xc5, 0x10, 0x13,
+ 0x3c, 0xd3, 0x96, 0xf9, 0xbc, 0x2c, 0x12, 0xc0,
+ 0x7c, 0xc1, 0x61, 0x5f, 0xa3, 0x09, 0x99, 0xaf,
+ 0xd7, 0xf2, 0x36, 0xfd, 0x40, 0x1a, 0x8b, 0xf2,
+ 0x33, 0x38, 0xee, 0x1d, 0x03, 0x5f, 0x83, 0xb7,
+ 0xa2, 0x53, 0xdc, 0xee, 0x18, 0xfc, 0xa7, 0xf2,
+ 0xee, 0x96, 0xc6, 0xc2, 0xcd, 0x0c, 0xff, 0x02,
+ 0x76, 0x70, 0x69, 0xaa, 0x69, 0xd1, 0x3b, 0xe8 };
+#else /* MBEDTLS_CTR_DRBG_USE_128_BIT_KEY */
+
+static const unsigned char entropy_source_pr[] =
+{ 0xca, 0x58, 0xfd, 0xf2, 0xb9, 0x77, 0xcb, 0x49,
+ 0xd4, 0xe0, 0x5b, 0xe2, 0x39, 0x50, 0xd9, 0x8a,
+ 0x6a, 0xb3, 0xc5, 0x2f, 0xdf, 0x74, 0xd5, 0x85,
+ 0x8f, 0xd1, 0xba, 0x64, 0x54, 0x7b, 0xdb, 0x1e,
+ 0xc5, 0xea, 0x24, 0xc0, 0xfa, 0x0c, 0x90, 0x15,
+ 0x09, 0x20, 0x92, 0x42, 0x32, 0x36, 0x45, 0x45,
+ 0x7d, 0x20, 0x76, 0x6b, 0xcf, 0xa2, 0x15, 0xc8,
+ 0x2f, 0x9f, 0xbc, 0x88, 0x3f, 0x80, 0xd1, 0x2c,
+ 0xb7, 0x16, 0xd1, 0x80, 0x9e, 0xe1, 0xc9, 0xb3,
+ 0x88, 0x1b, 0x21, 0x45, 0xef, 0xa1, 0x7f, 0xce,
+ 0xc8, 0x92, 0x35, 0x55, 0x2a, 0xd9, 0x1d, 0x8e,
+ 0x12, 0x38, 0xac, 0x01, 0x4e, 0x38, 0x18, 0x76,
+ 0x9c, 0xf2, 0xb6, 0xd4, 0x13, 0xb6, 0x2c, 0x77,
+ 0xc0, 0xe7, 0xe6, 0x0c, 0x47, 0x44, 0x95, 0xbe };
+
+static const unsigned char entropy_source_nopr[] =
+{ 0x4c, 0xfb, 0x21, 0x86, 0x73, 0x34, 0x6d, 0x9d,
+ 0x50, 0xc9, 0x22, 0xe4, 0x9b, 0x0d, 0xfc, 0xd0,
+ 0x90, 0xad, 0xf0, 0x4f, 0x5c, 0x3b, 0xa4, 0x73,
+ 0x27, 0xdf, 0xcd, 0x6f, 0xa6, 0x3a, 0x78, 0x5c,
+ 0x01, 0x69, 0x62, 0xa7, 0xfd, 0x27, 0x87, 0xa2,
+ 0x4b, 0xf6, 0xbe, 0x47, 0xef, 0x37, 0x83, 0xf1,
+ 0xb7, 0xec, 0x46, 0x07, 0x23, 0x63, 0x83, 0x4a,
+ 0x1b, 0x01, 0x33, 0xf2, 0xc2, 0x38, 0x91, 0xdb,
+ 0x4f, 0x11, 0xa6, 0x86, 0x51, 0xf2, 0x3e, 0x3a,
+ 0x8b, 0x1f, 0xdc, 0x03, 0xb1, 0x92, 0xc7, 0xe7 };
+
+static const unsigned char pers_pr[] =
+{ 0x5a, 0x70, 0x95, 0xe9, 0x81, 0x40, 0x52, 0x33,
+ 0x91, 0x53, 0x7e, 0x75, 0xd6, 0x19, 0x9d, 0x1e,
+ 0xad, 0x0d, 0xc6, 0xa7, 0xde, 0x6c, 0x1f, 0xe0,
+ 0xea, 0x18, 0x33, 0xa8, 0x7e, 0x06, 0x20, 0xe9 };
+
+static const unsigned char pers_nopr[] =
+{ 0x88, 0xee, 0xb8, 0xe0, 0xe8, 0x3b, 0xf3, 0x29,
+ 0x4b, 0xda, 0xcd, 0x60, 0x99, 0xeb, 0xe4, 0xbf,
+ 0x55, 0xec, 0xd9, 0x11, 0x3f, 0x71, 0xe5, 0xeb,
+ 0xcb, 0x45, 0x75, 0xf3, 0xd6, 0xa6, 0x8a, 0x6b };
+
+static const unsigned char result_pr[] =
+{ 0xce, 0x2f, 0xdb, 0xb6, 0xd9, 0xb7, 0x39, 0x85,
+ 0x04, 0xc5, 0xc0, 0x42, 0xc2, 0x31, 0xc6, 0x1d,
+ 0x9b, 0x5a, 0x59, 0xf8, 0x7e, 0x0d, 0xcc, 0x62,
+ 0x7b, 0x65, 0x11, 0x55, 0x10, 0xeb, 0x9e, 0x3d,
+ 0xa4, 0xfb, 0x1c, 0x6a, 0x18, 0xc0, 0x74, 0xdb,
+ 0xdd, 0xe7, 0x02, 0x23, 0x63, 0x21, 0xd0, 0x39,
+ 0xf9, 0xa7, 0xc4, 0x52, 0x84, 0x3b, 0x49, 0x40,
+ 0x72, 0x2b, 0xb0, 0x6c, 0x9c, 0xdb, 0xc3, 0x43 };
+
+static const unsigned char result_nopr[] =
+{ 0xa5, 0x51, 0x80, 0xa1, 0x90, 0xbe, 0xf3, 0xad,
+ 0xaf, 0x28, 0xf6, 0xb7, 0x95, 0xe9, 0xf1, 0xf3,
+ 0xd6, 0xdf, 0xa1, 0xb2, 0x7d, 0xd0, 0x46, 0x7b,
+ 0x0c, 0x75, 0xf5, 0xfa, 0x93, 0x1e, 0x97, 0x14,
+ 0x75, 0xb2, 0x7c, 0xae, 0x03, 0xa2, 0x96, 0x54,
+ 0xe2, 0xf4, 0x09, 0x66, 0xea, 0x33, 0x64, 0x30,
+ 0x40, 0xd1, 0x40, 0x0f, 0xe6, 0x77, 0x87, 0x3a,
+ 0xf8, 0x09, 0x7c, 0x1f, 0xe9, 0xf0, 0x02, 0x98 };
+#endif /* MBEDTLS_CTR_DRBG_USE_128_BIT_KEY */
+
+static size_t test_offset;
+static int ctr_drbg_self_test_entropy(void *data, unsigned char *buf,
+ size_t len)
+{
+ const unsigned char *p = data;
+ memcpy(buf, p + test_offset, len);
+ test_offset += len;
+ return 0;
+}
+
+#define CHK(c) if ((c) != 0) \
+ { \
+ if (verbose != 0) \
+ mbedtls_printf("failed\n"); \
+ return 1; \
+ }
+
+#define SELF_TEST_OUTPUT_DISCARD_LENGTH 64
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ctr_drbg_self_test(int verbose)
+{
+ mbedtls_ctr_drbg_context ctx;
+ unsigned char buf[sizeof(result_pr)];
+
+ mbedtls_ctr_drbg_init(&ctx);
+
+ /*
+ * Based on a NIST CTR_DRBG test vector (PR = True)
+ */
+ if (verbose != 0) {
+ mbedtls_printf(" CTR_DRBG (PR = TRUE) : ");
+ }
+
+ test_offset = 0;
+ mbedtls_ctr_drbg_set_entropy_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE);
+ mbedtls_ctr_drbg_set_nonce_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE / 2);
+ CHK(mbedtls_ctr_drbg_seed(&ctx,
+ ctr_drbg_self_test_entropy,
+ (void *) entropy_source_pr,
+ pers_pr, MBEDTLS_CTR_DRBG_KEYSIZE));
+ mbedtls_ctr_drbg_set_prediction_resistance(&ctx, MBEDTLS_CTR_DRBG_PR_ON);
+ CHK(mbedtls_ctr_drbg_random(&ctx, buf, SELF_TEST_OUTPUT_DISCARD_LENGTH));
+ CHK(mbedtls_ctr_drbg_random(&ctx, buf, sizeof(result_pr)));
+ CHK(memcmp(buf, result_pr, sizeof(result_pr)));
+
+ mbedtls_ctr_drbg_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ /*
+ * Based on a NIST CTR_DRBG test vector (PR = FALSE)
+ */
+ if (verbose != 0) {
+ mbedtls_printf(" CTR_DRBG (PR = FALSE): ");
+ }
+
+ mbedtls_ctr_drbg_init(&ctx);
+
+ test_offset = 0;
+ mbedtls_ctr_drbg_set_entropy_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE);
+ mbedtls_ctr_drbg_set_nonce_len(&ctx, MBEDTLS_CTR_DRBG_KEYSIZE / 2);
+ CHK(mbedtls_ctr_drbg_seed(&ctx,
+ ctr_drbg_self_test_entropy,
+ (void *) entropy_source_nopr,
+ pers_nopr, MBEDTLS_CTR_DRBG_KEYSIZE));
+ CHK(mbedtls_ctr_drbg_reseed(&ctx, NULL, 0));
+ CHK(mbedtls_ctr_drbg_random(&ctx, buf, SELF_TEST_OUTPUT_DISCARD_LENGTH));
+ CHK(mbedtls_ctr_drbg_random(&ctx, buf, sizeof(result_nopr)));
+ CHK(memcmp(buf, result_nopr, sizeof(result_nopr)));
+
+ mbedtls_ctr_drbg_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_CTR_DRBG_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/des.c b/tf-psa-crypto/drivers/builtin/src/des.c
new file mode 100644
index 0000000..f0032b3
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/des.c
@@ -0,0 +1,1042 @@
+/*
+ * FIPS-46-3 compliant Triple-DES implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * DES, on which TDES is based, was originally designed by Horst Feistel
+ * at IBM in 1974, and was adopted as a standard by NIST (formerly NBS).
+ *
+ * http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_DES_C)
+
+#include "mbedtls/des.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_DES_ALT)
+
+/*
+ * Expanded DES S-boxes
+ */
+static const uint32_t SB1[64] =
+{
+ 0x01010400, 0x00000000, 0x00010000, 0x01010404,
+ 0x01010004, 0x00010404, 0x00000004, 0x00010000,
+ 0x00000400, 0x01010400, 0x01010404, 0x00000400,
+ 0x01000404, 0x01010004, 0x01000000, 0x00000004,
+ 0x00000404, 0x01000400, 0x01000400, 0x00010400,
+ 0x00010400, 0x01010000, 0x01010000, 0x01000404,
+ 0x00010004, 0x01000004, 0x01000004, 0x00010004,
+ 0x00000000, 0x00000404, 0x00010404, 0x01000000,
+ 0x00010000, 0x01010404, 0x00000004, 0x01010000,
+ 0x01010400, 0x01000000, 0x01000000, 0x00000400,
+ 0x01010004, 0x00010000, 0x00010400, 0x01000004,
+ 0x00000400, 0x00000004, 0x01000404, 0x00010404,
+ 0x01010404, 0x00010004, 0x01010000, 0x01000404,
+ 0x01000004, 0x00000404, 0x00010404, 0x01010400,
+ 0x00000404, 0x01000400, 0x01000400, 0x00000000,
+ 0x00010004, 0x00010400, 0x00000000, 0x01010004
+};
+
+static const uint32_t SB2[64] =
+{
+ 0x80108020, 0x80008000, 0x00008000, 0x00108020,
+ 0x00100000, 0x00000020, 0x80100020, 0x80008020,
+ 0x80000020, 0x80108020, 0x80108000, 0x80000000,
+ 0x80008000, 0x00100000, 0x00000020, 0x80100020,
+ 0x00108000, 0x00100020, 0x80008020, 0x00000000,
+ 0x80000000, 0x00008000, 0x00108020, 0x80100000,
+ 0x00100020, 0x80000020, 0x00000000, 0x00108000,
+ 0x00008020, 0x80108000, 0x80100000, 0x00008020,
+ 0x00000000, 0x00108020, 0x80100020, 0x00100000,
+ 0x80008020, 0x80100000, 0x80108000, 0x00008000,
+ 0x80100000, 0x80008000, 0x00000020, 0x80108020,
+ 0x00108020, 0x00000020, 0x00008000, 0x80000000,
+ 0x00008020, 0x80108000, 0x00100000, 0x80000020,
+ 0x00100020, 0x80008020, 0x80000020, 0x00100020,
+ 0x00108000, 0x00000000, 0x80008000, 0x00008020,
+ 0x80000000, 0x80100020, 0x80108020, 0x00108000
+};
+
+static const uint32_t SB3[64] =
+{
+ 0x00000208, 0x08020200, 0x00000000, 0x08020008,
+ 0x08000200, 0x00000000, 0x00020208, 0x08000200,
+ 0x00020008, 0x08000008, 0x08000008, 0x00020000,
+ 0x08020208, 0x00020008, 0x08020000, 0x00000208,
+ 0x08000000, 0x00000008, 0x08020200, 0x00000200,
+ 0x00020200, 0x08020000, 0x08020008, 0x00020208,
+ 0x08000208, 0x00020200, 0x00020000, 0x08000208,
+ 0x00000008, 0x08020208, 0x00000200, 0x08000000,
+ 0x08020200, 0x08000000, 0x00020008, 0x00000208,
+ 0x00020000, 0x08020200, 0x08000200, 0x00000000,
+ 0x00000200, 0x00020008, 0x08020208, 0x08000200,
+ 0x08000008, 0x00000200, 0x00000000, 0x08020008,
+ 0x08000208, 0x00020000, 0x08000000, 0x08020208,
+ 0x00000008, 0x00020208, 0x00020200, 0x08000008,
+ 0x08020000, 0x08000208, 0x00000208, 0x08020000,
+ 0x00020208, 0x00000008, 0x08020008, 0x00020200
+};
+
+static const uint32_t SB4[64] =
+{
+ 0x00802001, 0x00002081, 0x00002081, 0x00000080,
+ 0x00802080, 0x00800081, 0x00800001, 0x00002001,
+ 0x00000000, 0x00802000, 0x00802000, 0x00802081,
+ 0x00000081, 0x00000000, 0x00800080, 0x00800001,
+ 0x00000001, 0x00002000, 0x00800000, 0x00802001,
+ 0x00000080, 0x00800000, 0x00002001, 0x00002080,
+ 0x00800081, 0x00000001, 0x00002080, 0x00800080,
+ 0x00002000, 0x00802080, 0x00802081, 0x00000081,
+ 0x00800080, 0x00800001, 0x00802000, 0x00802081,
+ 0x00000081, 0x00000000, 0x00000000, 0x00802000,
+ 0x00002080, 0x00800080, 0x00800081, 0x00000001,
+ 0x00802001, 0x00002081, 0x00002081, 0x00000080,
+ 0x00802081, 0x00000081, 0x00000001, 0x00002000,
+ 0x00800001, 0x00002001, 0x00802080, 0x00800081,
+ 0x00002001, 0x00002080, 0x00800000, 0x00802001,
+ 0x00000080, 0x00800000, 0x00002000, 0x00802080
+};
+
+static const uint32_t SB5[64] =
+{
+ 0x00000100, 0x02080100, 0x02080000, 0x42000100,
+ 0x00080000, 0x00000100, 0x40000000, 0x02080000,
+ 0x40080100, 0x00080000, 0x02000100, 0x40080100,
+ 0x42000100, 0x42080000, 0x00080100, 0x40000000,
+ 0x02000000, 0x40080000, 0x40080000, 0x00000000,
+ 0x40000100, 0x42080100, 0x42080100, 0x02000100,
+ 0x42080000, 0x40000100, 0x00000000, 0x42000000,
+ 0x02080100, 0x02000000, 0x42000000, 0x00080100,
+ 0x00080000, 0x42000100, 0x00000100, 0x02000000,
+ 0x40000000, 0x02080000, 0x42000100, 0x40080100,
+ 0x02000100, 0x40000000, 0x42080000, 0x02080100,
+ 0x40080100, 0x00000100, 0x02000000, 0x42080000,
+ 0x42080100, 0x00080100, 0x42000000, 0x42080100,
+ 0x02080000, 0x00000000, 0x40080000, 0x42000000,
+ 0x00080100, 0x02000100, 0x40000100, 0x00080000,
+ 0x00000000, 0x40080000, 0x02080100, 0x40000100
+};
+
+static const uint32_t SB6[64] =
+{
+ 0x20000010, 0x20400000, 0x00004000, 0x20404010,
+ 0x20400000, 0x00000010, 0x20404010, 0x00400000,
+ 0x20004000, 0x00404010, 0x00400000, 0x20000010,
+ 0x00400010, 0x20004000, 0x20000000, 0x00004010,
+ 0x00000000, 0x00400010, 0x20004010, 0x00004000,
+ 0x00404000, 0x20004010, 0x00000010, 0x20400010,
+ 0x20400010, 0x00000000, 0x00404010, 0x20404000,
+ 0x00004010, 0x00404000, 0x20404000, 0x20000000,
+ 0x20004000, 0x00000010, 0x20400010, 0x00404000,
+ 0x20404010, 0x00400000, 0x00004010, 0x20000010,
+ 0x00400000, 0x20004000, 0x20000000, 0x00004010,
+ 0x20000010, 0x20404010, 0x00404000, 0x20400000,
+ 0x00404010, 0x20404000, 0x00000000, 0x20400010,
+ 0x00000010, 0x00004000, 0x20400000, 0x00404010,
+ 0x00004000, 0x00400010, 0x20004010, 0x00000000,
+ 0x20404000, 0x20000000, 0x00400010, 0x20004010
+};
+
+static const uint32_t SB7[64] =
+{
+ 0x00200000, 0x04200002, 0x04000802, 0x00000000,
+ 0x00000800, 0x04000802, 0x00200802, 0x04200800,
+ 0x04200802, 0x00200000, 0x00000000, 0x04000002,
+ 0x00000002, 0x04000000, 0x04200002, 0x00000802,
+ 0x04000800, 0x00200802, 0x00200002, 0x04000800,
+ 0x04000002, 0x04200000, 0x04200800, 0x00200002,
+ 0x04200000, 0x00000800, 0x00000802, 0x04200802,
+ 0x00200800, 0x00000002, 0x04000000, 0x00200800,
+ 0x04000000, 0x00200800, 0x00200000, 0x04000802,
+ 0x04000802, 0x04200002, 0x04200002, 0x00000002,
+ 0x00200002, 0x04000000, 0x04000800, 0x00200000,
+ 0x04200800, 0x00000802, 0x00200802, 0x04200800,
+ 0x00000802, 0x04000002, 0x04200802, 0x04200000,
+ 0x00200800, 0x00000000, 0x00000002, 0x04200802,
+ 0x00000000, 0x00200802, 0x04200000, 0x00000800,
+ 0x04000002, 0x04000800, 0x00000800, 0x00200002
+};
+
+static const uint32_t SB8[64] =
+{
+ 0x10001040, 0x00001000, 0x00040000, 0x10041040,
+ 0x10000000, 0x10001040, 0x00000040, 0x10000000,
+ 0x00040040, 0x10040000, 0x10041040, 0x00041000,
+ 0x10041000, 0x00041040, 0x00001000, 0x00000040,
+ 0x10040000, 0x10000040, 0x10001000, 0x00001040,
+ 0x00041000, 0x00040040, 0x10040040, 0x10041000,
+ 0x00001040, 0x00000000, 0x00000000, 0x10040040,
+ 0x10000040, 0x10001000, 0x00041040, 0x00040000,
+ 0x00041040, 0x00040000, 0x10041000, 0x00001000,
+ 0x00000040, 0x10040040, 0x00001000, 0x00041040,
+ 0x10001000, 0x00000040, 0x10000040, 0x10040000,
+ 0x10040040, 0x10000000, 0x00040000, 0x10001040,
+ 0x00000000, 0x10041040, 0x00040040, 0x10000040,
+ 0x10040000, 0x10001000, 0x10001040, 0x00000000,
+ 0x10041040, 0x00041000, 0x00041000, 0x00001040,
+ 0x00001040, 0x00040040, 0x10000000, 0x10041000
+};
+
+/*
+ * PC1: left and right halves bit-swap
+ */
+static const uint32_t LHs[16] =
+{
+ 0x00000000, 0x00000001, 0x00000100, 0x00000101,
+ 0x00010000, 0x00010001, 0x00010100, 0x00010101,
+ 0x01000000, 0x01000001, 0x01000100, 0x01000101,
+ 0x01010000, 0x01010001, 0x01010100, 0x01010101
+};
+
+static const uint32_t RHs[16] =
+{
+ 0x00000000, 0x01000000, 0x00010000, 0x01010000,
+ 0x00000100, 0x01000100, 0x00010100, 0x01010100,
+ 0x00000001, 0x01000001, 0x00010001, 0x01010001,
+ 0x00000101, 0x01000101, 0x00010101, 0x01010101,
+};
+
+/*
+ * Initial Permutation macro
+ */
+#define DES_IP(X, Y) \
+ do \
+ { \
+ T = (((X) >> 4) ^ (Y)) & 0x0F0F0F0F; (Y) ^= T; (X) ^= (T << 4); \
+ T = (((X) >> 16) ^ (Y)) & 0x0000FFFF; (Y) ^= T; (X) ^= (T << 16); \
+ T = (((Y) >> 2) ^ (X)) & 0x33333333; (X) ^= T; (Y) ^= (T << 2); \
+ T = (((Y) >> 8) ^ (X)) & 0x00FF00FF; (X) ^= T; (Y) ^= (T << 8); \
+ (Y) = (((Y) << 1) | ((Y) >> 31)) & 0xFFFFFFFF; \
+ T = ((X) ^ (Y)) & 0xAAAAAAAA; (Y) ^= T; (X) ^= T; \
+ (X) = (((X) << 1) | ((X) >> 31)) & 0xFFFFFFFF; \
+ } while (0)
+
+/*
+ * Final Permutation macro
+ */
+#define DES_FP(X, Y) \
+ do \
+ { \
+ (X) = (((X) << 31) | ((X) >> 1)) & 0xFFFFFFFF; \
+ T = ((X) ^ (Y)) & 0xAAAAAAAA; (X) ^= T; (Y) ^= T; \
+ (Y) = (((Y) << 31) | ((Y) >> 1)) & 0xFFFFFFFF; \
+ T = (((Y) >> 8) ^ (X)) & 0x00FF00FF; (X) ^= T; (Y) ^= (T << 8); \
+ T = (((Y) >> 2) ^ (X)) & 0x33333333; (X) ^= T; (Y) ^= (T << 2); \
+ T = (((X) >> 16) ^ (Y)) & 0x0000FFFF; (Y) ^= T; (X) ^= (T << 16); \
+ T = (((X) >> 4) ^ (Y)) & 0x0F0F0F0F; (Y) ^= T; (X) ^= (T << 4); \
+ } while (0)
+
+/*
+ * DES round macro
+ */
+#define DES_ROUND(X, Y) \
+ do \
+ { \
+ T = *SK++ ^ (X); \
+ (Y) ^= SB8[(T) & 0x3F] ^ \
+ SB6[(T >> 8) & 0x3F] ^ \
+ SB4[(T >> 16) & 0x3F] ^ \
+ SB2[(T >> 24) & 0x3F]; \
+ \
+ T = *SK++ ^ (((X) << 28) | ((X) >> 4)); \
+ (Y) ^= SB7[(T) & 0x3F] ^ \
+ SB5[(T >> 8) & 0x3F] ^ \
+ SB3[(T >> 16) & 0x3F] ^ \
+ SB1[(T >> 24) & 0x3F]; \
+ } while (0)
+
+#define SWAP(a, b) \
+ do \
+ { \
+ uint32_t t = (a); (a) = (b); (b) = t; t = 0; \
+ } while (0)
+
+void mbedtls_des_init(mbedtls_des_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_des_context));
+}
+
+void mbedtls_des_free(mbedtls_des_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_des_context));
+}
+
+void mbedtls_des3_init(mbedtls_des3_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_des3_context));
+}
+
+void mbedtls_des3_free(mbedtls_des3_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_des3_context));
+}
+
+static const unsigned char odd_parity_table[128] = { 1, 2, 4, 7, 8,
+ 11, 13, 14, 16, 19, 21, 22, 25, 26, 28, 31, 32,
+ 35, 37, 38, 41, 42, 44,
+ 47, 49, 50, 52, 55, 56, 59, 61, 62, 64, 67, 69,
+ 70, 73, 74, 76, 79, 81,
+ 82, 84, 87, 88, 91, 93, 94, 97, 98, 100, 103,
+ 104, 107, 109, 110, 112,
+ 115, 117, 118, 121, 122, 124, 127, 128, 131,
+ 133, 134, 137, 138, 140,
+ 143, 145, 146, 148, 151, 152, 155, 157, 158,
+ 161, 162, 164, 167, 168,
+ 171, 173, 174, 176, 179, 181, 182, 185, 186,
+ 188, 191, 193, 194, 196,
+ 199, 200, 203, 205, 206, 208, 211, 213, 214,
+ 217, 218, 220, 223, 224,
+ 227, 229, 230, 233, 234, 236, 239, 241, 242,
+ 244, 247, 248, 251, 253,
+ 254 };
+
+void mbedtls_des_key_set_parity(unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+ int i;
+
+ for (i = 0; i < MBEDTLS_DES_KEY_SIZE; i++) {
+ key[i] = odd_parity_table[key[i] / 2];
+ }
+}
+
+/*
+ * Check the given key's parity, returns 1 on failure, 0 on SUCCESS
+ */
+int mbedtls_des_key_check_key_parity(const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+ int i;
+
+ for (i = 0; i < MBEDTLS_DES_KEY_SIZE; i++) {
+ if (key[i] != odd_parity_table[key[i] / 2]) {
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Table of weak and semi-weak keys
+ *
+ * Source: http://en.wikipedia.org/wiki/Weak_key
+ *
+ * Weak:
+ * Alternating ones + zeros (0x0101010101010101)
+ * Alternating 'F' + 'E' (0xFEFEFEFEFEFEFEFE)
+ * '0xE0E0E0E0F1F1F1F1'
+ * '0x1F1F1F1F0E0E0E0E'
+ *
+ * Semi-weak:
+ * 0x011F011F010E010E and 0x1F011F010E010E01
+ * 0x01E001E001F101F1 and 0xE001E001F101F101
+ * 0x01FE01FE01FE01FE and 0xFE01FE01FE01FE01
+ * 0x1FE01FE00EF10EF1 and 0xE01FE01FF10EF10E
+ * 0x1FFE1FFE0EFE0EFE and 0xFE1FFE1FFE0EFE0E
+ * 0xE0FEE0FEF1FEF1FE and 0xFEE0FEE0FEF1FEF1
+ *
+ */
+
+#define WEAK_KEY_COUNT 16
+
+static const unsigned char weak_key_table[WEAK_KEY_COUNT][MBEDTLS_DES_KEY_SIZE] =
+{
+ { 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01 },
+ { 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE, 0xFE },
+ { 0x1F, 0x1F, 0x1F, 0x1F, 0x0E, 0x0E, 0x0E, 0x0E },
+ { 0xE0, 0xE0, 0xE0, 0xE0, 0xF1, 0xF1, 0xF1, 0xF1 },
+
+ { 0x01, 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E },
+ { 0x1F, 0x01, 0x1F, 0x01, 0x0E, 0x01, 0x0E, 0x01 },
+ { 0x01, 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1 },
+ { 0xE0, 0x01, 0xE0, 0x01, 0xF1, 0x01, 0xF1, 0x01 },
+ { 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE },
+ { 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01, 0xFE, 0x01 },
+ { 0x1F, 0xE0, 0x1F, 0xE0, 0x0E, 0xF1, 0x0E, 0xF1 },
+ { 0xE0, 0x1F, 0xE0, 0x1F, 0xF1, 0x0E, 0xF1, 0x0E },
+ { 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E, 0xFE },
+ { 0xFE, 0x1F, 0xFE, 0x1F, 0xFE, 0x0E, 0xFE, 0x0E },
+ { 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1, 0xFE },
+ { 0xFE, 0xE0, 0xFE, 0xE0, 0xFE, 0xF1, 0xFE, 0xF1 }
+};
+
+int mbedtls_des_key_check_weak(const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+ int i;
+
+ for (i = 0; i < WEAK_KEY_COUNT; i++) {
+ if (memcmp(weak_key_table[i], key, MBEDTLS_DES_KEY_SIZE) == 0) {
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_DES_SETKEY_ALT)
+void mbedtls_des_setkey(uint32_t SK[32], const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+ int i;
+ uint32_t X, Y, T;
+
+ X = MBEDTLS_GET_UINT32_BE(key, 0);
+ Y = MBEDTLS_GET_UINT32_BE(key, 4);
+
+ /*
+ * Permuted Choice 1
+ */
+ T = ((Y >> 4) ^ X) & 0x0F0F0F0F; X ^= T; Y ^= (T << 4);
+ T = ((Y) ^ X) & 0x10101010; X ^= T; Y ^= (T);
+
+ X = (LHs[(X) & 0xF] << 3) | (LHs[(X >> 8) & 0xF] << 2)
+ | (LHs[(X >> 16) & 0xF] << 1) | (LHs[(X >> 24) & 0xF])
+ | (LHs[(X >> 5) & 0xF] << 7) | (LHs[(X >> 13) & 0xF] << 6)
+ | (LHs[(X >> 21) & 0xF] << 5) | (LHs[(X >> 29) & 0xF] << 4);
+
+ Y = (RHs[(Y >> 1) & 0xF] << 3) | (RHs[(Y >> 9) & 0xF] << 2)
+ | (RHs[(Y >> 17) & 0xF] << 1) | (RHs[(Y >> 25) & 0xF])
+ | (RHs[(Y >> 4) & 0xF] << 7) | (RHs[(Y >> 12) & 0xF] << 6)
+ | (RHs[(Y >> 20) & 0xF] << 5) | (RHs[(Y >> 28) & 0xF] << 4);
+
+ X &= 0x0FFFFFFF;
+ Y &= 0x0FFFFFFF;
+
+ /*
+ * calculate subkeys
+ */
+ for (i = 0; i < 16; i++) {
+ if (i < 2 || i == 8 || i == 15) {
+ X = ((X << 1) | (X >> 27)) & 0x0FFFFFFF;
+ Y = ((Y << 1) | (Y >> 27)) & 0x0FFFFFFF;
+ } else {
+ X = ((X << 2) | (X >> 26)) & 0x0FFFFFFF;
+ Y = ((Y << 2) | (Y >> 26)) & 0x0FFFFFFF;
+ }
+
+ *SK++ = ((X << 4) & 0x24000000) | ((X << 28) & 0x10000000)
+ | ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000)
+ | ((X << 6) & 0x01000000) | ((X << 9) & 0x00200000)
+ | ((X >> 1) & 0x00100000) | ((X << 10) & 0x00040000)
+ | ((X << 2) & 0x00020000) | ((X >> 10) & 0x00010000)
+ | ((Y >> 13) & 0x00002000) | ((Y >> 4) & 0x00001000)
+ | ((Y << 6) & 0x00000800) | ((Y >> 1) & 0x00000400)
+ | ((Y >> 14) & 0x00000200) | ((Y) & 0x00000100)
+ | ((Y >> 5) & 0x00000020) | ((Y >> 10) & 0x00000010)
+ | ((Y >> 3) & 0x00000008) | ((Y >> 18) & 0x00000004)
+ | ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001);
+
+ *SK++ = ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000)
+ | ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000)
+ | ((X >> 2) & 0x02000000) | ((X << 1) & 0x01000000)
+ | ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000)
+ | ((X << 3) & 0x00080000) | ((X >> 6) & 0x00040000)
+ | ((X << 15) & 0x00020000) | ((X >> 4) & 0x00010000)
+ | ((Y >> 2) & 0x00002000) | ((Y << 8) & 0x00001000)
+ | ((Y >> 14) & 0x00000808) | ((Y >> 9) & 0x00000400)
+ | ((Y) & 0x00000200) | ((Y << 7) & 0x00000100)
+ | ((Y >> 7) & 0x00000020) | ((Y >> 3) & 0x00000011)
+ | ((Y << 2) & 0x00000004) | ((Y >> 21) & 0x00000002);
+ }
+}
+#endif /* !MBEDTLS_DES_SETKEY_ALT */
+
+/*
+ * DES key schedule (56-bit, encryption)
+ */
+int mbedtls_des_setkey_enc(mbedtls_des_context *ctx, const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+ mbedtls_des_setkey(ctx->sk, key);
+
+ return 0;
+}
+
+/*
+ * DES key schedule (56-bit, decryption)
+ */
+int mbedtls_des_setkey_dec(mbedtls_des_context *ctx, const unsigned char key[MBEDTLS_DES_KEY_SIZE])
+{
+ int i;
+
+ mbedtls_des_setkey(ctx->sk, key);
+
+ for (i = 0; i < 16; i += 2) {
+ SWAP(ctx->sk[i], ctx->sk[30 - i]);
+ SWAP(ctx->sk[i + 1], ctx->sk[31 - i]);
+ }
+
+ return 0;
+}
+
+static void des3_set2key(uint32_t esk[96],
+ uint32_t dsk[96],
+ const unsigned char key[MBEDTLS_DES_KEY_SIZE*2])
+{
+ int i;
+
+ mbedtls_des_setkey(esk, key);
+ mbedtls_des_setkey(dsk + 32, key + 8);
+
+ for (i = 0; i < 32; i += 2) {
+ dsk[i] = esk[30 - i];
+ dsk[i + 1] = esk[31 - i];
+
+ esk[i + 32] = dsk[62 - i];
+ esk[i + 33] = dsk[63 - i];
+
+ esk[i + 64] = esk[i];
+ esk[i + 65] = esk[i + 1];
+
+ dsk[i + 64] = dsk[i];
+ dsk[i + 65] = dsk[i + 1];
+ }
+}
+
+/*
+ * Triple-DES key schedule (112-bit, encryption)
+ */
+int mbedtls_des3_set2key_enc(mbedtls_des3_context *ctx,
+ const unsigned char key[MBEDTLS_DES_KEY_SIZE * 2])
+{
+ uint32_t sk[96];
+
+ des3_set2key(ctx->sk, sk, key);
+ mbedtls_platform_zeroize(sk, sizeof(sk));
+
+ return 0;
+}
+
+/*
+ * Triple-DES key schedule (112-bit, decryption)
+ */
+int mbedtls_des3_set2key_dec(mbedtls_des3_context *ctx,
+ const unsigned char key[MBEDTLS_DES_KEY_SIZE * 2])
+{
+ uint32_t sk[96];
+
+ des3_set2key(sk, ctx->sk, key);
+ mbedtls_platform_zeroize(sk, sizeof(sk));
+
+ return 0;
+}
+
+static void des3_set3key(uint32_t esk[96],
+ uint32_t dsk[96],
+ const unsigned char key[24])
+{
+ int i;
+
+ mbedtls_des_setkey(esk, key);
+ mbedtls_des_setkey(dsk + 32, key + 8);
+ mbedtls_des_setkey(esk + 64, key + 16);
+
+ for (i = 0; i < 32; i += 2) {
+ dsk[i] = esk[94 - i];
+ dsk[i + 1] = esk[95 - i];
+
+ esk[i + 32] = dsk[62 - i];
+ esk[i + 33] = dsk[63 - i];
+
+ dsk[i + 64] = esk[30 - i];
+ dsk[i + 65] = esk[31 - i];
+ }
+}
+
+/*
+ * Triple-DES key schedule (168-bit, encryption)
+ */
+int mbedtls_des3_set3key_enc(mbedtls_des3_context *ctx,
+ const unsigned char key[MBEDTLS_DES_KEY_SIZE * 3])
+{
+ uint32_t sk[96];
+
+ des3_set3key(ctx->sk, sk, key);
+ mbedtls_platform_zeroize(sk, sizeof(sk));
+
+ return 0;
+}
+
+/*
+ * Triple-DES key schedule (168-bit, decryption)
+ */
+int mbedtls_des3_set3key_dec(mbedtls_des3_context *ctx,
+ const unsigned char key[MBEDTLS_DES_KEY_SIZE * 3])
+{
+ uint32_t sk[96];
+
+ des3_set3key(sk, ctx->sk, key);
+ mbedtls_platform_zeroize(sk, sizeof(sk));
+
+ return 0;
+}
+
+/*
+ * DES-ECB block encryption/decryption
+ */
+#if !defined(MBEDTLS_DES_CRYPT_ECB_ALT)
+int mbedtls_des_crypt_ecb(mbedtls_des_context *ctx,
+ const unsigned char input[8],
+ unsigned char output[8])
+{
+ int i;
+ uint32_t X, Y, T, *SK;
+
+ SK = ctx->sk;
+
+ X = MBEDTLS_GET_UINT32_BE(input, 0);
+ Y = MBEDTLS_GET_UINT32_BE(input, 4);
+
+ DES_IP(X, Y);
+
+ for (i = 0; i < 8; i++) {
+ DES_ROUND(Y, X);
+ DES_ROUND(X, Y);
+ }
+
+ DES_FP(Y, X);
+
+ MBEDTLS_PUT_UINT32_BE(Y, output, 0);
+ MBEDTLS_PUT_UINT32_BE(X, output, 4);
+
+ return 0;
+}
+#endif /* !MBEDTLS_DES_CRYPT_ECB_ALT */
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * DES-CBC buffer encryption/decryption
+ */
+int mbedtls_des_crypt_cbc(mbedtls_des_context *ctx,
+ int mode,
+ size_t length,
+ unsigned char iv[8],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char temp[8];
+
+ if (length % 8) {
+ return MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH;
+ }
+
+ if (mode == MBEDTLS_DES_ENCRYPT) {
+ while (length > 0) {
+ mbedtls_xor(output, input, iv, 8);
+
+ ret = mbedtls_des_crypt_ecb(ctx, output, output);
+ if (ret != 0) {
+ goto exit;
+ }
+ memcpy(iv, output, 8);
+
+ input += 8;
+ output += 8;
+ length -= 8;
+ }
+ } else { /* MBEDTLS_DES_DECRYPT */
+ while (length > 0) {
+ memcpy(temp, input, 8);
+ ret = mbedtls_des_crypt_ecb(ctx, input, output);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ mbedtls_xor(output, output, iv, 8);
+
+ memcpy(iv, temp, 8);
+
+ input += 8;
+ output += 8;
+ length -= 8;
+ }
+ }
+ ret = 0;
+
+exit:
+ return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+/*
+ * 3DES-ECB block encryption/decryption
+ */
+#if !defined(MBEDTLS_DES3_CRYPT_ECB_ALT)
+int mbedtls_des3_crypt_ecb(mbedtls_des3_context *ctx,
+ const unsigned char input[8],
+ unsigned char output[8])
+{
+ int i;
+ uint32_t X, Y, T, *SK;
+
+ SK = ctx->sk;
+
+ X = MBEDTLS_GET_UINT32_BE(input, 0);
+ Y = MBEDTLS_GET_UINT32_BE(input, 4);
+
+ DES_IP(X, Y);
+
+ for (i = 0; i < 8; i++) {
+ DES_ROUND(Y, X);
+ DES_ROUND(X, Y);
+ }
+
+ for (i = 0; i < 8; i++) {
+ DES_ROUND(X, Y);
+ DES_ROUND(Y, X);
+ }
+
+ for (i = 0; i < 8; i++) {
+ DES_ROUND(Y, X);
+ DES_ROUND(X, Y);
+ }
+
+ DES_FP(Y, X);
+
+ MBEDTLS_PUT_UINT32_BE(Y, output, 0);
+ MBEDTLS_PUT_UINT32_BE(X, output, 4);
+
+ return 0;
+}
+#endif /* !MBEDTLS_DES3_CRYPT_ECB_ALT */
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+/*
+ * 3DES-CBC buffer encryption/decryption
+ */
+int mbedtls_des3_crypt_cbc(mbedtls_des3_context *ctx,
+ int mode,
+ size_t length,
+ unsigned char iv[8],
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char temp[8];
+
+ if (length % 8) {
+ return MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH;
+ }
+
+ if (mode == MBEDTLS_DES_ENCRYPT) {
+ while (length > 0) {
+ mbedtls_xor(output, input, iv, 8);
+
+ ret = mbedtls_des3_crypt_ecb(ctx, output, output);
+ if (ret != 0) {
+ goto exit;
+ }
+ memcpy(iv, output, 8);
+
+ input += 8;
+ output += 8;
+ length -= 8;
+ }
+ } else { /* MBEDTLS_DES_DECRYPT */
+ while (length > 0) {
+ memcpy(temp, input, 8);
+ ret = mbedtls_des3_crypt_ecb(ctx, input, output);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ mbedtls_xor(output, output, iv, 8);
+
+ memcpy(iv, temp, 8);
+
+ input += 8;
+ output += 8;
+ length -= 8;
+ }
+ }
+ ret = 0;
+
+exit:
+ return ret;
+}
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+#endif /* !MBEDTLS_DES_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * DES and 3DES test vectors from:
+ *
+ * http://csrc.nist.gov/groups/STM/cavp/documents/des/tripledes-vectors.zip
+ */
+static const unsigned char des3_test_keys[24] =
+{
+ 0x01, 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF,
+ 0x23, 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01,
+ 0x45, 0x67, 0x89, 0xAB, 0xCD, 0xEF, 0x01, 0x23
+};
+
+static const unsigned char des3_test_buf[8] =
+{
+ 0x4E, 0x6F, 0x77, 0x20, 0x69, 0x73, 0x20, 0x74
+};
+
+static const unsigned char des3_test_ecb_dec[3][8] =
+{
+ { 0x37, 0x2B, 0x98, 0xBF, 0x52, 0x65, 0xB0, 0x59 },
+ { 0xC2, 0x10, 0x19, 0x9C, 0x38, 0x5A, 0x65, 0xA1 },
+ { 0xA2, 0x70, 0x56, 0x68, 0x69, 0xE5, 0x15, 0x1D }
+};
+
+static const unsigned char des3_test_ecb_enc[3][8] =
+{
+ { 0x1C, 0xD5, 0x97, 0xEA, 0x84, 0x26, 0x73, 0xFB },
+ { 0xB3, 0x92, 0x4D, 0xF3, 0xC5, 0xB5, 0x42, 0x93 },
+ { 0xDA, 0x37, 0x64, 0x41, 0xBA, 0x6F, 0x62, 0x6F }
+};
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+static const unsigned char des3_test_iv[8] =
+{
+ 0x12, 0x34, 0x56, 0x78, 0x90, 0xAB, 0xCD, 0xEF,
+};
+
+static const unsigned char des3_test_cbc_dec[3][8] =
+{
+ { 0x58, 0xD9, 0x48, 0xEF, 0x85, 0x14, 0x65, 0x9A },
+ { 0x5F, 0xC8, 0x78, 0xD4, 0xD7, 0x92, 0xD9, 0x54 },
+ { 0x25, 0xF9, 0x75, 0x85, 0xA8, 0x1E, 0x48, 0xBF }
+};
+
+static const unsigned char des3_test_cbc_enc[3][8] =
+{
+ { 0x91, 0x1C, 0x6D, 0xCF, 0x48, 0xA7, 0xC3, 0x4D },
+ { 0x60, 0x1A, 0x76, 0x8F, 0xA1, 0xF9, 0x66, 0xF1 },
+ { 0xA1, 0x50, 0x0F, 0x99, 0xB2, 0xCD, 0x64, 0x76 }
+};
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_des_self_test(int verbose)
+{
+ int i, j, u, v, ret = 0;
+ mbedtls_des_context ctx;
+ mbedtls_des3_context ctx3;
+ unsigned char buf[8];
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ unsigned char prv[8];
+ unsigned char iv[8];
+#endif
+
+ mbedtls_des_init(&ctx);
+ mbedtls_des3_init(&ctx3);
+ /*
+ * ECB mode
+ */
+ for (i = 0; i < 6; i++) {
+ u = i >> 1;
+ v = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" DES%c-ECB-%3d (%s): ",
+ (u == 0) ? ' ' : '3', 56 + u * 56,
+ (v == MBEDTLS_DES_DECRYPT) ? "dec" : "enc");
+ }
+
+ memcpy(buf, des3_test_buf, 8);
+
+ switch (i) {
+ case 0:
+ ret = mbedtls_des_setkey_dec(&ctx, des3_test_keys);
+ break;
+
+ case 1:
+ ret = mbedtls_des_setkey_enc(&ctx, des3_test_keys);
+ break;
+
+ case 2:
+ ret = mbedtls_des3_set2key_dec(&ctx3, des3_test_keys);
+ break;
+
+ case 3:
+ ret = mbedtls_des3_set2key_enc(&ctx3, des3_test_keys);
+ break;
+
+ case 4:
+ ret = mbedtls_des3_set3key_dec(&ctx3, des3_test_keys);
+ break;
+
+ case 5:
+ ret = mbedtls_des3_set3key_enc(&ctx3, des3_test_keys);
+ break;
+
+ default:
+ return 1;
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+
+ for (j = 0; j < 100; j++) {
+ if (u == 0) {
+ ret = mbedtls_des_crypt_ecb(&ctx, buf, buf);
+ } else {
+ ret = mbedtls_des3_crypt_ecb(&ctx3, buf, buf);
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+
+ if ((v == MBEDTLS_DES_DECRYPT &&
+ memcmp(buf, des3_test_ecb_dec[u], 8) != 0) ||
+ (v != MBEDTLS_DES_DECRYPT &&
+ memcmp(buf, des3_test_ecb_enc[u], 8) != 0)) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_CBC)
+ /*
+ * CBC mode
+ */
+ for (i = 0; i < 6; i++) {
+ u = i >> 1;
+ v = i & 1;
+
+ if (verbose != 0) {
+ mbedtls_printf(" DES%c-CBC-%3d (%s): ",
+ (u == 0) ? ' ' : '3', 56 + u * 56,
+ (v == MBEDTLS_DES_DECRYPT) ? "dec" : "enc");
+ }
+
+ memcpy(iv, des3_test_iv, 8);
+ memcpy(prv, des3_test_iv, 8);
+ memcpy(buf, des3_test_buf, 8);
+
+ switch (i) {
+ case 0:
+ ret = mbedtls_des_setkey_dec(&ctx, des3_test_keys);
+ break;
+
+ case 1:
+ ret = mbedtls_des_setkey_enc(&ctx, des3_test_keys);
+ break;
+
+ case 2:
+ ret = mbedtls_des3_set2key_dec(&ctx3, des3_test_keys);
+ break;
+
+ case 3:
+ ret = mbedtls_des3_set2key_enc(&ctx3, des3_test_keys);
+ break;
+
+ case 4:
+ ret = mbedtls_des3_set3key_dec(&ctx3, des3_test_keys);
+ break;
+
+ case 5:
+ ret = mbedtls_des3_set3key_enc(&ctx3, des3_test_keys);
+ break;
+
+ default:
+ return 1;
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (v == MBEDTLS_DES_DECRYPT) {
+ for (j = 0; j < 100; j++) {
+ if (u == 0) {
+ ret = mbedtls_des_crypt_cbc(&ctx, v, 8, iv, buf, buf);
+ } else {
+ ret = mbedtls_des3_crypt_cbc(&ctx3, v, 8, iv, buf, buf);
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+ } else {
+ for (j = 0; j < 100; j++) {
+ unsigned char tmp[8];
+
+ if (u == 0) {
+ ret = mbedtls_des_crypt_cbc(&ctx, v, 8, iv, buf, buf);
+ } else {
+ ret = mbedtls_des3_crypt_cbc(&ctx3, v, 8, iv, buf, buf);
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+
+ memcpy(tmp, prv, 8);
+ memcpy(prv, buf, 8);
+ memcpy(buf, tmp, 8);
+ }
+
+ memcpy(buf, prv, 8);
+ }
+
+ if ((v == MBEDTLS_DES_DECRYPT &&
+ memcmp(buf, des3_test_cbc_dec[u], 8) != 0) ||
+ (v != MBEDTLS_DES_DECRYPT &&
+ memcmp(buf, des3_test_cbc_enc[u], 8) != 0)) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+#endif /* MBEDTLS_CIPHER_MODE_CBC */
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+exit:
+ mbedtls_des_free(&ctx);
+ mbedtls_des3_free(&ctx3);
+
+ if (ret != 0) {
+ ret = 1;
+ }
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_DES_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/dhm.c b/tf-psa-crypto/drivers/builtin/src/dhm.c
new file mode 100644
index 0000000..75af8b7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/dhm.c
@@ -0,0 +1,709 @@
+/*
+ * Diffie-Hellman-Merkle key exchange
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The following sources were referenced in the design of this implementation
+ * of the Diffie-Hellman-Merkle algorithm:
+ *
+ * [1] Handbook of Applied Cryptography - 1997, Chapter 12
+ * Menezes, van Oorschot and Vanstone
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_DHM_C)
+
+#include "mbedtls/dhm.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+#include "mbedtls/pem.h"
+#endif
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+#include "mbedtls/asn1.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * helper to validate the mbedtls_mpi size and import it
+ */
+static int dhm_read_bignum(mbedtls_mpi *X,
+ unsigned char **p,
+ const unsigned char *end)
+{
+ int ret, n;
+
+ if (end - *p < 2) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+ n = MBEDTLS_GET_UINT16_BE(*p, 0);
+ (*p) += 2;
+
+ if ((size_t) (end - *p) < (size_t) n) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+ if ((ret = mbedtls_mpi_read_binary(X, *p, n)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_READ_PARAMS_FAILED, ret);
+ }
+
+ (*p) += n;
+
+ return 0;
+}
+
+/*
+ * Verify sanity of parameter with regards to P
+ *
+ * Parameter should be: 2 <= public_param <= P - 2
+ *
+ * This means that we need to return an error if
+ * public_param < 2 or public_param > P-2
+ *
+ * For more information on the attack, see:
+ * http://www.cl.cam.ac.uk/~rja14/Papers/psandqs.pdf
+ * http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2005-2643
+ */
+static int dhm_check_range(const mbedtls_mpi *param, const mbedtls_mpi *P)
+{
+ mbedtls_mpi U;
+ int ret = 0;
+
+ mbedtls_mpi_init(&U);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&U, P, 2));
+
+ if (mbedtls_mpi_cmp_int(param, 2) < 0 ||
+ mbedtls_mpi_cmp_mpi(param, &U) > 0) {
+ ret = MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+cleanup:
+ mbedtls_mpi_free(&U);
+ return ret;
+}
+
+void mbedtls_dhm_init(mbedtls_dhm_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_dhm_context));
+}
+
+size_t mbedtls_dhm_get_bitlen(const mbedtls_dhm_context *ctx)
+{
+ return mbedtls_mpi_bitlen(&ctx->P);
+}
+
+size_t mbedtls_dhm_get_len(const mbedtls_dhm_context *ctx)
+{
+ return mbedtls_mpi_size(&ctx->P);
+}
+
+int mbedtls_dhm_get_value(const mbedtls_dhm_context *ctx,
+ mbedtls_dhm_parameter param,
+ mbedtls_mpi *dest)
+{
+ const mbedtls_mpi *src = NULL;
+ switch (param) {
+ case MBEDTLS_DHM_PARAM_P:
+ src = &ctx->P;
+ break;
+ case MBEDTLS_DHM_PARAM_G:
+ src = &ctx->G;
+ break;
+ case MBEDTLS_DHM_PARAM_X:
+ src = &ctx->X;
+ break;
+ case MBEDTLS_DHM_PARAM_GX:
+ src = &ctx->GX;
+ break;
+ case MBEDTLS_DHM_PARAM_GY:
+ src = &ctx->GY;
+ break;
+ case MBEDTLS_DHM_PARAM_K:
+ src = &ctx->K;
+ break;
+ default:
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+ return mbedtls_mpi_copy(dest, src);
+}
+
+/*
+ * Parse the ServerKeyExchange parameters
+ */
+int mbedtls_dhm_read_params(mbedtls_dhm_context *ctx,
+ unsigned char **p,
+ const unsigned char *end)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ret = dhm_read_bignum(&ctx->P, p, end)) != 0 ||
+ (ret = dhm_read_bignum(&ctx->G, p, end)) != 0 ||
+ (ret = dhm_read_bignum(&ctx->GY, p, end)) != 0) {
+ return ret;
+ }
+
+ if ((ret = dhm_check_range(&ctx->GY, &ctx->P)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Pick a random R in the range [2, M-2] for blinding or key generation.
+ */
+static int dhm_random_below(mbedtls_mpi *R, const mbedtls_mpi *M,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_random(R, 3, M, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(R, R, 1));
+
+cleanup:
+ return ret;
+}
+
+static int dhm_make_common(mbedtls_dhm_context *ctx, int x_size,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = 0;
+
+ if (mbedtls_mpi_cmp_int(&ctx->P, 0) == 0) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+ if (x_size < 0) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+ if ((unsigned) x_size < mbedtls_mpi_size(&ctx->P)) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->X, x_size, f_rng, p_rng));
+ } else {
+ /* Generate X as large as possible ( <= P - 2 ) */
+ ret = dhm_random_below(&ctx->X, &ctx->P, f_rng, p_rng);
+ if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ return MBEDTLS_ERR_DHM_MAKE_PARAMS_FAILED;
+ }
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ /*
+ * Calculate GX = G^X mod P
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->GX, &ctx->G, &ctx->X,
+ &ctx->P, &ctx->RP));
+
+ if ((ret = dhm_check_range(&ctx->GX, &ctx->P)) != 0) {
+ return ret;
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Setup and write the ServerKeyExchange parameters
+ */
+int mbedtls_dhm_make_params(mbedtls_dhm_context *ctx, int x_size,
+ unsigned char *output, size_t *olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret;
+ size_t n1, n2, n3;
+ unsigned char *p;
+
+ ret = dhm_make_common(ctx, x_size, f_rng, p_rng);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ /*
+ * Export P, G, GX. RFC 5246 §4.4 states that "leading zero octets are
+ * not required". We omit leading zeros for compactness.
+ */
+#define DHM_MPI_EXPORT(X, n) \
+ do { \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary((X), \
+ p + 2, \
+ (n))); \
+ *p++ = MBEDTLS_BYTE_1(n); \
+ *p++ = MBEDTLS_BYTE_0(n); \
+ p += (n); \
+ } while (0)
+
+ n1 = mbedtls_mpi_size(&ctx->P);
+ n2 = mbedtls_mpi_size(&ctx->G);
+ n3 = mbedtls_mpi_size(&ctx->GX);
+
+ p = output;
+ DHM_MPI_EXPORT(&ctx->P, n1);
+ DHM_MPI_EXPORT(&ctx->G, n2);
+ DHM_MPI_EXPORT(&ctx->GX, n3);
+
+ *olen = (size_t) (p - output);
+
+cleanup:
+ if (ret != 0 && ret > -128) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_MAKE_PARAMS_FAILED, ret);
+ }
+ return ret;
+}
+
+/*
+ * Set prime modulus and generator
+ */
+int mbedtls_dhm_set_group(mbedtls_dhm_context *ctx,
+ const mbedtls_mpi *P,
+ const mbedtls_mpi *G)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ret = mbedtls_mpi_copy(&ctx->P, P)) != 0 ||
+ (ret = mbedtls_mpi_copy(&ctx->G, G)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_SET_GROUP_FAILED, ret);
+ }
+
+ return 0;
+}
+
+/*
+ * Import the peer's public value G^Y
+ */
+int mbedtls_dhm_read_public(mbedtls_dhm_context *ctx,
+ const unsigned char *input, size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (ilen < 1 || ilen > mbedtls_dhm_get_len(ctx)) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+ if ((ret = mbedtls_mpi_read_binary(&ctx->GY, input, ilen)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_READ_PUBLIC_FAILED, ret);
+ }
+
+ return 0;
+}
+
+/*
+ * Create own private value X and export G^X
+ */
+int mbedtls_dhm_make_public(mbedtls_dhm_context *ctx, int x_size,
+ unsigned char *output, size_t olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret;
+
+ if (olen < 1 || olen > mbedtls_dhm_get_len(ctx)) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+ ret = dhm_make_common(ctx, x_size, f_rng, p_rng);
+ if (ret == MBEDTLS_ERR_DHM_MAKE_PARAMS_FAILED) {
+ return MBEDTLS_ERR_DHM_MAKE_PUBLIC_FAILED;
+ }
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->GX, output, olen));
+
+cleanup:
+ if (ret != 0 && ret > -128) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_MAKE_PUBLIC_FAILED, ret);
+ }
+ return ret;
+}
+
+
+/*
+ * Use the blinding method and optimisation suggested in section 10 of:
+ * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
+ * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
+ * Berlin Heidelberg, 1996. p. 104-113.
+ */
+static int dhm_update_blinding(mbedtls_dhm_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret;
+ mbedtls_mpi R;
+
+ mbedtls_mpi_init(&R);
+
+ /*
+ * Don't use any blinding the first time a particular X is used,
+ * but remember it to use blinding next time.
+ */
+ if (mbedtls_mpi_cmp_mpi(&ctx->X, &ctx->pX) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&ctx->pX, &ctx->X));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->Vi, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->Vf, 1));
+
+ return 0;
+ }
+
+ /*
+ * Ok, we need blinding. Can we re-use existing values?
+ * If yes, just update them by squaring them.
+ */
+ if (mbedtls_mpi_cmp_int(&ctx->Vi, 1) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->P));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
+
+ return 0;
+ }
+
+ /*
+ * We need to generate blinding values from scratch
+ */
+
+ /* Vi = random( 2, P-2 ) */
+ MBEDTLS_MPI_CHK(dhm_random_below(&ctx->Vi, &ctx->P, f_rng, p_rng));
+
+ /* Vf = Vi^-X mod P
+ * First compute Vi^-1 = R * (R Vi)^-1, (avoiding leaks from inv_mod),
+ * then elevate to the Xth power. */
+ MBEDTLS_MPI_CHK(dhm_random_below(&R, &ctx->P, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vi, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->Vf, &ctx->Vf, &ctx->P));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->P));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vf, &ctx->Vf, &ctx->X, &ctx->P, &ctx->RP));
+
+cleanup:
+ mbedtls_mpi_free(&R);
+
+ return ret;
+}
+
+/*
+ * Derive and export the shared secret (G^Y)^X mod P
+ */
+int mbedtls_dhm_calc_secret(mbedtls_dhm_context *ctx,
+ unsigned char *output, size_t output_size, size_t *olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi GYb;
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+ if (output_size < mbedtls_dhm_get_len(ctx)) {
+ return MBEDTLS_ERR_DHM_BAD_INPUT_DATA;
+ }
+
+ if ((ret = dhm_check_range(&ctx->GY, &ctx->P)) != 0) {
+ return ret;
+ }
+
+ mbedtls_mpi_init(&GYb);
+
+ /* Blind peer's value */
+ MBEDTLS_MPI_CHK(dhm_update_blinding(ctx, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&GYb, &ctx->GY, &ctx->Vi));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&GYb, &GYb, &ctx->P));
+
+ /* Do modular exponentiation */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->K, &GYb, &ctx->X,
+ &ctx->P, &ctx->RP));
+
+ /* Unblind secret value */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->K, &ctx->K, &ctx->Vf));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->K, &ctx->K, &ctx->P));
+
+ /* Output the secret without any leading zero byte. This is mandatory
+ * for TLS per RFC 5246 §8.1.2. */
+ *olen = mbedtls_mpi_size(&ctx->K);
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->K, output, *olen));
+
+cleanup:
+ mbedtls_mpi_free(&GYb);
+
+ if (ret != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_CALC_SECRET_FAILED, ret);
+ }
+
+ return 0;
+}
+
+/*
+ * Free the components of a DHM key
+ */
+void mbedtls_dhm_free(mbedtls_dhm_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_mpi_free(&ctx->pX);
+ mbedtls_mpi_free(&ctx->Vf);
+ mbedtls_mpi_free(&ctx->Vi);
+ mbedtls_mpi_free(&ctx->RP);
+ mbedtls_mpi_free(&ctx->K);
+ mbedtls_mpi_free(&ctx->GY);
+ mbedtls_mpi_free(&ctx->GX);
+ mbedtls_mpi_free(&ctx->X);
+ mbedtls_mpi_free(&ctx->G);
+ mbedtls_mpi_free(&ctx->P);
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_dhm_context));
+}
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+/*
+ * Parse DHM parameters
+ */
+int mbedtls_dhm_parse_dhm(mbedtls_dhm_context *dhm, const unsigned char *dhmin,
+ size_t dhminlen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+ unsigned char *p, *end;
+#if defined(MBEDTLS_PEM_PARSE_C)
+ mbedtls_pem_context pem;
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+ mbedtls_pem_init(&pem);
+
+ /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+ if (dhminlen == 0 || dhmin[dhminlen - 1] != '\0') {
+ ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ } else {
+ ret = mbedtls_pem_read_buffer(&pem,
+ "-----BEGIN DH PARAMETERS-----",
+ "-----END DH PARAMETERS-----",
+ dhmin, NULL, 0, &dhminlen);
+ }
+
+ if (ret == 0) {
+ /*
+ * Was PEM encoded
+ */
+ dhminlen = pem.buflen;
+ } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+ goto exit;
+ }
+
+ p = (ret == 0) ? pem.buf : (unsigned char *) dhmin;
+#else
+ p = (unsigned char *) dhmin;
+#endif /* MBEDTLS_PEM_PARSE_C */
+ end = p + dhminlen;
+
+ /*
+ * DHParams ::= SEQUENCE {
+ * prime INTEGER, -- P
+ * generator INTEGER, -- g
+ * privateValueLength INTEGER OPTIONAL
+ * }
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT, ret);
+ goto exit;
+ }
+
+ end = p + len;
+
+ if ((ret = mbedtls_asn1_get_mpi(&p, end, &dhm->P)) != 0 ||
+ (ret = mbedtls_asn1_get_mpi(&p, end, &dhm->G)) != 0) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT, ret);
+ goto exit;
+ }
+
+ if (p != end) {
+ /* This might be the optional privateValueLength.
+ * If so, we can cleanly discard it */
+ mbedtls_mpi rec;
+ mbedtls_mpi_init(&rec);
+ ret = mbedtls_asn1_get_mpi(&p, end, &rec);
+ mbedtls_mpi_free(&rec);
+ if (ret != 0) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT, ret);
+ goto exit;
+ }
+ if (p != end) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_DHM_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ goto exit;
+ }
+ }
+
+ ret = 0;
+
+exit:
+#if defined(MBEDTLS_PEM_PARSE_C)
+ mbedtls_pem_free(&pem);
+#endif
+ if (ret != 0) {
+ mbedtls_dhm_free(dhm);
+ }
+
+ return ret;
+}
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Load all data from a file into a given buffer.
+ *
+ * The file is expected to contain either PEM or DER encoded data.
+ * A terminating null byte is always appended. It is included in the announced
+ * length only if the data looks like it is PEM encoded.
+ */
+static int load_file(const char *path, unsigned char **buf, size_t *n)
+{
+ FILE *f;
+ long size;
+
+ if ((f = fopen(path, "rb")) == NULL) {
+ return MBEDTLS_ERR_DHM_FILE_IO_ERROR;
+ }
+ /* The data loaded here is public, so don't bother disabling buffering. */
+
+ fseek(f, 0, SEEK_END);
+ if ((size = ftell(f)) == -1) {
+ fclose(f);
+ return MBEDTLS_ERR_DHM_FILE_IO_ERROR;
+ }
+ fseek(f, 0, SEEK_SET);
+
+ *n = (size_t) size;
+
+ if (*n + 1 == 0 ||
+ (*buf = mbedtls_calloc(1, *n + 1)) == NULL) {
+ fclose(f);
+ return MBEDTLS_ERR_DHM_ALLOC_FAILED;
+ }
+
+ if (fread(*buf, 1, *n, f) != *n) {
+ fclose(f);
+
+ mbedtls_zeroize_and_free(*buf, *n + 1);
+
+ return MBEDTLS_ERR_DHM_FILE_IO_ERROR;
+ }
+
+ fclose(f);
+
+ (*buf)[*n] = '\0';
+
+ if (strstr((const char *) *buf, "-----BEGIN ") != NULL) {
+ ++*n;
+ }
+
+ return 0;
+}
+
+/*
+ * Load and parse DHM parameters
+ */
+int mbedtls_dhm_parse_dhmfile(mbedtls_dhm_context *dhm, const char *path)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n;
+ unsigned char *buf;
+
+ if ((ret = load_file(path, &buf, &n)) != 0) {
+ return ret;
+ }
+
+ ret = mbedtls_dhm_parse_dhm(dhm, buf, n);
+
+ mbedtls_zeroize_and_free(buf, n);
+
+ return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+#endif /* MBEDTLS_ASN1_PARSE_C */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+static const char mbedtls_test_dhm_params[] =
+ "-----BEGIN DH PARAMETERS-----\r\n"
+ "MIGHAoGBAJ419DBEOgmQTzo5qXl5fQcN9TN455wkOL7052HzxxRVMyhYmwQcgJvh\r\n"
+ "1sa18fyfR9OiVEMYglOpkqVoGLN7qd5aQNNi5W7/C+VBdHTBJcGZJyyP5B3qcz32\r\n"
+ "9mLJKudlVudV0Qxk5qUJaPZ/xupz0NyoVpviuiBOI1gNi8ovSXWzAgEC\r\n"
+ "-----END DH PARAMETERS-----\r\n";
+#else /* MBEDTLS_PEM_PARSE_C */
+static const char mbedtls_test_dhm_params[] = {
+ 0x30, 0x81, 0x87, 0x02, 0x81, 0x81, 0x00, 0x9e, 0x35, 0xf4, 0x30, 0x44,
+ 0x3a, 0x09, 0x90, 0x4f, 0x3a, 0x39, 0xa9, 0x79, 0x79, 0x7d, 0x07, 0x0d,
+ 0xf5, 0x33, 0x78, 0xe7, 0x9c, 0x24, 0x38, 0xbe, 0xf4, 0xe7, 0x61, 0xf3,
+ 0xc7, 0x14, 0x55, 0x33, 0x28, 0x58, 0x9b, 0x04, 0x1c, 0x80, 0x9b, 0xe1,
+ 0xd6, 0xc6, 0xb5, 0xf1, 0xfc, 0x9f, 0x47, 0xd3, 0xa2, 0x54, 0x43, 0x18,
+ 0x82, 0x53, 0xa9, 0x92, 0xa5, 0x68, 0x18, 0xb3, 0x7b, 0xa9, 0xde, 0x5a,
+ 0x40, 0xd3, 0x62, 0xe5, 0x6e, 0xff, 0x0b, 0xe5, 0x41, 0x74, 0x74, 0xc1,
+ 0x25, 0xc1, 0x99, 0x27, 0x2c, 0x8f, 0xe4, 0x1d, 0xea, 0x73, 0x3d, 0xf6,
+ 0xf6, 0x62, 0xc9, 0x2a, 0xe7, 0x65, 0x56, 0xe7, 0x55, 0xd1, 0x0c, 0x64,
+ 0xe6, 0xa5, 0x09, 0x68, 0xf6, 0x7f, 0xc6, 0xea, 0x73, 0xd0, 0xdc, 0xa8,
+ 0x56, 0x9b, 0xe2, 0xba, 0x20, 0x4e, 0x23, 0x58, 0x0d, 0x8b, 0xca, 0x2f,
+ 0x49, 0x75, 0xb3, 0x02, 0x01, 0x02
+};
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+static const size_t mbedtls_test_dhm_params_len = sizeof(mbedtls_test_dhm_params);
+
+/*
+ * Checkup routine
+ */
+int mbedtls_dhm_self_test(int verbose)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_dhm_context dhm;
+
+ mbedtls_dhm_init(&dhm);
+
+ if (verbose != 0) {
+ mbedtls_printf(" DHM parameter load: ");
+ }
+
+ if ((ret = mbedtls_dhm_parse_dhm(&dhm,
+ (const unsigned char *) mbedtls_test_dhm_params,
+ mbedtls_test_dhm_params_len)) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n\n");
+ }
+
+exit:
+ mbedtls_dhm_free(&dhm);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_DHM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecdh.c b/tf-psa-crypto/drivers/builtin/src/ecdh.c
new file mode 100644
index 0000000..b276c6a
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecdh.c
@@ -0,0 +1,694 @@
+/*
+ * Elliptic curve Diffie-Hellman
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * SEC1 https://www.secg.org/sec1-v2.pdf
+ * RFC 4492
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECDH_C)
+
+#include "mbedtls/ecdh.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+typedef mbedtls_ecdh_context mbedtls_ecdh_context_mbed;
+#endif
+
+static mbedtls_ecp_group_id mbedtls_ecdh_grp_id(
+ const mbedtls_ecdh_context *ctx)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ctx->grp.id;
+#else
+ return ctx->grp_id;
+#endif
+}
+
+int mbedtls_ecdh_can_do(mbedtls_ecp_group_id gid)
+{
+ /* At this time, all groups support ECDH. */
+ (void) gid;
+ return 1;
+}
+
+#if !defined(MBEDTLS_ECDH_GEN_PUBLIC_ALT)
+/*
+ * Generate public key (restartable version)
+ *
+ * Note: this internal function relies on its caller preserving the value of
+ * the output parameter 'd' across continuation calls. This would not be
+ * acceptable for a public function but is OK here as we control call sites.
+ */
+static int ecdh_gen_public_restartable(mbedtls_ecp_group *grp,
+ mbedtls_mpi *d, mbedtls_ecp_point *Q,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ int restarting = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
+#endif
+ /* If multiplication is in progress, we already generated a privkey */
+ if (!restarting) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, Q, d, &grp->G,
+ f_rng, p_rng, rs_ctx));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Generate public key
+ */
+int mbedtls_ecdh_gen_public(mbedtls_ecp_group *grp, mbedtls_mpi *d, mbedtls_ecp_point *Q,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return ecdh_gen_public_restartable(grp, d, Q, f_rng, p_rng, NULL);
+}
+#endif /* !MBEDTLS_ECDH_GEN_PUBLIC_ALT */
+
+#if !defined(MBEDTLS_ECDH_COMPUTE_SHARED_ALT)
+/*
+ * Compute shared secret (SEC1 3.3.1)
+ */
+static int ecdh_compute_shared_restartable(mbedtls_ecp_group *grp,
+ mbedtls_mpi *z,
+ const mbedtls_ecp_point *Q, const mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point P;
+
+ mbedtls_ecp_point_init(&P);
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, &P, d, Q,
+ f_rng, p_rng, rs_ctx));
+
+ if (mbedtls_ecp_is_zero(&P)) {
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(z, &P.X));
+
+cleanup:
+ mbedtls_ecp_point_free(&P);
+
+ return ret;
+}
+
+/*
+ * Compute shared secret (SEC1 3.3.1)
+ */
+int mbedtls_ecdh_compute_shared(mbedtls_ecp_group *grp, mbedtls_mpi *z,
+ const mbedtls_ecp_point *Q, const mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return ecdh_compute_shared_restartable(grp, z, Q, d,
+ f_rng, p_rng, NULL);
+}
+#endif /* !MBEDTLS_ECDH_COMPUTE_SHARED_ALT */
+
+static void ecdh_init_internal(mbedtls_ecdh_context_mbed *ctx)
+{
+ mbedtls_ecp_group_init(&ctx->grp);
+ mbedtls_mpi_init(&ctx->d);
+ mbedtls_ecp_point_init(&ctx->Q);
+ mbedtls_ecp_point_init(&ctx->Qp);
+ mbedtls_mpi_init(&ctx->z);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ mbedtls_ecp_restart_init(&ctx->rs);
+#endif
+}
+
+mbedtls_ecp_group_id mbedtls_ecdh_get_grp_id(mbedtls_ecdh_context *ctx)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ctx->MBEDTLS_PRIVATE(grp).id;
+#else
+ return ctx->MBEDTLS_PRIVATE(grp_id);
+#endif
+}
+
+/*
+ * Initialize context
+ */
+void mbedtls_ecdh_init(mbedtls_ecdh_context *ctx)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ ecdh_init_internal(ctx);
+ mbedtls_ecp_point_init(&ctx->Vi);
+ mbedtls_ecp_point_init(&ctx->Vf);
+ mbedtls_mpi_init(&ctx->_d);
+#else
+ memset(ctx, 0, sizeof(mbedtls_ecdh_context));
+
+ ctx->var = MBEDTLS_ECDH_VARIANT_NONE;
+#endif
+ ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ ctx->restart_enabled = 0;
+#endif
+}
+
+static int ecdh_setup_internal(mbedtls_ecdh_context_mbed *ctx,
+ mbedtls_ecp_group_id grp_id)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ ret = mbedtls_ecp_group_load(&ctx->grp, grp_id);
+ if (ret != 0) {
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ return 0;
+}
+
+/*
+ * Setup context
+ */
+int mbedtls_ecdh_setup(mbedtls_ecdh_context *ctx, mbedtls_ecp_group_id grp_id)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ecdh_setup_internal(ctx, grp_id);
+#else
+ switch (grp_id) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE25519:
+ ctx->point_format = MBEDTLS_ECP_PF_COMPRESSED;
+ ctx->var = MBEDTLS_ECDH_VARIANT_EVEREST;
+ ctx->grp_id = grp_id;
+ return mbedtls_everest_setup(&ctx->ctx.everest_ecdh, grp_id);
+#endif
+ default:
+ ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+ ctx->var = MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0;
+ ctx->grp_id = grp_id;
+ ecdh_init_internal(&ctx->ctx.mbed_ecdh);
+ return ecdh_setup_internal(&ctx->ctx.mbed_ecdh, grp_id);
+ }
+#endif
+}
+
+static void ecdh_free_internal(mbedtls_ecdh_context_mbed *ctx)
+{
+ mbedtls_ecp_group_free(&ctx->grp);
+ mbedtls_mpi_free(&ctx->d);
+ mbedtls_ecp_point_free(&ctx->Q);
+ mbedtls_ecp_point_free(&ctx->Qp);
+ mbedtls_mpi_free(&ctx->z);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ mbedtls_ecp_restart_free(&ctx->rs);
+#endif
+}
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Enable restartable operations for context
+ */
+void mbedtls_ecdh_enable_restart(mbedtls_ecdh_context *ctx)
+{
+ ctx->restart_enabled = 1;
+}
+#endif
+
+/*
+ * Free context
+ */
+void mbedtls_ecdh_free(mbedtls_ecdh_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ mbedtls_ecp_point_free(&ctx->Vi);
+ mbedtls_ecp_point_free(&ctx->Vf);
+ mbedtls_mpi_free(&ctx->_d);
+ ecdh_free_internal(ctx);
+#else
+ switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECDH_VARIANT_EVEREST:
+ mbedtls_everest_free(&ctx->ctx.everest_ecdh);
+ break;
+#endif
+ case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+ ecdh_free_internal(&ctx->ctx.mbed_ecdh);
+ break;
+ default:
+ break;
+ }
+
+ ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+ ctx->var = MBEDTLS_ECDH_VARIANT_NONE;
+ ctx->grp_id = MBEDTLS_ECP_DP_NONE;
+#endif
+}
+
+static int ecdh_make_params_internal(mbedtls_ecdh_context_mbed *ctx,
+ size_t *olen, int point_format,
+ unsigned char *buf, size_t blen,
+ int (*f_rng)(void *,
+ unsigned char *,
+ size_t),
+ void *p_rng,
+ int restart_enabled)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t grp_len, pt_len;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ mbedtls_ecp_restart_ctx *rs_ctx = NULL;
+#endif
+
+ if (ctx->grp.pbits == 0) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (restart_enabled) {
+ rs_ctx = &ctx->rs;
+ }
+#else
+ (void) restart_enabled;
+#endif
+
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if ((ret = ecdh_gen_public_restartable(&ctx->grp, &ctx->d, &ctx->Q,
+ f_rng, p_rng, rs_ctx)) != 0) {
+ return ret;
+ }
+#else
+ if ((ret = mbedtls_ecdh_gen_public(&ctx->grp, &ctx->d, &ctx->Q,
+ f_rng, p_rng)) != 0) {
+ return ret;
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ if ((ret = mbedtls_ecp_tls_write_group(&ctx->grp, &grp_len, buf,
+ blen)) != 0) {
+ return ret;
+ }
+
+ buf += grp_len;
+ blen -= grp_len;
+
+ if ((ret = mbedtls_ecp_tls_write_point(&ctx->grp, &ctx->Q, point_format,
+ &pt_len, buf, blen)) != 0) {
+ return ret;
+ }
+
+ *olen = grp_len + pt_len;
+ return 0;
+}
+
+/*
+ * Setup and write the ServerKeyExchange parameters (RFC 4492)
+ * struct {
+ * ECParameters curve_params;
+ * ECPoint public;
+ * } ServerECDHParams;
+ */
+int mbedtls_ecdh_make_params(mbedtls_ecdh_context *ctx, size_t *olen,
+ unsigned char *buf, size_t blen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int restart_enabled = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ restart_enabled = ctx->restart_enabled;
+#else
+ (void) restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ecdh_make_params_internal(ctx, olen, ctx->point_format, buf, blen,
+ f_rng, p_rng, restart_enabled);
+#else
+ switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECDH_VARIANT_EVEREST:
+ return mbedtls_everest_make_params(&ctx->ctx.everest_ecdh, olen,
+ buf, blen, f_rng, p_rng);
+#endif
+ case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+ return ecdh_make_params_internal(&ctx->ctx.mbed_ecdh, olen,
+ ctx->point_format, buf, blen,
+ f_rng, p_rng,
+ restart_enabled);
+ default:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+#endif
+}
+
+static int ecdh_read_params_internal(mbedtls_ecdh_context_mbed *ctx,
+ const unsigned char **buf,
+ const unsigned char *end)
+{
+ return mbedtls_ecp_tls_read_point(&ctx->grp, &ctx->Qp, buf,
+ (size_t) (end - *buf));
+}
+
+/*
+ * Read the ServerKeyExchange parameters (RFC 4492)
+ * struct {
+ * ECParameters curve_params;
+ * ECPoint public;
+ * } ServerECDHParams;
+ */
+int mbedtls_ecdh_read_params(mbedtls_ecdh_context *ctx,
+ const unsigned char **buf,
+ const unsigned char *end)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_group_id grp_id;
+ if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, (size_t) (end - *buf)))
+ != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_ecdh_setup(ctx, grp_id)) != 0) {
+ return ret;
+ }
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ecdh_read_params_internal(ctx, buf, end);
+#else
+ switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECDH_VARIANT_EVEREST:
+ return mbedtls_everest_read_params(&ctx->ctx.everest_ecdh,
+ buf, end);
+#endif
+ case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+ return ecdh_read_params_internal(&ctx->ctx.mbed_ecdh,
+ buf, end);
+ default:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+#endif
+}
+
+static int ecdh_get_params_internal(mbedtls_ecdh_context_mbed *ctx,
+ const mbedtls_ecp_keypair *key,
+ mbedtls_ecdh_side side)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* If it's not our key, just import the public part as Qp */
+ if (side == MBEDTLS_ECDH_THEIRS) {
+ return mbedtls_ecp_copy(&ctx->Qp, &key->Q);
+ }
+
+ /* Our key: import public (as Q) and private parts */
+ if (side != MBEDTLS_ECDH_OURS) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ if ((ret = mbedtls_ecp_copy(&ctx->Q, &key->Q)) != 0 ||
+ (ret = mbedtls_mpi_copy(&ctx->d, &key->d)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Get parameters from a keypair
+ */
+int mbedtls_ecdh_get_params(mbedtls_ecdh_context *ctx,
+ const mbedtls_ecp_keypair *key,
+ mbedtls_ecdh_side side)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ if (side != MBEDTLS_ECDH_OURS && side != MBEDTLS_ECDH_THEIRS) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_ecdh_grp_id(ctx) == MBEDTLS_ECP_DP_NONE) {
+ /* This is the first call to get_params(). Set up the context
+ * for use with the group. */
+ if ((ret = mbedtls_ecdh_setup(ctx, key->grp.id)) != 0) {
+ return ret;
+ }
+ } else {
+ /* This is not the first call to get_params(). Check that the
+ * current key's group is the same as the context's, which was set
+ * from the first key's group. */
+ if (mbedtls_ecdh_grp_id(ctx) != key->grp.id) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ }
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ecdh_get_params_internal(ctx, key, side);
+#else
+ switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECDH_VARIANT_EVEREST:
+ {
+ mbedtls_everest_ecdh_side s = side == MBEDTLS_ECDH_OURS ?
+ MBEDTLS_EVEREST_ECDH_OURS :
+ MBEDTLS_EVEREST_ECDH_THEIRS;
+ return mbedtls_everest_get_params(&ctx->ctx.everest_ecdh,
+ key, s);
+ }
+#endif
+ case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+ return ecdh_get_params_internal(&ctx->ctx.mbed_ecdh,
+ key, side);
+ default:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+#endif
+}
+
+static int ecdh_make_public_internal(mbedtls_ecdh_context_mbed *ctx,
+ size_t *olen, int point_format,
+ unsigned char *buf, size_t blen,
+ int (*f_rng)(void *,
+ unsigned char *,
+ size_t),
+ void *p_rng,
+ int restart_enabled)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ mbedtls_ecp_restart_ctx *rs_ctx = NULL;
+#endif
+
+ if (ctx->grp.pbits == 0) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (restart_enabled) {
+ rs_ctx = &ctx->rs;
+ }
+#else
+ (void) restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if ((ret = ecdh_gen_public_restartable(&ctx->grp, &ctx->d, &ctx->Q,
+ f_rng, p_rng, rs_ctx)) != 0) {
+ return ret;
+ }
+#else
+ if ((ret = mbedtls_ecdh_gen_public(&ctx->grp, &ctx->d, &ctx->Q,
+ f_rng, p_rng)) != 0) {
+ return ret;
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ return mbedtls_ecp_tls_write_point(&ctx->grp, &ctx->Q, point_format, olen,
+ buf, blen);
+}
+
+/*
+ * Setup and export the client public value
+ */
+int mbedtls_ecdh_make_public(mbedtls_ecdh_context *ctx, size_t *olen,
+ unsigned char *buf, size_t blen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int restart_enabled = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ restart_enabled = ctx->restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ecdh_make_public_internal(ctx, olen, ctx->point_format, buf, blen,
+ f_rng, p_rng, restart_enabled);
+#else
+ switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECDH_VARIANT_EVEREST:
+ return mbedtls_everest_make_public(&ctx->ctx.everest_ecdh, olen,
+ buf, blen, f_rng, p_rng);
+#endif
+ case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+ return ecdh_make_public_internal(&ctx->ctx.mbed_ecdh, olen,
+ ctx->point_format, buf, blen,
+ f_rng, p_rng,
+ restart_enabled);
+ default:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+#endif
+}
+
+static int ecdh_read_public_internal(mbedtls_ecdh_context_mbed *ctx,
+ const unsigned char *buf, size_t blen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const unsigned char *p = buf;
+
+ if ((ret = mbedtls_ecp_tls_read_point(&ctx->grp, &ctx->Qp, &p,
+ blen)) != 0) {
+ return ret;
+ }
+
+ if ((size_t) (p - buf) != blen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+
+/*
+ * Parse and import the client's public value
+ */
+int mbedtls_ecdh_read_public(mbedtls_ecdh_context *ctx,
+ const unsigned char *buf, size_t blen)
+{
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ecdh_read_public_internal(ctx, buf, blen);
+#else
+ switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECDH_VARIANT_EVEREST:
+ return mbedtls_everest_read_public(&ctx->ctx.everest_ecdh,
+ buf, blen);
+#endif
+ case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+ return ecdh_read_public_internal(&ctx->ctx.mbed_ecdh,
+ buf, blen);
+ default:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+#endif
+}
+
+static int ecdh_calc_secret_internal(mbedtls_ecdh_context_mbed *ctx,
+ size_t *olen, unsigned char *buf,
+ size_t blen,
+ int (*f_rng)(void *,
+ unsigned char *,
+ size_t),
+ void *p_rng,
+ int restart_enabled)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ mbedtls_ecp_restart_ctx *rs_ctx = NULL;
+#endif
+
+ if (ctx == NULL || ctx->grp.pbits == 0) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (restart_enabled) {
+ rs_ctx = &ctx->rs;
+ }
+#else
+ (void) restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if ((ret = ecdh_compute_shared_restartable(&ctx->grp, &ctx->z, &ctx->Qp,
+ &ctx->d, f_rng, p_rng,
+ rs_ctx)) != 0) {
+ return ret;
+ }
+#else
+ if ((ret = mbedtls_ecdh_compute_shared(&ctx->grp, &ctx->z, &ctx->Qp,
+ &ctx->d, f_rng, p_rng)) != 0) {
+ return ret;
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ if (mbedtls_mpi_size(&ctx->z) > blen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ *olen = ctx->grp.pbits / 8 + ((ctx->grp.pbits % 8) != 0);
+
+ if (mbedtls_ecp_get_type(&ctx->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ return mbedtls_mpi_write_binary_le(&ctx->z, buf, *olen);
+ }
+
+ return mbedtls_mpi_write_binary(&ctx->z, buf, *olen);
+}
+
+/*
+ * Derive and export the shared secret
+ */
+int mbedtls_ecdh_calc_secret(mbedtls_ecdh_context *ctx, size_t *olen,
+ unsigned char *buf, size_t blen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int restart_enabled = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ restart_enabled = ctx->restart_enabled;
+#endif
+
+#if defined(MBEDTLS_ECDH_LEGACY_CONTEXT)
+ return ecdh_calc_secret_internal(ctx, olen, buf, blen, f_rng, p_rng,
+ restart_enabled);
+#else
+ switch (ctx->var) {
+#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
+ case MBEDTLS_ECDH_VARIANT_EVEREST:
+ return mbedtls_everest_calc_secret(&ctx->ctx.everest_ecdh, olen,
+ buf, blen, f_rng, p_rng);
+#endif
+ case MBEDTLS_ECDH_VARIANT_MBEDTLS_2_0:
+ return ecdh_calc_secret_internal(&ctx->ctx.mbed_ecdh, olen, buf,
+ blen, f_rng, p_rng,
+ restart_enabled);
+ default:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+#endif
+}
+#endif /* MBEDTLS_ECDH_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecdsa.c b/tf-psa-crypto/drivers/builtin/src/ecdsa.c
new file mode 100644
index 0000000..2f7a996
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecdsa.c
@@ -0,0 +1,867 @@
+/*
+ * Elliptic curve DSA
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * SEC1 https://www.secg.org/sec1-v2.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECDSA_C)
+
+#include "mbedtls/ecdsa.h"
+#include "mbedtls/asn1write.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+#include "mbedtls/hmac_drbg.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+
+/*
+ * Sub-context for ecdsa_verify()
+ */
+struct mbedtls_ecdsa_restart_ver {
+ mbedtls_mpi u1, u2; /* intermediate values */
+ enum { /* what to do next? */
+ ecdsa_ver_init = 0, /* getting started */
+ ecdsa_ver_muladd, /* muladd step */
+ } state;
+};
+
+/*
+ * Init verify restart sub-context
+ */
+static void ecdsa_restart_ver_init(mbedtls_ecdsa_restart_ver_ctx *ctx)
+{
+ mbedtls_mpi_init(&ctx->u1);
+ mbedtls_mpi_init(&ctx->u2);
+ ctx->state = ecdsa_ver_init;
+}
+
+/*
+ * Free the components of a verify restart sub-context
+ */
+static void ecdsa_restart_ver_free(mbedtls_ecdsa_restart_ver_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_mpi_free(&ctx->u1);
+ mbedtls_mpi_free(&ctx->u2);
+
+ ecdsa_restart_ver_init(ctx);
+}
+
+/*
+ * Sub-context for ecdsa_sign()
+ */
+struct mbedtls_ecdsa_restart_sig {
+ int sign_tries;
+ int key_tries;
+ mbedtls_mpi k; /* per-signature random */
+ mbedtls_mpi r; /* r value */
+ enum { /* what to do next? */
+ ecdsa_sig_init = 0, /* getting started */
+ ecdsa_sig_mul, /* doing ecp_mul() */
+ ecdsa_sig_modn, /* mod N computations */
+ } state;
+};
+
+/*
+ * Init verify sign sub-context
+ */
+static void ecdsa_restart_sig_init(mbedtls_ecdsa_restart_sig_ctx *ctx)
+{
+ ctx->sign_tries = 0;
+ ctx->key_tries = 0;
+ mbedtls_mpi_init(&ctx->k);
+ mbedtls_mpi_init(&ctx->r);
+ ctx->state = ecdsa_sig_init;
+}
+
+/*
+ * Free the components of a sign restart sub-context
+ */
+static void ecdsa_restart_sig_free(mbedtls_ecdsa_restart_sig_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_mpi_free(&ctx->k);
+ mbedtls_mpi_free(&ctx->r);
+}
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+/*
+ * Sub-context for ecdsa_sign_det()
+ */
+struct mbedtls_ecdsa_restart_det {
+ mbedtls_hmac_drbg_context rng_ctx; /* DRBG state */
+ enum { /* what to do next? */
+ ecdsa_det_init = 0, /* getting started */
+ ecdsa_det_sign, /* make signature */
+ } state;
+};
+
+/*
+ * Init verify sign_det sub-context
+ */
+static void ecdsa_restart_det_init(mbedtls_ecdsa_restart_det_ctx *ctx)
+{
+ mbedtls_hmac_drbg_init(&ctx->rng_ctx);
+ ctx->state = ecdsa_det_init;
+}
+
+/*
+ * Free the components of a sign_det restart sub-context
+ */
+static void ecdsa_restart_det_free(mbedtls_ecdsa_restart_det_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_hmac_drbg_free(&ctx->rng_ctx);
+
+ ecdsa_restart_det_init(ctx);
+}
+#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
+
+#define ECDSA_RS_ECP (rs_ctx == NULL ? NULL : &rs_ctx->ecp)
+
+/* Utility macro for checking and updating ops budget */
+#define ECDSA_BUDGET(ops) \
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_budget(grp, ECDSA_RS_ECP, ops));
+
+/* Call this when entering a function that needs its own sub-context */
+#define ECDSA_RS_ENTER(SUB) do { \
+ /* reset ops count for this call if top-level */ \
+ if (rs_ctx != NULL && rs_ctx->ecp.depth++ == 0) \
+ rs_ctx->ecp.ops_done = 0; \
+ \
+ /* set up our own sub-context if needed */ \
+ if (mbedtls_ecp_restart_is_enabled() && \
+ rs_ctx != NULL && rs_ctx->SUB == NULL) \
+ { \
+ rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
+ if (rs_ctx->SUB == NULL) \
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
+ \
+ ecdsa_restart_## SUB ##_init(rs_ctx->SUB); \
+ } \
+} while (0)
+
+/* Call this when leaving a function that needs its own sub-context */
+#define ECDSA_RS_LEAVE(SUB) do { \
+ /* clear our sub-context when not in progress (done or error) */ \
+ if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
+ ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
+ { \
+ ecdsa_restart_## SUB ##_free(rs_ctx->SUB); \
+ mbedtls_free(rs_ctx->SUB); \
+ rs_ctx->SUB = NULL; \
+ } \
+ \
+ if (rs_ctx != NULL) \
+ rs_ctx->ecp.depth--; \
+} while (0)
+
+#else /* MBEDTLS_ECP_RESTARTABLE */
+
+#define ECDSA_RS_ECP NULL
+
+#define ECDSA_BUDGET(ops) /* no-op; for compatibility */
+
+#define ECDSA_RS_ENTER(SUB) (void) rs_ctx
+#define ECDSA_RS_LEAVE(SUB) (void) rs_ctx
+
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC) || \
+ !defined(MBEDTLS_ECDSA_SIGN_ALT) || \
+ !defined(MBEDTLS_ECDSA_VERIFY_ALT)
+/*
+ * Derive a suitable integer for group grp from a buffer of length len
+ * SEC1 4.1.3 step 5 aka SEC1 4.1.4 step 3
+ */
+static int derive_mpi(const mbedtls_ecp_group *grp, mbedtls_mpi *x,
+ const unsigned char *buf, size_t blen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n_size = (grp->nbits + 7) / 8;
+ size_t use_size = blen > n_size ? n_size : blen;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(x, buf, use_size));
+ if (use_size * 8 > grp->nbits) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(x, use_size * 8 - grp->nbits));
+ }
+
+ /* While at it, reduce modulo N */
+ if (mbedtls_mpi_cmp_mpi(x, &grp->N) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(x, x, &grp->N));
+ }
+
+cleanup:
+ return ret;
+}
+#endif /* ECDSA_DETERMINISTIC || !ECDSA_SIGN_ALT || !ECDSA_VERIFY_ALT */
+
+int mbedtls_ecdsa_can_do(mbedtls_ecp_group_id gid)
+{
+ switch (gid) {
+#ifdef MBEDTLS_ECP_DP_CURVE25519_ENABLED
+ case MBEDTLS_ECP_DP_CURVE25519: return 0;
+#endif
+#ifdef MBEDTLS_ECP_DP_CURVE448_ENABLED
+ case MBEDTLS_ECP_DP_CURVE448: return 0;
+#endif
+ default: return 1;
+ }
+}
+
+#if !defined(MBEDTLS_ECDSA_SIGN_ALT)
+/*
+ * Compute ECDSA signature of a hashed message (SEC1 4.1.3)
+ * Obviously, compared to SEC1 4.1.3, we skip step 4 (hash message)
+ */
+int mbedtls_ecdsa_sign_restartable(mbedtls_ecp_group *grp,
+ mbedtls_mpi *r, mbedtls_mpi *s,
+ const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ int (*f_rng_blind)(void *, unsigned char *, size_t),
+ void *p_rng_blind,
+ mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+ int ret, key_tries, sign_tries;
+ int *p_sign_tries = &sign_tries, *p_key_tries = &key_tries;
+ mbedtls_ecp_point R;
+ mbedtls_mpi k, e, t;
+ mbedtls_mpi *pk = &k, *pr = r;
+
+ /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
+ if (!mbedtls_ecdsa_can_do(grp->id) || grp->N.p == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* Make sure d is in range 1..n-1 */
+ if (mbedtls_mpi_cmp_int(d, 1) < 0 || mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ mbedtls_ecp_point_init(&R);
+ mbedtls_mpi_init(&k); mbedtls_mpi_init(&e); mbedtls_mpi_init(&t);
+
+ ECDSA_RS_ENTER(sig);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+ /* redirect to our context */
+ p_sign_tries = &rs_ctx->sig->sign_tries;
+ p_key_tries = &rs_ctx->sig->key_tries;
+ pk = &rs_ctx->sig->k;
+ pr = &rs_ctx->sig->r;
+
+ /* jump to current step */
+ if (rs_ctx->sig->state == ecdsa_sig_mul) {
+ goto mul;
+ }
+ if (rs_ctx->sig->state == ecdsa_sig_modn) {
+ goto modn;
+ }
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ *p_sign_tries = 0;
+ do {
+ if ((*p_sign_tries)++ > 10) {
+ ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ goto cleanup;
+ }
+
+ /*
+ * Steps 1-3: generate a suitable ephemeral keypair
+ * and set r = xR mod n
+ */
+ *p_key_tries = 0;
+ do {
+ if ((*p_key_tries)++ > 10) {
+ ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, pk, f_rng, p_rng));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+ rs_ctx->sig->state = ecdsa_sig_mul;
+ }
+
+mul:
+#endif
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_restartable(grp, &R, pk, &grp->G,
+ f_rng_blind,
+ p_rng_blind,
+ ECDSA_RS_ECP));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pr, &R.X, &grp->N));
+ } while (mbedtls_mpi_cmp_int(pr, 0) == 0);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+ rs_ctx->sig->state = ecdsa_sig_modn;
+ }
+
+modn:
+#endif
+ /*
+ * Accounting for everything up to the end of the loop
+ * (step 6, but checking now avoids saving e and t)
+ */
+ ECDSA_BUDGET(MBEDTLS_ECP_OPS_INV + 4);
+
+ /*
+ * Step 5: derive MPI from hashed message
+ */
+ MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
+
+ /*
+ * Generate a random value to blind inv_mod in next step,
+ * avoiding a potential timing leak.
+ */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, &t, f_rng_blind,
+ p_rng_blind));
+
+ /*
+ * Step 6: compute s = (e + r * d) / k = t (e + rd) / (kt) mod n
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, pr, d));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&e, &e, s));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&e, &e, &t));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pk, pk, &t));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pk, pk, &grp->N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(s, pk, &grp->N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(s, s, &e));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(s, s, &grp->N));
+ } while (mbedtls_mpi_cmp_int(s, 0) == 0);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->sig != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(r, pr));
+ }
+#endif
+
+cleanup:
+ mbedtls_ecp_point_free(&R);
+ mbedtls_mpi_free(&k); mbedtls_mpi_free(&e); mbedtls_mpi_free(&t);
+
+ ECDSA_RS_LEAVE(sig);
+
+ return ret;
+}
+
+/*
+ * Compute ECDSA signature of a hashed message
+ */
+int mbedtls_ecdsa_sign(mbedtls_ecp_group *grp, mbedtls_mpi *r, mbedtls_mpi *s,
+ const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ /* Use the same RNG for both blinding and ephemeral key generation */
+ return mbedtls_ecdsa_sign_restartable(grp, r, s, d, buf, blen,
+ f_rng, p_rng, f_rng, p_rng, NULL);
+}
+#endif /* !MBEDTLS_ECDSA_SIGN_ALT */
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+/*
+ * Deterministic signature wrapper
+ *
+ * note: The f_rng_blind parameter must not be NULL.
+ *
+ */
+int mbedtls_ecdsa_sign_det_restartable(mbedtls_ecp_group *grp,
+ mbedtls_mpi *r, mbedtls_mpi *s,
+ const mbedtls_mpi *d, const unsigned char *buf, size_t blen,
+ mbedtls_md_type_t md_alg,
+ int (*f_rng_blind)(void *, unsigned char *, size_t),
+ void *p_rng_blind,
+ mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_hmac_drbg_context rng_ctx;
+ mbedtls_hmac_drbg_context *p_rng = &rng_ctx;
+ unsigned char data[2 * MBEDTLS_ECP_MAX_BYTES];
+ size_t grp_len = (grp->nbits + 7) / 8;
+ const mbedtls_md_info_t *md_info;
+ mbedtls_mpi h;
+
+ if ((md_info = mbedtls_md_info_from_type(md_alg)) == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&h);
+ mbedtls_hmac_drbg_init(&rng_ctx);
+
+ ECDSA_RS_ENTER(det);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->det != NULL) {
+ /* redirect to our context */
+ p_rng = &rs_ctx->det->rng_ctx;
+
+ /* jump to current step */
+ if (rs_ctx->det->state == ecdsa_det_sign) {
+ goto sign;
+ }
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ /* Use private key and message hash (reduced) to initialize HMAC_DRBG */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(d, data, grp_len));
+ MBEDTLS_MPI_CHK(derive_mpi(grp, &h, buf, blen));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&h, data + grp_len, grp_len));
+ MBEDTLS_MPI_CHK(mbedtls_hmac_drbg_seed_buf(p_rng, md_info, data, 2 * grp_len));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->det != NULL) {
+ rs_ctx->det->state = ecdsa_det_sign;
+ }
+
+sign:
+#endif
+#if defined(MBEDTLS_ECDSA_SIGN_ALT)
+ (void) f_rng_blind;
+ (void) p_rng_blind;
+ ret = mbedtls_ecdsa_sign(grp, r, s, d, buf, blen,
+ mbedtls_hmac_drbg_random, p_rng);
+#else
+ ret = mbedtls_ecdsa_sign_restartable(grp, r, s, d, buf, blen,
+ mbedtls_hmac_drbg_random, p_rng,
+ f_rng_blind, p_rng_blind, rs_ctx);
+#endif /* MBEDTLS_ECDSA_SIGN_ALT */
+
+cleanup:
+ mbedtls_hmac_drbg_free(&rng_ctx);
+ mbedtls_mpi_free(&h);
+
+ ECDSA_RS_LEAVE(det);
+
+ return ret;
+}
+
+/*
+ * Deterministic signature wrapper
+ */
+int mbedtls_ecdsa_sign_det_ext(mbedtls_ecp_group *grp, mbedtls_mpi *r,
+ mbedtls_mpi *s, const mbedtls_mpi *d,
+ const unsigned char *buf, size_t blen,
+ mbedtls_md_type_t md_alg,
+ int (*f_rng_blind)(void *, unsigned char *,
+ size_t),
+ void *p_rng_blind)
+{
+ return mbedtls_ecdsa_sign_det_restartable(grp, r, s, d, buf, blen, md_alg,
+ f_rng_blind, p_rng_blind, NULL);
+}
+#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
+
+#if !defined(MBEDTLS_ECDSA_VERIFY_ALT)
+/*
+ * Verify ECDSA signature of hashed message (SEC1 4.1.4)
+ * Obviously, compared to SEC1 4.1.3, we skip step 2 (hash message)
+ */
+int mbedtls_ecdsa_verify_restartable(mbedtls_ecp_group *grp,
+ const unsigned char *buf, size_t blen,
+ const mbedtls_ecp_point *Q,
+ const mbedtls_mpi *r,
+ const mbedtls_mpi *s,
+ mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi e, s_inv, u1, u2;
+ mbedtls_ecp_point R;
+ mbedtls_mpi *pu1 = &u1, *pu2 = &u2;
+
+ mbedtls_ecp_point_init(&R);
+ mbedtls_mpi_init(&e); mbedtls_mpi_init(&s_inv);
+ mbedtls_mpi_init(&u1); mbedtls_mpi_init(&u2);
+
+ /* Fail cleanly on curves such as Curve25519 that can't be used for ECDSA */
+ if (!mbedtls_ecdsa_can_do(grp->id) || grp->N.p == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ ECDSA_RS_ENTER(ver);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ver != NULL) {
+ /* redirect to our context */
+ pu1 = &rs_ctx->ver->u1;
+ pu2 = &rs_ctx->ver->u2;
+
+ /* jump to current step */
+ if (rs_ctx->ver->state == ecdsa_ver_muladd) {
+ goto muladd;
+ }
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ /*
+ * Step 1: make sure r and s are in range 1..n-1
+ */
+ if (mbedtls_mpi_cmp_int(r, 1) < 0 || mbedtls_mpi_cmp_mpi(r, &grp->N) >= 0 ||
+ mbedtls_mpi_cmp_int(s, 1) < 0 || mbedtls_mpi_cmp_mpi(s, &grp->N) >= 0) {
+ ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+ goto cleanup;
+ }
+
+ /*
+ * Step 3: derive MPI from hashed message
+ */
+ MBEDTLS_MPI_CHK(derive_mpi(grp, &e, buf, blen));
+
+ /*
+ * Step 4: u1 = e / s mod n, u2 = r / s mod n
+ */
+ ECDSA_BUDGET(MBEDTLS_ECP_OPS_CHK + MBEDTLS_ECP_OPS_INV + 2);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&s_inv, s, &grp->N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pu1, &e, &s_inv));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pu1, pu1, &grp->N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(pu2, r, &s_inv));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(pu2, pu2, &grp->N));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ver != NULL) {
+ rs_ctx->ver->state = ecdsa_ver_muladd;
+ }
+
+muladd:
+#endif
+ /*
+ * Step 5: R = u1 G + u2 Q
+ */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_muladd_restartable(grp,
+ &R, pu1, &grp->G, pu2, Q, ECDSA_RS_ECP));
+
+ if (mbedtls_ecp_is_zero(&R)) {
+ ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+ goto cleanup;
+ }
+
+ /*
+ * Step 6: convert xR to an integer (no-op)
+ * Step 7: reduce xR mod n (gives v)
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&R.X, &R.X, &grp->N));
+
+ /*
+ * Step 8: check if v (that is, R.X) is equal to r
+ */
+ if (mbedtls_mpi_cmp_mpi(&R.X, r) != 0) {
+ ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_ecp_point_free(&R);
+ mbedtls_mpi_free(&e); mbedtls_mpi_free(&s_inv);
+ mbedtls_mpi_free(&u1); mbedtls_mpi_free(&u2);
+
+ ECDSA_RS_LEAVE(ver);
+
+ return ret;
+}
+
+/*
+ * Verify ECDSA signature of hashed message
+ */
+int mbedtls_ecdsa_verify(mbedtls_ecp_group *grp,
+ const unsigned char *buf, size_t blen,
+ const mbedtls_ecp_point *Q,
+ const mbedtls_mpi *r,
+ const mbedtls_mpi *s)
+{
+ return mbedtls_ecdsa_verify_restartable(grp, buf, blen, Q, r, s, NULL);
+}
+#endif /* !MBEDTLS_ECDSA_VERIFY_ALT */
+
+/*
+ * Convert a signature (given by context) to ASN.1
+ */
+static int ecdsa_signature_to_asn1(const mbedtls_mpi *r, const mbedtls_mpi *s,
+ unsigned char *sig, size_t sig_size,
+ size_t *slen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char buf[MBEDTLS_ECDSA_MAX_LEN] = { 0 };
+ unsigned char *p = buf + sizeof(buf);
+ size_t len = 0;
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, s));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_mpi(&p, buf, r));
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&p, buf, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&p, buf,
+ MBEDTLS_ASN1_CONSTRUCTED |
+ MBEDTLS_ASN1_SEQUENCE));
+
+ if (len > sig_size) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ memcpy(sig, p, len);
+ *slen = len;
+
+ return 0;
+}
+
+/*
+ * Compute and write signature
+ */
+int mbedtls_ecdsa_write_signature_restartable(mbedtls_ecdsa_context *ctx,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hlen,
+ unsigned char *sig, size_t sig_size, size_t *slen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi r, s;
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&r);
+ mbedtls_mpi_init(&s);
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+ MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_det_restartable(&ctx->grp, &r, &s, &ctx->d,
+ hash, hlen, md_alg, f_rng,
+ p_rng, rs_ctx));
+#else
+ (void) md_alg;
+
+#if defined(MBEDTLS_ECDSA_SIGN_ALT)
+ (void) rs_ctx;
+
+ MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign(&ctx->grp, &r, &s, &ctx->d,
+ hash, hlen, f_rng, p_rng));
+#else
+ /* Use the same RNG for both blinding and ephemeral key generation */
+ MBEDTLS_MPI_CHK(mbedtls_ecdsa_sign_restartable(&ctx->grp, &r, &s, &ctx->d,
+ hash, hlen, f_rng, p_rng, f_rng,
+ p_rng, rs_ctx));
+#endif /* MBEDTLS_ECDSA_SIGN_ALT */
+#endif /* MBEDTLS_ECDSA_DETERMINISTIC */
+
+ MBEDTLS_MPI_CHK(ecdsa_signature_to_asn1(&r, &s, sig, sig_size, slen));
+
+cleanup:
+ mbedtls_mpi_free(&r);
+ mbedtls_mpi_free(&s);
+
+ return ret;
+}
+
+/*
+ * Compute and write signature
+ */
+int mbedtls_ecdsa_write_signature(mbedtls_ecdsa_context *ctx,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hlen,
+ unsigned char *sig, size_t sig_size, size_t *slen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return mbedtls_ecdsa_write_signature_restartable(
+ ctx, md_alg, hash, hlen, sig, sig_size, slen,
+ f_rng, p_rng, NULL);
+}
+
+/*
+ * Read and check signature
+ */
+int mbedtls_ecdsa_read_signature(mbedtls_ecdsa_context *ctx,
+ const unsigned char *hash, size_t hlen,
+ const unsigned char *sig, size_t slen)
+{
+ return mbedtls_ecdsa_read_signature_restartable(
+ ctx, hash, hlen, sig, slen, NULL);
+}
+
+/*
+ * Restartable read and check signature
+ */
+int mbedtls_ecdsa_read_signature_restartable(mbedtls_ecdsa_context *ctx,
+ const unsigned char *hash, size_t hlen,
+ const unsigned char *sig, size_t slen,
+ mbedtls_ecdsa_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *p = (unsigned char *) sig;
+ const unsigned char *end = sig + slen;
+ size_t len;
+ mbedtls_mpi r, s;
+ mbedtls_mpi_init(&r);
+ mbedtls_mpi_init(&s);
+
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ if (p + len != end) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_ECP_BAD_INPUT_DATA,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_asn1_get_mpi(&p, end, &r)) != 0 ||
+ (ret = mbedtls_asn1_get_mpi(&p, end, &s)) != 0) {
+ ret += MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+#if defined(MBEDTLS_ECDSA_VERIFY_ALT)
+ (void) rs_ctx;
+
+ if ((ret = mbedtls_ecdsa_verify(&ctx->grp, hash, hlen,
+ &ctx->Q, &r, &s)) != 0) {
+ goto cleanup;
+ }
+#else
+ if ((ret = mbedtls_ecdsa_verify_restartable(&ctx->grp, hash, hlen,
+ &ctx->Q, &r, &s, rs_ctx)) != 0) {
+ goto cleanup;
+ }
+#endif /* MBEDTLS_ECDSA_VERIFY_ALT */
+
+ /* At this point we know that the buffer starts with a valid signature.
+ * Return 0 if the buffer just contains the signature, and a specific
+ * error code if the valid signature is followed by more data. */
+ if (p != end) {
+ ret = MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH;
+ }
+
+cleanup:
+ mbedtls_mpi_free(&r);
+ mbedtls_mpi_free(&s);
+
+ return ret;
+}
+
+#if !defined(MBEDTLS_ECDSA_GENKEY_ALT)
+/*
+ * Generate key pair
+ */
+int mbedtls_ecdsa_genkey(mbedtls_ecdsa_context *ctx, mbedtls_ecp_group_id gid,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = 0;
+ ret = mbedtls_ecp_group_load(&ctx->grp, gid);
+ if (ret != 0) {
+ return ret;
+ }
+
+ return mbedtls_ecp_gen_keypair(&ctx->grp, &ctx->d,
+ &ctx->Q, f_rng, p_rng);
+}
+#endif /* !MBEDTLS_ECDSA_GENKEY_ALT */
+
+/*
+ * Set context from an mbedtls_ecp_keypair
+ */
+int mbedtls_ecdsa_from_keypair(mbedtls_ecdsa_context *ctx, const mbedtls_ecp_keypair *key)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ if ((ret = mbedtls_ecp_group_copy(&ctx->grp, &key->grp)) != 0 ||
+ (ret = mbedtls_mpi_copy(&ctx->d, &key->d)) != 0 ||
+ (ret = mbedtls_ecp_copy(&ctx->Q, &key->Q)) != 0) {
+ mbedtls_ecdsa_free(ctx);
+ }
+
+ return ret;
+}
+
+/*
+ * Initialize context
+ */
+void mbedtls_ecdsa_init(mbedtls_ecdsa_context *ctx)
+{
+ mbedtls_ecp_keypair_init(ctx);
+}
+
+/*
+ * Free context
+ */
+void mbedtls_ecdsa_free(mbedtls_ecdsa_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_keypair_free(ctx);
+}
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Initialize a restart context
+ */
+void mbedtls_ecdsa_restart_init(mbedtls_ecdsa_restart_ctx *ctx)
+{
+ mbedtls_ecp_restart_init(&ctx->ecp);
+
+ ctx->ver = NULL;
+ ctx->sig = NULL;
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+ ctx->det = NULL;
+#endif
+}
+
+/*
+ * Free the components of a restart context
+ */
+void mbedtls_ecdsa_restart_free(mbedtls_ecdsa_restart_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_restart_free(&ctx->ecp);
+
+ ecdsa_restart_ver_free(ctx->ver);
+ mbedtls_free(ctx->ver);
+ ctx->ver = NULL;
+
+ ecdsa_restart_sig_free(ctx->sig);
+ mbedtls_free(ctx->sig);
+ ctx->sig = NULL;
+
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+ ecdsa_restart_det_free(ctx->det);
+ mbedtls_free(ctx->det);
+ ctx->det = NULL;
+#endif
+}
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+#endif /* MBEDTLS_ECDSA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecjpake.c b/tf-psa-crypto/drivers/builtin/src/ecjpake.c
new file mode 100644
index 0000000..628fb65
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecjpake.c
@@ -0,0 +1,1206 @@
+/*
+ * Elliptic curve J-PAKE
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References in the code are to the Thread v1.0 Specification,
+ * available to members of the Thread Group http://threadgroup.org/
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECJPAKE_C)
+
+#include "mbedtls/ecjpake.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+/*
+ * Convert a mbedtls_ecjpake_role to identifier string
+ */
+static const char * const ecjpake_id[] = {
+ "client",
+ "server"
+};
+
+#define ID_MINE (ecjpake_id[ctx->role])
+#define ID_PEER (ecjpake_id[1 - ctx->role])
+
+/**
+ * Helper to Compute a hash from md_type
+ */
+static int mbedtls_ecjpake_compute_hash(mbedtls_md_type_t md_type,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output)
+{
+ return mbedtls_md(mbedtls_md_info_from_type(md_type),
+ input, ilen, output);
+}
+
+/*
+ * Initialize context
+ */
+void mbedtls_ecjpake_init(mbedtls_ecjpake_context *ctx)
+{
+ ctx->md_type = MBEDTLS_MD_NONE;
+ mbedtls_ecp_group_init(&ctx->grp);
+ ctx->point_format = MBEDTLS_ECP_PF_UNCOMPRESSED;
+
+ mbedtls_ecp_point_init(&ctx->Xm1);
+ mbedtls_ecp_point_init(&ctx->Xm2);
+ mbedtls_ecp_point_init(&ctx->Xp1);
+ mbedtls_ecp_point_init(&ctx->Xp2);
+ mbedtls_ecp_point_init(&ctx->Xp);
+
+ mbedtls_mpi_init(&ctx->xm1);
+ mbedtls_mpi_init(&ctx->xm2);
+ mbedtls_mpi_init(&ctx->s);
+}
+
+/*
+ * Free context
+ */
+void mbedtls_ecjpake_free(mbedtls_ecjpake_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ ctx->md_type = MBEDTLS_MD_NONE;
+ mbedtls_ecp_group_free(&ctx->grp);
+
+ mbedtls_ecp_point_free(&ctx->Xm1);
+ mbedtls_ecp_point_free(&ctx->Xm2);
+ mbedtls_ecp_point_free(&ctx->Xp1);
+ mbedtls_ecp_point_free(&ctx->Xp2);
+ mbedtls_ecp_point_free(&ctx->Xp);
+
+ mbedtls_mpi_free(&ctx->xm1);
+ mbedtls_mpi_free(&ctx->xm2);
+ mbedtls_mpi_free(&ctx->s);
+}
+
+/*
+ * Setup context
+ */
+int mbedtls_ecjpake_setup(mbedtls_ecjpake_context *ctx,
+ mbedtls_ecjpake_role role,
+ mbedtls_md_type_t hash,
+ mbedtls_ecp_group_id curve,
+ const unsigned char *secret,
+ size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (role != MBEDTLS_ECJPAKE_CLIENT && role != MBEDTLS_ECJPAKE_SERVER) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ ctx->role = role;
+
+ if ((mbedtls_md_info_from_type(hash)) == NULL) {
+ return MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE;
+ }
+
+ ctx->md_type = hash;
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&ctx->grp, curve));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->s, secret, len));
+
+cleanup:
+ if (ret != 0) {
+ mbedtls_ecjpake_free(ctx);
+ }
+
+ return ret;
+}
+
+int mbedtls_ecjpake_set_point_format(mbedtls_ecjpake_context *ctx,
+ int point_format)
+{
+ switch (point_format) {
+ case MBEDTLS_ECP_PF_UNCOMPRESSED:
+ case MBEDTLS_ECP_PF_COMPRESSED:
+ ctx->point_format = point_format;
+ return 0;
+ default:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+}
+
+/*
+ * Check if context is ready for use
+ */
+int mbedtls_ecjpake_check(const mbedtls_ecjpake_context *ctx)
+{
+ if (ctx->md_type == MBEDTLS_MD_NONE ||
+ ctx->grp.id == MBEDTLS_ECP_DP_NONE ||
+ ctx->s.p == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+
+/*
+ * Write a point plus its length to a buffer
+ */
+static int ecjpake_write_len_point(unsigned char **p,
+ const unsigned char *end,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *P)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ /* Need at least 4 for length plus 1 for point */
+ if (end < *p || end - *p < 5) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ ret = mbedtls_ecp_point_write_binary(grp, P, pf,
+ &len, *p + 4, (size_t) (end - (*p + 4)));
+ if (ret != 0) {
+ return ret;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(len, *p, 0);
+
+ *p += 4 + len;
+
+ return 0;
+}
+
+/*
+ * Size of the temporary buffer for ecjpake_hash:
+ * 3 EC points plus their length, plus ID and its length (4 + 6 bytes)
+ */
+#define ECJPAKE_HASH_BUF_LEN (3 * (4 + MBEDTLS_ECP_MAX_PT_LEN) + 4 + 6)
+
+/*
+ * Compute hash for ZKP (7.4.2.2.2.1)
+ */
+static int ecjpake_hash(const mbedtls_md_type_t md_type,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *G,
+ const mbedtls_ecp_point *V,
+ const mbedtls_ecp_point *X,
+ const char *id,
+ mbedtls_mpi *h)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char buf[ECJPAKE_HASH_BUF_LEN];
+ unsigned char *p = buf;
+ const unsigned char *end = buf + sizeof(buf);
+ const size_t id_len = strlen(id);
+ unsigned char hash[MBEDTLS_MD_MAX_SIZE];
+
+ /* Write things to temporary buffer */
+ MBEDTLS_MPI_CHK(ecjpake_write_len_point(&p, end, grp, pf, G));
+ MBEDTLS_MPI_CHK(ecjpake_write_len_point(&p, end, grp, pf, V));
+ MBEDTLS_MPI_CHK(ecjpake_write_len_point(&p, end, grp, pf, X));
+
+ if (end - p < 4) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(id_len, p, 0);
+ p += 4;
+
+ if (end < p || (size_t) (end - p) < id_len) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ memcpy(p, id, id_len);
+ p += id_len;
+
+ /* Compute hash */
+ MBEDTLS_MPI_CHK(mbedtls_ecjpake_compute_hash(md_type,
+ buf, (size_t) (p - buf), hash));
+
+ /* Turn it into an integer mod n */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(h, hash,
+ mbedtls_md_get_size_from_type(md_type)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(h, h, &grp->N));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Parse a ECShnorrZKP (7.4.2.2.2) and verify it (7.4.2.3.3)
+ */
+static int ecjpake_zkp_read(const mbedtls_md_type_t md_type,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *G,
+ const mbedtls_ecp_point *X,
+ const char *id,
+ const unsigned char **p,
+ const unsigned char *end)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point V, VV;
+ mbedtls_mpi r, h;
+ size_t r_len;
+
+ mbedtls_ecp_point_init(&V);
+ mbedtls_ecp_point_init(&VV);
+ mbedtls_mpi_init(&r);
+ mbedtls_mpi_init(&h);
+
+ /*
+ * struct {
+ * ECPoint V;
+ * opaque r<1..2^8-1>;
+ * } ECSchnorrZKP;
+ */
+ if (end < *p) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_tls_read_point(grp, &V, p, (size_t) (end - *p)));
+
+ if (end < *p || (size_t) (end - *p) < 1) {
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ r_len = *(*p)++;
+
+ if (end < *p || (size_t) (end - *p) < r_len || r_len == 0) {
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&r, *p, r_len));
+ *p += r_len;
+
+ /*
+ * Verification
+ */
+ MBEDTLS_MPI_CHK(ecjpake_hash(md_type, grp, pf, G, &V, X, id, &h));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_muladd((mbedtls_ecp_group *) grp,
+ &VV, &h, X, &r, G));
+
+ if (mbedtls_ecp_point_cmp(&VV, &V) != 0) {
+ ret = MBEDTLS_ERR_ECP_VERIFY_FAILED;
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_ecp_point_free(&V);
+ mbedtls_ecp_point_free(&VV);
+ mbedtls_mpi_free(&r);
+ mbedtls_mpi_free(&h);
+
+ return ret;
+}
+
+/*
+ * Generate ZKP (7.4.2.3.2) and write it as ECSchnorrZKP (7.4.2.2.2)
+ */
+static int ecjpake_zkp_write(const mbedtls_md_type_t md_type,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *G,
+ const mbedtls_mpi *x,
+ const mbedtls_ecp_point *X,
+ const char *id,
+ unsigned char **p,
+ const unsigned char *end,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point V;
+ mbedtls_mpi v;
+ mbedtls_mpi h; /* later recycled to hold r */
+ size_t len;
+
+ if (end < *p) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ mbedtls_ecp_point_init(&V);
+ mbedtls_mpi_init(&v);
+ mbedtls_mpi_init(&h);
+
+ /* Compute signature */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_gen_keypair_base((mbedtls_ecp_group *) grp,
+ G, &v, &V, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(ecjpake_hash(md_type, grp, pf, G, &V, X, id, &h));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&h, &h, x)); /* x*h */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&h, &v, &h)); /* v - x*h */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&h, &h, &grp->N)); /* r */
+
+ /* Write it out */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_point(grp, &V,
+ pf, &len, *p, (size_t) (end - *p)));
+ *p += len;
+
+ len = mbedtls_mpi_size(&h); /* actually r */
+ if (end < *p || (size_t) (end - *p) < 1 + len || len > 255) {
+ ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ goto cleanup;
+ }
+
+ *(*p)++ = MBEDTLS_BYTE_0(len);
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&h, *p, len)); /* r */
+ *p += len;
+
+cleanup:
+ mbedtls_ecp_point_free(&V);
+ mbedtls_mpi_free(&v);
+ mbedtls_mpi_free(&h);
+
+ return ret;
+}
+
+/*
+ * Parse a ECJPAKEKeyKP (7.4.2.2.1) and check proof
+ * Output: verified public key X
+ */
+static int ecjpake_kkp_read(const mbedtls_md_type_t md_type,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *G,
+ mbedtls_ecp_point *X,
+ const char *id,
+ const unsigned char **p,
+ const unsigned char *end)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (end < *p) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * struct {
+ * ECPoint X;
+ * ECSchnorrZKP zkp;
+ * } ECJPAKEKeyKP;
+ */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_tls_read_point(grp, X, p, (size_t) (end - *p)));
+ if (mbedtls_ecp_is_zero(X)) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(ecjpake_zkp_read(md_type, grp, pf, G, X, id, p, end));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Generate an ECJPAKEKeyKP
+ * Output: the serialized structure, plus private/public key pair
+ */
+static int ecjpake_kkp_write(const mbedtls_md_type_t md_type,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *G,
+ mbedtls_mpi *x,
+ mbedtls_ecp_point *X,
+ const char *id,
+ unsigned char **p,
+ const unsigned char *end,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ if (end < *p) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ /* Generate key (7.4.2.3.1) and write it out */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_gen_keypair_base((mbedtls_ecp_group *) grp, G, x, X,
+ f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_point(grp, X,
+ pf, &len, *p, (size_t) (end - *p)));
+ *p += len;
+
+ /* Generate and write proof */
+ MBEDTLS_MPI_CHK(ecjpake_zkp_write(md_type, grp, pf, G, x, X, id,
+ p, end, f_rng, p_rng));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Read a ECJPAKEKeyKPPairList (7.4.2.3) and check proofs
+ * Outputs: verified peer public keys Xa, Xb
+ */
+static int ecjpake_kkpp_read(const mbedtls_md_type_t md_type,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *G,
+ mbedtls_ecp_point *Xa,
+ mbedtls_ecp_point *Xb,
+ const char *id,
+ const unsigned char *buf,
+ size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const unsigned char *p = buf;
+ const unsigned char *end = buf + len;
+
+ /*
+ * struct {
+ * ECJPAKEKeyKP ecjpake_key_kp_pair_list[2];
+ * } ECJPAKEKeyKPPairList;
+ */
+ MBEDTLS_MPI_CHK(ecjpake_kkp_read(md_type, grp, pf, G, Xa, id, &p, end));
+ MBEDTLS_MPI_CHK(ecjpake_kkp_read(md_type, grp, pf, G, Xb, id, &p, end));
+
+ if (p != end) {
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Generate a ECJPAKEKeyKPPairList
+ * Outputs: the serialized structure, plus two private/public key pairs
+ */
+static int ecjpake_kkpp_write(const mbedtls_md_type_t md_type,
+ const mbedtls_ecp_group *grp,
+ const int pf,
+ const mbedtls_ecp_point *G,
+ mbedtls_mpi *xm1,
+ mbedtls_ecp_point *Xa,
+ mbedtls_mpi *xm2,
+ mbedtls_ecp_point *Xb,
+ const char *id,
+ unsigned char *buf,
+ size_t len,
+ size_t *olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *p = buf;
+ const unsigned char *end = buf + len;
+
+ MBEDTLS_MPI_CHK(ecjpake_kkp_write(md_type, grp, pf, G, xm1, Xa, id,
+ &p, end, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(ecjpake_kkp_write(md_type, grp, pf, G, xm2, Xb, id,
+ &p, end, f_rng, p_rng));
+
+ *olen = (size_t) (p - buf);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Read and process the first round message
+ */
+int mbedtls_ecjpake_read_round_one(mbedtls_ecjpake_context *ctx,
+ const unsigned char *buf,
+ size_t len)
+{
+ return ecjpake_kkpp_read(ctx->md_type, &ctx->grp, ctx->point_format,
+ &ctx->grp.G,
+ &ctx->Xp1, &ctx->Xp2, ID_PEER,
+ buf, len);
+}
+
+/*
+ * Generate and write the first round message
+ */
+int mbedtls_ecjpake_write_round_one(mbedtls_ecjpake_context *ctx,
+ unsigned char *buf, size_t len, size_t *olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return ecjpake_kkpp_write(ctx->md_type, &ctx->grp, ctx->point_format,
+ &ctx->grp.G,
+ &ctx->xm1, &ctx->Xm1, &ctx->xm2, &ctx->Xm2,
+ ID_MINE, buf, len, olen, f_rng, p_rng);
+}
+
+/*
+ * Compute the sum of three points R = A + B + C
+ */
+static int ecjpake_ecp_add3(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point *A,
+ const mbedtls_ecp_point *B,
+ const mbedtls_ecp_point *C)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi one;
+
+ mbedtls_mpi_init(&one);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&one, 1));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(grp, R, &one, A, &one, B));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(grp, R, &one, R, &one, C));
+
+cleanup:
+ mbedtls_mpi_free(&one);
+
+ return ret;
+}
+
+/*
+ * Read and process second round message (C: 7.4.2.5, S: 7.4.2.6)
+ */
+int mbedtls_ecjpake_read_round_two(mbedtls_ecjpake_context *ctx,
+ const unsigned char *buf,
+ size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const unsigned char *p = buf;
+ const unsigned char *end = buf + len;
+ mbedtls_ecp_group grp;
+ mbedtls_ecp_point G; /* C: GB, S: GA */
+
+ mbedtls_ecp_group_init(&grp);
+ mbedtls_ecp_point_init(&G);
+
+ /*
+ * Server: GA = X3 + X4 + X1 (7.4.2.6.1)
+ * Client: GB = X1 + X2 + X3 (7.4.2.5.1)
+ * Unified: G = Xm1 + Xm2 + Xp1
+ * We need that before parsing in order to check Xp as we read it
+ */
+ MBEDTLS_MPI_CHK(ecjpake_ecp_add3(&ctx->grp, &G,
+ &ctx->Xm1, &ctx->Xm2, &ctx->Xp1));
+
+ /*
+ * struct {
+ * ECParameters curve_params; // only client reading server msg
+ * ECJPAKEKeyKP ecjpake_key_kp;
+ * } Client/ServerECJPAKEParams;
+ */
+ if (ctx->role == MBEDTLS_ECJPAKE_CLIENT) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_tls_read_group(&grp, &p, len));
+ if (grp.id != ctx->grp.id) {
+ ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ goto cleanup;
+ }
+ }
+
+ MBEDTLS_MPI_CHK(ecjpake_kkp_read(ctx->md_type, &ctx->grp,
+ ctx->point_format,
+ &G, &ctx->Xp, ID_PEER, &p, end));
+
+ if (p != end) {
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_ecp_group_free(&grp);
+ mbedtls_ecp_point_free(&G);
+
+ return ret;
+}
+
+/*
+ * Compute R = +/- X * S mod N, taking care not to leak S
+ */
+static int ecjpake_mul_secret(mbedtls_mpi *R, int sign,
+ const mbedtls_mpi *X,
+ const mbedtls_mpi *S,
+ const mbedtls_mpi *N,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi b; /* Blinding value, then s + N * blinding */
+
+ mbedtls_mpi_init(&b);
+
+ /* b = s + rnd-128-bit * N */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&b, 16, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&b, &b, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&b, &b, S));
+
+ /* R = sign * X * b mod N */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(R, X, &b));
+ R->s *= sign;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(R, R, N));
+
+cleanup:
+ mbedtls_mpi_free(&b);
+
+ return ret;
+}
+
+/*
+ * Generate and write the second round message (S: 7.4.2.5, C: 7.4.2.6)
+ */
+int mbedtls_ecjpake_write_round_two(mbedtls_ecjpake_context *ctx,
+ unsigned char *buf, size_t len, size_t *olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point G; /* C: GA, S: GB */
+ mbedtls_ecp_point Xm; /* C: Xc, S: Xs */
+ mbedtls_mpi xm; /* C: xc, S: xs */
+ unsigned char *p = buf;
+ const unsigned char *end = buf + len;
+ size_t ec_len;
+
+ mbedtls_ecp_point_init(&G);
+ mbedtls_ecp_point_init(&Xm);
+ mbedtls_mpi_init(&xm);
+
+ /*
+ * First generate private/public key pair (S: 7.4.2.5.1, C: 7.4.2.6.1)
+ *
+ * Client: GA = X1 + X3 + X4 | xs = x2 * s | Xc = xc * GA
+ * Server: GB = X3 + X1 + X2 | xs = x4 * s | Xs = xs * GB
+ * Unified: G = Xm1 + Xp1 + Xp2 | xm = xm2 * s | Xm = xm * G
+ */
+ MBEDTLS_MPI_CHK(ecjpake_ecp_add3(&ctx->grp, &G,
+ &ctx->Xp1, &ctx->Xp2, &ctx->Xm1));
+ MBEDTLS_MPI_CHK(ecjpake_mul_secret(&xm, 1, &ctx->xm2, &ctx->s,
+ &ctx->grp.N, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, &Xm, &xm, &G, f_rng, p_rng));
+
+ /*
+ * Now write things out
+ *
+ * struct {
+ * ECParameters curve_params; // only server writing its message
+ * ECJPAKEKeyKP ecjpake_key_kp;
+ * } Client/ServerECJPAKEParams;
+ */
+ if (ctx->role == MBEDTLS_ECJPAKE_SERVER) {
+ if (end < p) {
+ ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ goto cleanup;
+ }
+ MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_group(&ctx->grp, &ec_len,
+ p, (size_t) (end - p)));
+ p += ec_len;
+ }
+
+ if (end < p) {
+ ret = MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ goto cleanup;
+ }
+ MBEDTLS_MPI_CHK(mbedtls_ecp_tls_write_point(&ctx->grp, &Xm,
+ ctx->point_format, &ec_len, p, (size_t) (end - p)));
+ p += ec_len;
+
+ MBEDTLS_MPI_CHK(ecjpake_zkp_write(ctx->md_type, &ctx->grp,
+ ctx->point_format,
+ &G, &xm, &Xm, ID_MINE,
+ &p, end, f_rng, p_rng));
+
+ *olen = (size_t) (p - buf);
+
+cleanup:
+ mbedtls_ecp_point_free(&G);
+ mbedtls_ecp_point_free(&Xm);
+ mbedtls_mpi_free(&xm);
+
+ return ret;
+}
+
+/*
+ * Derive PMS (7.4.2.7 / 7.4.2.8)
+ */
+static int mbedtls_ecjpake_derive_k(mbedtls_ecjpake_context *ctx,
+ mbedtls_ecp_point *K,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi m_xm2_s, one;
+
+ mbedtls_mpi_init(&m_xm2_s);
+ mbedtls_mpi_init(&one);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&one, 1));
+
+ /*
+ * Client: K = ( Xs - X4 * x2 * s ) * x2
+ * Server: K = ( Xc - X2 * x4 * s ) * x4
+ * Unified: K = ( Xp - Xp2 * xm2 * s ) * xm2
+ */
+ MBEDTLS_MPI_CHK(ecjpake_mul_secret(&m_xm2_s, -1, &ctx->xm2, &ctx->s,
+ &ctx->grp.N, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_muladd(&ctx->grp, K,
+ &one, &ctx->Xp,
+ &m_xm2_s, &ctx->Xp2));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, K, &ctx->xm2, K,
+ f_rng, p_rng));
+
+cleanup:
+ mbedtls_mpi_free(&m_xm2_s);
+ mbedtls_mpi_free(&one);
+
+ return ret;
+}
+
+int mbedtls_ecjpake_derive_secret(mbedtls_ecjpake_context *ctx,
+ unsigned char *buf, size_t len, size_t *olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point K;
+ unsigned char kx[MBEDTLS_ECP_MAX_BYTES];
+ size_t x_bytes;
+
+ *olen = mbedtls_md_get_size_from_type(ctx->md_type);
+ if (len < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ mbedtls_ecp_point_init(&K);
+
+ ret = mbedtls_ecjpake_derive_k(ctx, &K, f_rng, p_rng);
+ if (ret) {
+ goto cleanup;
+ }
+
+ /* PMS = SHA-256( K.X ) */
+ x_bytes = (ctx->grp.pbits + 7) / 8;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&K.X, kx, x_bytes));
+ MBEDTLS_MPI_CHK(mbedtls_ecjpake_compute_hash(ctx->md_type,
+ kx, x_bytes, buf));
+
+cleanup:
+ mbedtls_ecp_point_free(&K);
+
+ return ret;
+}
+
+int mbedtls_ecjpake_write_shared_key(mbedtls_ecjpake_context *ctx,
+ unsigned char *buf, size_t len, size_t *olen,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point K;
+
+ mbedtls_ecp_point_init(&K);
+
+ ret = mbedtls_ecjpake_derive_k(ctx, &K, f_rng, p_rng);
+ if (ret) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_ecp_point_write_binary(&ctx->grp, &K, ctx->point_format,
+ olen, buf, len);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_ecp_point_free(&K);
+
+ return ret;
+}
+
+#undef ID_MINE
+#undef ID_PEER
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
+ !defined(MBEDTLS_MD_CAN_SHA256)
+int mbedtls_ecjpake_self_test(int verbose)
+{
+ (void) verbose;
+ return 0;
+}
+#else
+
+static const unsigned char ecjpake_test_password[] = {
+ 0x74, 0x68, 0x72, 0x65, 0x61, 0x64, 0x6a, 0x70, 0x61, 0x6b, 0x65, 0x74,
+ 0x65, 0x73, 0x74
+};
+
+static const unsigned char ecjpake_test_x1[] = {
+ 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c,
+ 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
+ 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x21
+};
+
+static const unsigned char ecjpake_test_x2[] = {
+ 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
+ 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+ 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x81
+};
+
+static const unsigned char ecjpake_test_x3[] = {
+ 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
+ 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78,
+ 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x81
+};
+
+static const unsigned char ecjpake_test_x4[] = {
+ 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc,
+ 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8,
+ 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe1
+};
+
+static const unsigned char ecjpake_test_cli_one[] = {
+ 0x41, 0x04, 0xac, 0xcf, 0x01, 0x06, 0xef, 0x85, 0x8f, 0xa2, 0xd9, 0x19,
+ 0x33, 0x13, 0x46, 0x80, 0x5a, 0x78, 0xb5, 0x8b, 0xba, 0xd0, 0xb8, 0x44,
+ 0xe5, 0xc7, 0x89, 0x28, 0x79, 0x14, 0x61, 0x87, 0xdd, 0x26, 0x66, 0xad,
+ 0xa7, 0x81, 0xbb, 0x7f, 0x11, 0x13, 0x72, 0x25, 0x1a, 0x89, 0x10, 0x62,
+ 0x1f, 0x63, 0x4d, 0xf1, 0x28, 0xac, 0x48, 0xe3, 0x81, 0xfd, 0x6e, 0xf9,
+ 0x06, 0x07, 0x31, 0xf6, 0x94, 0xa4, 0x41, 0x04, 0x1d, 0xd0, 0xbd, 0x5d,
+ 0x45, 0x66, 0xc9, 0xbe, 0xd9, 0xce, 0x7d, 0xe7, 0x01, 0xb5, 0xe8, 0x2e,
+ 0x08, 0xe8, 0x4b, 0x73, 0x04, 0x66, 0x01, 0x8a, 0xb9, 0x03, 0xc7, 0x9e,
+ 0xb9, 0x82, 0x17, 0x22, 0x36, 0xc0, 0xc1, 0x72, 0x8a, 0xe4, 0xbf, 0x73,
+ 0x61, 0x0d, 0x34, 0xde, 0x44, 0x24, 0x6e, 0xf3, 0xd9, 0xc0, 0x5a, 0x22,
+ 0x36, 0xfb, 0x66, 0xa6, 0x58, 0x3d, 0x74, 0x49, 0x30, 0x8b, 0xab, 0xce,
+ 0x20, 0x72, 0xfe, 0x16, 0x66, 0x29, 0x92, 0xe9, 0x23, 0x5c, 0x25, 0x00,
+ 0x2f, 0x11, 0xb1, 0x50, 0x87, 0xb8, 0x27, 0x38, 0xe0, 0x3c, 0x94, 0x5b,
+ 0xf7, 0xa2, 0x99, 0x5d, 0xda, 0x1e, 0x98, 0x34, 0x58, 0x41, 0x04, 0x7e,
+ 0xa6, 0xe3, 0xa4, 0x48, 0x70, 0x37, 0xa9, 0xe0, 0xdb, 0xd7, 0x92, 0x62,
+ 0xb2, 0xcc, 0x27, 0x3e, 0x77, 0x99, 0x30, 0xfc, 0x18, 0x40, 0x9a, 0xc5,
+ 0x36, 0x1c, 0x5f, 0xe6, 0x69, 0xd7, 0x02, 0xe1, 0x47, 0x79, 0x0a, 0xeb,
+ 0x4c, 0xe7, 0xfd, 0x65, 0x75, 0xab, 0x0f, 0x6c, 0x7f, 0xd1, 0xc3, 0x35,
+ 0x93, 0x9a, 0xa8, 0x63, 0xba, 0x37, 0xec, 0x91, 0xb7, 0xe3, 0x2b, 0xb0,
+ 0x13, 0xbb, 0x2b, 0x41, 0x04, 0xa4, 0x95, 0x58, 0xd3, 0x2e, 0xd1, 0xeb,
+ 0xfc, 0x18, 0x16, 0xaf, 0x4f, 0xf0, 0x9b, 0x55, 0xfc, 0xb4, 0xca, 0x47,
+ 0xb2, 0xa0, 0x2d, 0x1e, 0x7c, 0xaf, 0x11, 0x79, 0xea, 0x3f, 0xe1, 0x39,
+ 0x5b, 0x22, 0xb8, 0x61, 0x96, 0x40, 0x16, 0xfa, 0xba, 0xf7, 0x2c, 0x97,
+ 0x56, 0x95, 0xd9, 0x3d, 0x4d, 0xf0, 0xe5, 0x19, 0x7f, 0xe9, 0xf0, 0x40,
+ 0x63, 0x4e, 0xd5, 0x97, 0x64, 0x93, 0x77, 0x87, 0xbe, 0x20, 0xbc, 0x4d,
+ 0xee, 0xbb, 0xf9, 0xb8, 0xd6, 0x0a, 0x33, 0x5f, 0x04, 0x6c, 0xa3, 0xaa,
+ 0x94, 0x1e, 0x45, 0x86, 0x4c, 0x7c, 0xad, 0xef, 0x9c, 0xf7, 0x5b, 0x3d,
+ 0x8b, 0x01, 0x0e, 0x44, 0x3e, 0xf0
+};
+
+static const unsigned char ecjpake_test_srv_one[] = {
+ 0x41, 0x04, 0x7e, 0xa6, 0xe3, 0xa4, 0x48, 0x70, 0x37, 0xa9, 0xe0, 0xdb,
+ 0xd7, 0x92, 0x62, 0xb2, 0xcc, 0x27, 0x3e, 0x77, 0x99, 0x30, 0xfc, 0x18,
+ 0x40, 0x9a, 0xc5, 0x36, 0x1c, 0x5f, 0xe6, 0x69, 0xd7, 0x02, 0xe1, 0x47,
+ 0x79, 0x0a, 0xeb, 0x4c, 0xe7, 0xfd, 0x65, 0x75, 0xab, 0x0f, 0x6c, 0x7f,
+ 0xd1, 0xc3, 0x35, 0x93, 0x9a, 0xa8, 0x63, 0xba, 0x37, 0xec, 0x91, 0xb7,
+ 0xe3, 0x2b, 0xb0, 0x13, 0xbb, 0x2b, 0x41, 0x04, 0x09, 0xf8, 0x5b, 0x3d,
+ 0x20, 0xeb, 0xd7, 0x88, 0x5c, 0xe4, 0x64, 0xc0, 0x8d, 0x05, 0x6d, 0x64,
+ 0x28, 0xfe, 0x4d, 0xd9, 0x28, 0x7a, 0xa3, 0x65, 0xf1, 0x31, 0xf4, 0x36,
+ 0x0f, 0xf3, 0x86, 0xd8, 0x46, 0x89, 0x8b, 0xc4, 0xb4, 0x15, 0x83, 0xc2,
+ 0xa5, 0x19, 0x7f, 0x65, 0xd7, 0x87, 0x42, 0x74, 0x6c, 0x12, 0xa5, 0xec,
+ 0x0a, 0x4f, 0xfe, 0x2f, 0x27, 0x0a, 0x75, 0x0a, 0x1d, 0x8f, 0xb5, 0x16,
+ 0x20, 0x93, 0x4d, 0x74, 0xeb, 0x43, 0xe5, 0x4d, 0xf4, 0x24, 0xfd, 0x96,
+ 0x30, 0x6c, 0x01, 0x17, 0xbf, 0x13, 0x1a, 0xfa, 0xbf, 0x90, 0xa9, 0xd3,
+ 0x3d, 0x11, 0x98, 0xd9, 0x05, 0x19, 0x37, 0x35, 0x14, 0x41, 0x04, 0x19,
+ 0x0a, 0x07, 0x70, 0x0f, 0xfa, 0x4b, 0xe6, 0xae, 0x1d, 0x79, 0xee, 0x0f,
+ 0x06, 0xae, 0xb5, 0x44, 0xcd, 0x5a, 0xdd, 0xaa, 0xbe, 0xdf, 0x70, 0xf8,
+ 0x62, 0x33, 0x21, 0x33, 0x2c, 0x54, 0xf3, 0x55, 0xf0, 0xfb, 0xfe, 0xc7,
+ 0x83, 0xed, 0x35, 0x9e, 0x5d, 0x0b, 0xf7, 0x37, 0x7a, 0x0f, 0xc4, 0xea,
+ 0x7a, 0xce, 0x47, 0x3c, 0x9c, 0x11, 0x2b, 0x41, 0xcc, 0xd4, 0x1a, 0xc5,
+ 0x6a, 0x56, 0x12, 0x41, 0x04, 0x36, 0x0a, 0x1c, 0xea, 0x33, 0xfc, 0xe6,
+ 0x41, 0x15, 0x64, 0x58, 0xe0, 0xa4, 0xea, 0xc2, 0x19, 0xe9, 0x68, 0x31,
+ 0xe6, 0xae, 0xbc, 0x88, 0xb3, 0xf3, 0x75, 0x2f, 0x93, 0xa0, 0x28, 0x1d,
+ 0x1b, 0xf1, 0xfb, 0x10, 0x60, 0x51, 0xdb, 0x96, 0x94, 0xa8, 0xd6, 0xe8,
+ 0x62, 0xa5, 0xef, 0x13, 0x24, 0xa3, 0xd9, 0xe2, 0x78, 0x94, 0xf1, 0xee,
+ 0x4f, 0x7c, 0x59, 0x19, 0x99, 0x65, 0xa8, 0xdd, 0x4a, 0x20, 0x91, 0x84,
+ 0x7d, 0x2d, 0x22, 0xdf, 0x3e, 0xe5, 0x5f, 0xaa, 0x2a, 0x3f, 0xb3, 0x3f,
+ 0xd2, 0xd1, 0xe0, 0x55, 0xa0, 0x7a, 0x7c, 0x61, 0xec, 0xfb, 0x8d, 0x80,
+ 0xec, 0x00, 0xc2, 0xc9, 0xeb, 0x12
+};
+
+static const unsigned char ecjpake_test_srv_two[] = {
+ 0x03, 0x00, 0x17, 0x41, 0x04, 0x0f, 0xb2, 0x2b, 0x1d, 0x5d, 0x11, 0x23,
+ 0xe0, 0xef, 0x9f, 0xeb, 0x9d, 0x8a, 0x2e, 0x59, 0x0a, 0x1f, 0x4d, 0x7c,
+ 0xed, 0x2c, 0x2b, 0x06, 0x58, 0x6e, 0x8f, 0x2a, 0x16, 0xd4, 0xeb, 0x2f,
+ 0xda, 0x43, 0x28, 0xa2, 0x0b, 0x07, 0xd8, 0xfd, 0x66, 0x76, 0x54, 0xca,
+ 0x18, 0xc5, 0x4e, 0x32, 0xa3, 0x33, 0xa0, 0x84, 0x54, 0x51, 0xe9, 0x26,
+ 0xee, 0x88, 0x04, 0xfd, 0x7a, 0xf0, 0xaa, 0xa7, 0xa6, 0x41, 0x04, 0x55,
+ 0x16, 0xea, 0x3e, 0x54, 0xa0, 0xd5, 0xd8, 0xb2, 0xce, 0x78, 0x6b, 0x38,
+ 0xd3, 0x83, 0x37, 0x00, 0x29, 0xa5, 0xdb, 0xe4, 0x45, 0x9c, 0x9d, 0xd6,
+ 0x01, 0xb4, 0x08, 0xa2, 0x4a, 0xe6, 0x46, 0x5c, 0x8a, 0xc9, 0x05, 0xb9,
+ 0xeb, 0x03, 0xb5, 0xd3, 0x69, 0x1c, 0x13, 0x9e, 0xf8, 0x3f, 0x1c, 0xd4,
+ 0x20, 0x0f, 0x6c, 0x9c, 0xd4, 0xec, 0x39, 0x22, 0x18, 0xa5, 0x9e, 0xd2,
+ 0x43, 0xd3, 0xc8, 0x20, 0xff, 0x72, 0x4a, 0x9a, 0x70, 0xb8, 0x8c, 0xb8,
+ 0x6f, 0x20, 0xb4, 0x34, 0xc6, 0x86, 0x5a, 0xa1, 0xcd, 0x79, 0x06, 0xdd,
+ 0x7c, 0x9b, 0xce, 0x35, 0x25, 0xf5, 0x08, 0x27, 0x6f, 0x26, 0x83, 0x6c
+};
+
+static const unsigned char ecjpake_test_cli_two[] = {
+ 0x41, 0x04, 0x69, 0xd5, 0x4e, 0xe8, 0x5e, 0x90, 0xce, 0x3f, 0x12, 0x46,
+ 0x74, 0x2d, 0xe5, 0x07, 0xe9, 0x39, 0xe8, 0x1d, 0x1d, 0xc1, 0xc5, 0xcb,
+ 0x98, 0x8b, 0x58, 0xc3, 0x10, 0xc9, 0xfd, 0xd9, 0x52, 0x4d, 0x93, 0x72,
+ 0x0b, 0x45, 0x54, 0x1c, 0x83, 0xee, 0x88, 0x41, 0x19, 0x1d, 0xa7, 0xce,
+ 0xd8, 0x6e, 0x33, 0x12, 0xd4, 0x36, 0x23, 0xc1, 0xd6, 0x3e, 0x74, 0x98,
+ 0x9a, 0xba, 0x4a, 0xff, 0xd1, 0xee, 0x41, 0x04, 0x07, 0x7e, 0x8c, 0x31,
+ 0xe2, 0x0e, 0x6b, 0xed, 0xb7, 0x60, 0xc1, 0x35, 0x93, 0xe6, 0x9f, 0x15,
+ 0xbe, 0x85, 0xc2, 0x7d, 0x68, 0xcd, 0x09, 0xcc, 0xb8, 0xc4, 0x18, 0x36,
+ 0x08, 0x91, 0x7c, 0x5c, 0x3d, 0x40, 0x9f, 0xac, 0x39, 0xfe, 0xfe, 0xe8,
+ 0x2f, 0x72, 0x92, 0xd3, 0x6f, 0x0d, 0x23, 0xe0, 0x55, 0x91, 0x3f, 0x45,
+ 0xa5, 0x2b, 0x85, 0xdd, 0x8a, 0x20, 0x52, 0xe9, 0xe1, 0x29, 0xbb, 0x4d,
+ 0x20, 0x0f, 0x01, 0x1f, 0x19, 0x48, 0x35, 0x35, 0xa6, 0xe8, 0x9a, 0x58,
+ 0x0c, 0x9b, 0x00, 0x03, 0xba, 0xf2, 0x14, 0x62, 0xec, 0xe9, 0x1a, 0x82,
+ 0xcc, 0x38, 0xdb, 0xdc, 0xae, 0x60, 0xd9, 0xc5, 0x4c
+};
+
+static const unsigned char ecjpake_test_shared_key[] = {
+ 0x04, 0x01, 0xab, 0xe9, 0xf2, 0xc7, 0x3a, 0x99, 0x14, 0xcb, 0x1f, 0x80,
+ 0xfb, 0x9d, 0xdb, 0x7e, 0x00, 0x12, 0xa8, 0x9c, 0x2f, 0x39, 0x27, 0x79,
+ 0xf9, 0x64, 0x40, 0x14, 0x75, 0xea, 0xc1, 0x31, 0x28, 0x43, 0x8f, 0xe1,
+ 0x12, 0x41, 0xd6, 0xc1, 0xe5, 0x5f, 0x7b, 0x80, 0x88, 0x94, 0xc9, 0xc0,
+ 0x27, 0xa3, 0x34, 0x41, 0xf5, 0xcb, 0xa1, 0xfe, 0x6c, 0xc7, 0xe6, 0x12,
+ 0x17, 0xc3, 0xde, 0x27, 0xb4,
+};
+
+static const unsigned char ecjpake_test_pms[] = {
+ 0xf3, 0xd4, 0x7f, 0x59, 0x98, 0x44, 0xdb, 0x92, 0xa5, 0x69, 0xbb, 0xe7,
+ 0x98, 0x1e, 0x39, 0xd9, 0x31, 0xfd, 0x74, 0x3b, 0xf2, 0x2e, 0x98, 0xf9,
+ 0xb4, 0x38, 0xf7, 0x19, 0xd3, 0xc4, 0xf3, 0x51
+};
+
+/*
+ * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
+ *
+ * This is the linear congruential generator from numerical recipes,
+ * except we only use the low byte as the output. See
+ * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
+ */
+static int self_test_rng(void *ctx, unsigned char *out, size_t len)
+{
+ static uint32_t state = 42;
+
+ (void) ctx;
+
+ for (size_t i = 0; i < len; i++) {
+ state = state * 1664525u + 1013904223u;
+ out[i] = (unsigned char) state;
+ }
+
+ return 0;
+}
+
+/* Load my private keys and generate the corresponding public keys */
+static int ecjpake_test_load(mbedtls_ecjpake_context *ctx,
+ const unsigned char *xm1, size_t len1,
+ const unsigned char *xm2, size_t len2)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->xm1, xm1, len1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->xm2, xm2, len2));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, &ctx->Xm1, &ctx->xm1,
+ &ctx->grp.G, self_test_rng, NULL));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&ctx->grp, &ctx->Xm2, &ctx->xm2,
+ &ctx->grp.G, self_test_rng, NULL));
+
+cleanup:
+ return ret;
+}
+
+/* For tests we don't need a secure RNG;
+ * use the LGC from Numerical Recipes for simplicity */
+static int ecjpake_lgc(void *p, unsigned char *out, size_t len)
+{
+ static uint32_t x = 42;
+ (void) p;
+
+ while (len > 0) {
+ size_t use_len = len > 4 ? 4 : len;
+ x = 1664525 * x + 1013904223;
+ memcpy(out, &x, use_len);
+ out += use_len;
+ len -= use_len;
+ }
+
+ return 0;
+}
+
+#define TEST_ASSERT(x) \
+ do { \
+ if (x) \
+ ret = 0; \
+ else \
+ { \
+ ret = 1; \
+ goto cleanup; \
+ } \
+ } while (0)
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ecjpake_self_test(int verbose)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecjpake_context cli;
+ mbedtls_ecjpake_context srv;
+ unsigned char buf[512], pms[32];
+ size_t len, pmslen;
+
+ mbedtls_ecjpake_init(&cli);
+ mbedtls_ecjpake_init(&srv);
+
+ if (verbose != 0) {
+ mbedtls_printf(" ECJPAKE test #0 (setup): ");
+ }
+
+ TEST_ASSERT(mbedtls_ecjpake_setup(&cli, MBEDTLS_ECJPAKE_CLIENT,
+ MBEDTLS_MD_SHA256, MBEDTLS_ECP_DP_SECP256R1,
+ ecjpake_test_password,
+ sizeof(ecjpake_test_password)) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_setup(&srv, MBEDTLS_ECJPAKE_SERVER,
+ MBEDTLS_MD_SHA256, MBEDTLS_ECP_DP_SECP256R1,
+ ecjpake_test_password,
+ sizeof(ecjpake_test_password)) == 0);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" ECJPAKE test #1 (random handshake): ");
+ }
+
+ TEST_ASSERT(mbedtls_ecjpake_write_round_one(&cli,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_read_round_one(&srv, buf, len) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_write_round_one(&srv,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_read_round_one(&cli, buf, len) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_write_round_two(&srv,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_read_round_two(&cli, buf, len) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_derive_secret(&cli,
+ pms, sizeof(pms), &pmslen, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_write_round_two(&cli,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_read_round_two(&srv, buf, len) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_derive_secret(&srv,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(len == pmslen);
+ TEST_ASSERT(memcmp(buf, pms, len) == 0);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ /* 'reference handshake' tests can only be run against implementations
+ * for which we have 100% control over how the random ephemeral keys
+ * are generated. This is only the case for the internal Mbed TLS
+ * implementation, so these tests are skipped in case the internal
+ * implementation is swapped out for an alternative one. */
+ if (verbose != 0) {
+ mbedtls_printf(" ECJPAKE test #2 (reference handshake): ");
+ }
+
+ /* Simulate generation of round one */
+ MBEDTLS_MPI_CHK(ecjpake_test_load(&cli,
+ ecjpake_test_x1, sizeof(ecjpake_test_x1),
+ ecjpake_test_x2, sizeof(ecjpake_test_x2)));
+
+ MBEDTLS_MPI_CHK(ecjpake_test_load(&srv,
+ ecjpake_test_x3, sizeof(ecjpake_test_x3),
+ ecjpake_test_x4, sizeof(ecjpake_test_x4)));
+
+ /* Read round one */
+ TEST_ASSERT(mbedtls_ecjpake_read_round_one(&srv,
+ ecjpake_test_cli_one,
+ sizeof(ecjpake_test_cli_one)) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_read_round_one(&cli,
+ ecjpake_test_srv_one,
+ sizeof(ecjpake_test_srv_one)) == 0);
+
+ /* Skip generation of round two, read round two */
+ TEST_ASSERT(mbedtls_ecjpake_read_round_two(&cli,
+ ecjpake_test_srv_two,
+ sizeof(ecjpake_test_srv_two)) == 0);
+
+ TEST_ASSERT(mbedtls_ecjpake_read_round_two(&srv,
+ ecjpake_test_cli_two,
+ sizeof(ecjpake_test_cli_two)) == 0);
+
+ /* Server derives PMS */
+ TEST_ASSERT(mbedtls_ecjpake_derive_secret(&srv,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(len == sizeof(ecjpake_test_pms));
+ TEST_ASSERT(memcmp(buf, ecjpake_test_pms, len) == 0);
+
+ /* Server derives K as unsigned binary data */
+ TEST_ASSERT(mbedtls_ecjpake_write_shared_key(&srv,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(len == sizeof(ecjpake_test_shared_key));
+ TEST_ASSERT(memcmp(buf, ecjpake_test_shared_key, len) == 0);
+
+ memset(buf, 0, len); /* Avoid interferences with next step */
+
+ /* Client derives PMS */
+ TEST_ASSERT(mbedtls_ecjpake_derive_secret(&cli,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(len == sizeof(ecjpake_test_pms));
+ TEST_ASSERT(memcmp(buf, ecjpake_test_pms, len) == 0);
+
+ /* Client derives K as unsigned binary data */
+ TEST_ASSERT(mbedtls_ecjpake_write_shared_key(&cli,
+ buf, sizeof(buf), &len, ecjpake_lgc, NULL) == 0);
+
+ TEST_ASSERT(len == sizeof(ecjpake_test_shared_key));
+ TEST_ASSERT(memcmp(buf, ecjpake_test_shared_key, len) == 0);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+cleanup:
+ mbedtls_ecjpake_free(&cli);
+ mbedtls_ecjpake_free(&srv);
+
+ if (ret != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return ret;
+}
+
+#undef TEST_ASSERT
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED && MBEDTLS_MD_CAN_SHA256 */
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ECJPAKE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp.c b/tf-psa-crypto/drivers/builtin/src/ecp.c
new file mode 100644
index 0000000..1e6b69b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp.c
@@ -0,0 +1,3558 @@
+/*
+ * Elliptic curves over GF(p): generic functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * References:
+ *
+ * SEC1 https://www.secg.org/sec1-v2.pdf
+ * GECC = Guide to Elliptic Curve Cryptography - Hankerson, Menezes, Vanstone
+ * FIPS 186-3 http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
+ * RFC 4492 for the related TLS structures and constants
+ * - https://www.rfc-editor.org/rfc/rfc4492
+ * RFC 7748 for the Curve448 and Curve25519 curve definitions
+ * - https://www.rfc-editor.org/rfc/rfc7748
+ *
+ * [Curve25519] https://cr.yp.to/ecdh/curve25519-20060209.pdf
+ *
+ * [2] CORON, Jean-S'ebastien. Resistance against differential power analysis
+ * for elliptic curve cryptosystems. In : Cryptographic Hardware and
+ * Embedded Systems. Springer Berlin Heidelberg, 1999. p. 292-302.
+ * <http://link.springer.com/chapter/10.1007/3-540-48059-5_25>
+ *
+ * [3] HEDABOU, Mustapha, PINEL, Pierre, et B'EN'ETEAU, Lucien. A comb method to
+ * render ECC resistant against Side Channel Attacks. IACR Cryptology
+ * ePrint Archive, 2004, vol. 2004, p. 342.
+ * <http://eprint.iacr.org/2004/342.pdf>
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECP_LIGHT)
+
+#include "mbedtls/ecp.h"
+#include "mbedtls/threading.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "bn_mul.h"
+#include "ecp_invasive.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * Counts of point addition and doubling, and field multiplications.
+ * Used to test resistance of point multiplication to simple timing attacks.
+ */
+#if defined(MBEDTLS_ECP_C)
+static unsigned long add_count, dbl_count;
+#endif /* MBEDTLS_ECP_C */
+static unsigned long mul_count;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Maximum number of "basic operations" to be done in a row.
+ *
+ * Default value 0 means that ECC operations will not yield.
+ * Note that regardless of the value of ecp_max_ops, always at
+ * least one step is performed before yielding.
+ *
+ * Setting ecp_max_ops=1 can be suitable for testing purposes
+ * as it will interrupt computation at all possible points.
+ */
+static unsigned ecp_max_ops = 0;
+
+/*
+ * Set ecp_max_ops
+ */
+void mbedtls_ecp_set_max_ops(unsigned max_ops)
+{
+ ecp_max_ops = max_ops;
+}
+
+/*
+ * Check if restart is enabled
+ */
+int mbedtls_ecp_restart_is_enabled(void)
+{
+ return ecp_max_ops != 0;
+}
+
+/*
+ * Restart sub-context for ecp_mul_comb()
+ */
+struct mbedtls_ecp_restart_mul {
+ mbedtls_ecp_point R; /* current intermediate result */
+ size_t i; /* current index in various loops, 0 outside */
+ mbedtls_ecp_point *T; /* table for precomputed points */
+ unsigned char T_size; /* number of points in table T */
+ enum { /* what were we doing last time we returned? */
+ ecp_rsm_init = 0, /* nothing so far, dummy initial state */
+ ecp_rsm_pre_dbl, /* precompute 2^n multiples */
+ ecp_rsm_pre_norm_dbl, /* normalize precomputed 2^n multiples */
+ ecp_rsm_pre_add, /* precompute remaining points by adding */
+ ecp_rsm_pre_norm_add, /* normalize all precomputed points */
+ ecp_rsm_comb_core, /* ecp_mul_comb_core() */
+ ecp_rsm_final_norm, /* do the final normalization */
+ } state;
+};
+
+/*
+ * Init restart_mul sub-context
+ */
+static void ecp_restart_rsm_init(mbedtls_ecp_restart_mul_ctx *ctx)
+{
+ mbedtls_ecp_point_init(&ctx->R);
+ ctx->i = 0;
+ ctx->T = NULL;
+ ctx->T_size = 0;
+ ctx->state = ecp_rsm_init;
+}
+
+/*
+ * Free the components of a restart_mul sub-context
+ */
+static void ecp_restart_rsm_free(mbedtls_ecp_restart_mul_ctx *ctx)
+{
+ unsigned char i;
+
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_point_free(&ctx->R);
+
+ if (ctx->T != NULL) {
+ for (i = 0; i < ctx->T_size; i++) {
+ mbedtls_ecp_point_free(ctx->T + i);
+ }
+ mbedtls_free(ctx->T);
+ }
+
+ ecp_restart_rsm_init(ctx);
+}
+
+/*
+ * Restart context for ecp_muladd()
+ */
+struct mbedtls_ecp_restart_muladd {
+ mbedtls_ecp_point mP; /* mP value */
+ mbedtls_ecp_point R; /* R intermediate result */
+ enum { /* what should we do next? */
+ ecp_rsma_mul1 = 0, /* first multiplication */
+ ecp_rsma_mul2, /* second multiplication */
+ ecp_rsma_add, /* addition */
+ ecp_rsma_norm, /* normalization */
+ } state;
+};
+
+/*
+ * Init restart_muladd sub-context
+ */
+static void ecp_restart_ma_init(mbedtls_ecp_restart_muladd_ctx *ctx)
+{
+ mbedtls_ecp_point_init(&ctx->mP);
+ mbedtls_ecp_point_init(&ctx->R);
+ ctx->state = ecp_rsma_mul1;
+}
+
+/*
+ * Free the components of a restart_muladd sub-context
+ */
+static void ecp_restart_ma_free(mbedtls_ecp_restart_muladd_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_point_free(&ctx->mP);
+ mbedtls_ecp_point_free(&ctx->R);
+
+ ecp_restart_ma_init(ctx);
+}
+
+/*
+ * Initialize a restart context
+ */
+void mbedtls_ecp_restart_init(mbedtls_ecp_restart_ctx *ctx)
+{
+ ctx->ops_done = 0;
+ ctx->depth = 0;
+ ctx->rsm = NULL;
+ ctx->ma = NULL;
+}
+
+/*
+ * Free the components of a restart context
+ */
+void mbedtls_ecp_restart_free(mbedtls_ecp_restart_ctx *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ ecp_restart_rsm_free(ctx->rsm);
+ mbedtls_free(ctx->rsm);
+
+ ecp_restart_ma_free(ctx->ma);
+ mbedtls_free(ctx->ma);
+
+ mbedtls_ecp_restart_init(ctx);
+}
+
+/*
+ * Check if we can do the next step
+ */
+int mbedtls_ecp_check_budget(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_restart_ctx *rs_ctx,
+ unsigned ops)
+{
+ if (rs_ctx != NULL && ecp_max_ops != 0) {
+ /* scale depending on curve size: the chosen reference is 256-bit,
+ * and multiplication is quadratic. Round to the closest integer. */
+ if (grp->pbits >= 512) {
+ ops *= 4;
+ } else if (grp->pbits >= 384) {
+ ops *= 2;
+ }
+
+ /* Avoid infinite loops: always allow first step.
+ * Because of that, however, it's not generally true
+ * that ops_done <= ecp_max_ops, so the check
+ * ops_done > ecp_max_ops below is mandatory. */
+ if ((rs_ctx->ops_done != 0) &&
+ (rs_ctx->ops_done > ecp_max_ops ||
+ ops > ecp_max_ops - rs_ctx->ops_done)) {
+ return MBEDTLS_ERR_ECP_IN_PROGRESS;
+ }
+
+ /* update running count */
+ rs_ctx->ops_done += ops;
+ }
+
+ return 0;
+}
+
+/* Call this when entering a function that needs its own sub-context */
+#define ECP_RS_ENTER(SUB) do { \
+ /* reset ops count for this call if top-level */ \
+ if (rs_ctx != NULL && rs_ctx->depth++ == 0) \
+ rs_ctx->ops_done = 0; \
+ \
+ /* set up our own sub-context if needed */ \
+ if (mbedtls_ecp_restart_is_enabled() && \
+ rs_ctx != NULL && rs_ctx->SUB == NULL) \
+ { \
+ rs_ctx->SUB = mbedtls_calloc(1, sizeof(*rs_ctx->SUB)); \
+ if (rs_ctx->SUB == NULL) \
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED; \
+ \
+ ecp_restart_## SUB ##_init(rs_ctx->SUB); \
+ } \
+} while (0)
+
+/* Call this when leaving a function that needs its own sub-context */
+#define ECP_RS_LEAVE(SUB) do { \
+ /* clear our sub-context when not in progress (done or error) */ \
+ if (rs_ctx != NULL && rs_ctx->SUB != NULL && \
+ ret != MBEDTLS_ERR_ECP_IN_PROGRESS) \
+ { \
+ ecp_restart_## SUB ##_free(rs_ctx->SUB); \
+ mbedtls_free(rs_ctx->SUB); \
+ rs_ctx->SUB = NULL; \
+ } \
+ \
+ if (rs_ctx != NULL) \
+ rs_ctx->depth--; \
+} while (0)
+
+#else /* MBEDTLS_ECP_RESTARTABLE */
+
+#define ECP_RS_ENTER(sub) (void) rs_ctx;
+#define ECP_RS_LEAVE(sub) (void) rs_ctx;
+
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+#if defined(MBEDTLS_ECP_C)
+static void mpi_init_many(mbedtls_mpi *arr, size_t size)
+{
+ while (size--) {
+ mbedtls_mpi_init(arr++);
+ }
+}
+
+static void mpi_free_many(mbedtls_mpi *arr, size_t size)
+{
+ while (size--) {
+ mbedtls_mpi_free(arr++);
+ }
+}
+#endif /* MBEDTLS_ECP_C */
+
+/*
+ * List of supported curves:
+ * - internal ID
+ * - TLS NamedCurve ID (RFC 4492 sec. 5.1.1, RFC 7071 sec. 2, RFC 8446 sec. 4.2.7)
+ * - size in bits
+ * - readable name
+ *
+ * Curves are listed in order: largest curves first, and for a given size,
+ * fastest curves first.
+ *
+ * Reminder: update profiles in x509_crt.c and ssl_tls.c when adding a new curve!
+ */
+static const mbedtls_ecp_curve_info ecp_supported_curves[] =
+{
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP521R1, 25, 521, "secp521r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+ { MBEDTLS_ECP_DP_BP512R1, 28, 512, "brainpoolP512r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP384R1, 24, 384, "secp384r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+ { MBEDTLS_ECP_DP_BP384R1, 27, 384, "brainpoolP384r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP256R1, 23, 256, "secp256r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP256K1, 22, 256, "secp256k1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+ { MBEDTLS_ECP_DP_BP256R1, 26, 256, "brainpoolP256r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP224R1, 21, 224, "secp224r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP224K1, 20, 224, "secp224k1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP192R1, 19, 192, "secp192r1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+ { MBEDTLS_ECP_DP_SECP192K1, 18, 192, "secp192k1" },
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ { MBEDTLS_ECP_DP_CURVE25519, 29, 256, "x25519" },
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ { MBEDTLS_ECP_DP_CURVE448, 30, 448, "x448" },
+#endif
+ { MBEDTLS_ECP_DP_NONE, 0, 0, NULL },
+};
+
+#define ECP_NB_CURVES sizeof(ecp_supported_curves) / \
+ sizeof(ecp_supported_curves[0])
+
+static mbedtls_ecp_group_id ecp_supported_grp_id[ECP_NB_CURVES];
+
+/*
+ * List of supported curves and associated info
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_list(void)
+{
+ return ecp_supported_curves;
+}
+
+/*
+ * List of supported curves, group ID only
+ */
+const mbedtls_ecp_group_id *mbedtls_ecp_grp_id_list(void)
+{
+ static int init_done = 0;
+
+ if (!init_done) {
+ size_t i = 0;
+ const mbedtls_ecp_curve_info *curve_info;
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ ecp_supported_grp_id[i++] = curve_info->grp_id;
+ }
+ ecp_supported_grp_id[i] = MBEDTLS_ECP_DP_NONE;
+
+ init_done = 1;
+ }
+
+ return ecp_supported_grp_id;
+}
+
+/*
+ * Get the curve info for the internal identifier
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_grp_id(mbedtls_ecp_group_id grp_id)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ if (curve_info->grp_id == grp_id) {
+ return curve_info;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Get the curve info from the TLS identifier
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_tls_id(uint16_t tls_id)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ if (curve_info->tls_id == tls_id) {
+ return curve_info;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Get the curve info from the name
+ */
+const mbedtls_ecp_curve_info *mbedtls_ecp_curve_info_from_name(const char *name)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+
+ if (name == NULL) {
+ return NULL;
+ }
+
+ for (curve_info = mbedtls_ecp_curve_list();
+ curve_info->grp_id != MBEDTLS_ECP_DP_NONE;
+ curve_info++) {
+ if (strcmp(curve_info->name, name) == 0) {
+ return curve_info;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Get the type of a curve
+ */
+mbedtls_ecp_curve_type mbedtls_ecp_get_type(const mbedtls_ecp_group *grp)
+{
+ if (grp->G.X.p == NULL) {
+ return MBEDTLS_ECP_TYPE_NONE;
+ }
+
+ if (grp->G.Y.p == NULL) {
+ return MBEDTLS_ECP_TYPE_MONTGOMERY;
+ } else {
+ return MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS;
+ }
+}
+
+/*
+ * Initialize (the components of) a point
+ */
+void mbedtls_ecp_point_init(mbedtls_ecp_point *pt)
+{
+ mbedtls_mpi_init(&pt->X);
+ mbedtls_mpi_init(&pt->Y);
+ mbedtls_mpi_init(&pt->Z);
+}
+
+/*
+ * Initialize (the components of) a group
+ */
+void mbedtls_ecp_group_init(mbedtls_ecp_group *grp)
+{
+ grp->id = MBEDTLS_ECP_DP_NONE;
+ mbedtls_mpi_init(&grp->P);
+ mbedtls_mpi_init(&grp->A);
+ mbedtls_mpi_init(&grp->B);
+ mbedtls_ecp_point_init(&grp->G);
+ mbedtls_mpi_init(&grp->N);
+ grp->pbits = 0;
+ grp->nbits = 0;
+ grp->h = 0;
+ grp->modp = NULL;
+ grp->t_pre = NULL;
+ grp->t_post = NULL;
+ grp->t_data = NULL;
+ grp->T = NULL;
+ grp->T_size = 0;
+}
+
+/*
+ * Initialize (the components of) a key pair
+ */
+void mbedtls_ecp_keypair_init(mbedtls_ecp_keypair *key)
+{
+ mbedtls_ecp_group_init(&key->grp);
+ mbedtls_mpi_init(&key->d);
+ mbedtls_ecp_point_init(&key->Q);
+}
+
+/*
+ * Unallocate (the components of) a point
+ */
+void mbedtls_ecp_point_free(mbedtls_ecp_point *pt)
+{
+ if (pt == NULL) {
+ return;
+ }
+
+ mbedtls_mpi_free(&(pt->X));
+ mbedtls_mpi_free(&(pt->Y));
+ mbedtls_mpi_free(&(pt->Z));
+}
+
+/*
+ * Check that the comb table (grp->T) is static initialized.
+ */
+static int ecp_group_is_static_comb_table(const mbedtls_ecp_group *grp)
+{
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+ return grp->T != NULL && grp->T_size == 0;
+#else
+ (void) grp;
+ return 0;
+#endif
+}
+
+/*
+ * Unallocate (the components of) a group
+ */
+void mbedtls_ecp_group_free(mbedtls_ecp_group *grp)
+{
+ size_t i;
+
+ if (grp == NULL) {
+ return;
+ }
+
+ if (grp->h != 1) {
+ mbedtls_mpi_free(&grp->A);
+ mbedtls_mpi_free(&grp->B);
+ mbedtls_ecp_point_free(&grp->G);
+
+#if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
+ mbedtls_mpi_free(&grp->N);
+ mbedtls_mpi_free(&grp->P);
+#endif
+ }
+
+ if (!ecp_group_is_static_comb_table(grp) && grp->T != NULL) {
+ for (i = 0; i < grp->T_size; i++) {
+ mbedtls_ecp_point_free(&grp->T[i]);
+ }
+ mbedtls_free(grp->T);
+ }
+
+ mbedtls_platform_zeroize(grp, sizeof(mbedtls_ecp_group));
+}
+
+/*
+ * Unallocate (the components of) a key pair
+ */
+void mbedtls_ecp_keypair_free(mbedtls_ecp_keypair *key)
+{
+ if (key == NULL) {
+ return;
+ }
+
+ mbedtls_ecp_group_free(&key->grp);
+ mbedtls_mpi_free(&key->d);
+ mbedtls_ecp_point_free(&key->Q);
+}
+
+/*
+ * Copy the contents of a point
+ */
+int mbedtls_ecp_copy(mbedtls_ecp_point *P, const mbedtls_ecp_point *Q)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->X, &Q->X));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Y, &Q->Y));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&P->Z, &Q->Z));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Copy the contents of a group object
+ */
+int mbedtls_ecp_group_copy(mbedtls_ecp_group *dst, const mbedtls_ecp_group *src)
+{
+ return mbedtls_ecp_group_load(dst, src->id);
+}
+
+/*
+ * Set point to zero
+ */
+int mbedtls_ecp_set_zero(mbedtls_ecp_point *pt)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->X, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Y, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 0));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Tell if a point is zero
+ */
+int mbedtls_ecp_is_zero(mbedtls_ecp_point *pt)
+{
+ return mbedtls_mpi_cmp_int(&pt->Z, 0) == 0;
+}
+
+/*
+ * Compare two points lazily
+ */
+int mbedtls_ecp_point_cmp(const mbedtls_ecp_point *P,
+ const mbedtls_ecp_point *Q)
+{
+ if (mbedtls_mpi_cmp_mpi(&P->X, &Q->X) == 0 &&
+ mbedtls_mpi_cmp_mpi(&P->Y, &Q->Y) == 0 &&
+ mbedtls_mpi_cmp_mpi(&P->Z, &Q->Z) == 0) {
+ return 0;
+ }
+
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+/*
+ * Import a non-zero point from ASCII strings
+ */
+int mbedtls_ecp_point_read_string(mbedtls_ecp_point *P, int radix,
+ const char *x, const char *y)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->X, radix, x));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&P->Y, radix, y));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&P->Z, 1));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Export a point into unsigned binary data (SEC1 2.3.3 and RFC7748)
+ */
+int mbedtls_ecp_point_write_binary(const mbedtls_ecp_group *grp,
+ const mbedtls_ecp_point *P,
+ int format, size_t *olen,
+ unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ size_t plen;
+ if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
+ format != MBEDTLS_ECP_PF_COMPRESSED) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ plen = mbedtls_mpi_size(&grp->P);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ (void) format; /* Montgomery curves always use the same point format */
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ *olen = plen;
+ if (buflen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&P->X, buf, plen));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ /*
+ * Common case: P == 0
+ */
+ if (mbedtls_mpi_cmp_int(&P->Z, 0) == 0) {
+ if (buflen < 1) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ buf[0] = 0x00;
+ *olen = 1;
+
+ return 0;
+ }
+
+ if (format == MBEDTLS_ECP_PF_UNCOMPRESSED) {
+ *olen = 2 * plen + 1;
+
+ if (buflen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ buf[0] = 0x04;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->Y, buf + 1 + plen, plen));
+ } else if (format == MBEDTLS_ECP_PF_COMPRESSED) {
+ *olen = plen + 1;
+
+ if (buflen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ buf[0] = 0x02 + mbedtls_mpi_get_bit(&P->Y, 0);
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&P->X, buf + 1, plen));
+ }
+ }
+#endif
+
+cleanup:
+ return ret;
+}
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *X,
+ mbedtls_mpi *Y,
+ int parity_bit);
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+/*
+ * Import a point from unsigned binary data (SEC1 2.3.4 and RFC7748)
+ */
+int mbedtls_ecp_point_read_binary(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *pt,
+ const unsigned char *buf, size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ size_t plen;
+ if (ilen < 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ plen = mbedtls_mpi_size(&grp->P);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ if (plen != ilen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&pt->X, buf, plen));
+ mbedtls_mpi_free(&pt->Y);
+
+ if (grp->id == MBEDTLS_ECP_DP_CURVE25519) {
+ /* Set most significant bit to 0 as prescribed in RFC7748 §5 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&pt->X, plen * 8 - 1, 0));
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ if (buf[0] == 0x00) {
+ if (ilen == 1) {
+ return mbedtls_ecp_set_zero(pt);
+ } else {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ }
+
+ if (ilen < 1 + plen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&pt->X, buf + 1, plen));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&pt->Z, 1));
+
+ if (buf[0] == 0x04) {
+ /* format == MBEDTLS_ECP_PF_UNCOMPRESSED */
+ if (ilen != 1 + plen * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ return mbedtls_mpi_read_binary(&pt->Y, buf + 1 + plen, plen);
+ } else if (buf[0] == 0x02 || buf[0] == 0x03) {
+ /* format == MBEDTLS_ECP_PF_COMPRESSED */
+ if (ilen != 1 + plen) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ return mbedtls_ecp_sw_derive_y(grp, &pt->X, &pt->Y,
+ (buf[0] & 1));
+ } else {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ }
+#endif
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Import a point from a TLS ECPoint record (RFC 4492)
+ * struct {
+ * opaque point <1..2^8-1>;
+ * } ECPoint;
+ */
+int mbedtls_ecp_tls_read_point(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *pt,
+ const unsigned char **buf, size_t buf_len)
+{
+ unsigned char data_len;
+ const unsigned char *buf_start;
+ /*
+ * We must have at least two bytes (1 for length, at least one for data)
+ */
+ if (buf_len < 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ data_len = *(*buf)++;
+ if (data_len < 1 || data_len > buf_len - 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Save buffer start for read_binary and update buf
+ */
+ buf_start = *buf;
+ *buf += data_len;
+
+ return mbedtls_ecp_point_read_binary(grp, pt, buf_start, data_len);
+}
+
+/*
+ * Export a point as a TLS ECPoint record (RFC 4492)
+ * struct {
+ * opaque point <1..2^8-1>;
+ * } ECPoint;
+ */
+int mbedtls_ecp_tls_write_point(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt,
+ int format, size_t *olen,
+ unsigned char *buf, size_t blen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ if (format != MBEDTLS_ECP_PF_UNCOMPRESSED &&
+ format != MBEDTLS_ECP_PF_COMPRESSED) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * buffer length must be at least one, for our length byte
+ */
+ if (blen < 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ if ((ret = mbedtls_ecp_point_write_binary(grp, pt, format,
+ olen, buf + 1, blen - 1)) != 0) {
+ return ret;
+ }
+
+ /*
+ * write length to the first byte and update total length
+ */
+ buf[0] = (unsigned char) *olen;
+ ++*olen;
+
+ return 0;
+}
+
+/*
+ * Set a group from an ECParameters record (RFC 4492)
+ */
+int mbedtls_ecp_tls_read_group(mbedtls_ecp_group *grp,
+ const unsigned char **buf, size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_group_id grp_id;
+ if ((ret = mbedtls_ecp_tls_read_group_id(&grp_id, buf, len)) != 0) {
+ return ret;
+ }
+
+ return mbedtls_ecp_group_load(grp, grp_id);
+}
+
+/*
+ * Read a group id from an ECParameters record (RFC 4492) and convert it to
+ * mbedtls_ecp_group_id.
+ */
+int mbedtls_ecp_tls_read_group_id(mbedtls_ecp_group_id *grp,
+ const unsigned char **buf, size_t len)
+{
+ uint16_t tls_id;
+ const mbedtls_ecp_curve_info *curve_info;
+ /*
+ * We expect at least three bytes (see below)
+ */
+ if (len < 3) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * First byte is curve_type; only named_curve is handled
+ */
+ if (*(*buf)++ != MBEDTLS_ECP_TLS_NAMED_CURVE) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Next two bytes are the namedcurve value
+ */
+ tls_id = MBEDTLS_GET_UINT16_BE(*buf, 0);
+ *buf += 2;
+
+ if ((curve_info = mbedtls_ecp_curve_info_from_tls_id(tls_id)) == NULL) {
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ *grp = curve_info->grp_id;
+
+ return 0;
+}
+
+/*
+ * Write the ECParameters record corresponding to a group (RFC 4492)
+ */
+int mbedtls_ecp_tls_write_group(const mbedtls_ecp_group *grp, size_t *olen,
+ unsigned char *buf, size_t blen)
+{
+ const mbedtls_ecp_curve_info *curve_info;
+ if ((curve_info = mbedtls_ecp_curve_info_from_grp_id(grp->id)) == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * We are going to write 3 bytes (see below)
+ */
+ *olen = 3;
+ if (blen < *olen) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ /*
+ * First byte is curve_type, always named_curve
+ */
+ *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
+
+ /*
+ * Next two bytes are the namedcurve value
+ */
+ MBEDTLS_PUT_UINT16_BE(curve_info->tls_id, buf, 0);
+
+ return 0;
+}
+
+/*
+ * Wrapper around fast quasi-modp functions, with fall-back to mbedtls_mpi_mod_mpi.
+ * See the documentation of struct mbedtls_ecp_group.
+ *
+ * This function is in the critial loop for mbedtls_ecp_mul, so pay attention to perf.
+ */
+static int ecp_modp(mbedtls_mpi *N, const mbedtls_ecp_group *grp)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (grp->modp == NULL) {
+ return mbedtls_mpi_mod_mpi(N, N, &grp->P);
+ }
+
+ /* N->s < 0 is a much faster test, which fails only if N is 0 */
+ if ((N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) ||
+ mbedtls_mpi_bitlen(N) > 2 * grp->pbits) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_MPI_CHK(grp->modp(N));
+
+ /* N->s < 0 is a much faster test, which fails only if N is 0 */
+ while (N->s < 0 && mbedtls_mpi_cmp_int(N, 0) != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &grp->P));
+ }
+
+ while (mbedtls_mpi_cmp_mpi(N, &grp->P) >= 0) {
+ /* we known P, N and the result are positive */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs(N, N, &grp->P));
+ }
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Fast mod-p functions expect their argument to be in the 0..p^2 range.
+ *
+ * In order to guarantee that, we need to ensure that operands of
+ * mbedtls_mpi_mul_mpi are in the 0..p range. So, after each operation we will
+ * bring the result back to this range.
+ *
+ * The following macros are shortcuts for doing that.
+ */
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, general case, to use after mbedtls_mpi_mul_mpi
+ */
+#if defined(MBEDTLS_SELF_TEST)
+#define INC_MUL_COUNT mul_count++;
+#else
+#define INC_MUL_COUNT
+#endif
+
+#define MOD_MUL(N) \
+ do \
+ { \
+ MBEDTLS_MPI_CHK(ecp_modp(&(N), grp)); \
+ INC_MUL_COUNT \
+ } while (0)
+
+static inline int mbedtls_mpi_mul_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(X, A, B));
+ MOD_MUL(*X);
+cleanup:
+ return ret;
+}
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_sub_mpi
+ * N->s < 0 is a very fast test, which fails only if N is 0
+ */
+#define MOD_SUB(N) \
+ do { \
+ while ((N)->s < 0 && mbedtls_mpi_cmp_int((N), 0) != 0) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi((N), (N), &grp->P)); \
+ } while (0)
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_sub_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(X, A, B));
+ MOD_SUB(X);
+cleanup:
+ return ret;
+}
+
+/*
+ * Reduce a mbedtls_mpi mod p in-place, to use after mbedtls_mpi_add_mpi and mbedtls_mpi_mul_int.
+ * We known P, N and the result are positive, so sub_abs is correct, and
+ * a bit faster.
+ */
+#define MOD_ADD(N) \
+ while (mbedtls_mpi_cmp_mpi((N), &grp->P) >= 0) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_abs((N), (N), &grp->P))
+
+static inline int mbedtls_mpi_add_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ const mbedtls_mpi *B)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(X, A, B));
+ MOD_ADD(X);
+cleanup:
+ return ret;
+}
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_mul_int_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ mbedtls_mpi_uint c)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int(X, A, c));
+ MOD_ADD(X);
+cleanup:
+ return ret;
+}
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_sub_int_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ const mbedtls_mpi *A,
+ mbedtls_mpi_uint c)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(X, A, c));
+ MOD_SUB(X);
+cleanup:
+ return ret;
+}
+
+#define MPI_ECP_SUB_INT(X, A, c) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int_mod(grp, X, A, c))
+
+MBEDTLS_MAYBE_UNUSED
+static inline int mbedtls_mpi_shift_l_mod(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *X,
+ size_t count)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(X, count));
+ MOD_ADD(X);
+cleanup:
+ return ret;
+}
+
+/*
+ * Macro wrappers around ECP modular arithmetic
+ *
+ * Currently, these wrappers are defined via the bignum module.
+ */
+
+#define MPI_ECP_ADD(X, A, B) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mod(grp, X, A, B))
+
+#define MPI_ECP_SUB(X, A, B) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mod(grp, X, A, B))
+
+#define MPI_ECP_MUL(X, A, B) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, B))
+
+#define MPI_ECP_SQR(X, A) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mod(grp, X, A, A))
+
+#define MPI_ECP_MUL_INT(X, A, c) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_int_mod(grp, X, A, c))
+
+#define MPI_ECP_INV(dst, src) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod((dst), (src), &grp->P))
+
+#define MPI_ECP_MOV(X, A) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(X, A))
+
+#define MPI_ECP_SHIFT_L(X, count) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l_mod(grp, X, count))
+
+#define MPI_ECP_LSET(X, c) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(X, c))
+
+#define MPI_ECP_CMP_INT(X, c) \
+ mbedtls_mpi_cmp_int(X, c)
+
+#define MPI_ECP_CMP(X, Y) \
+ mbedtls_mpi_cmp_mpi(X, Y)
+
+/* Needs f_rng, p_rng to be defined. */
+#define MPI_ECP_RAND(X) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_random((X), 2, &grp->P, f_rng, p_rng))
+
+/* Conditional negation
+ * Needs grp and a temporary MPI tmp to be defined. */
+#define MPI_ECP_COND_NEG(X, cond) \
+ do \
+ { \
+ unsigned char nonzero = mbedtls_mpi_cmp_int((X), 0) != 0; \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&tmp, &grp->P, (X))); \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), &tmp, \
+ nonzero & cond)); \
+ } while (0)
+
+#define MPI_ECP_NEG(X) MPI_ECP_COND_NEG((X), 1)
+
+#define MPI_ECP_VALID(X) \
+ ((X)->p != NULL)
+
+#define MPI_ECP_COND_ASSIGN(X, Y, cond) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign((X), (Y), (cond)))
+
+#define MPI_ECP_COND_SWAP(X, Y, cond) \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_swap((X), (Y), (cond)))
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+
+/*
+ * Computes the right-hand side of the Short Weierstrass equation
+ * RHS = X^3 + A X + B
+ */
+static int ecp_sw_rhs(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *rhs,
+ const mbedtls_mpi *X)
+{
+ int ret;
+
+ /* Compute X^3 + A X + B as X (X^2 + A) + B */
+ MPI_ECP_SQR(rhs, X);
+
+ /* Special case for A = -3 */
+ if (mbedtls_ecp_group_a_is_minus_3(grp)) {
+ MPI_ECP_SUB_INT(rhs, rhs, 3);
+ } else {
+ MPI_ECP_ADD(rhs, rhs, &grp->A);
+ }
+
+ MPI_ECP_MUL(rhs, rhs, X);
+ MPI_ECP_ADD(rhs, rhs, &grp->B);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Derive Y from X and a parity bit
+ */
+static int mbedtls_ecp_sw_derive_y(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *X,
+ mbedtls_mpi *Y,
+ int parity_bit)
+{
+ /* w = y^2 = x^3 + ax + b
+ * y = sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4)
+ *
+ * Note: this method for extracting square root does not validate that w
+ * was indeed a square so this function will return garbage in Y if X
+ * does not correspond to a point on the curve.
+ */
+
+ /* Check prerequisite p = 3 mod 4 */
+ if (mbedtls_mpi_get_bit(&grp->P, 0) != 1 ||
+ mbedtls_mpi_get_bit(&grp->P, 1) != 1) {
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ int ret;
+ mbedtls_mpi exp;
+ mbedtls_mpi_init(&exp);
+
+ /* use Y to store intermediate result, actually w above */
+ MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, Y, X));
+
+ /* w = y^2 */ /* Y contains y^2 intermediate result */
+ /* exp = ((p+1)/4) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&exp, &grp->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&exp, 2));
+ /* sqrt(w) = w^((p+1)/4) mod p (for prime p where p = 3 mod 4) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(Y, Y /*y^2*/, &exp, &grp->P, NULL));
+
+ /* check parity bit match or else invert Y */
+ /* This quick inversion implementation is valid because Y != 0 for all
+ * Short Weierstrass curves supported by mbedtls, as each supported curve
+ * has an order that is a large prime, so each supported curve does not
+ * have any point of order 2, and a point with Y == 0 would be of order 2 */
+ if (mbedtls_mpi_get_bit(Y, 0) != parity_bit) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(Y, &grp->P, Y));
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&exp);
+ return ret;
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_C)
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * For curves in short Weierstrass form, we do all the internal operations in
+ * Jacobian coordinates.
+ *
+ * For multiplication, we'll use a comb method with countermeasures against
+ * SPA, hence timing attacks.
+ */
+
+/*
+ * Normalize jacobian coordinates so that Z == 0 || Z == 1 (GECC 3.2.1)
+ * Cost: 1N := 1I + 3M + 1S
+ */
+static int ecp_normalize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt)
+{
+ if (MPI_ECP_CMP_INT(&pt->Z, 0) == 0) {
+ return 0;
+ }
+
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi T;
+ mbedtls_mpi_init(&T);
+
+ MPI_ECP_INV(&T, &pt->Z); /* T <- 1 / Z */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y' <- Y*T = Y / Z */
+ MPI_ECP_SQR(&T, &T); /* T <- T^2 = 1 / Z^2 */
+ MPI_ECP_MUL(&pt->X, &pt->X, &T); /* X <- X * T = X / Z^2 */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &T); /* Y'' <- Y' * T = Y / Z^3 */
+
+ MPI_ECP_LSET(&pt->Z, 1);
+
+cleanup:
+
+ mbedtls_mpi_free(&T);
+
+ return ret;
+}
+
+/*
+ * Normalize jacobian coordinates of an array of (pointers to) points,
+ * using Montgomery's trick to perform only one inversion mod P.
+ * (See for example Cohen's "A Course in Computational Algebraic Number
+ * Theory", Algorithm 10.3.4.)
+ *
+ * Warning: fails (returning an error) if one of the points is zero!
+ * This should never happen, see choice of w in ecp_mul_comb().
+ *
+ * Cost: 1N(t) := 1I + (6t - 3)M + 1S
+ */
+static int ecp_normalize_jac_many(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *T[], size_t T_size)
+{
+ if (T_size < 2) {
+ return ecp_normalize_jac(grp, *T);
+ }
+
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ mbedtls_mpi *c, t;
+
+ if ((c = mbedtls_calloc(T_size, sizeof(mbedtls_mpi))) == NULL) {
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ }
+
+ mbedtls_mpi_init(&t);
+
+ mpi_init_many(c, T_size);
+ /*
+ * c[i] = Z_0 * ... * Z_i, i = 0,..,n := T_size-1
+ */
+ MPI_ECP_MOV(&c[0], &T[0]->Z);
+ for (i = 1; i < T_size; i++) {
+ MPI_ECP_MUL(&c[i], &c[i-1], &T[i]->Z);
+ }
+
+ /*
+ * c[n] = 1 / (Z_0 * ... * Z_n) mod P
+ */
+ MPI_ECP_INV(&c[T_size-1], &c[T_size-1]);
+
+ for (i = T_size - 1;; i--) {
+ /* At the start of iteration i (note that i decrements), we have
+ * - c[j] = Z_0 * .... * Z_j for j < i,
+ * - c[j] = 1 / (Z_0 * .... * Z_j) for j == i,
+ *
+ * This is maintained via
+ * - c[i-1] <- c[i] * Z_i
+ *
+ * We also derive 1/Z_i = c[i] * c[i-1] for i>0 and use that
+ * to do the actual normalization. For i==0, we already have
+ * c[0] = 1 / Z_0.
+ */
+
+ if (i > 0) {
+ /* Compute 1/Z_i and establish invariant for the next iteration. */
+ MPI_ECP_MUL(&t, &c[i], &c[i-1]);
+ MPI_ECP_MUL(&c[i-1], &c[i], &T[i]->Z);
+ } else {
+ MPI_ECP_MOV(&t, &c[0]);
+ }
+
+ /* Now t holds 1 / Z_i; normalize as in ecp_normalize_jac() */
+ MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
+ MPI_ECP_SQR(&t, &t);
+ MPI_ECP_MUL(&T[i]->X, &T[i]->X, &t);
+ MPI_ECP_MUL(&T[i]->Y, &T[i]->Y, &t);
+
+ /*
+ * Post-precessing: reclaim some memory by shrinking coordinates
+ * - not storing Z (always 1)
+ * - shrinking other coordinates, but still keeping the same number of
+ * limbs as P, as otherwise it will too likely be regrown too fast.
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->X, grp->P.n));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shrink(&T[i]->Y, grp->P.n));
+
+ MPI_ECP_LSET(&T[i]->Z, 1);
+
+ if (i == 0) {
+ break;
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&t);
+ mpi_free_many(c, T_size);
+ mbedtls_free(c);
+
+ return ret;
+}
+
+/*
+ * Conditional point inversion: Q -> -Q = (Q.X, -Q.Y, Q.Z) without leak.
+ * "inv" must be 0 (don't invert) or 1 (invert) or the result will be invalid
+ */
+static int ecp_safe_invert_jac(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *Q,
+ unsigned char inv)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi tmp;
+ mbedtls_mpi_init(&tmp);
+
+ MPI_ECP_COND_NEG(&Q->Y, inv);
+
+cleanup:
+ mbedtls_mpi_free(&tmp);
+ return ret;
+}
+
+/*
+ * Point doubling R = 2 P, Jacobian coordinates
+ *
+ * Based on http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-1998-cmo-2 .
+ *
+ * We follow the variable naming fairly closely. The formula variations that trade a MUL for a SQR
+ * (plus a few ADDs) aren't useful as our bignum implementation doesn't distinguish squaring.
+ *
+ * Standard optimizations are applied when curve parameter A is one of { 0, -3 }.
+ *
+ * Cost: 1D := 3M + 4S (A == 0)
+ * 4M + 4S (A == -3)
+ * 3M + 6S + 1a otherwise
+ */
+static int ecp_double_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point *P,
+ mbedtls_mpi tmp[4])
+{
+#if defined(MBEDTLS_SELF_TEST)
+ dbl_count++;
+#endif
+
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Special case for A = -3 */
+ if (mbedtls_ecp_group_a_is_minus_3(grp)) {
+ /* tmp[0] <- M = 3(X + Z^2)(X - Z^2) */
+ MPI_ECP_SQR(&tmp[1], &P->Z);
+ MPI_ECP_ADD(&tmp[2], &P->X, &tmp[1]);
+ MPI_ECP_SUB(&tmp[3], &P->X, &tmp[1]);
+ MPI_ECP_MUL(&tmp[1], &tmp[2], &tmp[3]);
+ MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
+ } else {
+ /* tmp[0] <- M = 3.X^2 + A.Z^4 */
+ MPI_ECP_SQR(&tmp[1], &P->X);
+ MPI_ECP_MUL_INT(&tmp[0], &tmp[1], 3);
+
+ /* Optimize away for "koblitz" curves with A = 0 */
+ if (MPI_ECP_CMP_INT(&grp->A, 0) != 0) {
+ /* M += A.Z^4 */
+ MPI_ECP_SQR(&tmp[1], &P->Z);
+ MPI_ECP_SQR(&tmp[2], &tmp[1]);
+ MPI_ECP_MUL(&tmp[1], &tmp[2], &grp->A);
+ MPI_ECP_ADD(&tmp[0], &tmp[0], &tmp[1]);
+ }
+ }
+
+ /* tmp[1] <- S = 4.X.Y^2 */
+ MPI_ECP_SQR(&tmp[2], &P->Y);
+ MPI_ECP_SHIFT_L(&tmp[2], 1);
+ MPI_ECP_MUL(&tmp[1], &P->X, &tmp[2]);
+ MPI_ECP_SHIFT_L(&tmp[1], 1);
+
+ /* tmp[3] <- U = 8.Y^4 */
+ MPI_ECP_SQR(&tmp[3], &tmp[2]);
+ MPI_ECP_SHIFT_L(&tmp[3], 1);
+
+ /* tmp[2] <- T = M^2 - 2.S */
+ MPI_ECP_SQR(&tmp[2], &tmp[0]);
+ MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
+ MPI_ECP_SUB(&tmp[2], &tmp[2], &tmp[1]);
+
+ /* tmp[1] <- S = M(S - T) - U */
+ MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[2]);
+ MPI_ECP_MUL(&tmp[1], &tmp[1], &tmp[0]);
+ MPI_ECP_SUB(&tmp[1], &tmp[1], &tmp[3]);
+
+ /* tmp[3] <- U = 2.Y.Z */
+ MPI_ECP_MUL(&tmp[3], &P->Y, &P->Z);
+ MPI_ECP_SHIFT_L(&tmp[3], 1);
+
+ /* Store results */
+ MPI_ECP_MOV(&R->X, &tmp[2]);
+ MPI_ECP_MOV(&R->Y, &tmp[1]);
+ MPI_ECP_MOV(&R->Z, &tmp[3]);
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Addition: R = P + Q, mixed affine-Jacobian coordinates (GECC 3.22)
+ *
+ * The coordinates of Q must be normalized (= affine),
+ * but those of P don't need to. R is not normalized.
+ *
+ * P,Q,R may alias, but only at the level of EC points: they must be either
+ * equal as pointers, or disjoint (including the coordinate data buffers).
+ * Fine-grained aliasing at the level of coordinates is not supported.
+ *
+ * Special cases: (1) P or Q is zero, (2) R is zero, (3) P == Q.
+ * None of these cases can happen as intermediate step in ecp_mul_comb():
+ * - at each step, P, Q and R are multiples of the base point, the factor
+ * being less than its order, so none of them is zero;
+ * - Q is an odd multiple of the base point, P an even multiple,
+ * due to the choice of precomputed points in the modified comb method.
+ * So branches for these cases do not leak secret information.
+ *
+ * Cost: 1A := 8M + 3S
+ */
+static int ecp_add_mixed(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
+ mbedtls_mpi tmp[4])
+{
+#if defined(MBEDTLS_SELF_TEST)
+ add_count++;
+#endif
+
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* NOTE: Aliasing between input and output is allowed, so one has to make
+ * sure that at the point X,Y,Z are written, {P,Q}->{X,Y,Z} are no
+ * longer read from. */
+ mbedtls_mpi * const X = &R->X;
+ mbedtls_mpi * const Y = &R->Y;
+ mbedtls_mpi * const Z = &R->Z;
+
+ if (!MPI_ECP_VALID(&Q->Z)) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Trivial cases: P == 0 or Q == 0 (case 1)
+ */
+ if (MPI_ECP_CMP_INT(&P->Z, 0) == 0) {
+ return mbedtls_ecp_copy(R, Q);
+ }
+
+ if (MPI_ECP_CMP_INT(&Q->Z, 0) == 0) {
+ return mbedtls_ecp_copy(R, P);
+ }
+
+ /*
+ * Make sure Q coordinates are normalized
+ */
+ if (MPI_ECP_CMP_INT(&Q->Z, 1) != 0) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ MPI_ECP_SQR(&tmp[0], &P->Z);
+ MPI_ECP_MUL(&tmp[1], &tmp[0], &P->Z);
+ MPI_ECP_MUL(&tmp[0], &tmp[0], &Q->X);
+ MPI_ECP_MUL(&tmp[1], &tmp[1], &Q->Y);
+ MPI_ECP_SUB(&tmp[0], &tmp[0], &P->X);
+ MPI_ECP_SUB(&tmp[1], &tmp[1], &P->Y);
+
+ /* Special cases (2) and (3) */
+ if (MPI_ECP_CMP_INT(&tmp[0], 0) == 0) {
+ if (MPI_ECP_CMP_INT(&tmp[1], 0) == 0) {
+ ret = ecp_double_jac(grp, R, P, tmp);
+ goto cleanup;
+ } else {
+ ret = mbedtls_ecp_set_zero(R);
+ goto cleanup;
+ }
+ }
+
+ /* {P,Q}->Z no longer used, so OK to write to Z even if there's aliasing. */
+ MPI_ECP_MUL(Z, &P->Z, &tmp[0]);
+ MPI_ECP_SQR(&tmp[2], &tmp[0]);
+ MPI_ECP_MUL(&tmp[3], &tmp[2], &tmp[0]);
+ MPI_ECP_MUL(&tmp[2], &tmp[2], &P->X);
+
+ MPI_ECP_MOV(&tmp[0], &tmp[2]);
+ MPI_ECP_SHIFT_L(&tmp[0], 1);
+
+ /* {P,Q}->X no longer used, so OK to write to X even if there's aliasing. */
+ MPI_ECP_SQR(X, &tmp[1]);
+ MPI_ECP_SUB(X, X, &tmp[0]);
+ MPI_ECP_SUB(X, X, &tmp[3]);
+ MPI_ECP_SUB(&tmp[2], &tmp[2], X);
+ MPI_ECP_MUL(&tmp[2], &tmp[2], &tmp[1]);
+ MPI_ECP_MUL(&tmp[3], &tmp[3], &P->Y);
+ /* {P,Q}->Y no longer used, so OK to write to Y even if there's aliasing. */
+ MPI_ECP_SUB(Y, &tmp[2], &tmp[3]);
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Randomize jacobian coordinates:
+ * (X, Y, Z) -> (l^2 X, l^3 Y, l Z) for random l
+ * This is sort of the reverse operation of ecp_normalize_jac().
+ *
+ * This countermeasure was first suggested in [2].
+ */
+static int ecp_randomize_jac(const mbedtls_ecp_group *grp, mbedtls_ecp_point *pt,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi l;
+
+ mbedtls_mpi_init(&l);
+
+ /* Generate l such that 1 < l < p */
+ MPI_ECP_RAND(&l);
+
+ /* Z' = l * Z */
+ MPI_ECP_MUL(&pt->Z, &pt->Z, &l);
+
+ /* Y' = l * Y */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
+
+ /* X' = l^2 * X */
+ MPI_ECP_SQR(&l, &l);
+ MPI_ECP_MUL(&pt->X, &pt->X, &l);
+
+ /* Y'' = l^2 * Y' = l^3 * Y */
+ MPI_ECP_MUL(&pt->Y, &pt->Y, &l);
+
+cleanup:
+ mbedtls_mpi_free(&l);
+
+ if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ }
+ return ret;
+}
+
+/*
+ * Check and define parameters used by the comb method (see below for details)
+ */
+#if MBEDTLS_ECP_WINDOW_SIZE < 2 || MBEDTLS_ECP_WINDOW_SIZE > 7
+#error "MBEDTLS_ECP_WINDOW_SIZE out of bounds"
+#endif
+
+/* d = ceil( n / w ) */
+#define COMB_MAX_D (MBEDTLS_ECP_MAX_BITS + 1) / 2
+
+/* number of precomputed points */
+#define COMB_MAX_PRE (1 << (MBEDTLS_ECP_WINDOW_SIZE - 1))
+
+/*
+ * Compute the representation of m that will be used with our comb method.
+ *
+ * The basic comb method is described in GECC 3.44 for example. We use a
+ * modified version that provides resistance to SPA by avoiding zero
+ * digits in the representation as in [3]. We modify the method further by
+ * requiring that all K_i be odd, which has the small cost that our
+ * representation uses one more K_i, due to carries, but saves on the size of
+ * the precomputed table.
+ *
+ * Summary of the comb method and its modifications:
+ *
+ * - The goal is to compute m*P for some w*d-bit integer m.
+ *
+ * - The basic comb method splits m into the w-bit integers
+ * x[0] .. x[d-1] where x[i] consists of the bits in m whose
+ * index has residue i modulo d, and computes m * P as
+ * S[x[0]] + 2 * S[x[1]] + .. + 2^(d-1) S[x[d-1]], where
+ * S[i_{w-1} .. i_0] := i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + i_0 P.
+ *
+ * - If it happens that, say, x[i+1]=0 (=> S[x[i+1]]=0), one can replace the sum by
+ * .. + 2^{i-1} S[x[i-1]] - 2^i S[x[i]] + 2^{i+1} S[x[i]] + 2^{i+2} S[x[i+2]] ..,
+ * thereby successively converting it into a form where all summands
+ * are nonzero, at the cost of negative summands. This is the basic idea of [3].
+ *
+ * - More generally, even if x[i+1] != 0, we can first transform the sum as
+ * .. - 2^i S[x[i]] + 2^{i+1} ( S[x[i]] + S[x[i+1]] ) + 2^{i+2} S[x[i+2]] ..,
+ * and then replace S[x[i]] + S[x[i+1]] = S[x[i] ^ x[i+1]] + 2 S[x[i] & x[i+1]].
+ * Performing and iterating this procedure for those x[i] that are even
+ * (keeping track of carry), we can transform the original sum into one of the form
+ * S[x'[0]] +- 2 S[x'[1]] +- .. +- 2^{d-1} S[x'[d-1]] + 2^d S[x'[d]]
+ * with all x'[i] odd. It is therefore only necessary to know S at odd indices,
+ * which is why we are only computing half of it in the first place in
+ * ecp_precompute_comb and accessing it with index abs(i) / 2 in ecp_select_comb.
+ *
+ * - For the sake of compactness, only the seven low-order bits of x[i]
+ * are used to represent its absolute value (K_i in the paper), and the msb
+ * of x[i] encodes the sign (s_i in the paper): it is set if and only if
+ * if s_i == -1;
+ *
+ * Calling conventions:
+ * - x is an array of size d + 1
+ * - w is the size, ie number of teeth, of the comb, and must be between
+ * 2 and 7 (in practice, between 2 and MBEDTLS_ECP_WINDOW_SIZE)
+ * - m is the MPI, expected to be odd and such that bitlength(m) <= w * d
+ * (the result will be incorrect if these assumptions are not satisfied)
+ */
+static void ecp_comb_recode_core(unsigned char x[], size_t d,
+ unsigned char w, const mbedtls_mpi *m)
+{
+ size_t i, j;
+ unsigned char c, cc, adjust;
+
+ memset(x, 0, d+1);
+
+ /* First get the classical comb values (except for x_d = 0) */
+ for (i = 0; i < d; i++) {
+ for (j = 0; j < w; j++) {
+ x[i] |= mbedtls_mpi_get_bit(m, i + d * j) << j;
+ }
+ }
+
+ /* Now make sure x_1 .. x_d are odd */
+ c = 0;
+ for (i = 1; i <= d; i++) {
+ /* Add carry and update it */
+ cc = x[i] & c;
+ x[i] = x[i] ^ c;
+ c = cc;
+
+ /* Adjust if needed, avoiding branches */
+ adjust = 1 - (x[i] & 0x01);
+ c |= x[i] & (x[i-1] * adjust);
+ x[i] = x[i] ^ (x[i-1] * adjust);
+ x[i-1] |= adjust << 7;
+ }
+}
+
+/*
+ * Precompute points for the adapted comb method
+ *
+ * Assumption: T must be able to hold 2^{w - 1} elements.
+ *
+ * Operation: If i = i_{w-1} ... i_1 is the binary representation of i,
+ * sets T[i] = i_{w-1} 2^{(w-1)d} P + ... + i_1 2^d P + P.
+ *
+ * Cost: d(w-1) D + (2^{w-1} - 1) A + 1 N(w-1) + 1 N(2^{w-1} - 1)
+ *
+ * Note: Even comb values (those where P would be omitted from the
+ * sum defining T[i] above) are not needed in our adaption
+ * the comb method. See ecp_comb_recode_core().
+ *
+ * This function currently works in four steps:
+ * (1) [dbl] Computation of intermediate T[i] for 2-power values of i
+ * (2) [norm_dbl] Normalization of coordinates of these T[i]
+ * (3) [add] Computation of all T[i]
+ * (4) [norm_add] Normalization of all T[i]
+ *
+ * Step 1 can be interrupted but not the others; together with the final
+ * coordinate normalization they are the largest steps done at once, depending
+ * on the window size. Here are operation counts for P-256:
+ *
+ * step (2) (3) (4)
+ * w = 5 142 165 208
+ * w = 4 136 77 160
+ * w = 3 130 33 136
+ * w = 2 124 11 124
+ *
+ * So if ECC operations are blocking for too long even with a low max_ops
+ * value, it's useful to set MBEDTLS_ECP_WINDOW_SIZE to a lower value in order
+ * to minimize maximum blocking time.
+ */
+static int ecp_precompute_comb(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point T[], const mbedtls_ecp_point *P,
+ unsigned char w, size_t d,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char i;
+ size_t j = 0;
+ const unsigned char T_size = 1U << (w - 1);
+ mbedtls_ecp_point *cur, *TT[COMB_MAX_PRE - 1] = { NULL };
+
+ mbedtls_mpi tmp[4];
+
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
+ goto dbl;
+ }
+ if (rs_ctx->rsm->state == ecp_rsm_pre_norm_dbl) {
+ goto norm_dbl;
+ }
+ if (rs_ctx->rsm->state == ecp_rsm_pre_add) {
+ goto add;
+ }
+ if (rs_ctx->rsm->state == ecp_rsm_pre_norm_add) {
+ goto norm_add;
+ }
+ }
+#else
+ (void) rs_ctx;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_dbl;
+
+ /* initial state for the loop */
+ rs_ctx->rsm->i = 0;
+ }
+
+dbl:
+#endif
+ /*
+ * Set T[0] = P and
+ * T[2^{l-1}] = 2^{dl} P for l = 1 .. w-1 (this is not the final value)
+ */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&T[0], P));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
+ j = rs_ctx->rsm->i;
+ } else
+#endif
+ j = 0;
+
+ for (; j < d * (w - 1); j++) {
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL);
+
+ i = 1U << (j / d);
+ cur = T + i;
+
+ if (j % d == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(cur, T + (i >> 1)));
+ }
+
+ MBEDTLS_MPI_CHK(ecp_double_jac(grp, cur, cur, tmp));
+ }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_norm_dbl;
+ }
+
+norm_dbl:
+#endif
+ /*
+ * Normalize current elements in T to allow them to be used in
+ * ecp_add_mixed() below, which requires one normalized input.
+ *
+ * As T has holes, use an auxiliary array of pointers to elements in T.
+ *
+ */
+ j = 0;
+ for (i = 1; i < T_size; i <<= 1) {
+ TT[j++] = T + i;
+ }
+
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
+
+ MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_add;
+ }
+
+add:
+#endif
+ /*
+ * Compute the remaining ones using the minimal number of additions
+ * Be careful to update T[2^l] only after using it!
+ */
+ MBEDTLS_ECP_BUDGET((T_size - 1) * MBEDTLS_ECP_OPS_ADD);
+
+ for (i = 1; i < T_size; i <<= 1) {
+ j = i;
+ while (j--) {
+ MBEDTLS_MPI_CHK(ecp_add_mixed(grp, &T[i + j], &T[j], &T[i], tmp));
+ }
+ }
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_pre_norm_add;
+ }
+
+norm_add:
+#endif
+ /*
+ * Normalize final elements in T. Even though there are no holes now, we
+ * still need the auxiliary array for homogeneity with the previous
+ * call. Also, skip T[0] which is already normalised, being a copy of P.
+ */
+ for (j = 0; j + 1 < T_size; j++) {
+ TT[j] = T + j + 1;
+ }
+
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV + 6 * j - 2);
+
+ MBEDTLS_MPI_CHK(ecp_normalize_jac_many(grp, TT, j));
+
+ /* Free Z coordinate (=1 after normalization) to save RAM.
+ * This makes T[i] invalid as mbedtls_ecp_points, but this is OK
+ * since from this point onwards, they are only accessed indirectly
+ * via the getter function ecp_select_comb() which does set the
+ * target's Z coordinate to 1. */
+ for (i = 0; i < T_size; i++) {
+ mbedtls_mpi_free(&T[i].Z);
+ }
+
+cleanup:
+
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+ ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ if (rs_ctx->rsm->state == ecp_rsm_pre_dbl) {
+ rs_ctx->rsm->i = j;
+ }
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Select precomputed point: R = sign(i) * T[ abs(i) / 2 ]
+ *
+ * See ecp_comb_recode_core() for background
+ */
+static int ecp_select_comb(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point T[], unsigned char T_size,
+ unsigned char i)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char ii, j;
+
+ /* Ignore the "sign" bit and scale down */
+ ii = (i & 0x7Fu) >> 1;
+
+ /* Read the whole table to thwart cache-based timing attacks */
+ for (j = 0; j < T_size; j++) {
+ MPI_ECP_COND_ASSIGN(&R->X, &T[j].X, j == ii);
+ MPI_ECP_COND_ASSIGN(&R->Y, &T[j].Y, j == ii);
+ }
+
+ /* Safely invert result if i is "negative" */
+ MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, R, i >> 7));
+
+ MPI_ECP_LSET(&R->Z, 1);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Core multiplication algorithm for the (modified) comb method.
+ * This part is actually common with the basic comb method (GECC 3.44)
+ *
+ * Cost: d A + d D + 1 R
+ */
+static int ecp_mul_comb_core(const mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_ecp_point T[], unsigned char T_size,
+ const unsigned char x[], size_t d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point Txi;
+ mbedtls_mpi tmp[4];
+ size_t i;
+
+ mbedtls_ecp_point_init(&Txi);
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if !defined(MBEDTLS_ECP_RESTARTABLE)
+ (void) rs_ctx;
+#endif
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+ rs_ctx->rsm->state != ecp_rsm_comb_core) {
+ rs_ctx->rsm->i = 0;
+ rs_ctx->rsm->state = ecp_rsm_comb_core;
+ }
+
+ /* new 'if' instead of nested for the sake of the 'else' branch */
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->i != 0) {
+ /* restore current index (R already pointing to rs_ctx->rsm->R) */
+ i = rs_ctx->rsm->i;
+ } else
+#endif
+ {
+ /* Start with a non-zero point and randomize its coordinates */
+ i = d;
+ MBEDTLS_MPI_CHK(ecp_select_comb(grp, R, T, T_size, x[i]));
+ if (f_rng != 0) {
+ MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, R, f_rng, p_rng));
+ }
+ }
+
+ while (i != 0) {
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_DBL + MBEDTLS_ECP_OPS_ADD);
+ --i;
+
+ MBEDTLS_MPI_CHK(ecp_double_jac(grp, R, R, tmp));
+ MBEDTLS_MPI_CHK(ecp_select_comb(grp, &Txi, T, T_size, x[i]));
+ MBEDTLS_MPI_CHK(ecp_add_mixed(grp, R, R, &Txi, tmp));
+ }
+
+cleanup:
+
+ mbedtls_ecp_point_free(&Txi);
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL &&
+ ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ rs_ctx->rsm->i = i;
+ /* no need to save R, already pointing to rs_ctx->rsm->R */
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Recode the scalar to get constant-time comb multiplication
+ *
+ * As the actual scalar recoding needs an odd scalar as a starting point,
+ * this wrapper ensures that by replacing m by N - m if necessary, and
+ * informs the caller that the result of multiplication will be negated.
+ *
+ * This works because we only support large prime order for Short Weierstrass
+ * curves, so N is always odd hence either m or N - m is.
+ *
+ * See ecp_comb_recode_core() for background.
+ */
+static int ecp_comb_recode_scalar(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *m,
+ unsigned char k[COMB_MAX_D + 1],
+ size_t d,
+ unsigned char w,
+ unsigned char *parity_trick)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi M, mm;
+
+ mbedtls_mpi_init(&M);
+ mbedtls_mpi_init(&mm);
+
+ /* N is always odd (see above), just make extra sure */
+ if (mbedtls_mpi_get_bit(&grp->N, 0) != 1) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* do we need the parity trick? */
+ *parity_trick = (mbedtls_mpi_get_bit(m, 0) == 0);
+
+ /* execute parity fix in constant time */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&M, m));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&mm, &grp->N, m));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_safe_cond_assign(&M, &mm, *parity_trick));
+
+ /* actual scalar recoding */
+ ecp_comb_recode_core(k, d, w, &M);
+
+cleanup:
+ mbedtls_mpi_free(&mm);
+ mbedtls_mpi_free(&M);
+
+ return ret;
+}
+
+/*
+ * Perform comb multiplication (for short Weierstrass curves)
+ * once the auxiliary table has been pre-computed.
+ *
+ * Scalar recoding may use a parity trick that makes us compute -m * P,
+ * if that is the case we'll need to recover m * P at the end.
+ */
+static int ecp_mul_comb_after_precomp(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R,
+ const mbedtls_mpi *m,
+ const mbedtls_ecp_point *T,
+ unsigned char T_size,
+ unsigned char w,
+ size_t d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char parity_trick;
+ unsigned char k[COMB_MAX_D + 1];
+ mbedtls_ecp_point *RR = R;
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ RR = &rs_ctx->rsm->R;
+
+ if (rs_ctx->rsm->state == ecp_rsm_final_norm) {
+ goto final_norm;
+ }
+ }
+#endif
+
+ MBEDTLS_MPI_CHK(ecp_comb_recode_scalar(grp, m, k, d, w,
+ &parity_trick));
+ MBEDTLS_MPI_CHK(ecp_mul_comb_core(grp, RR, T, T_size, k, d,
+ f_rng, p_rng, rs_ctx));
+ MBEDTLS_MPI_CHK(ecp_safe_invert_jac(grp, RR, parity_trick));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ rs_ctx->rsm->state = ecp_rsm_final_norm;
+ }
+
+final_norm:
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
+#endif
+ /*
+ * Knowledge of the jacobian coordinates may leak the last few bits of the
+ * scalar [1], and since our MPI implementation isn't constant-flow,
+ * inversion (used for coordinate normalization) may leak the full value
+ * of its input via side-channels [2].
+ *
+ * [1] https://eprint.iacr.org/2003/191
+ * [2] https://eprint.iacr.org/2020/055
+ *
+ * Avoid the leak by randomizing coordinates before we normalize them.
+ */
+ if (f_rng != 0) {
+ MBEDTLS_MPI_CHK(ecp_randomize_jac(grp, RR, f_rng, p_rng));
+ }
+
+ MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, RR));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, RR));
+ }
+#endif
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Pick window size based on curve size and whether we optimize for base point
+ */
+static unsigned char ecp_pick_window_size(const mbedtls_ecp_group *grp,
+ unsigned char p_eq_g)
+{
+ unsigned char w;
+
+ /*
+ * Minimize the number of multiplications, that is minimize
+ * 10 * d * w + 18 * 2^(w-1) + 11 * d + 7 * w, with d = ceil( nbits / w )
+ * (see costs of the various parts, with 1S = 1M)
+ */
+ w = grp->nbits >= 384 ? 5 : 4;
+
+ /*
+ * If P == G, pre-compute a bit more, since this may be re-used later.
+ * Just adding one avoids upping the cost of the first mul too much,
+ * and the memory cost too.
+ */
+ if (p_eq_g) {
+ w++;
+ }
+
+ /*
+ * If static comb table may not be used (!p_eq_g) or static comb table does
+ * not exists, make sure w is within bounds.
+ * (The last test is useful only for very small curves in the test suite.)
+ *
+ * The user reduces MBEDTLS_ECP_WINDOW_SIZE does not changes the size of
+ * static comb table, because the size of static comb table is fixed when
+ * it is generated.
+ */
+#if (MBEDTLS_ECP_WINDOW_SIZE < 6)
+ if ((!p_eq_g || !ecp_group_is_static_comb_table(grp)) && w > MBEDTLS_ECP_WINDOW_SIZE) {
+ w = MBEDTLS_ECP_WINDOW_SIZE;
+ }
+#endif
+ if (w >= grp->nbits) {
+ w = 2;
+ }
+
+ return w;
+}
+
+/*
+ * Multiplication using the comb method - for curves in short Weierstrass form
+ *
+ * This function is mainly responsible for administrative work:
+ * - managing the restart context if enabled
+ * - managing the table of precomputed points (passed between the below two
+ * functions): allocation, computation, ownership transfer, freeing.
+ *
+ * It delegates the actual arithmetic work to:
+ * ecp_precompute_comb() and ecp_mul_comb_with_precomp()
+ *
+ * See comments on ecp_comb_recode_core() regarding the computation strategy.
+ */
+static int ecp_mul_comb(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char w, p_eq_g, i;
+ size_t d;
+ unsigned char T_size = 0, T_ok = 0;
+ mbedtls_ecp_point *T = NULL;
+
+ ECP_RS_ENTER(rsm);
+
+ /* Is P the base point ? */
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+ p_eq_g = (MPI_ECP_CMP(&P->Y, &grp->G.Y) == 0 &&
+ MPI_ECP_CMP(&P->X, &grp->G.X) == 0);
+#else
+ p_eq_g = 0;
+#endif
+
+ /* Pick window size and deduce related sizes */
+ w = ecp_pick_window_size(grp, p_eq_g);
+ T_size = 1U << (w - 1);
+ d = (grp->nbits + w - 1) / w;
+
+ /* Pre-computed table: do we have it already for the base point? */
+ if (p_eq_g && grp->T != NULL) {
+ /* second pointer to the same table, will be deleted on exit */
+ T = grp->T;
+ T_ok = 1;
+ } else
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ /* Pre-computed table: do we have one in progress? complete? */
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && rs_ctx->rsm->T != NULL) {
+ /* transfer ownership of T from rsm to local function */
+ T = rs_ctx->rsm->T;
+ rs_ctx->rsm->T = NULL;
+ rs_ctx->rsm->T_size = 0;
+
+ /* This effectively jumps to the call to mul_comb_after_precomp() */
+ T_ok = rs_ctx->rsm->state >= ecp_rsm_comb_core;
+ } else
+#endif
+ /* Allocate table if we didn't have any */
+ {
+ T = mbedtls_calloc(T_size, sizeof(mbedtls_ecp_point));
+ if (T == NULL) {
+ ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ goto cleanup;
+ }
+
+ for (i = 0; i < T_size; i++) {
+ mbedtls_ecp_point_init(&T[i]);
+ }
+
+ T_ok = 0;
+ }
+
+ /* Compute table (or finish computing it) if not done already */
+ if (!T_ok) {
+ MBEDTLS_MPI_CHK(ecp_precompute_comb(grp, T, P, w, d, rs_ctx));
+
+ if (p_eq_g) {
+ /* almost transfer ownership of T to the group, but keep a copy of
+ * the pointer to use for calling the next function more easily */
+ grp->T = T;
+ grp->T_size = T_size;
+ }
+ }
+
+ /* Actual comb multiplication using precomputed points */
+ MBEDTLS_MPI_CHK(ecp_mul_comb_after_precomp(grp, R, m,
+ T, T_size, w, d,
+ f_rng, p_rng, rs_ctx));
+
+cleanup:
+
+ /* does T belong to the group? */
+ if (T == grp->T) {
+ T = NULL;
+ }
+
+ /* does T belong to the restart context? */
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->rsm != NULL && ret == MBEDTLS_ERR_ECP_IN_PROGRESS && T != NULL) {
+ /* transfer ownership of T from local function to rsm */
+ rs_ctx->rsm->T_size = T_size;
+ rs_ctx->rsm->T = T;
+ T = NULL;
+ }
+#endif
+
+ /* did T belong to us? then let's destroy it! */
+ if (T != NULL) {
+ for (i = 0; i < T_size; i++) {
+ mbedtls_ecp_point_free(&T[i]);
+ }
+ mbedtls_free(T);
+ }
+
+ /* prevent caller from using invalid value */
+ int should_free_R = (ret != 0);
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ /* don't free R while in progress in case R == P */
+ if (ret == MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ should_free_R = 0;
+ }
+#endif
+ if (should_free_R) {
+ mbedtls_ecp_point_free(R);
+ }
+
+ ECP_RS_LEAVE(rsm);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+/*
+ * For Montgomery curves, we do all the internal arithmetic in projective
+ * coordinates. Import/export of points uses only the x coordinates, which is
+ * internally represented as X / Z.
+ *
+ * For scalar multiplication, we'll use a Montgomery ladder.
+ */
+
+/*
+ * Normalize Montgomery x/z coordinates: X = X/Z, Z = 1
+ * Cost: 1M + 1I
+ */
+static int ecp_normalize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MPI_ECP_INV(&P->Z, &P->Z);
+ MPI_ECP_MUL(&P->X, &P->X, &P->Z);
+ MPI_ECP_LSET(&P->Z, 1);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Randomize projective x/z coordinates:
+ * (X, Z) -> (l X, l Z) for random l
+ * This is sort of the reverse operation of ecp_normalize_mxz().
+ *
+ * This countermeasure was first suggested in [2].
+ * Cost: 2M
+ */
+static int ecp_randomize_mxz(const mbedtls_ecp_group *grp, mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi l;
+ mbedtls_mpi_init(&l);
+
+ /* Generate l such that 1 < l < p */
+ MPI_ECP_RAND(&l);
+
+ MPI_ECP_MUL(&P->X, &P->X, &l);
+ MPI_ECP_MUL(&P->Z, &P->Z, &l);
+
+cleanup:
+ mbedtls_mpi_free(&l);
+
+ if (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ ret = MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ }
+ return ret;
+}
+
+/*
+ * Double-and-add: R = 2P, S = P + Q, with d = X(P - Q),
+ * for Montgomery curves in x/z coordinates.
+ *
+ * http://www.hyperelliptic.org/EFD/g1p/auto-code/montgom/xz/ladder/mladd-1987-m.op3
+ * with
+ * d = X1
+ * P = (X2, Z2)
+ * Q = (X3, Z3)
+ * R = (X4, Z4)
+ * S = (X5, Z5)
+ * and eliminating temporary variables tO, ..., t4.
+ *
+ * Cost: 5M + 4S
+ */
+static int ecp_double_add_mxz(const mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R, mbedtls_ecp_point *S,
+ const mbedtls_ecp_point *P, const mbedtls_ecp_point *Q,
+ const mbedtls_mpi *d,
+ mbedtls_mpi T[4])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ MPI_ECP_ADD(&T[0], &P->X, &P->Z); /* Pp := PX + PZ */
+ MPI_ECP_SUB(&T[1], &P->X, &P->Z); /* Pm := PX - PZ */
+ MPI_ECP_ADD(&T[2], &Q->X, &Q->Z); /* Qp := QX + XZ */
+ MPI_ECP_SUB(&T[3], &Q->X, &Q->Z); /* Qm := QX - QZ */
+ MPI_ECP_MUL(&T[3], &T[3], &T[0]); /* Qm * Pp */
+ MPI_ECP_MUL(&T[2], &T[2], &T[1]); /* Qp * Pm */
+ MPI_ECP_SQR(&T[0], &T[0]); /* Pp^2 */
+ MPI_ECP_SQR(&T[1], &T[1]); /* Pm^2 */
+ MPI_ECP_MUL(&R->X, &T[0], &T[1]); /* Pp^2 * Pm^2 */
+ MPI_ECP_SUB(&T[0], &T[0], &T[1]); /* Pp^2 - Pm^2 */
+ MPI_ECP_MUL(&R->Z, &grp->A, &T[0]); /* A * (Pp^2 - Pm^2) */
+ MPI_ECP_ADD(&R->Z, &T[1], &R->Z); /* [ A * (Pp^2-Pm^2) ] + Pm^2 */
+ MPI_ECP_ADD(&S->X, &T[3], &T[2]); /* Qm*Pp + Qp*Pm */
+ MPI_ECP_SQR(&S->X, &S->X); /* (Qm*Pp + Qp*Pm)^2 */
+ MPI_ECP_SUB(&S->Z, &T[3], &T[2]); /* Qm*Pp - Qp*Pm */
+ MPI_ECP_SQR(&S->Z, &S->Z); /* (Qm*Pp - Qp*Pm)^2 */
+ MPI_ECP_MUL(&S->Z, d, &S->Z); /* d * ( Qm*Pp - Qp*Pm )^2 */
+ MPI_ECP_MUL(&R->Z, &T[0], &R->Z); /* [A*(Pp^2-Pm^2)+Pm^2]*(Pp^2-Pm^2) */
+
+cleanup:
+
+ return ret;
+}
+
+/*
+ * Multiplication with Montgomery ladder in x/z coordinates,
+ * for curves in Montgomery form
+ */
+static int ecp_mul_mxz(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ unsigned char b;
+ mbedtls_ecp_point RP;
+ mbedtls_mpi PX;
+ mbedtls_mpi tmp[4];
+ mbedtls_ecp_point_init(&RP); mbedtls_mpi_init(&PX);
+
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* Save PX and read from P before writing to R, in case P == R */
+ MPI_ECP_MOV(&PX, &P->X);
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(&RP, P));
+
+ /* Set R to zero in modified x/z coordinates */
+ MPI_ECP_LSET(&R->X, 1);
+ MPI_ECP_LSET(&R->Z, 0);
+ mbedtls_mpi_free(&R->Y);
+
+ /* RP.X might be slightly larger than P, so reduce it */
+ MOD_ADD(&RP.X);
+
+ /* Randomize coordinates of the starting point */
+ MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, &RP, f_rng, p_rng));
+
+ /* Loop invariant: R = result so far, RP = R + P */
+ i = grp->nbits + 1; /* one past the (zero-based) required msb for private keys */
+ while (i-- > 0) {
+ b = mbedtls_mpi_get_bit(m, i);
+ /*
+ * if (b) R = 2R + P else R = 2R,
+ * which is:
+ * if (b) double_add( RP, R, RP, R )
+ * else double_add( R, RP, R, RP )
+ * but using safe conditional swaps to avoid leaks
+ */
+ MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
+ MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
+ MBEDTLS_MPI_CHK(ecp_double_add_mxz(grp, R, &RP, R, &RP, &PX, tmp));
+ MPI_ECP_COND_SWAP(&R->X, &RP.X, b);
+ MPI_ECP_COND_SWAP(&R->Z, &RP.Z, b);
+ }
+
+ /*
+ * Knowledge of the projective coordinates may leak the last few bits of the
+ * scalar [1], and since our MPI implementation isn't constant-flow,
+ * inversion (used for coordinate normalization) may leak the full value
+ * of its input via side-channels [2].
+ *
+ * [1] https://eprint.iacr.org/2003/191
+ * [2] https://eprint.iacr.org/2020/055
+ *
+ * Avoid the leak by randomizing coordinates before we normalize them.
+ */
+ MBEDTLS_MPI_CHK(ecp_randomize_mxz(grp, R, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(ecp_normalize_mxz(grp, R));
+
+cleanup:
+ mbedtls_ecp_point_free(&RP); mbedtls_mpi_free(&PX);
+
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+ return ret;
+}
+
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+/*
+ * Restartable multiplication R = m * P
+ *
+ * This internal function can be called without an RNG in case where we know
+ * the inputs are not sensitive.
+ */
+static int ecp_mul_restartable_internal(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ /* reset ops count for this call if top-level */
+ if (rs_ctx != NULL && rs_ctx->depth++ == 0) {
+ rs_ctx->ops_done = 0;
+ }
+#else
+ (void) rs_ctx;
+#endif
+
+ int restarting = 0;
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ restarting = (rs_ctx != NULL && rs_ctx->rsm != NULL);
+#endif
+ /* skip argument check when restarting */
+ if (!restarting) {
+ /* check_privkey is free */
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_CHK);
+
+ /* Common sanity checks */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(grp, m));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ }
+
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ MBEDTLS_MPI_CHK(ecp_mul_mxz(grp, R, m, P, f_rng, p_rng));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ MBEDTLS_MPI_CHK(ecp_mul_comb(grp, R, m, P, f_rng, p_rng, rs_ctx));
+ }
+#endif
+
+cleanup:
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL) {
+ rs_ctx->depth--;
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Restartable multiplication R = m * P
+ */
+int mbedtls_ecp_mul_restartable(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ return ecp_mul_restartable_internal(grp, R, m, P, f_rng, p_rng, rs_ctx);
+}
+
+/*
+ * Multiplication R = m * P
+ */
+int mbedtls_ecp_mul(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ return mbedtls_ecp_mul_restartable(grp, R, m, P, f_rng, p_rng, NULL);
+}
+#endif /* MBEDTLS_ECP_C */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * Check that an affine point is valid as a public key,
+ * short weierstrass curves (SEC1 3.2.3.1)
+ */
+static int ecp_check_pubkey_sw(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi YY, RHS;
+
+ /* pt coordinates must be normalized for our checks */
+ if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0 ||
+ mbedtls_mpi_cmp_int(&pt->Y, 0) < 0 ||
+ mbedtls_mpi_cmp_mpi(&pt->X, &grp->P) >= 0 ||
+ mbedtls_mpi_cmp_mpi(&pt->Y, &grp->P) >= 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ mbedtls_mpi_init(&YY); mbedtls_mpi_init(&RHS);
+
+ /*
+ * YY = Y^2
+ * RHS = X^3 + A X + B
+ */
+ MPI_ECP_SQR(&YY, &pt->Y);
+ MBEDTLS_MPI_CHK(ecp_sw_rhs(grp, &RHS, &pt->X));
+
+ if (MPI_ECP_CMP(&YY, &RHS) != 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&YY); mbedtls_mpi_free(&RHS);
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_C)
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+/*
+ * R = m * P with shortcuts for m == 0, m == 1 and m == -1
+ * NOT constant-time - ONLY for short Weierstrass!
+ */
+static int mbedtls_ecp_mul_shortcuts(mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R,
+ const mbedtls_mpi *m,
+ const mbedtls_ecp_point *P,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi tmp;
+ mbedtls_mpi_init(&tmp);
+
+ if (mbedtls_mpi_cmp_int(m, 0) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_set_zero(R));
+ } else if (mbedtls_mpi_cmp_int(m, 1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
+ } else if (mbedtls_mpi_cmp_int(m, -1) == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_pubkey(grp, P));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, P));
+ MPI_ECP_NEG(&R->Y);
+ } else {
+ MBEDTLS_MPI_CHK(ecp_mul_restartable_internal(grp, R, m, P,
+ NULL, NULL, rs_ctx));
+ }
+
+cleanup:
+ mbedtls_mpi_free(&tmp);
+
+ return ret;
+}
+
+/*
+ * Restartable linear combination
+ * NOT constant-time
+ */
+int mbedtls_ecp_muladd_restartable(
+ mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ const mbedtls_mpi *n, const mbedtls_ecp_point *Q,
+ mbedtls_ecp_restart_ctx *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point mP;
+ mbedtls_ecp_point *pmP = &mP;
+ mbedtls_ecp_point *pR = R;
+ mbedtls_mpi tmp[4];
+ if (mbedtls_ecp_get_type(grp) != MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ mbedtls_ecp_point_init(&mP);
+ mpi_init_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+ ECP_RS_ENTER(ma);
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ /* redirect intermediate results to restart context */
+ pmP = &rs_ctx->ma->mP;
+ pR = &rs_ctx->ma->R;
+
+ /* jump to next operation */
+ if (rs_ctx->ma->state == ecp_rsma_mul2) {
+ goto mul2;
+ }
+ if (rs_ctx->ma->state == ecp_rsma_add) {
+ goto add;
+ }
+ if (rs_ctx->ma->state == ecp_rsma_norm) {
+ goto norm;
+ }
+ }
+#endif /* MBEDTLS_ECP_RESTARTABLE */
+
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pmP, m, P, rs_ctx));
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ rs_ctx->ma->state = ecp_rsma_mul2;
+ }
+
+mul2:
+#endif
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul_shortcuts(grp, pR, n, Q, rs_ctx));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ rs_ctx->ma->state = ecp_rsma_add;
+ }
+
+add:
+#endif
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_ADD);
+ MBEDTLS_MPI_CHK(ecp_add_mixed(grp, pR, pmP, pR, tmp));
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ rs_ctx->ma->state = ecp_rsma_norm;
+ }
+
+norm:
+#endif
+ MBEDTLS_ECP_BUDGET(MBEDTLS_ECP_OPS_INV);
+ MBEDTLS_MPI_CHK(ecp_normalize_jac(grp, pR));
+
+#if defined(MBEDTLS_ECP_RESTARTABLE)
+ if (rs_ctx != NULL && rs_ctx->ma != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_copy(R, pR));
+ }
+#endif
+
+cleanup:
+
+ mpi_free_many(tmp, sizeof(tmp) / sizeof(mbedtls_mpi));
+
+ mbedtls_ecp_point_free(&mP);
+
+ ECP_RS_LEAVE(ma);
+
+ return ret;
+}
+
+/*
+ * Linear combination
+ * NOT constant-time
+ */
+int mbedtls_ecp_muladd(mbedtls_ecp_group *grp, mbedtls_ecp_point *R,
+ const mbedtls_mpi *m, const mbedtls_ecp_point *P,
+ const mbedtls_mpi *n, const mbedtls_ecp_point *Q)
+{
+ return mbedtls_ecp_muladd_restartable(grp, R, m, P, n, Q, NULL);
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+#endif /* MBEDTLS_ECP_C */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
+#define ECP_MPI_INIT_ARRAY(x) \
+ ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
+/*
+ * Constants for the two points other than 0, 1, -1 (mod p) in
+ * https://cr.yp.to/ecdh.html#validate
+ * See ecp_check_pubkey_x25519().
+ */
+static const mbedtls_mpi_uint x25519_bad_point_1[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xe0, 0xeb, 0x7a, 0x7c, 0x3b, 0x41, 0xb8, 0xae),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x56, 0xe3, 0xfa, 0xf1, 0x9f, 0xc4, 0x6a),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xda, 0x09, 0x8d, 0xeb, 0x9c, 0x32, 0xb1, 0xfd),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x62, 0x05, 0x16, 0x5f, 0x49, 0xb8, 0x00),
+};
+static const mbedtls_mpi_uint x25519_bad_point_2[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5f, 0x9c, 0x95, 0xbc, 0xa3, 0x50, 0x8c, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xb1, 0xd0, 0xb1, 0x55, 0x9c, 0x83, 0xef, 0x5b),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x44, 0x5c, 0xc4, 0x58, 0x1c, 0x8e, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xd8, 0x22, 0x4e, 0xdd, 0xd0, 0x9f, 0x11, 0x57),
+};
+static const mbedtls_mpi ecp_x25519_bad_point_1 = ECP_MPI_INIT_ARRAY(
+ x25519_bad_point_1);
+static const mbedtls_mpi ecp_x25519_bad_point_2 = ECP_MPI_INIT_ARRAY(
+ x25519_bad_point_2);
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+/*
+ * Check that the input point is not one of the low-order points.
+ * This is recommended by the "May the Fourth" paper:
+ * https://eprint.iacr.org/2017/806.pdf
+ * Those points are never sent by an honest peer.
+ */
+static int ecp_check_bad_points_mx(const mbedtls_mpi *X, const mbedtls_mpi *P,
+ const mbedtls_ecp_group_id grp_id)
+{
+ int ret;
+ mbedtls_mpi XmP;
+
+ mbedtls_mpi_init(&XmP);
+
+ /* Reduce X mod P so that we only need to check values less than P.
+ * We know X < 2^256 so we can proceed by subtraction. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&XmP, X));
+ while (mbedtls_mpi_cmp_mpi(&XmP, P) >= 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&XmP, &XmP, P));
+ }
+
+ /* Check against the known bad values that are less than P. For Curve448
+ * these are 0, 1 and -1. For Curve25519 we check the values less than P
+ * from the following list: https://cr.yp.to/ecdh.html#validate */
+ if (mbedtls_mpi_cmp_int(&XmP, 1) <= 0) { /* takes care of 0 and 1 */
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
+ if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_1) == 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&XmP, &ecp_x25519_bad_point_2) == 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+ }
+#else
+ (void) grp_id;
+#endif
+
+ /* Final check: check if XmP + 1 is P (final because it changes XmP!) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&XmP, &XmP, 1));
+ if (mbedtls_mpi_cmp_mpi(&XmP, P) == 0) {
+ ret = MBEDTLS_ERR_ECP_INVALID_KEY;
+ goto cleanup;
+ }
+
+ ret = 0;
+
+cleanup:
+ mbedtls_mpi_free(&XmP);
+
+ return ret;
+}
+
+/*
+ * Check validity of a public key for Montgomery curves with x-only schemes
+ */
+static int ecp_check_pubkey_mx(const mbedtls_ecp_group *grp, const mbedtls_ecp_point *pt)
+{
+ /* [Curve25519 p. 5] Just check X is the correct number of bytes */
+ /* Allow any public value, if it's too big then we'll just reduce it mod p
+ * (RFC 7748 sec. 5 para. 3). */
+ if (mbedtls_mpi_size(&pt->X) > (grp->nbits + 7) / 8) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ /* Implicit in all standards (as they don't consider negative numbers):
+ * X must be non-negative. This is normally ensured by the way it's
+ * encoded for transmission, but let's be extra sure. */
+ if (mbedtls_mpi_cmp_int(&pt->X, 0) < 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ return ecp_check_bad_points_mx(&pt->X, &grp->P, grp->id);
+}
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+/*
+ * Check that a point is valid as a public key
+ */
+int mbedtls_ecp_check_pubkey(const mbedtls_ecp_group *grp,
+ const mbedtls_ecp_point *pt)
+{
+ /* Must use affine coordinates */
+ if (mbedtls_mpi_cmp_int(&pt->Z, 1) != 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ return ecp_check_pubkey_mx(grp, pt);
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ return ecp_check_pubkey_sw(grp, pt);
+ }
+#endif
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+/*
+ * Check that an mbedtls_mpi is valid as a private key
+ */
+int mbedtls_ecp_check_privkey(const mbedtls_ecp_group *grp,
+ const mbedtls_mpi *d)
+{
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ /* see RFC 7748 sec. 5 para. 5 */
+ if (mbedtls_mpi_get_bit(d, 0) != 0 ||
+ mbedtls_mpi_get_bit(d, 1) != 0 ||
+ mbedtls_mpi_bitlen(d) - 1 != grp->nbits) { /* mbedtls_mpi_bitlen is one-based! */
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ /* see [Curve25519] page 5 */
+ if (grp->nbits == 254 && mbedtls_mpi_get_bit(d, 2) != 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ return 0;
+ }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ /* see SEC1 3.2 */
+ if (mbedtls_mpi_cmp_int(d, 1) < 0 ||
+ mbedtls_mpi_cmp_mpi(d, &grp->N) >= 0) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ } else {
+ return 0;
+ }
+ }
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
+ mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ size_t n_random_bytes = high_bit / 8 + 1;
+
+ /* [Curve25519] page 5 */
+ /* Generate a (high_bit+1)-bit random number by generating just enough
+ * random bytes, then shifting out extra bits from the top (necessary
+ * when (high_bit+1) is not a multiple of 8). */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(d, n_random_bytes,
+ f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(d, 8 * n_random_bytes - high_bit - 1));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, high_bit, 1));
+
+ /* Make sure the last two bits are unset for Curve448, three bits for
+ Curve25519 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 0, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 1, 0));
+ if (high_bit == 254) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(d, 2, 0));
+ }
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+static int mbedtls_ecp_gen_privkey_sw(
+ const mbedtls_mpi *N, mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = mbedtls_mpi_random(d, 1, N, f_rng, p_rng);
+ switch (ret) {
+ case MBEDTLS_ERR_MPI_NOT_ACCEPTABLE:
+ return MBEDTLS_ERR_ECP_RANDOM_FAILED;
+ default:
+ return ret;
+ }
+}
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+/*
+ * Generate a private key
+ */
+int mbedtls_ecp_gen_privkey(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ return mbedtls_ecp_gen_privkey_mx(grp->nbits, d, f_rng, p_rng);
+ }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ return mbedtls_ecp_gen_privkey_sw(&grp->N, d, f_rng, p_rng);
+ }
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+}
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * Generate a keypair with configurable base point
+ */
+int mbedtls_ecp_gen_keypair_base(mbedtls_ecp_group *grp,
+ const mbedtls_ecp_point *G,
+ mbedtls_mpi *d, mbedtls_ecp_point *Q,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ MBEDTLS_MPI_CHK(mbedtls_ecp_gen_privkey(grp, d, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, Q, d, G, f_rng, p_rng));
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Generate key pair, wrapper for conventional base point
+ */
+int mbedtls_ecp_gen_keypair(mbedtls_ecp_group *grp,
+ mbedtls_mpi *d, mbedtls_ecp_point *Q,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return mbedtls_ecp_gen_keypair_base(grp, &grp->G, d, Q, f_rng, p_rng);
+}
+
+/*
+ * Generate a keypair, prettier wrapper
+ */
+int mbedtls_ecp_gen_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+ return ret;
+ }
+
+ return mbedtls_ecp_gen_keypair(&key->grp, &key->d, &key->Q, f_rng, p_rng);
+}
+#endif /* MBEDTLS_ECP_C */
+
+int mbedtls_ecp_set_public_key(mbedtls_ecp_group_id grp_id,
+ mbedtls_ecp_keypair *key,
+ const mbedtls_ecp_point *Q)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (key->grp.id == MBEDTLS_ECP_DP_NONE) {
+ /* Group not set yet */
+ if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+ return ret;
+ }
+ } else if (key->grp.id != grp_id) {
+ /* Group mismatch */
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ return mbedtls_ecp_copy(&key->Q, Q);
+}
+
+
+#define ECP_CURVE25519_KEY_SIZE 32
+#define ECP_CURVE448_KEY_SIZE 56
+/*
+ * Read a private key.
+ */
+int mbedtls_ecp_read_key(mbedtls_ecp_group_id grp_id, mbedtls_ecp_keypair *key,
+ const unsigned char *buf, size_t buflen)
+{
+ int ret = 0;
+
+ if ((ret = mbedtls_ecp_group_load(&key->grp, grp_id)) != 0) {
+ return ret;
+ }
+
+ ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ /*
+ * Mask the key as mandated by RFC7748 for Curve25519 and Curve448.
+ */
+ if (grp_id == MBEDTLS_ECP_DP_CURVE25519) {
+ if (buflen != ECP_CURVE25519_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
+
+ /* Set the three least significant bits to 0 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 2, 0));
+
+ /* Set the most significant bit to 0 */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(&key->d,
+ ECP_CURVE25519_KEY_SIZE * 8 - 1, 0)
+ );
+
+ /* Set the second most significant bit to 1 */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(&key->d,
+ ECP_CURVE25519_KEY_SIZE * 8 - 2, 1)
+ );
+ } else if (grp_id == MBEDTLS_ECP_DP_CURVE448) {
+ if (buflen != ECP_CURVE448_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_INVALID_KEY;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary_le(&key->d, buf, buflen));
+
+ /* Set the two least significant bits to 0 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 0, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&key->d, 1, 0));
+
+ /* Set the most significant bit to 1 */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(&key->d,
+ ECP_CURVE448_KEY_SIZE * 8 - 1, 1)
+ );
+ }
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&key->d, buf, buflen));
+ }
+#endif
+
+ if (ret == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecp_check_privkey(&key->grp, &key->d));
+ }
+
+cleanup:
+
+ if (ret != 0) {
+ mbedtls_mpi_free(&key->d);
+ }
+
+ return ret;
+}
+
+/*
+ * Write a private key.
+ */
+#if !defined MBEDTLS_DEPRECATED_REMOVED
+int mbedtls_ecp_write_key(mbedtls_ecp_keypair *key,
+ unsigned char *buf, size_t buflen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ if (key->grp.id == MBEDTLS_ECP_DP_CURVE25519) {
+ if (buflen < ECP_CURVE25519_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+
+ } else if (key->grp.id == MBEDTLS_ECP_DP_CURVE448) {
+ if (buflen < ECP_CURVE448_KEY_SIZE) {
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+ }
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary_le(&key->d, buf, buflen));
+ }
+#endif
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&key->d, buf, buflen));
+ }
+
+#endif
+cleanup:
+
+ return ret;
+}
+#endif /* MBEDTLS_DEPRECATED_REMOVED */
+
+int mbedtls_ecp_write_key_ext(const mbedtls_ecp_keypair *key,
+ size_t *olen, unsigned char *buf, size_t buflen)
+{
+ size_t len = (key->grp.nbits + 7) / 8;
+ if (len > buflen) {
+ /* For robustness, ensure *olen <= buflen even on error. */
+ *olen = 0;
+ return MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL;
+ }
+ *olen = len;
+
+ /* Private key not set */
+ if (key->d.n == 0) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_MONTGOMERY) {
+ return mbedtls_mpi_write_binary_le(&key->d, buf, len);
+ }
+#endif
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ if (mbedtls_ecp_get_type(&key->grp) == MBEDTLS_ECP_TYPE_SHORT_WEIERSTRASS) {
+ return mbedtls_mpi_write_binary(&key->d, buf, len);
+ }
+#endif
+
+ /* Private key set but no recognized curve type? This shouldn't happen. */
+ return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+}
+
+/*
+ * Write a public key.
+ */
+int mbedtls_ecp_write_public_key(const mbedtls_ecp_keypair *key,
+ int format, size_t *olen,
+ unsigned char *buf, size_t buflen)
+{
+ return mbedtls_ecp_point_write_binary(&key->grp, &key->Q,
+ format, olen, buf, buflen);
+}
+
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * Check a public-private key pair
+ */
+int mbedtls_ecp_check_pub_priv(
+ const mbedtls_ecp_keypair *pub, const mbedtls_ecp_keypair *prv,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_point Q;
+ mbedtls_ecp_group grp;
+ if (pub->grp.id == MBEDTLS_ECP_DP_NONE ||
+ pub->grp.id != prv->grp.id ||
+ mbedtls_mpi_cmp_mpi(&pub->Q.X, &prv->Q.X) ||
+ mbedtls_mpi_cmp_mpi(&pub->Q.Y, &prv->Q.Y) ||
+ mbedtls_mpi_cmp_mpi(&pub->Q.Z, &prv->Q.Z)) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ mbedtls_ecp_point_init(&Q);
+ mbedtls_ecp_group_init(&grp);
+
+ /* mbedtls_ecp_mul() needs a non-const group... */
+ mbedtls_ecp_group_copy(&grp, &prv->grp);
+
+ /* Also checks d is valid */
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &Q, &prv->d, &prv->grp.G, f_rng, p_rng));
+
+ if (mbedtls_mpi_cmp_mpi(&Q.X, &prv->Q.X) ||
+ mbedtls_mpi_cmp_mpi(&Q.Y, &prv->Q.Y) ||
+ mbedtls_mpi_cmp_mpi(&Q.Z, &prv->Q.Z)) {
+ ret = MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_ecp_point_free(&Q);
+ mbedtls_ecp_group_free(&grp);
+
+ return ret;
+}
+
+int mbedtls_ecp_keypair_calc_public(mbedtls_ecp_keypair *key,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return mbedtls_ecp_mul(&key->grp, &key->Q, &key->d, &key->grp.G,
+ f_rng, p_rng);
+}
+#endif /* MBEDTLS_ECP_C */
+
+mbedtls_ecp_group_id mbedtls_ecp_keypair_get_group_id(
+ const mbedtls_ecp_keypair *key)
+{
+ return key->grp.id;
+}
+
+/*
+ * Export generic key-pair parameters.
+ */
+int mbedtls_ecp_export(const mbedtls_ecp_keypair *key, mbedtls_ecp_group *grp,
+ mbedtls_mpi *d, mbedtls_ecp_point *Q)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (grp != NULL && (ret = mbedtls_ecp_group_copy(grp, &key->grp)) != 0) {
+ return ret;
+ }
+
+ if (d != NULL && (ret = mbedtls_mpi_copy(d, &key->d)) != 0) {
+ return ret;
+ }
+
+ if (Q != NULL && (ret = mbedtls_ecp_copy(Q, &key->Q)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if defined(MBEDTLS_ECP_C)
+/*
+ * PRNG for test - !!!INSECURE NEVER USE IN PRODUCTION!!!
+ *
+ * This is the linear congruential generator from numerical recipes,
+ * except we only use the low byte as the output. See
+ * https://en.wikipedia.org/wiki/Linear_congruential_generator#Parameters_in_common_use
+ */
+static int self_test_rng(void *ctx, unsigned char *out, size_t len)
+{
+ static uint32_t state = 42;
+
+ (void) ctx;
+
+ for (size_t i = 0; i < len; i++) {
+ state = state * 1664525u + 1013904223u;
+ out[i] = (unsigned char) state;
+ }
+
+ return 0;
+}
+
+/* Adjust the exponent to be a valid private point for the specified curve.
+ * This is sometimes necessary because we use a single set of exponents
+ * for all curves but the validity of values depends on the curve. */
+static int self_test_adjust_exponent(const mbedtls_ecp_group *grp,
+ mbedtls_mpi *m)
+{
+ int ret = 0;
+ switch (grp->id) {
+ /* If Curve25519 is available, then that's what we use for the
+ * Montgomery test, so we don't need the adjustment code. */
+#if !defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE448:
+ /* Move highest bit from 254 to N-1. Setting bit N-1 is
+ * necessary to enforce the highest-bit-set constraint. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, 254, 0));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(m, grp->nbits, 1));
+ /* Copy second-highest bit from 253 to N-2. This is not
+ * necessary but improves the test variety a bit. */
+ MBEDTLS_MPI_CHK(
+ mbedtls_mpi_set_bit(m, grp->nbits - 1,
+ mbedtls_mpi_get_bit(m, 253)));
+ break;
+#endif
+#endif /* ! defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) */
+ default:
+ /* Non-Montgomery curves and Curve25519 need no adjustment. */
+ (void) grp;
+ (void) m;
+ goto cleanup;
+ }
+cleanup:
+ return ret;
+}
+
+/* Calculate R = m.P for each m in exponents. Check that the number of
+ * basic operations doesn't depend on the value of m. */
+static int self_test_point(int verbose,
+ mbedtls_ecp_group *grp,
+ mbedtls_ecp_point *R,
+ mbedtls_mpi *m,
+ const mbedtls_ecp_point *P,
+ const char *const *exponents,
+ size_t n_exponents)
+{
+ int ret = 0;
+ size_t i = 0;
+ unsigned long add_c_prev, dbl_c_prev, mul_c_prev;
+ add_count = 0;
+ dbl_count = 0;
+ mul_count = 0;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[0]));
+ MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
+
+ for (i = 1; i < n_exponents; i++) {
+ add_c_prev = add_count;
+ dbl_c_prev = dbl_count;
+ mul_c_prev = mul_count;
+ add_count = 0;
+ dbl_count = 0;
+ mul_count = 0;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(m, 16, exponents[i]));
+ MBEDTLS_MPI_CHK(self_test_adjust_exponent(grp, m));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(grp, R, m, P, self_test_rng, NULL));
+
+ if (add_count != add_c_prev ||
+ dbl_count != dbl_c_prev ||
+ mul_count != mul_c_prev) {
+ ret = 1;
+ break;
+ }
+ }
+
+cleanup:
+ if (verbose != 0) {
+ if (ret != 0) {
+ mbedtls_printf("failed (%u)\n", (unsigned int) i);
+ } else {
+ mbedtls_printf("passed\n");
+ }
+ }
+ return ret;
+}
+#endif /* MBEDTLS_ECP_C */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ecp_self_test(int verbose)
+{
+#if defined(MBEDTLS_ECP_C)
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_group grp;
+ mbedtls_ecp_point R, P;
+ mbedtls_mpi m;
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ /* Exponents especially adapted for secp192k1, which has the lowest
+ * order n of all supported curves (secp192r1 is in a slightly larger
+ * field but the order of its base point is slightly smaller). */
+ const char *sw_exponents[] =
+ {
+ "000000000000000000000000000000000000000000000001", /* one */
+ "FFFFFFFFFFFFFFFFFFFFFFFE26F2FC170F69466A74DEFD8C", /* n - 1 */
+ "5EA6F389A38B8BC81E767753B15AA5569E1782E30ABE7D25", /* random */
+ "400000000000000000000000000000000000000000000000", /* one and zeros */
+ "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF", /* all ones */
+ "555555555555555555555555555555555555555555555555", /* 101010... */
+ };
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ const char *m_exponents[] =
+ {
+ /* Valid private values for Curve25519. In a build with Curve448
+ * but not Curve25519, they will be adjusted in
+ * self_test_adjust_exponent(). */
+ "4000000000000000000000000000000000000000000000000000000000000000",
+ "5C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C3C30",
+ "5715ECCE24583F7A7023C24164390586842E816D7280A49EF6DF4EAE6B280BF8",
+ "41A2B017516F6D254E1F002BCCBADD54BE30F8CEC737A0E912B4963B6BA74460",
+ "5555555555555555555555555555555555555555555555555555555555555550",
+ "7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF8",
+ };
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+ mbedtls_ecp_group_init(&grp);
+ mbedtls_ecp_point_init(&R);
+ mbedtls_ecp_point_init(&P);
+ mbedtls_mpi_init(&m);
+
+#if defined(MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED)
+ /* Use secp192r1 if available, or any available curve */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_SECP192R1));
+#else
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, mbedtls_ecp_curve_list()->grp_id));
+#endif
+
+ if (verbose != 0) {
+ mbedtls_printf(" ECP SW test #1 (constant op_count, base point G): ");
+ }
+ /* Do a dummy multiplication first to trigger precomputation */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&m, 2));
+ MBEDTLS_MPI_CHK(mbedtls_ecp_mul(&grp, &P, &m, &grp.G, self_test_rng, NULL));
+ ret = self_test_point(verbose,
+ &grp, &R, &m, &grp.G,
+ sw_exponents,
+ sizeof(sw_exponents) / sizeof(sw_exponents[0]));
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" ECP SW test #2 (constant op_count, other point): ");
+ }
+ /* We computed P = 2G last time, use it */
+ ret = self_test_point(verbose,
+ &grp, &R, &m, &P,
+ sw_exponents,
+ sizeof(sw_exponents) / sizeof(sw_exponents[0]));
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ mbedtls_ecp_group_free(&grp);
+ mbedtls_ecp_point_free(&R);
+#endif /* MBEDTLS_ECP_SHORT_WEIERSTRASS_ENABLED */
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+ if (verbose != 0) {
+ mbedtls_printf(" ECP Montgomery test (constant op_count): ");
+ }
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE25519));
+#elif defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&grp, MBEDTLS_ECP_DP_CURVE448));
+#else
+#error "MBEDTLS_ECP_MONTGOMERY_ENABLED is defined, but no curve is supported for self-test"
+#endif
+ ret = self_test_point(verbose,
+ &grp, &R, &m, &grp.G,
+ m_exponents,
+ sizeof(m_exponents) / sizeof(m_exponents[0]));
+ if (ret != 0) {
+ goto cleanup;
+ }
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+cleanup:
+
+ if (ret < 0 && verbose != 0) {
+ mbedtls_printf("Unexpected error, return code = %08X\n", (unsigned int) ret);
+ }
+
+ mbedtls_ecp_group_free(&grp);
+ mbedtls_ecp_point_free(&R);
+ mbedtls_ecp_point_free(&P);
+ mbedtls_mpi_free(&m);
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return ret;
+#else /* MBEDTLS_ECP_C */
+ (void) verbose;
+ return 0;
+#endif /* MBEDTLS_ECP_C */
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ECP_LIGHT */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp_curves.c b/tf-psa-crypto/drivers/builtin/src/ecp_curves.c
new file mode 100644
index 0000000..97636a7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp_curves.c
@@ -0,0 +1,5456 @@
+/*
+ * Elliptic curves over GF(p): curve-specific data and functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if !defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#if defined(MBEDTLS_ECP_LIGHT)
+
+#include "mbedtls/ecp.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "bn_mul.h"
+#include "bignum_core.h"
+#include "ecp_invasive.h"
+
+#include <string.h>
+
+#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
+
+#define ECP_MPI_INIT_ARRAY(x) \
+ ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
+
+#define ECP_POINT_INIT_XY_Z0(x, y) { \
+ ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(NULL, 0) }
+#define ECP_POINT_INIT_XY_Z1(x, y) { \
+ ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(mpi_one, 1) }
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/* For these curves, we build the group parameters dynamically. */
+#define ECP_LOAD_GROUP
+static const mbedtls_mpi_uint mpi_one[] = { 1 };
+#endif
+
+/*
+ * Note: the constants are in little-endian order
+ * to be directly usable in MPIs
+ */
+
+/*
+ * Domain parameters for secp192r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static const mbedtls_mpi_uint secp192r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64),
+};
+static const mbedtls_mpi_uint secp192r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x9E, 0xE3, 0x60, 0x59, 0xD1, 0xC4, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBD, 0x22, 0xD7, 0x2D, 0x07, 0xBD, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x2A, 0xCF, 0x33, 0xF0, 0xBE, 0xD1, 0xED),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x71, 0x4B, 0xA8, 0xED, 0x7E, 0xC9, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x2A, 0xF6, 0xDF, 0x0E, 0xE8, 0x4C, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x35, 0xF7, 0x8A, 0xC3, 0xEC, 0xDE, 0x1E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0xC2, 0x1D, 0x32, 0x8F, 0x10, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x2D, 0x17, 0xF3, 0xE4, 0xFE, 0xD8, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x45, 0x10, 0x70, 0x2C, 0x3E, 0x52, 0x3E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF1, 0x04, 0x5D, 0xEE, 0xD4, 0x56, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xB7, 0x38, 0x27, 0x61, 0xAA, 0x81, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0xD7, 0x0E, 0x29, 0x0E, 0x11, 0x14),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x35, 0x52, 0xC6, 0x31, 0xB7, 0x27, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xD4, 0x15, 0x98, 0x0F, 0xE7, 0xF3, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x31, 0x70, 0x35, 0x09, 0xA0, 0x2B, 0xC2),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x75, 0xA7, 0x4C, 0x88, 0xCF, 0x5B, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x17, 0x48, 0x8D, 0xF2, 0xF0, 0x86, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCF, 0xFE, 0x6B, 0xB0, 0xA5, 0x06, 0xAB),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x6A, 0xDC, 0x9A, 0x6D, 0x7B, 0x47, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xFC, 0x51, 0x12, 0x62, 0x66, 0x0B, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x40, 0x93, 0xA0, 0xB5, 0x5A, 0x58, 0xD7),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCB, 0xAF, 0xDC, 0x0B, 0xA1, 0x26, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x36, 0x9D, 0xA3, 0xD7, 0x3B, 0xAD, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x3B, 0x05, 0x9A, 0xA8, 0xAA, 0x69, 0xB2),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD9, 0xD1, 0x4D, 0x4A, 0x6E, 0x96, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x66, 0x32, 0x39, 0xC6, 0x57, 0x7D, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xA0, 0x36, 0xC2, 0x45, 0xF9, 0x00, 0x62),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xEF, 0x59, 0x46, 0xDC, 0x60, 0xD9, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xB0, 0xE9, 0x41, 0xA4, 0x87, 0x76, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xD4, 0x0E, 0xB2, 0xFA, 0x16, 0x56, 0xDC),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x62, 0xD2, 0xB1, 0x34, 0xB2, 0xF1, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xED, 0x55, 0xC5, 0x47, 0xB5, 0x07, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF6, 0x2F, 0x94, 0xC3, 0xDD, 0x54, 0x2F),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xA6, 0xD4, 0x8C, 0xA9, 0xCE, 0x4D, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x4B, 0x46, 0xCC, 0xB2, 0x55, 0xC8, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x31, 0xED, 0x89, 0x65, 0x59, 0x55),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x0A, 0xD1, 0x1A, 0xC5, 0xF6, 0xEA, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xFC, 0x0C, 0x1A, 0xFB, 0xA0, 0xC8, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xFD, 0x53, 0x6F, 0x6D, 0xBF, 0xBA, 0xAF),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xB0, 0x7D, 0x83, 0x96, 0xE3, 0xCB, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x6E, 0x55, 0x2C, 0x20, 0x53, 0x2F, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x66, 0x00, 0x17, 0x08, 0xFE, 0xAC, 0x31),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x12, 0x97, 0x3A, 0xC7, 0x57, 0x45, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x25, 0x99, 0x00, 0xF6, 0x97, 0xB4, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x74, 0xE6, 0xE6, 0xA3, 0xDF, 0x9C, 0xCC),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xF4, 0x76, 0xD5, 0x5F, 0x2A, 0xFD, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x80, 0x7E, 0x3E, 0xE5, 0xE8, 0xD6, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xAD, 0x1E, 0x70, 0x79, 0x3E, 0x3D, 0x83),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x15, 0xBB, 0xB3, 0x42, 0x6A, 0xA1, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x58, 0xCB, 0x43, 0x25, 0x00, 0x14, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x4E, 0x93, 0x11, 0xE0, 0x32, 0x54, 0x98),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x52, 0xA2, 0xB4, 0x57, 0x32, 0xB9, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x43, 0xA1, 0xB1, 0xFB, 0x01, 0xE1, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xFB, 0x5A, 0x11, 0xB8, 0xC2, 0x03, 0xE5),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x2B, 0x71, 0x26, 0x4E, 0x7C, 0xC5, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF5, 0xD3, 0xA8, 0xE4, 0x95, 0x48, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAE, 0xD9, 0x5D, 0x9F, 0x6A, 0x22, 0xAD),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xCC, 0xA3, 0x4D, 0xA0, 0x1C, 0x34, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x3C, 0x62, 0xF8, 0x5E, 0xA6, 0x58, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x6E, 0x66, 0x8A, 0x3D, 0x17, 0xFF, 0x0F),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xCD, 0xA8, 0xDD, 0xD1, 0x20, 0x5C, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xFE, 0x17, 0xE2, 0xCF, 0xEA, 0x63, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x51, 0xC9, 0x16, 0xDE, 0xB4, 0xB2, 0xDD),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBE, 0x12, 0xD7, 0xA3, 0x0A, 0x50, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x87, 0xC5, 0x8A, 0x76, 0x57, 0x07, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x1F, 0xC6, 0x1B, 0x66, 0xC4, 0x3D, 0x8A),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xA4, 0x85, 0x13, 0x8F, 0xA7, 0x35, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x0D, 0xFD, 0xFF, 0x1B, 0xD1, 0xD6, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x7A, 0xD0, 0xC3, 0xB4, 0xEF, 0x39, 0x66),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xFE, 0xA5, 0x9C, 0x34, 0x30, 0x49, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xC5, 0x39, 0x26, 0x06, 0xE3, 0x01, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x2B, 0x66, 0xFC, 0x95, 0x5F, 0x35, 0xF7),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xCF, 0x54, 0x63, 0x99, 0x57, 0x05, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x6F, 0x00, 0x5F, 0x65, 0x08, 0x47, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x2A, 0x90, 0x6D, 0x67, 0xC6, 0xBC, 0x45),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x4D, 0x88, 0x0A, 0x35, 0x9E, 0x33, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x17, 0x0C, 0xF8, 0xE1, 0x7A, 0x49, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x44, 0x06, 0x8F, 0x0B, 0x70, 0x2F, 0x71),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4B, 0xCB, 0xF9, 0x8E, 0x6A, 0xDA, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x43, 0xA1, 0x3F, 0xCE, 0x17, 0xD2, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x0D, 0xD2, 0x6C, 0x82, 0x37, 0xE5, 0xFC),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x3C, 0xF4, 0x92, 0xB4, 0x8A, 0x95, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x96, 0xF1, 0x0A, 0x34, 0x2F, 0x74, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0xAA, 0xBA, 0x86, 0x77, 0x4F, 0xA2),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x7F, 0xEF, 0x60, 0x50, 0x80, 0xD7, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xAC, 0xC9, 0xFE, 0xEC, 0x0A, 0x1A, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x2F, 0xBE, 0x91, 0xD7, 0xB7, 0x38, 0x48),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xAE, 0x85, 0x98, 0xFE, 0x05, 0x7F, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBE, 0xFD, 0x11, 0x31, 0x3D, 0x14, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x75, 0xE8, 0x30, 0x01, 0xCB, 0x9B, 0x1C),
+};
+static const mbedtls_ecp_point secp192r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp192r1_T_0_X, secp192r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_1_X, secp192r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_2_X, secp192r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_3_X, secp192r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_4_X, secp192r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_5_X, secp192r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_6_X, secp192r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_7_X, secp192r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_8_X, secp192r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_9_X, secp192r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_10_X, secp192r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_11_X, secp192r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_12_X, secp192r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_13_X, secp192r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_14_X, secp192r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_15_X, secp192r1_T_15_Y),
+};
+#else
+#define secp192r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+/*
+ * Domain parameters for secp224r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static const mbedtls_mpi_uint secp224r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4),
+};
+static const mbedtls_mpi_uint secp224r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7),
+};
+static const mbedtls_mpi_uint secp224r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD),
+};
+static const mbedtls_mpi_uint secp224r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x0C, 0x0E, 0xB7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x63, 0x37, 0xBD, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF9, 0xB8, 0xD0, 0x3D, 0xD2, 0xD3, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xFD, 0x99, 0x26, 0x19, 0xFE, 0x13, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x0E, 0x4C, 0x48, 0x7C, 0xA2, 0x17, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA3, 0x13, 0x57, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x16, 0x5C, 0x8F, 0xAA, 0xED, 0x0F, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xC5, 0x43, 0x34, 0x93, 0x05, 0x2A, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE3, 0x6C, 0xCA, 0xC6, 0x14, 0xC2, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x43, 0x6C, 0xD7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x5A, 0x98, 0x1E, 0xC8, 0xA5, 0x42, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x49, 0x56, 0x78, 0xF8, 0xEF, 0xED, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xBB, 0x64, 0xB6, 0x4C, 0x54, 0x5F, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x0C, 0x33, 0xCC, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x79, 0xCB, 0x2E, 0x08, 0xFF, 0xD8, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x1F, 0xD4, 0xD7, 0x57, 0xE9, 0x39, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xD6, 0x3B, 0x0A, 0x1C, 0x87, 0xB7, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x30, 0xD8, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x79, 0x74, 0x9A, 0xE6, 0xBB, 0xC2, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x5B, 0xA6, 0x67, 0xC1, 0x91, 0xE7, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xDF, 0x38, 0x82, 0x19, 0x2C, 0x4C, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x2E, 0x39, 0xC5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x36, 0x78, 0x4E, 0xAE, 0x5B, 0x02, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF6, 0x8B, 0xF8, 0xF4, 0x92, 0x6B, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x4D, 0x71, 0x35, 0xE7, 0x0C, 0x2C, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xA5, 0x1F, 0xAE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x1C, 0x4B, 0xDF, 0x5B, 0xF2, 0x51, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0xB1, 0x5A, 0xC6, 0x0F, 0x0E, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x24, 0x09, 0x62, 0xAF, 0xFC, 0xDB, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xE1, 0x80, 0x55, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x82, 0xFE, 0xAD, 0xC3, 0xE5, 0xCF, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xA2, 0x62, 0x17, 0x76, 0xF0, 0x5A, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB8, 0xE5, 0xAC, 0xB7, 0x66, 0x38, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xFD, 0x86, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0x0C, 0x3C, 0xD1, 0x66, 0xB0, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x59, 0xB4, 0x8D, 0x90, 0x10, 0xB7, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x47, 0x9B, 0xE6, 0x55, 0x8A, 0xE4, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x49, 0xDB, 0x78, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x97, 0xED, 0xDE, 0xFF, 0xB3, 0xDF, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xB9, 0x83, 0xB7, 0xEB, 0xBE, 0x40, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xD3, 0xD3, 0xCD, 0x0E, 0x82, 0x79, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x83, 0x1B, 0xF0, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x22, 0xBB, 0x54, 0xD3, 0x31, 0x56, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0xE5, 0xE0, 0x89, 0x96, 0x8E, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xEF, 0x0A, 0xED, 0xD0, 0x11, 0x4A, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x00, 0x57, 0x27, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCA, 0x3D, 0xF7, 0x64, 0x9B, 0x6E, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xE3, 0x70, 0x6B, 0x41, 0xD7, 0xED, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x44, 0x44, 0x80, 0xCE, 0x13, 0x37, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x73, 0x80, 0x79, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x4D, 0x70, 0x7D, 0x31, 0x0F, 0x1C, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x35, 0x88, 0x47, 0xC4, 0x24, 0x78, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF0, 0xCD, 0x91, 0x81, 0xB3, 0xDE, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xCE, 0xC6, 0xF7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x9C, 0x2D, 0xE8, 0xD2, 0x00, 0x8F, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x5E, 0x7C, 0x0E, 0x0C, 0x6E, 0x58, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x81, 0x21, 0xCE, 0x43, 0xF4, 0x24, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xBC, 0xF0, 0xF4, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x10, 0xC2, 0x74, 0x4A, 0x8F, 0x8A, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x67, 0xF4, 0x2B, 0x38, 0x2B, 0x35, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0C, 0xA9, 0xFA, 0x77, 0x5C, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x19, 0x2B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x3E, 0x96, 0x22, 0x53, 0xE1, 0xE9, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x13, 0xBC, 0xA1, 0x16, 0xEC, 0x01, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x00, 0xC9, 0x7A, 0xC3, 0x73, 0xA5, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xF4, 0x5E, 0xC1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x95, 0xD6, 0xD9, 0x32, 0x30, 0x2B, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x42, 0x09, 0x05, 0x61, 0x2A, 0x7E, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x84, 0xA2, 0x05, 0x88, 0x64, 0x65, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2D, 0x90, 0xB3, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE7, 0x2E, 0x85, 0x55, 0x80, 0x7C, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC1, 0xAC, 0x78, 0xB4, 0xAF, 0xFB, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xC3, 0x28, 0x8E, 0x79, 0x18, 0x1F, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x46, 0xCF, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x5F, 0xA8, 0x6C, 0x46, 0x83, 0x43, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xA9, 0x93, 0x11, 0xB6, 0x07, 0x57, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x2A, 0x9D, 0x03, 0x89, 0x7E, 0xD7, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x8C, 0x62, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x2C, 0x13, 0x59, 0xCC, 0xFA, 0x84, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB9, 0x48, 0xBC, 0x57, 0xC7, 0xB3, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x0A, 0x38, 0x24, 0x2E, 0x3A, 0x28, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x0A, 0x43, 0xB8, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x25, 0xAB, 0xC1, 0xEE, 0x70, 0x3C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xDB, 0x45, 0x1D, 0x4A, 0x80, 0x75, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1F, 0x4D, 0x2D, 0x9A, 0x05, 0xF4, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x10, 0xF0, 0x5A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x95, 0xE1, 0xDC, 0x15, 0x86, 0xC3, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xDC, 0x27, 0xD1, 0x56, 0xA1, 0x14, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x0B, 0xD6, 0x77, 0x4E, 0x44, 0xA2, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x42, 0x71, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x86, 0xB2, 0xB0, 0xC8, 0x2F, 0x7B, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xEF, 0xCB, 0xDB, 0xBC, 0x9E, 0x3B, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x03, 0x86, 0xDD, 0x5B, 0xF5, 0x8D, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x95, 0x79, 0xD6, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x32, 0x14, 0xDA, 0x9B, 0x4F, 0x07, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x3E, 0xFB, 0x06, 0xEE, 0xA7, 0x40, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x1F, 0xDF, 0x71, 0x61, 0xFD, 0x8B, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x8B, 0xAB, 0x8B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x34, 0xB3, 0xB4, 0xBC, 0x9F, 0xB0, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x58, 0x48, 0xA8, 0x77, 0xBB, 0x13, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC6, 0xF7, 0x34, 0xCC, 0x89, 0x21, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x33, 0xDD, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x81, 0xEF, 0xA4, 0xF2, 0x10, 0x0B, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF7, 0x6E, 0x72, 0x4A, 0xDF, 0xDD, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x23, 0x0A, 0x53, 0x03, 0x16, 0x62, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x76, 0xFD, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x14, 0xA1, 0xFA, 0xA0, 0x18, 0xBE, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2A, 0xE1, 0xD7, 0xB0, 0x6C, 0xA0, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xC0, 0xB0, 0xC6, 0x63, 0x24, 0xCD, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x38, 0x2C, 0xB1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCD, 0x7D, 0x20, 0x0C, 0xFE, 0xAC, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x9F, 0xA2, 0xB6, 0x45, 0xF7, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x99, 0xF3, 0xD2, 0x20, 0x02, 0xEB, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x5B, 0x7B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xDD, 0x77, 0x91, 0x60, 0xEA, 0xFD, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xD3, 0xB5, 0xD6, 0x90, 0x17, 0x0E, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xF4, 0x28, 0xC1, 0xF2, 0x53, 0xF6, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x58, 0xDC, 0x61, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x20, 0x01, 0xFB, 0xF1, 0xBD, 0x5F, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x7F, 0x06, 0xDA, 0x11, 0xCB, 0xBA, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x41, 0x00, 0xA4, 0x1B, 0x30, 0x33, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xFF, 0x27, 0xCA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp224r1_T_0_X, secp224r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_1_X, secp224r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_2_X, secp224r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_3_X, secp224r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_4_X, secp224r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_5_X, secp224r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_6_X, secp224r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_7_X, secp224r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_8_X, secp224r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_9_X, secp224r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_10_X, secp224r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_11_X, secp224r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_12_X, secp224r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_13_X, secp224r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_14_X, secp224r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_15_X, secp224r1_T_15_Y),
+};
+#else
+#define secp224r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+/*
+ * Domain parameters for secp256r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static const mbedtls_mpi_uint secp256r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A),
+};
+static const mbedtls_mpi_uint secp256r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xC8, 0xBA, 0x04, 0xB7, 0x4B, 0xD2, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC6, 0x23, 0x3A, 0xA0, 0x09, 0x3A, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x9D, 0x4C, 0xF9, 0x58, 0x23, 0xCC, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xED, 0x7B, 0x29, 0x87, 0x0F, 0xFA, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x69, 0xF2, 0x40, 0x0B, 0xA3, 0x98, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xA8, 0x48, 0x02, 0x0D, 0x1C, 0x12, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xAF, 0x09, 0x83, 0x80, 0xAA, 0x58, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x12, 0xBE, 0x70, 0x94, 0x76, 0xE3, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x7D, 0xEF, 0x86, 0xFF, 0xE3, 0x37, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x86, 0x8B, 0x08, 0x27, 0x7C, 0xD7, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x54, 0x4C, 0x25, 0x4F, 0x9A, 0xFE, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xFD, 0xF0, 0x6D, 0x37, 0x03, 0x69, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xD5, 0xDA, 0xAD, 0x92, 0x49, 0xF0, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x73, 0x43, 0x9E, 0xAF, 0xA7, 0xD1, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x41, 0x07, 0xDF, 0x78, 0x95, 0x3E, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x3D, 0xD1, 0xE6, 0x3C, 0xA5, 0xE2, 0x20),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x6A, 0x5D, 0x52, 0x35, 0xD7, 0xBF, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xA2, 0xBE, 0x96, 0xF4, 0xF8, 0x02, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x20, 0x49, 0x54, 0xEA, 0xB3, 0x82, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0xDB, 0xEA, 0x02, 0xD1, 0x75, 0x1C, 0x62),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x85, 0xF4, 0x9E, 0x4C, 0xDC, 0x39, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x6D, 0xC4, 0x57, 0xD8, 0x03, 0x5D, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x7F, 0x2D, 0x52, 0x6F, 0xC9, 0xDA, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x64, 0xFA, 0xB4, 0xFE, 0xA4, 0xC4, 0xD7),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x37, 0xB9, 0xC0, 0xAA, 0x59, 0xC6, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x58, 0xD9, 0xED, 0x58, 0x99, 0x65, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x7D, 0x26, 0x8C, 0x4A, 0xF9, 0x05, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x73, 0x9A, 0xC9, 0xE7, 0x46, 0xDC, 0x00),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xD0, 0x55, 0xDF, 0x00, 0x0A, 0xF5, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xBF, 0x56, 0x81, 0x2D, 0x20, 0xEB, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC1, 0x28, 0x52, 0xAB, 0xE3, 0xD1, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x34, 0x79, 0x45, 0x57, 0xA5, 0x12, 0x03),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCF, 0xB8, 0x7E, 0xF7, 0x92, 0x96, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x01, 0x8C, 0x0D, 0x23, 0xF2, 0xE3, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x2E, 0xE3, 0x84, 0x52, 0x7A, 0x34, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xA1, 0xB0, 0x15, 0x90, 0xE2, 0x53, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x98, 0xE7, 0xFA, 0xA5, 0x7D, 0x8B, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x35, 0xD2, 0x00, 0xD1, 0x1B, 0x9F, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x69, 0x08, 0x9A, 0x72, 0xF0, 0xA9, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xFE, 0x0E, 0x14, 0xDA, 0x7C, 0x0E, 0xD3),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF6, 0xE8, 0xF8, 0x87, 0xF7, 0xFC, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xBE, 0x7F, 0x3F, 0x7A, 0x2B, 0xD7, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x32, 0xF2, 0x2D, 0x94, 0x6D, 0x42, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x9A, 0xE3, 0x5F, 0x42, 0xBB, 0x84, 0xED),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x95, 0x29, 0x73, 0xA1, 0x67, 0x3E, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x30, 0x54, 0x35, 0x8E, 0x0A, 0xDD, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xD7, 0xA1, 0x97, 0x61, 0x3B, 0xF8, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x33, 0x3C, 0x58, 0x55, 0x34, 0x23, 0xA3),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x5D, 0x16, 0x5F, 0x7B, 0xBC, 0xBB, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xEE, 0x4E, 0x8A, 0xC1, 0x51, 0xCC, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0D, 0x4D, 0x1B, 0x53, 0x23, 0x1D, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x2A, 0x38, 0x66, 0x52, 0x84, 0xE1, 0x95),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x9B, 0x83, 0x0A, 0x81, 0x4F, 0xAD, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xFF, 0x42, 0x41, 0x6E, 0xA9, 0xA2, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA1, 0x4F, 0x1F, 0x89, 0x82, 0xAA, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xB8, 0x0F, 0x6B, 0x8F, 0x8C, 0xD6, 0x68),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0xB3, 0xBB, 0x51, 0x69, 0xA2, 0x11, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x4F, 0x0F, 0x8D, 0xBD, 0x26, 0x0F, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xCB, 0xEC, 0x6B, 0x34, 0xC3, 0x3D, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x5D, 0x1E, 0x10, 0xD5, 0x44, 0xE2, 0x54),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x9E, 0xB1, 0xF1, 0x6E, 0x4C, 0xAD, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE3, 0xC2, 0x58, 0xC0, 0xFB, 0x34, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x9C, 0xDF, 0x35, 0x07, 0x41, 0xBD, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x10, 0xEC, 0x0E, 0xEC, 0xBB, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xCF, 0xEF, 0x3F, 0x83, 0x1A, 0x88, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x29, 0xB5, 0xB9, 0xE0, 0xC9, 0xA3, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x46, 0x1E, 0x77, 0xCD, 0x7E, 0xB3, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x21, 0xD0, 0xD4, 0xA3, 0x16, 0x08, 0xEE),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xCA, 0xA8, 0xB3, 0xBF, 0x29, 0x99, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF2, 0x05, 0xC1, 0xCF, 0x5D, 0x91, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x01, 0x49, 0xDB, 0x82, 0xDF, 0x5F, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x06, 0x90, 0xAD, 0xE3, 0x38, 0xA4, 0xC4),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xD2, 0x3A, 0xE8, 0x03, 0xC5, 0x6D, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x35, 0xD0, 0xAE, 0x1D, 0x7A, 0x9F, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x1E, 0xD2, 0xCB, 0xAC, 0x88, 0x27, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x9C, 0xE0, 0x31, 0xDD, 0x99, 0x86),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF9, 0x9B, 0x32, 0x96, 0x41, 0x58, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x5A, 0x2A, 0xB8, 0x96, 0x0E, 0xB2, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x78, 0x2C, 0xC7, 0x08, 0x99, 0x19, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x59, 0x28, 0xE9, 0x84, 0x54, 0xE6, 0x16),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x38, 0x30, 0xDB, 0x70, 0x2C, 0x0A, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x5C, 0x9D, 0xE9, 0xD5, 0x46, 0x0B, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x0B, 0x60, 0x4B, 0x37, 0x7D, 0xB9, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x24, 0xF3, 0x3D, 0x79, 0x7F, 0x6C, 0x18),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7F, 0xE5, 0x1C, 0x4F, 0x60, 0x24, 0xF7, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xD8, 0xE2, 0x91, 0x7F, 0x89, 0x49, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xA7, 0x2E, 0x8D, 0x6A, 0xB3, 0x39, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x89, 0xB5, 0x9A, 0xB8, 0x8D, 0x42, 0x9C),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x45, 0xE6, 0x4B, 0x3F, 0x4F, 0x1E, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x65, 0x5E, 0x59, 0x22, 0xCC, 0x72, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x93, 0x1A, 0x27, 0x1E, 0x34, 0xC5, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xF2, 0xA5, 0x58, 0x5C, 0x15, 0x2E, 0xC6),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x7F, 0xBA, 0x58, 0x5A, 0x84, 0x6F, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA6, 0x36, 0x7E, 0xDC, 0xF7, 0xE1, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x4D, 0xAA, 0xEE, 0x57, 0x76, 0x3A, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x7E, 0x26, 0x18, 0x22, 0x23, 0x9F, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x4C, 0x64, 0xC7, 0x55, 0x02, 0x3F, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x02, 0x90, 0xBB, 0xC3, 0xEC, 0x30, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x6F, 0x64, 0xF4, 0x16, 0x69, 0x48, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x44, 0x9C, 0x95, 0x0C, 0x7D, 0x67, 0x5E),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x91, 0x8B, 0xD8, 0xD0, 0xD7, 0xE7, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF9, 0x48, 0x62, 0x6F, 0xA8, 0x93, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x3A, 0x99, 0x02, 0xD5, 0x0B, 0x3D, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xD3, 0x00, 0x31, 0xE6, 0x0C, 0x9F, 0x44),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xB2, 0xAA, 0xFD, 0x88, 0x15, 0xDF, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0x35, 0x27, 0x31, 0x44, 0xCD, 0xC0, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xF8, 0x91, 0xA5, 0x71, 0x94, 0x84, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xCB, 0xD0, 0x93, 0xE9, 0x88, 0xDA, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC6, 0x39, 0x16, 0x5D, 0xA3, 0x1E, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x07, 0x37, 0x26, 0x36, 0x2A, 0xFE, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xBC, 0xF3, 0xD0, 0xDE, 0x50, 0xFC, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x2E, 0x06, 0x10, 0x15, 0x4D, 0xFA, 0xF7),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x65, 0x69, 0x5B, 0x66, 0xA2, 0x75, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x16, 0x00, 0x5A, 0xB0, 0x30, 0x25, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xFB, 0x86, 0x42, 0x80, 0xC1, 0xC4, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x1D, 0x83, 0x8E, 0x94, 0x01, 0x5F, 0x82),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x37, 0x70, 0xEF, 0x1F, 0xA1, 0xF0, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x5B, 0xCE, 0xC4, 0x9B, 0x6F, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x11, 0x11, 0x24, 0x4F, 0x4C, 0x79, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x3A, 0x72, 0xBC, 0xFE, 0x72, 0x58, 0x43),
+};
+static const mbedtls_ecp_point secp256r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp256r1_T_0_X, secp256r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_1_X, secp256r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_2_X, secp256r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_3_X, secp256r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_4_X, secp256r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_5_X, secp256r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_6_X, secp256r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_7_X, secp256r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_8_X, secp256r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_9_X, secp256r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_10_X, secp256r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_11_X, secp256r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_12_X, secp256r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_13_X, secp256r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_14_X, secp256r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_15_X, secp256r1_T_15_Y),
+};
+#else
+#define secp256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+/*
+ * Domain parameters for secp384r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static const mbedtls_mpi_uint secp384r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp384r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3),
+};
+static const mbedtls_mpi_uint secp384r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp384r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x92, 0x00, 0x2C, 0x78, 0xDB, 0x1F, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF3, 0xEB, 0xB7, 0x06, 0xF7, 0xB6, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBC, 0x2C, 0xCF, 0xD8, 0xED, 0x53, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x75, 0x7B, 0xA3, 0xAB, 0xC3, 0x2C, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x9D, 0x78, 0x41, 0xF6, 0x76, 0x84, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x56, 0xE8, 0x52, 0xB3, 0xCB, 0xA8, 0xBD),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xF2, 0xAE, 0xA4, 0xB6, 0x89, 0x1B, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0xCE, 0x1C, 0x7C, 0xF6, 0x50, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xEB, 0x90, 0xE6, 0x4D, 0xC7, 0xD4, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x49, 0x2D, 0x8A, 0x01, 0x99, 0x60, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x80, 0x9B, 0x9B, 0x6A, 0xB0, 0x07, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xA2, 0xEE, 0x59, 0xBE, 0x95, 0xBC, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x9D, 0x56, 0xAE, 0x59, 0xFB, 0x1F, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xAC, 0x91, 0x80, 0x87, 0xA8, 0x6E, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x08, 0xA7, 0x08, 0x94, 0x32, 0xFC, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x29, 0x9E, 0x84, 0xF4, 0xE5, 0x6E, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x21, 0xB9, 0x50, 0x24, 0xF8, 0x9C, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x04, 0x01, 0xC2, 0xFB, 0x77, 0x3E, 0xDE),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x38, 0xEE, 0xE3, 0xC7, 0x9D, 0xEC, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x88, 0xCF, 0x43, 0xFA, 0x92, 0x5E, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xCA, 0x43, 0xF8, 0x3B, 0x49, 0x7E, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xE7, 0xEB, 0x17, 0x45, 0x86, 0xC2, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x69, 0x57, 0x32, 0xE0, 0x9C, 0xD1, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x10, 0xB8, 0x4D, 0xB8, 0xF4, 0x0D, 0xE3),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0xDC, 0x9A, 0xB2, 0x79, 0x39, 0x27, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x71, 0xE4, 0x3B, 0x4D, 0x60, 0x0C, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xBD, 0x19, 0x40, 0xFA, 0x19, 0x2A, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xF8, 0x1E, 0x43, 0xA1, 0x50, 0x8D, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x18, 0x7C, 0x41, 0xFA, 0x7C, 0x1B, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x24, 0xC4, 0xE9, 0xB7, 0xD3, 0xAD),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x01, 0x3D, 0x63, 0x54, 0x45, 0x6F, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xB2, 0x19, 0xA3, 0x86, 0x1D, 0x42, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x02, 0x87, 0x18, 0x92, 0x52, 0x1A, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x18, 0xB1, 0x5D, 0x18, 0x1B, 0x37, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x74, 0x61, 0xBA, 0x18, 0xAF, 0x40, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7D, 0x3C, 0x52, 0x0F, 0x07, 0xB0, 0x6F),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x39, 0x13, 0xAA, 0x60, 0x15, 0x99, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x00, 0xCB, 0xC6, 0xB1, 0xDB, 0x97, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xFA, 0x60, 0xB8, 0x24, 0xE4, 0x7D, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x75, 0xB3, 0x70, 0xB2, 0x83, 0xB1, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xE3, 0x6C, 0xCD, 0x33, 0x62, 0x7A, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x30, 0xDC, 0x0F, 0x9F, 0xBB, 0xB8, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD5, 0x0A, 0x60, 0x81, 0xB9, 0xC5, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xAA, 0x2F, 0xD6, 0xF2, 0x73, 0xDF, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x7B, 0x74, 0xC9, 0xB3, 0x5B, 0x95, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x04, 0xEB, 0x15, 0xC8, 0x5F, 0x00, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x50, 0x20, 0x28, 0xD1, 0x01, 0xAF, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x4F, 0x31, 0x81, 0x2F, 0x94, 0x48),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2F, 0xD8, 0xB6, 0x63, 0x7C, 0xE9, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x8C, 0xB9, 0x14, 0xD9, 0x37, 0x63, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x02, 0xB8, 0x46, 0xAD, 0xCE, 0x7B, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x47, 0x2D, 0x66, 0xA7, 0xE9, 0x33, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF9, 0x93, 0x94, 0xA8, 0x48, 0xB3, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x4A, 0xAC, 0x51, 0x08, 0x72, 0x2F, 0x1A),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xAD, 0xA0, 0xF9, 0x81, 0xE1, 0x78, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9A, 0x63, 0xD8, 0xBA, 0x79, 0x1A, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x31, 0x7B, 0x7A, 0x5A, 0x5D, 0x7D, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x96, 0x12, 0x4B, 0x19, 0x09, 0xE0, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8A, 0x57, 0xEE, 0x4E, 0x6E, 0x7E, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x9D, 0x69, 0xDC, 0xB3, 0xDA, 0xD8, 0x08),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x49, 0x03, 0x03, 0x33, 0x6F, 0x28, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xDB, 0xA7, 0x05, 0x8C, 0xF3, 0x4D, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x92, 0xB1, 0xA8, 0xEC, 0x0D, 0x64, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0xFC, 0xFD, 0xD0, 0x4B, 0x88, 0x1B, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x9C, 0x51, 0x69, 0xCE, 0x71, 0x73, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5A, 0x14, 0x23, 0x1A, 0x46, 0x63, 0x5F),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x4C, 0x70, 0x44, 0x18, 0xCD, 0xEF, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x49, 0xDD, 0x64, 0x7E, 0x7E, 0x4D, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x32, 0x7C, 0x09, 0xD0, 0x3F, 0xD6, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE0, 0x4F, 0x65, 0x0C, 0x7A, 0x54, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFA, 0xFB, 0x4A, 0xB4, 0x79, 0x5A, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x1B, 0x2B, 0xDA, 0xBC, 0x9A, 0x74),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xAC, 0x56, 0xF7, 0x5F, 0x51, 0x68, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xE0, 0x1D, 0xBC, 0x13, 0x4E, 0xAC, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF5, 0xC5, 0xE6, 0xD2, 0x88, 0xBA, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x0E, 0x28, 0x23, 0x58, 0x67, 0xFA, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x80, 0x4B, 0xD8, 0xC4, 0xDF, 0x15, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x0E, 0x58, 0xE6, 0x2C, 0x59, 0xC2, 0x03),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x26, 0x27, 0x99, 0x16, 0x2B, 0x22, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF3, 0x8F, 0xC3, 0x2A, 0x9B, 0xFC, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2E, 0x83, 0x3D, 0xFE, 0x9E, 0x3C, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0xCD, 0x2D, 0xC1, 0x49, 0x38, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x42, 0x8B, 0x33, 0x89, 0x1F, 0xEA, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x1D, 0x13, 0xD7, 0x50, 0xBB, 0x3E, 0xEB),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x9A, 0x52, 0xD2, 0x54, 0x7C, 0x97, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x6E, 0xED, 0xD9, 0x87, 0x50, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x35, 0x7E, 0x16, 0x40, 0x15, 0x83, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x2B, 0xA4, 0xAB, 0x03, 0x91, 0xEA, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x47, 0x39, 0xEF, 0x05, 0x59, 0xD0, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x24, 0x0D, 0x76, 0x11, 0x53, 0x08, 0xAF),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x2F, 0xDD, 0xBD, 0x50, 0x48, 0xB1, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x1C, 0x84, 0x55, 0x78, 0x14, 0xEB, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x5E, 0x3E, 0xA6, 0xAF, 0xF6, 0xC7, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x11, 0xE2, 0x65, 0xCA, 0x41, 0x95, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x83, 0xD8, 0xE6, 0x4D, 0x22, 0x06, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x7F, 0x25, 0x2A, 0xAA, 0x28, 0x46, 0x97),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xDB, 0x15, 0x56, 0x84, 0xCB, 0xC0, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xDB, 0x0E, 0x08, 0xC9, 0xF5, 0xD4, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x62, 0xD0, 0x1A, 0x7C, 0x13, 0xD5, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xAD, 0x53, 0xE0, 0x32, 0x21, 0xA0, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x38, 0x81, 0x21, 0x23, 0x0E, 0xD2, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x51, 0x05, 0xD0, 0x1E, 0x82, 0xA9, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xC3, 0x27, 0xBF, 0xC6, 0xAA, 0xB7, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x65, 0x45, 0xDF, 0xB9, 0x46, 0x17, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x38, 0x3F, 0xB2, 0xB1, 0x5D, 0xCA, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x29, 0x6C, 0x63, 0xE9, 0xD7, 0x48, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xF1, 0xD7, 0x99, 0x8C, 0xC2, 0x05, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE6, 0x5E, 0x82, 0x6D, 0xE5, 0x7E, 0xD5),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x61, 0xFA, 0x7D, 0x01, 0xDB, 0xB6, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC6, 0x58, 0x39, 0xF4, 0xC6, 0x82, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0x7A, 0x80, 0x08, 0xCD, 0xAA, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x8C, 0xC6, 0x3F, 0x3C, 0xA5, 0x68, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xF5, 0xD5, 0x17, 0xAE, 0x36, 0xD8, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xAD, 0x92, 0xC5, 0x57, 0x6C, 0xDA, 0x91),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x67, 0x17, 0xC0, 0x40, 0x78, 0x8C, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x9F, 0xF4, 0xAA, 0xDA, 0x5C, 0x7E, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xDB, 0x42, 0x3E, 0x72, 0x64, 0xA0, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xF9, 0x41, 0x17, 0x43, 0xE3, 0xE8, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xDD, 0xCC, 0x43, 0x7E, 0x16, 0x05, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x4B, 0xCF, 0x48, 0x8F, 0x41, 0x90, 0xE5),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x0C, 0x6B, 0x9D, 0x22, 0x04, 0xBC, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x63, 0x79, 0x2F, 0x6A, 0x0E, 0x8A, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x67, 0x3F, 0x02, 0xB8, 0x91, 0x7F, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x14, 0x64, 0xA0, 0x33, 0xF4, 0x6B, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x44, 0x71, 0x87, 0xB8, 0x88, 0x3F, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x2B, 0x85, 0x05, 0xC5, 0x44, 0x53, 0x15),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x2B, 0xFE, 0xD1, 0x1C, 0x73, 0xE3, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x33, 0xA1, 0xD3, 0x69, 0x1C, 0x9D, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x5A, 0xBA, 0xB6, 0xAE, 0x1B, 0x94, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x74, 0x90, 0x5C, 0x57, 0xB0, 0x3A, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x2F, 0x93, 0x20, 0x24, 0x54, 0x1D, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x78, 0x9D, 0x71, 0x67, 0x5D, 0x49, 0x98),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xC8, 0x0E, 0x11, 0x8D, 0xE0, 0x8F, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x7F, 0x79, 0x6C, 0x5F, 0xB7, 0xBC, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xE1, 0x83, 0x3C, 0x12, 0xBB, 0xEE, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC2, 0xC4, 0x1B, 0x41, 0x71, 0xB9, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0xEE, 0xBB, 0x1D, 0x89, 0x50, 0x88, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x1C, 0x55, 0x74, 0xEB, 0xDE, 0x92, 0x3F),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x38, 0x92, 0x06, 0x19, 0xD0, 0xB3, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x99, 0x26, 0xA3, 0x5F, 0xE2, 0xC1, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xFC, 0xFD, 0xC3, 0xB6, 0x26, 0x24, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xAD, 0xE7, 0x49, 0xB7, 0x64, 0x4B, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x4E, 0x95, 0xAD, 0x07, 0xFE, 0xB6, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x15, 0xE7, 0x2D, 0x19, 0xA9, 0x08, 0x10),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xBD, 0xAC, 0x0A, 0x3F, 0x6B, 0xFF, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xE4, 0x74, 0x14, 0xD9, 0x70, 0x1D, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xB0, 0x71, 0xBB, 0xD8, 0x18, 0x96, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xB8, 0x19, 0x90, 0x80, 0xB5, 0xEE, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x21, 0x20, 0xA6, 0x17, 0x48, 0x03, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0xBB, 0x6D, 0x94, 0x20, 0x34, 0xF1),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x82, 0x67, 0x4B, 0x8E, 0x4E, 0xBE, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xDA, 0x77, 0xF8, 0x23, 0x55, 0x2B, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x02, 0xDE, 0x25, 0x35, 0x2D, 0x74, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0C, 0xB8, 0x0B, 0x39, 0xBA, 0xAD, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x0E, 0x28, 0x4D, 0xE1, 0x3D, 0xE4, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xEC, 0x0A, 0xD4, 0xB8, 0xC4, 0x8D, 0xB0),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x68, 0xCE, 0xC2, 0x55, 0x4D, 0x0C, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x20, 0x93, 0x32, 0x90, 0xD6, 0xAE, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x78, 0xAB, 0x43, 0x9E, 0xEB, 0x73, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x97, 0xC3, 0x83, 0xA6, 0x3C, 0xF1, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x25, 0x25, 0x66, 0x08, 0x26, 0xFA, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xFB, 0x44, 0x5D, 0x82, 0xEC, 0x3B, 0xAC),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x90, 0xEA, 0xB5, 0x04, 0x99, 0xD0, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0xF2, 0x22, 0xA0, 0xEB, 0xFD, 0x45, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA4, 0x81, 0x32, 0xFC, 0xFA, 0xEE, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xBB, 0xA4, 0x6A, 0x77, 0x41, 0x5C, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x1E, 0xAA, 0x4F, 0xF0, 0x10, 0xB3, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x74, 0x13, 0x14, 0x9E, 0x90, 0xD7, 0xE6),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xBD, 0x70, 0x4F, 0xA8, 0xD1, 0x06, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4E, 0x2E, 0x68, 0xFC, 0x35, 0xFA, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x53, 0x75, 0xED, 0xF2, 0x5F, 0xC2, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x87, 0x6B, 0x9F, 0x05, 0xE2, 0x22, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x1A, 0xA8, 0xB7, 0x03, 0x9E, 0x6D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD0, 0x69, 0x88, 0xA8, 0x39, 0x9E, 0x3A),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xEF, 0x68, 0xFE, 0xEC, 0x24, 0x08, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x4B, 0x92, 0x0D, 0xB7, 0x34, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF4, 0xDD, 0x1A, 0xA0, 0x4A, 0xE4, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x63, 0x4F, 0x4F, 0xCE, 0xBB, 0xD6, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xEE, 0x8D, 0xDF, 0x3F, 0x73, 0xB7, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x06, 0xB6, 0x80, 0x4D, 0x81, 0xD9, 0x53),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF5, 0x13, 0xDF, 0x13, 0x19, 0x97, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xF9, 0xB3, 0x33, 0x66, 0x82, 0x21, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xFC, 0x39, 0x16, 0x23, 0x43, 0x76, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x48, 0x25, 0xA1, 0x64, 0x95, 0x1C, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xAC, 0x15, 0x57, 0xD9, 0xDE, 0xA0, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x5F, 0xB8, 0x3D, 0x48, 0x91, 0x24, 0xCC),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xF2, 0xC8, 0x54, 0xD1, 0x32, 0xBD, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x3B, 0xF0, 0xAA, 0x9D, 0xD8, 0xF4, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xC3, 0xBB, 0x6C, 0x66, 0xAC, 0x25, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x25, 0x10, 0xB2, 0xE1, 0x41, 0xDE, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xE8, 0x30, 0xB8, 0x37, 0xBC, 0x2A, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x57, 0x01, 0x4A, 0x1E, 0x78, 0x9F, 0x85),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x19, 0xCD, 0x12, 0x0B, 0x51, 0x4F, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x4B, 0x3D, 0x24, 0xA4, 0x16, 0x59, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xEB, 0xD3, 0x59, 0x2E, 0x75, 0x7C, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB9, 0xB4, 0xA5, 0xD9, 0x2E, 0x29, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x16, 0x05, 0x75, 0x02, 0xB3, 0x06, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x7C, 0x9F, 0x79, 0x91, 0xF1, 0x4F, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x98, 0x7C, 0x84, 0xE1, 0xFF, 0x30, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE2, 0xC2, 0x5F, 0x55, 0x40, 0xBD, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x65, 0x87, 0x3F, 0xC4, 0xC2, 0x24, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x30, 0x0A, 0x60, 0x15, 0xD1, 0x24, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x99, 0xD9, 0xB6, 0xAE, 0xB1, 0xAF, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x80, 0xEE, 0xA2, 0x0F, 0x74, 0xB9, 0xF3),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xE6, 0x0F, 0x37, 0xC1, 0x10, 0x99, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xAD, 0x9D, 0x5D, 0x80, 0x01, 0xA6, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x0F, 0x10, 0x2A, 0x9D, 0x20, 0x38, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x60, 0xCB, 0xCE, 0x5A, 0xA0, 0xA7, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xCF, 0x14, 0xDF, 0xBF, 0xE5, 0x74, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x12, 0x1A, 0xDD, 0x59, 0x02, 0x5D, 0xC6),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0xF8, 0xF5, 0xB6, 0x13, 0x4D, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x45, 0xB1, 0x93, 0xB3, 0xA2, 0x79, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xF6, 0xCF, 0xF7, 0xE6, 0x29, 0x9C, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x50, 0x65, 0x80, 0xBC, 0x59, 0x0A, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xF0, 0x24, 0x35, 0xA2, 0x46, 0xF0, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x26, 0xC0, 0x9D, 0x61, 0x56, 0x62, 0x67),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xBB, 0xC2, 0x24, 0x43, 0x2E, 0x37, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xF7, 0xCE, 0x35, 0xFC, 0x77, 0xF3, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x34, 0x96, 0xD5, 0x4A, 0x76, 0x9D, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x3B, 0x0F, 0xEA, 0xA8, 0x12, 0x0B, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x3F, 0x5D, 0x2D, 0x1C, 0xD4, 0x9E, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x2E, 0xDD, 0xC7, 0x6E, 0xAB, 0xAF, 0xDC),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB2, 0x7B, 0x0C, 0x9A, 0x83, 0x8E, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x51, 0x90, 0x92, 0x79, 0x32, 0x19, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x89, 0xF9, 0xD0, 0xCF, 0x2C, 0xA5, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x50, 0x21, 0xDE, 0x50, 0x41, 0x9D, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x7D, 0x2B, 0x9E, 0x9D, 0x95, 0xA8, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA5, 0x20, 0x87, 0x88, 0x97, 0x5F, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x59, 0xB4, 0x66, 0x7E, 0xE8, 0x5A, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x5C, 0x7E, 0xB2, 0xAD, 0xD9, 0xC9, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x97, 0x49, 0xA3, 0x13, 0x83, 0x07, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x26, 0xC7, 0x13, 0x35, 0x0D, 0xB0, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x60, 0xAB, 0xFA, 0x4B, 0x93, 0x18, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2D, 0x1C, 0x31, 0x4C, 0xE4, 0x61, 0xAE),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x4D, 0x1E, 0x51, 0x59, 0x6E, 0x91, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x54, 0x4D, 0x51, 0xED, 0x36, 0xCC, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xA8, 0x56, 0xC7, 0x78, 0x27, 0x33, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB7, 0x95, 0xC9, 0x8B, 0xC8, 0x6A, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xE9, 0x13, 0x96, 0xB3, 0xE1, 0xF9, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x46, 0xB0, 0x5E, 0xC3, 0x94, 0x03, 0x05),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x5B, 0x29, 0x30, 0x41, 0x1A, 0x9E, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xCA, 0x83, 0x31, 0x5B, 0xA7, 0xCB, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x41, 0x50, 0x44, 0x4D, 0x64, 0x31, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x84, 0xC2, 0x5D, 0x97, 0xA5, 0x3C, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x0F, 0xA5, 0xFD, 0x8E, 0x5A, 0x47, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x58, 0x02, 0x2D, 0x40, 0xB1, 0x0B, 0xBA),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x33, 0x8C, 0x67, 0xCE, 0x23, 0x43, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x53, 0x47, 0x72, 0x44, 0x1F, 0x5B, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xC1, 0xD9, 0xA4, 0x50, 0x88, 0x63, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xF2, 0x75, 0x69, 0x73, 0x00, 0xC4, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x90, 0x1D, 0xDF, 0x1A, 0x00, 0xD8, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xB1, 0x89, 0x48, 0xA8, 0x70, 0x62, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x8A, 0x55, 0x50, 0x7B, 0xEF, 0x8A, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1B, 0x23, 0x48, 0x23, 0x63, 0x91, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x04, 0x54, 0x3C, 0x24, 0x9B, 0xC7, 0x9A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x38, 0xC3, 0x84, 0xFB, 0xFF, 0x9F, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x2A, 0xE0, 0x6D, 0x68, 0x8A, 0x5C, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x93, 0x53, 0x85, 0xA1, 0x0D, 0xAF, 0x63),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x88, 0x95, 0x4C, 0x0B, 0xD0, 0x06, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xAF, 0x8D, 0x49, 0xA2, 0xC8, 0xB4, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x76, 0x53, 0x09, 0x88, 0x43, 0x87, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA4, 0x77, 0x3F, 0x5E, 0x21, 0xB4, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x9E, 0x86, 0x64, 0xCC, 0x91, 0xC1, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x17, 0x56, 0xCB, 0xC3, 0x7D, 0x5B, 0xB1),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x74, 0x9F, 0xB5, 0x91, 0x21, 0xB1, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xED, 0xE1, 0x11, 0xEF, 0x45, 0xAF, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x31, 0xBE, 0xB2, 0xBC, 0x72, 0x65, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x4B, 0x8C, 0x77, 0xCE, 0x1E, 0x42, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC9, 0xAA, 0xB9, 0xD9, 0x86, 0x99, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x23, 0x80, 0xC6, 0x4E, 0x35, 0x0B, 0x6D),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xD8, 0xA2, 0x0A, 0x39, 0x32, 0x1D, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xC8, 0x86, 0xF1, 0x12, 0x9A, 0x4A, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xF1, 0x7C, 0xAA, 0x70, 0x8E, 0xBC, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x01, 0x47, 0x8F, 0xDD, 0x8B, 0xA5, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x08, 0x21, 0xF4, 0xAB, 0xC7, 0xF5, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x76, 0xA5, 0x95, 0xC4, 0x0F, 0x88, 0x1D),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x42, 0x2A, 0x52, 0xCD, 0x75, 0x51, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x36, 0xE5, 0x04, 0x2B, 0x44, 0xC6, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xEE, 0x16, 0x13, 0x07, 0x83, 0xB5, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x59, 0xC6, 0xA2, 0x19, 0x05, 0xD3, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8B, 0xA8, 0x16, 0x09, 0xB7, 0xEA, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xEE, 0x14, 0xAF, 0xB5, 0xFD, 0xD0, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x7C, 0xCA, 0x71, 0x3E, 0x6E, 0x66, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x31, 0x0E, 0x3F, 0xE5, 0x91, 0xC4, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x3D, 0xC2, 0x3E, 0x95, 0x37, 0x58, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x1F, 0x02, 0x03, 0xF3, 0xEF, 0xEE, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x5B, 0x1A, 0xFC, 0x38, 0xCD, 0xE8, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x57, 0x42, 0x85, 0xC6, 0x21, 0x68, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA2, 0x4A, 0x66, 0xB1, 0x0A, 0xE6, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x0C, 0x94, 0x9D, 0x5E, 0x99, 0xB2, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x03, 0x40, 0xCA, 0xB2, 0xB3, 0x30, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0x48, 0x27, 0x34, 0x1E, 0xE2, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x72, 0x5B, 0xAC, 0xC1, 0x6D, 0xE3, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAB, 0x46, 0xCB, 0xEA, 0x5E, 0x4B, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x08, 0xAD, 0x4E, 0x51, 0x9F, 0x2A, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5C, 0x7D, 0x4C, 0xD6, 0xCF, 0xDD, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x76, 0x26, 0xE0, 0x8B, 0x10, 0xD9, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA7, 0x23, 0x4E, 0x5F, 0xD2, 0x42, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xE5, 0xA4, 0xEC, 0x77, 0x21, 0x34, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x14, 0x65, 0xEA, 0x4A, 0x85, 0xC3, 0x2F),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xD8, 0x40, 0x27, 0x73, 0x15, 0x7E, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xBB, 0x53, 0x7E, 0x0F, 0x40, 0xC8, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x37, 0x19, 0x73, 0xEF, 0x5A, 0x5E, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x73, 0x2B, 0x49, 0x7E, 0xAC, 0x97, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xB2, 0xC3, 0x1E, 0x0E, 0xE7, 0xD2, 0x21),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x08, 0xD6, 0xDD, 0xAC, 0x21, 0xD6, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x26, 0xBE, 0x6D, 0x6D, 0xF2, 0x38, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6C, 0x31, 0xA7, 0x49, 0x50, 0x3A, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x99, 0xC6, 0xF5, 0xD2, 0xC2, 0x30, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE4, 0xF6, 0x8B, 0x8B, 0x97, 0xE9, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x21, 0xB7, 0x0D, 0xFC, 0x15, 0x54, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x83, 0x1C, 0xA4, 0xCD, 0x6B, 0x9D, 0xF2),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE8, 0x4C, 0x48, 0xE4, 0xAA, 0x69, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x7A, 0x27, 0xFC, 0x37, 0x96, 0x1A, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xE7, 0x30, 0xA5, 0xCF, 0x13, 0x46, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xD8, 0xAF, 0x74, 0x23, 0x4D, 0x56, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3D, 0x44, 0x14, 0x1B, 0x97, 0x83, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x47, 0xD7, 0x5F, 0xFD, 0x98, 0x38, 0xF7),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x73, 0x64, 0x36, 0xFD, 0x7B, 0xC1, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x5D, 0x32, 0xD2, 0x47, 0x94, 0x89, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xE9, 0x30, 0xAC, 0x06, 0xC8, 0x65, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x6C, 0xB9, 0x1B, 0xF7, 0x61, 0x49, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xFF, 0x32, 0x43, 0x80, 0xDA, 0xA6, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF8, 0x04, 0x01, 0x95, 0x35, 0xCE, 0x21),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x06, 0x46, 0x0D, 0x51, 0xE2, 0xD8, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x57, 0x1D, 0x6F, 0x79, 0xA0, 0xCD, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xFB, 0x36, 0xCA, 0xAD, 0xF5, 0x9E, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x7A, 0x1D, 0x9E, 0x1D, 0x95, 0x48, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x26, 0xA5, 0xB7, 0x15, 0x2C, 0xC2, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x42, 0x72, 0xAA, 0x11, 0xDC, 0xC9, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x6C, 0x64, 0xA7, 0x62, 0x3C, 0xAB, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x6A, 0x44, 0xD8, 0x60, 0xC0, 0xA8, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x76, 0x58, 0x12, 0x57, 0x3C, 0x89, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x4F, 0x83, 0xCE, 0xCB, 0xB8, 0xD0, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0x04, 0xB0, 0xAD, 0xEB, 0xFA, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA4, 0xC3, 0x41, 0x44, 0x4E, 0x65, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x16, 0xA9, 0x1C, 0xE7, 0x65, 0x20, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x53, 0x32, 0xF8, 0xC0, 0xA6, 0xBD, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF0, 0xE6, 0x57, 0x31, 0xCC, 0x26, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xE3, 0x54, 0x1C, 0x34, 0xD3, 0x17, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xAE, 0xED, 0xFB, 0xCD, 0xE7, 0x1E, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x16, 0x1C, 0x34, 0x40, 0x00, 0x1F, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x32, 0x00, 0xC2, 0xD4, 0x3B, 0x1A, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xE0, 0x99, 0x8F, 0x0C, 0x4A, 0x16, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x73, 0x18, 0x1B, 0xD4, 0x94, 0x29, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA4, 0x2D, 0xB1, 0x9D, 0x74, 0x32, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xF4, 0xB1, 0x0C, 0x37, 0x62, 0x8B, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xFF, 0xDA, 0xE2, 0x35, 0xA3, 0xB6, 0x42),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x49, 0x99, 0x65, 0xC5, 0xED, 0x16, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x42, 0x9A, 0xF3, 0xA7, 0x4E, 0x6F, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x0A, 0x7E, 0xC0, 0xD7, 0x4E, 0x07, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x7A, 0x31, 0x69, 0xA6, 0xB9, 0x15, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xE0, 0x72, 0xA4, 0x3F, 0xB9, 0xF8, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x75, 0x32, 0x85, 0xA2, 0xDE, 0x37, 0x12),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC0, 0x0D, 0xCF, 0x25, 0x41, 0xA4, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xFC, 0xB2, 0x48, 0xC3, 0x85, 0x83, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBE, 0x0B, 0x58, 0x2D, 0x7A, 0x9A, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xF3, 0x81, 0x18, 0x1B, 0x74, 0x4F, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x43, 0xA3, 0x0A, 0x16, 0x8B, 0xA3, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x18, 0x81, 0x7B, 0x8D, 0xA2, 0x35, 0x77),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xC4, 0x3F, 0x2C, 0xE7, 0x5F, 0x99, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2B, 0xB7, 0xB6, 0xAD, 0x5A, 0x56, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x00, 0xA4, 0x48, 0xC8, 0xE8, 0xBA, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xA1, 0xB5, 0x13, 0x5A, 0xCD, 0x99, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x95, 0xAD, 0xFC, 0xE2, 0x7E, 0xE7, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x6B, 0xD1, 0x34, 0x99, 0x53, 0x63, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x8A, 0x77, 0x5D, 0x2B, 0xAB, 0x01, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x85, 0xD0, 0xD5, 0x49, 0x83, 0x4D, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xC6, 0x91, 0x30, 0x3B, 0x00, 0xAF, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x61, 0x07, 0xE1, 0xB6, 0xE2, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x43, 0x41, 0xFE, 0x9B, 0xB6, 0xF0, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x97, 0xAE, 0xAD, 0x89, 0x88, 0x9E, 0x41),
+};
+static const mbedtls_ecp_point secp384r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(secp384r1_T_0_X, secp384r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_1_X, secp384r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_2_X, secp384r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_3_X, secp384r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_4_X, secp384r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_5_X, secp384r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_6_X, secp384r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_7_X, secp384r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_8_X, secp384r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_9_X, secp384r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_10_X, secp384r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_11_X, secp384r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_12_X, secp384r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_13_X, secp384r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_14_X, secp384r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_15_X, secp384r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_16_X, secp384r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_17_X, secp384r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_18_X, secp384r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_19_X, secp384r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_20_X, secp384r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_21_X, secp384r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_22_X, secp384r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_23_X, secp384r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_24_X, secp384r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_25_X, secp384r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_26_X, secp384r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_27_X, secp384r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_28_X, secp384r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_29_X, secp384r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_30_X, secp384r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_31_X, secp384r1_T_31_Y),
+};
+#else
+#define secp384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+/*
+ * Domain parameters for secp521r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static const mbedtls_mpi_uint secp521r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp521r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xB1, 0x2D, 0xEB, 0x27, 0x2F, 0xE8, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x4B, 0x44, 0x25, 0xDB, 0x5C, 0x5F, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x85, 0x28, 0x78, 0x2E, 0x75, 0x34, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x57, 0x0F, 0x73, 0x78, 0x7A, 0xE3, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD8, 0xEC, 0xDC, 0xDA, 0x04, 0xAD, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x8A, 0x09, 0xF3, 0x58, 0x79, 0xD8, 0x29),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x03, 0xCB, 0x50, 0x1A, 0x7F, 0x56, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA6, 0x78, 0x38, 0x85, 0x67, 0x0B, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xD5, 0xD2, 0x22, 0xC4, 0x00, 0x3B, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x93, 0x0E, 0x7B, 0x85, 0x51, 0xC3, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA6, 0x5F, 0x54, 0x49, 0x02, 0x81, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xE9, 0x6B, 0x3A, 0x92, 0xE7, 0x72, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x5F, 0x28, 0x9E, 0x91, 0x27, 0x88, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x28, 0x31, 0xB3, 0x84, 0xCA, 0x12, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xF9, 0xAC, 0x22, 0x10, 0x0A, 0x64, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xC6, 0x33, 0x1F, 0x69, 0x19, 0x18, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x48, 0xB8, 0xC7, 0x37, 0x5A, 0x00, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xCC, 0x32, 0xE0, 0xEE, 0x03, 0xC2, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x29, 0xC2, 0xE4, 0x6E, 0x24, 0x20, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x6B, 0x7F, 0x7B, 0xF9, 0xB0, 0xB8, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x7B, 0x3C, 0xE1, 0x19, 0xA1, 0x23, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE3, 0xC2, 0x53, 0xC0, 0x07, 0x13, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFE, 0x36, 0x35, 0x9F, 0x5E, 0x59, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x55, 0x89, 0x84, 0xBC, 0xEF, 0xA2, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x1A, 0x08, 0x67, 0xB4, 0xE7, 0x22, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x26, 0xDF, 0x81, 0x3C, 0x5F, 0x1C, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x4D, 0xD0, 0x0A, 0x48, 0x06, 0xF4, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x18, 0x39, 0xF7, 0xD1, 0x20, 0x77, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x8F, 0x44, 0x13, 0xCB, 0x78, 0x11, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE2, 0x49, 0xEA, 0x43, 0x79, 0x08, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xD1, 0xD8, 0x73, 0x2C, 0x71, 0x2F, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE5, 0xE7, 0xF4, 0x46, 0xAB, 0x20, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x0B, 0xB9, 0x71, 0x1A, 0x27, 0xB7, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xA2, 0x2C, 0xD1, 0xDA, 0xBC, 0xC1, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xA3, 0x10, 0x1F, 0x90, 0xF2, 0xA5, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xFB, 0x20, 0xF4, 0xC0, 0x70, 0xC0, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xA7, 0x99, 0xF0, 0xA5, 0xD3, 0x09, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xE8, 0x14, 0x39, 0xBE, 0xCB, 0x60, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD6, 0x14, 0xA9, 0xC9, 0x20, 0xC3, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x5B, 0xFD, 0x2D, 0x96, 0xBC, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x04, 0x45, 0xBE, 0xCE, 0x75, 0x95, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xDA, 0x58, 0x49, 0x35, 0x09, 0x8D, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xF0, 0xC0, 0x36, 0xF2, 0xA6, 0x2D, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFC, 0x3D, 0xA8, 0xFB, 0x3C, 0xD2, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x4D, 0x71, 0x09, 0x18, 0x42, 0xF0, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xC1, 0xCE, 0x9E, 0x6A, 0x49, 0x60, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xB1, 0x00, 0xF7, 0xA1, 0x7A, 0x31, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC3, 0x86, 0xCD, 0x20, 0x4A, 0x17, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xAB, 0x8B, 0x47, 0x8D, 0xAA, 0xA6, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x97, 0xF0, 0xBC, 0x2D, 0xDC, 0x9D, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x86, 0xB0, 0x74, 0xB2, 0xF4, 0xF6, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBD, 0xAC, 0xE3, 0x8F, 0x43, 0x5C, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xC3, 0xE2, 0x6E, 0x25, 0x49, 0xCD, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5E, 0x08, 0xB3, 0xB9, 0xAC, 0x5F, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xB7, 0xD1, 0xF4, 0xDC, 0x19, 0xE9, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xE4, 0xFA, 0xE1, 0x36, 0x3E, 0xED, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0x92, 0x84, 0x6E, 0x48, 0x03, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x95, 0xEF, 0x8F, 0xB2, 0x82, 0x6B, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFA, 0xB9, 0x55, 0x23, 0xFE, 0x09, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x79, 0x85, 0x4B, 0x0E, 0xD4, 0x35, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x27, 0x45, 0x81, 0xE0, 0x88, 0x52, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x63, 0xA2, 0x4B, 0xBC, 0x5D, 0xB1, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x8C, 0x83, 0xD9, 0x3E, 0xD3, 0x42, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x03, 0x3A, 0x31, 0xBA, 0xE9, 0x3A, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x10, 0xCD, 0x2D, 0x00, 0xFE, 0x32, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x6E, 0x1F, 0xDA, 0xF8, 0x6F, 0x4D, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x79, 0x7D, 0x09, 0xE5, 0xD3, 0x03, 0x21),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC3, 0xBE, 0xDF, 0x07, 0x65, 0x49, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0x33, 0xEF, 0xAE, 0x4F, 0x04, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xE9, 0x9B, 0xFE, 0xBF, 0xE6, 0x85, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xBA, 0xAA, 0x06, 0xC4, 0xC6, 0xB8, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x83, 0x01, 0xA9, 0xF6, 0x51, 0xE7, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xA6, 0x15, 0x8E, 0xAB, 0x1F, 0x10, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x08, 0x27, 0x1A, 0xA1, 0x21, 0xAD, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x09, 0x90, 0x6E, 0x50, 0x90, 0x9A, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x9A, 0xFE, 0xD7, 0xA1, 0xF5, 0xA2, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x7D, 0xE3, 0xDC, 0x21, 0xFB, 0xA4, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBF, 0x07, 0xFF, 0x45, 0xDF, 0x51, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x5C, 0x34, 0x02, 0x62, 0x9B, 0x08, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xCE, 0x9A, 0x6A, 0xEC, 0x75, 0xF6, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x59, 0xF4, 0x78, 0x3C, 0x60, 0xB1, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x37, 0x84, 0x6A, 0xDC, 0xF2, 0x9A, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9A, 0x9A, 0x15, 0x36, 0xE0, 0x2B, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x38, 0x9C, 0x50, 0x3D, 0x1E, 0x37, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x79, 0xF0, 0x92, 0xF2, 0x8B, 0x18, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE0, 0x82, 0x1E, 0x80, 0x82, 0x4B, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xBB, 0x59, 0x6B, 0x8A, 0x77, 0x41, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xF9, 0xD4, 0xB8, 0x4A, 0x82, 0xCF, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x8C, 0xC8, 0x9B, 0x72, 0x9E, 0xF7, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xCE, 0xE9, 0x77, 0x0A, 0x19, 0x59, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xA1, 0x41, 0x6A, 0x72, 0x4B, 0xB4, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x35, 0x43, 0xE2, 0x8C, 0xBE, 0x0D, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xEB, 0xAD, 0xF3, 0xA9, 0xA6, 0x68, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2F, 0xE2, 0x48, 0x0C, 0xDB, 0x1F, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x1E, 0x60, 0x9B, 0x2A, 0xD2, 0xC1, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x64, 0xB5, 0xD2, 0xF6, 0xF6, 0x6E, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x3D, 0x30, 0x78, 0x10, 0x18, 0x41, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x1D, 0x1C, 0xE0, 0x6D, 0x83, 0xD1, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x03, 0x0B, 0xF5, 0x2F, 0x6C, 0x04, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x3E, 0xD5, 0xFC, 0x31, 0x5B, 0x3A, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x82, 0x2F, 0xFB, 0xFE, 0xF8, 0x76, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x26, 0xDA, 0x9C, 0x36, 0xF5, 0x93, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xE7, 0x6E, 0xD2, 0x7D, 0x81, 0x09, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x03, 0xF9, 0x58, 0x48, 0x24, 0xA2, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x79, 0x0C, 0x8E, 0x6B, 0x95, 0xF3, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x10, 0x5C, 0x87, 0x03, 0x39, 0xCF, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xF0, 0xF7, 0xC1, 0x07, 0xA4, 0xF4, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE8, 0x02, 0x89, 0x65, 0xC4, 0x72, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x88, 0xEA, 0x96, 0x67, 0x0B, 0x5D, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x75, 0x60, 0xA8, 0xBD, 0x74, 0xDF, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xE5, 0x71, 0x50, 0x67, 0xD0, 0xD2, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFC, 0xE5, 0xC7, 0x77, 0xB0, 0x7F, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x86, 0x69, 0xCD, 0x0D, 0x9A, 0xBD, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x17, 0xBC, 0xBB, 0x59, 0x85, 0x7D, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA8, 0x76, 0xAC, 0x80, 0xA9, 0x72, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0xC1, 0xE2, 0x4D, 0xAF, 0xF9, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x97, 0x8E, 0x74, 0xC4, 0x4B, 0xB2, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD8, 0xF6, 0xF3, 0xAF, 0x2F, 0x52, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x57, 0xF4, 0xCE, 0xEE, 0x43, 0xED, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x46, 0x38, 0xDE, 0x20, 0xFD, 0x59, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x18, 0xE8, 0x58, 0xB9, 0x76, 0x2C, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x54, 0xE4, 0xFE, 0xC7, 0xBC, 0x31, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF8, 0x89, 0xEE, 0x70, 0xB5, 0xB0, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x22, 0x26, 0x9A, 0x53, 0xB9, 0x38, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xA7, 0x19, 0x8C, 0x74, 0x7E, 0x88, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xDA, 0x0A, 0xE8, 0xDA, 0xA5, 0xBE, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x5C, 0xF7, 0xB1, 0x0C, 0x72, 0xFB, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xE2, 0x23, 0xE7, 0x46, 0xB7, 0xE0, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x36, 0xBC, 0xBD, 0x48, 0x11, 0x8E, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xBB, 0xA1, 0xF7, 0x0B, 0x9E, 0xBF, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x28, 0xE1, 0xA2, 0x8F, 0xFC, 0xFC, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xFE, 0x19, 0x0A, 0xE5, 0xE7, 0x69, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xCD, 0x12, 0xF5, 0xBE, 0xD3, 0x04, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA8, 0x0D, 0x81, 0x59, 0xC4, 0x79, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xF3, 0x4B, 0x92, 0x65, 0xC3, 0x31, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xB5, 0x4F, 0x4D, 0x91, 0xD4, 0xE2, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x09, 0x41, 0x79, 0x1D, 0x4D, 0x0D, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x31, 0x18, 0xBA, 0xA0, 0xF2, 0x6E, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x5B, 0x4D, 0x4F, 0xAF, 0xC9, 0x8C, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x9C, 0x06, 0x68, 0xDE, 0xD8, 0x29),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x04, 0xE1, 0xB5, 0x9D, 0x00, 0xBC, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x95, 0x92, 0x8D, 0x72, 0xD3, 0x37, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x4B, 0x27, 0xA2, 0xE8, 0xA4, 0x26, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x45, 0x9C, 0xA9, 0xCB, 0x9F, 0xBA, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x7E, 0x1B, 0x64, 0xF4, 0xE8, 0xA5, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x20, 0xA9, 0xCA, 0xF3, 0x89, 0xE5, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xED, 0xFC, 0xAB, 0xD9, 0x0A, 0xB9, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6F, 0x46, 0x7C, 0xCD, 0x78, 0xFF, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAB, 0x71, 0x5A, 0x94, 0xAB, 0x20, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x2E, 0xEE, 0x87, 0x57, 0x1F, 0xAD, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x4C, 0x3D, 0xFB, 0x7E, 0xA1, 0x8B, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xCF, 0x07, 0x86, 0xBA, 0x53, 0x37, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x26, 0xB2, 0xB9, 0xE2, 0x91, 0xE3, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xC9, 0x54, 0x84, 0x08, 0x3D, 0x0B, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x77, 0x2F, 0x64, 0x45, 0x99, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x96, 0x16, 0x1F, 0xDB, 0x96, 0x28, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x2B, 0x8D, 0xFF, 0xA2, 0x4F, 0x55, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE6, 0x48, 0xBD, 0x99, 0x3D, 0x12, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x84, 0x59, 0xDA, 0xB9, 0xB6, 0x66, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x78, 0x41, 0x92, 0xDF, 0xF4, 0x3F, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x86, 0x6F, 0x4F, 0xBF, 0x67, 0xDF, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x2B, 0x1E, 0x5F, 0x00, 0xEA, 0xF6, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xB9, 0x6A, 0x89, 0xD8, 0xC0, 0xD7, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x9A, 0x32, 0x23, 0xA0, 0x02, 0x91, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x7F, 0x6A, 0x15, 0x64, 0x6A, 0x8B, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x57, 0x82, 0x58, 0xA9, 0x56, 0xB5, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x50, 0x92, 0x60, 0xCC, 0x81, 0x24, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x3D, 0xAD, 0xDA, 0xD9, 0x51, 0x3E, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xFE, 0x8F, 0xB0, 0x0B, 0xDE, 0x2E, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xD2, 0xBE, 0xEF, 0xAC, 0x76, 0x71, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xE8, 0x72, 0x0B, 0xAC, 0xFE, 0xCA, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0xC7, 0xFC, 0xE3, 0x3C, 0x7C, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x04, 0xA7, 0xB9, 0x9B, 0x93, 0xC0, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x48, 0x4B, 0x8E, 0x32, 0xC5, 0xF0, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x42, 0x07, 0xC1, 0xF2, 0xF1, 0x72, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x37, 0x54, 0x9C, 0x88, 0xD2, 0x62, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x19, 0x8A, 0x89, 0x58, 0xA2, 0x0F, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xCC, 0x4C, 0x97, 0x30, 0x66, 0x34, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x6A, 0x1E, 0x1F, 0xDB, 0xC9, 0x5E, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x4D, 0x49, 0xFF, 0x9B, 0x9C, 0xAC, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xE4, 0x4B, 0xF2, 0xD4, 0x1A, 0xD2, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xDA, 0xE8, 0x61, 0x9F, 0xC8, 0x49, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xCB, 0xF2, 0x2D, 0x85, 0xF6, 0x8D, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xC5, 0xCD, 0x2C, 0x79, 0xC6, 0x0E, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x1D, 0x55, 0x0F, 0xF8, 0x22, 0x9F, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x56, 0xBA, 0xE7, 0x57, 0x32, 0xEC, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x9A, 0xC6, 0x4C, 0x09, 0xC4, 0x52, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x1E, 0x6F, 0xF4, 0x7D, 0x27, 0xDD, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x11, 0x16, 0xEC, 0x79, 0x83, 0xAD, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x4E, 0x92, 0x1F, 0x19, 0x7D, 0x65, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xFF, 0x78, 0x15, 0x45, 0x63, 0x32, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x91, 0xD0, 0x78, 0x58, 0xDA, 0x50, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xDE, 0x40, 0xF6, 0x41, 0xB4, 0x3B, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x8D, 0xE0, 0xE1, 0xA9, 0xF0, 0x35, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xD4, 0xBA, 0x7B, 0xCC, 0x1B, 0x3A, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x5A, 0x2E, 0x74, 0x47, 0x14, 0xC3, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xF0, 0x8B, 0x06, 0x15, 0x8E, 0x0E, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xD2, 0xEB, 0x97, 0x50, 0x7D, 0x31, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x93, 0x4C, 0xDB, 0x97, 0x79, 0x44, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xA2, 0xA0, 0x0B, 0xC8, 0x3A, 0x8A, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x50, 0x92, 0x9E, 0x24, 0x1F, 0xCB, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x16, 0xC9, 0xC5, 0x3D, 0x5A, 0xAF, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xE3, 0x97, 0xE4, 0xA8, 0x50, 0xF6, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x57, 0x97, 0x42, 0x78, 0x92, 0x49, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEB, 0x62, 0x24, 0xFB, 0x8F, 0x32, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x0C, 0x36, 0x6E, 0x8F, 0xE8, 0xE8, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xD3, 0x7C, 0xC7, 0x8D, 0x3F, 0x5C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x64, 0x6A, 0x73, 0x10, 0x79, 0xB8, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xF9, 0xEF, 0xA5, 0x20, 0x4A, 0x5C, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xF3, 0xF4, 0x49, 0x5B, 0x73, 0xAA, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xF2, 0xEA, 0x0F, 0x00, 0xAD, 0x53, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xB8, 0x66, 0xED, 0xC4, 0x2B, 0x4C, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x2F, 0xC1, 0x9A, 0x37, 0xD2, 0x7F, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA7, 0x81, 0x38, 0x64, 0xC9, 0x37, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x3B, 0x6C, 0x9F, 0x5B, 0xD9, 0x8B, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x14, 0xD9, 0x08, 0xD8, 0xD2, 0x7E, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x71, 0xE6, 0x3D, 0xD1, 0xB0, 0xE7, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x81, 0x23, 0xEC, 0x2D, 0x42, 0x45, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x5B, 0x44, 0x6B, 0x89, 0x03, 0x67, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x27, 0xAE, 0x80, 0x5A, 0x33, 0xBE, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB6, 0x64, 0x1A, 0xDF, 0xD3, 0x85, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x8C, 0x22, 0xBA, 0xD0, 0xBD, 0xCC, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x3C, 0x01, 0x3A, 0xFF, 0x9D, 0xC7, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC7, 0x64, 0xB4, 0x59, 0x4E, 0x9F, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x34, 0x0A, 0x41, 0x94, 0xA8, 0xF2, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD4, 0xE4, 0xF0, 0x97, 0x45, 0x6D, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x1F, 0x4D, 0x6D, 0xFE, 0xA0, 0xC4, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x28, 0x5C, 0x40, 0xBB, 0x65, 0xD4, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xA8, 0x87, 0x35, 0x20, 0x3A, 0x89, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFD, 0x4F, 0xAB, 0x2D, 0xD1, 0xD0, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE8, 0x00, 0xFC, 0x69, 0x52, 0xF8, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x9A, 0x99, 0xE1, 0xDC, 0x9C, 0x3F, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x08, 0x98, 0xD9, 0xCA, 0x73, 0xD5, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x2C, 0xE0, 0xA7, 0x3E, 0x91, 0xD7, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x04, 0xB0, 0x54, 0x09, 0xF4, 0x72, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xEE, 0x28, 0xCC, 0xE8, 0x50, 0x78, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x91, 0x03, 0x76, 0xDB, 0x68, 0x24, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xE0, 0x56, 0xB2, 0x5D, 0x12, 0xD3, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x42, 0x59, 0x8B, 0xDF, 0x67, 0xB5, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xCC, 0xE5, 0x31, 0x53, 0x7A, 0x46, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8D, 0x59, 0xB5, 0x1B, 0x0F, 0xF4, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x2F, 0xD1, 0x2C, 0xE0, 0xD8, 0x04, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0xD7, 0xBA, 0xB0, 0xA3, 0x7E, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x08, 0x51, 0x56, 0xA6, 0x76, 0x67, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x17, 0x63, 0xFE, 0x56, 0xD0, 0xD9, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xF6, 0xC3, 0x14, 0x47, 0xC5, 0xA7, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x4C, 0x80, 0xF6, 0xA2, 0x57, 0xA7, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xB3, 0x7B, 0xF8, 0x2F, 0xE1, 0x3E, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xF4, 0xF9, 0x6B, 0x7B, 0x90, 0xDF, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x82, 0xEF, 0x62, 0xA1, 0x4C, 0x53, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x99, 0x76, 0x01, 0xBA, 0x8D, 0x0F, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xF4, 0x58, 0x73, 0x56, 0xFE, 0xDD, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xCE, 0xF9, 0xE8, 0xA1, 0x34, 0xC3, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x5F, 0xDC, 0x6A, 0x3D, 0xD8, 0x7F, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xF4, 0x51, 0xB8, 0xB8, 0xC1, 0xD7, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x7D, 0x58, 0xD1, 0xD4, 0x1B, 0x4D, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x95, 0xDF, 0x00, 0xD8, 0x21, 0xDE, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x47, 0x3C, 0xC3, 0xB2, 0x01, 0x53, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x17, 0x43, 0x23, 0xBD, 0xCA, 0x71, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xBA, 0x0F, 0x4F, 0xDC, 0x41, 0x54, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x39, 0x26, 0x70, 0x53, 0x32, 0x18, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x46, 0x07, 0x97, 0x3A, 0x57, 0xE0, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x92, 0x4F, 0xCE, 0xDF, 0x25, 0x80, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x6F, 0x9A, 0x03, 0x05, 0x4B, 0xD1, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x01, 0x72, 0x30, 0x90, 0x17, 0x51, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xFB, 0x41, 0x65, 0x5C, 0xB4, 0x2D, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xCD, 0xCD, 0xAA, 0x41, 0xCC, 0xBB, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xCE, 0x08, 0x0A, 0x63, 0xE9, 0xA2, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA8, 0x21, 0x7F, 0x7A, 0x5B, 0x9B, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x6B, 0x89, 0x44, 0x0A, 0x7F, 0x85, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xDE, 0x7C, 0x19, 0x5C, 0x65, 0x26, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xAC, 0x62, 0x29, 0x4A, 0xF1, 0xD0, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x00, 0x40, 0x87, 0xEB, 0xA9, 0x58, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x51, 0x0B, 0xFF, 0x56, 0x35, 0x51, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xAC, 0x08, 0x94, 0x71, 0xDA, 0xEC, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x4D, 0xC5, 0x7B, 0x31, 0x8B, 0x8D, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x05, 0xF1, 0x3E, 0x9E, 0x8F, 0x17, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x9C, 0x4B, 0x62, 0x94, 0xAD, 0x49, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC9, 0xC6, 0x8F, 0xFD, 0x33, 0x44, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x96, 0x17, 0x7F, 0x42, 0xBE, 0xF7, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x29, 0x39, 0x13, 0x08, 0x8D, 0x91, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x79, 0xF9, 0x2F, 0xA9, 0x0A, 0xCF, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x87, 0x7A, 0xA3, 0x19, 0xAB, 0x55, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x0B, 0x01, 0xC5, 0x56, 0x19, 0x9D, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xDE, 0x82, 0x3B, 0xEA, 0xD3, 0x0B, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x6B, 0xC7, 0xF3, 0x0F, 0x82, 0x87, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x2E, 0x23, 0xF2, 0x39, 0x9D, 0x49, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xDE, 0xAF, 0x7A, 0xEE, 0xB0, 0xDA, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x4E, 0x2A, 0x50, 0xFD, 0x8E, 0xC0, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x0F, 0x7C, 0x76, 0x63, 0xD8, 0x89, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x2D, 0xB9, 0x4E, 0xF4, 0xEE, 0x85, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x95, 0x5C, 0x96, 0x5D, 0xAA, 0x59, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xDB, 0xD2, 0x68, 0x8E, 0x5A, 0x94, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x02, 0xBF, 0x77, 0x9F, 0xB9, 0x4C, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xDC, 0xC0, 0xCF, 0x81, 0x1E, 0xC4, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xCC, 0x37, 0x86, 0xDC, 0xE2, 0x64, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x30, 0xB1, 0x59, 0x20, 0x9D, 0x98, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x0C, 0x9D, 0xF8, 0x20, 0xDC, 0x90, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xA0, 0xF4, 0xE7, 0x3E, 0x9C, 0x9E, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x25, 0xA2, 0xB0, 0x54, 0xCD, 0x2E, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD9, 0x42, 0xB0, 0x80, 0xB0, 0xA3, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xFE, 0x9D, 0x8D, 0x40, 0xFF, 0x27, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9D, 0xA6, 0x88, 0x3A, 0x8B, 0x6F, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x39, 0xEE, 0x1F, 0x3F, 0xB1, 0x4F, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD7, 0x9E, 0xFF, 0xD2, 0x35, 0x67, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x4F, 0x15, 0x5D, 0xE3, 0xE8, 0x53, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF7, 0x24, 0x98, 0xA2, 0xCB, 0x11, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x2E, 0x25, 0xE1, 0x94, 0xC5, 0xA3, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x82, 0x6E, 0xBA, 0xE7, 0x43, 0x25, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x65, 0xB4, 0x49, 0x73, 0x18, 0x35, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x5B, 0xBC, 0x62, 0x86, 0x4C, 0xC1, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xF2, 0x95, 0xA2, 0xBB, 0xA2, 0x35, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x59, 0x62, 0xB0, 0x4B, 0x1E, 0xB4, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x55, 0xCE, 0xB0, 0x69, 0xBA, 0x63, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x69, 0x86, 0xDB, 0x34, 0x7D, 0x68, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x06, 0xCA, 0x55, 0x44, 0x36, 0x2B, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xD4, 0xC4, 0x3D, 0xCD, 0x9E, 0x69, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x44, 0xE4, 0xBF, 0x31, 0xE6, 0x40, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x4F, 0xFA, 0x75, 0xE3, 0xFB, 0x97, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xC0, 0xBD, 0x1C, 0x48, 0xB0, 0x26, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x7B, 0x32, 0xFA, 0xF2, 0x6D, 0x84, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x21, 0x03, 0x1D, 0x0D, 0x22, 0x55, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xF9, 0x42, 0x03, 0x9C, 0xC2, 0xCB, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xA1, 0x96, 0xD9, 0x9D, 0x11, 0x6F, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x40, 0x57, 0xEB, 0x40, 0x2D, 0xC0, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x96, 0xBB, 0x4F, 0x2F, 0x23, 0xA8, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x29, 0x85, 0x21, 0xA5, 0x50, 0x62, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x7D, 0x92, 0xCF, 0x87, 0x0C, 0x22, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x0E, 0xA5, 0x32, 0x5B, 0xDF, 0x9C, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x96, 0x37, 0x2C, 0x88, 0x35, 0x30, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xB4, 0x69, 0xFF, 0xEB, 0xC6, 0x94, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x55, 0x60, 0xAD, 0xAA, 0x58, 0x14, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xFF, 0xF2, 0xB2, 0xD5, 0xA7, 0xD9, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xAE, 0x54, 0xD2, 0x60, 0x31, 0xF3, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x92, 0x83, 0xE3, 0xF1, 0x42, 0x83, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD2, 0xC8, 0xB7, 0x76, 0x45, 0x7F, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x11, 0xA4, 0xFB, 0x7A, 0x01, 0xBC, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x27, 0x73, 0x8D, 0x02, 0x91, 0x27, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x62, 0xF6, 0xDD, 0x6B, 0xFA, 0x5B, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCA, 0xA2, 0x44, 0x2C, 0xF0, 0x28, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xF1, 0x7A, 0xA2, 0x42, 0x4C, 0x50, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x83, 0x3E, 0x50, 0xAB, 0x9C, 0xF7, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xED, 0x78, 0xCB, 0x76, 0x69, 0xDA, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x1E, 0x43, 0x27, 0x47, 0x6E, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x4F, 0x54, 0xB9, 0x3E, 0xBD, 0xD5, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x40, 0x69, 0x7F, 0x74, 0x9D, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x06, 0x6F, 0x67, 0x68, 0x2B, 0x4D, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x65, 0x41, 0xFC, 0x7C, 0x1E, 0xE8, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x79, 0x37, 0xAF, 0xFD, 0xD2, 0xDA, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xA8, 0x69, 0x56, 0x62, 0xA4, 0xE4, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x71, 0x73, 0x21, 0x8A, 0x17, 0x81, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x55, 0x8F, 0x7B, 0xB8, 0xAF, 0xF7, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xD1, 0xBD, 0xBE, 0x8C, 0xBC, 0x60, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA6, 0x57, 0x8C, 0xAE, 0x5C, 0x19, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x43, 0xE4, 0xD9, 0xD8, 0x7B, 0xE7, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xB9, 0xE4, 0x85, 0x7C, 0x2E, 0xFC, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2E, 0x01, 0x2A, 0x6D, 0x56, 0xBE, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x0C, 0x25, 0x9B, 0xAE, 0x86, 0x37, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x22, 0xB3, 0xCB, 0x99, 0x66, 0xB7, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xF7, 0x90, 0xF0, 0x1B, 0x09, 0x27, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x16, 0x08, 0xEF, 0x39, 0x64, 0x49, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA0, 0xE3, 0x97, 0xA9, 0x07, 0x54, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xFF, 0xE2, 0x00, 0x07, 0x21, 0x88, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFD, 0x59, 0x53, 0x05, 0x6C, 0x42, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xF7, 0x39, 0x5C, 0x82, 0x36, 0xE8, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x83, 0xA8, 0xE2, 0xA8, 0x43, 0x07, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xAF, 0x2B, 0x79, 0xED, 0xD8, 0x39, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x20, 0x91, 0x7A, 0xC4, 0x07, 0xEF, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x2F, 0xAA, 0x0C, 0x94, 0x0E, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x81, 0x87, 0x41, 0x23, 0xEB, 0x55, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x53, 0xCC, 0x79, 0xB6, 0xEB, 0x6C, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x77, 0x73, 0x9D, 0xFC, 0x64, 0x6F, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x40, 0xE3, 0x6D, 0x1C, 0x16, 0x71, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xF4, 0x1B, 0xFF, 0x1C, 0x2F, 0xA5, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x0E, 0x0B, 0x11, 0xF4, 0x8D, 0x93, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC5, 0x64, 0x6F, 0x24, 0x19, 0xF2, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xB3, 0xAF, 0xA5, 0x0E, 0x4F, 0x5E, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x77, 0xCA, 0xF2, 0x6D, 0xC5, 0xF6, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x18, 0x8E, 0x33, 0x68, 0x6C, 0xE8, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x8B, 0x80, 0x90, 0x19, 0x7F, 0x90, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x80, 0x6B, 0x68, 0xE2, 0x7D, 0xD4, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC1, 0x67, 0xB3, 0x72, 0xCB, 0xBF, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xD5, 0xD3, 0x1D, 0x14, 0x58, 0x0A, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x7A, 0x65, 0x98, 0xB3, 0x07, 0x4B, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x87, 0x0F, 0x5F, 0xCF, 0xA2, 0x01, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC9, 0xC8, 0x6E, 0x35, 0x87, 0xA5, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x3E, 0x91, 0xA0, 0xAB, 0x24, 0x1E, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBC, 0x02, 0x35, 0x70, 0xC1, 0x5F, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x59, 0xA0, 0x50, 0x04, 0x80, 0x52, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x56, 0x6E, 0x42, 0x8F, 0x8C, 0x91, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xA2, 0xCB, 0xA5, 0xDE, 0x14, 0x24, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xCB, 0x74, 0x28, 0xE6, 0xA7, 0xE7, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x73, 0xA8, 0x8F, 0x9E, 0x0E, 0x63, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x1B, 0x77, 0xC7, 0xC1, 0x38, 0xF9, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x3C, 0xCF, 0xA8, 0x7A, 0xD7, 0xF3, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x5F, 0x9A, 0xC9, 0xAD, 0xE9, 0x1A, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0x2B, 0x5E, 0xD5, 0x81, 0x95, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x88, 0x75, 0x29, 0x1F, 0xC7, 0xC7, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA9, 0x5A, 0x4D, 0x63, 0x95, 0xF9, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xCD, 0x04, 0x8F, 0xCD, 0x91, 0xDE, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xD4, 0xFD, 0x25, 0x11, 0x99, 0x6E, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x83, 0x01, 0x3D, 0xFB, 0x56, 0xA5, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x3A, 0xDC, 0x74, 0xC2, 0xD7, 0xCF, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xBD, 0xF1, 0xDD, 0xA3, 0x07, 0x03, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xBE, 0xE9, 0x2E, 0x58, 0x84, 0x66, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x20, 0x78, 0x37, 0x79, 0x0B, 0xA6, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xF2, 0xAC, 0x65, 0xC8, 0xC9, 0x2F, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x93, 0xE5, 0x0D, 0x0C, 0xC6, 0xB8, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAD, 0x5C, 0x19, 0x12, 0x61, 0x0E, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x4F, 0x0B, 0x1F, 0x49, 0x7E, 0xCD, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2E, 0x30, 0x61, 0xDB, 0x08, 0x68, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x78, 0xAF, 0xB3, 0x08, 0xC1, 0x69, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x5F, 0x5D, 0xC1, 0x57, 0x6F, 0xD8, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xD3, 0x6A, 0xF7, 0xFD, 0x86, 0xE5, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x63, 0xBD, 0x70, 0x7B, 0x47, 0xE8, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x62, 0xC8, 0x7E, 0x9D, 0x11, 0x2B, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x84, 0xFD, 0xD5, 0x9A, 0x56, 0x7F, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBB, 0xA4, 0x6F, 0x12, 0x6E, 0x4D, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x08, 0xA1, 0x82, 0x9C, 0x62, 0x74, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x22, 0x05, 0x1D, 0x15, 0x35, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x88, 0xCF, 0x5C, 0x05, 0x78, 0xFB, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x6B, 0x2F, 0x79, 0x09, 0x73, 0x67, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA0, 0x80, 0xD8, 0xE8, 0xEC, 0xFB, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0B, 0xB7, 0x81, 0x48, 0x7B, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x53, 0xA9, 0xED, 0x61, 0x92, 0xD7, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x49, 0xD9, 0x5D, 0x9B, 0x4E, 0x89, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x12, 0xEB, 0x9A, 0xC9, 0xCB, 0xC1, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xDC, 0x95, 0x16, 0xFE, 0x29, 0x70, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x33, 0xB1, 0xD6, 0x78, 0xB9, 0xE2, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xCE, 0x88, 0xC3, 0xFD, 0x7A, 0x6B, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x1E, 0x50, 0x1E, 0xAF, 0xB1, 0x25, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xE7, 0xD7, 0xD5, 0xBD, 0x7A, 0x12, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xAA, 0xA2, 0x80, 0x5D, 0x8F, 0xCD, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x39, 0x79, 0x64, 0xA1, 0x67, 0x3C, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xC7, 0x49, 0xFF, 0x7F, 0xAC, 0xAB, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x54, 0x3E, 0x83, 0xF0, 0x3D, 0xBC, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x92, 0x4A, 0x38, 0x42, 0x8A, 0xAB, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x0B, 0x4F, 0xEE, 0x9E, 0x92, 0xA5, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xDD, 0x19, 0x96, 0xF2, 0xF0, 0x6B, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xFC, 0xDD, 0xB2, 0x8A, 0xE5, 0x4C, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x06, 0x49, 0xAC, 0x99, 0x7E, 0xF8, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xC8, 0x01, 0x51, 0xEA, 0xF6, 0x52, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x89, 0x66, 0x2B, 0x1F, 0x9B, 0x2A, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x0F, 0x95, 0x07, 0x2B, 0x6C, 0x6E, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC3, 0xB4, 0xBB, 0x91, 0x1F, 0xA3, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x6E, 0x54, 0x28, 0x7B, 0x9C, 0x79, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x45, 0xFF, 0xA6, 0xDA, 0xA2, 0x83, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xDE, 0x8F, 0x17, 0x37, 0x82, 0xCB, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x94, 0x3F, 0x26, 0xC9, 0x1D, 0xD9, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x28, 0x20, 0xCD, 0xC1, 0xF3, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC9, 0xB5, 0x60, 0x9B, 0x1E, 0xDC, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xB9, 0x5B, 0x7D, 0xA0, 0xB2, 0x8C, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xD1, 0x42, 0xE6, 0x39, 0x33, 0x6D, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xC0, 0xFC, 0xD2, 0x14, 0x5D, 0x3E, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x4A, 0x3E, 0x40, 0x16, 0x93, 0x15, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x24, 0xC1, 0x27, 0x27, 0xE5, 0x4B, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x50, 0xD8, 0xBC, 0xC1, 0x46, 0x22, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x0E, 0x60, 0xA1, 0xB3, 0x50, 0xD4, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xB1, 0x26, 0xB6, 0x6D, 0x47, 0x5A, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0xAC, 0x11, 0x35, 0x3E, 0xB9, 0xF4, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x97, 0xFA, 0xBB, 0x6B, 0x39, 0x13, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x34, 0x12, 0x75, 0x8E, 0x9B, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x9E, 0xCD, 0x29, 0xB6, 0xEF, 0x8D, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xAC, 0xE9, 0x25, 0x27, 0xBB, 0x78, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x7A, 0xA8, 0xD3, 0xE3, 0x66, 0xE5, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x4C, 0xC4, 0x2C, 0x76, 0x81, 0x50, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x71, 0x08, 0xB8, 0x52, 0x7C, 0xAF, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x59, 0x24, 0xDD, 0xFB, 0x2F, 0xD0, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCD, 0x56, 0xE9, 0xAC, 0x91, 0xE6, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x64, 0x20, 0xC6, 0x9F, 0xE4, 0xEF, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x2C, 0x8F, 0x8C, 0x97, 0xF6, 0x22, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0x88, 0xAA, 0xA8, 0xD7, 0xA5, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x6C, 0xAE, 0x83, 0xB1, 0x55, 0x55, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x67, 0x84, 0x47, 0x7C, 0x83, 0x5C, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x10, 0x4D, 0xDD, 0x30, 0x60, 0xB0, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xA7, 0x36, 0x76, 0x24, 0x32, 0x9F, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x42, 0x81, 0xFB, 0xA4, 0x2E, 0x13, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x94, 0x91, 0xFF, 0x99, 0xA0, 0x09, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x83, 0xA1, 0x76, 0xAF, 0x37, 0x5C, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA8, 0x04, 0x86, 0xC4, 0xA9, 0x79, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8C, 0xC2, 0x34, 0xFB, 0x83, 0x28, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x03, 0x7D, 0x5E, 0x9E, 0x0E, 0xB0, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x02, 0x46, 0x7F, 0xB9, 0xAC, 0xBB, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xED, 0x48, 0xC2, 0x96, 0x4D, 0x56, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xC5, 0xD1, 0xE6, 0x1C, 0x7E, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x2E, 0x18, 0x71, 0x2D, 0x7B, 0xD7, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x46, 0x9D, 0xDE, 0xAA, 0x78, 0x8E, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD7, 0x69, 0x2E, 0xE1, 0xD9, 0x48, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFF, 0x9E, 0x09, 0x22, 0x22, 0xE6, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x14, 0x28, 0x13, 0x1B, 0x62, 0x12, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x7F, 0x67, 0x03, 0xB0, 0xC0, 0xF3, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xC3, 0x0F, 0xFB, 0x25, 0x48, 0x3E, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x6E, 0x53, 0x98, 0x36, 0xB3, 0xD3, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x81, 0x54, 0x22, 0xA4, 0xCC, 0xC1, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xBA, 0xFC, 0xA9, 0xDF, 0x68, 0x86, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x92, 0x0E, 0xC3, 0xF2, 0x58, 0xE8, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp521r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(secp521r1_T_0_X, secp521r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_1_X, secp521r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_2_X, secp521r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_3_X, secp521r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_4_X, secp521r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_5_X, secp521r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_6_X, secp521r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_7_X, secp521r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_8_X, secp521r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_9_X, secp521r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_10_X, secp521r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_11_X, secp521r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_12_X, secp521r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_13_X, secp521r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_14_X, secp521r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_15_X, secp521r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_16_X, secp521r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_17_X, secp521r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_18_X, secp521r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_19_X, secp521r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_20_X, secp521r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_21_X, secp521r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_22_X, secp521r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_23_X, secp521r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_24_X, secp521r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_25_X, secp521r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_26_X, secp521r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_27_X, secp521r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_28_X, secp521r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_29_X, secp521r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_30_X, secp521r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_31_X, secp521r1_T_31_Y),
+};
+#else
+#define secp521r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static const mbedtls_mpi_uint secp192k1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192k1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x77, 0x3D, 0x0D, 0x85, 0x48, 0xA8, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x07, 0xDF, 0x1D, 0xB3, 0xB3, 0x01, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x86, 0xF6, 0xAF, 0x19, 0x2A, 0x88, 0x2E),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x90, 0xB6, 0x2F, 0x48, 0x36, 0x4C, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x11, 0x14, 0xA6, 0xCB, 0xBA, 0x15, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB0, 0xF2, 0xD4, 0xC9, 0xDA, 0xBA, 0xD7),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xC1, 0x9C, 0xE6, 0xBB, 0xFB, 0xCF, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x19, 0xAC, 0x5A, 0xC9, 0x8A, 0x1C, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xF6, 0x76, 0x86, 0x89, 0x27, 0x8D, 0x28),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xE0, 0x6F, 0x34, 0xBA, 0x5E, 0xD3, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xDC, 0xA6, 0x87, 0xC9, 0x9D, 0xC0, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x11, 0x7E, 0xD6, 0xF7, 0x33, 0xFC, 0xE4),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x37, 0x3E, 0xC0, 0x7F, 0x62, 0xE7, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3B, 0x69, 0x9D, 0x44, 0xBC, 0x82, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x84, 0xB3, 0x5F, 0x2B, 0xA5, 0x9E, 0x2C),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x95, 0xEB, 0x4C, 0x04, 0xB4, 0xF4, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAD, 0x4B, 0xD5, 0x9A, 0xEB, 0xC4, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xB1, 0xC5, 0x59, 0xE3, 0xD5, 0x16, 0x2A),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x2A, 0xCC, 0xAC, 0xD0, 0xEE, 0x50, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x83, 0xE0, 0x5B, 0x14, 0x44, 0x52, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x15, 0x2D, 0x78, 0xF6, 0x51, 0x32, 0xCF),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x36, 0x9B, 0xDD, 0xF8, 0xDD, 0xEF, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xB1, 0x6A, 0x2B, 0xAF, 0xEB, 0x2B, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x87, 0x7A, 0x66, 0x5D, 0x5B, 0xDF, 0x8F),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x45, 0xE5, 0x81, 0x9B, 0xEB, 0x37, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x29, 0xE2, 0x20, 0x64, 0x23, 0x6B, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1D, 0x41, 0xE1, 0x9B, 0x61, 0x7B, 0xD9),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x57, 0xA3, 0x0A, 0x13, 0xE4, 0x59, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x6E, 0x4A, 0x48, 0x84, 0x90, 0xAC, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB8, 0xF5, 0xF3, 0xDE, 0xA0, 0xA1, 0x1D),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x32, 0x81, 0xA9, 0x91, 0x5A, 0x4E, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xA8, 0x90, 0xBE, 0x0F, 0xEC, 0xC0, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x30, 0xD7, 0x08, 0xAE, 0xC4, 0x3A, 0xA5),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x55, 0xE3, 0x76, 0xB3, 0x64, 0x74, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x75, 0xD4, 0xDB, 0x98, 0xD7, 0x39, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xEB, 0x8A, 0xAB, 0x16, 0xD9, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xBE, 0xF9, 0xC7, 0xC7, 0xBA, 0xF3, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x85, 0x59, 0xF3, 0x60, 0x41, 0x02, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x1C, 0x4A, 0xA4, 0xC7, 0xED, 0x66, 0xBC),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x2E, 0x46, 0x52, 0x18, 0x87, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x35, 0x5A, 0x75, 0xAC, 0x4D, 0x75, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x2F, 0xAC, 0xFC, 0xBC, 0xE6, 0x93, 0x5E),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x4D, 0xC9, 0x18, 0xE9, 0x00, 0xEB, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x69, 0x72, 0x07, 0x5A, 0x59, 0xA8, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x65, 0x83, 0x20, 0x10, 0xF9, 0x69, 0x82),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x56, 0x7F, 0x9F, 0xBF, 0x46, 0x0C, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0xF0, 0xDC, 0xDF, 0x2D, 0xE6, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xF0, 0x72, 0x3A, 0x7A, 0x03, 0xE5, 0x22),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xAA, 0x57, 0x13, 0x37, 0xA7, 0x2C, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xAC, 0xA2, 0x23, 0xF9, 0x84, 0x60, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xEB, 0x51, 0x70, 0x64, 0x78, 0xCA, 0x05),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xCC, 0x30, 0x62, 0x93, 0x46, 0x13, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x26, 0xCC, 0x6C, 0x3D, 0x5C, 0xDA, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xAA, 0xB8, 0x03, 0xA4, 0x1A, 0x00, 0x96),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x9D, 0xE6, 0xCC, 0x4E, 0x2E, 0xC2, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xC3, 0x8A, 0xAE, 0x6F, 0x40, 0x05, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x8F, 0x4A, 0x4D, 0x35, 0xD3, 0x50, 0x9D),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xFD, 0x98, 0xAB, 0xC7, 0x03, 0xB4, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x40, 0xD2, 0x9F, 0xCA, 0xD0, 0x53, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x84, 0x00, 0x6F, 0xC8, 0xAD, 0xED, 0x8D),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xD3, 0x57, 0xD7, 0xC3, 0x07, 0xBD, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xBA, 0x47, 0x1D, 0x3D, 0xEF, 0x98, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC0, 0x6C, 0x7F, 0x12, 0xEE, 0x9F, 0x67),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x02, 0xDA, 0x79, 0xAA, 0xC9, 0x27, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x79, 0xC7, 0x71, 0x84, 0xCB, 0xE5, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x37, 0x06, 0xBA, 0xB5, 0xD5, 0x18, 0x4C),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x65, 0x72, 0x6C, 0xF2, 0x63, 0x27, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xBC, 0x71, 0xDF, 0x75, 0xF8, 0x98, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x70, 0x9B, 0xDC, 0xE7, 0x18, 0x71, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x5B, 0x9F, 0x00, 0x5A, 0xB6, 0x80, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE0, 0xBB, 0xFC, 0x5E, 0x78, 0x9C, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x03, 0x68, 0x83, 0x3D, 0x2E, 0x4C, 0xDD),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x49, 0x23, 0xA8, 0xCB, 0x3B, 0x1A, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x3D, 0xA7, 0x46, 0xCF, 0x75, 0xB6, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xFD, 0x30, 0x01, 0xB6, 0xEF, 0xF9, 0xE8),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xFA, 0xDA, 0xB8, 0x29, 0x42, 0xC9, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xD7, 0xA0, 0xE6, 0x6B, 0x86, 0x61, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xE9, 0xD3, 0x37, 0xD8, 0xE7, 0x35, 0xA9),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC8, 0x8E, 0xB1, 0xCB, 0xB1, 0xB5, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xD7, 0x46, 0x7D, 0xAF, 0xE2, 0xDC, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x46, 0xE7, 0xD8, 0x76, 0x31, 0x90, 0x76),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD3, 0xF4, 0x74, 0xE1, 0x67, 0xD8, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x70, 0x3C, 0xC8, 0xAF, 0x5F, 0xF4, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x4E, 0xED, 0x5C, 0x43, 0xB3, 0x16, 0x35),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAE, 0xD1, 0xDD, 0x31, 0x14, 0xD3, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x14, 0x06, 0x13, 0x12, 0x1C, 0x81, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xF9, 0x0C, 0x91, 0xF7, 0x67, 0x59, 0x63),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x91, 0xE2, 0xF4, 0x9D, 0xEB, 0x88, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x82, 0x30, 0x9C, 0xAE, 0x18, 0x4D, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x79, 0xCF, 0x17, 0xA5, 0x1E, 0xE8, 0xC8),
+};
+static const mbedtls_ecp_point secp192k1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp192k1_T_0_X, secp192k1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_1_X, secp192k1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_2_X, secp192k1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_3_X, secp192k1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_4_X, secp192k1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_5_X, secp192k1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_6_X, secp192k1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_7_X, secp192k1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_8_X, secp192k1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_9_X, secp192k1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_10_X, secp192k1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_11_X, secp192k1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_12_X, secp192k1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_13_X, secp192k1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_14_X, secp192k1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_15_X, secp192k1_T_15_Y),
+};
+#else
+#define secp192k1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static const mbedtls_mpi_uint secp224k1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp224k1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1),
+};
+static const mbedtls_mpi_uint secp224k1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E),
+};
+static const mbedtls_mpi_uint secp224k1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224k1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x5B, 0x45, 0xA1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x9F, 0x08, 0x7E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x6C, 0x22, 0x22, 0x40, 0x89, 0xAE, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x92, 0xE1, 0x87, 0x56, 0x35, 0xAF, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xAF, 0x08, 0x35, 0x27, 0xEA, 0x04, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x53, 0xFD, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xD0, 0x9F, 0x8D, 0xF3, 0x63, 0x54, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xDB, 0x0F, 0x61, 0x54, 0x26, 0xD1, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x21, 0xF7, 0x1B, 0xB5, 0x1D, 0xF6, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x05, 0xDA, 0x8F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x26, 0x73, 0xBC, 0xE4, 0x29, 0x62, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x95, 0x17, 0x8B, 0xC3, 0x9B, 0xAC, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xDB, 0x77, 0xDF, 0xDD, 0x13, 0x04, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xFC, 0x22, 0x93, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0xF1, 0x5A, 0x37, 0xEF, 0x79, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x37, 0xAC, 0x9A, 0x5B, 0x51, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x75, 0x13, 0xA9, 0x4A, 0xAD, 0xFE, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x82, 0x6F, 0x66, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x5E, 0xF0, 0x40, 0xC3, 0xA6, 0xE2, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x9A, 0x6F, 0xCF, 0x11, 0x26, 0x66, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x73, 0xA8, 0xCF, 0x2B, 0x12, 0x36, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xB3, 0x0A, 0x58, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x79, 0x00, 0x55, 0x04, 0x34, 0x90, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x54, 0x1C, 0xC2, 0x45, 0x0C, 0x1B, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x19, 0xAB, 0xA8, 0xFC, 0x73, 0xDC, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xFB, 0x93, 0xCE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x75, 0xD0, 0x66, 0x95, 0x86, 0xCA, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xEA, 0x29, 0x16, 0x6A, 0x38, 0xDF, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA2, 0x36, 0x2F, 0xDC, 0xBB, 0x5E, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x89, 0x59, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xA3, 0x99, 0x9D, 0xB8, 0x77, 0x9D, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x93, 0x43, 0x47, 0xC6, 0x5C, 0xF9, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x00, 0x79, 0x42, 0x64, 0xB8, 0x25, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x54, 0xB4, 0x33, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x0C, 0x42, 0x90, 0x83, 0x0B, 0x31, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2E, 0xAE, 0xC8, 0xC7, 0x5F, 0xD2, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xBC, 0xAD, 0x41, 0xE7, 0x32, 0x3A, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x97, 0x52, 0x83, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x13, 0x7A, 0xBD, 0xAE, 0x94, 0x60, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x9B, 0x95, 0xB4, 0x6E, 0x68, 0xB2, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x49, 0xBE, 0x51, 0xFE, 0x66, 0x15, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x37, 0xE4, 0xFE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x9B, 0xEE, 0x64, 0xC9, 0x1B, 0xBD, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x5F, 0x34, 0xA9, 0x0B, 0xB7, 0x25, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x13, 0xB1, 0x38, 0xFB, 0x9D, 0x78, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xE7, 0x1B, 0xFA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xB3, 0xB7, 0x44, 0x92, 0x6B, 0x00, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x82, 0x44, 0x3E, 0x18, 0x1A, 0x58, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF8, 0xC0, 0xE4, 0xEE, 0xC1, 0xBF, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x32, 0x27, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x9A, 0x42, 0x62, 0x8B, 0x26, 0x54, 0x21),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x85, 0x74, 0xA0, 0x79, 0xA8, 0xEE, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0x60, 0xB3, 0x28, 0x4D, 0x55, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x27, 0x82, 0x29, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xFC, 0x73, 0x77, 0xAF, 0x5C, 0xAC, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xED, 0xE5, 0xF6, 0x1D, 0xA8, 0x67, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xDE, 0x33, 0x1C, 0xF1, 0x80, 0x73, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE2, 0xDE, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x3E, 0x6B, 0xFE, 0xF0, 0x04, 0x28, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xB2, 0x14, 0x9D, 0x18, 0x11, 0x7D, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC4, 0xD6, 0x2E, 0x6E, 0x57, 0x4D, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x55, 0x1B, 0xDE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xF7, 0x17, 0xBC, 0x45, 0xAB, 0x16, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xB0, 0xEF, 0x61, 0xE3, 0x20, 0x7C, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x85, 0x41, 0x4D, 0xF1, 0x7E, 0x4D, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC2, 0x9B, 0x5E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x2E, 0x49, 0x3D, 0x3E, 0x4B, 0xD3, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x2B, 0x9D, 0xD5, 0x27, 0xFA, 0xCA, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xB3, 0x6A, 0xE0, 0x79, 0x14, 0x28, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x1E, 0xDC, 0xF5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x44, 0x56, 0xCD, 0xFC, 0x9F, 0x09, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x8C, 0x59, 0xA4, 0x64, 0x2A, 0x3A, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xA0, 0xB5, 0x86, 0x4E, 0x69, 0xDA, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x8B, 0x11, 0x38, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x17, 0x16, 0x12, 0x17, 0xDC, 0x00, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x76, 0x24, 0x6C, 0x97, 0x2C, 0xB5, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x71, 0xE3, 0xB0, 0xBB, 0x4E, 0x50, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x48, 0x26, 0xD5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x5F, 0x28, 0xF6, 0x01, 0x5A, 0x60, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x95, 0xFE, 0xD0, 0xAD, 0x15, 0xD4, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0x7A, 0xFD, 0x80, 0xF7, 0x9F, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xBC, 0x1B, 0xDF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xE6, 0xDF, 0x14, 0x29, 0xF4, 0xD4, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x12, 0xDD, 0xEC, 0x5B, 0x8A, 0x59, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x92, 0x3E, 0x35, 0x08, 0xE9, 0xCF, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x35, 0x29, 0x97, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xDB, 0xD6, 0x6A, 0xC5, 0x43, 0xA4, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x33, 0x50, 0x61, 0x70, 0xA1, 0xE9, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x15, 0x6E, 0x5F, 0x01, 0x0C, 0x8C, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xA1, 0x9A, 0x9D, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xC6, 0xF7, 0xE2, 0x4A, 0xCD, 0x9B, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x4D, 0x5A, 0xB8, 0xE2, 0x6D, 0xA6, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3F, 0xB6, 0x17, 0xE3, 0x2C, 0x6F, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA4, 0x59, 0x51, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x4F, 0x7C, 0x49, 0xCD, 0x6E, 0xEB, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xC9, 0x1F, 0xB7, 0x4D, 0x98, 0xC7, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xFD, 0x98, 0x20, 0x95, 0xBB, 0x20, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF2, 0x73, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xEF, 0xFB, 0x30, 0xFA, 0x12, 0x1A, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x4C, 0x24, 0xB4, 0x5B, 0xC9, 0x4C, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xDD, 0x5E, 0x84, 0x95, 0x4D, 0x26, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xFA, 0xF9, 0x3A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xA3, 0x2E, 0x7A, 0xDC, 0xA7, 0x53, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x9F, 0x81, 0x84, 0xB2, 0x0D, 0xFE, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x89, 0x1B, 0x77, 0x0C, 0x89, 0x71, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0x7F, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xE9, 0x2C, 0x79, 0xA6, 0x3C, 0xAD, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE0, 0x23, 0x02, 0x86, 0x0F, 0x77, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x93, 0x6D, 0xE9, 0xF9, 0x3C, 0xBE, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xE7, 0x24, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x3C, 0x5B, 0x4B, 0x1B, 0x25, 0x37, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xE8, 0x38, 0x1B, 0xA1, 0x5A, 0x2E, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x19, 0xFD, 0xF4, 0x78, 0x01, 0x6B, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x69, 0x37, 0x4F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xE2, 0xBF, 0xD3, 0xEC, 0x95, 0x9C, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x7B, 0xFC, 0xD5, 0xD3, 0x25, 0x5E, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x55, 0x09, 0xA2, 0x58, 0x6A, 0xC9, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xCC, 0x3B, 0xD9, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x08, 0x65, 0x5E, 0xCB, 0xAB, 0x48, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x79, 0x8B, 0xC0, 0x11, 0xC0, 0x69, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xE8, 0x8C, 0x4C, 0xC5, 0x28, 0xE4, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x1F, 0x34, 0x5C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224k1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp224k1_T_0_X, secp224k1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_1_X, secp224k1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_2_X, secp224k1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_3_X, secp224k1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_4_X, secp224k1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_5_X, secp224k1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_6_X, secp224k1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_7_X, secp224k1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_8_X, secp224k1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_9_X, secp224k1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_10_X, secp224k1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_11_X, secp224k1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_12_X, secp224k1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_13_X, secp224k1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_14_X, secp224k1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_15_X, secp224k1_T_15_Y),
+};
+#else
+#define secp224k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static const mbedtls_mpi_uint secp256k1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256k1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256k1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xEE, 0xD7, 0x1E, 0x67, 0x86, 0x32, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0xB1, 0xA9, 0xD5, 0xCC, 0x27, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0E, 0x11, 0x01, 0x71, 0xFE, 0x92, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x28, 0x63, 0x6D, 0x72, 0x09, 0xA6, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0x69, 0xDC, 0x3E, 0x2C, 0x75, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xB7, 0x3F, 0x30, 0x26, 0x3C, 0xDF, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBE, 0xB9, 0x5D, 0x0E, 0xE8, 0x5E, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xC3, 0x05, 0xD6, 0xB7, 0xD5, 0x24, 0xFC),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCF, 0x7B, 0xDC, 0xCD, 0xC3, 0x39, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xDA, 0xB9, 0xE5, 0x64, 0xA7, 0x47, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x46, 0xA8, 0x61, 0xF6, 0x23, 0xEB, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xC1, 0xFF, 0xE4, 0x55, 0xD5, 0xC2, 0xBF),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xBE, 0xB9, 0x59, 0x24, 0x13, 0x4A, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x45, 0x12, 0xDE, 0xBA, 0x4F, 0xEF, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x08, 0xBF, 0xC1, 0x66, 0xAA, 0x0A, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xFE, 0x30, 0x55, 0x31, 0x86, 0xA7, 0xB4),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBF, 0x18, 0x81, 0x67, 0x27, 0x42, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x05, 0x83, 0xA4, 0xDD, 0x57, 0xD3, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x63, 0xAB, 0xE4, 0x90, 0x70, 0xD0, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x5D, 0xFD, 0xA0, 0xEF, 0xCF, 0x1C, 0x54),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x80, 0xE4, 0xF6, 0x09, 0xBC, 0x57, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x9F, 0x6E, 0x88, 0x54, 0x6E, 0x51, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x5F, 0x85, 0xFB, 0x84, 0x3E, 0x4A, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x19, 0xF5, 0x55, 0xC9, 0x07, 0xD8, 0xCE),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xB4, 0xC3, 0xD9, 0x5C, 0xA0, 0xD4, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x30, 0xAF, 0x59, 0x9B, 0xF8, 0x04, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xA6, 0xFD, 0x66, 0x7B, 0xC3, 0x39, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xBF, 0xF0, 0xC2, 0xE9, 0x71, 0xA4, 0x9E),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x2D, 0xB9, 0x88, 0x28, 0xF1, 0xBE, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF3, 0x1A, 0x0E, 0xB9, 0x01, 0x66, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0xA4, 0xF4, 0x05, 0xD0, 0xAA, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x39, 0x1E, 0x47, 0xE5, 0x68, 0xC8, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xB9, 0xFC, 0xE0, 0x33, 0x8A, 0x7D, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x93, 0xA5, 0x53, 0x55, 0x16, 0xB4, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x5F, 0xEA, 0x9B, 0x29, 0x52, 0x71, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xF0, 0x24, 0xB8, 0x7D, 0xB7, 0xA0, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x00, 0x27, 0xB2, 0xDF, 0x73, 0xA2, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x2E, 0x4D, 0x7C, 0xDE, 0x7A, 0x23, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0x60, 0xC7, 0x97, 0x1E, 0xA4, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x13, 0x5B, 0x77, 0x59, 0xCB, 0x36, 0xE1),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xBC, 0x9F, 0x9E, 0x2D, 0x53, 0x2A, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x5F, 0x64, 0x9F, 0x1A, 0x19, 0xE6, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x7B, 0x39, 0xD2, 0xDB, 0x85, 0x84, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xC7, 0x0D, 0x58, 0x6E, 0x3F, 0x52, 0x15),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x68, 0x19, 0x0B, 0x68, 0xC9, 0x1E, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x4E, 0x21, 0x49, 0x3D, 0x55, 0xCC, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF9, 0x25, 0x45, 0x54, 0x45, 0xB1, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xF7, 0xCD, 0x80, 0xA4, 0x04, 0x05),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x1E, 0x88, 0xC4, 0xAA, 0x18, 0x7E, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xAC, 0xD9, 0xB2, 0xA1, 0xC0, 0x71, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xA2, 0xF1, 0x15, 0xA6, 0x5F, 0x6C, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x5B, 0x05, 0xBC, 0xB7, 0xC6, 0x4E, 0x72),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x80, 0xF8, 0x5C, 0x20, 0x2A, 0xE1, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x48, 0x2E, 0x68, 0x82, 0x7F, 0xEB, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x3B, 0x25, 0xDB, 0x32, 0x4D, 0x88, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x6E, 0xA6, 0xB6, 0x6D, 0x62, 0x78, 0x22),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4D, 0x3E, 0x86, 0x58, 0xC3, 0xEB, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x89, 0x33, 0x18, 0x21, 0x1D, 0x9B, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x9D, 0xFF, 0xC3, 0x79, 0xC1, 0x88, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xD4, 0x48, 0x53, 0xE8, 0xAD, 0x21, 0x16),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x7B, 0xDE, 0xCB, 0xD8, 0x39, 0x17, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xF3, 0x03, 0xF2, 0x5C, 0xBC, 0xC8, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xAE, 0x4C, 0xB0, 0x16, 0xA4, 0x93, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8B, 0x6B, 0xDC, 0xD7, 0x9A, 0x3E, 0x7E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x2D, 0x7A, 0xD2, 0x59, 0x05, 0xA2, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x56, 0x09, 0x32, 0xF1, 0xE8, 0xE3, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xCA, 0xE5, 0x2E, 0xF0, 0xFB, 0x18, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x85, 0xA9, 0x23, 0x15, 0x31, 0x1F, 0x0E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xE5, 0xB1, 0x86, 0xB9, 0x6E, 0x8D, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x77, 0xFC, 0xC9, 0xA3, 0x3F, 0x89, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x6A, 0xDC, 0x25, 0xB0, 0xC7, 0x41, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x11, 0x6B, 0xA6, 0x11, 0x62, 0xD4, 0x2D),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7D, 0x34, 0xB3, 0x20, 0x7F, 0x37, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xD4, 0x45, 0xE8, 0xC2, 0xE9, 0xC5, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x32, 0x3B, 0x25, 0x7E, 0x79, 0xAF, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xE4, 0x54, 0x71, 0xBE, 0x35, 0x4E, 0xD0),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x94, 0xDD, 0x8F, 0xB5, 0xC2, 0xDD, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x49, 0xE9, 0x1C, 0x2F, 0x08, 0x49, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xB6, 0x03, 0x88, 0x6F, 0xB8, 0x15, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xD3, 0x1C, 0xF3, 0xA5, 0xEB, 0x79, 0x01),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF9, 0x43, 0x88, 0x89, 0x0D, 0x06, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2D, 0xF5, 0x98, 0x32, 0xF6, 0xB1, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0x8F, 0x2B, 0x50, 0x27, 0x0A, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE3, 0xBD, 0x16, 0x05, 0xC8, 0x93, 0x12),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x6A, 0xF7, 0xE3, 0x3D, 0xDE, 0x5F, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA3, 0x9C, 0x22, 0x3C, 0x33, 0x36, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x24, 0x4C, 0x69, 0x45, 0x78, 0x14, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xF8, 0xD4, 0xBF, 0xB8, 0xC0, 0xA1, 0x25),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x88, 0xE1, 0x91, 0x03, 0xEB, 0xB3, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x11, 0xA1, 0xEF, 0x14, 0x0D, 0xC4, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xD4, 0x0D, 0x1D, 0x96, 0x33, 0x5C, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x45, 0x2A, 0x1A, 0xE6, 0x57, 0x04, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xB5, 0xA7, 0x80, 0xE9, 0x93, 0x97, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xB9, 0x7C, 0xA0, 0xC9, 0x57, 0x26, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xEF, 0x56, 0xDA, 0x66, 0xF6, 0x1B, 0x9A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x89, 0x6B, 0x91, 0xE0, 0xA9, 0x65, 0x2B),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x98, 0x96, 0x9B, 0x06, 0x7D, 0x5E, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xFA, 0xC1, 0x5F, 0x19, 0x37, 0x94, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xBE, 0x6B, 0x1A, 0x05, 0xE4, 0xBF, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xCD, 0x5D, 0x35, 0xB4, 0x51, 0xF7, 0x64),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xEF, 0x96, 0xDB, 0xF2, 0x61, 0x63, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x04, 0x88, 0xC9, 0x9F, 0x1B, 0x94, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x30, 0x79, 0x7E, 0x24, 0xE7, 0x5F, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xB8, 0x90, 0xB7, 0x94, 0x25, 0xBB, 0x0F),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x79, 0xEA, 0xAD, 0xC0, 0x6D, 0x18, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xA4, 0x58, 0x2A, 0x8D, 0x95, 0xB3, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC4, 0xC2, 0x12, 0x0D, 0x79, 0xE2, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6F, 0xBE, 0x97, 0x4D, 0xA4, 0x20, 0x07),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x31, 0x71, 0xC6, 0xA6, 0x91, 0xEB, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x9B, 0xA8, 0x4A, 0xE7, 0x77, 0xE1, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x06, 0xD3, 0x3D, 0x94, 0x30, 0xEF, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xDF, 0xCA, 0xFA, 0xF5, 0x28, 0xF8, 0xC9),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xE1, 0x32, 0xFD, 0x3E, 0x81, 0xF8, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xF2, 0x4B, 0x1D, 0x19, 0xC9, 0x0F, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB1, 0x8A, 0x22, 0x8B, 0x05, 0x6B, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x21, 0xEF, 0x30, 0xEC, 0x09, 0x2A, 0x89),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x84, 0x4A, 0x46, 0x07, 0x6C, 0x3C, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x18, 0x3A, 0xF4, 0xCC, 0xF5, 0xB2, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x8F, 0xCD, 0x0A, 0x9C, 0xF4, 0xBD, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x89, 0x7F, 0x8A, 0xB1, 0x52, 0x3A, 0xAB),
+};
+static const mbedtls_ecp_point secp256k1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp256k1_T_0_X, secp256k1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_1_X, secp256k1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_2_X, secp256k1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_3_X, secp256k1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_4_X, secp256k1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_5_X, secp256k1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_6_X, secp256k1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_7_X, secp256k1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_8_X, secp256k1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_9_X, secp256k1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_10_X, secp256k1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_11_X, secp256k1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_12_X, secp256k1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_13_X, secp256k1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_14_X, secp256k1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_15_X, secp256k1_T_15_Y),
+};
+#else
+#define secp256k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
+ */
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xA2, 0xED, 0x52, 0xC9, 0x8C, 0xE3, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xC9, 0xC4, 0x87, 0x3F, 0x93, 0x7A, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x12, 0x53, 0x61, 0x3E, 0x76, 0x08, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x8C, 0x74, 0xF4, 0x08, 0xC3, 0x76, 0x80),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xDD, 0x09, 0xA6, 0xED, 0xEE, 0xC4, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xD9, 0xBE, 0x4B, 0xA5, 0xB7, 0x2B, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x20, 0x12, 0xCA, 0x0A, 0x38, 0x24, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x72, 0x71, 0x90, 0x7A, 0x2E, 0xB7, 0x23),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0xA1, 0x93, 0x10, 0x2A, 0x51, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x10, 0x11, 0x12, 0xBC, 0xB0, 0xB6, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x58, 0xD7, 0x0A, 0x84, 0x05, 0xA3, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x8E, 0x95, 0x61, 0xD3, 0x0B, 0xDF, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x92, 0x12, 0x0F, 0x5E, 0x87, 0x70, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xE9, 0x9B, 0xEB, 0x3A, 0xFB, 0xCF, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0x92, 0xB9, 0xF7, 0x45, 0xD3, 0x06, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x28, 0x65, 0xE1, 0xC5, 0x6C, 0x57, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x0E, 0x77, 0x01, 0x81, 0x9E, 0x38, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xF0, 0xD5, 0xA5, 0x91, 0x2B, 0xDF, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xEE, 0xB6, 0x25, 0xD6, 0x98, 0xDE, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0x55, 0x63, 0x39, 0xEB, 0xB5, 0x47),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD6, 0xB8, 0xE3, 0x13, 0xED, 0x7F, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xE8, 0xAE, 0x36, 0xB8, 0xCD, 0x19, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x82, 0x83, 0x7A, 0x7B, 0x46, 0x56, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x60, 0x46, 0x15, 0x5A, 0xAC, 0x99, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x61, 0x50, 0xC6, 0xFF, 0x10, 0x7D, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x51, 0xDF, 0xA9, 0x7D, 0x78, 0x26, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x15, 0x9A, 0xF7, 0x01, 0xC1, 0xBB, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x0F, 0xE6, 0x2A, 0xBD, 0x4A, 0x9E, 0x87),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF8, 0xD1, 0x77, 0xD2, 0x49, 0xB3, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x86, 0xFB, 0x9E, 0x1F, 0x5A, 0x60, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xC4, 0x8D, 0xCD, 0x86, 0x61, 0x2F, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xF6, 0xB9, 0xAC, 0x37, 0x9D, 0xE9, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x77, 0xAA, 0x97, 0x9C, 0x0B, 0x04, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xA6, 0x60, 0x81, 0xCE, 0x25, 0x13, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x00, 0xF3, 0xBB, 0x82, 0x99, 0x95, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0xCE, 0x90, 0x71, 0x38, 0x2F, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x1A, 0xC0, 0x84, 0x27, 0xD6, 0x9D, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x37, 0x52, 0x16, 0x13, 0x0E, 0xCE, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBF, 0x5A, 0xDB, 0xDB, 0x6E, 0x1E, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB7, 0x5E, 0xF9, 0x86, 0xDD, 0x8A, 0x5C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xAB, 0x5C, 0x8D, 0x1D, 0xF2, 0x2D, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC5, 0xF8, 0xF7, 0x1D, 0x96, 0x0B, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x4C, 0xA7, 0x45, 0x20, 0x6A, 0x1E, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x5D, 0xEF, 0xDE, 0xEE, 0x39, 0x44, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x2F, 0x6D, 0x52, 0xC9, 0x58, 0x60, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xC9, 0x62, 0xCB, 0x38, 0x3C, 0x55, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xA5, 0x09, 0x10, 0x88, 0xDB, 0xE3, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xE0, 0x3C, 0xCE, 0x06, 0x0B, 0x4B, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x1D, 0xB4, 0x10, 0x76, 0x8F, 0xBA, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x70, 0x5A, 0x07, 0xF5, 0x1A, 0x74, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xE9, 0x94, 0xA8, 0xC0, 0xD5, 0x4A, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x6D, 0xD4, 0xE8, 0x9B, 0xE9, 0x6D, 0x0E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x00, 0x32, 0x41, 0x57, 0x84, 0x89, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC7, 0x14, 0xEC, 0xE9, 0x27, 0xFF, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x67, 0x9E, 0xFB, 0xB6, 0xB8, 0x96, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x4A, 0xE3, 0x97, 0x4B, 0x58, 0xDE, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x1E, 0x5C, 0xF5, 0x7F, 0xD5, 0xD4, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x08, 0x7A, 0xF1, 0xBD, 0x89, 0xC7, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xF9, 0x11, 0x1B, 0xF5, 0x3C, 0x6D, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x50, 0xE5, 0x69, 0x1D, 0x59, 0xFC, 0x0C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x2F, 0xF8, 0x3F, 0xEC, 0x55, 0x99, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xA7, 0x29, 0x90, 0x43, 0x81, 0x31, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x18, 0x44, 0x50, 0x5D, 0x76, 0xCB, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xC5, 0x5B, 0x9A, 0x03, 0xE6, 0x17, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x89, 0xFC, 0x55, 0x94, 0x91, 0x6A, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x46, 0x35, 0xF2, 0x3A, 0x42, 0x08, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xD2, 0x76, 0x49, 0x42, 0x87, 0xD3, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xEA, 0xA0, 0x52, 0xF1, 0x6A, 0x30, 0x57),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xB2, 0x57, 0xA3, 0x8A, 0x4D, 0x1B, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xA3, 0x99, 0x94, 0xB5, 0x3D, 0x64, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC3, 0xD7, 0x53, 0xF6, 0x49, 0x1C, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x23, 0x41, 0x4D, 0xFB, 0x7A, 0x5C, 0x53),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xB8, 0x15, 0x65, 0x5C, 0x85, 0x94, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x37, 0xC7, 0xF8, 0x7E, 0xAE, 0x6C, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xD8, 0x11, 0x54, 0x98, 0x44, 0xE3, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x4D, 0xA6, 0x4B, 0x28, 0xF2, 0x57, 0x9E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD0, 0xEB, 0x1E, 0xAA, 0x30, 0xD3, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x9B, 0x4D, 0xA7, 0x73, 0x6E, 0xB6, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x47, 0xF6, 0xED, 0x37, 0xEF, 0x71, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xB5, 0x49, 0x61, 0x5E, 0x45, 0xF6, 0x4A),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x0E, 0xB3, 0x84, 0x3A, 0x63, 0x72, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x53, 0x5C, 0xA7, 0xC6, 0x2E, 0xAB, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x0F, 0x8F, 0x87, 0x50, 0x28, 0xB4, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x98, 0x4A, 0x98, 0x31, 0x86, 0xCA, 0x51),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC9, 0xE2, 0xFD, 0x5D, 0x1F, 0xE8, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x90, 0x91, 0xC4, 0x84, 0xF0, 0xBA, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5A, 0xB3, 0x4E, 0xFB, 0xE0, 0x57, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x0B, 0x90, 0xA6, 0xFD, 0x9D, 0x8E, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x41, 0x8F, 0x31, 0xFA, 0x5A, 0xF6, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xE9, 0xE3, 0xF6, 0xE0, 0x4A, 0xE7, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x4E, 0xCD, 0xA2, 0x22, 0x14, 0xD4, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xED, 0x21, 0xB7, 0x0F, 0x53, 0x10, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x06, 0x24, 0x2C, 0x4E, 0xD1, 0x1E, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x3F, 0xC1, 0x9F, 0xAB, 0xF0, 0x37, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x5E, 0x12, 0xCE, 0x83, 0x1B, 0x2A, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x65, 0xCF, 0xE8, 0x5C, 0xA5, 0xA2, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x86, 0x76, 0x3A, 0x94, 0xF6, 0x1D, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xDA, 0xC9, 0xA6, 0x29, 0x93, 0x15, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x61, 0x6A, 0x7D, 0xC7, 0xA9, 0xF3, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x03, 0x71, 0xA2, 0x15, 0xCE, 0x50, 0x72),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD0, 0xA8, 0x1E, 0x91, 0xC4, 0x4F, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x4B, 0x7E, 0xD7, 0x71, 0x58, 0x7E, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x45, 0xAF, 0x2A, 0x18, 0x93, 0x95, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x8F, 0xC7, 0xFA, 0x4C, 0x7A, 0x86, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xAF, 0x68, 0x3A, 0x23, 0xC1, 0x2E, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x50, 0x11, 0x67, 0x39, 0xB9, 0xAF, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x86, 0xAA, 0x1E, 0x88, 0x21, 0x29, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x28, 0xA4, 0x9D, 0x89, 0xA9, 0x9A, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBA, 0x04, 0x67, 0xB7, 0x01, 0x40, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xE9, 0x09, 0xA3, 0xCA, 0xA6, 0x37, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x97, 0xA8, 0xB6, 0x3C, 0xEE, 0x90, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xED, 0xC4, 0xF7, 0xC3, 0x95, 0xEC, 0x85),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x84, 0xBD, 0xEB, 0xD5, 0x64, 0xBB, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x9B, 0xE2, 0x28, 0x50, 0xC2, 0x72, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xF2, 0x74, 0xD1, 0x26, 0xBF, 0x32, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xCB, 0xAF, 0x72, 0xDB, 0x6D, 0x30, 0x98),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x50, 0x85, 0xF4, 0x2B, 0x48, 0xC1, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x28, 0xBB, 0x11, 0xBA, 0x5B, 0x22, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA1, 0xE5, 0x5C, 0xC9, 0x1D, 0x44, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xE8, 0xE6, 0x6F, 0xBB, 0xC1, 0x81, 0x7F),
+};
+static const mbedtls_ecp_point brainpoolP256r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(brainpoolP256r1_T_0_X, brainpoolP256r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_1_X, brainpoolP256r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_2_X, brainpoolP256r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_3_X, brainpoolP256r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_4_X, brainpoolP256r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_5_X, brainpoolP256r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_6_X, brainpoolP256r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_7_X, brainpoolP256r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_8_X, brainpoolP256r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_9_X, brainpoolP256r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_10_X, brainpoolP256r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_11_X, brainpoolP256r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_12_X, brainpoolP256r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_13_X, brainpoolP256r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_14_X, brainpoolP256r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_15_X, brainpoolP256r1_T_15_Y),
+};
+#else
+#define brainpoolP256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
+ */
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xD8, 0x8A, 0x54, 0x41, 0xD6, 0x6B, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x3B, 0xF1, 0x22, 0xFD, 0x2D, 0x4B, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x55, 0xE3, 0x33, 0xF0, 0x73, 0x52, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x3F, 0x30, 0x26, 0xCA, 0x7F, 0x52, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x6E, 0x17, 0x9B, 0xD5, 0x2A, 0x4A, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xDA, 0x6B, 0xE5, 0x03, 0x07, 0x1D, 0x2E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x7A, 0xAF, 0x98, 0xE3, 0xA4, 0xF6, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x7D, 0xFE, 0x51, 0x40, 0x3B, 0x47, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x88, 0xEC, 0xC4, 0xE2, 0x8F, 0xCB, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xE2, 0x88, 0x2D, 0x4E, 0x50, 0xEB, 0x9A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x54, 0x94, 0x5E, 0xF4, 0x7F, 0x3A, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x07, 0x1C, 0xE1, 0xBD, 0x0F, 0xF8, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x92, 0x28, 0x2E, 0x32, 0x04, 0xB1, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x82, 0x44, 0x43, 0x76, 0x0D, 0x55, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xE3, 0xFF, 0x89, 0x46, 0xDE, 0x4E, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x22, 0xBB, 0x67, 0x1A, 0x81, 0xEE, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x54, 0xE2, 0x7A, 0xAE, 0xDA, 0x2C, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x9A, 0x90, 0xAA, 0x6E, 0x8B, 0xCC, 0x5F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x40, 0xAC, 0xED, 0x7D, 0x37, 0x87, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xF8, 0xB1, 0x80, 0x4C, 0x8C, 0x04, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x98, 0x2C, 0xAD, 0x30, 0x69, 0x35, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x2E, 0x00, 0x2F, 0x44, 0x8C, 0xF0, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x58, 0x07, 0xD7, 0xCD, 0x60, 0xA1, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFB, 0x7B, 0x03, 0x05, 0x5E, 0x79, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x17, 0xCE, 0x38, 0x4B, 0x5E, 0x5B, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x0E, 0x0A, 0x61, 0x9D, 0x7C, 0x62, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF0, 0x98, 0x71, 0x7F, 0x17, 0x26, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xD3, 0xFA, 0x3C, 0xF0, 0x70, 0x07, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x47, 0x5C, 0x09, 0x43, 0xB7, 0x65, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xA7, 0x3E, 0xFA, 0xF3, 0xEC, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x78, 0x22, 0x2B, 0x58, 0x71, 0xFA, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x30, 0xCE, 0x6A, 0xB3, 0xB0, 0x4F, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x95, 0x20, 0xA9, 0x23, 0xC2, 0x65, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xCF, 0x03, 0x5B, 0x8A, 0x80, 0x44, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xF8, 0x91, 0xF7, 0xD5, 0xED, 0xEA, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x5B, 0x16, 0x10, 0x25, 0xAC, 0x2A, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEC, 0xDC, 0xC4, 0x7B, 0x8C, 0x6B, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBB, 0x1C, 0xD3, 0x5A, 0xEE, 0xD9, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5D, 0x30, 0x5E, 0xF7, 0xB2, 0x41, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xCE, 0x0F, 0x1A, 0xC6, 0x41, 0x64, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x18, 0xE1, 0xE3, 0x82, 0x15, 0x66, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xE2, 0x24, 0x04, 0x72, 0x39, 0xA0, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x51, 0xA2, 0x58, 0x88, 0x62, 0xE1, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xD2, 0x65, 0x14, 0xE9, 0x4C, 0x82, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE1, 0xAC, 0x87, 0xAE, 0x31, 0x1A, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4F, 0x96, 0x1E, 0x85, 0x7A, 0xC3, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x86, 0xBB, 0xF0, 0xC0, 0x9D, 0x08, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x53, 0x03, 0x09, 0x80, 0x91, 0xEF, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xD7, 0xAF, 0x6F, 0x69, 0x7B, 0x88, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x13, 0xE4, 0x30, 0xA2, 0x47, 0xB5, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD2, 0xC0, 0xDD, 0x8A, 0x1C, 0x3C, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x8C, 0xB3, 0x4C, 0xBA, 0x8B, 0x6D, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xC7, 0xA1, 0xA8, 0x6E, 0x3C, 0x4F, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x4A, 0x97, 0xC8, 0x03, 0x6F, 0x01, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x18, 0x12, 0xA9, 0x39, 0xD5, 0x22, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA7, 0xC0, 0xBD, 0x9D, 0x8D, 0x78, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xD0, 0x7F, 0xDF, 0xD0, 0x30, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x73, 0x96, 0xEC, 0xA8, 0x1D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xD1, 0x65, 0x66, 0xDC, 0xD9, 0xCF, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xED, 0x7B, 0x37, 0xAD, 0xE2, 0xBE, 0x2D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x79, 0x42, 0x6A, 0x07, 0x66, 0xB1, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x53, 0x62, 0x65, 0x92, 0x09, 0x4C, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xAF, 0xC3, 0x03, 0xF6, 0xF4, 0x2D, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xCA, 0x41, 0xD9, 0xA2, 0x69, 0x9B, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xB2, 0xA6, 0x8D, 0xE1, 0xAA, 0x61, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xBA, 0x4D, 0x12, 0xB6, 0xBE, 0xF3, 0x7E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x92, 0x22, 0x07, 0xCE, 0xC9, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA1, 0x7C, 0x91, 0xDB, 0x32, 0xF7, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x49, 0x4B, 0x6D, 0xFB, 0xD9, 0x70, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xFB, 0x4E, 0x4C, 0x5E, 0x66, 0x81, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xB3, 0xE1, 0x00, 0xB7, 0xD9, 0xCC, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x36, 0x8B, 0xC4, 0x39, 0x20, 0xFD, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x1F, 0x60, 0x03, 0xBB, 0xD7, 0x60, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x3C, 0x62, 0xDD, 0x71, 0x95, 0xE9, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x5B, 0x7A, 0x5F, 0x68, 0x81, 0xC5, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xB5, 0xB9, 0x98, 0x42, 0x28, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x29, 0x8E, 0x11, 0x49, 0xB4, 0xD7, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x3E, 0xD2, 0x30, 0xA1, 0xBA, 0xCA, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x37, 0x64, 0x44, 0x2F, 0x03, 0xE5, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x42, 0xBC, 0xFF, 0xA2, 0x1A, 0x5F, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x04, 0xAB, 0x04, 0xE0, 0x24, 0xAD, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x45, 0x17, 0x67, 0x1F, 0x3E, 0x53, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x0F, 0xB3, 0x1B, 0x57, 0x54, 0xC2, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0xF8, 0xC4, 0x1B, 0x9B, 0xFA, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x90, 0xFD, 0xFB, 0xCA, 0x49, 0x38, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xCF, 0xC6, 0xDD, 0xF0, 0xFF, 0x8C, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x69, 0x9D, 0xBD, 0x5F, 0x33, 0xE9, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x19, 0x82, 0x3D, 0xAC, 0x1C, 0x40, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC7, 0x02, 0x46, 0x14, 0x77, 0x00, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x05, 0xF2, 0x77, 0x3A, 0x66, 0x5C, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xE6, 0x17, 0xDE, 0xB2, 0xA1, 0xE5, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x71, 0xEC, 0x9D, 0xD8, 0xF5, 0xD4, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xC6, 0x42, 0x5E, 0xE7, 0x18, 0xBA, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x21, 0x68, 0x5A, 0x26, 0xFB, 0xD7, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x00, 0x5C, 0xBA, 0x8A, 0x34, 0xEC, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x3C, 0xAF, 0x53, 0xE8, 0x65, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xEF, 0x28, 0xDC, 0x67, 0x05, 0xC8, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x78, 0xC3, 0x85, 0x49, 0xA0, 0xBC, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x3E, 0x2D, 0xA0, 0xCF, 0xD4, 0x7A, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x93, 0xFE, 0x60, 0xB3, 0x6E, 0x99, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xAD, 0x04, 0xE7, 0x49, 0xAF, 0x5E, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x7A, 0xED, 0xA6, 0x9E, 0x18, 0x09, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x05, 0x94, 0x44, 0xDC, 0xB8, 0x85, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xB7, 0x37, 0xC2, 0x50, 0x75, 0x15, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xC6, 0x0F, 0xB2, 0xA9, 0x91, 0x3E, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x81, 0xAD, 0x25, 0xA1, 0x26, 0x73, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xF1, 0xD1, 0x61, 0x7C, 0x76, 0x8F, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xDB, 0x4A, 0xFF, 0x14, 0xA7, 0x48, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x73, 0xC6, 0xC2, 0xCC, 0xF1, 0x57, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xED, 0x73, 0x27, 0x70, 0x82, 0xB6, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xBA, 0xAC, 0x3A, 0xCF, 0xF4, 0xEA, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xD6, 0xB1, 0x8F, 0x0E, 0x08, 0x2C, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE3, 0x8F, 0x2F, 0x0E, 0xA1, 0xF3, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xF5, 0x7C, 0x9B, 0x29, 0x0A, 0xF6, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xEE, 0x17, 0x47, 0x34, 0x15, 0xA3, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBE, 0x88, 0x48, 0xE7, 0xA2, 0xBB, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xAD, 0xDC, 0x65, 0x61, 0x37, 0x0F, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x67, 0xAD, 0xA2, 0x3A, 0x1C, 0x91, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x07, 0x0C, 0x3A, 0x41, 0x6E, 0x13, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBD, 0x7E, 0xED, 0xAA, 0x14, 0xDD, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xDC, 0x20, 0x01, 0x72, 0x11, 0x48, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xC4, 0x7B, 0xF8, 0x62, 0x3D, 0xF0, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xC2, 0x3D, 0x2E, 0x52, 0xA3, 0x4A, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE2, 0x53, 0x46, 0x5E, 0x21, 0xF8, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xC7, 0x8F, 0xA9, 0x26, 0x42, 0x32, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xA6, 0xA0, 0x8D, 0x4B, 0x9A, 0x19, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xAB, 0x6D, 0x1E, 0xFB, 0xEE, 0x60, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x56, 0x3C, 0xC5, 0x5D, 0x10, 0x79, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xBC, 0x41, 0x9F, 0x71, 0xEF, 0x02, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x36, 0xC4, 0xD0, 0x88, 0x9B, 0x32, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xD4, 0x5D, 0x17, 0x39, 0xE6, 0x22, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x26, 0x01, 0xCE, 0xBE, 0x4A, 0x9C, 0x27),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x6D, 0x11, 0xCA, 0x6C, 0x5A, 0x93, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x96, 0x26, 0xAF, 0x2F, 0xE4, 0x30, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC1, 0x4C, 0xC6, 0x30, 0x1F, 0x5C, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB3, 0xE8, 0xFC, 0x35, 0xEB, 0x63, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x1D, 0xCA, 0xFC, 0x50, 0x36, 0x4B, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0E, 0x23, 0x5B, 0xAF, 0xEB, 0x2D, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x88, 0xB6, 0xD7, 0x74, 0x4A, 0x23, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x66, 0xE2, 0xBB, 0x29, 0xA6, 0x4F, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x6F, 0x7E, 0x68, 0x6E, 0xA0, 0x14, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x73, 0xD4, 0xE8, 0xAB, 0x5B, 0xF6, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xE0, 0x3C, 0x24, 0x00, 0x95, 0xE9, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x0D, 0x4F, 0x81, 0xD0, 0xF2, 0x3F, 0x00),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x1D, 0xCD, 0x78, 0x39, 0xC4, 0x6B, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x45, 0xC7, 0xB8, 0x2F, 0xAA, 0x5D, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x8C, 0x6E, 0xA3, 0x24, 0xB2, 0xDB, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x2D, 0xD9, 0xF1, 0xC7, 0x9B, 0x8A, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xE1, 0x2C, 0xB9, 0x40, 0x37, 0x91, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2C, 0xB5, 0x23, 0x03, 0x2B, 0xAF, 0x2F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x9D, 0x5A, 0x20, 0x10, 0xA9, 0x84, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x30, 0x89, 0x20, 0x13, 0xE9, 0xB2, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x52, 0xEB, 0x03, 0x18, 0x1F, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x9E, 0x1C, 0x35, 0x87, 0x92, 0x69, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xC9, 0x88, 0xAF, 0xC6, 0x6C, 0x83, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD5, 0x7A, 0x54, 0x34, 0x99, 0xB6, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xAD, 0x45, 0x9B, 0x4B, 0x41, 0x4D, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x5D, 0xAB, 0x7F, 0x35, 0x34, 0xE9, 0x29),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBE, 0x78, 0x34, 0x44, 0xF3, 0x4A, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xDE, 0xE3, 0xC4, 0xEE, 0x0B, 0xF9, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x86, 0x16, 0x48, 0x32, 0xB8, 0x74, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEE, 0x7C, 0xBA, 0xBD, 0x81, 0xE3, 0x55),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x6A, 0xFA, 0x84, 0xDA, 0xB8, 0xD5, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x9F, 0x8A, 0xD5, 0x1B, 0x2E, 0x1A, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0C, 0x61, 0xE2, 0xFF, 0x5B, 0xE6, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x62, 0xC1, 0x87, 0x53, 0x1B, 0x92, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x90, 0x00, 0xD1, 0x6A, 0x0C, 0x0E, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x2E, 0xB5, 0x3B, 0x44, 0xB5, 0xA0, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5D, 0x02, 0x58, 0xB5, 0xBE, 0x45, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xEF, 0x8E, 0x90, 0x4D, 0x2A, 0x32, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x75, 0x5C, 0x0A, 0x33, 0x8F, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x6C, 0x95, 0xD4, 0x1F, 0xF3, 0xEB, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xE4, 0x4C, 0x91, 0x20, 0xF3, 0x25, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x95, 0xEB, 0x29, 0x6F, 0x20, 0x34, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x15, 0xE5, 0x13, 0x7E, 0x64, 0x8B, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xBC, 0x0D, 0x18, 0x7E, 0x37, 0x9E, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x82, 0x20, 0xF7, 0x2D, 0x7A, 0x77, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x29, 0xA2, 0xDB, 0x7A, 0xE6, 0x6F, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xC6, 0x50, 0x5C, 0xBC, 0xE6, 0x4F, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x9F, 0xD5, 0xE8, 0xC5, 0x3D, 0xB7, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x03, 0x55, 0x10, 0xDB, 0xA6, 0x8B, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x17, 0xAE, 0x78, 0xC9, 0x1D, 0x43, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x35, 0x49, 0xD4, 0x47, 0x84, 0x8D, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x95, 0x2F, 0xEA, 0xBC, 0xB4, 0x18, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x48, 0xAE, 0x89, 0xF5, 0x65, 0x3D, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xF2, 0x2B, 0x20, 0xD1, 0x75, 0x50, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xE6, 0x5C, 0x2C, 0xE0, 0x7D, 0xDF, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x07, 0x3E, 0xCE, 0x9F, 0x18, 0xB6, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xF8, 0xF0, 0xD5, 0xFA, 0x42, 0x1D, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x6C, 0x1D, 0x03, 0xC9, 0x0E, 0x2B, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x52, 0xA5, 0xB4, 0x63, 0xE1, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0xD9, 0xC4, 0xFD, 0x16, 0x60, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x7D, 0xDE, 0xDF, 0x4B, 0x4A, 0xB0, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x4E, 0x8C, 0x94, 0xC1, 0xE2, 0x85, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xF0, 0xEA, 0xB5, 0x9B, 0x70, 0xEF, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xC2, 0x39, 0x5D, 0xF3, 0x2C, 0xD9, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x1C, 0x2E, 0xCC, 0x2F, 0x54, 0x87, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x72, 0xC7, 0xB5, 0x50, 0xA3, 0x84, 0x77),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xD1, 0xAF, 0xA9, 0xB4, 0x8B, 0x5D, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xF6, 0x52, 0x8A, 0xC3, 0x56, 0xA5, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x52, 0xFF, 0xEA, 0x05, 0x42, 0x77, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x08, 0x90, 0x72, 0x86, 0xC4, 0xC3, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x15, 0xF8, 0xF1, 0x16, 0x67, 0xC6, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x87, 0xAC, 0x8F, 0x71, 0xEC, 0x83, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xE1, 0xE6, 0x2D, 0x0E, 0x11, 0xA1, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xE2, 0xA8, 0x32, 0xE6, 0xE3, 0x83, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x56, 0xE5, 0xCD, 0xB7, 0x2B, 0x67, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xED, 0xC9, 0x65, 0x6D, 0x87, 0xE1, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xFD, 0x9A, 0x53, 0x0E, 0xFA, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x4C, 0x4A, 0xE2, 0x23, 0x84, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFE, 0x49, 0x81, 0xD1, 0x3E, 0xF4, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x72, 0xE0, 0xEF, 0x0D, 0xB8, 0x3E, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x00, 0x0F, 0x5F, 0xCE, 0x60, 0x72, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCC, 0xD8, 0x03, 0x07, 0x6E, 0x5A, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x3A, 0x35, 0x50, 0x4E, 0x1F, 0xCA, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xEA, 0x88, 0x55, 0xBD, 0x6E, 0x05, 0x7F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x6D, 0xF1, 0x97, 0xA6, 0x69, 0x39, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x41, 0x99, 0xFF, 0x3B, 0xA1, 0x26, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x2F, 0x95, 0x80, 0x12, 0x4A, 0x1B, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xBF, 0x51, 0xAA, 0xAE, 0x2D, 0xDA, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1C, 0xB3, 0x52, 0x36, 0x49, 0xD4, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC1, 0x1F, 0x3A, 0xD3, 0x3E, 0x5C, 0x1A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x51, 0xF7, 0x2B, 0xC8, 0xA9, 0xA7, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x4E, 0x7F, 0x98, 0x41, 0x66, 0xB0, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x1D, 0xC0, 0x42, 0xCD, 0xF8, 0xC3, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x41, 0x91, 0x7D, 0xCC, 0x8B, 0xCC, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xAE, 0x76, 0xED, 0x56, 0x18, 0xC5, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x6A, 0x06, 0xA3, 0x7F, 0x65, 0x10, 0x1F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xEC, 0x3C, 0x05, 0x05, 0xCA, 0xF6, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0xCD, 0x02, 0x51, 0x12, 0x16, 0x3C, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xEB, 0xB3, 0x43, 0x7B, 0xDD, 0xB2, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x90, 0x41, 0xDB, 0xE4, 0xF5, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0E, 0x18, 0x2A, 0x5A, 0x83, 0x7C, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x37, 0xA1, 0x0D, 0xF1, 0x2F, 0x63, 0x79),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC0, 0xFA, 0x6F, 0x1F, 0x67, 0xCF, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x34, 0x45, 0xBB, 0xF4, 0xF9, 0x9B, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x69, 0xFE, 0x67, 0x1D, 0x64, 0x8F, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x39, 0xBF, 0xD8, 0xB3, 0xC7, 0xAD, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x93, 0xFF, 0xF3, 0x28, 0xFA, 0x39, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF9, 0xC3, 0x85, 0x26, 0x7A, 0x88, 0x89),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD5, 0x79, 0xD8, 0x11, 0xDE, 0xEB, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x46, 0xA4, 0x6A, 0xDA, 0x74, 0x34, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBD, 0xD3, 0xF5, 0x14, 0xEE, 0xFE, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4C, 0xA3, 0x71, 0x43, 0x65, 0xF8, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x6C, 0x35, 0xFA, 0x90, 0x25, 0xD8, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x34, 0x84, 0x96, 0xA1, 0x43, 0x03, 0x4D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x3B, 0x3B, 0x2F, 0xCA, 0x59, 0xF2, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x48, 0x24, 0x74, 0xD8, 0x72, 0x90, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x42, 0x74, 0x8C, 0x6F, 0x52, 0x19, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9E, 0x41, 0x63, 0x68, 0x78, 0x4C, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x94, 0xB6, 0x6B, 0x38, 0x52, 0xA8, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x30, 0x25, 0x93, 0xA1, 0x6F, 0x6E, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2F, 0x4B, 0x64, 0x79, 0x50, 0xFF, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x36, 0xED, 0x57, 0x39, 0x3B, 0xE7, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x85, 0xEA, 0x35, 0xD6, 0xC0, 0xA0, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x89, 0x3A, 0xCC, 0x22, 0x1C, 0x46, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x7A, 0xB0, 0xA1, 0x1B, 0x69, 0x62, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xB8, 0x8A, 0x6C, 0x18, 0x85, 0x0D, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB6, 0x50, 0xE9, 0x4E, 0x7F, 0xE8, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5B, 0x5C, 0xD1, 0x4B, 0x11, 0x9A, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x25, 0x56, 0x74, 0x51, 0x9C, 0xEC, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x7F, 0xB6, 0x8A, 0xCB, 0x3A, 0x10, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x33, 0x07, 0x01, 0xE9, 0x49, 0x59, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xA5, 0x2E, 0xF2, 0xBA, 0x32, 0x63, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x06, 0x0B, 0xA5, 0x44, 0x27, 0x7F, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x74, 0xAC, 0x0F, 0xCC, 0x4F, 0x13, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB1, 0xBF, 0x97, 0x49, 0xA5, 0x1C, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x64, 0x68, 0x7B, 0x0F, 0xCC, 0x77, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x39, 0xF9, 0x4E, 0x84, 0x9C, 0xF6, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xCF, 0x6D, 0xE2, 0xA1, 0x2D, 0xF9, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC4, 0x90, 0x57, 0x31, 0x01, 0x05, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x1E, 0xBB, 0xBF, 0x98, 0xA4, 0x7C, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xE3, 0xA0, 0xB2, 0xCD, 0x39, 0x9A, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x34, 0x60, 0x7A, 0x89, 0x98, 0xB5, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x20, 0x3D, 0x3A, 0x04, 0x8F, 0x5A, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x26, 0xB6, 0x49, 0x09, 0x9C, 0x0F, 0x59),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x66, 0xD2, 0x38, 0x2A, 0x62, 0x81, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xC8, 0x20, 0x5E, 0x28, 0xA3, 0x81, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x31, 0xA4, 0xF1, 0xEA, 0x7D, 0x87, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x2C, 0x99, 0x09, 0x6F, 0x63, 0xEB, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x76, 0xDA, 0x1A, 0x06, 0xBE, 0xDE, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x09, 0x2E, 0x75, 0x39, 0x30, 0x2D, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x9B, 0xC1, 0x5A, 0x17, 0xC3, 0x8C, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x8D, 0x94, 0x4D, 0x3D, 0xAB, 0x60, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFD, 0x1E, 0x0F, 0x43, 0xAE, 0x9D, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF2, 0xF3, 0x20, 0x1B, 0xAA, 0xB7, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x5B, 0xA4, 0xF4, 0x90, 0x3B, 0xE3, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x78, 0x72, 0xBD, 0x65, 0x09, 0x0B, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x37, 0x2A, 0x6C, 0x16, 0x4F, 0x64, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xCE, 0xA3, 0x90, 0xB4, 0x9A, 0xBC, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x55, 0x63, 0x1D, 0x3A, 0x6E, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xB4, 0xAA, 0x99, 0x22, 0x45, 0x89, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x7C, 0x8C, 0xA6, 0x3D, 0xA7, 0x3E, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x06, 0x42, 0xDC, 0xA6, 0xE3, 0xC6, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8C, 0x3D, 0x5D, 0x47, 0x31, 0x7C, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x85, 0xEE, 0x46, 0x7E, 0x13, 0x04, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x3C, 0x8B, 0x43, 0x2E, 0x74, 0xF5, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x88, 0x8E, 0x07, 0x29, 0x08, 0x03, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x9B, 0x89, 0xEB, 0x08, 0xE8, 0x43, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x07, 0x67, 0xFD, 0xD9, 0x73, 0x6F, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xEB, 0x21, 0x8D, 0x98, 0x43, 0x74, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xCC, 0x14, 0xD8, 0x08, 0xBB, 0xA6, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x98, 0xF2, 0x6A, 0x18, 0xC3, 0xDD, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x38, 0x91, 0xA0, 0x03, 0xF2, 0x04, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xAF, 0xE8, 0xFD, 0xFB, 0x13, 0x70, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x93, 0x87, 0x98, 0x4A, 0xE0, 0x00, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x2E, 0x69, 0x9C, 0xA2, 0x2D, 0x03, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFE, 0xF3, 0xB9, 0xC1, 0x85, 0x2A, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xFD, 0x86, 0xB1, 0xCD, 0xBF, 0x41, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xD8, 0x9A, 0x21, 0xF3, 0xFE, 0xCB, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x78, 0x04, 0x60, 0xB7, 0xA9, 0xA2, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1E, 0x66, 0x2A, 0x54, 0x51, 0xBD, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x16, 0x36, 0xEF, 0x61, 0x2D, 0xEE, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x5F, 0x88, 0xA0, 0x13, 0x12, 0xF7, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xC6, 0xAD, 0x4A, 0x4A, 0x07, 0x01, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x74, 0xB1, 0x4F, 0xEB, 0xBD, 0xD5, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF9, 0x71, 0xA2, 0x06, 0x4F, 0xD7, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x8B, 0x4D, 0x48, 0xE0, 0x98, 0xFB, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xBA, 0x10, 0xA3, 0x0D, 0x52, 0xAC, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xD0, 0xE0, 0x36, 0xE6, 0x07, 0x3A, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x80, 0xF0, 0xAA, 0x49, 0x22, 0x4B, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC7, 0xAB, 0x1C, 0x89, 0xCD, 0x24, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x2A, 0xFC, 0xB3, 0x6D, 0x45, 0x96, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xE4, 0xDB, 0x52, 0x3F, 0xC4, 0xB4, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xCC, 0xC8, 0x7F, 0xBB, 0x6B, 0x87, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x21, 0x3C, 0x69, 0x7D, 0x38, 0x57, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x4C, 0x18, 0x3C, 0x53, 0xA5, 0x48, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC3, 0x64, 0x45, 0xDB, 0xC4, 0x6D, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCC, 0xD1, 0xBB, 0x17, 0xB8, 0x34, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x69, 0x71, 0xFA, 0xA0, 0x28, 0x4A, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xE8, 0x9E, 0x39, 0xEA, 0x8D, 0x38, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x9C, 0xBB, 0xCD, 0x80, 0x1A, 0xEE, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA0, 0x45, 0xBF, 0xD9, 0x22, 0x11, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7C, 0x5C, 0xD9, 0xC0, 0x9F, 0x69, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x8A, 0xA6, 0x79, 0x4E, 0x35, 0xB9, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8B, 0x9A, 0x3E, 0xA1, 0xB8, 0x28, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x2F, 0xEF, 0xBB, 0xA9, 0x72, 0x7F, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x34, 0xB7, 0x12, 0xB9, 0xE7, 0xC3, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x1D, 0xD9, 0x42, 0x77, 0x0C, 0x71, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x01, 0x59, 0xA7, 0x56, 0x03, 0x91, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x91, 0x99, 0x33, 0x30, 0x3E, 0xEF, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xC9, 0x5A, 0x9A, 0x54, 0x66, 0xF1, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x2C, 0xB7, 0x6E, 0x71, 0x7D, 0x35, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x0D, 0xEF, 0xD1, 0x2D, 0x99, 0x63, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x31, 0xAF, 0x2D, 0xC9, 0xC6, 0xC2, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xC0, 0xDF, 0x80, 0x54, 0xC4, 0xAC, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x6B, 0xA0, 0x84, 0x96, 0xF7, 0x31, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xE2, 0x7C, 0x7A, 0x41, 0x45, 0x75, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xEE, 0x58, 0x31, 0xE8, 0x68, 0xD6, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x2E, 0x48, 0xB7, 0x09, 0x9F, 0xD4, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA9, 0x5C, 0xE7, 0x64, 0x43, 0x5D, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x9F, 0x50, 0xAB, 0x68, 0xFF, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x88, 0x2D, 0xBA, 0x12, 0xBF, 0x8D, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xDF, 0x6F, 0xB3, 0x75, 0xA4, 0x55, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x17, 0x92, 0x39, 0xB7, 0x13, 0x37, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x43, 0x71, 0xA7, 0xCA, 0x17, 0x1B, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xB9, 0xB0, 0x78, 0xEF, 0xA0, 0xDA, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0xF2, 0x0F, 0x85, 0xA2, 0xB6, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x65, 0x2E, 0x6E, 0x45, 0xB9, 0x4C, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x6A, 0x8C, 0x2B, 0x77, 0x96, 0x36, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x7A, 0x13, 0x4A, 0x97, 0x63, 0x02, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x1E, 0x06, 0x03, 0x8F, 0xB9, 0xEE, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0xEE, 0x8B, 0x89, 0xA9, 0x70, 0xDB, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x81, 0xC9, 0x70, 0x8D, 0x62, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xDA, 0x46, 0xF8, 0xF9, 0x3A, 0xBE, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x9C, 0x7A, 0x97, 0x62, 0xEB, 0xFA, 0x0F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x03, 0x3D, 0x3C, 0x46, 0x27, 0x9E, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x08, 0x1C, 0xD5, 0x25, 0xAF, 0xE9, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x69, 0xDC, 0x59, 0xF4, 0x8A, 0x7C, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x9A, 0x7A, 0x99, 0x21, 0x0C, 0x4E, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xCE, 0x85, 0x5F, 0xAC, 0xAA, 0x82, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x57, 0x69, 0x90, 0x76, 0xF3, 0x53, 0x3F),
+};
+static const mbedtls_ecp_point brainpoolP384r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(brainpoolP384r1_T_0_X, brainpoolP384r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_1_X, brainpoolP384r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_2_X, brainpoolP384r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_3_X, brainpoolP384r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_4_X, brainpoolP384r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_5_X, brainpoolP384r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_6_X, brainpoolP384r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_7_X, brainpoolP384r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_8_X, brainpoolP384r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_9_X, brainpoolP384r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_10_X, brainpoolP384r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_11_X, brainpoolP384r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_12_X, brainpoolP384r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_13_X, brainpoolP384r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_14_X, brainpoolP384r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_15_X, brainpoolP384r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_16_X, brainpoolP384r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_17_X, brainpoolP384r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_18_X, brainpoolP384r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_19_X, brainpoolP384r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_20_X, brainpoolP384r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_21_X, brainpoolP384r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_22_X, brainpoolP384r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_23_X, brainpoolP384r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_24_X, brainpoolP384r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_25_X, brainpoolP384r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_26_X, brainpoolP384r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_27_X, brainpoolP384r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_28_X, brainpoolP384r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_29_X, brainpoolP384r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_30_X, brainpoolP384r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_31_X, brainpoolP384r1_T_31_Y),
+};
+#else
+#define brainpoolP384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
+ */
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xE9, 0x6B, 0x8C, 0x6F, 0x9D, 0x88, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x4F, 0x86, 0x96, 0xA7, 0x56, 0xD1, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xAB, 0xFA, 0xEE, 0xA7, 0xF5, 0x0E, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x40, 0xEF, 0x9E, 0x6D, 0xD6, 0x32, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xED, 0x56, 0x14, 0x57, 0x1A, 0x8D, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xED, 0x4D, 0x3A, 0xFA, 0x71, 0x75, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xC5, 0x76, 0x1C, 0x14, 0xBE, 0xB5, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x5A, 0xCB, 0xE7, 0x36, 0x1D, 0x52, 0x1C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8D, 0x7A, 0xEB, 0xA3, 0x8B, 0xD5, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xA3, 0x41, 0xF8, 0xAC, 0x9E, 0xAB, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xE3, 0x65, 0x0D, 0x1C, 0xFE, 0x09, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xCA, 0x13, 0x3F, 0xC5, 0xF9, 0x7E, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x5D, 0x63, 0x28, 0xA6, 0x89, 0xD3, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x95, 0x3F, 0x7A, 0x82, 0xD4, 0x77, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xBB, 0x92, 0x32, 0x00, 0xF4, 0x66, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x58, 0x31, 0xD1, 0x17, 0x9F, 0x2A, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x36, 0xA9, 0xCD, 0x80, 0xA5, 0x2D, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x44, 0xAB, 0xCE, 0x71, 0xFF, 0x0C, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x24, 0x58, 0x35, 0x5A, 0x21, 0x32, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xA6, 0x28, 0xF8, 0x7A, 0x97, 0xAE, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xE7, 0x08, 0xFA, 0x47, 0xC9, 0x55, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xAC, 0x2E, 0x84, 0xA4, 0xF5, 0x52, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x58, 0x05, 0x9D, 0xA7, 0xC8, 0x71, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x92, 0xB4, 0x92, 0xC1, 0x92, 0xEC, 0x6B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x48, 0x2D, 0x79, 0x5E, 0x58, 0xE5, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x85, 0x26, 0xEC, 0xE9, 0x6E, 0xD4, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x68, 0x26, 0x87, 0x38, 0xA2, 0xD2, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x17, 0x60, 0xCE, 0x75, 0xF8, 0xA5, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x51, 0xDB, 0xA9, 0xAE, 0x87, 0xF1, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x49, 0x92, 0x3B, 0x19, 0x96, 0xF5, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xD5, 0x52, 0x52, 0x8C, 0xCE, 0xFD, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x18, 0x0A, 0xE6, 0xF6, 0xAE, 0x08, 0x41),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x2B, 0xD8, 0x54, 0xCE, 0xB0, 0x57, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xB0, 0xF8, 0x9E, 0x03, 0x03, 0x3C, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x0E, 0x29, 0x29, 0x00, 0xF3, 0x70, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x33, 0x99, 0x0E, 0x00, 0x5D, 0xFE, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2D, 0xF2, 0x59, 0x32, 0xCF, 0x03, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xC9, 0x72, 0xAE, 0x0C, 0xEF, 0xD1, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x5A, 0x27, 0xBF, 0x2F, 0x45, 0xF9, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xBE, 0xE5, 0x2C, 0xFF, 0x5B, 0x1E, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xAC, 0xBB, 0xD8, 0x83, 0xC2, 0x46, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xDC, 0xCE, 0x15, 0xB4, 0xEF, 0xCF, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xDB, 0x5E, 0x94, 0x31, 0x0B, 0xB2, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xB9, 0xE3, 0xE3, 0x11, 0x71, 0x41, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xE3, 0x01, 0xB7, 0x7D, 0xBC, 0x65, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x07, 0x65, 0x87, 0xA7, 0xE8, 0x48, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x48, 0x8F, 0xD4, 0x30, 0x8E, 0xB4, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE0, 0x73, 0xBE, 0x1E, 0xBF, 0x56, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x0E, 0x5E, 0x87, 0xC5, 0xAB, 0x0E, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xF9, 0x5F, 0x80, 0x24, 0x4C, 0x2A, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x15, 0x21, 0x54, 0x92, 0x84, 0x8D, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x8A, 0x47, 0x74, 0xDC, 0x42, 0xB1, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xF7, 0x30, 0xFD, 0xC1, 0x9B, 0x0C, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x6C, 0xCC, 0xDF, 0xC5, 0xE3, 0xA9, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x67, 0x59, 0x10, 0x5C, 0x51, 0x54, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x37, 0xFB, 0x6E, 0xB0, 0x78, 0x63, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEF, 0xC4, 0x39, 0x20, 0xF1, 0x46, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x62, 0xAE, 0xFF, 0x10, 0xE4, 0xE2, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x5C, 0xF5, 0x2E, 0x22, 0x89, 0xE5, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x0C, 0x29, 0xA8, 0x62, 0xAE, 0xDB, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x9E, 0x0F, 0xCA, 0x87, 0x2A, 0x6F, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xDC, 0x9B, 0x9F, 0x65, 0xD4, 0xAD, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xC3, 0x08, 0x0F, 0xCF, 0x67, 0xE9, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5C, 0xD7, 0xFF, 0x41, 0x9C, 0xCB, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x05, 0x12, 0xAD, 0x73, 0x63, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x99, 0x07, 0x86, 0x57, 0xE7, 0x94, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x4B, 0xA5, 0xBF, 0x18, 0xA9, 0xEF, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x4C, 0xC4, 0x09, 0xF2, 0x2F, 0x0C, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x3A, 0x04, 0xEA, 0x89, 0x6C, 0x91, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0x3A, 0xE7, 0xA3, 0xEC, 0x24, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xA1, 0x26, 0x21, 0x04, 0xE3, 0xB9, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x71, 0x4B, 0x7B, 0xC2, 0x89, 0xCD, 0xA2),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xB9, 0xA8, 0x9D, 0xFD, 0x00, 0x3A, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x41, 0x6C, 0xBB, 0x5A, 0xCA, 0x1F, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xD7, 0xE2, 0x6C, 0x6B, 0xA7, 0x48, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x19, 0xAD, 0xA7, 0xC1, 0x7E, 0x4F, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF7, 0x19, 0x3C, 0x06, 0x74, 0x2C, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x23, 0x4F, 0x0C, 0x09, 0xB0, 0x80, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x74, 0x34, 0x08, 0x44, 0x7E, 0xA3, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xCC, 0x8D, 0x12, 0x6E, 0xE1, 0x3D, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x18, 0xB1, 0x71, 0x02, 0x93, 0xC2, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x89, 0x40, 0xE2, 0x1F, 0xE7, 0x5E, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xAE, 0x89, 0x01, 0xD4, 0x0C, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xDA, 0x58, 0x70, 0x24, 0xF2, 0xE4, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xC7, 0x1D, 0xD6, 0x4A, 0x6F, 0x66, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x1D, 0x7E, 0x4A, 0x2C, 0xCA, 0xEC, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x7F, 0xA8, 0x99, 0xE4, 0xD3, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x1D, 0x5A, 0xDF, 0x5E, 0x58, 0x36, 0x49),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB9, 0x32, 0x69, 0x1F, 0x72, 0x2A, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x73, 0xE2, 0x03, 0x39, 0x35, 0xAA, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x5E, 0x5D, 0x48, 0xEF, 0xAE, 0x30, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x7F, 0x60, 0x19, 0xAF, 0xEC, 0x9D, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x19, 0xE4, 0x1B, 0x56, 0x15, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xD7, 0x33, 0x59, 0x1F, 0x43, 0x59, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xCE, 0xEE, 0xCA, 0xA4, 0x7F, 0x63, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x40, 0xC0, 0xF6, 0x19, 0x89, 0x43, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x92, 0xEA, 0x07, 0x65, 0x79, 0x86, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xB7, 0x13, 0x75, 0xD3, 0xC5, 0x0A, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x9E, 0xFA, 0xE1, 0x1F, 0x0C, 0xF9, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x8C, 0xED, 0x5C, 0x21, 0xE9, 0x09, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x4D, 0xD8, 0x18, 0xC4, 0xF6, 0x36, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xC9, 0xAC, 0x5C, 0xFA, 0x69, 0xA4, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8C, 0x94, 0x1C, 0x7B, 0x71, 0x36, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBD, 0x46, 0xCE, 0xB7, 0x1D, 0x9C, 0x5E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD6, 0x96, 0x4B, 0xA6, 0x47, 0xEB, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xF1, 0x5F, 0x15, 0xDE, 0x99, 0x6F, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xBD, 0xE5, 0x04, 0xB8, 0xE6, 0xC0, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD3, 0xF0, 0x04, 0x00, 0xE4, 0x05, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xF3, 0x06, 0xA3, 0x1A, 0xFF, 0xEA, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x32, 0xAA, 0x99, 0x33, 0x09, 0xB6, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xEF, 0xFC, 0x61, 0x10, 0x42, 0x31, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF1, 0xF4, 0x33, 0xCF, 0x28, 0x90, 0x9C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xDE, 0xF9, 0x88, 0x87, 0x7B, 0xEB, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xB8, 0xDA, 0xFA, 0xDA, 0x3D, 0xA6, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF0, 0x62, 0x82, 0x53, 0x32, 0x55, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA5, 0x32, 0x4A, 0x19, 0x11, 0x9C, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xB3, 0x27, 0xE9, 0x75, 0x90, 0x05, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x1C, 0x90, 0x48, 0x77, 0x01, 0x85, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD6, 0x9B, 0x84, 0xA8, 0xD7, 0xC5, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x7A, 0xCB, 0xB3, 0x11, 0x46, 0xD7, 0x99),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x23, 0xBF, 0x75, 0x75, 0xA1, 0x95, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x66, 0x5D, 0x34, 0x13, 0xA9, 0x03, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x80, 0x9D, 0x5F, 0xD2, 0x44, 0xE1, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x5D, 0xBD, 0xA8, 0xBF, 0xB4, 0x25, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x99, 0x1F, 0x53, 0xF1, 0x57, 0xDB, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x7C, 0xE5, 0xC5, 0x51, 0x0B, 0x4C, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xB0, 0x1A, 0x9C, 0x16, 0xB0, 0x32, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xE3, 0xCF, 0xDD, 0x48, 0xB4, 0x7B, 0x33),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xDD, 0x9E, 0x3C, 0x98, 0x0E, 0x77, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xAB, 0x01, 0xD3, 0x87, 0x74, 0x25, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xA3, 0xE3, 0x76, 0x43, 0x87, 0x12, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0xB1, 0x3B, 0x60, 0x66, 0xEB, 0x98, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x78, 0xC8, 0xD7, 0x4E, 0x75, 0xCA, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xDF, 0x71, 0x19, 0xE7, 0x07, 0x36, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC9, 0xA8, 0x5F, 0x91, 0xBF, 0x47, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x96, 0x58, 0x96, 0x18, 0xB6, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x2D, 0xA9, 0x9B, 0x86, 0xDB, 0x0C, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0B, 0x2D, 0x56, 0x4A, 0xD3, 0x93, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x15, 0xE2, 0x65, 0x12, 0x86, 0x0E, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x41, 0x4D, 0xC1, 0xCB, 0xE4, 0xC3, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x53, 0x10, 0xCA, 0xA3, 0xAC, 0x83, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x01, 0x22, 0x96, 0x10, 0xAD, 0x69, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x46, 0x4E, 0xD8, 0xEA, 0xD6, 0x9D, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x2F, 0x7F, 0x62, 0x62, 0x80, 0xD0, 0x14),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xDA, 0x00, 0x63, 0x09, 0xBD, 0x6A, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD4, 0x6E, 0x48, 0x05, 0xB7, 0xF7, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x4D, 0xD7, 0x00, 0x4A, 0x15, 0x27, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x15, 0xAA, 0x37, 0x27, 0x34, 0x18, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x20, 0x2C, 0x84, 0x1B, 0x88, 0xBA, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x09, 0xD6, 0x04, 0xA2, 0x60, 0x84, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x04, 0x94, 0x08, 0xD4, 0xED, 0x47, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xF3, 0xE4, 0x3E, 0xB9, 0x5B, 0x35, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xD8, 0xB6, 0x80, 0xD6, 0xF1, 0x30, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x14, 0xA6, 0x85, 0xEE, 0xA7, 0xD8, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x49, 0x2A, 0x1E, 0x7C, 0xE9, 0x2D, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x87, 0x56, 0x91, 0x03, 0x77, 0x4D, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x52, 0xD4, 0xAA, 0xF7, 0xFA, 0xB0, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x11, 0x39, 0xB1, 0xE7, 0x76, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x13, 0xBC, 0x37, 0x5D, 0x74, 0xCD, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x48, 0x14, 0x23, 0x30, 0xF8, 0x46, 0x37),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x27, 0xB0, 0xD9, 0xB2, 0x74, 0xB4, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xA6, 0xB9, 0x6F, 0x9F, 0x64, 0x36, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x2B, 0x78, 0x40, 0x05, 0x2B, 0x7B, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x68, 0x3A, 0xB6, 0x4A, 0xE2, 0xDB, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x33, 0xD7, 0x34, 0x8B, 0x25, 0x45, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xCE, 0xA8, 0xC9, 0x01, 0xFB, 0x0E, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF9, 0x51, 0x4C, 0x12, 0x9F, 0x60, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x85, 0xBD, 0x30, 0x37, 0x84, 0x39, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x33, 0xAF, 0x2E, 0xB8, 0x2E, 0xCC, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xB1, 0x73, 0x59, 0x4E, 0x0C, 0x09, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x24, 0x89, 0x81, 0x12, 0xFF, 0xBB, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0x1A, 0x66, 0xEE, 0xED, 0xB6, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xBD, 0x04, 0x20, 0x5D, 0xFB, 0xBF, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF8, 0x34, 0xA3, 0xFF, 0x45, 0xDE, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x18, 0x73, 0xF1, 0x32, 0x25, 0x58, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xC1, 0x14, 0xE3, 0x9E, 0x40, 0x0F, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0x9D, 0x9C, 0x00, 0xF7, 0x56, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBA, 0x87, 0xF9, 0x15, 0x0C, 0x66, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x1F, 0xC1, 0x28, 0xB0, 0x47, 0x0D, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xCA, 0x27, 0xEE, 0x4B, 0x23, 0x2B, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB5, 0x68, 0xC8, 0x17, 0x5D, 0xC3, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x02, 0x08, 0xEE, 0x20, 0x9D, 0xEA, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x14, 0x50, 0xD4, 0x7D, 0x5F, 0xCF, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFA, 0xF8, 0xA7, 0xC6, 0xDC, 0x14, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xBD, 0x0A, 0x1A, 0x18, 0x98, 0xDC, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x63, 0x02, 0xB7, 0xD5, 0x5B, 0x5A, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB1, 0xD7, 0x4B, 0x15, 0x39, 0x61, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x32, 0xE1, 0x9E, 0x70, 0x1B, 0xCE, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD8, 0x18, 0x83, 0x52, 0x9B, 0x6D, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x55, 0x56, 0x19, 0x34, 0xA4, 0xEA, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA9, 0x55, 0x80, 0xE3, 0x15, 0x36, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x06, 0xC8, 0x1D, 0x17, 0x0D, 0xAD, 0x16),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xD6, 0xF0, 0xCC, 0xF3, 0x63, 0x53, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x5A, 0xDC, 0x46, 0xBD, 0x0D, 0xAD, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x2F, 0x11, 0x60, 0x15, 0x51, 0x4A, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE3, 0x93, 0x38, 0xD5, 0x83, 0xAA, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA6, 0xCC, 0xB1, 0xFD, 0xBB, 0x1A, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x54, 0xC8, 0x54, 0x6F, 0x79, 0x1A, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4A, 0xDA, 0x28, 0x92, 0x97, 0x9D, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x4B, 0xDB, 0xC7, 0x52, 0xC5, 0x66, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7E, 0x92, 0x53, 0x30, 0x93, 0xFD, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0x6A, 0xB1, 0x91, 0x0A, 0xB4, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x9D, 0x40, 0x3F, 0xE3, 0xF1, 0x01, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x0E, 0xD8, 0xED, 0x11, 0x8E, 0x4C, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x4A, 0x1B, 0x88, 0xDF, 0x8D, 0x29, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x23, 0x21, 0x11, 0xAB, 0x77, 0x81, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xAF, 0x11, 0xFA, 0xBA, 0x40, 0x63, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x6F, 0x8D, 0x80, 0xDF, 0x67, 0xF5, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x8B, 0xB7, 0x08, 0xF4, 0xD7, 0x2D, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x2B, 0x30, 0x02, 0x45, 0x71, 0x08, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x3A, 0xCA, 0x50, 0xF6, 0xC2, 0x19, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xB9, 0x9B, 0x3E, 0x73, 0x95, 0x1D, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x60, 0x59, 0x48, 0xCB, 0xD8, 0xD6, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x6C, 0x89, 0xAB, 0x99, 0xA8, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xA1, 0x8B, 0x4E, 0x06, 0x19, 0xEC, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x95, 0x04, 0xCF, 0xD5, 0x94, 0xB3, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x35, 0x93, 0x7C, 0xB3, 0xB8, 0x9E, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x45, 0x5C, 0x7E, 0xBF, 0x75, 0x81, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE8, 0x24, 0xDF, 0xEC, 0x2F, 0x7D, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x8B, 0xD5, 0x6A, 0x9B, 0xA0, 0xE0, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE3, 0x27, 0x82, 0xDE, 0xDD, 0xCA, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x57, 0x56, 0x46, 0x05, 0x06, 0x01, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x35, 0xA7, 0x47, 0xE2, 0x6B, 0x2C, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x9D, 0x4C, 0xEC, 0x1F, 0x11, 0x75, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xAA, 0x41, 0xC1, 0xE9, 0x0E, 0xE9, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xCF, 0x9C, 0x4B, 0xE8, 0xED, 0x0A, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x73, 0xCA, 0x0C, 0x46, 0x0A, 0x9C, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE1, 0x9E, 0xBC, 0xFE, 0x44, 0x63, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x43, 0x71, 0xEE, 0xF8, 0xC1, 0x8C, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x4B, 0xF0, 0x69, 0x25, 0xBD, 0x71, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x9A, 0xFE, 0x82, 0xE7, 0xC1, 0xC1, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x5A, 0x6E, 0x5E, 0x97, 0x6A, 0x35, 0x8D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x18, 0x6C, 0x7E, 0xB8, 0x9E, 0x57, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xB9, 0xC1, 0xD0, 0xFE, 0x78, 0xFB, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x08, 0xAE, 0x46, 0x34, 0xEA, 0x7A, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1C, 0x56, 0xA9, 0x18, 0x37, 0xD4, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x63, 0xE9, 0x0A, 0xB6, 0x38, 0x3C, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x4F, 0xA4, 0x6E, 0x85, 0x31, 0x23, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xAD, 0xC4, 0xC3, 0xB1, 0x4B, 0x1C, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x56, 0x4A, 0x38, 0xB3, 0x6B, 0x6F, 0x2C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xC7, 0x19, 0xDE, 0x21, 0xED, 0x89, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xBE, 0xA6, 0xAE, 0xEB, 0x9D, 0xA7, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x0E, 0x13, 0x1E, 0x86, 0x57, 0xC3, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4B, 0x30, 0x46, 0x52, 0xC1, 0xEC, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xD5, 0x44, 0x31, 0x96, 0x3B, 0x26, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x68, 0xA8, 0x67, 0x78, 0x39, 0xE8, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x78, 0xB7, 0xDD, 0xF2, 0x58, 0xB6, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x3C, 0xB3, 0x26, 0xC4, 0x2C, 0x8C, 0xA5),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x24, 0xE5, 0x73, 0xEE, 0x9A, 0x02, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x6A, 0x65, 0x60, 0xF3, 0x62, 0xE3, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x07, 0x84, 0xE6, 0x3B, 0x46, 0x65, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x8F, 0x0C, 0xB0, 0xE1, 0x04, 0x82, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x13, 0xBF, 0x3D, 0xA0, 0x48, 0xA2, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x26, 0x76, 0x74, 0xAB, 0x0B, 0x29, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x6E, 0x5F, 0x03, 0x34, 0x7C, 0x38, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x72, 0xF9, 0x3B, 0x3C, 0xA4, 0xBC, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xCE, 0x18, 0x80, 0xB8, 0x24, 0x45, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x09, 0x03, 0xB8, 0x06, 0x64, 0xF7, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x26, 0xB1, 0x10, 0x6D, 0x71, 0x12, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x12, 0xC6, 0x6E, 0x1E, 0x6A, 0xC3, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xD3, 0x0A, 0xDE, 0xD8, 0x6B, 0x04, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x87, 0x5B, 0xAE, 0xDB, 0x3C, 0xC0, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF5, 0xF9, 0xC1, 0x9A, 0x89, 0xBB, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x69, 0x72, 0x8B, 0xAE, 0x32, 0x13, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x16, 0x07, 0x50, 0xFA, 0x4C, 0xCF, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x50, 0x21, 0xE9, 0xDE, 0xEC, 0x7E, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x2F, 0xE8, 0x83, 0x30, 0x0B, 0x65, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x0B, 0x99, 0xAC, 0xC9, 0xBA, 0x6C, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x59, 0x5A, 0x0D, 0x7B, 0x9E, 0x08, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x91, 0xB2, 0xDC, 0x90, 0xCE, 0x67, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x93, 0x60, 0x0C, 0xD7, 0x1F, 0x2F, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7F, 0x9D, 0x40, 0xF8, 0x78, 0x7A, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x22, 0x95, 0xE8, 0xEF, 0x31, 0x57, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x88, 0x53, 0xFE, 0xAF, 0x7C, 0x47, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xCE, 0xCC, 0x79, 0xE8, 0x9F, 0x8C, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x16, 0xDD, 0x77, 0x6E, 0x8A, 0x73, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x07, 0x97, 0x21, 0x3B, 0xF8, 0x5F, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xB5, 0xD2, 0x81, 0x84, 0xF0, 0xE7, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x8F, 0x75, 0x09, 0x6A, 0x0E, 0x53, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x4F, 0x70, 0x97, 0xC7, 0xAC, 0x7D, 0x3F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x3C, 0x6A, 0xB4, 0x10, 0xA9, 0xC8, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC5, 0xD6, 0x69, 0x16, 0xB8, 0xAC, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x44, 0xDC, 0xEB, 0x48, 0x54, 0x5D, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x48, 0x9B, 0xD7, 0x72, 0x69, 0xA4, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x0D, 0x36, 0x9A, 0x66, 0x0B, 0xEC, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC6, 0xD4, 0xB6, 0x60, 0xE5, 0xC3, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x29, 0x42, 0xE0, 0x9D, 0xFD, 0x7C, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x10, 0xBA, 0x55, 0xBC, 0x3B, 0x38, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x66, 0xFA, 0x05, 0x73, 0x03, 0x1B, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xA4, 0x66, 0x12, 0x96, 0x7B, 0x02, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xDE, 0x6D, 0x98, 0xD1, 0xD5, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF5, 0x44, 0xB8, 0x8E, 0xF6, 0x8C, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x15, 0x2B, 0x72, 0xBC, 0x49, 0xE5, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x44, 0xD7, 0xDF, 0x8F, 0xEB, 0x8D, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x64, 0x88, 0xAA, 0xB7, 0xE4, 0x70, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x14, 0xBB, 0xE9, 0x9B, 0xB9, 0x65, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x8E, 0x88, 0xF5, 0xF1, 0xC1, 0x89, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x30, 0x53, 0xE6, 0xFB, 0x2D, 0x82, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE4, 0xFF, 0xBA, 0x31, 0x79, 0xAB, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x09, 0xF7, 0xB7, 0x09, 0x78, 0x4C, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xAE, 0xC2, 0x44, 0xDC, 0x17, 0x78, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD4, 0x17, 0x43, 0x19, 0x74, 0x9E, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x64, 0x3B, 0x73, 0xA2, 0x99, 0x27, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0x36, 0x5F, 0xD3, 0x14, 0xB1, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x07, 0xAB, 0xFD, 0x9B, 0x03, 0xC5, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xBE, 0xB0, 0x1D, 0xF2, 0x0C, 0x73, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE7, 0x7B, 0x87, 0xD3, 0x34, 0xFD, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x25, 0x3D, 0xC7, 0x36, 0x83, 0x53, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x7C, 0xCF, 0x63, 0x55, 0x12, 0x11, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x34, 0x4D, 0x27, 0x92, 0xAC, 0x18, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x42, 0x61, 0x9D, 0x2E, 0xFF, 0x13, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xDE, 0x92, 0x65, 0x57, 0x0D, 0xBC, 0x0A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x7B, 0x6E, 0xC6, 0x2A, 0x21, 0x74, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xA7, 0x53, 0x4D, 0x29, 0x36, 0xEF, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xD6, 0x41, 0xC7, 0x99, 0xAD, 0x50, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xAC, 0x41, 0x9F, 0xFB, 0x4C, 0x86, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xBB, 0xE6, 0x25, 0x28, 0xAA, 0xEB, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x04, 0xA2, 0xC3, 0xAA, 0x08, 0x8A, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x2B, 0x5B, 0xE2, 0x8D, 0x76, 0xEA, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x33, 0xD2, 0x21, 0x4D, 0x62, 0xE3, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x06, 0x8B, 0x2B, 0xC2, 0xC4, 0xB1, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF5, 0xA1, 0xC0, 0x03, 0x6A, 0x29, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA9, 0xEF, 0x55, 0xB6, 0x1A, 0x9F, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x54, 0x32, 0xBE, 0x06, 0x43, 0xB5, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xD6, 0xD9, 0x20, 0x89, 0xBE, 0xD4, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x26, 0x95, 0x10, 0xCE, 0xB4, 0x88, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xA6, 0x27, 0xAC, 0x32, 0xBA, 0xBD, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xA6, 0xAE, 0x9C, 0x7B, 0xBE, 0xA1, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xCD, 0x4D, 0x3D, 0xDF, 0x96, 0xBB, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0x11, 0x06, 0xCC, 0x0E, 0x31, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xE4, 0xF4, 0xAD, 0x7B, 0x5F, 0xF1, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x54, 0xBE, 0xF4, 0x8A, 0x03, 0x47, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x53, 0x00, 0x7F, 0xB0, 0x8A, 0x68, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0xB1, 0x73, 0x6F, 0x5B, 0x0E, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x32, 0xE3, 0x43, 0x64, 0x75, 0xFB, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x18, 0x55, 0x8A, 0x4E, 0x6E, 0x35, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x97, 0x15, 0x1E, 0xCB, 0xF2, 0x9C, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xD1, 0xBB, 0xF3, 0x70, 0xAD, 0x13, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x96, 0xA4, 0xC5, 0x5E, 0xDA, 0xD5, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x81, 0xE9, 0x65, 0x66, 0x76, 0x47, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x87, 0x06, 0x73, 0xCF, 0x34, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x81, 0x15, 0x42, 0xA2, 0x79, 0x5B, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA2, 0x7D, 0x09, 0x14, 0x64, 0xC6, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x6D, 0xC4, 0xED, 0xF1, 0xD6, 0xE9, 0x24),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xD5, 0xBB, 0x25, 0xA3, 0xDD, 0xA3, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xF2, 0x68, 0x67, 0x39, 0x8F, 0x73, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x76, 0x28, 0x89, 0xAD, 0x32, 0xE0, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x90, 0xCC, 0x57, 0x58, 0xAA, 0xC9, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD7, 0x43, 0xD2, 0xCE, 0x5E, 0xA0, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xB0, 0xB8, 0xA4, 0x9E, 0x96, 0x26, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x61, 0x1D, 0xF3, 0x65, 0x5E, 0x60, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x1E, 0x65, 0xED, 0xCF, 0x07, 0x60, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x30, 0x17, 0x8A, 0x91, 0x88, 0x0A, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7D, 0x18, 0xA4, 0xAC, 0x59, 0xFC, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x31, 0x8B, 0x25, 0x65, 0x39, 0x9A, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x16, 0x4B, 0x68, 0xBA, 0x59, 0x13, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xD3, 0xC5, 0x56, 0xC9, 0x8C, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC6, 0x9F, 0xF4, 0xE6, 0xF7, 0xB4, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x7C, 0x03, 0x00, 0x26, 0x9F, 0xD8, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x1D, 0x6E, 0x00, 0xB9, 0x00, 0x6E, 0x93),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x63, 0xDA, 0x03, 0x2B, 0xD5, 0x0B, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xFC, 0xE2, 0xC8, 0x47, 0xF0, 0xAE, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x4C, 0xF7, 0x50, 0x0C, 0x48, 0x06, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2B, 0x32, 0x98, 0x0E, 0x7E, 0x61, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x02, 0x27, 0xFE, 0x75, 0x86, 0xDF, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x30, 0xB1, 0x22, 0x32, 0x1B, 0xFE, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x27, 0xF7, 0x78, 0x6F, 0xD7, 0xFD, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x78, 0xCC, 0xEA, 0xC0, 0x50, 0x24, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x2B, 0x4F, 0x7F, 0x58, 0xE6, 0xC2, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x43, 0xD5, 0xA7, 0x35, 0x3C, 0x80, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x6D, 0x4B, 0x12, 0x00, 0x7B, 0xE6, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x15, 0xBD, 0xD0, 0x9B, 0xCA, 0xAA, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xCE, 0x9C, 0xE3, 0x8B, 0x60, 0x7A, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xDA, 0x4B, 0x03, 0xA7, 0x8D, 0x43, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAF, 0x00, 0x2B, 0x32, 0xF0, 0x22, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xD9, 0x99, 0x99, 0xBE, 0x43, 0x99, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x71, 0x41, 0xF4, 0xB5, 0xFD, 0xDD, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xE2, 0x20, 0x4C, 0xD1, 0x2E, 0x1F, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x43, 0x48, 0x76, 0x8A, 0x49, 0xAC, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1A, 0x55, 0xA8, 0xA3, 0xD4, 0x57, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xA6, 0x84, 0x39, 0xC9, 0x13, 0xBB, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xFA, 0xA9, 0x70, 0xDE, 0x83, 0xDD, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xC9, 0xD9, 0x3E, 0x44, 0x91, 0x68, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x9F, 0x85, 0x6D, 0xF7, 0x54, 0x36, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x6B, 0xA6, 0xA3, 0xE5, 0xD4, 0x46, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x3E, 0xDC, 0x84, 0x7C, 0x7B, 0x24, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xED, 0x7F, 0x86, 0x07, 0x6C, 0x57, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x06, 0xFE, 0x52, 0x12, 0x79, 0x69, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xD1, 0x44, 0x5F, 0x21, 0x3A, 0xC3, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD9, 0x4A, 0xC0, 0x75, 0xAB, 0x17, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x81, 0x94, 0xB6, 0x80, 0x6B, 0x6F, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBE, 0x8E, 0xA5, 0xAA, 0xBC, 0x1E, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xC7, 0x85, 0xA6, 0x59, 0x9B, 0xB1, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xCE, 0x40, 0xD1, 0xFB, 0xDF, 0x94, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xB8, 0x5E, 0xBF, 0x45, 0xA8, 0x2D, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9C, 0x06, 0x1B, 0xA9, 0x57, 0xB9, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xE9, 0xCE, 0xA2, 0xD3, 0x74, 0xA1, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x5F, 0x34, 0x78, 0xDB, 0xAE, 0x3A, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x32, 0x84, 0x3E, 0x68, 0x6A, 0x43, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xBC, 0x39, 0x36, 0xA4, 0xC5, 0xBB, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x07, 0xA2, 0xB5, 0xC9, 0x0F, 0x4D, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0x67, 0xE6, 0xF1, 0x46, 0xEB, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x41, 0x23, 0x95, 0xE7, 0xE0, 0x10, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x69, 0xFE, 0x68, 0x8C, 0xC6, 0x5F, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB9, 0x2B, 0x3D, 0xD2, 0x4F, 0xD8, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x09, 0xF5, 0x5F, 0xCF, 0xF6, 0x91, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x15, 0x42, 0x6B, 0x6D, 0xB5, 0xF3, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x56, 0x9D, 0xC5, 0xFF, 0xCA, 0x13, 0x9B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x38, 0xE6, 0x23, 0x63, 0x48, 0x3C, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x68, 0x3C, 0xD1, 0x3B, 0xE9, 0x3B, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x08, 0x54, 0x49, 0xD1, 0x46, 0x45, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x70, 0x52, 0x6E, 0x79, 0xC4, 0x5E, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xDF, 0xE8, 0x5A, 0x32, 0x81, 0xDA, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x2D, 0x94, 0x5B, 0xB5, 0x35, 0x9F, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x12, 0x8D, 0xC3, 0x36, 0x36, 0xB2, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x2F, 0x22, 0x38, 0x5B, 0x18, 0x4C, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC1, 0x22, 0x0E, 0xF0, 0x73, 0x11, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xAE, 0xA4, 0x56, 0x18, 0x61, 0x66, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFB, 0x72, 0x08, 0x84, 0x38, 0x51, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x86, 0xA8, 0xB9, 0x31, 0x99, 0x29, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xFB, 0xC3, 0x42, 0xB3, 0xC7, 0x6F, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xF8, 0xE1, 0x09, 0xBE, 0x75, 0xB0, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x7D, 0xFF, 0xF4, 0x99, 0xFC, 0x13, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x1B, 0x84, 0x81, 0x42, 0x22, 0xC6, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE0, 0x37, 0xA4, 0xA0, 0x2F, 0x38, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x3D, 0xB7, 0x40, 0x2F, 0x39, 0x3C, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x3B, 0x8A, 0x51, 0xAE, 0x40, 0x49, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x20, 0x9F, 0xDD, 0xA9, 0xD0, 0x77, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x1D, 0x64, 0xDA, 0xA0, 0x53, 0xC7, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x7B, 0x66, 0x55, 0x94, 0xD1, 0x51, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xB5, 0x5B, 0x38, 0x35, 0x40, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0x0F, 0xF0, 0x73, 0x79, 0x43, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x47, 0x45, 0x69, 0x80, 0x72, 0x72, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x11, 0x99, 0x59, 0xDB, 0x48, 0x80, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x6E, 0x3D, 0xFC, 0x37, 0x15, 0xF4, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xBB, 0x5B, 0xA6, 0x35, 0x8D, 0x28, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x1A, 0x3B, 0x2C, 0x8F, 0xD3, 0xAA, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x1C, 0x1A, 0xF8, 0x02, 0xD9, 0x7B, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x69, 0xAC, 0xF8, 0x54, 0x31, 0x14, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x8A, 0xE6, 0xDE, 0x58, 0xB9, 0xC4, 0x7A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x83, 0x52, 0xFE, 0xF9, 0x7B, 0xE9, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xA2, 0x55, 0x46, 0x15, 0x49, 0xC1, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBC, 0x5C, 0x91, 0xBD, 0xB9, 0x9C, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xFD, 0xB1, 0x4E, 0x5F, 0x74, 0xEE, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x8B, 0xD8, 0x8B, 0x17, 0x73, 0x1B, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x92, 0xD7, 0x67, 0x06, 0xAD, 0x25, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0x80, 0x24, 0xE2, 0x27, 0x5F, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x1C, 0xCE, 0xD0, 0x67, 0xCA, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xF1, 0xDD, 0x33, 0x66, 0xF9, 0x05, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xE5, 0x6B, 0x79, 0xBD, 0x48, 0x42, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x14, 0x52, 0xE3, 0x53, 0xB4, 0x50, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x84, 0x6C, 0xCF, 0xDA, 0xB2, 0x20, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xD6, 0x1A, 0xE5, 0xE2, 0x29, 0x70, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x61, 0xFE, 0xBB, 0x21, 0x82, 0xD1, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0xF0, 0x9C, 0x8B, 0x1A, 0x42, 0x30, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xD6, 0x49, 0x81, 0x92, 0xF1, 0xD0, 0x90),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x91, 0x93, 0x6A, 0xA6, 0x22, 0xE9, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xDC, 0xC3, 0x69, 0x11, 0x95, 0x7D, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xA3, 0x9D, 0x87, 0x5E, 0x64, 0x41, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x87, 0x5A, 0x15, 0xBD, 0x6E, 0x3C, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x8D, 0x50, 0xCC, 0xCF, 0xB7, 0x8F, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x65, 0xCD, 0x31, 0x30, 0xF1, 0x68, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x5C, 0x66, 0x67, 0x92, 0x30, 0x57, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x9B, 0x01, 0x3D, 0x20, 0x8B, 0xD1, 0x0D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC0, 0xE6, 0x4F, 0xDE, 0x62, 0xAB, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x48, 0xB3, 0x1C, 0x0F, 0x16, 0x93, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x63, 0xBD, 0x1F, 0x16, 0x50, 0x56, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x06, 0xBC, 0xE9, 0x27, 0x1C, 0x9A, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xFE, 0x21, 0xC5, 0x39, 0x55, 0xE1, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA8, 0xD0, 0x96, 0x0E, 0xB5, 0xB2, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xE7, 0x4B, 0xF3, 0x11, 0x0C, 0xC9, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x3A, 0xC4, 0x87, 0x71, 0xEE, 0xFA, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x77, 0xEE, 0x81, 0x5E, 0x96, 0xEA, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xDF, 0xA9, 0xF4, 0x4F, 0x7C, 0xB2, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD4, 0xDF, 0x35, 0x63, 0x47, 0x25, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3D, 0xFF, 0xA4, 0x02, 0xC3, 0x95, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x10, 0x78, 0xD1, 0x2B, 0xB7, 0xBE, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE9, 0x57, 0xF9, 0xE0, 0xD8, 0xFC, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xC4, 0x01, 0xD6, 0xB4, 0xE7, 0x78, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6C, 0xB9, 0x13, 0xA4, 0xE8, 0x6D, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xB0, 0xC9, 0xCD, 0xBF, 0xA2, 0x1E, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x4F, 0x86, 0x22, 0x9B, 0xEA, 0xE8, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x46, 0xDF, 0x43, 0xB9, 0x82, 0x2D, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x32, 0xF1, 0x4E, 0x95, 0x41, 0xAE, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x93, 0x26, 0xFC, 0xD3, 0x90, 0xDC, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x05, 0x45, 0xCA, 0xF9, 0x5A, 0x89, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x82, 0x63, 0x4E, 0x55, 0x1D, 0x3A, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x69, 0x52, 0x49, 0xE9, 0xED, 0x57, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x64, 0xE9, 0xAC, 0x4C, 0x4A, 0xEA, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xE9, 0x0B, 0x99, 0xE7, 0xF9, 0xA9, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x0C, 0xC1, 0xF4, 0x8D, 0x07, 0xB6, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x68, 0xFA, 0x35, 0xE4, 0x9E, 0xAE, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2D, 0x1A, 0x13, 0x8E, 0x02, 0xE2, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x28, 0x86, 0x46, 0x7B, 0x3A, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4C, 0x64, 0x59, 0x0A, 0xF9, 0x02, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x4F, 0x23, 0xA2, 0xC3, 0xD5, 0xEF, 0x42),
+};
+static const mbedtls_ecp_point brainpoolP512r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(brainpoolP512r1_T_0_X, brainpoolP512r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_1_X, brainpoolP512r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_2_X, brainpoolP512r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_3_X, brainpoolP512r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_4_X, brainpoolP512r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_5_X, brainpoolP512r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_6_X, brainpoolP512r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_7_X, brainpoolP512r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_8_X, brainpoolP512r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_9_X, brainpoolP512r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_10_X, brainpoolP512r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_11_X, brainpoolP512r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_12_X, brainpoolP512r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_13_X, brainpoolP512r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_14_X, brainpoolP512r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_15_X, brainpoolP512r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_16_X, brainpoolP512r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_17_X, brainpoolP512r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_18_X, brainpoolP512r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_19_X, brainpoolP512r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_20_X, brainpoolP512r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_21_X, brainpoolP512r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_22_X, brainpoolP512r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_23_X, brainpoolP512r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_24_X, brainpoolP512r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_25_X, brainpoolP512r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_26_X, brainpoolP512r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_27_X, brainpoolP512r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_28_X, brainpoolP512r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_29_X, brainpoolP512r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_30_X, brainpoolP512r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_31_X, brainpoolP512r1_T_31_Y),
+};
+#else
+#define brainpoolP512r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+#if defined(ECP_LOAD_GROUP)
+/*
+ * Create an MPI from embedded constants
+ * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint))
+ */
+static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len)
+{
+ X->s = 1;
+ X->n = (unsigned short) (len / sizeof(mbedtls_mpi_uint));
+ X->p = (mbedtls_mpi_uint *) p;
+}
+
+/*
+ * Set an MPI to static value 1
+ */
+static inline void ecp_mpi_set1(mbedtls_mpi *X)
+{
+ X->s = 1;
+ X->n = 1;
+ X->p = (mbedtls_mpi_uint *) mpi_one; /* X->p will not be modified so the cast is safe */
+}
+
+/*
+ * Make group available from embedded constants
+ */
+static int ecp_group_load(mbedtls_ecp_group *grp,
+ const mbedtls_mpi_uint *p, size_t plen,
+ const mbedtls_mpi_uint *a, size_t alen,
+ const mbedtls_mpi_uint *b, size_t blen,
+ const mbedtls_mpi_uint *gx, size_t gxlen,
+ const mbedtls_mpi_uint *gy, size_t gylen,
+ const mbedtls_mpi_uint *n, size_t nlen,
+ const mbedtls_ecp_point *T)
+{
+ ecp_mpi_load(&grp->P, p, plen);
+ if (a != NULL) {
+ ecp_mpi_load(&grp->A, a, alen);
+ }
+ ecp_mpi_load(&grp->B, b, blen);
+ ecp_mpi_load(&grp->N, n, nlen);
+
+ ecp_mpi_load(&grp->G.X, gx, gxlen);
+ ecp_mpi_load(&grp->G.Y, gy, gylen);
+ ecp_mpi_set1(&grp->G.Z);
+
+ grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+ grp->nbits = mbedtls_mpi_bitlen(&grp->N);
+
+ grp->h = 1;
+
+ grp->T = (mbedtls_ecp_point *) T;
+ /*
+ * Set T_size to 0 to prevent T free by mbedtls_ecp_group_free.
+ */
+ grp->T_size = 0;
+
+ return 0;
+}
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/* Forward declarations */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static int ecp_mod_p192(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static int ecp_mod_p224(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static int ecp_mod_p256(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static int ecp_mod_p384(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static int ecp_mod_p521(mbedtls_mpi *);
+#endif
+
+#define NIST_MODP(P) grp->modp = ecp_mod_ ## P;
+#else
+#define NIST_MODP(P)
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+/* Additional forward declarations */
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+static int ecp_mod_p255(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+static int ecp_mod_p448(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static int ecp_mod_p192k1(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static int ecp_mod_p224k1(mbedtls_mpi *);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static int ecp_mod_p256k1(mbedtls_mpi *);
+#endif
+
+#if defined(ECP_LOAD_GROUP)
+#define LOAD_GROUP_A(G) ecp_group_load(grp, \
+ G ## _p, sizeof(G ## _p), \
+ G ## _a, sizeof(G ## _a), \
+ G ## _b, sizeof(G ## _b), \
+ G ## _gx, sizeof(G ## _gx), \
+ G ## _gy, sizeof(G ## _gy), \
+ G ## _n, sizeof(G ## _n), \
+ G ## _T \
+ )
+
+#define LOAD_GROUP(G) ecp_group_load(grp, \
+ G ## _p, sizeof(G ## _p), \
+ NULL, 0, \
+ G ## _b, sizeof(G ## _b), \
+ G ## _gx, sizeof(G ## _gx), \
+ G ## _gy, sizeof(G ## _gy), \
+ G ## _n, sizeof(G ## _n), \
+ G ## _T \
+ )
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+/* Constants used by ecp_use_curve25519() */
+static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
+static const unsigned char curve25519_part_of_n[] = {
+ 0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6,
+ 0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED,
+};
+
+/*
+ * Specialized function for creating the Curve25519 group
+ */
+static int ecp_use_curve25519(mbedtls_ecp_group *grp)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Actually ( A + 2 ) / 4 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24));
+
+ /* P = 2^255 - 19 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 255));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 19));
+ grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+ /* N = 2^252 + 27742317777372353535851937790883648493 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&grp->N,
+ curve25519_part_of_n, sizeof(curve25519_part_of_n)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 252, 1));
+
+ /* Y intentionally not set, since we use x/z coordinates.
+ * This is used as a marker to identify Montgomery curves! */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+ mbedtls_mpi_free(&grp->G.Y);
+
+ /* Actually, the required msb for private keys */
+ grp->nbits = 254;
+
+cleanup:
+ if (ret != 0) {
+ mbedtls_ecp_group_free(grp);
+ }
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+/* Constants used by ecp_use_curve448() */
+static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
+static const unsigned char curve448_part_of_n[] = {
+ 0x83, 0x35, 0xDC, 0x16, 0x3B, 0xB1, 0x24,
+ 0xB6, 0x51, 0x29, 0xC9, 0x6F, 0xDE, 0x93,
+ 0x3D, 0x8D, 0x72, 0x3A, 0x70, 0xAA, 0xDC,
+ 0x87, 0x3D, 0x6D, 0x54, 0xA7, 0xBB, 0x0D,
+};
+
+/*
+ * Specialized function for creating the Curve448 group
+ */
+static int ecp_use_curve448(mbedtls_ecp_group *grp)
+{
+ mbedtls_mpi Ns;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_mpi_init(&Ns);
+
+ /* Actually ( A + 2 ) / 4 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24));
+
+ /* P = 2^448 - 2^224 - 1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&grp->P, 224));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&grp->P, &grp->P, 1));
+ grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+ /* Y intentionally not set, since we use x/z coordinates.
+ * This is used as a marker to identify Montgomery curves! */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+ mbedtls_mpi_free(&grp->G.Y);
+
+ /* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_set_bit(&grp->N, 446, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&Ns,
+ curve448_part_of_n, sizeof(curve448_part_of_n)));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&grp->N, &grp->N, &Ns));
+
+ /* Actually, the required msb for private keys */
+ grp->nbits = 447;
+
+cleanup:
+ mbedtls_mpi_free(&Ns);
+ if (ret != 0) {
+ mbedtls_ecp_group_free(grp);
+ }
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+/*
+ * Set a group using well-known domain parameters
+ */
+int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
+{
+ mbedtls_ecp_group_free(grp);
+
+ mbedtls_ecp_group_init(grp);
+
+ grp->id = id;
+
+ switch (id) {
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP192R1:
+ NIST_MODP(p192);
+ return LOAD_GROUP(secp192r1);
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP224R1:
+ NIST_MODP(p224);
+ return LOAD_GROUP(secp224r1);
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP256R1:
+ NIST_MODP(p256);
+ return LOAD_GROUP(secp256r1);
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP384R1:
+ NIST_MODP(p384);
+ return LOAD_GROUP(secp384r1);
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP521R1:
+ NIST_MODP(p521);
+ return LOAD_GROUP(secp521r1);
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP192K1:
+ grp->modp = ecp_mod_p192k1;
+ return LOAD_GROUP_A(secp192k1);
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP224K1:
+ grp->modp = ecp_mod_p224k1;
+ return LOAD_GROUP_A(secp224k1);
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP256K1:
+ grp->modp = ecp_mod_p256k1;
+ return LOAD_GROUP_A(secp256k1);
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP256R1:
+ return LOAD_GROUP_A(brainpoolP256r1);
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP384R1:
+ return LOAD_GROUP_A(brainpoolP384r1);
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP512R1:
+ return LOAD_GROUP_A(brainpoolP512r1);
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE25519:
+ grp->modp = ecp_mod_p255;
+ return ecp_use_curve25519(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE448:
+ grp->modp = ecp_mod_p448;
+ return ecp_use_curve448(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+ default:
+ grp->id = MBEDTLS_ECP_DP_NONE;
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+}
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/*
+ * Fast reduction modulo the primes used by the NIST curves.
+ *
+ * These functions are critical for speed, but not needed for correct
+ * operations. So, we make the choice to heavily rely on the internals of our
+ * bignum library, which creates a tight coupling between these functions and
+ * our MPI implementation. However, the coupling between the ECP module and
+ * MPI remains loose, since these functions can be deactivated at will.
+ */
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+/*
+ * Compared to the way things are presented in FIPS 186-3 D.2,
+ * we proceed in columns, from right (least significant chunk) to left,
+ * adding chunks to N in place, and keeping a carry for the next chunk.
+ * This avoids moving things around in memory, and uselessly adding zeros,
+ * compared to the more straightforward, line-oriented approach.
+ *
+ * For this prime we need to handle data in chunks of 64 bits.
+ * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
+ * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
+ */
+
+/* Add 64-bit chunks (dst += src) and update carry */
+static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry)
+{
+ unsigned char i;
+ mbedtls_mpi_uint c = 0;
+ for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) {
+ *dst += c; c = (*dst < c);
+ *dst += *src; c += (*dst < *src);
+ }
+ *carry += c;
+}
+
+/* Add carry to a 64-bit chunk and update carry */
+static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
+{
+ unsigned char i;
+ for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) {
+ *dst += *carry;
+ *carry = (*dst < *carry);
+ }
+}
+
+#define WIDTH 8 / sizeof(mbedtls_mpi_uint)
+#define A(i) N->p + (i) * WIDTH
+#define ADD(i) add64(p, A(i), &c)
+#define NEXT p += WIDTH; carry64(p, &c)
+#define LAST p += WIDTH; *p = c; while (++p < end) *p = 0
+
+/*
+ * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
+ */
+static int ecp_mod_p192(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi_uint c = 0;
+ mbedtls_mpi_uint *p, *end;
+
+ /* Make sure we have enough blocks so that A(5) is legal */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, 6 * WIDTH));
+
+ p = N->p;
+ end = p + N->n;
+
+ ADD(3); ADD(5); NEXT; // A0 += A3 + A5
+ ADD(3); ADD(4); ADD(5); NEXT; // A1 += A3 + A4 + A5
+ ADD(4); ADD(5); LAST; // A2 += A4 + A5
+
+cleanup:
+ return ret;
+}
+
+#undef WIDTH
+#undef A
+#undef ADD
+#undef NEXT
+#undef LAST
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * The reader is advised to first understand ecp_mod_p192() since the same
+ * general structure is used here, but with additional complications:
+ * (1) chunks of 32 bits, and (2) subtractions.
+ */
+
+/*
+ * For these primes, we need to handle data in chunks of 32 bits.
+ * This makes it more complicated if we use 64 bits limbs in MPI,
+ * which prevents us from using a uniform access method as for p192.
+ *
+ * So, we define a mini abstraction layer to access 32 bit chunks,
+ * load them in 'cur' for work, and store them back from 'cur' when done.
+ *
+ * While at it, also define the size of N in terms of 32-bit chunks.
+ */
+#define LOAD32 cur = A(i);
+
+#if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
+
+#define MAX32 N->n
+#define A(j) N->p[j]
+#define STORE32 N->p[i] = cur;
+
+#else /* 64-bit */
+
+#define MAX32 N->n * 2
+#define A(j) (j) % 2 ? (uint32_t) (N->p[(j)/2] >> 32) : \
+ (uint32_t) (N->p[(j)/2])
+#define STORE32 \
+ if (i % 2) { \
+ N->p[i/2] &= 0x00000000FFFFFFFF; \
+ N->p[i/2] |= ((mbedtls_mpi_uint) cur) << 32; \
+ } else { \
+ N->p[i/2] &= 0xFFFFFFFF00000000; \
+ N->p[i/2] |= (mbedtls_mpi_uint) cur; \
+ }
+
+#endif /* sizeof( mbedtls_mpi_uint ) */
+
+/*
+ * Helpers for addition and subtraction of chunks, with signed carry.
+ */
+static inline void add32(uint32_t *dst, uint32_t src, signed char *carry)
+{
+ *dst += src;
+ *carry += (*dst < src);
+}
+
+static inline void sub32(uint32_t *dst, uint32_t src, signed char *carry)
+{
+ *carry -= (*dst < src);
+ *dst -= src;
+}
+
+#define ADD(j) add32(&cur, A(j), &c);
+#define SUB(j) sub32(&cur, A(j), &c);
+
+/*
+ * Helpers for the main 'loop'
+ */
+#define INIT(b) \
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED; \
+ signed char c = 0, cc; \
+ uint32_t cur; \
+ size_t i = 0, bits = (b); \
+ /* N is the size of the product of two b-bit numbers, plus one */ \
+ /* limb for fix_negative */ \
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, (b) * 2 / biL + 1)); \
+ LOAD32;
+
+#define NEXT \
+ STORE32; i++; LOAD32; \
+ cc = c; c = 0; \
+ if (cc < 0) \
+ sub32(&cur, -cc, &c); \
+ else \
+ add32(&cur, cc, &c); \
+
+#define LAST \
+ STORE32; i++; \
+ cur = c > 0 ? c : 0; STORE32; \
+ cur = 0; while (++i < MAX32) { STORE32; } \
+ if (c < 0) mbedtls_ecp_fix_negative(N, c, bits);
+
+/*
+ * If the result is negative, we get it in the form
+ * c * 2^bits + N, with c negative and N positive shorter than 'bits'
+ */
+static void mbedtls_ecp_fix_negative(mbedtls_mpi *N, signed char c, size_t bits)
+{
+ size_t i;
+
+ /* Set N := 2^bits - 1 - N. We know that 0 <= N < 2^bits, so
+ * set the absolute value to 0xfff...fff - N. There is no carry
+ * since we're subtracting from all-bits-one. */
+ for (i = 0; i <= bits / 8 / sizeof(mbedtls_mpi_uint); i++) {
+ N->p[i] = ~(mbedtls_mpi_uint) 0 - N->p[i];
+ }
+ /* Add 1, taking care of the carry. */
+ i = 0;
+ do {
+ ++N->p[i];
+ } while (N->p[i++] == 0 && i <= bits / 8 / sizeof(mbedtls_mpi_uint));
+ /* Invert the sign.
+ * Now N = N0 - 2^bits where N0 is the initial value of N. */
+ N->s = -1;
+
+ /* Add |c| * 2^bits to the absolute value. Since c and N are
+ * negative, this adds c * 2^bits. */
+ mbedtls_mpi_uint msw = (mbedtls_mpi_uint) -c;
+#if defined(MBEDTLS_HAVE_INT64)
+ if (bits == 224) {
+ msw <<= 32;
+ }
+#endif
+ N->p[bits / 8 / sizeof(mbedtls_mpi_uint)] += msw;
+}
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
+ */
+static int ecp_mod_p224(mbedtls_mpi *N)
+{
+ INIT(224);
+
+ SUB(7); SUB(11); NEXT; // A0 += -A7 - A11
+ SUB(8); SUB(12); NEXT; // A1 += -A8 - A12
+ SUB(9); SUB(13); NEXT; // A2 += -A9 - A13
+ SUB(10); ADD(7); ADD(11); NEXT; // A3 += -A10 + A7 + A11
+ SUB(11); ADD(8); ADD(12); NEXT; // A4 += -A11 + A8 + A12
+ SUB(12); ADD(9); ADD(13); NEXT; // A5 += -A12 + A9 + A13
+ SUB(13); ADD(10); LAST; // A6 += -A13 + A10
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
+ */
+static int ecp_mod_p256(mbedtls_mpi *N)
+{
+ INIT(256);
+
+ ADD(8); ADD(9);
+ SUB(11); SUB(12); SUB(13); SUB(14); NEXT; // A0
+
+ ADD(9); ADD(10);
+ SUB(12); SUB(13); SUB(14); SUB(15); NEXT; // A1
+
+ ADD(10); ADD(11);
+ SUB(13); SUB(14); SUB(15); NEXT; // A2
+
+ ADD(11); ADD(11); ADD(12); ADD(12); ADD(13);
+ SUB(15); SUB(8); SUB(9); NEXT; // A3
+
+ ADD(12); ADD(12); ADD(13); ADD(13); ADD(14);
+ SUB(9); SUB(10); NEXT; // A4
+
+ ADD(13); ADD(13); ADD(14); ADD(14); ADD(15);
+ SUB(10); SUB(11); NEXT; // A5
+
+ ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13);
+ SUB(8); SUB(9); NEXT; // A6
+
+ ADD(15); ADD(15); ADD(15); ADD(8);
+ SUB(10); SUB(11); SUB(12); SUB(13); LAST; // A7
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
+ */
+static int ecp_mod_p384(mbedtls_mpi *N)
+{
+ INIT(384);
+
+ ADD(12); ADD(21); ADD(20);
+ SUB(23); NEXT; // A0
+
+ ADD(13); ADD(22); ADD(23);
+ SUB(12); SUB(20); NEXT; // A2
+
+ ADD(14); ADD(23);
+ SUB(13); SUB(21); NEXT; // A2
+
+ ADD(15); ADD(12); ADD(20); ADD(21);
+ SUB(14); SUB(22); SUB(23); NEXT; // A3
+
+ ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
+ SUB(15); SUB(23); SUB(23); NEXT; // A4
+
+ ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
+ SUB(16); NEXT; // A5
+
+ ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
+ SUB(17); NEXT; // A6
+
+ ADD(19); ADD(16); ADD(15); ADD(23);
+ SUB(18); NEXT; // A7
+
+ ADD(20); ADD(17); ADD(16);
+ SUB(19); NEXT; // A8
+
+ ADD(21); ADD(18); ADD(17);
+ SUB(20); NEXT; // A9
+
+ ADD(22); ADD(19); ADD(18);
+ SUB(21); NEXT; // A10
+
+ ADD(23); ADD(20); ADD(19);
+ SUB(22); LAST; // A11
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#undef A
+#undef LOAD32
+#undef STORE32
+#undef MAX32
+#undef INIT
+#undef NEXT
+#undef LAST
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
+ MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
+ MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+/*
+ * Here we have an actual Mersenne prime, so things are more straightforward.
+ * However, chunks are aligned on a 'weird' boundary (521 bits).
+ */
+
+/* Size of p521 in terms of mbedtls_mpi_uint */
+#define P521_WIDTH (521 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/* Bits to keep in the most significant mbedtls_mpi_uint */
+#define P521_MASK 0x01FF
+
+/*
+ * Fast quasi-reduction modulo p521 (FIPS 186-3 D.2.5)
+ * Write N as A1 + 2^521 A0, return A0 + A1
+ */
+static int ecp_mod_p521(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ mbedtls_mpi M;
+ mbedtls_mpi_uint Mp[P521_WIDTH + 1];
+ /* Worst case for the size of M is when mbedtls_mpi_uint is 16 bits:
+ * we need to hold bits 513 to 1056, which is 34 limbs, that is
+ * P521_WIDTH + 1. Otherwise P521_WIDTH is enough. */
+
+ if (N->n < P521_WIDTH) {
+ return 0;
+ }
+
+ /* M = A1 */
+ M.s = 1;
+ M.n = N->n - (P521_WIDTH - 1);
+ if (M.n > P521_WIDTH + 1) {
+ M.n = P521_WIDTH + 1;
+ }
+ M.p = Mp;
+ memcpy(Mp, N->p + P521_WIDTH - 1, M.n * sizeof(mbedtls_mpi_uint));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, 521 % (8 * sizeof(mbedtls_mpi_uint))));
+
+ /* N = A0 */
+ N->p[P521_WIDTH - 1] &= P521_MASK;
+ for (i = P521_WIDTH; i < N->n; i++) {
+ N->p[i] = 0;
+ }
+
+ /* N = A0 + A1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
+
+cleanup:
+ return ret;
+}
+
+#undef P521_WIDTH
+#undef P521_MASK
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+
+/* Size of p255 in terms of mbedtls_mpi_uint */
+#define P255_WIDTH (255 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/*
+ * Fast quasi-reduction modulo p255 = 2^255 - 19
+ * Write N as A0 + 2^256 A1, return A0 + 38 * A1
+ */
+static int ecp_mod_p255(mbedtls_mpi *N)
+{
+ mbedtls_mpi_uint Mp[P255_WIDTH];
+
+ /* Helper references for top part of N */
+ mbedtls_mpi_uint * const NT_p = N->p + P255_WIDTH;
+ const size_t NT_n = N->n - P255_WIDTH;
+ if (N->n <= P255_WIDTH) {
+ return 0;
+ }
+ if (NT_n > P255_WIDTH) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* Split N as N + 2^256 M */
+ memcpy(Mp, NT_p, sizeof(mbedtls_mpi_uint) * NT_n);
+ memset(NT_p, 0, sizeof(mbedtls_mpi_uint) * NT_n);
+
+ /* N = A0 + 38 * A1 */
+ mbedtls_mpi_core_mla(N->p, P255_WIDTH + 1,
+ Mp, NT_n,
+ 38);
+
+ return 0;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+
+/* Size of p448 in terms of mbedtls_mpi_uint */
+#define P448_WIDTH (448 / 8 / sizeof(mbedtls_mpi_uint))
+
+/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
+#define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y))
+#define P224_SIZE (224 / 8)
+#define P224_WIDTH_MIN (P224_SIZE / sizeof(mbedtls_mpi_uint))
+#define P224_WIDTH_MAX DIV_ROUND_UP(P224_SIZE, sizeof(mbedtls_mpi_uint))
+#define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224)
+
+/*
+ * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
+ * Write N as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return
+ * A0 + A1 + B1 + (B0 + B1) * 2^224. This is different to the reference
+ * implementation of Curve448, which uses its own special 56-bit limbs rather
+ * than a generic bignum library. We could squeeze some extra speed out on
+ * 32-bit machines by splitting N up into 32-bit limbs and doing the
+ * arithmetic using the limbs directly as we do for the NIST primes above,
+ * but for 64-bit targets it should use half the number of operations if we do
+ * the reduction with 224-bit limbs, since mpi_add_mpi will then use 64-bit adds.
+ */
+static int ecp_mod_p448(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ mbedtls_mpi M, Q;
+ mbedtls_mpi_uint Mp[P448_WIDTH + 1], Qp[P448_WIDTH];
+
+ if (N->n <= P448_WIDTH) {
+ return 0;
+ }
+
+ /* M = A1 */
+ M.s = 1;
+ M.n = N->n - (P448_WIDTH);
+ if (M.n > P448_WIDTH) {
+ /* Shouldn't be called with N larger than 2^896! */
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+ M.p = Mp;
+ memset(Mp, 0, sizeof(Mp));
+ memcpy(Mp, N->p + P448_WIDTH, M.n * sizeof(mbedtls_mpi_uint));
+
+ /* N = A0 */
+ for (i = P448_WIDTH; i < N->n; i++) {
+ N->p[i] = 0;
+ }
+
+ /* N += A1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
+
+ /* Q = B1, N += B1 */
+ Q = M;
+ Q.p = Qp;
+ memcpy(Qp, Mp, sizeof(Qp));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&Q, 224));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &Q));
+
+ /* M = (B0 + B1) * 2^224, N += M */
+ if (sizeof(mbedtls_mpi_uint) > 4) {
+ Mp[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS);
+ }
+ for (i = P224_WIDTH_MAX; i < M.n; ++i) {
+ Mp[i] = 0;
+ }
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&M, &M, &Q));
+ M.n = P448_WIDTH + 1; /* Make room for shifted carry bit from the addition */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_l(&M, 224));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(N, N, &M));
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo P = 2^s - R,
+ * with R about 33 bits, used by the Koblitz curves.
+ *
+ * Write N as A0 + 2^224 A1, return A0 + R * A1.
+ * Actually do two passes, since R is big.
+ */
+#define P_KOBLITZ_MAX (256 / 8 / sizeof(mbedtls_mpi_uint)) // Max limbs in P
+#define P_KOBLITZ_R (8 / sizeof(mbedtls_mpi_uint)) // Limbs in R
+static inline int ecp_mod_koblitz(mbedtls_mpi *N, const mbedtls_mpi_uint *Rp, size_t p_limbs,
+ size_t adjust, size_t shift, mbedtls_mpi_uint mask)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i;
+ mbedtls_mpi M, R;
+ mbedtls_mpi_uint Mp[P_KOBLITZ_MAX + P_KOBLITZ_R + 1];
+
+ if (N->n < p_limbs) {
+ return 0;
+ }
+
+ /* Init R */
+ R.s = 1;
+ R.p = (mbedtls_mpi_uint *) Rp; /* R.p will not be modified so the cast is safe */
+ R.n = P_KOBLITZ_R;
+
+ /* Common setup for M */
+ M.s = 1;
+ M.p = Mp;
+
+ /* M = A1 */
+ M.n = (unsigned short) (N->n - (p_limbs - adjust));
+ if (M.n > p_limbs + adjust) {
+ M.n = (unsigned short) (p_limbs + adjust);
+ }
+ memset(Mp, 0, sizeof(Mp));
+ memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
+ if (shift != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
+ }
+ M.n += R.n; /* Make room for multiplication by R */
+
+ /* N = A0 */
+ if (mask != 0) {
+ N->p[p_limbs - 1] &= mask;
+ }
+ for (i = p_limbs; i < N->n; i++) {
+ N->p[i] = 0;
+ }
+
+ /* N = A0 + R * A1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
+
+ /* Second pass */
+
+ /* M = A1 */
+ M.n = (unsigned short) (N->n - (p_limbs - adjust));
+ if (M.n > p_limbs + adjust) {
+ M.n = (unsigned short) (p_limbs + adjust);
+ }
+ memset(Mp, 0, sizeof(Mp));
+ memcpy(Mp, N->p + p_limbs - adjust, M.n * sizeof(mbedtls_mpi_uint));
+ if (shift != 0) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&M, shift));
+ }
+ M.n += R.n; /* Make room for multiplication by R */
+
+ /* N = A0 */
+ if (mask != 0) {
+ N->p[p_limbs - 1] &= mask;
+ }
+ for (i = p_limbs; i < N->n; i++) {
+ N->p[i] = 0;
+ }
+
+ /* N = A0 + R * A1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&M, &M, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_abs(N, N, &M));
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
+ MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
+ MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p192k1 = 2^192 - R,
+ * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x01000011C9
+ */
+static int ecp_mod_p192k1(mbedtls_mpi *N)
+{
+ static const mbedtls_mpi_uint Rp[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00, 0x01, 0x00, 0x00,
+ 0x00)
+ };
+
+ return ecp_mod_koblitz(N, Rp, 192 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
+ 0);
+}
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p224k1 = 2^224 - R,
+ * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
+ */
+static int ecp_mod_p224k1(mbedtls_mpi *N)
+{
+ static const mbedtls_mpi_uint Rp[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00, 0x01, 0x00, 0x00,
+ 0x00)
+ };
+
+#if defined(MBEDTLS_HAVE_INT64)
+ return ecp_mod_koblitz(N, Rp, 4, 1, 32, 0xFFFFFFFF);
+#else
+ return ecp_mod_koblitz(N, Rp, 224 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
+ 0);
+#endif
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p256k1 = 2^256 - R,
+ * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
+ */
+static int ecp_mod_p256k1(mbedtls_mpi *N)
+{
+ static const mbedtls_mpi_uint Rp[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00, 0x01, 0x00, 0x00,
+ 0x00)
+ };
+ return ecp_mod_koblitz(N, Rp, 256 / 8 / sizeof(mbedtls_mpi_uint), 0, 0,
+ 0);
+}
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+MBEDTLS_STATIC_TESTABLE
+mbedtls_ecp_variant mbedtls_ecp_get_variant(void)
+{
+ return MBEDTLS_ECP_VARIANT_WITH_MPI_STRUCT;
+}
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_ECP_LIGHT */
+#endif /* MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp_curves_new.c b/tf-psa-crypto/drivers/builtin/src/ecp_curves_new.c
new file mode 100644
index 0000000..169247f
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp_curves_new.c
@@ -0,0 +1,6033 @@
+/*
+ * Elliptic curves over GF(p): curve-specific data and functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ECP_WITH_MPI_UINT)
+
+#if defined(MBEDTLS_ECP_LIGHT)
+
+#include "mbedtls/ecp.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "mbedtls/platform.h"
+
+#include "constant_time_internal.h"
+
+#include "bn_mul.h"
+#include "bignum_core.h"
+#include "ecp_invasive.h"
+
+#include <string.h>
+
+#define ECP_MPI_INIT(_p, _n) { .p = (mbedtls_mpi_uint *) (_p), .s = 1, .n = (_n) }
+
+#define ECP_MPI_INIT_ARRAY(x) \
+ ECP_MPI_INIT(x, sizeof(x) / sizeof(mbedtls_mpi_uint))
+
+#define ECP_POINT_INIT_XY_Z0(x, y) { \
+ ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(NULL, 0) }
+#define ECP_POINT_INIT_XY_Z1(x, y) { \
+ ECP_MPI_INIT_ARRAY(x), ECP_MPI_INIT_ARRAY(y), ECP_MPI_INIT(mpi_one, 1) }
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_BP256R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_BP384R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_BP512R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+/* For these curves, we build the group parameters dynamically. */
+#define ECP_LOAD_GROUP
+static mbedtls_mpi_uint mpi_one[] = { 1 };
+#endif
+
+/*
+ * Note: the constants are in little-endian order
+ * to be directly usable in MPIs
+ */
+
+/*
+ * Domain parameters for secp192r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static const mbedtls_mpi_uint secp192r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xB9, 0x46, 0xC1, 0xEC, 0xDE, 0xB8, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x30, 0x24, 0x72, 0xAB, 0xE9, 0xA7, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x80, 0x9C, 0xE5, 0x19, 0x05, 0x21, 0x64),
+};
+static const mbedtls_mpi_uint secp192r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x28, 0xD2, 0xB4, 0xB1, 0xC9, 0x6B, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xF8, 0xDE, 0x99, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x10, 0xFF, 0x82, 0xFD, 0x0A, 0xFF, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x88, 0xA1, 0x43, 0xEB, 0x20, 0xBF, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x90, 0x30, 0xB0, 0x0E, 0xA8, 0x8D, 0x18),
+};
+static const mbedtls_mpi_uint secp192r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x48, 0x79, 0x1E, 0xA1, 0x77, 0xF9, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xCD, 0x24, 0x6B, 0xED, 0x11, 0x10, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xDA, 0xC8, 0xFF, 0x95, 0x2B, 0x19, 0x07),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x9E, 0xE3, 0x60, 0x59, 0xD1, 0xC4, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBD, 0x22, 0xD7, 0x2D, 0x07, 0xBD, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x2A, 0xCF, 0x33, 0xF0, 0xBE, 0xD1, 0xED),
+};
+static const mbedtls_mpi_uint secp192r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x71, 0x4B, 0xA8, 0xED, 0x7E, 0xC9, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x2A, 0xF6, 0xDF, 0x0E, 0xE8, 0x4C, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x35, 0xF7, 0x8A, 0xC3, 0xEC, 0xDE, 0x1E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0xC2, 0x1D, 0x32, 0x8F, 0x10, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x2D, 0x17, 0xF3, 0xE4, 0xFE, 0xD8, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x45, 0x10, 0x70, 0x2C, 0x3E, 0x52, 0x3E),
+};
+static const mbedtls_mpi_uint secp192r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF1, 0x04, 0x5D, 0xEE, 0xD4, 0x56, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xB7, 0x38, 0x27, 0x61, 0xAA, 0x81, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0xD7, 0x0E, 0x29, 0x0E, 0x11, 0x14),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x35, 0x52, 0xC6, 0x31, 0xB7, 0x27, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xD4, 0x15, 0x98, 0x0F, 0xE7, 0xF3, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x31, 0x70, 0x35, 0x09, 0xA0, 0x2B, 0xC2),
+};
+static const mbedtls_mpi_uint secp192r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x75, 0xA7, 0x4C, 0x88, 0xCF, 0x5B, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x17, 0x48, 0x8D, 0xF2, 0xF0, 0x86, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCF, 0xFE, 0x6B, 0xB0, 0xA5, 0x06, 0xAB),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x6A, 0xDC, 0x9A, 0x6D, 0x7B, 0x47, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xFC, 0x51, 0x12, 0x62, 0x66, 0x0B, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x40, 0x93, 0xA0, 0xB5, 0x5A, 0x58, 0xD7),
+};
+static const mbedtls_mpi_uint secp192r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCB, 0xAF, 0xDC, 0x0B, 0xA1, 0x26, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x36, 0x9D, 0xA3, 0xD7, 0x3B, 0xAD, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x3B, 0x05, 0x9A, 0xA8, 0xAA, 0x69, 0xB2),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD9, 0xD1, 0x4D, 0x4A, 0x6E, 0x96, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x66, 0x32, 0x39, 0xC6, 0x57, 0x7D, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xA0, 0x36, 0xC2, 0x45, 0xF9, 0x00, 0x62),
+};
+static const mbedtls_mpi_uint secp192r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xEF, 0x59, 0x46, 0xDC, 0x60, 0xD9, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xB0, 0xE9, 0x41, 0xA4, 0x87, 0x76, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xD4, 0x0E, 0xB2, 0xFA, 0x16, 0x56, 0xDC),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x62, 0xD2, 0xB1, 0x34, 0xB2, 0xF1, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xED, 0x55, 0xC5, 0x47, 0xB5, 0x07, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF6, 0x2F, 0x94, 0xC3, 0xDD, 0x54, 0x2F),
+};
+static const mbedtls_mpi_uint secp192r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xA6, 0xD4, 0x8C, 0xA9, 0xCE, 0x4D, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x4B, 0x46, 0xCC, 0xB2, 0x55, 0xC8, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x31, 0xED, 0x89, 0x65, 0x59, 0x55),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x0A, 0xD1, 0x1A, 0xC5, 0xF6, 0xEA, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xFC, 0x0C, 0x1A, 0xFB, 0xA0, 0xC8, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xFD, 0x53, 0x6F, 0x6D, 0xBF, 0xBA, 0xAF),
+};
+static const mbedtls_mpi_uint secp192r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xB0, 0x7D, 0x83, 0x96, 0xE3, 0xCB, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x6E, 0x55, 0x2C, 0x20, 0x53, 0x2F, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x66, 0x00, 0x17, 0x08, 0xFE, 0xAC, 0x31),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x12, 0x97, 0x3A, 0xC7, 0x57, 0x45, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x25, 0x99, 0x00, 0xF6, 0x97, 0xB4, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x74, 0xE6, 0xE6, 0xA3, 0xDF, 0x9C, 0xCC),
+};
+static const mbedtls_mpi_uint secp192r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xF4, 0x76, 0xD5, 0x5F, 0x2A, 0xFD, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x80, 0x7E, 0x3E, 0xE5, 0xE8, 0xD6, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xAD, 0x1E, 0x70, 0x79, 0x3E, 0x3D, 0x83),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x15, 0xBB, 0xB3, 0x42, 0x6A, 0xA1, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x58, 0xCB, 0x43, 0x25, 0x00, 0x14, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x4E, 0x93, 0x11, 0xE0, 0x32, 0x54, 0x98),
+};
+static const mbedtls_mpi_uint secp192r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x52, 0xA2, 0xB4, 0x57, 0x32, 0xB9, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x43, 0xA1, 0xB1, 0xFB, 0x01, 0xE1, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xFB, 0x5A, 0x11, 0xB8, 0xC2, 0x03, 0xE5),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x2B, 0x71, 0x26, 0x4E, 0x7C, 0xC5, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF5, 0xD3, 0xA8, 0xE4, 0x95, 0x48, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAE, 0xD9, 0x5D, 0x9F, 0x6A, 0x22, 0xAD),
+};
+static const mbedtls_mpi_uint secp192r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xCC, 0xA3, 0x4D, 0xA0, 0x1C, 0x34, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x3C, 0x62, 0xF8, 0x5E, 0xA6, 0x58, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x6E, 0x66, 0x8A, 0x3D, 0x17, 0xFF, 0x0F),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xCD, 0xA8, 0xDD, 0xD1, 0x20, 0x5C, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xFE, 0x17, 0xE2, 0xCF, 0xEA, 0x63, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x51, 0xC9, 0x16, 0xDE, 0xB4, 0xB2, 0xDD),
+};
+static const mbedtls_mpi_uint secp192r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBE, 0x12, 0xD7, 0xA3, 0x0A, 0x50, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x87, 0xC5, 0x8A, 0x76, 0x57, 0x07, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x1F, 0xC6, 0x1B, 0x66, 0xC4, 0x3D, 0x8A),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xA4, 0x85, 0x13, 0x8F, 0xA7, 0x35, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x0D, 0xFD, 0xFF, 0x1B, 0xD1, 0xD6, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x7A, 0xD0, 0xC3, 0xB4, 0xEF, 0x39, 0x66),
+};
+static const mbedtls_mpi_uint secp192r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xFE, 0xA5, 0x9C, 0x34, 0x30, 0x49, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xC5, 0x39, 0x26, 0x06, 0xE3, 0x01, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x2B, 0x66, 0xFC, 0x95, 0x5F, 0x35, 0xF7),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xCF, 0x54, 0x63, 0x99, 0x57, 0x05, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x6F, 0x00, 0x5F, 0x65, 0x08, 0x47, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x2A, 0x90, 0x6D, 0x67, 0xC6, 0xBC, 0x45),
+};
+static const mbedtls_mpi_uint secp192r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x4D, 0x88, 0x0A, 0x35, 0x9E, 0x33, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x17, 0x0C, 0xF8, 0xE1, 0x7A, 0x49, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x44, 0x06, 0x8F, 0x0B, 0x70, 0x2F, 0x71),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4B, 0xCB, 0xF9, 0x8E, 0x6A, 0xDA, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x43, 0xA1, 0x3F, 0xCE, 0x17, 0xD2, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x0D, 0xD2, 0x6C, 0x82, 0x37, 0xE5, 0xFC),
+};
+static const mbedtls_mpi_uint secp192r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x3C, 0xF4, 0x92, 0xB4, 0x8A, 0x95, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x96, 0xF1, 0x0A, 0x34, 0x2F, 0x74, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0xAA, 0xBA, 0x86, 0x77, 0x4F, 0xA2),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x7F, 0xEF, 0x60, 0x50, 0x80, 0xD7, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xAC, 0xC9, 0xFE, 0xEC, 0x0A, 0x1A, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x2F, 0xBE, 0x91, 0xD7, 0xB7, 0x38, 0x48),
+};
+static const mbedtls_mpi_uint secp192r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xAE, 0x85, 0x98, 0xFE, 0x05, 0x7F, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBE, 0xFD, 0x11, 0x31, 0x3D, 0x14, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x75, 0xE8, 0x30, 0x01, 0xCB, 0x9B, 0x1C),
+};
+static const mbedtls_ecp_point secp192r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp192r1_T_0_X, secp192r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_1_X, secp192r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_2_X, secp192r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_3_X, secp192r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_4_X, secp192r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_5_X, secp192r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_6_X, secp192r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_7_X, secp192r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_8_X, secp192r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_9_X, secp192r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_10_X, secp192r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_11_X, secp192r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_12_X, secp192r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_13_X, secp192r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_14_X, secp192r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp192r1_T_15_X, secp192r1_T_15_Y),
+};
+#else
+#define secp192r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+/*
+ * Domain parameters for secp224r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static const mbedtls_mpi_uint secp224r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFF, 0x55, 0x23, 0x43, 0x39, 0x0B, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xD8, 0xBF, 0xD7, 0xB7, 0xB0, 0x44, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x32, 0x41, 0xF5, 0xAB, 0xB3, 0x04, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_4(0x85, 0x0A, 0x05, 0xB4),
+};
+static const mbedtls_mpi_uint secp224r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xBD, 0x0C, 0x0E, 0xB7),
+};
+static const mbedtls_mpi_uint secp224r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_4(0x88, 0x63, 0x37, 0xBD),
+};
+static const mbedtls_mpi_uint secp224r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x2A, 0x5C, 0x5C, 0x45, 0x29, 0xDD, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF0, 0xB8, 0xE0, 0xA2, 0x16, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x1D, 0x5C, 0x11, 0xD6, 0x80, 0x32, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x11, 0xC2, 0x56, 0xD3, 0xC1, 0x03, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x90, 0x13, 0x32, 0x7F, 0xBF, 0xB4, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x0C, 0x0E, 0xB7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x7E, 0x00, 0x85, 0x99, 0x81, 0xD5, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x47, 0x07, 0x5A, 0xA0, 0x75, 0x43, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xDF, 0x22, 0x4C, 0xFB, 0x23, 0xF7, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x63, 0x37, 0xBD, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF9, 0xB8, 0xD0, 0x3D, 0xD2, 0xD3, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xFD, 0x99, 0x26, 0x19, 0xFE, 0x13, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x0E, 0x4C, 0x48, 0x7C, 0xA2, 0x17, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA3, 0x13, 0x57, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x16, 0x5C, 0x8F, 0xAA, 0xED, 0x0F, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xC5, 0x43, 0x34, 0x93, 0x05, 0x2A, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE3, 0x6C, 0xCA, 0xC6, 0x14, 0xC2, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x43, 0x6C, 0xD7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x5A, 0x98, 0x1E, 0xC8, 0xA5, 0x42, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x49, 0x56, 0x78, 0xF8, 0xEF, 0xED, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xBB, 0x64, 0xB6, 0x4C, 0x54, 0x5F, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x0C, 0x33, 0xCC, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x79, 0xCB, 0x2E, 0x08, 0xFF, 0xD8, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x1F, 0xD4, 0xD7, 0x57, 0xE9, 0x39, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xD6, 0x3B, 0x0A, 0x1C, 0x87, 0xB7, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x30, 0xD8, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x79, 0x74, 0x9A, 0xE6, 0xBB, 0xC2, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x5B, 0xA6, 0x67, 0xC1, 0x91, 0xE7, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xDF, 0x38, 0x82, 0x19, 0x2C, 0x4C, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x2E, 0x39, 0xC5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x36, 0x78, 0x4E, 0xAE, 0x5B, 0x02, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF6, 0x8B, 0xF8, 0xF4, 0x92, 0x6B, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x4D, 0x71, 0x35, 0xE7, 0x0C, 0x2C, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xA5, 0x1F, 0xAE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x1C, 0x4B, 0xDF, 0x5B, 0xF2, 0x51, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0xB1, 0x5A, 0xC6, 0x0F, 0x0E, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x24, 0x09, 0x62, 0xAF, 0xFC, 0xDB, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xE1, 0x80, 0x55, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x82, 0xFE, 0xAD, 0xC3, 0xE5, 0xCF, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xA2, 0x62, 0x17, 0x76, 0xF0, 0x5A, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB8, 0xE5, 0xAC, 0xB7, 0x66, 0x38, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xFD, 0x86, 0x05, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0x0C, 0x3C, 0xD1, 0x66, 0xB0, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x59, 0xB4, 0x8D, 0x90, 0x10, 0xB7, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x47, 0x9B, 0xE6, 0x55, 0x8A, 0xE4, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x49, 0xDB, 0x78, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x97, 0xED, 0xDE, 0xFF, 0xB3, 0xDF, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xB9, 0x83, 0xB7, 0xEB, 0xBE, 0x40, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xD3, 0xD3, 0xCD, 0x0E, 0x82, 0x79, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x83, 0x1B, 0xF0, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x22, 0xBB, 0x54, 0xD3, 0x31, 0x56, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0xE5, 0xE0, 0x89, 0x96, 0x8E, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xEF, 0x0A, 0xED, 0xD0, 0x11, 0x4A, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x00, 0x57, 0x27, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCA, 0x3D, 0xF7, 0x64, 0x9B, 0x6E, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xE3, 0x70, 0x6B, 0x41, 0xD7, 0xED, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x44, 0x44, 0x80, 0xCE, 0x13, 0x37, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x73, 0x80, 0x79, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x4D, 0x70, 0x7D, 0x31, 0x0F, 0x1C, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x35, 0x88, 0x47, 0xC4, 0x24, 0x78, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF0, 0xCD, 0x91, 0x81, 0xB3, 0xDE, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xCE, 0xC6, 0xF7, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x9C, 0x2D, 0xE8, 0xD2, 0x00, 0x8F, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x5E, 0x7C, 0x0E, 0x0C, 0x6E, 0x58, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x81, 0x21, 0xCE, 0x43, 0xF4, 0x24, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xBC, 0xF0, 0xF4, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x10, 0xC2, 0x74, 0x4A, 0x8F, 0x8A, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x67, 0xF4, 0x2B, 0x38, 0x2B, 0x35, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0C, 0xA9, 0xFA, 0x77, 0x5C, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x19, 0x2B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x3E, 0x96, 0x22, 0x53, 0xE1, 0xE9, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x13, 0xBC, 0xA1, 0x16, 0xEC, 0x01, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x00, 0xC9, 0x7A, 0xC3, 0x73, 0xA5, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xF4, 0x5E, 0xC1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x95, 0xD6, 0xD9, 0x32, 0x30, 0x2B, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x42, 0x09, 0x05, 0x61, 0x2A, 0x7E, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x84, 0xA2, 0x05, 0x88, 0x64, 0x65, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2D, 0x90, 0xB3, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE7, 0x2E, 0x85, 0x55, 0x80, 0x7C, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC1, 0xAC, 0x78, 0xB4, 0xAF, 0xFB, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xC3, 0x28, 0x8E, 0x79, 0x18, 0x1F, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x46, 0xCF, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x5F, 0xA8, 0x6C, 0x46, 0x83, 0x43, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xA9, 0x93, 0x11, 0xB6, 0x07, 0x57, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x2A, 0x9D, 0x03, 0x89, 0x7E, 0xD7, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x8C, 0x62, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x2C, 0x13, 0x59, 0xCC, 0xFA, 0x84, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB9, 0x48, 0xBC, 0x57, 0xC7, 0xB3, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x0A, 0x38, 0x24, 0x2E, 0x3A, 0x28, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x0A, 0x43, 0xB8, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x25, 0xAB, 0xC1, 0xEE, 0x70, 0x3C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xDB, 0x45, 0x1D, 0x4A, 0x80, 0x75, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1F, 0x4D, 0x2D, 0x9A, 0x05, 0xF4, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x10, 0xF0, 0x5A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x95, 0xE1, 0xDC, 0x15, 0x86, 0xC3, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xDC, 0x27, 0xD1, 0x56, 0xA1, 0x14, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x0B, 0xD6, 0x77, 0x4E, 0x44, 0xA2, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x42, 0x71, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x86, 0xB2, 0xB0, 0xC8, 0x2F, 0x7B, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xEF, 0xCB, 0xDB, 0xBC, 0x9E, 0x3B, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x03, 0x86, 0xDD, 0x5B, 0xF5, 0x8D, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x95, 0x79, 0xD6, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x32, 0x14, 0xDA, 0x9B, 0x4F, 0x07, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x3E, 0xFB, 0x06, 0xEE, 0xA7, 0x40, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x1F, 0xDF, 0x71, 0x61, 0xFD, 0x8B, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x8B, 0xAB, 0x8B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x34, 0xB3, 0xB4, 0xBC, 0x9F, 0xB0, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x58, 0x48, 0xA8, 0x77, 0xBB, 0x13, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC6, 0xF7, 0x34, 0xCC, 0x89, 0x21, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x33, 0xDD, 0x1F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x81, 0xEF, 0xA4, 0xF2, 0x10, 0x0B, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF7, 0x6E, 0x72, 0x4A, 0xDF, 0xDD, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x23, 0x0A, 0x53, 0x03, 0x16, 0x62, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x76, 0xFD, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x14, 0xA1, 0xFA, 0xA0, 0x18, 0xBE, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x2A, 0xE1, 0xD7, 0xB0, 0x6C, 0xA0, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xC0, 0xB0, 0xC6, 0x63, 0x24, 0xCD, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x38, 0x2C, 0xB1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCD, 0x7D, 0x20, 0x0C, 0xFE, 0xAC, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x9F, 0xA2, 0xB6, 0x45, 0xF7, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x99, 0xF3, 0xD2, 0x20, 0x02, 0xEB, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x5B, 0x7B, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xDD, 0x77, 0x91, 0x60, 0xEA, 0xFD, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xD3, 0xB5, 0xD6, 0x90, 0x17, 0x0E, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xF4, 0x28, 0xC1, 0xF2, 0x53, 0xF6, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x58, 0xDC, 0x61, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x20, 0x01, 0xFB, 0xF1, 0xBD, 0x5F, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x7F, 0x06, 0xDA, 0x11, 0xCB, 0xBA, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x41, 0x00, 0xA4, 0x1B, 0x30, 0x33, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xFF, 0x27, 0xCA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp224r1_T_0_X, secp224r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_1_X, secp224r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_2_X, secp224r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_3_X, secp224r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_4_X, secp224r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_5_X, secp224r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_6_X, secp224r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_7_X, secp224r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_8_X, secp224r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_9_X, secp224r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_10_X, secp224r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_11_X, secp224r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_12_X, secp224r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_13_X, secp224r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_14_X, secp224r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp224r1_T_15_X, secp224r1_T_15_Y),
+};
+#else
+#define secp224r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+/*
+ * Domain parameters for secp256r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static const mbedtls_mpi_uint secp256r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x60, 0xD2, 0x27, 0x3E, 0x3C, 0xCE, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xB0, 0x53, 0xCC, 0xB0, 0x06, 0x1D, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x86, 0x98, 0x76, 0x55, 0xBD, 0xEB, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x93, 0x3A, 0xAA, 0xD8, 0x35, 0xC6, 0x5A),
+};
+static const mbedtls_mpi_uint secp256r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x25, 0x63, 0xFC, 0xC2, 0xCA, 0xB9, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x9E, 0x17, 0xA7, 0xAD, 0xFA, 0xE6, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC2, 0x98, 0xD8, 0x45, 0x39, 0xA1, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x33, 0xEB, 0x2D, 0x81, 0x7D, 0x03, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x40, 0xA4, 0x63, 0xE5, 0xE6, 0xBC, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x42, 0x2C, 0xE1, 0xF2, 0xD1, 0x17, 0x6B),
+};
+static const mbedtls_mpi_uint secp256r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x51, 0xBF, 0x37, 0x68, 0x40, 0xB6, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x5E, 0x31, 0x6B, 0x57, 0x33, 0xCE, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x9E, 0x0F, 0x7C, 0x4A, 0xEB, 0xE7, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x7F, 0x1A, 0xFE, 0xE2, 0x42, 0xE3, 0x4F),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xC8, 0xBA, 0x04, 0xB7, 0x4B, 0xD2, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC6, 0x23, 0x3A, 0xA0, 0x09, 0x3A, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x9D, 0x4C, 0xF9, 0x58, 0x23, 0xCC, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xED, 0x7B, 0x29, 0x87, 0x0F, 0xFA, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x69, 0xF2, 0x40, 0x0B, 0xA3, 0x98, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xA8, 0x48, 0x02, 0x0D, 0x1C, 0x12, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xAF, 0x09, 0x83, 0x80, 0xAA, 0x58, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x12, 0xBE, 0x70, 0x94, 0x76, 0xE3, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x7D, 0xEF, 0x86, 0xFF, 0xE3, 0x37, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x86, 0x8B, 0x08, 0x27, 0x7C, 0xD7, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x54, 0x4C, 0x25, 0x4F, 0x9A, 0xFE, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xFD, 0xF0, 0x6D, 0x37, 0x03, 0x69, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xD5, 0xDA, 0xAD, 0x92, 0x49, 0xF0, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x73, 0x43, 0x9E, 0xAF, 0xA7, 0xD1, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x41, 0x07, 0xDF, 0x78, 0x95, 0x3E, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x3D, 0xD1, 0xE6, 0x3C, 0xA5, 0xE2, 0x20),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x6A, 0x5D, 0x52, 0x35, 0xD7, 0xBF, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xA2, 0xBE, 0x96, 0xF4, 0xF8, 0x02, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x20, 0x49, 0x54, 0xEA, 0xB3, 0x82, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0xDB, 0xEA, 0x02, 0xD1, 0x75, 0x1C, 0x62),
+};
+static const mbedtls_mpi_uint secp256r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x85, 0xF4, 0x9E, 0x4C, 0xDC, 0x39, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x6D, 0xC4, 0x57, 0xD8, 0x03, 0x5D, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x7F, 0x2D, 0x52, 0x6F, 0xC9, 0xDA, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x64, 0xFA, 0xB4, 0xFE, 0xA4, 0xC4, 0xD7),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x37, 0xB9, 0xC0, 0xAA, 0x59, 0xC6, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x58, 0xD9, 0xED, 0x58, 0x99, 0x65, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x7D, 0x26, 0x8C, 0x4A, 0xF9, 0x05, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x73, 0x9A, 0xC9, 0xE7, 0x46, 0xDC, 0x00),
+};
+static const mbedtls_mpi_uint secp256r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xD0, 0x55, 0xDF, 0x00, 0x0A, 0xF5, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xBF, 0x56, 0x81, 0x2D, 0x20, 0xEB, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC1, 0x28, 0x52, 0xAB, 0xE3, 0xD1, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x34, 0x79, 0x45, 0x57, 0xA5, 0x12, 0x03),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xCF, 0xB8, 0x7E, 0xF7, 0x92, 0x96, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x01, 0x8C, 0x0D, 0x23, 0xF2, 0xE3, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x2E, 0xE3, 0x84, 0x52, 0x7A, 0x34, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xA1, 0xB0, 0x15, 0x90, 0xE2, 0x53, 0x3C),
+};
+static const mbedtls_mpi_uint secp256r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x98, 0xE7, 0xFA, 0xA5, 0x7D, 0x8B, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x35, 0xD2, 0x00, 0xD1, 0x1B, 0x9F, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x69, 0x08, 0x9A, 0x72, 0xF0, 0xA9, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xFE, 0x0E, 0x14, 0xDA, 0x7C, 0x0E, 0xD3),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xF6, 0xE8, 0xF8, 0x87, 0xF7, 0xFC, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xBE, 0x7F, 0x3F, 0x7A, 0x2B, 0xD7, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x32, 0xF2, 0x2D, 0x94, 0x6D, 0x42, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x9A, 0xE3, 0x5F, 0x42, 0xBB, 0x84, 0xED),
+};
+static const mbedtls_mpi_uint secp256r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x95, 0x29, 0x73, 0xA1, 0x67, 0x3E, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x30, 0x54, 0x35, 0x8E, 0x0A, 0xDD, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xD7, 0xA1, 0x97, 0x61, 0x3B, 0xF8, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x33, 0x3C, 0x58, 0x55, 0x34, 0x23, 0xA3),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x5D, 0x16, 0x5F, 0x7B, 0xBC, 0xBB, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xEE, 0x4E, 0x8A, 0xC1, 0x51, 0xCC, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0D, 0x4D, 0x1B, 0x53, 0x23, 0x1D, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x2A, 0x38, 0x66, 0x52, 0x84, 0xE1, 0x95),
+};
+static const mbedtls_mpi_uint secp256r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x9B, 0x83, 0x0A, 0x81, 0x4F, 0xAD, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xFF, 0x42, 0x41, 0x6E, 0xA9, 0xA2, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA1, 0x4F, 0x1F, 0x89, 0x82, 0xAA, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xB8, 0x0F, 0x6B, 0x8F, 0x8C, 0xD6, 0x68),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0xB3, 0xBB, 0x51, 0x69, 0xA2, 0x11, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x4F, 0x0F, 0x8D, 0xBD, 0x26, 0x0F, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xCB, 0xEC, 0x6B, 0x34, 0xC3, 0x3D, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x5D, 0x1E, 0x10, 0xD5, 0x44, 0xE2, 0x54),
+};
+static const mbedtls_mpi_uint secp256r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x9E, 0xB1, 0xF1, 0x6E, 0x4C, 0xAD, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE3, 0xC2, 0x58, 0xC0, 0xFB, 0x34, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x9C, 0xDF, 0x35, 0x07, 0x41, 0xBD, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x10, 0xEC, 0x0E, 0xEC, 0xBB, 0xD6),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xCF, 0xEF, 0x3F, 0x83, 0x1A, 0x88, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x29, 0xB5, 0xB9, 0xE0, 0xC9, 0xA3, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x46, 0x1E, 0x77, 0xCD, 0x7E, 0xB3, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x21, 0xD0, 0xD4, 0xA3, 0x16, 0x08, 0xEE),
+};
+static const mbedtls_mpi_uint secp256r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xCA, 0xA8, 0xB3, 0xBF, 0x29, 0x99, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF2, 0x05, 0xC1, 0xCF, 0x5D, 0x91, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x01, 0x49, 0xDB, 0x82, 0xDF, 0x5F, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x06, 0x90, 0xAD, 0xE3, 0x38, 0xA4, 0xC4),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xD2, 0x3A, 0xE8, 0x03, 0xC5, 0x6D, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x35, 0xD0, 0xAE, 0x1D, 0x7A, 0x9F, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x1E, 0xD2, 0xCB, 0xAC, 0x88, 0x27, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x9C, 0xE0, 0x31, 0xDD, 0x99, 0x86),
+};
+static const mbedtls_mpi_uint secp256r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xF9, 0x9B, 0x32, 0x96, 0x41, 0x58, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x5A, 0x2A, 0xB8, 0x96, 0x0E, 0xB2, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x78, 0x2C, 0xC7, 0x08, 0x99, 0x19, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x59, 0x28, 0xE9, 0x84, 0x54, 0xE6, 0x16),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x38, 0x30, 0xDB, 0x70, 0x2C, 0x0A, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x5C, 0x9D, 0xE9, 0xD5, 0x46, 0x0B, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x0B, 0x60, 0x4B, 0x37, 0x7D, 0xB9, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x24, 0xF3, 0x3D, 0x79, 0x7F, 0x6C, 0x18),
+};
+static const mbedtls_mpi_uint secp256r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7F, 0xE5, 0x1C, 0x4F, 0x60, 0x24, 0xF7, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xD8, 0xE2, 0x91, 0x7F, 0x89, 0x49, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xA7, 0x2E, 0x8D, 0x6A, 0xB3, 0x39, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x89, 0xB5, 0x9A, 0xB8, 0x8D, 0x42, 0x9C),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x45, 0xE6, 0x4B, 0x3F, 0x4F, 0x1E, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x65, 0x5E, 0x59, 0x22, 0xCC, 0x72, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x93, 0x1A, 0x27, 0x1E, 0x34, 0xC5, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xF2, 0xA5, 0x58, 0x5C, 0x15, 0x2E, 0xC6),
+};
+static const mbedtls_mpi_uint secp256r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x7F, 0xBA, 0x58, 0x5A, 0x84, 0x6F, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA6, 0x36, 0x7E, 0xDC, 0xF7, 0xE1, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x4D, 0xAA, 0xEE, 0x57, 0x76, 0x3A, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x7E, 0x26, 0x18, 0x22, 0x23, 0x9F, 0xFF),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x4C, 0x64, 0xC7, 0x55, 0x02, 0x3F, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x02, 0x90, 0xBB, 0xC3, 0xEC, 0x30, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x6F, 0x64, 0xF4, 0x16, 0x69, 0x48, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x44, 0x9C, 0x95, 0x0C, 0x7D, 0x67, 0x5E),
+};
+static const mbedtls_mpi_uint secp256r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x91, 0x8B, 0xD8, 0xD0, 0xD7, 0xE7, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xF9, 0x48, 0x62, 0x6F, 0xA8, 0x93, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x3A, 0x99, 0x02, 0xD5, 0x0B, 0x3D, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xD3, 0x00, 0x31, 0xE6, 0x0C, 0x9F, 0x44),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xB2, 0xAA, 0xFD, 0x88, 0x15, 0xDF, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0x35, 0x27, 0x31, 0x44, 0xCD, 0xC0, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xF8, 0x91, 0xA5, 0x71, 0x94, 0x84, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xCB, 0xD0, 0x93, 0xE9, 0x88, 0xDA, 0xE4),
+};
+static const mbedtls_mpi_uint secp256r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC6, 0x39, 0x16, 0x5D, 0xA3, 0x1E, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x07, 0x37, 0x26, 0x36, 0x2A, 0xFE, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xBC, 0xF3, 0xD0, 0xDE, 0x50, 0xFC, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x2E, 0x06, 0x10, 0x15, 0x4D, 0xFA, 0xF7),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x65, 0x69, 0x5B, 0x66, 0xA2, 0x75, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x16, 0x00, 0x5A, 0xB0, 0x30, 0x25, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xFB, 0x86, 0x42, 0x80, 0xC1, 0xC4, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x1D, 0x83, 0x8E, 0x94, 0x01, 0x5F, 0x82),
+};
+static const mbedtls_mpi_uint secp256r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x37, 0x70, 0xEF, 0x1F, 0xA1, 0xF0, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x5B, 0xCE, 0xC4, 0x9B, 0x6F, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x11, 0x11, 0x24, 0x4F, 0x4C, 0x79, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x3A, 0x72, 0xBC, 0xFE, 0x72, 0x58, 0x43),
+};
+static const mbedtls_ecp_point secp256r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp256r1_T_0_X, secp256r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_1_X, secp256r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_2_X, secp256r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_3_X, secp256r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_4_X, secp256r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_5_X, secp256r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_6_X, secp256r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_7_X, secp256r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_8_X, secp256r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_9_X, secp256r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_10_X, secp256r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_11_X, secp256r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_12_X, secp256r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_13_X, secp256r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_14_X, secp256r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp256r1_T_15_X, secp256r1_T_15_Y),
+};
+#else
+#define secp256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+/*
+ * Domain parameters for secp384r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static const mbedtls_mpi_uint secp384r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp384r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x2A, 0xEC, 0xD3, 0xED, 0xC8, 0x85, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xD1, 0x2E, 0x8A, 0x8D, 0x39, 0x56, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x87, 0x13, 0x50, 0x8F, 0x08, 0x14, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x41, 0x81, 0xFE, 0x6E, 0x9C, 0x1D, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x2D, 0xF8, 0xE3, 0x6B, 0x05, 0x8E, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xE7, 0x3E, 0xE2, 0xA7, 0x2F, 0x31, 0xB3),
+};
+static const mbedtls_mpi_uint secp384r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x29, 0xC5, 0xCC, 0x6A, 0x19, 0xEC, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xA7, 0xB0, 0x48, 0xB2, 0x0D, 0x1A, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2D, 0x37, 0xF4, 0x81, 0x4D, 0x63, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp384r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0x76, 0x72, 0x38, 0x5E, 0x54, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x29, 0x55, 0xBF, 0x5D, 0xF2, 0x02, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x2A, 0x54, 0x82, 0xE0, 0x41, 0xF7, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9B, 0xA7, 0x8B, 0x62, 0x3B, 0x1D, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xAD, 0x20, 0xF3, 0x1E, 0xC7, 0xB1, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x05, 0x8B, 0xBE, 0x22, 0xCA, 0x87, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0E, 0xEA, 0x90, 0x7C, 0x1D, 0x43, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x81, 0x7E, 0x1D, 0xCE, 0xB1, 0x60, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xB8, 0xF0, 0xB5, 0x13, 0x31, 0xDA, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x14, 0x9A, 0x28, 0xBD, 0x1D, 0xF4, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xDC, 0x92, 0x92, 0xBF, 0x98, 0x9E, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x2C, 0x26, 0x96, 0x4A, 0xDE, 0x17, 0x36),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x92, 0x00, 0x2C, 0x78, 0xDB, 0x1F, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xF3, 0xEB, 0xB7, 0x06, 0xF7, 0xB6, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBC, 0x2C, 0xCF, 0xD8, 0xED, 0x53, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x75, 0x7B, 0xA3, 0xAB, 0xC3, 0x2C, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x9D, 0x78, 0x41, 0xF6, 0x76, 0x84, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x56, 0xE8, 0x52, 0xB3, 0xCB, 0xA8, 0xBD),
+};
+static const mbedtls_mpi_uint secp384r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xF2, 0xAE, 0xA4, 0xB6, 0x89, 0x1B, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0xCE, 0x1C, 0x7C, 0xF6, 0x50, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xEB, 0x90, 0xE6, 0x4D, 0xC7, 0xD4, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x49, 0x2D, 0x8A, 0x01, 0x99, 0x60, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x80, 0x9B, 0x9B, 0x6A, 0xB0, 0x07, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xA2, 0xEE, 0x59, 0xBE, 0x95, 0xBC, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x9D, 0x56, 0xAE, 0x59, 0xFB, 0x1F, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xAC, 0x91, 0x80, 0x87, 0xA8, 0x6E, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x08, 0xA7, 0x08, 0x94, 0x32, 0xFC, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x29, 0x9E, 0x84, 0xF4, 0xE5, 0x6E, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x21, 0xB9, 0x50, 0x24, 0xF8, 0x9C, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x04, 0x01, 0xC2, 0xFB, 0x77, 0x3E, 0xDE),
+};
+static const mbedtls_mpi_uint secp384r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x38, 0xEE, 0xE3, 0xC7, 0x9D, 0xEC, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x88, 0xCF, 0x43, 0xFA, 0x92, 0x5E, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xCA, 0x43, 0xF8, 0x3B, 0x49, 0x7E, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xE7, 0xEB, 0x17, 0x45, 0x86, 0xC2, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x69, 0x57, 0x32, 0xE0, 0x9C, 0xD1, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x10, 0xB8, 0x4D, 0xB8, 0xF4, 0x0D, 0xE3),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0xDC, 0x9A, 0xB2, 0x79, 0x39, 0x27, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x71, 0xE4, 0x3B, 0x4D, 0x60, 0x0C, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xBD, 0x19, 0x40, 0xFA, 0x19, 0x2A, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xF8, 0x1E, 0x43, 0xA1, 0x50, 0x8D, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x18, 0x7C, 0x41, 0xFA, 0x7C, 0x1B, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x24, 0xC4, 0xE9, 0xB7, 0xD3, 0xAD),
+};
+static const mbedtls_mpi_uint secp384r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x01, 0x3D, 0x63, 0x54, 0x45, 0x6F, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xB2, 0x19, 0xA3, 0x86, 0x1D, 0x42, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x02, 0x87, 0x18, 0x92, 0x52, 0x1A, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x18, 0xB1, 0x5D, 0x18, 0x1B, 0x37, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x74, 0x61, 0xBA, 0x18, 0xAF, 0x40, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7D, 0x3C, 0x52, 0x0F, 0x07, 0xB0, 0x6F),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x39, 0x13, 0xAA, 0x60, 0x15, 0x99, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x00, 0xCB, 0xC6, 0xB1, 0xDB, 0x97, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xFA, 0x60, 0xB8, 0x24, 0xE4, 0x7D, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x75, 0xB3, 0x70, 0xB2, 0x83, 0xB1, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xE3, 0x6C, 0xCD, 0x33, 0x62, 0x7A, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x30, 0xDC, 0x0F, 0x9F, 0xBB, 0xB8, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD5, 0x0A, 0x60, 0x81, 0xB9, 0xC5, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xAA, 0x2F, 0xD6, 0xF2, 0x73, 0xDF, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x7B, 0x74, 0xC9, 0xB3, 0x5B, 0x95, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x04, 0xEB, 0x15, 0xC8, 0x5F, 0x00, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x50, 0x20, 0x28, 0xD1, 0x01, 0xAF, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x4F, 0x31, 0x81, 0x2F, 0x94, 0x48),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2F, 0xD8, 0xB6, 0x63, 0x7C, 0xE9, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x8C, 0xB9, 0x14, 0xD9, 0x37, 0x63, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x02, 0xB8, 0x46, 0xAD, 0xCE, 0x7B, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x47, 0x2D, 0x66, 0xA7, 0xE9, 0x33, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF9, 0x93, 0x94, 0xA8, 0x48, 0xB3, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x4A, 0xAC, 0x51, 0x08, 0x72, 0x2F, 0x1A),
+};
+static const mbedtls_mpi_uint secp384r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xAD, 0xA0, 0xF9, 0x81, 0xE1, 0x78, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9A, 0x63, 0xD8, 0xBA, 0x79, 0x1A, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x31, 0x7B, 0x7A, 0x5A, 0x5D, 0x7D, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x96, 0x12, 0x4B, 0x19, 0x09, 0xE0, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8A, 0x57, 0xEE, 0x4E, 0x6E, 0x7E, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x9D, 0x69, 0xDC, 0xB3, 0xDA, 0xD8, 0x08),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x49, 0x03, 0x03, 0x33, 0x6F, 0x28, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xDB, 0xA7, 0x05, 0x8C, 0xF3, 0x4D, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x92, 0xB1, 0xA8, 0xEC, 0x0D, 0x64, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0xFC, 0xFD, 0xD0, 0x4B, 0x88, 0x1B, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x9C, 0x51, 0x69, 0xCE, 0x71, 0x73, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5A, 0x14, 0x23, 0x1A, 0x46, 0x63, 0x5F),
+};
+static const mbedtls_mpi_uint secp384r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x4C, 0x70, 0x44, 0x18, 0xCD, 0xEF, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x49, 0xDD, 0x64, 0x7E, 0x7E, 0x4D, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x32, 0x7C, 0x09, 0xD0, 0x3F, 0xD6, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE0, 0x4F, 0x65, 0x0C, 0x7A, 0x54, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFA, 0xFB, 0x4A, 0xB4, 0x79, 0x5A, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x1B, 0x2B, 0xDA, 0xBC, 0x9A, 0x74),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xAC, 0x56, 0xF7, 0x5F, 0x51, 0x68, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xE0, 0x1D, 0xBC, 0x13, 0x4E, 0xAC, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF5, 0xC5, 0xE6, 0xD2, 0x88, 0xBA, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x0E, 0x28, 0x23, 0x58, 0x67, 0xFA, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x80, 0x4B, 0xD8, 0xC4, 0xDF, 0x15, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x0E, 0x58, 0xE6, 0x2C, 0x59, 0xC2, 0x03),
+};
+static const mbedtls_mpi_uint secp384r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x26, 0x27, 0x99, 0x16, 0x2B, 0x22, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xF3, 0x8F, 0xC3, 0x2A, 0x9B, 0xFC, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2E, 0x83, 0x3D, 0xFE, 0x9E, 0x3C, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0xCD, 0x2D, 0xC1, 0x49, 0x38, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x42, 0x8B, 0x33, 0x89, 0x1F, 0xEA, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x1D, 0x13, 0xD7, 0x50, 0xBB, 0x3E, 0xEB),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x9A, 0x52, 0xD2, 0x54, 0x7C, 0x97, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x33, 0x6E, 0xED, 0xD9, 0x87, 0x50, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x35, 0x7E, 0x16, 0x40, 0x15, 0x83, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x2B, 0xA4, 0xAB, 0x03, 0x91, 0xEA, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x47, 0x39, 0xEF, 0x05, 0x59, 0xD0, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x24, 0x0D, 0x76, 0x11, 0x53, 0x08, 0xAF),
+};
+static const mbedtls_mpi_uint secp384r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x2F, 0xDD, 0xBD, 0x50, 0x48, 0xB1, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x1C, 0x84, 0x55, 0x78, 0x14, 0xEB, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x5E, 0x3E, 0xA6, 0xAF, 0xF6, 0xC7, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x11, 0xE2, 0x65, 0xCA, 0x41, 0x95, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x83, 0xD8, 0xE6, 0x4D, 0x22, 0x06, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x7F, 0x25, 0x2A, 0xAA, 0x28, 0x46, 0x97),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xDB, 0x15, 0x56, 0x84, 0xCB, 0xC0, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xDB, 0x0E, 0x08, 0xC9, 0xF5, 0xD4, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x62, 0xD0, 0x1A, 0x7C, 0x13, 0xD5, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xAD, 0x53, 0xE0, 0x32, 0x21, 0xA0, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x38, 0x81, 0x21, 0x23, 0x0E, 0xD2, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x51, 0x05, 0xD0, 0x1E, 0x82, 0xA9, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xC3, 0x27, 0xBF, 0xC6, 0xAA, 0xB7, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x65, 0x45, 0xDF, 0xB9, 0x46, 0x17, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x38, 0x3F, 0xB2, 0xB1, 0x5D, 0xCA, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x29, 0x6C, 0x63, 0xE9, 0xD7, 0x48, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xF1, 0xD7, 0x99, 0x8C, 0xC2, 0x05, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE6, 0x5E, 0x82, 0x6D, 0xE5, 0x7E, 0xD5),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x61, 0xFA, 0x7D, 0x01, 0xDB, 0xB6, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xC6, 0x58, 0x39, 0xF4, 0xC6, 0x82, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0x7A, 0x80, 0x08, 0xCD, 0xAA, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x8C, 0xC6, 0x3F, 0x3C, 0xA5, 0x68, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xF5, 0xD5, 0x17, 0xAE, 0x36, 0xD8, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xAD, 0x92, 0xC5, 0x57, 0x6C, 0xDA, 0x91),
+};
+static const mbedtls_mpi_uint secp384r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x67, 0x17, 0xC0, 0x40, 0x78, 0x8C, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x9F, 0xF4, 0xAA, 0xDA, 0x5C, 0x7E, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xDB, 0x42, 0x3E, 0x72, 0x64, 0xA0, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xF9, 0x41, 0x17, 0x43, 0xE3, 0xE8, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xDD, 0xCC, 0x43, 0x7E, 0x16, 0x05, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x4B, 0xCF, 0x48, 0x8F, 0x41, 0x90, 0xE5),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x0C, 0x6B, 0x9D, 0x22, 0x04, 0xBC, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x63, 0x79, 0x2F, 0x6A, 0x0E, 0x8A, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x67, 0x3F, 0x02, 0xB8, 0x91, 0x7F, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x14, 0x64, 0xA0, 0x33, 0xF4, 0x6B, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x44, 0x71, 0x87, 0xB8, 0x88, 0x3F, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x2B, 0x85, 0x05, 0xC5, 0x44, 0x53, 0x15),
+};
+static const mbedtls_mpi_uint secp384r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x2B, 0xFE, 0xD1, 0x1C, 0x73, 0xE3, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x33, 0xA1, 0xD3, 0x69, 0x1C, 0x9D, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x5A, 0xBA, 0xB6, 0xAE, 0x1B, 0x94, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x74, 0x90, 0x5C, 0x57, 0xB0, 0x3A, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x2F, 0x93, 0x20, 0x24, 0x54, 0x1D, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x78, 0x9D, 0x71, 0x67, 0x5D, 0x49, 0x98),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xC8, 0x0E, 0x11, 0x8D, 0xE0, 0x8F, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x7F, 0x79, 0x6C, 0x5F, 0xB7, 0xBC, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xE1, 0x83, 0x3C, 0x12, 0xBB, 0xEE, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC2, 0xC4, 0x1B, 0x41, 0x71, 0xB9, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0xEE, 0xBB, 0x1D, 0x89, 0x50, 0x88, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x1C, 0x55, 0x74, 0xEB, 0xDE, 0x92, 0x3F),
+};
+static const mbedtls_mpi_uint secp384r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x38, 0x92, 0x06, 0x19, 0xD0, 0xB3, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x99, 0x26, 0xA3, 0x5F, 0xE2, 0xC1, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xFC, 0xFD, 0xC3, 0xB6, 0x26, 0x24, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xAD, 0xE7, 0x49, 0xB7, 0x64, 0x4B, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x4E, 0x95, 0xAD, 0x07, 0xFE, 0xB6, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x15, 0xE7, 0x2D, 0x19, 0xA9, 0x08, 0x10),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xBD, 0xAC, 0x0A, 0x3F, 0x6B, 0xFF, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xE4, 0x74, 0x14, 0xD9, 0x70, 0x1D, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xB0, 0x71, 0xBB, 0xD8, 0x18, 0x96, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0xB8, 0x19, 0x90, 0x80, 0xB5, 0xEE, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x21, 0x20, 0xA6, 0x17, 0x48, 0x03, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0xBB, 0x6D, 0x94, 0x20, 0x34, 0xF1),
+};
+static const mbedtls_mpi_uint secp384r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x82, 0x67, 0x4B, 0x8E, 0x4E, 0xBE, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xDA, 0x77, 0xF8, 0x23, 0x55, 0x2B, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x02, 0xDE, 0x25, 0x35, 0x2D, 0x74, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0C, 0xB8, 0x0B, 0x39, 0xBA, 0xAD, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x0E, 0x28, 0x4D, 0xE1, 0x3D, 0xE4, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xEC, 0x0A, 0xD4, 0xB8, 0xC4, 0x8D, 0xB0),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x68, 0xCE, 0xC2, 0x55, 0x4D, 0x0C, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x20, 0x93, 0x32, 0x90, 0xD6, 0xAE, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x78, 0xAB, 0x43, 0x9E, 0xEB, 0x73, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x97, 0xC3, 0x83, 0xA6, 0x3C, 0xF1, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x25, 0x25, 0x66, 0x08, 0x26, 0xFA, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xFB, 0x44, 0x5D, 0x82, 0xEC, 0x3B, 0xAC),
+};
+static const mbedtls_mpi_uint secp384r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x90, 0xEA, 0xB5, 0x04, 0x99, 0xD0, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0xF2, 0x22, 0xA0, 0xEB, 0xFD, 0x45, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA4, 0x81, 0x32, 0xFC, 0xFA, 0xEE, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xBB, 0xA4, 0x6A, 0x77, 0x41, 0x5C, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x1E, 0xAA, 0x4F, 0xF0, 0x10, 0xB3, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x74, 0x13, 0x14, 0x9E, 0x90, 0xD7, 0xE6),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xBD, 0x70, 0x4F, 0xA8, 0xD1, 0x06, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4E, 0x2E, 0x68, 0xFC, 0x35, 0xFA, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x53, 0x75, 0xED, 0xF2, 0x5F, 0xC2, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x87, 0x6B, 0x9F, 0x05, 0xE2, 0x22, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x1A, 0xA8, 0xB7, 0x03, 0x9E, 0x6D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD0, 0x69, 0x88, 0xA8, 0x39, 0x9E, 0x3A),
+};
+static const mbedtls_mpi_uint secp384r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xEF, 0x68, 0xFE, 0xEC, 0x24, 0x08, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x4B, 0x92, 0x0D, 0xB7, 0x34, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xF4, 0xDD, 0x1A, 0xA0, 0x4A, 0xE4, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x63, 0x4F, 0x4F, 0xCE, 0xBB, 0xD6, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xEE, 0x8D, 0xDF, 0x3F, 0x73, 0xB7, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x06, 0xB6, 0x80, 0x4D, 0x81, 0xD9, 0x53),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF5, 0x13, 0xDF, 0x13, 0x19, 0x97, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xF9, 0xB3, 0x33, 0x66, 0x82, 0x21, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xFC, 0x39, 0x16, 0x23, 0x43, 0x76, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x48, 0x25, 0xA1, 0x64, 0x95, 0x1C, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xAC, 0x15, 0x57, 0xD9, 0xDE, 0xA0, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x5F, 0xB8, 0x3D, 0x48, 0x91, 0x24, 0xCC),
+};
+static const mbedtls_mpi_uint secp384r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xF2, 0xC8, 0x54, 0xD1, 0x32, 0xBD, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x3B, 0xF0, 0xAA, 0x9D, 0xD8, 0xF4, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xC3, 0xBB, 0x6C, 0x66, 0xAC, 0x25, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x25, 0x10, 0xB2, 0xE1, 0x41, 0xDE, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xE8, 0x30, 0xB8, 0x37, 0xBC, 0x2A, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x57, 0x01, 0x4A, 0x1E, 0x78, 0x9F, 0x85),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x19, 0xCD, 0x12, 0x0B, 0x51, 0x4F, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x4B, 0x3D, 0x24, 0xA4, 0x16, 0x59, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xEB, 0xD3, 0x59, 0x2E, 0x75, 0x7C, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB9, 0xB4, 0xA5, 0xD9, 0x2E, 0x29, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x16, 0x05, 0x75, 0x02, 0xB3, 0x06, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x7C, 0x9F, 0x79, 0x91, 0xF1, 0x4F, 0x23),
+};
+static const mbedtls_mpi_uint secp384r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x98, 0x7C, 0x84, 0xE1, 0xFF, 0x30, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE2, 0xC2, 0x5F, 0x55, 0x40, 0xBD, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x65, 0x87, 0x3F, 0xC4, 0xC2, 0x24, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x30, 0x0A, 0x60, 0x15, 0xD1, 0x24, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x99, 0xD9, 0xB6, 0xAE, 0xB1, 0xAF, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x80, 0xEE, 0xA2, 0x0F, 0x74, 0xB9, 0xF3),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xE6, 0x0F, 0x37, 0xC1, 0x10, 0x99, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xAD, 0x9D, 0x5D, 0x80, 0x01, 0xA6, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x0F, 0x10, 0x2A, 0x9D, 0x20, 0x38, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x60, 0xCB, 0xCE, 0x5A, 0xA0, 0xA7, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xCF, 0x14, 0xDF, 0xBF, 0xE5, 0x74, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x12, 0x1A, 0xDD, 0x59, 0x02, 0x5D, 0xC6),
+};
+static const mbedtls_mpi_uint secp384r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0xF8, 0xF5, 0xB6, 0x13, 0x4D, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x45, 0xB1, 0x93, 0xB3, 0xA2, 0x79, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xF6, 0xCF, 0xF7, 0xE6, 0x29, 0x9C, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x50, 0x65, 0x80, 0xBC, 0x59, 0x0A, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xF0, 0x24, 0x35, 0xA2, 0x46, 0xF0, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x26, 0xC0, 0x9D, 0x61, 0x56, 0x62, 0x67),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xBB, 0xC2, 0x24, 0x43, 0x2E, 0x37, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xF7, 0xCE, 0x35, 0xFC, 0x77, 0xF3, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x34, 0x96, 0xD5, 0x4A, 0x76, 0x9D, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x3B, 0x0F, 0xEA, 0xA8, 0x12, 0x0B, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x3F, 0x5D, 0x2D, 0x1C, 0xD4, 0x9E, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x2E, 0xDD, 0xC7, 0x6E, 0xAB, 0xAF, 0xDC),
+};
+static const mbedtls_mpi_uint secp384r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xB2, 0x7B, 0x0C, 0x9A, 0x83, 0x8E, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x51, 0x90, 0x92, 0x79, 0x32, 0x19, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x89, 0xF9, 0xD0, 0xCF, 0x2C, 0xA5, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x50, 0x21, 0xDE, 0x50, 0x41, 0x9D, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x7D, 0x2B, 0x9E, 0x9D, 0x95, 0xA8, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA5, 0x20, 0x87, 0x88, 0x97, 0x5F, 0xAA),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x59, 0xB4, 0x66, 0x7E, 0xE8, 0x5A, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x5C, 0x7E, 0xB2, 0xAD, 0xD9, 0xC9, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x97, 0x49, 0xA3, 0x13, 0x83, 0x07, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x26, 0xC7, 0x13, 0x35, 0x0D, 0xB0, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x60, 0xAB, 0xFA, 0x4B, 0x93, 0x18, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2D, 0x1C, 0x31, 0x4C, 0xE4, 0x61, 0xAE),
+};
+static const mbedtls_mpi_uint secp384r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x4D, 0x1E, 0x51, 0x59, 0x6E, 0x91, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x54, 0x4D, 0x51, 0xED, 0x36, 0xCC, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xA8, 0x56, 0xC7, 0x78, 0x27, 0x33, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB7, 0x95, 0xC9, 0x8B, 0xC8, 0x6A, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xE9, 0x13, 0x96, 0xB3, 0xE1, 0xF9, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x46, 0xB0, 0x5E, 0xC3, 0x94, 0x03, 0x05),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x5B, 0x29, 0x30, 0x41, 0x1A, 0x9E, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xCA, 0x83, 0x31, 0x5B, 0xA7, 0xCB, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x41, 0x50, 0x44, 0x4D, 0x64, 0x31, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x84, 0xC2, 0x5D, 0x97, 0xA5, 0x3C, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x0F, 0xA5, 0xFD, 0x8E, 0x5A, 0x47, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x58, 0x02, 0x2D, 0x40, 0xB1, 0x0B, 0xBA),
+};
+static const mbedtls_mpi_uint secp384r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x33, 0x8C, 0x67, 0xCE, 0x23, 0x43, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x53, 0x47, 0x72, 0x44, 0x1F, 0x5B, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xC1, 0xD9, 0xA4, 0x50, 0x88, 0x63, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xF2, 0x75, 0x69, 0x73, 0x00, 0xC4, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x90, 0x1D, 0xDF, 0x1A, 0x00, 0xD8, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xB1, 0x89, 0x48, 0xA8, 0x70, 0x62, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x8A, 0x55, 0x50, 0x7B, 0xEF, 0x8A, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1B, 0x23, 0x48, 0x23, 0x63, 0x91, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x04, 0x54, 0x3C, 0x24, 0x9B, 0xC7, 0x9A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x38, 0xC3, 0x84, 0xFB, 0xFF, 0x9F, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x2A, 0xE0, 0x6D, 0x68, 0x8A, 0x5C, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x93, 0x53, 0x85, 0xA1, 0x0D, 0xAF, 0x63),
+};
+static const mbedtls_mpi_uint secp384r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x88, 0x95, 0x4C, 0x0B, 0xD0, 0x06, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xAF, 0x8D, 0x49, 0xA2, 0xC8, 0xB4, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x76, 0x53, 0x09, 0x88, 0x43, 0x87, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA4, 0x77, 0x3F, 0x5E, 0x21, 0xB4, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x9E, 0x86, 0x64, 0xCC, 0x91, 0xC1, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x17, 0x56, 0xCB, 0xC3, 0x7D, 0x5B, 0xB1),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x74, 0x9F, 0xB5, 0x91, 0x21, 0xB1, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xED, 0xE1, 0x11, 0xEF, 0x45, 0xAF, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x31, 0xBE, 0xB2, 0xBC, 0x72, 0x65, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x4B, 0x8C, 0x77, 0xCE, 0x1E, 0x42, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC9, 0xAA, 0xB9, 0xD9, 0x86, 0x99, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x23, 0x80, 0xC6, 0x4E, 0x35, 0x0B, 0x6D),
+};
+static const mbedtls_mpi_uint secp384r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xD8, 0xA2, 0x0A, 0x39, 0x32, 0x1D, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0xC8, 0x86, 0xF1, 0x12, 0x9A, 0x4A, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xF1, 0x7C, 0xAA, 0x70, 0x8E, 0xBC, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x01, 0x47, 0x8F, 0xDD, 0x8B, 0xA5, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x08, 0x21, 0xF4, 0xAB, 0xC7, 0xF5, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x76, 0xA5, 0x95, 0xC4, 0x0F, 0x88, 0x1D),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x42, 0x2A, 0x52, 0xCD, 0x75, 0x51, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x36, 0xE5, 0x04, 0x2B, 0x44, 0xC6, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xEE, 0x16, 0x13, 0x07, 0x83, 0xB5, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x59, 0xC6, 0xA2, 0x19, 0x05, 0xD3, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8B, 0xA8, 0x16, 0x09, 0xB7, 0xEA, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xEE, 0x14, 0xAF, 0xB5, 0xFD, 0xD0, 0xEF),
+};
+static const mbedtls_mpi_uint secp384r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x7C, 0xCA, 0x71, 0x3E, 0x6E, 0x66, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x31, 0x0E, 0x3F, 0xE5, 0x91, 0xC4, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x3D, 0xC2, 0x3E, 0x95, 0x37, 0x58, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x1F, 0x02, 0x03, 0xF3, 0xEF, 0xEE, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x5B, 0x1A, 0xFC, 0x38, 0xCD, 0xE8, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x57, 0x42, 0x85, 0xC6, 0x21, 0x68, 0x71),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA2, 0x4A, 0x66, 0xB1, 0x0A, 0xE6, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x0C, 0x94, 0x9D, 0x5E, 0x99, 0xB2, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x03, 0x40, 0xCA, 0xB2, 0xB3, 0x30, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0x48, 0x27, 0x34, 0x1E, 0xE2, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x72, 0x5B, 0xAC, 0xC1, 0x6D, 0xE3, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAB, 0x46, 0xCB, 0xEA, 0x5E, 0x4B, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x08, 0xAD, 0x4E, 0x51, 0x9F, 0x2A, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5C, 0x7D, 0x4C, 0xD6, 0xCF, 0xDD, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x76, 0x26, 0xE0, 0x8B, 0x10, 0xD9, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA7, 0x23, 0x4E, 0x5F, 0xD2, 0x42, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xE5, 0xA4, 0xEC, 0x77, 0x21, 0x34, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x14, 0x65, 0xEA, 0x4A, 0x85, 0xC3, 0x2F),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xD8, 0x40, 0x27, 0x73, 0x15, 0x7E, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xBB, 0x53, 0x7E, 0x0F, 0x40, 0xC8, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x37, 0x19, 0x73, 0xEF, 0x5A, 0x5E, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x73, 0x2B, 0x49, 0x7E, 0xAC, 0x97, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xB2, 0xC3, 0x1E, 0x0E, 0xE7, 0xD2, 0x21),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x08, 0xD6, 0xDD, 0xAC, 0x21, 0xD6, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x26, 0xBE, 0x6D, 0x6D, 0xF2, 0x38, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6C, 0x31, 0xA7, 0x49, 0x50, 0x3A, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x99, 0xC6, 0xF5, 0xD2, 0xC2, 0x30, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE4, 0xF6, 0x8B, 0x8B, 0x97, 0xE9, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x21, 0xB7, 0x0D, 0xFC, 0x15, 0x54, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x83, 0x1C, 0xA4, 0xCD, 0x6B, 0x9D, 0xF2),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE8, 0x4C, 0x48, 0xE4, 0xAA, 0x69, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x7A, 0x27, 0xFC, 0x37, 0x96, 0x1A, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xE7, 0x30, 0xA5, 0xCF, 0x13, 0x46, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xD8, 0xAF, 0x74, 0x23, 0x4D, 0x56, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3D, 0x44, 0x14, 0x1B, 0x97, 0x83, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x47, 0xD7, 0x5F, 0xFD, 0x98, 0x38, 0xF7),
+};
+static const mbedtls_mpi_uint secp384r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x73, 0x64, 0x36, 0xFD, 0x7B, 0xC1, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x5D, 0x32, 0xD2, 0x47, 0x94, 0x89, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xE9, 0x30, 0xAC, 0x06, 0xC8, 0x65, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x6C, 0xB9, 0x1B, 0xF7, 0x61, 0x49, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xFF, 0x32, 0x43, 0x80, 0xDA, 0xA6, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF8, 0x04, 0x01, 0x95, 0x35, 0xCE, 0x21),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x06, 0x46, 0x0D, 0x51, 0xE2, 0xD8, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x57, 0x1D, 0x6F, 0x79, 0xA0, 0xCD, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xFB, 0x36, 0xCA, 0xAD, 0xF5, 0x9E, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x7A, 0x1D, 0x9E, 0x1D, 0x95, 0x48, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x26, 0xA5, 0xB7, 0x15, 0x2C, 0xC2, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x42, 0x72, 0xAA, 0x11, 0xDC, 0xC9, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x6C, 0x64, 0xA7, 0x62, 0x3C, 0xAB, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x6A, 0x44, 0xD8, 0x60, 0xC0, 0xA8, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x76, 0x58, 0x12, 0x57, 0x3C, 0x89, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x4F, 0x83, 0xCE, 0xCB, 0xB8, 0xD0, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0x04, 0xB0, 0xAD, 0xEB, 0xFA, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA4, 0xC3, 0x41, 0x44, 0x4E, 0x65, 0x3E),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x16, 0xA9, 0x1C, 0xE7, 0x65, 0x20, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x53, 0x32, 0xF8, 0xC0, 0xA6, 0xBD, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xF0, 0xE6, 0x57, 0x31, 0xCC, 0x26, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xE3, 0x54, 0x1C, 0x34, 0xD3, 0x17, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xAE, 0xED, 0xFB, 0xCD, 0xE7, 0x1E, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x16, 0x1C, 0x34, 0x40, 0x00, 0x1F, 0xB6),
+};
+static const mbedtls_mpi_uint secp384r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x32, 0x00, 0xC2, 0xD4, 0x3B, 0x1A, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xE0, 0x99, 0x8F, 0x0C, 0x4A, 0x16, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x73, 0x18, 0x1B, 0xD4, 0x94, 0x29, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA4, 0x2D, 0xB1, 0x9D, 0x74, 0x32, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0xF4, 0xB1, 0x0C, 0x37, 0x62, 0x8B, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xFF, 0xDA, 0xE2, 0x35, 0xA3, 0xB6, 0x42),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x49, 0x99, 0x65, 0xC5, 0xED, 0x16, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x42, 0x9A, 0xF3, 0xA7, 0x4E, 0x6F, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x0A, 0x7E, 0xC0, 0xD7, 0x4E, 0x07, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x7A, 0x31, 0x69, 0xA6, 0xB9, 0x15, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xE0, 0x72, 0xA4, 0x3F, 0xB9, 0xF8, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x75, 0x32, 0x85, 0xA2, 0xDE, 0x37, 0x12),
+};
+static const mbedtls_mpi_uint secp384r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC0, 0x0D, 0xCF, 0x25, 0x41, 0xA4, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xFC, 0xB2, 0x48, 0xC3, 0x85, 0x83, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBE, 0x0B, 0x58, 0x2D, 0x7A, 0x9A, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xF3, 0x81, 0x18, 0x1B, 0x74, 0x4F, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x43, 0xA3, 0x0A, 0x16, 0x8B, 0xA3, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x18, 0x81, 0x7B, 0x8D, 0xA2, 0x35, 0x77),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xC4, 0x3F, 0x2C, 0xE7, 0x5F, 0x99, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2B, 0xB7, 0xB6, 0xAD, 0x5A, 0x56, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x00, 0xA4, 0x48, 0xC8, 0xE8, 0xBA, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xA1, 0xB5, 0x13, 0x5A, 0xCD, 0x99, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x95, 0xAD, 0xFC, 0xE2, 0x7E, 0xE7, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x6B, 0xD1, 0x34, 0x99, 0x53, 0x63, 0x0B),
+};
+static const mbedtls_mpi_uint secp384r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x8A, 0x77, 0x5D, 0x2B, 0xAB, 0x01, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x85, 0xD0, 0xD5, 0x49, 0x83, 0x4D, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xC6, 0x91, 0x30, 0x3B, 0x00, 0xAF, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xAE, 0x61, 0x07, 0xE1, 0xB6, 0xE2, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x43, 0x41, 0xFE, 0x9B, 0xB6, 0xF0, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x97, 0xAE, 0xAD, 0x89, 0x88, 0x9E, 0x41),
+};
+static const mbedtls_ecp_point secp384r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(secp384r1_T_0_X, secp384r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_1_X, secp384r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_2_X, secp384r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_3_X, secp384r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_4_X, secp384r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_5_X, secp384r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_6_X, secp384r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_7_X, secp384r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_8_X, secp384r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_9_X, secp384r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_10_X, secp384r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_11_X, secp384r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_12_X, secp384r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_13_X, secp384r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_14_X, secp384r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_15_X, secp384r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_16_X, secp384r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_17_X, secp384r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_18_X, secp384r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_19_X, secp384r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_20_X, secp384r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_21_X, secp384r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_22_X, secp384r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_23_X, secp384r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_24_X, secp384r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_25_X, secp384r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_26_X, secp384r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_27_X, secp384r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_28_X, secp384r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_29_X, secp384r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_30_X, secp384r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(secp384r1_T_31_X, secp384r1_T_31_Y),
+};
+#else
+#define secp384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+/*
+ * Domain parameters for secp521r1
+ */
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static const mbedtls_mpi_uint secp521r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x3F, 0x50, 0x6B, 0xD4, 0x1F, 0x45, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x34, 0x2C, 0x3D, 0x88, 0xDF, 0x73, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBF, 0xB1, 0x3B, 0xBD, 0xC0, 0x52, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x93, 0x7E, 0xEC, 0x51, 0x39, 0x19, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x09, 0xF1, 0x8E, 0x91, 0x89, 0xB4, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x15, 0xB3, 0x99, 0x5B, 0x72, 0xDA, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x40, 0x85, 0xB6, 0xA0, 0x21, 0x9A, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x9A, 0x1C, 0x8E, 0x61, 0xB9, 0x3E, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_2(0x51, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_2(0xC6, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_2(0x18, 0x01),
+};
+static const mbedtls_mpi_uint secp521r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x64, 0x38, 0x91, 0x1E, 0xB7, 0x6F, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x47, 0x9C, 0x89, 0xB8, 0xC9, 0xB5, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0xA5, 0x09, 0xF7, 0x48, 0x01, 0xCC, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x96, 0x2F, 0xBF, 0x83, 0x87, 0x86, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_2(0xFF, 0x01),
+};
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp521r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xBD, 0xE5, 0xC2, 0x31, 0x7E, 0x7E, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x42, 0x6A, 0x85, 0xC1, 0xB3, 0x48, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0xA8, 0xFF, 0xA2, 0x27, 0xC1, 0x1D, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x59, 0xE7, 0xEF, 0x77, 0x5E, 0x4B, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x3D, 0x4D, 0x6B, 0x60, 0xAF, 0x28, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xB5, 0x3F, 0x05, 0x39, 0x81, 0x64, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xB4, 0x95, 0x23, 0x66, 0xCB, 0x3E, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xE9, 0x04, 0x04, 0xB7, 0x06, 0x8E, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x66, 0xD1, 0x9F, 0x76, 0x94, 0xBE, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC2, 0x72, 0xA2, 0x86, 0x70, 0x3C, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0xAD, 0x3F, 0x01, 0xB9, 0x50, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x26, 0xF4, 0x5E, 0x99, 0x72, 0xEE, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0x3E, 0x27, 0x17, 0xBD, 0xAF, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x44, 0x9B, 0x57, 0x49, 0x44, 0xF5, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x1B, 0x7D, 0x2C, 0xB4, 0x5F, 0x8A, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xC0, 0x3B, 0x9A, 0x78, 0x6A, 0x29, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xB1, 0x2D, 0xEB, 0x27, 0x2F, 0xE8, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x4B, 0x44, 0x25, 0xDB, 0x5C, 0x5F, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x85, 0x28, 0x78, 0x2E, 0x75, 0x34, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x57, 0x0F, 0x73, 0x78, 0x7A, 0xE3, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD8, 0xEC, 0xDC, 0xDA, 0x04, 0xAD, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x8A, 0x09, 0xF3, 0x58, 0x79, 0xD8, 0x29),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x03, 0xCB, 0x50, 0x1A, 0x7F, 0x56, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA6, 0x78, 0x38, 0x85, 0x67, 0x0B, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xD5, 0xD2, 0x22, 0xC4, 0x00, 0x3B, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x93, 0x0E, 0x7B, 0x85, 0x51, 0xC3, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA6, 0x5F, 0x54, 0x49, 0x02, 0x81, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xE9, 0x6B, 0x3A, 0x92, 0xE7, 0x72, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x5F, 0x28, 0x9E, 0x91, 0x27, 0x88, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x28, 0x31, 0xB3, 0x84, 0xCA, 0x12, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xF9, 0xAC, 0x22, 0x10, 0x0A, 0x64, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xC6, 0x33, 0x1F, 0x69, 0x19, 0x18, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x48, 0xB8, 0xC7, 0x37, 0x5A, 0x00, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xCC, 0x32, 0xE0, 0xEE, 0x03, 0xC2, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x29, 0xC2, 0xE4, 0x6E, 0x24, 0x20, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x6B, 0x7F, 0x7B, 0xF9, 0xB0, 0xB8, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x7B, 0x3C, 0xE1, 0x19, 0xA1, 0x23, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE3, 0xC2, 0x53, 0xC0, 0x07, 0x13, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFE, 0x36, 0x35, 0x9F, 0x5E, 0x59, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x55, 0x89, 0x84, 0xBC, 0xEF, 0xA2, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x1A, 0x08, 0x67, 0xB4, 0xE7, 0x22, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x26, 0xDF, 0x81, 0x3C, 0x5F, 0x1C, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x4D, 0xD0, 0x0A, 0x48, 0x06, 0xF4, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x18, 0x39, 0xF7, 0xD1, 0x20, 0x77, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x8F, 0x44, 0x13, 0xCB, 0x78, 0x11, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE2, 0x49, 0xEA, 0x43, 0x79, 0x08, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xD1, 0xD8, 0x73, 0x2C, 0x71, 0x2F, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE5, 0xE7, 0xF4, 0x46, 0xAB, 0x20, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x0B, 0xB9, 0x71, 0x1A, 0x27, 0xB7, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xA2, 0x2C, 0xD1, 0xDA, 0xBC, 0xC1, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xA3, 0x10, 0x1F, 0x90, 0xF2, 0xA5, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xFB, 0x20, 0xF4, 0xC0, 0x70, 0xC0, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xA7, 0x99, 0xF0, 0xA5, 0xD3, 0x09, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xE8, 0x14, 0x39, 0xBE, 0xCB, 0x60, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD6, 0x14, 0xA9, 0xC9, 0x20, 0xC3, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x5B, 0xFD, 0x2D, 0x96, 0xBC, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x04, 0x45, 0xBE, 0xCE, 0x75, 0x95, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xDA, 0x58, 0x49, 0x35, 0x09, 0x8D, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xF0, 0xC0, 0x36, 0xF2, 0xA6, 0x2D, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFC, 0x3D, 0xA8, 0xFB, 0x3C, 0xD2, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x4D, 0x71, 0x09, 0x18, 0x42, 0xF0, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xC1, 0xCE, 0x9E, 0x6A, 0x49, 0x60, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xB1, 0x00, 0xF7, 0xA1, 0x7A, 0x31, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xC3, 0x86, 0xCD, 0x20, 0x4A, 0x17, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xAB, 0x8B, 0x47, 0x8D, 0xAA, 0xA6, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x97, 0xF0, 0xBC, 0x2D, 0xDC, 0x9D, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x86, 0xB0, 0x74, 0xB2, 0xF4, 0xF6, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBD, 0xAC, 0xE3, 0x8F, 0x43, 0x5C, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xC3, 0xE2, 0x6E, 0x25, 0x49, 0xCD, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5E, 0x08, 0xB3, 0xB9, 0xAC, 0x5F, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xB7, 0xD1, 0xF4, 0xDC, 0x19, 0xE9, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xE4, 0xFA, 0xE1, 0x36, 0x3E, 0xED, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x67, 0x92, 0x84, 0x6E, 0x48, 0x03, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x95, 0xEF, 0x8F, 0xB2, 0x82, 0x6B, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFA, 0xB9, 0x55, 0x23, 0xFE, 0x09, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x79, 0x85, 0x4B, 0x0E, 0xD4, 0x35, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x27, 0x45, 0x81, 0xE0, 0x88, 0x52, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x63, 0xA2, 0x4B, 0xBC, 0x5D, 0xB1, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x8C, 0x83, 0xD9, 0x3E, 0xD3, 0x42, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x03, 0x3A, 0x31, 0xBA, 0xE9, 0x3A, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x10, 0xCD, 0x2D, 0x00, 0xFE, 0x32, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x6E, 0x1F, 0xDA, 0xF8, 0x6F, 0x4D, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x79, 0x7D, 0x09, 0xE5, 0xD3, 0x03, 0x21),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC3, 0xBE, 0xDF, 0x07, 0x65, 0x49, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x57, 0x33, 0xEF, 0xAE, 0x4F, 0x04, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xE9, 0x9B, 0xFE, 0xBF, 0xE6, 0x85, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xBA, 0xAA, 0x06, 0xC4, 0xC6, 0xB8, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x83, 0x01, 0xA9, 0xF6, 0x51, 0xE7, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xA6, 0x15, 0x8E, 0xAB, 0x1F, 0x10, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x08, 0x27, 0x1A, 0xA1, 0x21, 0xAD, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x09, 0x90, 0x6E, 0x50, 0x90, 0x9A, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x9A, 0xFE, 0xD7, 0xA1, 0xF5, 0xA2, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x7D, 0xE3, 0xDC, 0x21, 0xFB, 0xA4, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBF, 0x07, 0xFF, 0x45, 0xDF, 0x51, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x5C, 0x34, 0x02, 0x62, 0x9B, 0x08, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xCE, 0x9A, 0x6A, 0xEC, 0x75, 0xF6, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x59, 0xF4, 0x78, 0x3C, 0x60, 0xB1, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x37, 0x84, 0x6A, 0xDC, 0xF2, 0x9A, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9A, 0x9A, 0x15, 0x36, 0xE0, 0x2B, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x38, 0x9C, 0x50, 0x3D, 0x1E, 0x37, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x79, 0xF0, 0x92, 0xF2, 0x8B, 0x18, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE0, 0x82, 0x1E, 0x80, 0x82, 0x4B, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xBB, 0x59, 0x6B, 0x8A, 0x77, 0x41, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xF9, 0xD4, 0xB8, 0x4A, 0x82, 0xCF, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x8C, 0xC8, 0x9B, 0x72, 0x9E, 0xF7, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xCE, 0xE9, 0x77, 0x0A, 0x19, 0x59, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xA1, 0x41, 0x6A, 0x72, 0x4B, 0xB4, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x35, 0x43, 0xE2, 0x8C, 0xBE, 0x0D, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xEB, 0xAD, 0xF3, 0xA9, 0xA6, 0x68, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2F, 0xE2, 0x48, 0x0C, 0xDB, 0x1F, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x1E, 0x60, 0x9B, 0x2A, 0xD2, 0xC1, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x64, 0xB5, 0xD2, 0xF6, 0xF6, 0x6E, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x3D, 0x30, 0x78, 0x10, 0x18, 0x41, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x1D, 0x1C, 0xE0, 0x6D, 0x83, 0xD1, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x03, 0x0B, 0xF5, 0x2F, 0x6C, 0x04, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x3E, 0xD5, 0xFC, 0x31, 0x5B, 0x3A, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x82, 0x2F, 0xFB, 0xFE, 0xF8, 0x76, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x26, 0xDA, 0x9C, 0x36, 0xF5, 0x93, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xE7, 0x6E, 0xD2, 0x7D, 0x81, 0x09, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x03, 0xF9, 0x58, 0x48, 0x24, 0xA2, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x79, 0x0C, 0x8E, 0x6B, 0x95, 0xF3, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x10, 0x5C, 0x87, 0x03, 0x39, 0xCF, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xF0, 0xF7, 0xC1, 0x07, 0xA4, 0xF4, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE8, 0x02, 0x89, 0x65, 0xC4, 0x72, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x88, 0xEA, 0x96, 0x67, 0x0B, 0x5D, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x75, 0x60, 0xA8, 0xBD, 0x74, 0xDF, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xE5, 0x71, 0x50, 0x67, 0xD0, 0xD2, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFC, 0xE5, 0xC7, 0x77, 0xB0, 0x7F, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x86, 0x69, 0xCD, 0x0D, 0x9A, 0xBD, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x17, 0xBC, 0xBB, 0x59, 0x85, 0x7D, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xA8, 0x76, 0xAC, 0x80, 0xA9, 0x72, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x78, 0xC1, 0xE2, 0x4D, 0xAF, 0xF9, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x97, 0x8E, 0x74, 0xC4, 0x4B, 0xB2, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD8, 0xF6, 0xF3, 0xAF, 0x2F, 0x52, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x57, 0xF4, 0xCE, 0xEE, 0x43, 0xED, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x46, 0x38, 0xDE, 0x20, 0xFD, 0x59, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x18, 0xE8, 0x58, 0xB9, 0x76, 0x2C, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x54, 0xE4, 0xFE, 0xC7, 0xBC, 0x31, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF8, 0x89, 0xEE, 0x70, 0xB5, 0xB0, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x22, 0x26, 0x9A, 0x53, 0xB9, 0x38, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xA7, 0x19, 0x8C, 0x74, 0x7E, 0x88, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xDA, 0x0A, 0xE8, 0xDA, 0xA5, 0xBE, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x5C, 0xF7, 0xB1, 0x0C, 0x72, 0xFB, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0xE2, 0x23, 0xE7, 0x46, 0xB7, 0xE0, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x36, 0xBC, 0xBD, 0x48, 0x11, 0x8E, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xBB, 0xA1, 0xF7, 0x0B, 0x9E, 0xBF, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x28, 0xE1, 0xA2, 0x8F, 0xFC, 0xFC, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xFE, 0x19, 0x0A, 0xE5, 0xE7, 0x69, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xCD, 0x12, 0xF5, 0xBE, 0xD3, 0x04, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA8, 0x0D, 0x81, 0x59, 0xC4, 0x79, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xF3, 0x4B, 0x92, 0x65, 0xC3, 0x31, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xB5, 0x4F, 0x4D, 0x91, 0xD4, 0xE2, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x09, 0x41, 0x79, 0x1D, 0x4D, 0x0D, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x31, 0x18, 0xBA, 0xA0, 0xF2, 0x6E, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x5B, 0x4D, 0x4F, 0xAF, 0xC9, 0x8C, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x9C, 0x06, 0x68, 0xDE, 0xD8, 0x29),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x04, 0xE1, 0xB5, 0x9D, 0x00, 0xBC, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x95, 0x92, 0x8D, 0x72, 0xD3, 0x37, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x4B, 0x27, 0xA2, 0xE8, 0xA4, 0x26, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x45, 0x9C, 0xA9, 0xCB, 0x9F, 0xBA, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x7E, 0x1B, 0x64, 0xF4, 0xE8, 0xA5, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x20, 0xA9, 0xCA, 0xF3, 0x89, 0xE5, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xED, 0xFC, 0xAB, 0xD9, 0x0A, 0xB9, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x6F, 0x46, 0x7C, 0xCD, 0x78, 0xFF, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAB, 0x71, 0x5A, 0x94, 0xAB, 0x20, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x2E, 0xEE, 0x87, 0x57, 0x1F, 0xAD, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x4C, 0x3D, 0xFB, 0x7E, 0xA1, 0x8B, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xCF, 0x07, 0x86, 0xBA, 0x53, 0x37, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x26, 0xB2, 0xB9, 0xE2, 0x91, 0xE3, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xC9, 0x54, 0x84, 0x08, 0x3D, 0x0B, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xA8, 0x77, 0x2F, 0x64, 0x45, 0x99, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x96, 0x16, 0x1F, 0xDB, 0x96, 0x28, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x2B, 0x8D, 0xFF, 0xA2, 0x4F, 0x55, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xE6, 0x48, 0xBD, 0x99, 0x3D, 0x12, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x84, 0x59, 0xDA, 0xB9, 0xB6, 0x66, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x78, 0x41, 0x92, 0xDF, 0xF4, 0x3F, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x86, 0x6F, 0x4F, 0xBF, 0x67, 0xDF, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x2B, 0x1E, 0x5F, 0x00, 0xEA, 0xF6, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xB9, 0x6A, 0x89, 0xD8, 0xC0, 0xD7, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x9A, 0x32, 0x23, 0xA0, 0x02, 0x91, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x7F, 0x6A, 0x15, 0x64, 0x6A, 0x8B, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x57, 0x82, 0x58, 0xA9, 0x56, 0xB5, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x50, 0x92, 0x60, 0xCC, 0x81, 0x24, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x3D, 0xAD, 0xDA, 0xD9, 0x51, 0x3E, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xFE, 0x8F, 0xB0, 0x0B, 0xDE, 0x2E, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xD2, 0xBE, 0xEF, 0xAC, 0x76, 0x71, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xE8, 0x72, 0x0B, 0xAC, 0xFE, 0xCA, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0xC7, 0xFC, 0xE3, 0x3C, 0x7C, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x04, 0xA7, 0xB9, 0x9B, 0x93, 0xC0, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x48, 0x4B, 0x8E, 0x32, 0xC5, 0xF0, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x42, 0x07, 0xC1, 0xF2, 0xF1, 0x72, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x37, 0x54, 0x9C, 0x88, 0xD2, 0x62, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x19, 0x8A, 0x89, 0x58, 0xA2, 0x0F, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xCC, 0x4C, 0x97, 0x30, 0x66, 0x34, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x6A, 0x1E, 0x1F, 0xDB, 0xC9, 0x5E, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x4D, 0x49, 0xFF, 0x9B, 0x9C, 0xAC, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xE4, 0x4B, 0xF2, 0xD4, 0x1A, 0xD2, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xDA, 0xE8, 0x61, 0x9F, 0xC8, 0x49, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xCB, 0xF2, 0x2D, 0x85, 0xF6, 0x8D, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xC5, 0xCD, 0x2C, 0x79, 0xC6, 0x0E, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x1D, 0x55, 0x0F, 0xF8, 0x22, 0x9F, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x56, 0xBA, 0xE7, 0x57, 0x32, 0xEC, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x9A, 0xC6, 0x4C, 0x09, 0xC4, 0x52, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x1E, 0x6F, 0xF4, 0x7D, 0x27, 0xDD, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x11, 0x16, 0xEC, 0x79, 0x83, 0xAD, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x4E, 0x92, 0x1F, 0x19, 0x7D, 0x65, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xFF, 0x78, 0x15, 0x45, 0x63, 0x32, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x91, 0xD0, 0x78, 0x58, 0xDA, 0x50, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xDE, 0x40, 0xF6, 0x41, 0xB4, 0x3B, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x8D, 0xE0, 0xE1, 0xA9, 0xF0, 0x35, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xD4, 0xBA, 0x7B, 0xCC, 0x1B, 0x3A, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x5A, 0x2E, 0x74, 0x47, 0x14, 0xC3, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xF0, 0x8B, 0x06, 0x15, 0x8E, 0x0E, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xD2, 0xEB, 0x97, 0x50, 0x7D, 0x31, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x93, 0x4C, 0xDB, 0x97, 0x79, 0x44, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xA2, 0xA0, 0x0B, 0xC8, 0x3A, 0x8A, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x50, 0x92, 0x9E, 0x24, 0x1F, 0xCB, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x16, 0xC9, 0xC5, 0x3D, 0x5A, 0xAF, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xE3, 0x97, 0xE4, 0xA8, 0x50, 0xF6, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x57, 0x97, 0x42, 0x78, 0x92, 0x49, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEB, 0x62, 0x24, 0xFB, 0x8F, 0x32, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x0C, 0x36, 0x6E, 0x8F, 0xE8, 0xE8, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xD3, 0x7C, 0xC7, 0x8D, 0x3F, 0x5C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x64, 0x6A, 0x73, 0x10, 0x79, 0xB8, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xF9, 0xEF, 0xA5, 0x20, 0x4A, 0x5C, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xF3, 0xF4, 0x49, 0x5B, 0x73, 0xAA, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xF2, 0xEA, 0x0F, 0x00, 0xAD, 0x53, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xB8, 0x66, 0xED, 0xC4, 0x2B, 0x4C, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x2F, 0xC1, 0x9A, 0x37, 0xD2, 0x7F, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xA7, 0x81, 0x38, 0x64, 0xC9, 0x37, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x3B, 0x6C, 0x9F, 0x5B, 0xD9, 0x8B, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x14, 0xD9, 0x08, 0xD8, 0xD2, 0x7E, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x71, 0xE6, 0x3D, 0xD1, 0xB0, 0xE7, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x81, 0x23, 0xEC, 0x2D, 0x42, 0x45, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x5B, 0x44, 0x6B, 0x89, 0x03, 0x67, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x27, 0xAE, 0x80, 0x5A, 0x33, 0xBE, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB6, 0x64, 0x1A, 0xDF, 0xD3, 0x85, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x8C, 0x22, 0xBA, 0xD0, 0xBD, 0xCC, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x3C, 0x01, 0x3A, 0xFF, 0x9D, 0xC7, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC7, 0x64, 0xB4, 0x59, 0x4E, 0x9F, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x34, 0x0A, 0x41, 0x94, 0xA8, 0xF2, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD4, 0xE4, 0xF0, 0x97, 0x45, 0x6D, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x1F, 0x4D, 0x6D, 0xFE, 0xA0, 0xC4, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x28, 0x5C, 0x40, 0xBB, 0x65, 0xD4, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xA8, 0x87, 0x35, 0x20, 0x3A, 0x89, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFD, 0x4F, 0xAB, 0x2D, 0xD1, 0xD0, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE8, 0x00, 0xFC, 0x69, 0x52, 0xF8, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x9A, 0x99, 0xE1, 0xDC, 0x9C, 0x3F, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x08, 0x98, 0xD9, 0xCA, 0x73, 0xD5, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x2C, 0xE0, 0xA7, 0x3E, 0x91, 0xD7, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x04, 0xB0, 0x54, 0x09, 0xF4, 0x72, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xEE, 0x28, 0xCC, 0xE8, 0x50, 0x78, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x91, 0x03, 0x76, 0xDB, 0x68, 0x24, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xE0, 0x56, 0xB2, 0x5D, 0x12, 0xD3, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x42, 0x59, 0x8B, 0xDF, 0x67, 0xB5, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xCC, 0xE5, 0x31, 0x53, 0x7A, 0x46, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8D, 0x59, 0xB5, 0x1B, 0x0F, 0xF4, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x2F, 0xD1, 0x2C, 0xE0, 0xD8, 0x04, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0xD7, 0xBA, 0xB0, 0xA3, 0x7E, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x08, 0x51, 0x56, 0xA6, 0x76, 0x67, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x17, 0x63, 0xFE, 0x56, 0xD0, 0xD9, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xF6, 0xC3, 0x14, 0x47, 0xC5, 0xA7, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x4C, 0x80, 0xF6, 0xA2, 0x57, 0xA7, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xB3, 0x7B, 0xF8, 0x2F, 0xE1, 0x3E, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0xF4, 0xF9, 0x6B, 0x7B, 0x90, 0xDF, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x82, 0xEF, 0x62, 0xA1, 0x4C, 0x53, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x99, 0x76, 0x01, 0xBA, 0x8D, 0x0F, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xF4, 0x58, 0x73, 0x56, 0xFE, 0xDD, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xCE, 0xF9, 0xE8, 0xA1, 0x34, 0xC3, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x5F, 0xDC, 0x6A, 0x3D, 0xD8, 0x7F, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xF4, 0x51, 0xB8, 0xB8, 0xC1, 0xD7, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x7D, 0x58, 0xD1, 0xD4, 0x1B, 0x4D, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x95, 0xDF, 0x00, 0xD8, 0x21, 0xDE, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x47, 0x3C, 0xC3, 0xB2, 0x01, 0x53, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x17, 0x43, 0x23, 0xBD, 0xCA, 0x71, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xBA, 0x0F, 0x4F, 0xDC, 0x41, 0x54, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x39, 0x26, 0x70, 0x53, 0x32, 0x18, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x46, 0x07, 0x97, 0x3A, 0x57, 0xE0, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x92, 0x4F, 0xCE, 0xDF, 0x25, 0x80, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x6F, 0x9A, 0x03, 0x05, 0x4B, 0xD1, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x01, 0x72, 0x30, 0x90, 0x17, 0x51, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xFB, 0x41, 0x65, 0x5C, 0xB4, 0x2D, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xCD, 0xCD, 0xAA, 0x41, 0xCC, 0xBB, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xCE, 0x08, 0x0A, 0x63, 0xE9, 0xA2, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xA8, 0x21, 0x7F, 0x7A, 0x5B, 0x9B, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x6B, 0x89, 0x44, 0x0A, 0x7F, 0x85, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0xDE, 0x7C, 0x19, 0x5C, 0x65, 0x26, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0xAC, 0x62, 0x29, 0x4A, 0xF1, 0xD0, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x00, 0x40, 0x87, 0xEB, 0xA9, 0x58, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x51, 0x0B, 0xFF, 0x56, 0x35, 0x51, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xAC, 0x08, 0x94, 0x71, 0xDA, 0xEC, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x4D, 0xC5, 0x7B, 0x31, 0x8B, 0x8D, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x05, 0xF1, 0x3E, 0x9E, 0x8F, 0x17, 0x8F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x9C, 0x4B, 0x62, 0x94, 0xAD, 0x49, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xC9, 0xC6, 0x8F, 0xFD, 0x33, 0x44, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x96, 0x17, 0x7F, 0x42, 0xBE, 0xF7, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x29, 0x39, 0x13, 0x08, 0x8D, 0x91, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x79, 0xF9, 0x2F, 0xA9, 0x0A, 0xCF, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x87, 0x7A, 0xA3, 0x19, 0xAB, 0x55, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x0B, 0x01, 0xC5, 0x56, 0x19, 0x9D, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xDE, 0x82, 0x3B, 0xEA, 0xD3, 0x0B, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x6B, 0xC7, 0xF3, 0x0F, 0x82, 0x87, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x2E, 0x23, 0xF2, 0x39, 0x9D, 0x49, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0xDE, 0xAF, 0x7A, 0xEE, 0xB0, 0xDA, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x4E, 0x2A, 0x50, 0xFD, 0x8E, 0xC0, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x0F, 0x7C, 0x76, 0x63, 0xD8, 0x89, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x2D, 0xB9, 0x4E, 0xF4, 0xEE, 0x85, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x95, 0x5C, 0x96, 0x5D, 0xAA, 0x59, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xDB, 0xD2, 0x68, 0x8E, 0x5A, 0x94, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x02, 0xBF, 0x77, 0x9F, 0xB9, 0x4C, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xDC, 0xC0, 0xCF, 0x81, 0x1E, 0xC4, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xCC, 0x37, 0x86, 0xDC, 0xE2, 0x64, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x30, 0xB1, 0x59, 0x20, 0x9D, 0x98, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x0C, 0x9D, 0xF8, 0x20, 0xDC, 0x90, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xA0, 0xF4, 0xE7, 0x3E, 0x9C, 0x9E, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x25, 0xA2, 0xB0, 0x54, 0xCD, 0x2E, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD9, 0x42, 0xB0, 0x80, 0xB0, 0xA3, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xFE, 0x9D, 0x8D, 0x40, 0xFF, 0x27, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x9D, 0xA6, 0x88, 0x3A, 0x8B, 0x6F, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x39, 0xEE, 0x1F, 0x3F, 0xB1, 0x4F, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xD7, 0x9E, 0xFF, 0xD2, 0x35, 0x67, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x4F, 0x15, 0x5D, 0xE3, 0xE8, 0x53, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xF7, 0x24, 0x98, 0xA2, 0xCB, 0x11, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x2E, 0x25, 0xE1, 0x94, 0xC5, 0xA3, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x82, 0x6E, 0xBA, 0xE7, 0x43, 0x25, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x65, 0xB4, 0x49, 0x73, 0x18, 0x35, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0x5B, 0xBC, 0x62, 0x86, 0x4C, 0xC1, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xF2, 0x95, 0xA2, 0xBB, 0xA2, 0x35, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x59, 0x62, 0xB0, 0x4B, 0x1E, 0xB4, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x55, 0xCE, 0xB0, 0x69, 0xBA, 0x63, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x69, 0x86, 0xDB, 0x34, 0x7D, 0x68, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x06, 0xCA, 0x55, 0x44, 0x36, 0x2B, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xD4, 0xC4, 0x3D, 0xCD, 0x9E, 0x69, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x44, 0xE4, 0xBF, 0x31, 0xE6, 0x40, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x4F, 0xFA, 0x75, 0xE3, 0xFB, 0x97, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xC0, 0xBD, 0x1C, 0x48, 0xB0, 0x26, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x7B, 0x32, 0xFA, 0xF2, 0x6D, 0x84, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x21, 0x03, 0x1D, 0x0D, 0x22, 0x55, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xF9, 0x42, 0x03, 0x9C, 0xC2, 0xCB, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xA1, 0x96, 0xD9, 0x9D, 0x11, 0x6F, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x40, 0x57, 0xEB, 0x40, 0x2D, 0xC0, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x96, 0xBB, 0x4F, 0x2F, 0x23, 0xA8, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x29, 0x85, 0x21, 0xA5, 0x50, 0x62, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x7D, 0x92, 0xCF, 0x87, 0x0C, 0x22, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x0E, 0xA5, 0x32, 0x5B, 0xDF, 0x9C, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x96, 0x37, 0x2C, 0x88, 0x35, 0x30, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xB4, 0x69, 0xFF, 0xEB, 0xC6, 0x94, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x55, 0x60, 0xAD, 0xAA, 0x58, 0x14, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xFF, 0xF2, 0xB2, 0xD5, 0xA7, 0xD9, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xAE, 0x54, 0xD2, 0x60, 0x31, 0xF3, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x92, 0x83, 0xE3, 0xF1, 0x42, 0x83, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD2, 0xC8, 0xB7, 0x76, 0x45, 0x7F, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x11, 0xA4, 0xFB, 0x7A, 0x01, 0xBC, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x27, 0x73, 0x8D, 0x02, 0x91, 0x27, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x62, 0xF6, 0xDD, 0x6B, 0xFA, 0x5B, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xCA, 0xA2, 0x44, 0x2C, 0xF0, 0x28, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xF1, 0x7A, 0xA2, 0x42, 0x4C, 0x50, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x83, 0x3E, 0x50, 0xAB, 0x9C, 0xF7, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xED, 0x78, 0xCB, 0x76, 0x69, 0xDA, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x01, 0x1E, 0x43, 0x27, 0x47, 0x6E, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x4F, 0x54, 0xB9, 0x3E, 0xBD, 0xD5, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x40, 0x69, 0x7F, 0x74, 0x9D, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x06, 0x6F, 0x67, 0x68, 0x2B, 0x4D, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x65, 0x41, 0xFC, 0x7C, 0x1E, 0xE8, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x79, 0x37, 0xAF, 0xFD, 0xD2, 0xDA, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xA8, 0x69, 0x56, 0x62, 0xA4, 0xE4, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x71, 0x73, 0x21, 0x8A, 0x17, 0x81, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x55, 0x8F, 0x7B, 0xB8, 0xAF, 0xF7, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xD1, 0xBD, 0xBE, 0x8C, 0xBC, 0x60, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA6, 0x57, 0x8C, 0xAE, 0x5C, 0x19, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x43, 0xE4, 0xD9, 0xD8, 0x7B, 0xE7, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xB9, 0xE4, 0x85, 0x7C, 0x2E, 0xFC, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2E, 0x01, 0x2A, 0x6D, 0x56, 0xBE, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x0C, 0x25, 0x9B, 0xAE, 0x86, 0x37, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x22, 0xB3, 0xCB, 0x99, 0x66, 0xB7, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xF7, 0x90, 0xF0, 0x1B, 0x09, 0x27, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x16, 0x08, 0xEF, 0x39, 0x64, 0x49, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA0, 0xE3, 0x97, 0xA9, 0x07, 0x54, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xFF, 0xE2, 0x00, 0x07, 0x21, 0x88, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xFD, 0x59, 0x53, 0x05, 0x6C, 0x42, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xF7, 0x39, 0x5C, 0x82, 0x36, 0xE8, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x83, 0xA8, 0xE2, 0xA8, 0x43, 0x07, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xAF, 0x2B, 0x79, 0xED, 0xD8, 0x39, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x20, 0x91, 0x7A, 0xC4, 0x07, 0xEF, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x10, 0x2F, 0xAA, 0x0C, 0x94, 0x0E, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x81, 0x87, 0x41, 0x23, 0xEB, 0x55, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x53, 0xCC, 0x79, 0xB6, 0xEB, 0x6C, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x77, 0x73, 0x9D, 0xFC, 0x64, 0x6F, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x40, 0xE3, 0x6D, 0x1C, 0x16, 0x71, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xF4, 0x1B, 0xFF, 0x1C, 0x2F, 0xA5, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x0E, 0x0B, 0x11, 0xF4, 0x8D, 0x93, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xC5, 0x64, 0x6F, 0x24, 0x19, 0xF2, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xB3, 0xAF, 0xA5, 0x0E, 0x4F, 0x5E, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x77, 0xCA, 0xF2, 0x6D, 0xC5, 0xF6, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x18, 0x8E, 0x33, 0x68, 0x6C, 0xE8, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x8B, 0x80, 0x90, 0x19, 0x7F, 0x90, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x80, 0x6B, 0x68, 0xE2, 0x7D, 0xD4, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xC1, 0x67, 0xB3, 0x72, 0xCB, 0xBF, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xD5, 0xD3, 0x1D, 0x14, 0x58, 0x0A, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x7A, 0x65, 0x98, 0xB3, 0x07, 0x4B, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x87, 0x0F, 0x5F, 0xCF, 0xA2, 0x01, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xC9, 0xC8, 0x6E, 0x35, 0x87, 0xA5, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x3E, 0x91, 0xA0, 0xAB, 0x24, 0x1E, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xBC, 0x02, 0x35, 0x70, 0xC1, 0x5F, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x59, 0xA0, 0x50, 0x04, 0x80, 0x52, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x56, 0x6E, 0x42, 0x8F, 0x8C, 0x91, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xA2, 0xCB, 0xA5, 0xDE, 0x14, 0x24, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xCB, 0x74, 0x28, 0xE6, 0xA7, 0xE7, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x73, 0xA8, 0x8F, 0x9E, 0x0E, 0x63, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x1B, 0x77, 0xC7, 0xC1, 0x38, 0xF9, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x3C, 0xCF, 0xA8, 0x7A, 0xD7, 0xF3, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x5F, 0x9A, 0xC9, 0xAD, 0xE9, 0x1A, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0x2B, 0x5E, 0xD5, 0x81, 0x95, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x88, 0x75, 0x29, 0x1F, 0xC7, 0xC7, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA9, 0x5A, 0x4D, 0x63, 0x95, 0xF9, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xCD, 0x04, 0x8F, 0xCD, 0x91, 0xDE, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xD4, 0xFD, 0x25, 0x11, 0x99, 0x6E, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x83, 0x01, 0x3D, 0xFB, 0x56, 0xA5, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x3A, 0xDC, 0x74, 0xC2, 0xD7, 0xCF, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0xBD, 0xF1, 0xDD, 0xA3, 0x07, 0x03, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xBE, 0xE9, 0x2E, 0x58, 0x84, 0x66, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x20, 0x78, 0x37, 0x79, 0x0B, 0xA6, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xF2, 0xAC, 0x65, 0xC8, 0xC9, 0x2F, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x93, 0xE5, 0x0D, 0x0C, 0xC6, 0xB8, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xAD, 0x5C, 0x19, 0x12, 0x61, 0x0E, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x4F, 0x0B, 0x1F, 0x49, 0x7E, 0xCD, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2E, 0x30, 0x61, 0xDB, 0x08, 0x68, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x78, 0xAF, 0xB3, 0x08, 0xC1, 0x69, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x5F, 0x5D, 0xC1, 0x57, 0x6F, 0xD8, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xD3, 0x6A, 0xF7, 0xFD, 0x86, 0xE5, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x63, 0xBD, 0x70, 0x7B, 0x47, 0xE8, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x62, 0xC8, 0x7E, 0x9D, 0x11, 0x2B, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x84, 0xFD, 0xD5, 0x9A, 0x56, 0x7F, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBB, 0xA4, 0x6F, 0x12, 0x6E, 0x4D, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x08, 0xA1, 0x82, 0x9C, 0x62, 0x74, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x22, 0x05, 0x1D, 0x15, 0x35, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x88, 0xCF, 0x5C, 0x05, 0x78, 0xFB, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x6B, 0x2F, 0x79, 0x09, 0x73, 0x67, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA0, 0x80, 0xD8, 0xE8, 0xEC, 0xFB, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xE7, 0x0B, 0xB7, 0x81, 0x48, 0x7B, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x53, 0xA9, 0xED, 0x61, 0x92, 0xD7, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x49, 0xD9, 0x5D, 0x9B, 0x4E, 0x89, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x12, 0xEB, 0x9A, 0xC9, 0xCB, 0xC1, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xDC, 0x95, 0x16, 0xFE, 0x29, 0x70, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x33, 0xB1, 0xD6, 0x78, 0xB9, 0xE2, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xCE, 0x88, 0xC3, 0xFD, 0x7A, 0x6B, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x1E, 0x50, 0x1E, 0xAF, 0xB1, 0x25, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xE7, 0xD7, 0xD5, 0xBD, 0x7A, 0x12, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xAA, 0xA2, 0x80, 0x5D, 0x8F, 0xCD, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x39, 0x79, 0x64, 0xA1, 0x67, 0x3C, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xC7, 0x49, 0xFF, 0x7F, 0xAC, 0xAB, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x54, 0x3E, 0x83, 0xF0, 0x3D, 0xBC, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x92, 0x4A, 0x38, 0x42, 0x8A, 0xAB, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x0B, 0x4F, 0xEE, 0x9E, 0x92, 0xA5, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0xDD, 0x19, 0x96, 0xF2, 0xF0, 0x6B, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xFC, 0xDD, 0xB2, 0x8A, 0xE5, 0x4C, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x06, 0x49, 0xAC, 0x99, 0x7E, 0xF8, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xC8, 0x01, 0x51, 0xEA, 0xF6, 0x52, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x89, 0x66, 0x2B, 0x1F, 0x9B, 0x2A, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x0F, 0x95, 0x07, 0x2B, 0x6C, 0x6E, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0xC3, 0xB4, 0xBB, 0x91, 0x1F, 0xA3, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x6E, 0x54, 0x28, 0x7B, 0x9C, 0x79, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x45, 0xFF, 0xA6, 0xDA, 0xA2, 0x83, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xDE, 0x8F, 0x17, 0x37, 0x82, 0xCB, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x94, 0x3F, 0x26, 0xC9, 0x1D, 0xD9, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x97, 0x28, 0x20, 0xCD, 0xC1, 0xF3, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC9, 0xB5, 0x60, 0x9B, 0x1E, 0xDC, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xB9, 0x5B, 0x7D, 0xA0, 0xB2, 0x8C, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xD1, 0x42, 0xE6, 0x39, 0x33, 0x6D, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xC0, 0xFC, 0xD2, 0x14, 0x5D, 0x3E, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x4A, 0x3E, 0x40, 0x16, 0x93, 0x15, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x24, 0xC1, 0x27, 0x27, 0xE5, 0x4B, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x50, 0xD8, 0xBC, 0xC1, 0x46, 0x22, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x0E, 0x60, 0xA1, 0xB3, 0x50, 0xD4, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xB1, 0x26, 0xB6, 0x6D, 0x47, 0x5A, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0xAC, 0x11, 0x35, 0x3E, 0xB9, 0xF4, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x97, 0xFA, 0xBB, 0x6B, 0x39, 0x13, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x34, 0x12, 0x75, 0x8E, 0x9B, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x9E, 0xCD, 0x29, 0xB6, 0xEF, 0x8D, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xAC, 0xE9, 0x25, 0x27, 0xBB, 0x78, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x7A, 0xA8, 0xD3, 0xE3, 0x66, 0xE5, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x4C, 0xC4, 0x2C, 0x76, 0x81, 0x50, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x71, 0x08, 0xB8, 0x52, 0x7C, 0xAF, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x59, 0x24, 0xDD, 0xFB, 0x2F, 0xD0, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCD, 0x56, 0xE9, 0xAC, 0x91, 0xE6, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x64, 0x20, 0xC6, 0x9F, 0xE4, 0xEF, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x2C, 0x8F, 0x8C, 0x97, 0xF6, 0x22, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xF4, 0x88, 0xAA, 0xA8, 0xD7, 0xA5, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x6C, 0xAE, 0x83, 0xB1, 0x55, 0x55, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x67, 0x84, 0x47, 0x7C, 0x83, 0x5C, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x10, 0x4D, 0xDD, 0x30, 0x60, 0xB0, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xA7, 0x36, 0x76, 0x24, 0x32, 0x9F, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x42, 0x81, 0xFB, 0xA4, 0x2E, 0x13, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x94, 0x91, 0xFF, 0x99, 0xA0, 0x09, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x83, 0xA1, 0x76, 0xAF, 0x37, 0x5C, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA8, 0x04, 0x86, 0xC4, 0xA9, 0x79, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x8C, 0xC2, 0x34, 0xFB, 0x83, 0x28, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x03, 0x7D, 0x5E, 0x9E, 0x0E, 0xB0, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x02, 0x46, 0x7F, 0xB9, 0xAC, 0xBB, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xED, 0x48, 0xC2, 0x96, 0x4D, 0x56, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xC5, 0xD1, 0xE6, 0x1C, 0x7E, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x2E, 0x18, 0x71, 0x2D, 0x7B, 0xD7, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x46, 0x9D, 0xDE, 0xAA, 0x78, 0x8E, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD7, 0x69, 0x2E, 0xE1, 0xD9, 0x48, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp521r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFF, 0x9E, 0x09, 0x22, 0x22, 0xE6, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x14, 0x28, 0x13, 0x1B, 0x62, 0x12, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x7F, 0x67, 0x03, 0xB0, 0xC0, 0xF3, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xC3, 0x0F, 0xFB, 0x25, 0x48, 0x3E, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x6E, 0x53, 0x98, 0x36, 0xB3, 0xD3, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x81, 0x54, 0x22, 0xA4, 0xCC, 0xC1, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xBA, 0xFC, 0xA9, 0xDF, 0x68, 0x86, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x92, 0x0E, 0xC3, 0xF2, 0x58, 0xE8, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp521r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(secp521r1_T_0_X, secp521r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_1_X, secp521r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_2_X, secp521r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_3_X, secp521r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_4_X, secp521r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_5_X, secp521r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_6_X, secp521r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_7_X, secp521r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_8_X, secp521r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_9_X, secp521r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_10_X, secp521r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_11_X, secp521r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_12_X, secp521r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_13_X, secp521r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_14_X, secp521r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_15_X, secp521r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_16_X, secp521r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_17_X, secp521r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_18_X, secp521r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_19_X, secp521r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_20_X, secp521r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_21_X, secp521r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_22_X, secp521r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_23_X, secp521r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_24_X, secp521r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_25_X, secp521r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_26_X, secp521r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_27_X, secp521r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_28_X, secp521r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_29_X, secp521r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_30_X, secp521r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(secp521r1_T_31_X, secp521r1_T_31_Y),
+};
+#else
+#define secp521r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static const mbedtls_mpi_uint secp192k1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xEE, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x03, 0x00),
+};
+static const mbedtls_mpi_uint secp192k1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xDE, 0x74, 0x6A, 0x46, 0x69, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xFC, 0xF2, 0x26, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp192k1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0xE0, 0xEA, 0xB1, 0xD1, 0xA5, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF4, 0xB7, 0x80, 0x02, 0x7D, 0xB0, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xE9, 0x57, 0xC0, 0x0E, 0xF1, 0x4F, 0xDB),
+};
+static const mbedtls_mpi_uint secp192k1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x2F, 0x5E, 0xD9, 0x88, 0xAA, 0x82, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x86, 0xBE, 0x15, 0xD0, 0x63, 0x41, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x28, 0x56, 0x9C, 0x6D, 0x2F, 0x2F, 0x9B),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x77, 0x3D, 0x0D, 0x85, 0x48, 0xA8, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x07, 0xDF, 0x1D, 0xB3, 0xB3, 0x01, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x86, 0xF6, 0xAF, 0x19, 0x2A, 0x88, 0x2E),
+};
+static const mbedtls_mpi_uint secp192k1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x90, 0xB6, 0x2F, 0x48, 0x36, 0x4C, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x11, 0x14, 0xA6, 0xCB, 0xBA, 0x15, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB0, 0xF2, 0xD4, 0xC9, 0xDA, 0xBA, 0xD7),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0xC1, 0x9C, 0xE6, 0xBB, 0xFB, 0xCF, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x19, 0xAC, 0x5A, 0xC9, 0x8A, 0x1C, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xF6, 0x76, 0x86, 0x89, 0x27, 0x8D, 0x28),
+};
+static const mbedtls_mpi_uint secp192k1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xE0, 0x6F, 0x34, 0xBA, 0x5E, 0xD3, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xDC, 0xA6, 0x87, 0xC9, 0x9D, 0xC0, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x11, 0x7E, 0xD6, 0xF7, 0x33, 0xFC, 0xE4),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x37, 0x3E, 0xC0, 0x7F, 0x62, 0xE7, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3B, 0x69, 0x9D, 0x44, 0xBC, 0x82, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x84, 0xB3, 0x5F, 0x2B, 0xA5, 0x9E, 0x2C),
+};
+static const mbedtls_mpi_uint secp192k1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x95, 0xEB, 0x4C, 0x04, 0xB4, 0xF4, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xAD, 0x4B, 0xD5, 0x9A, 0xEB, 0xC4, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xB1, 0xC5, 0x59, 0xE3, 0xD5, 0x16, 0x2A),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x2A, 0xCC, 0xAC, 0xD0, 0xEE, 0x50, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x83, 0xE0, 0x5B, 0x14, 0x44, 0x52, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x15, 0x2D, 0x78, 0xF6, 0x51, 0x32, 0xCF),
+};
+static const mbedtls_mpi_uint secp192k1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x36, 0x9B, 0xDD, 0xF8, 0xDD, 0xEF, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xB1, 0x6A, 0x2B, 0xAF, 0xEB, 0x2B, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x87, 0x7A, 0x66, 0x5D, 0x5B, 0xDF, 0x8F),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x45, 0xE5, 0x81, 0x9B, 0xEB, 0x37, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x29, 0xE2, 0x20, 0x64, 0x23, 0x6B, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x1D, 0x41, 0xE1, 0x9B, 0x61, 0x7B, 0xD9),
+};
+static const mbedtls_mpi_uint secp192k1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x57, 0xA3, 0x0A, 0x13, 0xE4, 0x59, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x6E, 0x4A, 0x48, 0x84, 0x90, 0xAC, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB8, 0xF5, 0xF3, 0xDE, 0xA0, 0xA1, 0x1D),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x32, 0x81, 0xA9, 0x91, 0x5A, 0x4E, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xA8, 0x90, 0xBE, 0x0F, 0xEC, 0xC0, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x30, 0xD7, 0x08, 0xAE, 0xC4, 0x3A, 0xA5),
+};
+static const mbedtls_mpi_uint secp192k1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x55, 0xE3, 0x76, 0xB3, 0x64, 0x74, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x75, 0xD4, 0xDB, 0x98, 0xD7, 0x39, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xEB, 0x8A, 0xAB, 0x16, 0xD9, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xBE, 0xF9, 0xC7, 0xC7, 0xBA, 0xF3, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x85, 0x59, 0xF3, 0x60, 0x41, 0x02, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x1C, 0x4A, 0xA4, 0xC7, 0xED, 0x66, 0xBC),
+};
+static const mbedtls_mpi_uint secp192k1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x2E, 0x46, 0x52, 0x18, 0x87, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x35, 0x5A, 0x75, 0xAC, 0x4D, 0x75, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0x2F, 0xAC, 0xFC, 0xBC, 0xE6, 0x93, 0x5E),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x4D, 0xC9, 0x18, 0xE9, 0x00, 0xEB, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x69, 0x72, 0x07, 0x5A, 0x59, 0xA8, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x65, 0x83, 0x20, 0x10, 0xF9, 0x69, 0x82),
+};
+static const mbedtls_mpi_uint secp192k1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x56, 0x7F, 0x9F, 0xBF, 0x46, 0x0C, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xCF, 0xF0, 0xDC, 0xDF, 0x2D, 0xE6, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xF0, 0x72, 0x3A, 0x7A, 0x03, 0xE5, 0x22),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xAA, 0x57, 0x13, 0x37, 0xA7, 0x2C, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xAC, 0xA2, 0x23, 0xF9, 0x84, 0x60, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xEB, 0x51, 0x70, 0x64, 0x78, 0xCA, 0x05),
+};
+static const mbedtls_mpi_uint secp192k1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xCC, 0x30, 0x62, 0x93, 0x46, 0x13, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x26, 0xCC, 0x6C, 0x3D, 0x5C, 0xDA, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xAA, 0xB8, 0x03, 0xA4, 0x1A, 0x00, 0x96),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x9D, 0xE6, 0xCC, 0x4E, 0x2E, 0xC2, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xC3, 0x8A, 0xAE, 0x6F, 0x40, 0x05, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x8F, 0x4A, 0x4D, 0x35, 0xD3, 0x50, 0x9D),
+};
+static const mbedtls_mpi_uint secp192k1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xFD, 0x98, 0xAB, 0xC7, 0x03, 0xB4, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x40, 0xD2, 0x9F, 0xCA, 0xD0, 0x53, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x84, 0x00, 0x6F, 0xC8, 0xAD, 0xED, 0x8D),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xD3, 0x57, 0xD7, 0xC3, 0x07, 0xBD, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xBA, 0x47, 0x1D, 0x3D, 0xEF, 0x98, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC0, 0x6C, 0x7F, 0x12, 0xEE, 0x9F, 0x67),
+};
+static const mbedtls_mpi_uint secp192k1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x02, 0xDA, 0x79, 0xAA, 0xC9, 0x27, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x79, 0xC7, 0x71, 0x84, 0xCB, 0xE5, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x37, 0x06, 0xBA, 0xB5, 0xD5, 0x18, 0x4C),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x65, 0x72, 0x6C, 0xF2, 0x63, 0x27, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0xBC, 0x71, 0xDF, 0x75, 0xF8, 0x98, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x70, 0x9B, 0xDC, 0xE7, 0x18, 0x71, 0xFF),
+};
+static const mbedtls_mpi_uint secp192k1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x5B, 0x9F, 0x00, 0x5A, 0xB6, 0x80, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xE0, 0xBB, 0xFC, 0x5E, 0x78, 0x9C, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x03, 0x68, 0x83, 0x3D, 0x2E, 0x4C, 0xDD),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x49, 0x23, 0xA8, 0xCB, 0x3B, 0x1A, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x3D, 0xA7, 0x46, 0xCF, 0x75, 0xB6, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0xFD, 0x30, 0x01, 0xB6, 0xEF, 0xF9, 0xE8),
+};
+static const mbedtls_mpi_uint secp192k1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xFA, 0xDA, 0xB8, 0x29, 0x42, 0xC9, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xD7, 0xA0, 0xE6, 0x6B, 0x86, 0x61, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0xE9, 0xD3, 0x37, 0xD8, 0xE7, 0x35, 0xA9),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC8, 0x8E, 0xB1, 0xCB, 0xB1, 0xB5, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xD7, 0x46, 0x7D, 0xAF, 0xE2, 0xDC, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x46, 0xE7, 0xD8, 0x76, 0x31, 0x90, 0x76),
+};
+static const mbedtls_mpi_uint secp192k1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD3, 0xF4, 0x74, 0xE1, 0x67, 0xD8, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x70, 0x3C, 0xC8, 0xAF, 0x5F, 0xF4, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x4E, 0xED, 0x5C, 0x43, 0xB3, 0x16, 0x35),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAE, 0xD1, 0xDD, 0x31, 0x14, 0xD3, 0xF0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x14, 0x06, 0x13, 0x12, 0x1C, 0x81, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xF9, 0x0C, 0x91, 0xF7, 0x67, 0x59, 0x63),
+};
+static const mbedtls_mpi_uint secp192k1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x91, 0xE2, 0xF4, 0x9D, 0xEB, 0x88, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x82, 0x30, 0x9C, 0xAE, 0x18, 0x4D, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x79, 0xCF, 0x17, 0xA5, 0x1E, 0xE8, 0xC8),
+};
+static const mbedtls_ecp_point secp192k1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp192k1_T_0_X, secp192k1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_1_X, secp192k1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_2_X, secp192k1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_3_X, secp192k1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_4_X, secp192k1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_5_X, secp192k1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_6_X, secp192k1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_7_X, secp192k1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_8_X, secp192k1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_9_X, secp192k1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_10_X, secp192k1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_11_X, secp192k1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_12_X, secp192k1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_13_X, secp192k1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_14_X, secp192k1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp192k1_T_15_X, secp192k1_T_15_Y),
+};
+#else
+#define secp192k1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static const mbedtls_mpi_uint secp224k1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xE5, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp224k1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x05, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_4(0x33, 0x5B, 0x45, 0xA1),
+};
+static const mbedtls_mpi_uint secp224k1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_4(0xED, 0x9F, 0x08, 0x7E),
+};
+static const mbedtls_mpi_uint secp224k1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xB1, 0x9F, 0x76, 0x71, 0xA9, 0xF0, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x61, 0xEC, 0xD2, 0xE8, 0xDC, 0x01, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp224k1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xA4, 0xB7, 0xB6, 0x0E, 0x65, 0x7E, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x75, 0x70, 0xE4, 0xE9, 0x67, 0xA4, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x28, 0xFC, 0x30, 0xDF, 0x99, 0xF0, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x5B, 0x45, 0xA1, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x61, 0x6D, 0x55, 0xDB, 0x4B, 0xCA, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xBD, 0xB0, 0xC0, 0xF7, 0x19, 0xE3, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xFB, 0xCA, 0x82, 0x42, 0x34, 0xBA, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x9F, 0x08, 0x7E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x6C, 0x22, 0x22, 0x40, 0x89, 0xAE, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x92, 0xE1, 0x87, 0x56, 0x35, 0xAF, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xAF, 0x08, 0x35, 0x27, 0xEA, 0x04, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x53, 0xFD, 0xCF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0xD0, 0x9F, 0x8D, 0xF3, 0x63, 0x54, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xDB, 0x0F, 0x61, 0x54, 0x26, 0xD1, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x21, 0xF7, 0x1B, 0xB5, 0x1D, 0xF6, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x05, 0xDA, 0x8F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x26, 0x73, 0xBC, 0xE4, 0x29, 0x62, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x95, 0x17, 0x8B, 0xC3, 0x9B, 0xAC, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0xDB, 0x77, 0xDF, 0xDD, 0x13, 0x04, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0xFC, 0x22, 0x93, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0xF1, 0x5A, 0x37, 0xEF, 0x79, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x01, 0x37, 0xAC, 0x9A, 0x5B, 0x51, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x75, 0x13, 0xA9, 0x4A, 0xAD, 0xFE, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x82, 0x6F, 0x66, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x5E, 0xF0, 0x40, 0xC3, 0xA6, 0xE2, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x9A, 0x6F, 0xCF, 0x11, 0x26, 0x66, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0x73, 0xA8, 0xCF, 0x2B, 0x12, 0x36, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xB3, 0x0A, 0x58, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x79, 0x00, 0x55, 0x04, 0x34, 0x90, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x54, 0x1C, 0xC2, 0x45, 0x0C, 0x1B, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x19, 0xAB, 0xA8, 0xFC, 0x73, 0xDC, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xFB, 0x93, 0xCE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x75, 0xD0, 0x66, 0x95, 0x86, 0xCA, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xEA, 0x29, 0x16, 0x6A, 0x38, 0xDF, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xA2, 0x36, 0x2F, 0xDC, 0xBB, 0x5E, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x89, 0x59, 0x49, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xA3, 0x99, 0x9D, 0xB8, 0x77, 0x9D, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x93, 0x43, 0x47, 0xC6, 0x5C, 0xF9, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x00, 0x79, 0x42, 0x64, 0xB8, 0x25, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x54, 0xB4, 0x33, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x0C, 0x42, 0x90, 0x83, 0x0B, 0x31, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x2E, 0xAE, 0xC8, 0xC7, 0x5F, 0xD2, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xBC, 0xAD, 0x41, 0xE7, 0x32, 0x3A, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x97, 0x52, 0x83, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x13, 0x7A, 0xBD, 0xAE, 0x94, 0x60, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x9B, 0x95, 0xB4, 0x6E, 0x68, 0xB2, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x49, 0xBE, 0x51, 0xFE, 0x66, 0x15, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x37, 0xE4, 0xFE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x9B, 0xEE, 0x64, 0xC9, 0x1B, 0xBD, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x5F, 0x34, 0xA9, 0x0B, 0xB7, 0x25, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0x13, 0xB1, 0x38, 0xFB, 0x9D, 0x78, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xE7, 0x1B, 0xFA, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xB3, 0xB7, 0x44, 0x92, 0x6B, 0x00, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x82, 0x44, 0x3E, 0x18, 0x1A, 0x58, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0xF8, 0xC0, 0xE4, 0xEE, 0xC1, 0xBF, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x32, 0x27, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x9A, 0x42, 0x62, 0x8B, 0x26, 0x54, 0x21),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x85, 0x74, 0xA0, 0x79, 0xA8, 0xEE, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x36, 0x60, 0xB3, 0x28, 0x4D, 0x55, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x27, 0x82, 0x29, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xFC, 0x73, 0x77, 0xAF, 0x5C, 0xAC, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xED, 0xE5, 0xF6, 0x1D, 0xA8, 0x67, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xDE, 0x33, 0x1C, 0xF1, 0x80, 0x73, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xE2, 0xDE, 0x3C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x3E, 0x6B, 0xFE, 0xF0, 0x04, 0x28, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xB2, 0x14, 0x9D, 0x18, 0x11, 0x7D, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xC4, 0xD6, 0x2E, 0x6E, 0x57, 0x4D, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x55, 0x1B, 0xDE, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xF7, 0x17, 0xBC, 0x45, 0xAB, 0x16, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xB0, 0xEF, 0x61, 0xE3, 0x20, 0x7C, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x85, 0x41, 0x4D, 0xF1, 0x7E, 0x4D, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC2, 0x9B, 0x5E, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x2E, 0x49, 0x3D, 0x3E, 0x4B, 0xD3, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x2B, 0x9D, 0xD5, 0x27, 0xFA, 0xCA, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0xB3, 0x6A, 0xE0, 0x79, 0x14, 0x28, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x1E, 0xDC, 0xF5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x44, 0x56, 0xCD, 0xFC, 0x9F, 0x09, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x8C, 0x59, 0xA4, 0x64, 0x2A, 0x3A, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xA0, 0xB5, 0x86, 0x4E, 0x69, 0xDA, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x8B, 0x11, 0x38, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x17, 0x16, 0x12, 0x17, 0xDC, 0x00, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0x76, 0x24, 0x6C, 0x97, 0x2C, 0xB5, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x71, 0xE3, 0xB0, 0xBB, 0x4E, 0x50, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0x48, 0x26, 0xD5, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x5F, 0x28, 0xF6, 0x01, 0x5A, 0x60, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x95, 0xFE, 0xD0, 0xAD, 0x15, 0xD4, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x5B, 0x7A, 0xFD, 0x80, 0xF7, 0x9F, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xBC, 0x1B, 0xDF, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xE6, 0xDF, 0x14, 0x29, 0xF4, 0xD4, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x12, 0xDD, 0xEC, 0x5B, 0x8A, 0x59, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x92, 0x3E, 0x35, 0x08, 0xE9, 0xCF, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0x35, 0x29, 0x97, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xDB, 0xD6, 0x6A, 0xC5, 0x43, 0xA4, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x33, 0x50, 0x61, 0x70, 0xA1, 0xE9, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x15, 0x6E, 0x5F, 0x01, 0x0C, 0x8C, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xA1, 0x9A, 0x9D, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xC6, 0xF7, 0xE2, 0x4A, 0xCD, 0x9B, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x4D, 0x5A, 0xB8, 0xE2, 0x6D, 0xA6, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x3F, 0xB6, 0x17, 0xE3, 0x2C, 0x6F, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xA4, 0x59, 0x51, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x4F, 0x7C, 0x49, 0xCD, 0x6E, 0xEB, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xC9, 0x1F, 0xB7, 0x4D, 0x98, 0xC7, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4C, 0xFD, 0x98, 0x20, 0x95, 0xBB, 0x20, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xF2, 0x73, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xEF, 0xFB, 0x30, 0xFA, 0x12, 0x1A, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x4C, 0x24, 0xB4, 0x5B, 0xC9, 0x4C, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xDD, 0x5E, 0x84, 0x95, 0x4D, 0x26, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xFA, 0xF9, 0x3A, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0xA3, 0x2E, 0x7A, 0xDC, 0xA7, 0x53, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x9F, 0x81, 0x84, 0xB2, 0x0D, 0xFE, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x89, 0x1B, 0x77, 0x0C, 0x89, 0x71, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xFF, 0x7F, 0xB2, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xE9, 0x2C, 0x79, 0xA6, 0x3C, 0xAD, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xE0, 0x23, 0x02, 0x86, 0x0F, 0x77, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x93, 0x6D, 0xE9, 0xF9, 0x3C, 0xBE, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0xE7, 0x24, 0x92, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x3C, 0x5B, 0x4B, 0x1B, 0x25, 0x37, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xE8, 0x38, 0x1B, 0xA1, 0x5A, 0x2E, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x19, 0xFD, 0xF4, 0x78, 0x01, 0x6B, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0x69, 0x37, 0x4F, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xE2, 0xBF, 0xD3, 0xEC, 0x95, 0x9C, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x7B, 0xFC, 0xD5, 0xD3, 0x25, 0x5E, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x55, 0x09, 0xA2, 0x58, 0x6A, 0xC9, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xCC, 0x3B, 0xD9, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp224k1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x08, 0x65, 0x5E, 0xCB, 0xAB, 0x48, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x79, 0x8B, 0xC0, 0x11, 0xC0, 0x69, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xE8, 0x8C, 0x4C, 0xC5, 0x28, 0xE4, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x1F, 0x34, 0x5C, 0x00, 0x00, 0x00, 0x00),
+};
+static const mbedtls_ecp_point secp224k1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp224k1_T_0_X, secp224k1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_1_X, secp224k1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_2_X, secp224k1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_3_X, secp224k1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_4_X, secp224k1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_5_X, secp224k1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_6_X, secp224k1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_7_X, secp224k1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_8_X, secp224k1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_9_X, secp224k1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_10_X, secp224k1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_11_X, secp224k1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_12_X, secp224k1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_13_X, secp224k1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_14_X, secp224k1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp224k1_T_15_X, secp224k1_T_15_Y),
+};
+#else
+#define secp224k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static const mbedtls_mpi_uint secp256k1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xFC, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+static const mbedtls_mpi_uint secp256k1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x00, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_2(0x07, 0x00),
+};
+static const mbedtls_mpi_uint secp256k1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x41, 0x36, 0xD0, 0x8C, 0x5E, 0xD2, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xA0, 0x48, 0xAF, 0xE6, 0xDC, 0xAE, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint secp256k1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x17, 0xF8, 0x16, 0x5B, 0x81, 0xF2, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x28, 0xCE, 0x2D, 0xDB, 0xFC, 0x9B, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x0B, 0x87, 0xCE, 0x95, 0x62, 0xA0, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xBB, 0xDC, 0xF9, 0x7E, 0x66, 0xBE, 0x79),
+};
+static const mbedtls_mpi_uint secp256k1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0xD4, 0x10, 0xFB, 0x8F, 0xD0, 0x47, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x54, 0x85, 0xA6, 0x48, 0xB4, 0x17, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x08, 0x11, 0x0E, 0xFC, 0xFB, 0xA4, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC4, 0xA3, 0x26, 0x77, 0xDA, 0x3A, 0x48),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xEE, 0xD7, 0x1E, 0x67, 0x86, 0x32, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0xB1, 0xA9, 0xD5, 0xCC, 0x27, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x0E, 0x11, 0x01, 0x71, 0xFE, 0x92, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x28, 0x63, 0x6D, 0x72, 0x09, 0xA6, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0x69, 0xDC, 0x3E, 0x2C, 0x75, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xB7, 0x3F, 0x30, 0x26, 0x3C, 0xDF, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xBE, 0xB9, 0x5D, 0x0E, 0xE8, 0x5E, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0xC3, 0x05, 0xD6, 0xB7, 0xD5, 0x24, 0xFC),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0xCF, 0x7B, 0xDC, 0xCD, 0xC3, 0x39, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0xDA, 0xB9, 0xE5, 0x64, 0xA7, 0x47, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0x46, 0xA8, 0x61, 0xF6, 0x23, 0xEB, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xC1, 0xFF, 0xE4, 0x55, 0xD5, 0xC2, 0xBF),
+};
+static const mbedtls_mpi_uint secp256k1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xBE, 0xB9, 0x59, 0x24, 0x13, 0x4A, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x45, 0x12, 0xDE, 0xBA, 0x4F, 0xEF, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x08, 0xBF, 0xC1, 0x66, 0xAA, 0x0A, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xFE, 0x30, 0x55, 0x31, 0x86, 0xA7, 0xB4),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBF, 0x18, 0x81, 0x67, 0x27, 0x42, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x05, 0x83, 0xA4, 0xDD, 0x57, 0xD3, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x63, 0xAB, 0xE4, 0x90, 0x70, 0xD0, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x5D, 0xFD, 0xA0, 0xEF, 0xCF, 0x1C, 0x54),
+};
+static const mbedtls_mpi_uint secp256k1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x80, 0xE4, 0xF6, 0x09, 0xBC, 0x57, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x9F, 0x6E, 0x88, 0x54, 0x6E, 0x51, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x5F, 0x85, 0xFB, 0x84, 0x3E, 0x4A, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x19, 0xF5, 0x55, 0xC9, 0x07, 0xD8, 0xCE),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xB4, 0xC3, 0xD9, 0x5C, 0xA0, 0xD4, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x30, 0xAF, 0x59, 0x9B, 0xF8, 0x04, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xA6, 0xFD, 0x66, 0x7B, 0xC3, 0x39, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE0, 0xBF, 0xF0, 0xC2, 0xE9, 0x71, 0xA4, 0x9E),
+};
+static const mbedtls_mpi_uint secp256k1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x2D, 0xB9, 0x88, 0x28, 0xF1, 0xBE, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xF3, 0x1A, 0x0E, 0xB9, 0x01, 0x66, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0xA4, 0xF4, 0x05, 0xD0, 0xAA, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x39, 0x1E, 0x47, 0xE5, 0x68, 0xC8, 0xC0),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xB9, 0xFC, 0xE0, 0x33, 0x8A, 0x7D, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x93, 0xA5, 0x53, 0x55, 0x16, 0xB4, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x5F, 0xEA, 0x9B, 0x29, 0x52, 0x71, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xF0, 0x24, 0xB8, 0x7D, 0xB7, 0xA0, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x00, 0x27, 0xB2, 0xDF, 0x73, 0xA2, 0xE0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x2E, 0x4D, 0x7C, 0xDE, 0x7A, 0x23, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x65, 0x60, 0xC7, 0x97, 0x1E, 0xA4, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x13, 0x5B, 0x77, 0x59, 0xCB, 0x36, 0xE1),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xBC, 0x9F, 0x9E, 0x2D, 0x53, 0x2A, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x5F, 0x64, 0x9F, 0x1A, 0x19, 0xE6, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x7B, 0x39, 0xD2, 0xDB, 0x85, 0x84, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xC7, 0x0D, 0x58, 0x6E, 0x3F, 0x52, 0x15),
+};
+static const mbedtls_mpi_uint secp256k1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x68, 0x19, 0x0B, 0x68, 0xC9, 0x1E, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x4E, 0x21, 0x49, 0x3D, 0x55, 0xCC, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xF9, 0x25, 0x45, 0x54, 0x45, 0xB1, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xF7, 0xCD, 0x80, 0xA4, 0x04, 0x05),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x1E, 0x88, 0xC4, 0xAA, 0x18, 0x7E, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xAC, 0xD9, 0xB2, 0xA1, 0xC0, 0x71, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xA2, 0xF1, 0x15, 0xA6, 0x5F, 0x6C, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x5B, 0x05, 0xBC, 0xB7, 0xC6, 0x4E, 0x72),
+};
+static const mbedtls_mpi_uint secp256k1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x80, 0xF8, 0x5C, 0x20, 0x2A, 0xE1, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x48, 0x2E, 0x68, 0x82, 0x7F, 0xEB, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x3B, 0x25, 0xDB, 0x32, 0x4D, 0x88, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0x6E, 0xA6, 0xB6, 0x6D, 0x62, 0x78, 0x22),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4D, 0x3E, 0x86, 0x58, 0xC3, 0xEB, 0xBA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x89, 0x33, 0x18, 0x21, 0x1D, 0x9B, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x9D, 0xFF, 0xC3, 0x79, 0xC1, 0x88, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0xD4, 0x48, 0x53, 0xE8, 0xAD, 0x21, 0x16),
+};
+static const mbedtls_mpi_uint secp256k1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x7B, 0xDE, 0xCB, 0xD8, 0x39, 0x17, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xF3, 0x03, 0xF2, 0x5C, 0xBC, 0xC8, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0xAE, 0x4C, 0xB0, 0x16, 0xA4, 0x93, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8B, 0x6B, 0xDC, 0xD7, 0x9A, 0x3E, 0x7E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x2D, 0x7A, 0xD2, 0x59, 0x05, 0xA2, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x56, 0x09, 0x32, 0xF1, 0xE8, 0xE3, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0xCA, 0xE5, 0x2E, 0xF0, 0xFB, 0x18, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x85, 0xA9, 0x23, 0x15, 0x31, 0x1F, 0x0E),
+};
+static const mbedtls_mpi_uint secp256k1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xE5, 0xB1, 0x86, 0xB9, 0x6E, 0x8D, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x77, 0xFC, 0xC9, 0xA3, 0x3F, 0x89, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x6A, 0xDC, 0x25, 0xB0, 0xC7, 0x41, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x11, 0x6B, 0xA6, 0x11, 0x62, 0xD4, 0x2D),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7D, 0x34, 0xB3, 0x20, 0x7F, 0x37, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xD4, 0x45, 0xE8, 0xC2, 0xE9, 0xC5, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x32, 0x3B, 0x25, 0x7E, 0x79, 0xAF, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xE4, 0x54, 0x71, 0xBE, 0x35, 0x4E, 0xD0),
+};
+static const mbedtls_mpi_uint secp256k1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x94, 0xDD, 0x8F, 0xB5, 0xC2, 0xDD, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x49, 0xE9, 0x1C, 0x2F, 0x08, 0x49, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xB6, 0x03, 0x88, 0x6F, 0xB8, 0x15, 0x67),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xD3, 0x1C, 0xF3, 0xA5, 0xEB, 0x79, 0x01),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF9, 0x43, 0x88, 0x89, 0x0D, 0x06, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x2D, 0xF5, 0x98, 0x32, 0xF6, 0xB1, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x73, 0x8F, 0x2B, 0x50, 0x27, 0x0A, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE3, 0xBD, 0x16, 0x05, 0xC8, 0x93, 0x12),
+};
+static const mbedtls_mpi_uint secp256k1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0x6A, 0xF7, 0xE3, 0x3D, 0xDE, 0x5F, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA3, 0x9C, 0x22, 0x3C, 0x33, 0x36, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x24, 0x4C, 0x69, 0x45, 0x78, 0x14, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xF8, 0xD4, 0xBF, 0xB8, 0xC0, 0xA1, 0x25),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x88, 0xE1, 0x91, 0x03, 0xEB, 0xB3, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x11, 0xA1, 0xEF, 0x14, 0x0D, 0xC4, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0xD4, 0x0D, 0x1D, 0x96, 0x33, 0x5C, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x45, 0x2A, 0x1A, 0xE6, 0x57, 0x04, 0x9B),
+};
+static const mbedtls_mpi_uint secp256k1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xB5, 0xA7, 0x80, 0xE9, 0x93, 0x97, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0xB9, 0x7C, 0xA0, 0xC9, 0x57, 0x26, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0xEF, 0x56, 0xDA, 0x66, 0xF6, 0x1B, 0x9A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x89, 0x6B, 0x91, 0xE0, 0xA9, 0x65, 0x2B),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x98, 0x96, 0x9B, 0x06, 0x7D, 0x5E, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xFA, 0xC1, 0x5F, 0x19, 0x37, 0x94, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xBE, 0x6B, 0x1A, 0x05, 0xE4, 0xBF, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xCD, 0x5D, 0x35, 0xB4, 0x51, 0xF7, 0x64),
+};
+static const mbedtls_mpi_uint secp256k1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xEF, 0x96, 0xDB, 0xF2, 0x61, 0x63, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x04, 0x88, 0xC9, 0x9F, 0x1B, 0x94, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x30, 0x79, 0x7E, 0x24, 0xE7, 0x5F, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xB8, 0x90, 0xB7, 0x94, 0x25, 0xBB, 0x0F),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x79, 0xEA, 0xAD, 0xC0, 0x6D, 0x18, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xA4, 0x58, 0x2A, 0x8D, 0x95, 0xB3, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC4, 0xC2, 0x12, 0x0D, 0x79, 0xE2, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6F, 0xBE, 0x97, 0x4D, 0xA4, 0x20, 0x07),
+};
+static const mbedtls_mpi_uint secp256k1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x31, 0x71, 0xC6, 0xA6, 0x91, 0xEB, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x9B, 0xA8, 0x4A, 0xE7, 0x77, 0xE1, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0x06, 0xD3, 0x3D, 0x94, 0x30, 0xEF, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xDF, 0xCA, 0xFA, 0xF5, 0x28, 0xF8, 0xC9),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0xE1, 0x32, 0xFD, 0x3E, 0x81, 0xF8, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0xF2, 0x4B, 0x1D, 0x19, 0xC9, 0x0F, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB1, 0x8A, 0x22, 0x8B, 0x05, 0x6B, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0x21, 0xEF, 0x30, 0xEC, 0x09, 0x2A, 0x89),
+};
+static const mbedtls_mpi_uint secp256k1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x84, 0x4A, 0x46, 0x07, 0x6C, 0x3C, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x18, 0x3A, 0xF4, 0xCC, 0xF5, 0xB2, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0x8F, 0xCD, 0x0A, 0x9C, 0xF4, 0xBD, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x89, 0x7F, 0x8A, 0xB1, 0x52, 0x3A, 0xAB),
+};
+static const mbedtls_ecp_point secp256k1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(secp256k1_T_0_X, secp256k1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_1_X, secp256k1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_2_X, secp256k1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_3_X, secp256k1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_4_X, secp256k1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_5_X, secp256k1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_6_X, secp256k1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_7_X, secp256k1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_8_X, secp256k1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_9_X, secp256k1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_10_X, secp256k1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_11_X, secp256k1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_12_X, secp256k1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_13_X, secp256k1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_14_X, secp256k1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(secp256k1_T_15_X, secp256k1_T_15_Y),
+};
+#else
+#define secp256k1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP256r1 (RFC 5639 3.4)
+ */
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP256r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x53, 0x6E, 0x1F, 0x1D, 0x48, 0x13, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x20, 0x26, 0xD5, 0x23, 0xF6, 0x3B, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xB5, 0x30, 0xF3, 0x44, 0x4B, 0x4A, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5C, 0xDC, 0x26, 0xC1, 0x55, 0x80, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xFF, 0x7A, 0x41, 0x30, 0x75, 0xF6, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x30, 0x2C, 0xFC, 0x75, 0x09, 0x5A, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x07, 0x8C, 0xFF, 0x18, 0xDC, 0xCC, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE1, 0xF7, 0x5C, 0x29, 0x16, 0x84, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x7C, 0xD7, 0xBB, 0xD9, 0xB5, 0x30, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0x4B, 0x4A, 0xE9, 0x6C, 0x5C, 0xDC, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x56, 0x48, 0x97, 0x82, 0x0E, 0x1E, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xA6, 0x61, 0xB5, 0xA3, 0x7A, 0x39, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x8D, 0x83, 0x9D, 0x90, 0x0A, 0x66, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA9, 0xEE, 0xA1, 0xDB, 0x57, 0xFB, 0xA9),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0x32, 0xCE, 0x9A, 0xBD, 0x53, 0x44, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x23, 0xBD, 0xE3, 0xE1, 0x27, 0xDE, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xB7, 0x81, 0xFC, 0x2F, 0x48, 0x4B, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x57, 0x7E, 0xCB, 0xB9, 0xAE, 0xD2, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x69, 0x04, 0x2F, 0xC7, 0x54, 0x1D, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x8E, 0xED, 0x2D, 0x13, 0x45, 0x77, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x1D, 0x61, 0x14, 0x1A, 0x46, 0xF8, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xC4, 0xDA, 0xC3, 0x35, 0xF8, 0x7E, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xA2, 0xED, 0x52, 0xC9, 0x8C, 0xE3, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0xC9, 0xC4, 0x87, 0x3F, 0x93, 0x7A, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x12, 0x53, 0x61, 0x3E, 0x76, 0x08, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0x8C, 0x74, 0xF4, 0x08, 0xC3, 0x76, 0x80),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0xDD, 0x09, 0xA6, 0xED, 0xEE, 0xC4, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xD9, 0xBE, 0x4B, 0xA5, 0xB7, 0x2B, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x20, 0x12, 0xCA, 0x0A, 0x38, 0x24, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x72, 0x71, 0x90, 0x7A, 0x2E, 0xB7, 0x23),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x66, 0xA1, 0x93, 0x10, 0x2A, 0x51, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0x10, 0x11, 0x12, 0xBC, 0xB0, 0xB6, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x58, 0xD7, 0x0A, 0x84, 0x05, 0xA3, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x8E, 0x95, 0x61, 0xD3, 0x0B, 0xDF, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x92, 0x12, 0x0F, 0x5E, 0x87, 0x70, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0xE9, 0x9B, 0xEB, 0x3A, 0xFB, 0xCF, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0x92, 0xB9, 0xF7, 0x45, 0xD3, 0x06, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x28, 0x65, 0xE1, 0xC5, 0x6C, 0x57, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x0E, 0x77, 0x01, 0x81, 0x9E, 0x38, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0xF0, 0xD5, 0xA5, 0x91, 0x2B, 0xDF, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xEE, 0xB6, 0x25, 0xD6, 0x98, 0xDE, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0xA1, 0x55, 0x63, 0x39, 0xEB, 0xB5, 0x47),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD6, 0xB8, 0xE3, 0x13, 0xED, 0x7F, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xE8, 0xAE, 0x36, 0xB8, 0xCD, 0x19, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x82, 0x83, 0x7A, 0x7B, 0x46, 0x56, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x60, 0x46, 0x15, 0x5A, 0xAC, 0x99, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x61, 0x50, 0xC6, 0xFF, 0x10, 0x7D, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x51, 0xDF, 0xA9, 0x7D, 0x78, 0x26, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0x15, 0x9A, 0xF7, 0x01, 0xC1, 0xBB, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x0F, 0xE6, 0x2A, 0xBD, 0x4A, 0x9E, 0x87),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF8, 0xD1, 0x77, 0xD2, 0x49, 0xB3, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x86, 0xFB, 0x9E, 0x1F, 0x5A, 0x60, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xC4, 0x8D, 0xCD, 0x86, 0x61, 0x2F, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xF6, 0xB9, 0xAC, 0x37, 0x9D, 0xE9, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x77, 0xAA, 0x97, 0x9C, 0x0B, 0x04, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0xA6, 0x60, 0x81, 0xCE, 0x25, 0x13, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x00, 0xF3, 0xBB, 0x82, 0x99, 0x95, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x5A, 0xCE, 0x90, 0x71, 0x38, 0x2F, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x1A, 0xC0, 0x84, 0x27, 0xD6, 0x9D, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x37, 0x52, 0x16, 0x13, 0x0E, 0xCE, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBF, 0x5A, 0xDB, 0xDB, 0x6E, 0x1E, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0xB7, 0x5E, 0xF9, 0x86, 0xDD, 0x8A, 0x5C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xAB, 0x5C, 0x8D, 0x1D, 0xF2, 0x2D, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0xC5, 0xF8, 0xF7, 0x1D, 0x96, 0x0B, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x4C, 0xA7, 0x45, 0x20, 0x6A, 0x1E, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x5D, 0xEF, 0xDE, 0xEE, 0x39, 0x44, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x2F, 0x6D, 0x52, 0xC9, 0x58, 0x60, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xC9, 0x62, 0xCB, 0x38, 0x3C, 0x55, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xA5, 0x09, 0x10, 0x88, 0xDB, 0xE3, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xE0, 0x3C, 0xCE, 0x06, 0x0B, 0x4B, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x1D, 0xB4, 0x10, 0x76, 0x8F, 0xBA, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x70, 0x5A, 0x07, 0xF5, 0x1A, 0x74, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xE9, 0x94, 0xA8, 0xC0, 0xD5, 0x4A, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x6D, 0xD4, 0xE8, 0x9B, 0xE9, 0x6D, 0x0E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x00, 0x32, 0x41, 0x57, 0x84, 0x89, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC7, 0x14, 0xEC, 0xE9, 0x27, 0xFF, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x67, 0x9E, 0xFB, 0xB6, 0xB8, 0x96, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0x4A, 0xE3, 0x97, 0x4B, 0x58, 0xDE, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0x1E, 0x5C, 0xF5, 0x7F, 0xD5, 0xD4, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x08, 0x7A, 0xF1, 0xBD, 0x89, 0xC7, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0xF9, 0x11, 0x1B, 0xF5, 0x3C, 0x6D, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x50, 0xE5, 0x69, 0x1D, 0x59, 0xFC, 0x0C),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x2F, 0xF8, 0x3F, 0xEC, 0x55, 0x99, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0xA7, 0x29, 0x90, 0x43, 0x81, 0x31, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x18, 0x44, 0x50, 0x5D, 0x76, 0xCB, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xC5, 0x5B, 0x9A, 0x03, 0xE6, 0x17, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x89, 0xFC, 0x55, 0x94, 0x91, 0x6A, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x46, 0x35, 0xF2, 0x3A, 0x42, 0x08, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0xD2, 0x76, 0x49, 0x42, 0x87, 0xD3, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xEA, 0xA0, 0x52, 0xF1, 0x6A, 0x30, 0x57),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0xB2, 0x57, 0xA3, 0x8A, 0x4D, 0x1B, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0xA3, 0x99, 0x94, 0xB5, 0x3D, 0x64, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC3, 0xD7, 0x53, 0xF6, 0x49, 0x1C, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x23, 0x41, 0x4D, 0xFB, 0x7A, 0x5C, 0x53),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xB8, 0x15, 0x65, 0x5C, 0x85, 0x94, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x37, 0xC7, 0xF8, 0x7E, 0xAE, 0x6C, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xD8, 0x11, 0x54, 0x98, 0x44, 0xE3, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x4D, 0xA6, 0x4B, 0x28, 0xF2, 0x57, 0x9E),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xD0, 0xEB, 0x1E, 0xAA, 0x30, 0xD3, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x9B, 0x4D, 0xA7, 0x73, 0x6E, 0xB6, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x47, 0xF6, 0xED, 0x37, 0xEF, 0x71, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xB5, 0x49, 0x61, 0x5E, 0x45, 0xF6, 0x4A),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x0E, 0xB3, 0x84, 0x3A, 0x63, 0x72, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x53, 0x5C, 0xA7, 0xC6, 0x2E, 0xAB, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x0F, 0x8F, 0x87, 0x50, 0x28, 0xB4, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x98, 0x4A, 0x98, 0x31, 0x86, 0xCA, 0x51),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC9, 0xE2, 0xFD, 0x5D, 0x1F, 0xE8, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x90, 0x91, 0xC4, 0x84, 0xF0, 0xBA, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x5A, 0xB3, 0x4E, 0xFB, 0xE0, 0x57, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x0B, 0x90, 0xA6, 0xFD, 0x9D, 0x8E, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x41, 0x8F, 0x31, 0xFA, 0x5A, 0xF6, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xE9, 0xE3, 0xF6, 0xE0, 0x4A, 0xE7, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0x4E, 0xCD, 0xA2, 0x22, 0x14, 0xD4, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xED, 0x21, 0xB7, 0x0F, 0x53, 0x10, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x06, 0x24, 0x2C, 0x4E, 0xD1, 0x1E, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x3F, 0xC1, 0x9F, 0xAB, 0xF0, 0x37, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x03, 0x5E, 0x12, 0xCE, 0x83, 0x1B, 0x2A, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x65, 0xCF, 0xE8, 0x5C, 0xA5, 0xA2, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x86, 0x76, 0x3A, 0x94, 0xF6, 0x1D, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xDA, 0xC9, 0xA6, 0x29, 0x93, 0x15, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x61, 0x6A, 0x7D, 0xC7, 0xA9, 0xF3, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x03, 0x71, 0xA2, 0x15, 0xCE, 0x50, 0x72),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xD0, 0xA8, 0x1E, 0x91, 0xC4, 0x4F, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x4B, 0x7E, 0xD7, 0x71, 0x58, 0x7E, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x45, 0xAF, 0x2A, 0x18, 0x93, 0x95, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x8F, 0xC7, 0xFA, 0x4C, 0x7A, 0x86, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0xAF, 0x68, 0x3A, 0x23, 0xC1, 0x2E, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x50, 0x11, 0x67, 0x39, 0xB9, 0xAF, 0x48),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x86, 0xAA, 0x1E, 0x88, 0x21, 0x29, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x28, 0xA4, 0x9D, 0x89, 0xA9, 0x9A, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xBA, 0x04, 0x67, 0xB7, 0x01, 0x40, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xE9, 0x09, 0xA3, 0xCA, 0xA6, 0x37, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x97, 0xA8, 0xB6, 0x3C, 0xEE, 0x90, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xED, 0xC4, 0xF7, 0xC3, 0x95, 0xEC, 0x85),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x84, 0xBD, 0xEB, 0xD5, 0x64, 0xBB, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x9B, 0xE2, 0x28, 0x50, 0xC2, 0x72, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0xF2, 0x74, 0xD1, 0x26, 0xBF, 0x32, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xCB, 0xAF, 0x72, 0xDB, 0x6D, 0x30, 0x98),
+};
+static const mbedtls_mpi_uint brainpoolP256r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x50, 0x85, 0xF4, 0x2B, 0x48, 0xC1, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x28, 0xBB, 0x11, 0xBA, 0x5B, 0x22, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xA1, 0xE5, 0x5C, 0xC9, 0x1D, 0x44, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xE8, 0xE6, 0x6F, 0xBB, 0xC1, 0x81, 0x7F),
+};
+static const mbedtls_ecp_point brainpoolP256r1_T[16] = {
+ ECP_POINT_INIT_XY_Z1(brainpoolP256r1_T_0_X, brainpoolP256r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_1_X, brainpoolP256r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_2_X, brainpoolP256r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_3_X, brainpoolP256r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_4_X, brainpoolP256r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_5_X, brainpoolP256r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_6_X, brainpoolP256r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_7_X, brainpoolP256r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_8_X, brainpoolP256r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_9_X, brainpoolP256r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_10_X, brainpoolP256r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_11_X, brainpoolP256r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_12_X, brainpoolP256r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_13_X, brainpoolP256r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_14_X, brainpoolP256r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP256r1_T_15_X, brainpoolP256r1_T_15_Y),
+};
+#else
+#define brainpoolP256r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP384r1 (RFC 5639 3.6)
+ */
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP384r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xEC, 0x07, 0x31, 0x13, 0x00, 0x47, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x1A, 0x1D, 0x90, 0x29, 0xA7, 0xD3, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x11, 0xB7, 0x7F, 0x19, 0xDA, 0xB1, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0xD4, 0x3A, 0x50, 0x4A, 0x81, 0xA5, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xF9, 0x91, 0xBA, 0xEF, 0x65, 0x91, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x27, 0xB2, 0x4F, 0x8E, 0xA2, 0xBE, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xAF, 0x05, 0xCE, 0x0A, 0x08, 0x72, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x15, 0x8C, 0x3D, 0xC6, 0x82, 0xC3, 0x7B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x4C, 0x50, 0xFA, 0x96, 0x86, 0xB7, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0xC9, 0xDB, 0x95, 0x02, 0x39, 0xB4, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x62, 0xEB, 0x3E, 0xA5, 0x0E, 0x88, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA6, 0xD2, 0xDC, 0x07, 0xE1, 0x7D, 0xB7, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x44, 0xF0, 0x16, 0x54, 0xB5, 0x39, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x28, 0xCE, 0x22, 0xDD, 0xC7, 0xA8, 0x04),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x65, 0x04, 0xE9, 0x02, 0x32, 0x88, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC3, 0x7F, 0x6B, 0xAF, 0xB6, 0x3A, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x25, 0x04, 0xAC, 0x6C, 0x6E, 0x16, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x56, 0x54, 0xED, 0x09, 0x71, 0x2F, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x41, 0xE6, 0x50, 0x7E, 0x6F, 0x5D, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x6D, 0x38, 0xA3, 0x82, 0x1E, 0xB9, 0x8C),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xD4, 0x47, 0xE2, 0xB2, 0x87, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x46, 0xD6, 0x36, 0x34, 0xE0, 0x26, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x10, 0xBD, 0x0C, 0xFE, 0xCA, 0x7F, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x4F, 0xF1, 0x7E, 0xE7, 0xA3, 0x47, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x3F, 0xC1, 0xB7, 0x81, 0x3A, 0xA6, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x45, 0xCF, 0x68, 0xF0, 0x64, 0x1C, 0x1D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x53, 0x3C, 0x26, 0x41, 0x03, 0x82, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x91, 0x77, 0x21, 0x46, 0x46, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x29, 0x91, 0xF9, 0x4F, 0x05, 0x9C, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x58, 0xEC, 0xFE, 0x29, 0x0B, 0xB7, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0xD5, 0xCF, 0x95, 0x8E, 0xEB, 0xB1, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xC2, 0xF9, 0x20, 0x75, 0x1D, 0xBE, 0x8A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xD8, 0x8A, 0x54, 0x41, 0xD6, 0x6B, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x3B, 0xF1, 0x22, 0xFD, 0x2D, 0x4B, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x55, 0xE3, 0x33, 0xF0, 0x73, 0x52, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x3F, 0x30, 0x26, 0xCA, 0x7F, 0x52, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD3, 0x6E, 0x17, 0x9B, 0xD5, 0x2A, 0x4A, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xDA, 0x6B, 0xE5, 0x03, 0x07, 0x1D, 0x2E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x7A, 0xAF, 0x98, 0xE3, 0xA4, 0xF6, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x7D, 0xFE, 0x51, 0x40, 0x3B, 0x47, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x88, 0xEC, 0xC4, 0xE2, 0x8F, 0xCB, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xE2, 0x88, 0x2D, 0x4E, 0x50, 0xEB, 0x9A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x54, 0x94, 0x5E, 0xF4, 0x7F, 0x3A, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x07, 0x1C, 0xE1, 0xBD, 0x0F, 0xF8, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x92, 0x28, 0x2E, 0x32, 0x04, 0xB1, 0x4D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x82, 0x44, 0x43, 0x76, 0x0D, 0x55, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xE3, 0xFF, 0x89, 0x46, 0xDE, 0x4E, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0x22, 0xBB, 0x67, 0x1A, 0x81, 0xEE, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x54, 0xE2, 0x7A, 0xAE, 0xDA, 0x2C, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x9A, 0x90, 0xAA, 0x6E, 0x8B, 0xCC, 0x5F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x40, 0xAC, 0xED, 0x7D, 0x37, 0x87, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0xF8, 0xB1, 0x80, 0x4C, 0x8C, 0x04, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x98, 0x2C, 0xAD, 0x30, 0x69, 0x35, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x2E, 0x00, 0x2F, 0x44, 0x8C, 0xF0, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x58, 0x07, 0xD7, 0xCD, 0x60, 0xA1, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0xFB, 0x7B, 0x03, 0x05, 0x5E, 0x79, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x17, 0xCE, 0x38, 0x4B, 0x5E, 0x5B, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x0E, 0x0A, 0x61, 0x9D, 0x7C, 0x62, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xF0, 0x98, 0x71, 0x7F, 0x17, 0x26, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0xD3, 0xFA, 0x3C, 0xF0, 0x70, 0x07, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x47, 0x5C, 0x09, 0x43, 0xB7, 0x65, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xA7, 0x3E, 0xFA, 0xF3, 0xEC, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x78, 0x22, 0x2B, 0x58, 0x71, 0xFA, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x30, 0xCE, 0x6A, 0xB3, 0xB0, 0x4F, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0x95, 0x20, 0xA9, 0x23, 0xC2, 0x65, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0xCF, 0x03, 0x5B, 0x8A, 0x80, 0x44, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xF8, 0x91, 0xF7, 0xD5, 0xED, 0xEA, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x5B, 0x16, 0x10, 0x25, 0xAC, 0x2A, 0x17),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEC, 0xDC, 0xC4, 0x7B, 0x8C, 0x6B, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xBB, 0x1C, 0xD3, 0x5A, 0xEE, 0xD9, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x5D, 0x30, 0x5E, 0xF7, 0xB2, 0x41, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xCE, 0x0F, 0x1A, 0xC6, 0x41, 0x64, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x18, 0xE1, 0xE3, 0x82, 0x15, 0x66, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0xE2, 0x24, 0x04, 0x72, 0x39, 0xA0, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x51, 0xA2, 0x58, 0x88, 0x62, 0xE1, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xD2, 0x65, 0x14, 0xE9, 0x4C, 0x82, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE1, 0xAC, 0x87, 0xAE, 0x31, 0x1A, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0x4F, 0x96, 0x1E, 0x85, 0x7A, 0xC3, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x86, 0xBB, 0xF0, 0xC0, 0x9D, 0x08, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x53, 0x03, 0x09, 0x80, 0x91, 0xEF, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0xD7, 0xAF, 0x6F, 0x69, 0x7B, 0x88, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x13, 0xE4, 0x30, 0xA2, 0x47, 0xB5, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD2, 0xC0, 0xDD, 0x8A, 0x1C, 0x3C, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x8C, 0xB3, 0x4C, 0xBA, 0x8B, 0x6D, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xC7, 0xA1, 0xA8, 0x6E, 0x3C, 0x4F, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x4A, 0x97, 0xC8, 0x03, 0x6F, 0x01, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x18, 0x12, 0xA9, 0x39, 0xD5, 0x22, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0xA7, 0xC0, 0xBD, 0x9D, 0x8D, 0x78, 0x38),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xB3, 0xD0, 0x7F, 0xDF, 0xD0, 0x30, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x73, 0x96, 0xEC, 0xA8, 0x1D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xD1, 0x65, 0x66, 0xDC, 0xD9, 0xCF, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xED, 0x7B, 0x37, 0xAD, 0xE2, 0xBE, 0x2D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x79, 0x42, 0x6A, 0x07, 0x66, 0xB1, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x53, 0x62, 0x65, 0x92, 0x09, 0x4C, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xAF, 0xC3, 0x03, 0xF6, 0xF4, 0x2D, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xCA, 0x41, 0xD9, 0xA2, 0x69, 0x9B, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0xB2, 0xA6, 0x8D, 0xE1, 0xAA, 0x61, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xBA, 0x4D, 0x12, 0xB6, 0xBE, 0xF3, 0x7E),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x92, 0x22, 0x07, 0xCE, 0xC9, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xA1, 0x7C, 0x91, 0xDB, 0x32, 0xF7, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x49, 0x4B, 0x6D, 0xFB, 0xD9, 0x70, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xFB, 0x4E, 0x4C, 0x5E, 0x66, 0x81, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xB3, 0xE1, 0x00, 0xB7, 0xD9, 0xCC, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x36, 0x8B, 0xC4, 0x39, 0x20, 0xFD, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x1F, 0x60, 0x03, 0xBB, 0xD7, 0x60, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x3C, 0x62, 0xDD, 0x71, 0x95, 0xE9, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x5B, 0x7A, 0x5F, 0x68, 0x81, 0xC5, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xAF, 0xB5, 0xB9, 0x98, 0x42, 0x28, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x29, 0x8E, 0x11, 0x49, 0xB4, 0xD7, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x3E, 0xD2, 0x30, 0xA1, 0xBA, 0xCA, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x37, 0x64, 0x44, 0x2F, 0x03, 0xE5, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x42, 0xBC, 0xFF, 0xA2, 0x1A, 0x5F, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0x04, 0xAB, 0x04, 0xE0, 0x24, 0xAD, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x45, 0x17, 0x67, 0x1F, 0x3E, 0x53, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x0F, 0xB3, 0x1B, 0x57, 0x54, 0xC2, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xD3, 0xF8, 0xC4, 0x1B, 0x9B, 0xFA, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x90, 0xFD, 0xFB, 0xCA, 0x49, 0x38, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xCF, 0xC6, 0xDD, 0xF0, 0xFF, 0x8C, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x69, 0x9D, 0xBD, 0x5F, 0x33, 0xE9, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x19, 0x82, 0x3D, 0xAC, 0x1C, 0x40, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0xC7, 0x02, 0x46, 0x14, 0x77, 0x00, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x05, 0xF2, 0x77, 0x3A, 0x66, 0x5C, 0x39),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xE6, 0x17, 0xDE, 0xB2, 0xA1, 0xE5, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x71, 0xEC, 0x9D, 0xD8, 0xF5, 0xD4, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xC6, 0x42, 0x5E, 0xE7, 0x18, 0xBA, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x21, 0x68, 0x5A, 0x26, 0xFB, 0xD7, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x00, 0x5C, 0xBA, 0x8A, 0x34, 0xEC, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0x9C, 0x3C, 0xAF, 0x53, 0xE8, 0x65, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xEF, 0x28, 0xDC, 0x67, 0x05, 0xC8, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x78, 0xC3, 0x85, 0x49, 0xA0, 0xBC, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x3E, 0x2D, 0xA0, 0xCF, 0xD4, 0x7A, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x93, 0xFE, 0x60, 0xB3, 0x6E, 0x99, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x62, 0xAD, 0x04, 0xE7, 0x49, 0xAF, 0x5E, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x7A, 0xED, 0xA6, 0x9E, 0x18, 0x09, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x05, 0x94, 0x44, 0xDC, 0xB8, 0x85, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xB7, 0x37, 0xC2, 0x50, 0x75, 0x15, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0xC6, 0x0F, 0xB2, 0xA9, 0x91, 0x3E, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x81, 0xAD, 0x25, 0xA1, 0x26, 0x73, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xF1, 0xD1, 0x61, 0x7C, 0x76, 0x8F, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0xDB, 0x4A, 0xFF, 0x14, 0xA7, 0x48, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x73, 0xC6, 0xC2, 0xCC, 0xF1, 0x57, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0xED, 0x73, 0x27, 0x70, 0x82, 0xB6, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xBA, 0xAC, 0x3A, 0xCF, 0xF4, 0xEA, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xD6, 0xB1, 0x8F, 0x0E, 0x08, 0x2C, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xE3, 0x8F, 0x2F, 0x0E, 0xA1, 0xF3, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0xF5, 0x7C, 0x9B, 0x29, 0x0A, 0xF6, 0x28),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0xEE, 0x17, 0x47, 0x34, 0x15, 0xA3, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBE, 0x88, 0x48, 0xE7, 0xA2, 0xBB, 0xDE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xAD, 0xDC, 0x65, 0x61, 0x37, 0x0F, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x67, 0xAD, 0xA2, 0x3A, 0x1C, 0x91, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x07, 0x0C, 0x3A, 0x41, 0x6E, 0x13, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBD, 0x7E, 0xED, 0xAA, 0x14, 0xDD, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC3, 0xDC, 0x20, 0x01, 0x72, 0x11, 0x48, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xC4, 0x7B, 0xF8, 0x62, 0x3D, 0xF0, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xC2, 0x3D, 0x2E, 0x52, 0xA3, 0x4A, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xE2, 0x53, 0x46, 0x5E, 0x21, 0xF8, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xC7, 0x8F, 0xA9, 0x26, 0x42, 0x32, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xA6, 0xA0, 0x8D, 0x4B, 0x9A, 0x19, 0x03),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xAB, 0x6D, 0x1E, 0xFB, 0xEE, 0x60, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x56, 0x3C, 0xC5, 0x5D, 0x10, 0x79, 0x1C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0xBC, 0x41, 0x9F, 0x71, 0xEF, 0x02, 0xF9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x36, 0xC4, 0xD0, 0x88, 0x9B, 0x32, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xD4, 0x5D, 0x17, 0x39, 0xE6, 0x22, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7B, 0x26, 0x01, 0xCE, 0xBE, 0x4A, 0x9C, 0x27),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x6D, 0x11, 0xCA, 0x6C, 0x5A, 0x93, 0x0C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x96, 0x26, 0xAF, 0x2F, 0xE4, 0x30, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xC1, 0x4C, 0xC6, 0x30, 0x1F, 0x5C, 0x04),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x59, 0xB3, 0xE8, 0xFC, 0x35, 0xEB, 0x63, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x1D, 0xCA, 0xFC, 0x50, 0x36, 0x4B, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0E, 0x23, 0x5B, 0xAF, 0xEB, 0x2D, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0x88, 0xB6, 0xD7, 0x74, 0x4A, 0x23, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x66, 0xE2, 0xBB, 0x29, 0xA6, 0x4F, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0x6F, 0x7E, 0x68, 0x6E, 0xA0, 0x14, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x73, 0xD4, 0xE8, 0xAB, 0x5B, 0xF6, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xE0, 0x3C, 0x24, 0x00, 0x95, 0xE9, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x0D, 0x4F, 0x81, 0xD0, 0xF2, 0x3F, 0x00),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0x1D, 0xCD, 0x78, 0x39, 0xC4, 0x6B, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x45, 0xC7, 0xB8, 0x2F, 0xAA, 0x5D, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0x8C, 0x6E, 0xA3, 0x24, 0xB2, 0xDB, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x2D, 0xD9, 0xF1, 0xC7, 0x9B, 0x8A, 0xAF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xE1, 0x2C, 0xB9, 0x40, 0x37, 0x91, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x2C, 0xB5, 0x23, 0x03, 0x2B, 0xAF, 0x2F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0x9D, 0x5A, 0x20, 0x10, 0xA9, 0x84, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x30, 0x89, 0x20, 0x13, 0xE9, 0xB2, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x6E, 0x52, 0xEB, 0x03, 0x18, 0x1F, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x9E, 0x1C, 0x35, 0x87, 0x92, 0x69, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0xC9, 0x88, 0xAF, 0xC6, 0x6C, 0x83, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0xD5, 0x7A, 0x54, 0x34, 0x99, 0xB6, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0xAD, 0x45, 0x9B, 0x4B, 0x41, 0x4D, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0x5D, 0xAB, 0x7F, 0x35, 0x34, 0xE9, 0x29),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0xBE, 0x78, 0x34, 0x44, 0xF3, 0x4A, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xDE, 0xE3, 0xC4, 0xEE, 0x0B, 0xF9, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x86, 0x16, 0x48, 0x32, 0xB8, 0x74, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0xEE, 0x7C, 0xBA, 0xBD, 0x81, 0xE3, 0x55),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x6A, 0xFA, 0x84, 0xDA, 0xB8, 0xD5, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x9F, 0x8A, 0xD5, 0x1B, 0x2E, 0x1A, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x0C, 0x61, 0xE2, 0xFF, 0x5B, 0xE6, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x62, 0xC1, 0x87, 0x53, 0x1B, 0x92, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x90, 0x00, 0xD1, 0x6A, 0x0C, 0x0E, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x2E, 0xB5, 0x3B, 0x44, 0xB5, 0xA0, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x5D, 0x02, 0x58, 0xB5, 0xBE, 0x45, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xEF, 0x8E, 0x90, 0x4D, 0x2A, 0x32, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0x99, 0x75, 0x5C, 0x0A, 0x33, 0x8F, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x6C, 0x95, 0xD4, 0x1F, 0xF3, 0xEB, 0xDA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0xE4, 0x4C, 0x91, 0x20, 0xF3, 0x25, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x95, 0xEB, 0x29, 0x6F, 0x20, 0x34, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x15, 0xE5, 0x13, 0x7E, 0x64, 0x8B, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xBC, 0x0D, 0x18, 0x7E, 0x37, 0x9E, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x82, 0x20, 0xF7, 0x2D, 0x7A, 0x77, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x29, 0xA2, 0xDB, 0x7A, 0xE6, 0x6F, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xC6, 0x50, 0x5C, 0xBC, 0xE6, 0x4F, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x9F, 0xD5, 0xE8, 0xC5, 0x3D, 0xB7, 0x30),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x03, 0x55, 0x10, 0xDB, 0xA6, 0x8B, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x17, 0xAE, 0x78, 0xC9, 0x1D, 0x43, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x35, 0x49, 0xD4, 0x47, 0x84, 0x8D, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x95, 0x2F, 0xEA, 0xBC, 0xB4, 0x18, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x48, 0xAE, 0x89, 0xF5, 0x65, 0x3D, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xF2, 0x2B, 0x20, 0xD1, 0x75, 0x50, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0xE6, 0x5C, 0x2C, 0xE0, 0x7D, 0xDF, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x07, 0x3E, 0xCE, 0x9F, 0x18, 0xB6, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0xF8, 0xF0, 0xD5, 0xFA, 0x42, 0x1D, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x6C, 0x1D, 0x03, 0xC9, 0x0E, 0x2B, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x18, 0x52, 0xA5, 0xB4, 0x63, 0xE1, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x0A, 0xD9, 0xC4, 0xFD, 0x16, 0x60, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x7D, 0xDE, 0xDF, 0x4B, 0x4A, 0xB0, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x4E, 0x8C, 0x94, 0xC1, 0xE2, 0x85, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4F, 0xF0, 0xEA, 0xB5, 0x9B, 0x70, 0xEF, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x56, 0xC2, 0x39, 0x5D, 0xF3, 0x2C, 0xD9, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0x1C, 0x2E, 0xCC, 0x2F, 0x54, 0x87, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB0, 0x72, 0xC7, 0xB5, 0x50, 0xA3, 0x84, 0x77),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xD1, 0xAF, 0xA9, 0xB4, 0x8B, 0x5D, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xF6, 0x52, 0x8A, 0xC3, 0x56, 0xA5, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x52, 0xFF, 0xEA, 0x05, 0x42, 0x77, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x08, 0x90, 0x72, 0x86, 0xC4, 0xC3, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x15, 0xF8, 0xF1, 0x16, 0x67, 0xC6, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x87, 0xAC, 0x8F, 0x71, 0xEC, 0x83, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0xE1, 0xE6, 0x2D, 0x0E, 0x11, 0xA1, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0xE2, 0xA8, 0x32, 0xE6, 0xE3, 0x83, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x56, 0xE5, 0xCD, 0xB7, 0x2B, 0x67, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xED, 0xC9, 0x65, 0x6D, 0x87, 0xE1, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xFD, 0x9A, 0x53, 0x0E, 0xFA, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0x4C, 0x4A, 0xE2, 0x23, 0x84, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xFE, 0x49, 0x81, 0xD1, 0x3E, 0xF4, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x72, 0xE0, 0xEF, 0x0D, 0xB8, 0x3E, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x00, 0x0F, 0x5F, 0xCE, 0x60, 0x72, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xCC, 0xD8, 0x03, 0x07, 0x6E, 0x5A, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x3A, 0x35, 0x50, 0x4E, 0x1F, 0xCA, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0xEA, 0x88, 0x55, 0xBD, 0x6E, 0x05, 0x7F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x6D, 0xF1, 0x97, 0xA6, 0x69, 0x39, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0x41, 0x99, 0xFF, 0x3B, 0xA1, 0x26, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x2F, 0x95, 0x80, 0x12, 0x4A, 0x1B, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xBF, 0x51, 0xAA, 0xAE, 0x2D, 0xDA, 0xCF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1C, 0xB3, 0x52, 0x36, 0x49, 0xD4, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xC1, 0x1F, 0x3A, 0xD3, 0x3E, 0x5C, 0x1A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x51, 0xF7, 0x2B, 0xC8, 0xA9, 0xA7, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0x4E, 0x7F, 0x98, 0x41, 0x66, 0xB0, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x1D, 0xC0, 0x42, 0xCD, 0xF8, 0xC3, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x41, 0x91, 0x7D, 0xCC, 0x8B, 0xCC, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xAE, 0x76, 0xED, 0x56, 0x18, 0xC5, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x6A, 0x06, 0xA3, 0x7F, 0x65, 0x10, 0x1F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xEC, 0x3C, 0x05, 0x05, 0xCA, 0xF6, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x48, 0xCD, 0x02, 0x51, 0x12, 0x16, 0x3C, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0xEB, 0xB3, 0x43, 0x7B, 0xDD, 0xB2, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x59, 0x90, 0x41, 0xDB, 0xE4, 0xF5, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x0E, 0x18, 0x2A, 0x5A, 0x83, 0x7C, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x37, 0xA1, 0x0D, 0xF1, 0x2F, 0x63, 0x79),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC0, 0xFA, 0x6F, 0x1F, 0x67, 0xCF, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x34, 0x45, 0xBB, 0xF4, 0xF9, 0x9B, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0x69, 0xFE, 0x67, 0x1D, 0x64, 0x8F, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x39, 0xBF, 0xD8, 0xB3, 0xC7, 0xAD, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x93, 0xFF, 0xF3, 0x28, 0xFA, 0x39, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF9, 0xC3, 0x85, 0x26, 0x7A, 0x88, 0x89),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xD5, 0x79, 0xD8, 0x11, 0xDE, 0xEB, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x46, 0xA4, 0x6A, 0xDA, 0x74, 0x34, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0xBD, 0xD3, 0xF5, 0x14, 0xEE, 0xFE, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x4C, 0xA3, 0x71, 0x43, 0x65, 0xF8, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x6C, 0x35, 0xFA, 0x90, 0x25, 0xD8, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x34, 0x84, 0x96, 0xA1, 0x43, 0x03, 0x4D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x3B, 0x3B, 0x2F, 0xCA, 0x59, 0xF2, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCD, 0x48, 0x24, 0x74, 0xD8, 0x72, 0x90, 0xA3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x42, 0x74, 0x8C, 0x6F, 0x52, 0x19, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x40, 0x9E, 0x41, 0x63, 0x68, 0x78, 0x4C, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x94, 0xB6, 0x6B, 0x38, 0x52, 0xA8, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x30, 0x25, 0x93, 0xA1, 0x6F, 0x6E, 0x68),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x2F, 0x4B, 0x64, 0x79, 0x50, 0xFF, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0x36, 0xED, 0x57, 0x39, 0x3B, 0xE7, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x85, 0xEA, 0x35, 0xD6, 0xC0, 0xA0, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x89, 0x3A, 0xCC, 0x22, 0x1C, 0x46, 0x02),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x7A, 0xB0, 0xA1, 0x1B, 0x69, 0x62, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xB8, 0x8A, 0x6C, 0x18, 0x85, 0x0D, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB6, 0x50, 0xE9, 0x4E, 0x7F, 0xE8, 0x07),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5B, 0x5C, 0xD1, 0x4B, 0x11, 0x9A, 0xD8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x25, 0x56, 0x74, 0x51, 0x9C, 0xEC, 0x9C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x7F, 0xB6, 0x8A, 0xCB, 0x3A, 0x10, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x60, 0x33, 0x07, 0x01, 0xE9, 0x49, 0x59, 0xE6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xA5, 0x2E, 0xF2, 0xBA, 0x32, 0x63, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x06, 0x0B, 0xA5, 0x44, 0x27, 0x7F, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x74, 0xAC, 0x0F, 0xCC, 0x4F, 0x13, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0xB1, 0xBF, 0x97, 0x49, 0xA5, 0x1C, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x64, 0x68, 0x7B, 0x0F, 0xCC, 0x77, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x39, 0xF9, 0x4E, 0x84, 0x9C, 0xF6, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xCF, 0x6D, 0xE2, 0xA1, 0x2D, 0xF9, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0xC4, 0x90, 0x57, 0x31, 0x01, 0x05, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x1E, 0xBB, 0xBF, 0x98, 0xA4, 0x7C, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xE3, 0xA0, 0xB2, 0xCD, 0x39, 0x9A, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x34, 0x60, 0x7A, 0x89, 0x98, 0xB5, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0x20, 0x3D, 0x3A, 0x04, 0x8F, 0x5A, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x26, 0xB6, 0x49, 0x09, 0x9C, 0x0F, 0x59),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x66, 0xD2, 0x38, 0x2A, 0x62, 0x81, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0xC8, 0x20, 0x5E, 0x28, 0xA3, 0x81, 0xA7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x31, 0xA4, 0xF1, 0xEA, 0x7D, 0x87, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8F, 0x2C, 0x99, 0x09, 0x6F, 0x63, 0xEB, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x73, 0x76, 0xDA, 0x1A, 0x06, 0xBE, 0xDE, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x09, 0x2E, 0x75, 0x39, 0x30, 0x2D, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x9B, 0xC1, 0x5A, 0x17, 0xC3, 0x8C, 0x31),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x58, 0x8D, 0x94, 0x4D, 0x3D, 0xAB, 0x60, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xFD, 0x1E, 0x0F, 0x43, 0xAE, 0x9D, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF2, 0xF3, 0x20, 0x1B, 0xAA, 0xB7, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0x5B, 0xA4, 0xF4, 0x90, 0x3B, 0xE3, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x78, 0x72, 0xBD, 0x65, 0x09, 0x0B, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x37, 0x2A, 0x6C, 0x16, 0x4F, 0x64, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0xCE, 0xA3, 0x90, 0xB4, 0x9A, 0xBC, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x55, 0x63, 0x1D, 0x3A, 0x6E, 0x18),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xB4, 0xAA, 0x99, 0x22, 0x45, 0x89, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0x7C, 0x8C, 0xA6, 0x3D, 0xA7, 0x3E, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x06, 0x42, 0xDC, 0xA6, 0xE3, 0xC6, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x8C, 0x3D, 0x5D, 0x47, 0x31, 0x7C, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x85, 0xEE, 0x46, 0x7E, 0x13, 0x04, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x3C, 0x8B, 0x43, 0x2E, 0x74, 0xF5, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x88, 0x8E, 0x07, 0x29, 0x08, 0x03, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0x9B, 0x89, 0xEB, 0x08, 0xE8, 0x43, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x07, 0x67, 0xFD, 0xD9, 0x73, 0x6F, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0xEB, 0x21, 0x8D, 0x98, 0x43, 0x74, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x88, 0xCC, 0x14, 0xD8, 0x08, 0xBB, 0xA6, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x98, 0xF2, 0x6A, 0x18, 0xC3, 0xDD, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x38, 0x91, 0xA0, 0x03, 0xF2, 0x04, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0xAF, 0xE8, 0xFD, 0xFB, 0x13, 0x70, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x93, 0x87, 0x98, 0x4A, 0xE0, 0x00, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x2E, 0x69, 0x9C, 0xA2, 0x2D, 0x03, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFE, 0xF3, 0xB9, 0xC1, 0x85, 0x2A, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xFD, 0x86, 0xB1, 0xCD, 0xBF, 0x41, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xD8, 0x9A, 0x21, 0xF3, 0xFE, 0xCB, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x78, 0x04, 0x60, 0xB7, 0xA9, 0xA2, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1E, 0x66, 0x2A, 0x54, 0x51, 0xBD, 0x8B),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x16, 0x36, 0xEF, 0x61, 0x2D, 0xEE, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x5F, 0x88, 0xA0, 0x13, 0x12, 0xF7, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA9, 0xC6, 0xAD, 0x4A, 0x4A, 0x07, 0x01, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB8, 0x74, 0xB1, 0x4F, 0xEB, 0xBD, 0xD5, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xF9, 0x71, 0xA2, 0x06, 0x4F, 0xD7, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x8B, 0x4D, 0x48, 0xE0, 0x98, 0xFB, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xBA, 0x10, 0xA3, 0x0D, 0x52, 0xAC, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xD0, 0xE0, 0x36, 0xE6, 0x07, 0x3A, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x80, 0xF0, 0xAA, 0x49, 0x22, 0x4B, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xC7, 0xAB, 0x1C, 0x89, 0xCD, 0x24, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x82, 0x2A, 0xFC, 0xB3, 0x6D, 0x45, 0x96, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xE4, 0xDB, 0x52, 0x3F, 0xC4, 0xB4, 0x19),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5B, 0xCC, 0xC8, 0x7F, 0xBB, 0x6B, 0x87, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x21, 0x3C, 0x69, 0x7D, 0x38, 0x57, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x4C, 0x18, 0x3C, 0x53, 0xA5, 0x48, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xC3, 0x64, 0x45, 0xDB, 0xC4, 0x6D, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xCC, 0xD1, 0xBB, 0x17, 0xB8, 0x34, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x69, 0x71, 0xFA, 0xA0, 0x28, 0x4A, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xE8, 0x9E, 0x39, 0xEA, 0x8D, 0x38, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x9C, 0xBB, 0xCD, 0x80, 0x1A, 0xEE, 0xB7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xA0, 0x45, 0xBF, 0xD9, 0x22, 0x11, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x7C, 0x5C, 0xD9, 0xC0, 0x9F, 0x69, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x8A, 0xA6, 0x79, 0x4E, 0x35, 0xB9, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCC, 0x8B, 0x9A, 0x3E, 0xA1, 0xB8, 0x28, 0x10),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x2F, 0xEF, 0xBB, 0xA9, 0x72, 0x7F, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x34, 0xB7, 0x12, 0xB9, 0xE7, 0xC3, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x1D, 0xD9, 0x42, 0x77, 0x0C, 0x71, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x01, 0x59, 0xA7, 0x56, 0x03, 0x91, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x91, 0x99, 0x33, 0x30, 0x3E, 0xEF, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xC9, 0x5A, 0x9A, 0x54, 0x66, 0xF1, 0x70),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0x2C, 0xB7, 0x6E, 0x71, 0x7D, 0x35, 0x30),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x0D, 0xEF, 0xD1, 0x2D, 0x99, 0x63, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x31, 0xAF, 0x2D, 0xC9, 0xC6, 0xC2, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0xC0, 0xDF, 0x80, 0x54, 0xC4, 0xAC, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x6B, 0xA0, 0x84, 0x96, 0xF7, 0x31, 0xC8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0xE2, 0x7C, 0x7A, 0x41, 0x45, 0x75, 0x6A),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xEE, 0x58, 0x31, 0xE8, 0x68, 0xD6, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x2E, 0x48, 0xB7, 0x09, 0x9F, 0xD4, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xA9, 0x5C, 0xE7, 0x64, 0x43, 0x5D, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9E, 0x58, 0x9F, 0x50, 0xAB, 0x68, 0xFF, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0x88, 0x2D, 0xBA, 0x12, 0xBF, 0x8D, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xDF, 0x6F, 0xB3, 0x75, 0xA4, 0x55, 0x73),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x17, 0x92, 0x39, 0xB7, 0x13, 0x37, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x43, 0x71, 0xA7, 0xCA, 0x17, 0x1B, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE7, 0xB9, 0xB0, 0x78, 0xEF, 0xA0, 0xDA, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x84, 0xF2, 0x0F, 0x85, 0xA2, 0xB6, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x72, 0x65, 0x2E, 0x6E, 0x45, 0xB9, 0x4C, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x6A, 0x8C, 0x2B, 0x77, 0x96, 0x36, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x7A, 0x13, 0x4A, 0x97, 0x63, 0x02, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x1E, 0x06, 0x03, 0x8F, 0xB9, 0xEE, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0xEE, 0x8B, 0x89, 0xA9, 0x70, 0xDB, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x7B, 0x81, 0xC9, 0x70, 0x8D, 0x62, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0xDA, 0x46, 0xF8, 0xF9, 0x3A, 0xBE, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0x9C, 0x7A, 0x97, 0x62, 0xEB, 0xFA, 0x0F),
+};
+static const mbedtls_mpi_uint brainpoolP384r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x03, 0x3D, 0x3C, 0x46, 0x27, 0x9E, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x08, 0x1C, 0xD5, 0x25, 0xAF, 0xE9, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x69, 0xDC, 0x59, 0xF4, 0x8A, 0x7C, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x9A, 0x7A, 0x99, 0x21, 0x0C, 0x4E, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xCE, 0x85, 0x5F, 0xAC, 0xAA, 0x82, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x83, 0x57, 0x69, 0x90, 0x76, 0xF3, 0x53, 0x3F),
+};
+static const mbedtls_ecp_point brainpoolP384r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(brainpoolP384r1_T_0_X, brainpoolP384r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_1_X, brainpoolP384r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_2_X, brainpoolP384r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_3_X, brainpoolP384r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_4_X, brainpoolP384r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_5_X, brainpoolP384r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_6_X, brainpoolP384r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_7_X, brainpoolP384r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_8_X, brainpoolP384r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_9_X, brainpoolP384r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_10_X, brainpoolP384r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_11_X, brainpoolP384r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_12_X, brainpoolP384r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_13_X, brainpoolP384r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_14_X, brainpoolP384r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_15_X, brainpoolP384r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_16_X, brainpoolP384r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_17_X, brainpoolP384r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_18_X, brainpoolP384r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_19_X, brainpoolP384r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_20_X, brainpoolP384r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_21_X, brainpoolP384r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_22_X, brainpoolP384r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_23_X, brainpoolP384r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_24_X, brainpoolP384r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_25_X, brainpoolP384r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_26_X, brainpoolP384r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_27_X, brainpoolP384r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_28_X, brainpoolP384r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_29_X, brainpoolP384r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_30_X, brainpoolP384r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP384r1_T_31_X, brainpoolP384r1_T_31_Y),
+};
+#else
+#define brainpoolP384r1_T NULL
+#endif
+
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+/*
+ * Domain parameters for brainpoolP512r1 (RFC 5639 3.7)
+ */
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+static const mbedtls_mpi_uint brainpoolP512r1_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0x48, 0x3A, 0x58, 0x56, 0x60, 0xAA, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x85, 0xC6, 0x82, 0x2D, 0x2F, 0xFF, 0x81, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x80, 0xA3, 0xE6, 0x2A, 0xA1, 0xCD, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x68, 0xC6, 0x9B, 0x00, 0x9B, 0x4D, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_a[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x94, 0xFC, 0x77, 0x4D, 0xAC, 0xC1, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xC7, 0xF2, 0x2B, 0xA7, 0x17, 0x11, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0xC8, 0x9A, 0x8B, 0xC9, 0xF1, 0x2E, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x3A, 0x25, 0xA8, 0x5A, 0x5D, 0xED, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0x63, 0x98, 0xEA, 0xCA, 0x41, 0x34, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x16, 0xF9, 0x3D, 0x8D, 0xDD, 0xCB, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x4C, 0x23, 0xAC, 0x45, 0x71, 0x32, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x3B, 0x60, 0x8B, 0x31, 0xA3, 0x30, 0x78),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_b[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0xF7, 0x16, 0x80, 0x63, 0xBD, 0x09, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xE5, 0xBA, 0x5E, 0xB7, 0x50, 0x40, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x3E, 0x08, 0xDC, 0xCA, 0x94, 0xFC, 0x77),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0xAC, 0xC1, 0xE7, 0xB9, 0xC7, 0xF2, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x17, 0x11, 0x7F, 0xB5, 0xC8, 0x9A, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0xF1, 0x2E, 0x0A, 0xA1, 0x3A, 0x25, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x5D, 0xED, 0x2D, 0xBC, 0x63, 0x98, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0x41, 0x34, 0xA8, 0x10, 0x16, 0xF9, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gx[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_gy[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x69, 0x00, 0xA9, 0x9C, 0x82, 0x96, 0x87, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0xDA, 0x5D, 0x08, 0x81, 0xD3, 0xB1, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x47, 0x10, 0xAC, 0x7F, 0x19, 0x61, 0x86, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x26, 0xA9, 0x4C, 0x41, 0x5C, 0x3E, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x08, 0x33, 0x70, 0xCA, 0x9C, 0x63, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xD2, 0xC9, 0xB3, 0xB3, 0x8D, 0x30, 0xCB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xFC, 0xC9, 0x33, 0xAE, 0xE6, 0xD4, 0x3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xC4, 0xE9, 0xDB, 0xB8, 0x9D, 0xDD, 0xAA),
+};
+
+#if MBEDTLS_ECP_FIXED_POINT_OPTIM == 1
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0xF8, 0xB9, 0xBC, 0x09, 0x22, 0x35, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x5E, 0x6A, 0x40, 0x47, 0x50, 0x6D, 0x7C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0x7D, 0xB9, 0x93, 0x7B, 0x68, 0xD1, 0x50),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xD4, 0xD0, 0xE2, 0x78, 0x1F, 0x3B, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x09, 0xD0, 0xF4, 0xEE, 0x62, 0x3B, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC1, 0x16, 0xD9, 0xB5, 0x70, 0x9F, 0xED, 0x85),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x6A, 0x4C, 0x9C, 0x2E, 0x32, 0x21, 0x5A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD9, 0x2E, 0xD8, 0xBD, 0xE4, 0xAE, 0x81),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_0_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x08, 0xD8, 0x3A, 0x0F, 0x1E, 0xCD, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x06, 0x54, 0xF0, 0xA8, 0x2F, 0x2B, 0xCA, 0xD1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0x63, 0x27, 0x8A, 0xD8, 0x4B, 0xCA, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x48, 0x5F, 0x4A, 0x49, 0xDE, 0xDC, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0x81, 0x1F, 0x88, 0x5B, 0xC5, 0x00, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x7B, 0xA5, 0x24, 0x00, 0xF7, 0x09, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x22, 0x78, 0xCF, 0xA9, 0xBF, 0xEA, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0x32, 0x63, 0x56, 0x5D, 0x38, 0xDE, 0x7D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xE9, 0x6B, 0x8C, 0x6F, 0x9D, 0x88, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x4F, 0x86, 0x96, 0xA7, 0x56, 0xD1, 0x37),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xAB, 0xFA, 0xEE, 0xA7, 0xF5, 0x0E, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x40, 0xEF, 0x9E, 0x6D, 0xD6, 0x32, 0x33),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xED, 0x56, 0x14, 0x57, 0x1A, 0x8D, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xED, 0x4D, 0x3A, 0xFA, 0x71, 0x75, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xC5, 0x76, 0x1C, 0x14, 0xBE, 0xB5, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x5A, 0xCB, 0xE7, 0x36, 0x1D, 0x52, 0x1C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_1_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8D, 0x7A, 0xEB, 0xA3, 0x8B, 0xD5, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0xA3, 0x41, 0xF8, 0xAC, 0x9E, 0xAB, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x12, 0xE3, 0x65, 0x0D, 0x1C, 0xFE, 0x09, 0x2B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0xCA, 0x13, 0x3F, 0xC5, 0xF9, 0x7E, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0x5D, 0x63, 0x28, 0xA6, 0x89, 0xD3, 0x91),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x95, 0x3F, 0x7A, 0x82, 0xD4, 0x77, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xBB, 0x92, 0x32, 0x00, 0xF4, 0x66, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x58, 0x31, 0xD1, 0x17, 0x9F, 0x2A, 0x22),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x36, 0xA9, 0xCD, 0x80, 0xA5, 0x2D, 0x78),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x91, 0x44, 0xAB, 0xCE, 0x71, 0xFF, 0x0C, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0x24, 0x58, 0x35, 0x5A, 0x21, 0x32, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1B, 0xA6, 0x28, 0xF8, 0x7A, 0x97, 0xAE, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xE7, 0x08, 0xFA, 0x47, 0xC9, 0x55, 0x09),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xAC, 0x2E, 0x84, 0xA4, 0xF5, 0x52, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x58, 0x05, 0x9D, 0xA7, 0xC8, 0x71, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x92, 0xB4, 0x92, 0xC1, 0x92, 0xEC, 0x6B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_2_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4A, 0x48, 0x2D, 0x79, 0x5E, 0x58, 0xE5, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x85, 0x26, 0xEC, 0xE9, 0x6E, 0xD4, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x68, 0x26, 0x87, 0x38, 0xA2, 0xD2, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0x17, 0x60, 0xCE, 0x75, 0xF8, 0xA5, 0x6F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0x51, 0xDB, 0xA9, 0xAE, 0x87, 0xF1, 0x15),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x49, 0x92, 0x3B, 0x19, 0x96, 0xF5, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0xD5, 0x52, 0x52, 0x8C, 0xCE, 0xFD, 0xFA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x18, 0x0A, 0xE6, 0xF6, 0xAE, 0x08, 0x41),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x2B, 0xD8, 0x54, 0xCE, 0xB0, 0x57, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xB0, 0xF8, 0x9E, 0x03, 0x03, 0x3C, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x0E, 0x29, 0x29, 0x00, 0xF3, 0x70, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0x33, 0x99, 0x0E, 0x00, 0x5D, 0xFE, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0x2D, 0xF2, 0x59, 0x32, 0xCF, 0x03, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0xC9, 0x72, 0xAE, 0x0C, 0xEF, 0xD1, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x5A, 0x27, 0xBF, 0x2F, 0x45, 0xF9, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD4, 0xBE, 0xE5, 0x2C, 0xFF, 0x5B, 0x1E, 0x88),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_3_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0xAC, 0xBB, 0xD8, 0x83, 0xC2, 0x46, 0xF6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xDC, 0xCE, 0x15, 0xB4, 0xEF, 0xCF, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xDB, 0x5E, 0x94, 0x31, 0x0B, 0xB2, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0xB9, 0xE3, 0xE3, 0x11, 0x71, 0x41, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xE3, 0x01, 0xB7, 0x7D, 0xBC, 0x65, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x07, 0x65, 0x87, 0xA7, 0xE8, 0x48, 0xE3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x48, 0x8F, 0xD4, 0x30, 0x8E, 0xB4, 0x6C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0xE0, 0x73, 0xBE, 0x1E, 0xBF, 0x56, 0x36),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFE, 0x0E, 0x5E, 0x87, 0xC5, 0xAB, 0x0E, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0xF9, 0x5F, 0x80, 0x24, 0x4C, 0x2A, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDE, 0x15, 0x21, 0x54, 0x92, 0x84, 0x8D, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA8, 0x8A, 0x47, 0x74, 0xDC, 0x42, 0xB1, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0xF7, 0x30, 0xFD, 0xC1, 0x9B, 0x0C, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x6C, 0xCC, 0xDF, 0xC5, 0xE3, 0xA9, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x67, 0x59, 0x10, 0x5C, 0x51, 0x54, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x37, 0xFB, 0x6E, 0xB0, 0x78, 0x63, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_4_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0xEF, 0xC4, 0x39, 0x20, 0xF1, 0x46, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0x62, 0xAE, 0xFF, 0x10, 0xE4, 0xE2, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x5C, 0xF5, 0x2E, 0x22, 0x89, 0xE5, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0x0C, 0x29, 0xA8, 0x62, 0xAE, 0xDB, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x9E, 0x0F, 0xCA, 0x87, 0x2A, 0x6F, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCE, 0xDC, 0x9B, 0x9F, 0x65, 0xD4, 0xAD, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0xC3, 0x08, 0x0F, 0xCF, 0x67, 0xE9, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x5C, 0xD7, 0xFF, 0x41, 0x9C, 0xCB, 0x26),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x25, 0x05, 0x12, 0xAD, 0x73, 0x63, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x99, 0x07, 0x86, 0x57, 0xE7, 0x94, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x4B, 0xA5, 0xBF, 0x18, 0xA9, 0xEF, 0x6A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0x4C, 0xC4, 0x09, 0xF2, 0x2F, 0x0C, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x3A, 0x04, 0xEA, 0x89, 0x6C, 0x91, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x6C, 0x3A, 0xE7, 0xA3, 0xEC, 0x24, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xA1, 0x26, 0x21, 0x04, 0xE3, 0xB9, 0x40),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0x71, 0x4B, 0x7B, 0xC2, 0x89, 0xCD, 0xA2),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_5_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB7, 0xB9, 0xA8, 0x9D, 0xFD, 0x00, 0x3A, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x41, 0x6C, 0xBB, 0x5A, 0xCA, 0x1F, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0xD7, 0xE2, 0x6C, 0x6B, 0xA7, 0x48, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x19, 0xAD, 0xA7, 0xC1, 0x7E, 0x4F, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0xF7, 0x19, 0x3C, 0x06, 0x74, 0x2C, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x23, 0x4F, 0x0C, 0x09, 0xB0, 0x80, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4E, 0x74, 0x34, 0x08, 0x44, 0x7E, 0xA3, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xCC, 0x8D, 0x12, 0x6E, 0xE1, 0x3D, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x18, 0xB1, 0x71, 0x02, 0x93, 0xC2, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x89, 0x40, 0xE2, 0x1F, 0xE7, 0x5E, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x8E, 0xAE, 0x89, 0x01, 0xD4, 0x0C, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAE, 0xDA, 0x58, 0x70, 0x24, 0xF2, 0xE4, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0xC7, 0x1D, 0xD6, 0x4A, 0x6F, 0x66, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x1D, 0x7E, 0x4A, 0x2C, 0xCA, 0xEC, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA1, 0x06, 0x7F, 0xA8, 0x99, 0xE4, 0xD3, 0x4E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x1D, 0x5A, 0xDF, 0x5E, 0x58, 0x36, 0x49),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_6_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0xB9, 0x32, 0x69, 0x1F, 0x72, 0x2A, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0x73, 0xE2, 0x03, 0x39, 0x35, 0xAA, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x5E, 0x5D, 0x48, 0xEF, 0xAE, 0x30, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x7F, 0x60, 0x19, 0xAF, 0xEC, 0x9D, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCA, 0xD9, 0x19, 0xE4, 0x1B, 0x56, 0x15, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xD7, 0x33, 0x59, 0x1F, 0x43, 0x59, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xCE, 0xEE, 0xCA, 0xA4, 0x7F, 0x63, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBD, 0x40, 0xC0, 0xF6, 0x19, 0x89, 0x43, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x92, 0xEA, 0x07, 0x65, 0x79, 0x86, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0xB7, 0x13, 0x75, 0xD3, 0xC5, 0x0A, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x9E, 0xFA, 0xE1, 0x1F, 0x0C, 0xF9, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x8C, 0xED, 0x5C, 0x21, 0xE9, 0x09, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0x4D, 0xD8, 0x18, 0xC4, 0xF6, 0x36, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xC9, 0xAC, 0x5C, 0xFA, 0x69, 0xA4, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0x8C, 0x94, 0x1C, 0x7B, 0x71, 0x36, 0x58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xBD, 0x46, 0xCE, 0xB7, 0x1D, 0x9C, 0x5E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_7_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xD6, 0x96, 0x4B, 0xA6, 0x47, 0xEB, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xF1, 0x5F, 0x15, 0xDE, 0x99, 0x6F, 0x66),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xBD, 0xE5, 0x04, 0xB8, 0xE6, 0xC0, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x49, 0xD3, 0xF0, 0x04, 0x00, 0xE4, 0x05, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xF3, 0x06, 0xA3, 0x1A, 0xFF, 0xEA, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x32, 0xAA, 0x99, 0x33, 0x09, 0xB6, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xEF, 0xFC, 0x61, 0x10, 0x42, 0x31, 0x94),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0xF1, 0xF4, 0x33, 0xCF, 0x28, 0x90, 0x9C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xDE, 0xF9, 0x88, 0x87, 0x7B, 0xEB, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0xB8, 0xDA, 0xFA, 0xDA, 0x3D, 0xA6, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF0, 0x62, 0x82, 0x53, 0x32, 0x55, 0x03),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xA5, 0x32, 0x4A, 0x19, 0x11, 0x9C, 0x10),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xB3, 0x27, 0xE9, 0x75, 0x90, 0x05, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x1C, 0x90, 0x48, 0x77, 0x01, 0x85, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD6, 0x9B, 0x84, 0xA8, 0xD7, 0xC5, 0x28),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x7A, 0xCB, 0xB3, 0x11, 0x46, 0xD7, 0x99),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_8_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0x23, 0xBF, 0x75, 0x75, 0xA1, 0x95, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4B, 0x66, 0x5D, 0x34, 0x13, 0xA9, 0x03, 0xBE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x80, 0x9D, 0x5F, 0xD2, 0x44, 0xE1, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x5D, 0xBD, 0xA8, 0xBF, 0xB4, 0x25, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x99, 0x1F, 0x53, 0xF1, 0x57, 0xDB, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x7C, 0xE5, 0xC5, 0x51, 0x0B, 0x4C, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6B, 0xB0, 0x1A, 0x9C, 0x16, 0xB0, 0x32, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xE3, 0xCF, 0xDD, 0x48, 0xB4, 0x7B, 0x33),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0xDD, 0x9E, 0x3C, 0x98, 0x0E, 0x77, 0x65),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0xAB, 0x01, 0xD3, 0x87, 0x74, 0x25, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xA3, 0xE3, 0x76, 0x43, 0x87, 0x12, 0xBD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x54, 0xB1, 0x3B, 0x60, 0x66, 0xEB, 0x98, 0x54),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x78, 0xC8, 0xD7, 0x4E, 0x75, 0xCA, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xDF, 0x71, 0x19, 0xE7, 0x07, 0x36, 0xB5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0xC9, 0xA8, 0x5F, 0x91, 0xBF, 0x47, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x96, 0x58, 0x96, 0x18, 0xB6, 0xFA, 0x01),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_9_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x2D, 0xA9, 0x9B, 0x86, 0xDB, 0x0C, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x0B, 0x2D, 0x56, 0x4A, 0xD3, 0x93, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x15, 0xE2, 0x65, 0x12, 0x86, 0x0E, 0xB2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x41, 0x4D, 0xC1, 0xCB, 0xE4, 0xC3, 0xD7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x53, 0x10, 0xCA, 0xA3, 0xAC, 0x83, 0x26),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x01, 0x22, 0x96, 0x10, 0xAD, 0x69, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x42, 0x46, 0x4E, 0xD8, 0xEA, 0xD6, 0x9D, 0xF3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x2F, 0x7F, 0x62, 0x62, 0x80, 0xD0, 0x14),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xDA, 0x00, 0x63, 0x09, 0xBD, 0x6A, 0x83),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0F, 0xD4, 0x6E, 0x48, 0x05, 0xB7, 0xF7, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0x4D, 0xD7, 0x00, 0x4A, 0x15, 0x27, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x15, 0xAA, 0x37, 0x27, 0x34, 0x18, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x20, 0x2C, 0x84, 0x1B, 0x88, 0xBA, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x09, 0xD6, 0x04, 0xA2, 0x60, 0x84, 0x72),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0x04, 0x94, 0x08, 0xD4, 0xED, 0x47, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xF3, 0xE4, 0x3E, 0xB9, 0x5B, 0x35, 0x42),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_10_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5F, 0xD8, 0xB6, 0x80, 0xD6, 0xF1, 0x30, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x14, 0xA6, 0x85, 0xEE, 0xA7, 0xD8, 0x61),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x49, 0x2A, 0x1E, 0x7C, 0xE9, 0x2D, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3A, 0x87, 0x56, 0x91, 0x03, 0x77, 0x4D, 0x55),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0x52, 0xD4, 0xAA, 0xF7, 0xFA, 0xB0, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x5D, 0x11, 0x39, 0xB1, 0xE7, 0x76, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x13, 0xBC, 0x37, 0x5D, 0x74, 0xCD, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x48, 0x14, 0x23, 0x30, 0xF8, 0x46, 0x37),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x27, 0xB0, 0xD9, 0xB2, 0x74, 0xB4, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEA, 0xA6, 0xB9, 0x6F, 0x9F, 0x64, 0x36, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2E, 0x2B, 0x78, 0x40, 0x05, 0x2B, 0x7B, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x68, 0x3A, 0xB6, 0x4A, 0xE2, 0xDB, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1E, 0x33, 0xD7, 0x34, 0x8B, 0x25, 0x45, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xCE, 0xA8, 0xC9, 0x01, 0xFB, 0x0E, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF9, 0x51, 0x4C, 0x12, 0x9F, 0x60, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0x85, 0xBD, 0x30, 0x37, 0x84, 0x39, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_11_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x26, 0x33, 0xAF, 0x2E, 0xB8, 0x2E, 0xCC, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0xB1, 0x73, 0x59, 0x4E, 0x0C, 0x09, 0x4A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0x24, 0x89, 0x81, 0x12, 0xFF, 0xBB, 0x6E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x71, 0x37, 0x1A, 0x66, 0xEE, 0xED, 0xB6, 0x9B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0xBD, 0x04, 0x20, 0x5D, 0xFB, 0xBF, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0xF8, 0x34, 0xA3, 0xFF, 0x45, 0xDE, 0x92),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x18, 0x73, 0xF1, 0x32, 0x25, 0x58, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0xC1, 0x14, 0xE3, 0x9E, 0x40, 0x0F, 0x12),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x07, 0x9D, 0x9C, 0x00, 0xF7, 0x56, 0x19),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0xBA, 0x87, 0xF9, 0x15, 0x0C, 0x66, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0x1F, 0xC1, 0x28, 0xB0, 0x47, 0x0D, 0xF5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0xCA, 0x27, 0xEE, 0x4B, 0x23, 0x2B, 0x89),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7E, 0xB5, 0x68, 0xC8, 0x17, 0x5D, 0xC3, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0x02, 0x08, 0xEE, 0x20, 0x9D, 0xEA, 0x64),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x14, 0x50, 0xD4, 0x7D, 0x5F, 0xCF, 0xA0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0xFA, 0xF8, 0xA7, 0xC6, 0xDC, 0x14, 0x8C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_12_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x76, 0xBD, 0x0A, 0x1A, 0x18, 0x98, 0xDC, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x63, 0x63, 0x02, 0xB7, 0xD5, 0x5B, 0x5A, 0xC6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0xB1, 0xD7, 0x4B, 0x15, 0x39, 0x61, 0x5D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0x32, 0xE1, 0x9E, 0x70, 0x1B, 0xCE, 0x51),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x64, 0xD8, 0x18, 0x83, 0x52, 0x9B, 0x6D, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x55, 0x56, 0x19, 0x34, 0xA4, 0xEA, 0xFC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0xA9, 0x55, 0x80, 0xE3, 0x15, 0x36, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0x06, 0xC8, 0x1D, 0x17, 0x0D, 0xAD, 0x16),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xD6, 0xF0, 0xCC, 0xF3, 0x63, 0x53, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x5A, 0xDC, 0x46, 0xBD, 0x0D, 0xAD, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0x2F, 0x11, 0x60, 0x15, 0x51, 0x4A, 0xEA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xE3, 0x93, 0x38, 0xD5, 0x83, 0xAA, 0x0D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x90, 0xA6, 0xCC, 0xB1, 0xFD, 0xBB, 0x1A, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3B, 0x54, 0xC8, 0x54, 0x6F, 0x79, 0x1A, 0x59),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4A, 0xDA, 0x28, 0x92, 0x97, 0x9D, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD6, 0x4B, 0xDB, 0xC7, 0x52, 0xC5, 0x66, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_13_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7E, 0x92, 0x53, 0x30, 0x93, 0xFD, 0xFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0x6A, 0xB1, 0x91, 0x0A, 0xB4, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6D, 0x9D, 0x40, 0x3F, 0xE3, 0xF1, 0x01, 0x46),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x0E, 0xD8, 0xED, 0x11, 0x8E, 0x4C, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x86, 0x4A, 0x1B, 0x88, 0xDF, 0x8D, 0x29, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x23, 0x21, 0x11, 0xAB, 0x77, 0x81, 0x62),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0B, 0xAF, 0x11, 0xFA, 0xBA, 0x40, 0x63, 0xE7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x6F, 0x8D, 0x80, 0xDF, 0x67, 0xF5, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0x8B, 0xB7, 0x08, 0xF4, 0xD7, 0x2D, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x2B, 0x30, 0x02, 0x45, 0x71, 0x08, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x97, 0x3A, 0xCA, 0x50, 0xF6, 0xC2, 0x19, 0x8C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xB9, 0x9B, 0x3E, 0x73, 0x95, 0x1D, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x60, 0x59, 0x48, 0xCB, 0xD8, 0xD6, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0xB9, 0x6C, 0x89, 0xAB, 0x99, 0xA8, 0xF8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0xA1, 0x8B, 0x4E, 0x06, 0x19, 0xEC, 0x99),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x95, 0x04, 0xCF, 0xD5, 0x94, 0xB3, 0x02),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_14_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x29, 0x35, 0x93, 0x7C, 0xB3, 0xB8, 0x9E, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC4, 0x45, 0x5C, 0x7E, 0xBF, 0x75, 0x81, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xE8, 0x24, 0xDF, 0xEC, 0x2F, 0x7D, 0xB9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF2, 0x8B, 0xD5, 0x6A, 0x9B, 0xA0, 0xE0, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0xE3, 0x27, 0x82, 0xDE, 0xDD, 0xCA, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x57, 0x56, 0x46, 0x05, 0x06, 0x01, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x74, 0x35, 0xA7, 0x47, 0xE2, 0x6B, 0x2C, 0x4F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x9D, 0x4C, 0xEC, 0x1F, 0x11, 0x75, 0x2B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0xAA, 0x41, 0xC1, 0xE9, 0x0E, 0xE9, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xCF, 0x9C, 0x4B, 0xE8, 0xED, 0x0A, 0x49),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0x73, 0xCA, 0x0C, 0x46, 0x0A, 0x9C, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE1, 0x9E, 0xBC, 0xFE, 0x44, 0x63, 0x6D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x31, 0x43, 0x71, 0xEE, 0xF8, 0xC1, 0x8C, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6A, 0x4B, 0xF0, 0x69, 0x25, 0xBD, 0x71, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFD, 0x9A, 0xFE, 0x82, 0xE7, 0xC1, 0xC1, 0xEE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFC, 0x5A, 0x6E, 0x5E, 0x97, 0x6A, 0x35, 0x8D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_15_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA2, 0x18, 0x6C, 0x7E, 0xB8, 0x9E, 0x57, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x35, 0xB9, 0xC1, 0xD0, 0xFE, 0x78, 0xFB, 0x32),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x08, 0xAE, 0x46, 0x34, 0xEA, 0x7A, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x1C, 0x56, 0xA9, 0x18, 0x37, 0xD4, 0x9E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x28, 0x63, 0xE9, 0x0A, 0xB6, 0x38, 0x3C, 0xC1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3E, 0x4F, 0xA4, 0x6E, 0x85, 0x31, 0x23, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0D, 0xAD, 0xC4, 0xC3, 0xB1, 0x4B, 0x1C, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x56, 0x4A, 0x38, 0xB3, 0x6B, 0x6F, 0x2C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x67, 0xC7, 0x19, 0xDE, 0x21, 0xED, 0x89, 0xD0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2F, 0xBE, 0xA6, 0xAE, 0xEB, 0x9D, 0xA7, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x0E, 0x13, 0x1E, 0x86, 0x57, 0xC3, 0x3B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x4B, 0x30, 0x46, 0x52, 0xC1, 0xEC, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6E, 0xD5, 0x44, 0x31, 0x96, 0x3B, 0x26, 0x27),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x68, 0xA8, 0x67, 0x78, 0x39, 0xE8, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0x78, 0xB7, 0xDD, 0xF2, 0x58, 0xB6, 0x3D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x81, 0x3C, 0xB3, 0x26, 0xC4, 0x2C, 0x8C, 0xA5),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_16_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB9, 0x24, 0xE5, 0x73, 0xEE, 0x9A, 0x02, 0xA9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0x6A, 0x65, 0x60, 0xF3, 0x62, 0xE3, 0xE9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFB, 0x07, 0x84, 0xE6, 0x3B, 0x46, 0x65, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0x8F, 0x0C, 0xB0, 0xE1, 0x04, 0x82, 0x9D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEB, 0x13, 0xBF, 0x3D, 0xA0, 0x48, 0xA2, 0x74),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0x26, 0x76, 0x74, 0xAB, 0x0B, 0x29, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x30, 0x6E, 0x5F, 0x03, 0x34, 0x7C, 0x38, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x72, 0xF9, 0x3B, 0x3C, 0xA4, 0xBC, 0x7C),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5C, 0xCE, 0x18, 0x80, 0xB8, 0x24, 0x45, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x09, 0x03, 0xB8, 0x06, 0x64, 0xF7, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF1, 0x26, 0xB1, 0x10, 0x6D, 0x71, 0x12, 0x2E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x12, 0xC6, 0x6E, 0x1E, 0x6A, 0xC3, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE5, 0xD3, 0x0A, 0xDE, 0xD8, 0x6B, 0x04, 0x5C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x87, 0x5B, 0xAE, 0xDB, 0x3C, 0xC0, 0xC5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8E, 0xF5, 0xF9, 0xC1, 0x9A, 0x89, 0xBB, 0x7E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0x69, 0x72, 0x8B, 0xAE, 0x32, 0x13, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_17_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x16, 0x07, 0x50, 0xFA, 0x4C, 0xCF, 0xE8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x50, 0x21, 0xE9, 0xDE, 0xEC, 0x7E, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x2F, 0xE8, 0x83, 0x30, 0x0B, 0x65, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x0B, 0x99, 0xAC, 0xC9, 0xBA, 0x6C, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x59, 0x5A, 0x0D, 0x7B, 0x9E, 0x08, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x34, 0x91, 0xB2, 0xDC, 0x90, 0xCE, 0x67, 0xED),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x93, 0x60, 0x0C, 0xD7, 0x1F, 0x2F, 0x17),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x19, 0x7F, 0x9D, 0x40, 0xF8, 0x78, 0x7A, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x13, 0x22, 0x95, 0xE8, 0xEF, 0x31, 0x57, 0x35),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x88, 0x53, 0xFE, 0xAF, 0x7C, 0x47, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xCE, 0xCC, 0x79, 0xE8, 0x9F, 0x8C, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDB, 0x16, 0xDD, 0x77, 0x6E, 0x8A, 0x73, 0x97),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x07, 0x97, 0x21, 0x3B, 0xF8, 0x5F, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC6, 0xB5, 0xD2, 0x81, 0x84, 0xF0, 0xE7, 0x9F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCB, 0x8F, 0x75, 0x09, 0x6A, 0x0E, 0x53, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x4F, 0x70, 0x97, 0xC7, 0xAC, 0x7D, 0x3F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_18_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF9, 0x3C, 0x6A, 0xB4, 0x10, 0xA9, 0xC8, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xC5, 0xD6, 0x69, 0x16, 0xB8, 0xAC, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x44, 0xDC, 0xEB, 0x48, 0x54, 0x5D, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6F, 0x48, 0x9B, 0xD7, 0x72, 0x69, 0xA4, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x0D, 0x36, 0x9A, 0x66, 0x0B, 0xEC, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0xC6, 0xD4, 0xB6, 0x60, 0xE5, 0xC3, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBA, 0x29, 0x42, 0xE0, 0x9D, 0xFD, 0x7C, 0x3E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x10, 0xBA, 0x55, 0xBC, 0x3B, 0x38, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x25, 0x66, 0xFA, 0x05, 0x73, 0x03, 0x1B, 0x69),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x11, 0xA4, 0x66, 0x12, 0x96, 0x7B, 0x02, 0x4C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x44, 0xB5, 0xDE, 0x6D, 0x98, 0xD1, 0xD5, 0xA8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE2, 0xF5, 0x44, 0xB8, 0x8E, 0xF6, 0x8C, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x15, 0x2B, 0x72, 0xBC, 0x49, 0xE5, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x6C, 0x44, 0xD7, 0xDF, 0x8F, 0xEB, 0x8D, 0x80),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x64, 0x88, 0xAA, 0xB7, 0xE4, 0x70, 0x1D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9C, 0x14, 0xBB, 0xE9, 0x9B, 0xB9, 0x65, 0x5D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_19_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x66, 0x8E, 0x88, 0xF5, 0xF1, 0xC1, 0x89, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x16, 0x30, 0x53, 0xE6, 0xFB, 0x2D, 0x82, 0xB4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0xE4, 0xFF, 0xBA, 0x31, 0x79, 0xAB, 0xC2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x45, 0x09, 0xF7, 0xB7, 0x09, 0x78, 0x4C, 0x90),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xAE, 0xC2, 0x44, 0xDC, 0x17, 0x78, 0x47),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xD4, 0x17, 0x43, 0x19, 0x74, 0x9E, 0x23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x64, 0x3B, 0x73, 0xA2, 0x99, 0x27, 0x76),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x74, 0x36, 0x5F, 0xD3, 0x14, 0xB1, 0x31),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAC, 0x07, 0xAB, 0xFD, 0x9B, 0x03, 0xC5, 0xD5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0xBE, 0xB0, 0x1D, 0xF2, 0x0C, 0x73, 0x73),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xE7, 0x7B, 0x87, 0xD3, 0x34, 0xFD, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9A, 0x25, 0x3D, 0xC7, 0x36, 0x83, 0x53, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x7C, 0xCF, 0x63, 0x55, 0x12, 0x11, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC0, 0x34, 0x4D, 0x27, 0x92, 0xAC, 0x18, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x42, 0x61, 0x9D, 0x2E, 0xFF, 0x13, 0x16),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF4, 0xDE, 0x92, 0x65, 0x57, 0x0D, 0xBC, 0x0A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_20_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEF, 0x7B, 0x6E, 0xC6, 0x2A, 0x21, 0x74, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0xA7, 0x53, 0x4D, 0x29, 0x36, 0xEF, 0xE5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE1, 0xD6, 0x41, 0xC7, 0x99, 0xAD, 0x50, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x99, 0xAC, 0x41, 0x9F, 0xFB, 0x4C, 0x86, 0xF1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xBB, 0xE6, 0x25, 0x28, 0xAA, 0xEB, 0x1E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x92, 0x04, 0xA2, 0xC3, 0xAA, 0x08, 0x8A, 0xCC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x2B, 0x5B, 0xE2, 0x8D, 0x76, 0xEA, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB3, 0x33, 0xD2, 0x21, 0x4D, 0x62, 0xE3, 0x8E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0x06, 0x8B, 0x2B, 0xC2, 0xC4, 0xB1, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFA, 0xF5, 0xA1, 0xC0, 0x03, 0x6A, 0x29, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF5, 0xA9, 0xEF, 0x55, 0xB6, 0x1A, 0x9F, 0x6B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9B, 0x54, 0x32, 0xBE, 0x06, 0x43, 0xB5, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF7, 0xD6, 0xD9, 0x20, 0x89, 0xBE, 0xD4, 0x1B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0x26, 0x95, 0x10, 0xCE, 0xB4, 0x88, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0xA6, 0x27, 0xAC, 0x32, 0xBA, 0xBD, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0xA6, 0xAE, 0x9C, 0x7B, 0xBE, 0xA1, 0x63),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_21_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8B, 0xCD, 0x4D, 0x3D, 0xDF, 0x96, 0xBB, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0xA7, 0x11, 0x06, 0xCC, 0x0E, 0x31, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x20, 0xE4, 0xF4, 0xAD, 0x7B, 0x5F, 0xF1, 0xEF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE4, 0x54, 0xBE, 0xF4, 0x8A, 0x03, 0x47, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0x53, 0x00, 0x7F, 0xB0, 0x8A, 0x68, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x16, 0xB1, 0x73, 0x6F, 0x5B, 0x0E, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x32, 0xE3, 0x43, 0x64, 0x75, 0xFB, 0xFB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x18, 0x55, 0x8A, 0x4E, 0x6E, 0x35, 0x54),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x80, 0x97, 0x15, 0x1E, 0xCB, 0xF2, 0x9C, 0xA5),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0xD1, 0xBB, 0xF3, 0x70, 0xAD, 0x13, 0xAD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0x96, 0xA4, 0xC5, 0x5E, 0xDA, 0xD5, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x81, 0xE9, 0x65, 0x66, 0x76, 0x47, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x35, 0x87, 0x06, 0x73, 0xCF, 0x34, 0xD2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x81, 0x15, 0x42, 0xA2, 0x79, 0x5B, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x08, 0xA2, 0x7D, 0x09, 0x14, 0x64, 0xC6, 0xAE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0x6D, 0xC4, 0xED, 0xF1, 0xD6, 0xE9, 0x24),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_22_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB4, 0xD5, 0xBB, 0x25, 0xA3, 0xDD, 0xA3, 0x88),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xF2, 0x68, 0x67, 0x39, 0x8F, 0x73, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x76, 0x28, 0x89, 0xAD, 0x32, 0xE0, 0xDF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0x90, 0xCC, 0x57, 0x58, 0xAA, 0xC9, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD7, 0x43, 0xD2, 0xCE, 0x5E, 0xA0, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x33, 0xB0, 0xB8, 0xA4, 0x9E, 0x96, 0x26, 0x86),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x94, 0x61, 0x1D, 0xF3, 0x65, 0x5E, 0x60, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC7, 0x1E, 0x65, 0xED, 0xCF, 0x07, 0x60, 0x20),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x30, 0x17, 0x8A, 0x91, 0x88, 0x0A, 0xA4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x05, 0x7D, 0x18, 0xA4, 0xAC, 0x59, 0xFC, 0x5F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x31, 0x8B, 0x25, 0x65, 0x39, 0x9A, 0xDC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x15, 0x16, 0x4B, 0x68, 0xBA, 0x59, 0x13, 0x2F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8D, 0xFD, 0xD3, 0xC5, 0x56, 0xC9, 0x8C, 0x5E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBC, 0xC6, 0x9F, 0xF4, 0xE6, 0xF7, 0xB4, 0x01),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2D, 0x7C, 0x03, 0x00, 0x26, 0x9F, 0xD8, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x1D, 0x6E, 0x00, 0xB9, 0x00, 0x6E, 0x93),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_23_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x63, 0xDA, 0x03, 0x2B, 0xD5, 0x0B, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x46, 0xFC, 0xE2, 0xC8, 0x47, 0xF0, 0xAE, 0xF2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x51, 0x4C, 0xF7, 0x50, 0x0C, 0x48, 0x06, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDF, 0x2B, 0x32, 0x98, 0x0E, 0x7E, 0x61, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x02, 0x27, 0xFE, 0x75, 0x86, 0xDF, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2B, 0x30, 0xB1, 0x22, 0x32, 0x1B, 0xFE, 0x24),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC2, 0x27, 0xF7, 0x78, 0x6F, 0xD7, 0xFD, 0xE4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA0, 0x78, 0xCC, 0xEA, 0xC0, 0x50, 0x24, 0x44),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x2B, 0x4F, 0x7F, 0x58, 0xE6, 0xC2, 0x70),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x43, 0xD5, 0xA7, 0x35, 0x3C, 0x80, 0xB8),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1A, 0x6D, 0x4B, 0x12, 0x00, 0x7B, 0xE6, 0xA6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x15, 0xBD, 0xD0, 0x9B, 0xCA, 0xAA, 0x81),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xCF, 0xCE, 0x9C, 0xE3, 0x8B, 0x60, 0x7A, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0xDA, 0x4B, 0x03, 0xA7, 0x8D, 0x43, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0xAF, 0x00, 0x2B, 0x32, 0xF0, 0x22, 0x68),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDC, 0xD9, 0x99, 0x99, 0xBE, 0x43, 0x99, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_24_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1F, 0x71, 0x41, 0xF4, 0xB5, 0xFD, 0xDD, 0x36),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9D, 0xE2, 0x20, 0x4C, 0xD1, 0x2E, 0x1F, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x96, 0x43, 0x48, 0x76, 0x8A, 0x49, 0xAC, 0x87),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0C, 0x1A, 0x55, 0xA8, 0xA3, 0xD4, 0x57, 0x75),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0xA6, 0x84, 0x39, 0xC9, 0x13, 0xBB, 0x60),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD9, 0xFA, 0xA9, 0x70, 0xDE, 0x83, 0xDD, 0xC9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEC, 0xC9, 0xD9, 0x3E, 0x44, 0x91, 0x68, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB6, 0x9F, 0x85, 0x6D, 0xF7, 0x54, 0x36, 0x82),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x68, 0x6B, 0xA6, 0xA3, 0xE5, 0xD4, 0x46, 0xDB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x3E, 0xDC, 0x84, 0x7C, 0x7B, 0x24, 0x34),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x14, 0xED, 0x7F, 0x86, 0x07, 0x6C, 0x57, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x95, 0x06, 0xFE, 0x52, 0x12, 0x79, 0x69, 0x56),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x84, 0xD1, 0x44, 0x5F, 0x21, 0x3A, 0xC3, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5E, 0xD9, 0x4A, 0xC0, 0x75, 0xAB, 0x17, 0xAC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xFF, 0x81, 0x94, 0xB6, 0x80, 0x6B, 0x6F, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xBE, 0x8E, 0xA5, 0xAA, 0xBC, 0x1E, 0x3E),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_25_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x89, 0xC7, 0x85, 0xA6, 0x59, 0x9B, 0xB1, 0x52),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xCE, 0x40, 0xD1, 0xFB, 0xDF, 0x94, 0xF7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x18, 0xB8, 0x5E, 0xBF, 0x45, 0xA8, 0x2D, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x98, 0x9C, 0x06, 0x1B, 0xA9, 0x57, 0xB9, 0x79),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x53, 0xE9, 0xCE, 0xA2, 0xD3, 0x74, 0xA1, 0x3C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAA, 0x5F, 0x34, 0x78, 0xDB, 0xAE, 0x3A, 0x14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7D, 0x32, 0x84, 0x3E, 0x68, 0x6A, 0x43, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0xBC, 0x39, 0x36, 0xA4, 0xC5, 0xBB, 0x11),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8C, 0x07, 0xA2, 0xB5, 0xC9, 0x0F, 0x4D, 0x0F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0x1D, 0x67, 0xE6, 0xF1, 0x46, 0xEB, 0x71),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD7, 0x41, 0x23, 0x95, 0xE7, 0xE0, 0x10, 0xDD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x69, 0xFE, 0x68, 0x8C, 0xC6, 0x5F, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE3, 0xB9, 0x2B, 0x3D, 0xD2, 0x4F, 0xD8, 0x1A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA3, 0x09, 0xF5, 0x5F, 0xCF, 0xF6, 0x91, 0x57),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x65, 0x15, 0x42, 0x6B, 0x6D, 0xB5, 0xF3, 0xB6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBF, 0x56, 0x9D, 0xC5, 0xFF, 0xCA, 0x13, 0x9B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_26_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x4D, 0x38, 0xE6, 0x23, 0x63, 0x48, 0x3C, 0xCA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD2, 0x68, 0x3C, 0xD1, 0x3B, 0xE9, 0x3B, 0x82),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB5, 0x08, 0x54, 0x49, 0xD1, 0x46, 0x45, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x70, 0x52, 0x6E, 0x79, 0xC4, 0x5E, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0xDF, 0xE8, 0x5A, 0x32, 0x81, 0xDA, 0xD3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3C, 0x2D, 0x94, 0x5B, 0xB5, 0x35, 0x9F, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2A, 0x12, 0x8D, 0xC3, 0x36, 0x36, 0xB2, 0x2A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x39, 0x2F, 0x22, 0x38, 0x5B, 0x18, 0x4C, 0x35),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0xC1, 0x22, 0x0E, 0xF0, 0x73, 0x11, 0x05),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB2, 0xAE, 0xA4, 0x56, 0x18, 0x61, 0x66, 0x12),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x79, 0xFB, 0x72, 0x08, 0x84, 0x38, 0x51, 0xB0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDA, 0x86, 0xA8, 0xB9, 0x31, 0x99, 0x29, 0xC3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x8A, 0xFB, 0xC3, 0x42, 0xB3, 0xC7, 0x6F, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD8, 0xF8, 0xE1, 0x09, 0xBE, 0x75, 0xB0, 0x22),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5A, 0x7D, 0xFF, 0xF4, 0x99, 0xFC, 0x13, 0xAB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE6, 0x1B, 0x84, 0x81, 0x42, 0x22, 0xC6, 0x3D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_27_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x21, 0xE0, 0x37, 0xA4, 0xA0, 0x2F, 0x38, 0x7F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x3D, 0xB7, 0x40, 0x2F, 0x39, 0x3C, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7A, 0x3B, 0x8A, 0x51, 0xAE, 0x40, 0x49, 0x7A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x36, 0x20, 0x9F, 0xDD, 0xA9, 0xD0, 0x77, 0xC7),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x78, 0x1D, 0x64, 0xDA, 0xA0, 0x53, 0xC7, 0x7D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x37, 0x7B, 0x66, 0x55, 0x94, 0xD1, 0x51, 0x44),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0E, 0xA9, 0xB5, 0x5B, 0x38, 0x35, 0x40, 0xC0),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC8, 0xC9, 0x0F, 0xF0, 0x73, 0x79, 0x43, 0x61),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x47, 0x45, 0x69, 0x80, 0x72, 0x72, 0x42),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x11, 0x99, 0x59, 0xDB, 0x48, 0x80, 0x39),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x75, 0x6E, 0x3D, 0xFC, 0x37, 0x15, 0xF4, 0xBF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x17, 0xBB, 0x5B, 0xA6, 0x35, 0x8D, 0x28, 0x20),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0x1A, 0x3B, 0x2C, 0x8F, 0xD3, 0xAA, 0x2D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x55, 0x1C, 0x1A, 0xF8, 0x02, 0xD9, 0x7B, 0x41),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAF, 0x69, 0xAC, 0xF8, 0x54, 0x31, 0x14, 0xA1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x8A, 0xE6, 0xDE, 0x58, 0xB9, 0xC4, 0x7A),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_28_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x57, 0x83, 0x52, 0xFE, 0xF9, 0x7B, 0xE9, 0x1F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0xA2, 0x55, 0x46, 0x15, 0x49, 0xC1, 0x3A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xBC, 0x5C, 0x91, 0xBD, 0xB9, 0x9C, 0xF4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBB, 0xFD, 0xB1, 0x4E, 0x5F, 0x74, 0xEE, 0x53),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xB1, 0x8B, 0xD8, 0x8B, 0x17, 0x73, 0x1B, 0x96),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x22, 0x92, 0xD7, 0x67, 0x06, 0xAD, 0x25, 0xCD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x01, 0x0F, 0x80, 0x24, 0xE2, 0x27, 0x5F, 0x8B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x61, 0x1C, 0xCE, 0xD0, 0x67, 0xCA, 0xD4, 0x0B),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x87, 0xF1, 0xDD, 0x33, 0x66, 0xF9, 0x05, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1D, 0xE5, 0x6B, 0x79, 0xBD, 0x48, 0x42, 0xAA),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x14, 0x52, 0xE3, 0x53, 0xB4, 0x50, 0xD4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x32, 0x84, 0x6C, 0xCF, 0xDA, 0xB2, 0x20, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0xD6, 0x1A, 0xE5, 0xE2, 0x29, 0x70, 0xCE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x61, 0xFE, 0xBB, 0x21, 0x82, 0xD1, 0xFE),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x2C, 0xF0, 0x9C, 0x8B, 0x1A, 0x42, 0x30, 0x06),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0xD6, 0x49, 0x81, 0x92, 0xF1, 0xD0, 0x90),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_29_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x91, 0x93, 0x6A, 0xA6, 0x22, 0xE9, 0xD6),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x09, 0xDC, 0xC3, 0x69, 0x11, 0x95, 0x7D, 0xEC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x1C, 0xA3, 0x9D, 0x87, 0x5E, 0x64, 0x41, 0xA2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xBE, 0x87, 0x5A, 0x15, 0xBD, 0x6E, 0x3C, 0x8D),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD0, 0x8D, 0x50, 0xCC, 0xCF, 0xB7, 0x8F, 0x0B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x38, 0x65, 0xCD, 0x31, 0x30, 0xF1, 0x68, 0x13),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x10, 0x5C, 0x66, 0x67, 0x92, 0x30, 0x57, 0x95),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x23, 0x9B, 0x01, 0x3D, 0x20, 0x8B, 0xD1, 0x0D),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAB, 0xC0, 0xE6, 0x4F, 0xDE, 0x62, 0xAB, 0xB3),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA4, 0x48, 0xB3, 0x1C, 0x0F, 0x16, 0x93, 0x45),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x77, 0x63, 0xBD, 0x1F, 0x16, 0x50, 0x56, 0x98),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x5D, 0x06, 0xBC, 0xE9, 0x27, 0x1C, 0x9A, 0x7B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF8, 0xFE, 0x21, 0xC5, 0x39, 0x55, 0xE1, 0xFD),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF6, 0xA8, 0xD0, 0x96, 0x0E, 0xB5, 0xB2, 0x84),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3D, 0xE7, 0x4B, 0xF3, 0x11, 0x0C, 0xC9, 0x5B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x43, 0x3A, 0xC4, 0x87, 0x71, 0xEE, 0xFA, 0x18),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_30_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA7, 0x77, 0xEE, 0x81, 0x5E, 0x96, 0xEA, 0x4B),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xEE, 0xDF, 0xA9, 0xF4, 0x4F, 0x7C, 0xB2, 0x43),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x9F, 0xD4, 0xDF, 0x35, 0x63, 0x47, 0x25, 0x8A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xA5, 0x3D, 0xFF, 0xA4, 0x02, 0xC3, 0x95, 0x11),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD5, 0x10, 0x78, 0xD1, 0x2B, 0xB7, 0xBE, 0x0E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x0A, 0xE9, 0x57, 0xF9, 0xE0, 0xD8, 0xFC, 0xBC),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF3, 0xC4, 0x01, 0xD6, 0xB4, 0xE7, 0x78, 0xE2),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x02, 0x6C, 0xB9, 0x13, 0xA4, 0xE8, 0x6D, 0x6F),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_X[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE8, 0xB0, 0xC9, 0xCD, 0xBF, 0xA2, 0x1E, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xDD, 0x4F, 0x86, 0x22, 0x9B, 0xEA, 0xE8, 0xBB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x50, 0x46, 0xDF, 0x43, 0xB9, 0x82, 0x2D, 0x0A),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x07, 0x32, 0xF1, 0x4E, 0x95, 0x41, 0xAE, 0x8E),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x52, 0x93, 0x26, 0xFC, 0xD3, 0x90, 0xDC, 0xEB),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x04, 0x05, 0x45, 0xCA, 0xF9, 0x5A, 0x89, 0x93),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC5, 0x82, 0x63, 0x4E, 0x55, 0x1D, 0x3A, 0x08),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x7C, 0x69, 0x52, 0x49, 0xE9, 0xED, 0x57, 0x34),
+};
+static const mbedtls_mpi_uint brainpoolP512r1_T_31_Y[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x70, 0x64, 0xE9, 0xAC, 0x4C, 0x4A, 0xEA, 0x25),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xE9, 0xE9, 0x0B, 0x99, 0xE7, 0xF9, 0xA9, 0x2C),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x24, 0x0C, 0xC1, 0xF4, 0x8D, 0x07, 0xB6, 0xB1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xAD, 0x68, 0xFA, 0x35, 0xE4, 0x9E, 0xAE, 0xD9),
+ MBEDTLS_BYTES_TO_T_UINT_8(0xF0, 0x2D, 0x1A, 0x13, 0x8E, 0x02, 0xE2, 0x63),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x27, 0x38, 0x28, 0x86, 0x46, 0x7B, 0x3A, 0xE1),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x3F, 0x4C, 0x64, 0x59, 0x0A, 0xF9, 0x02, 0xC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x41, 0x4F, 0x23, 0xA2, 0xC3, 0xD5, 0xEF, 0x42),
+};
+static const mbedtls_ecp_point brainpoolP512r1_T[32] = {
+ ECP_POINT_INIT_XY_Z1(brainpoolP512r1_T_0_X, brainpoolP512r1_T_0_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_1_X, brainpoolP512r1_T_1_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_2_X, brainpoolP512r1_T_2_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_3_X, brainpoolP512r1_T_3_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_4_X, brainpoolP512r1_T_4_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_5_X, brainpoolP512r1_T_5_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_6_X, brainpoolP512r1_T_6_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_7_X, brainpoolP512r1_T_7_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_8_X, brainpoolP512r1_T_8_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_9_X, brainpoolP512r1_T_9_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_10_X, brainpoolP512r1_T_10_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_11_X, brainpoolP512r1_T_11_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_12_X, brainpoolP512r1_T_12_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_13_X, brainpoolP512r1_T_13_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_14_X, brainpoolP512r1_T_14_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_15_X, brainpoolP512r1_T_15_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_16_X, brainpoolP512r1_T_16_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_17_X, brainpoolP512r1_T_17_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_18_X, brainpoolP512r1_T_18_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_19_X, brainpoolP512r1_T_19_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_20_X, brainpoolP512r1_T_20_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_21_X, brainpoolP512r1_T_21_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_22_X, brainpoolP512r1_T_22_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_23_X, brainpoolP512r1_T_23_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_24_X, brainpoolP512r1_T_24_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_25_X, brainpoolP512r1_T_25_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_26_X, brainpoolP512r1_T_26_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_27_X, brainpoolP512r1_T_27_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_28_X, brainpoolP512r1_T_28_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_29_X, brainpoolP512r1_T_29_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_30_X, brainpoolP512r1_T_30_Y),
+ ECP_POINT_INIT_XY_Z0(brainpoolP512r1_T_31_X, brainpoolP512r1_T_31_Y),
+};
+#else
+#define brainpoolP512r1_T NULL
+#endif
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+
+#if defined(ECP_LOAD_GROUP) || defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+/*
+ * Create an MPI from embedded constants
+ * (assumes len is an exact multiple of sizeof(mbedtls_mpi_uint) and
+ * len < 1048576)
+ */
+static inline void ecp_mpi_load(mbedtls_mpi *X, const mbedtls_mpi_uint *p, size_t len)
+{
+ X->s = 1;
+ X->n = (unsigned short) (len / sizeof(mbedtls_mpi_uint));
+ X->p = (mbedtls_mpi_uint *) p;
+}
+#endif
+
+#if defined(ECP_LOAD_GROUP)
+/*
+ * Set an MPI to static value 1
+ */
+static inline void ecp_mpi_set1(mbedtls_mpi *X)
+{
+ X->s = 1;
+ X->n = 1;
+ X->p = mpi_one;
+}
+
+/*
+ * Make group available from embedded constants
+ */
+static int ecp_group_load(mbedtls_ecp_group *grp,
+ const mbedtls_mpi_uint *p, size_t plen,
+ const mbedtls_mpi_uint *a, size_t alen,
+ const mbedtls_mpi_uint *b, size_t blen,
+ const mbedtls_mpi_uint *gx, size_t gxlen,
+ const mbedtls_mpi_uint *gy, size_t gylen,
+ const mbedtls_mpi_uint *n, size_t nlen,
+ const mbedtls_ecp_point *T)
+{
+ ecp_mpi_load(&grp->P, p, plen);
+ if (a != NULL) {
+ ecp_mpi_load(&grp->A, a, alen);
+ }
+ ecp_mpi_load(&grp->B, b, blen);
+ ecp_mpi_load(&grp->N, n, nlen);
+
+ ecp_mpi_load(&grp->G.X, gx, gxlen);
+ ecp_mpi_load(&grp->G.Y, gy, gylen);
+ ecp_mpi_set1(&grp->G.Z);
+
+ grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+ grp->nbits = mbedtls_mpi_bitlen(&grp->N);
+
+ grp->h = 1;
+
+ grp->T = (mbedtls_ecp_point *) T;
+ /*
+ * Set T_size to 0 to prevent T free by mbedtls_ecp_group_free.
+ */
+ grp->T_size = 0;
+
+ return 0;
+}
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/* Forward declarations */
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+static int ecp_mod_p192(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192_raw(mbedtls_mpi_uint *Np, size_t Nn);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+static int ecp_mod_p224(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+static int ecp_mod_p256(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+static int ecp_mod_p384(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+static int ecp_mod_p521(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p521_raw(mbedtls_mpi_uint *N_p, size_t N_n);
+#endif
+
+#define NIST_MODP(P) grp->modp = ecp_mod_ ## P;
+#else
+#define NIST_MODP(P)
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+/* Additional forward declarations */
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+static int ecp_mod_p255(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p255_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+static int ecp_mod_p448(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p448_raw(mbedtls_mpi_uint *, size_t);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+static int ecp_mod_p192k1(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+static int ecp_mod_p224k1(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+static int ecp_mod_p256k1(mbedtls_mpi *);
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+#endif
+
+#if defined(ECP_LOAD_GROUP)
+#define LOAD_GROUP_A(G) ecp_group_load(grp, \
+ G ## _p, sizeof(G ## _p), \
+ G ## _a, sizeof(G ## _a), \
+ G ## _b, sizeof(G ## _b), \
+ G ## _gx, sizeof(G ## _gx), \
+ G ## _gy, sizeof(G ## _gy), \
+ G ## _n, sizeof(G ## _n), \
+ G ## _T \
+ )
+
+#define LOAD_GROUP(G) ecp_group_load(grp, \
+ G ## _p, sizeof(G ## _p), \
+ NULL, 0, \
+ G ## _b, sizeof(G ## _b), \
+ G ## _gx, sizeof(G ## _gx), \
+ G ## _gy, sizeof(G ## _gy), \
+ G ## _n, sizeof(G ## _n), \
+ G ## _T \
+ )
+#endif /* ECP_LOAD_GROUP */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+/* Constants used by ecp_use_curve25519() */
+static const mbedtls_mpi_sint curve25519_a24 = 0x01DB42;
+
+/* P = 2^255 - 19 */
+static const mbedtls_mpi_uint curve25519_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xED, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X7F)
+};
+
+/* N = 2^252 + 27742317777372353535851937790883648493 */
+static const mbedtls_mpi_uint curve25519_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0XED, 0XD3, 0XF5, 0X5C, 0X1A, 0X63, 0X12, 0X58),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XD6, 0X9C, 0XF7, 0XA2, 0XDE, 0XF9, 0XDE, 0X14),
+ MBEDTLS_BYTES_TO_T_UINT_8(0X00, 0X00, 0X00, 0X00, 0x00, 0x00, 0x00, 0x00),
+ MBEDTLS_BYTES_TO_T_UINT_8(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10)
+};
+
+/*
+ * Specialized function for creating the Curve25519 group
+ */
+static int ecp_use_curve25519(mbedtls_ecp_group *grp)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Actually ( A + 2 ) / 4 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve25519_a24));
+
+ ecp_mpi_load(&grp->P, curve25519_p, sizeof(curve25519_p));
+
+ grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+ ecp_mpi_load(&grp->N, curve25519_n, sizeof(curve25519_n));
+
+ /* Y intentionally not set, since we use x/z coordinates.
+ * This is used as a marker to identify Montgomery curves! */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 9));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+ mbedtls_mpi_free(&grp->G.Y);
+
+ /* Actually, the required msb for private keys */
+ grp->nbits = 254;
+
+cleanup:
+ if (ret != 0) {
+ mbedtls_ecp_group_free(grp);
+ }
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+/* Constants used by ecp_use_curve448() */
+static const mbedtls_mpi_sint curve448_a24 = 0x98AA;
+
+/* P = 2^448 - 2^224 - 1 */
+static const mbedtls_mpi_uint curve448_p[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFE, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00)
+};
+
+/* N = 2^446 - 13818066809895115352007386748515426880336692474882178609894547503885 */
+static const mbedtls_mpi_uint curve448_n[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0XF3, 0X44, 0X58, 0XAB, 0X92, 0XC2, 0X78, 0X23),
+ MBEDTLS_BYTES_TO_T_UINT_8(0X55, 0X8F, 0XC5, 0X8D, 0X72, 0XC2, 0X6C, 0X21),
+ MBEDTLS_BYTES_TO_T_UINT_8(0X90, 0X36, 0XD6, 0XAE, 0X49, 0XDB, 0X4E, 0XC4),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XE9, 0X23, 0XCA, 0X7C, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF),
+ MBEDTLS_BYTES_TO_T_UINT_8(0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0XFF, 0X3F),
+ MBEDTLS_BYTES_TO_T_UINT_8(0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00, 0X00)
+};
+
+/*
+ * Specialized function for creating the Curve448 group
+ */
+static int ecp_use_curve448(mbedtls_ecp_group *grp)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Actually ( A + 2 ) / 4 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->A, curve448_a24));
+
+ ecp_mpi_load(&grp->P, curve448_p, sizeof(curve448_p));
+ grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+ /* Y intentionally not set, since we use x/z coordinates.
+ * This is used as a marker to identify Montgomery curves! */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.X, 5));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&grp->G.Z, 1));
+ mbedtls_mpi_free(&grp->G.Y);
+
+ ecp_mpi_load(&grp->N, curve448_n, sizeof(curve448_n));
+
+ /* Actually, the required msb for private keys */
+ grp->nbits = 447;
+
+cleanup:
+ if (ret != 0) {
+ mbedtls_ecp_group_free(grp);
+ }
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+/*
+ * Set a group using well-known domain parameters
+ */
+int mbedtls_ecp_group_load(mbedtls_ecp_group *grp, mbedtls_ecp_group_id id)
+{
+ mbedtls_ecp_group_free(grp);
+
+ mbedtls_ecp_group_init(grp);
+
+ grp->id = id;
+
+ switch (id) {
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP192R1:
+ NIST_MODP(p192);
+ return LOAD_GROUP(secp192r1);
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP224R1:
+ NIST_MODP(p224);
+ return LOAD_GROUP(secp224r1);
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP256R1:
+ NIST_MODP(p256);
+ return LOAD_GROUP(secp256r1);
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP384R1:
+ NIST_MODP(p384);
+ return LOAD_GROUP(secp384r1);
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP521R1:
+ NIST_MODP(p521);
+ return LOAD_GROUP(secp521r1);
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP192K1:
+ grp->modp = ecp_mod_p192k1;
+ return LOAD_GROUP_A(secp192k1);
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP224K1:
+ grp->modp = ecp_mod_p224k1;
+ return LOAD_GROUP_A(secp224k1);
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP256K1:
+ grp->modp = ecp_mod_p256k1;
+ return LOAD_GROUP_A(secp256k1);
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP256R1:
+ return LOAD_GROUP_A(brainpoolP256r1);
+#endif /* MBEDTLS_ECP_DP_BP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP384R1:
+ return LOAD_GROUP_A(brainpoolP384r1);
+#endif /* MBEDTLS_ECP_DP_BP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP512R1:
+ return LOAD_GROUP_A(brainpoolP512r1);
+#endif /* MBEDTLS_ECP_DP_BP512R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE25519:
+ grp->modp = ecp_mod_p255;
+ return ecp_use_curve25519(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE448:
+ grp->modp = ecp_mod_p448;
+ return ecp_use_curve448(grp);
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+ default:
+ grp->id = MBEDTLS_ECP_DP_NONE;
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+}
+
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+/*
+ * Fast reduction modulo the primes used by the NIST curves.
+ *
+ * These functions are critical for speed, but not needed for correct
+ * operations. So, we make the choice to heavily rely on the internals of our
+ * bignum library, which creates a tight coupling between these functions and
+ * our MPI implementation. However, the coupling between the ECP module and
+ * MPI remains loose, since these functions can be deactivated at will.
+ */
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+/*
+ * Compared to the way things are presented in FIPS 186-3 D.2,
+ * we proceed in columns, from right (least significant chunk) to left,
+ * adding chunks to N in place, and keeping a carry for the next chunk.
+ * This avoids moving things around in memory, and uselessly adding zeros,
+ * compared to the more straightforward, line-oriented approach.
+ *
+ * For this prime we need to handle data in chunks of 64 bits.
+ * Since this is always a multiple of our basic mbedtls_mpi_uint, we can
+ * use a mbedtls_mpi_uint * to designate such a chunk, and small loops to handle it.
+ */
+
+/* Add 64-bit chunks (dst += src) and update carry */
+static inline void add64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *src, mbedtls_mpi_uint *carry)
+{
+ unsigned char i;
+ mbedtls_mpi_uint c = 0;
+ for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++, src++) {
+ *dst += c; c = (*dst < c);
+ *dst += *src; c += (*dst < *src);
+ }
+ *carry += c;
+}
+
+/* Add carry to a 64-bit chunk and update carry */
+static inline void carry64(mbedtls_mpi_uint *dst, mbedtls_mpi_uint *carry)
+{
+ unsigned char i;
+ for (i = 0; i < 8 / sizeof(mbedtls_mpi_uint); i++, dst++) {
+ *dst += *carry;
+ *carry = (*dst < *carry);
+ }
+}
+
+#define WIDTH 8 / sizeof(mbedtls_mpi_uint)
+#define A(i) Np + (i) * WIDTH
+#define ADD(i) add64(p, A(i), &c)
+#define NEXT p += WIDTH; carry64(p, &c)
+#define LAST p += WIDTH; do *p = 0; while (++p < end)
+#define RESET last_carry[0] = c; c = 0; p = Np
+#define ADD_LAST add64(p, last_carry, &c)
+
+/*
+ * Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
+ */
+static int ecp_mod_p192(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(192) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p192_raw(N->p, expected_width);
+
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192_raw(mbedtls_mpi_uint *Np, size_t Nn)
+{
+ mbedtls_mpi_uint c = 0, last_carry[WIDTH] = { 0 };
+ mbedtls_mpi_uint *p, *end;
+
+ if (Nn != BITS_TO_LIMBS(192) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ p = Np;
+ end = p + Nn;
+
+ ADD(3); ADD(5); NEXT; // A0 += A3 + A5
+ ADD(3); ADD(4); ADD(5); NEXT; // A1 += A3 + A4 + A5
+ ADD(4); ADD(5); // A2 += A4 + A5
+
+ RESET;
+
+ /* Use the reduction for the carry as well:
+ * 2^192 * last_carry = 2^64 * last_carry + last_carry mod P192
+ * It can generate a carry. */
+ ADD_LAST; NEXT; // A0 += last_carry
+ ADD_LAST; NEXT; // A1 += last_carry
+ // A2 += carry
+
+ RESET;
+
+ /* Use the reduction for the carry as well:
+ * 2^192 * last_carry = 2^64 * last_carry + last_carry mod P192
+ */
+ ADD_LAST; NEXT; // A0 += last_carry
+ ADD_LAST; NEXT; // A1 += last_carry
+ // A2 += carry
+
+ LAST;
+
+ return 0;
+}
+
+#undef WIDTH
+#undef A
+#undef ADD
+#undef NEXT
+#undef LAST
+#undef RESET
+#undef ADD_LAST
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+
+/*
+ * The reader is advised to first understand ecp_mod_p192() since the same
+ * general structure is used here, but with additional complications:
+ * (1) chunks of 32 bits, and (2) subtractions.
+ */
+
+/*
+ * For these primes, we need to handle data in chunks of 32 bits.
+ * This makes it more complicated if we use 64 bits limbs in MPI,
+ * which prevents us from using a uniform access method as for p192.
+ *
+ * So, we define a mini abstraction layer to access 32 bit chunks,
+ * load them in 'cur' for work, and store them back from 'cur' when done.
+ *
+ * While at it, also define the size of N in terms of 32-bit chunks.
+ */
+#define LOAD32 cur = A(i);
+
+#if defined(MBEDTLS_HAVE_INT32) /* 32 bit */
+
+#define MAX32 X_limbs
+#define A(j) X[j]
+#define STORE32 X[i] = (mbedtls_mpi_uint) cur;
+#define STORE0 X[i] = 0;
+
+#else /* 64 bit */
+
+#define MAX32 X_limbs * 2
+#define A(j) \
+ (j) % 2 ? \
+ (uint32_t) (X[(j) / 2] >> 32) : \
+ (uint32_t) (X[(j) / 2])
+#define STORE32 \
+ if (i % 2) { \
+ X[i/2] &= 0x00000000FFFFFFFF; \
+ X[i/2] |= (uint64_t) (cur) << 32; \
+ } else { \
+ X[i/2] &= 0xFFFFFFFF00000000; \
+ X[i/2] |= (uint32_t) cur; \
+ }
+
+#define STORE0 \
+ if (i % 2) { \
+ X[i/2] &= 0x00000000FFFFFFFF; \
+ } else { \
+ X[i/2] &= 0xFFFFFFFF00000000; \
+ }
+
+#endif
+
+static inline int8_t extract_carry(int64_t cur)
+{
+ return (int8_t) (cur >> 32);
+}
+
+#define ADD(j) cur += A(j)
+#define SUB(j) cur -= A(j)
+
+#define ADD_CARRY(cc) cur += (cc)
+#define SUB_CARRY(cc) cur -= (cc)
+
+#define ADD_LAST ADD_CARRY(last_c)
+#define SUB_LAST SUB_CARRY(last_c)
+
+/*
+ * Helpers for the main 'loop'
+ */
+#define INIT(b) \
+ int8_t c = 0, last_c; \
+ int64_t cur; \
+ size_t i = 0; \
+ LOAD32;
+
+#define NEXT \
+ c = extract_carry(cur); \
+ STORE32; i++; LOAD32; \
+ ADD_CARRY(c);
+
+#define RESET \
+ c = extract_carry(cur); \
+ last_c = c; \
+ STORE32; i = 0; LOAD32; \
+ c = 0; \
+
+#define LAST \
+ c = extract_carry(cur); \
+ STORE32; i++; \
+ if (c != 0) \
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA; \
+ while (i < MAX32) { STORE0; i++; }
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
+ */
+static int ecp_mod_p224(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(224) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p224_raw(N->p, expected_width);
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ if (X_limbs != BITS_TO_LIMBS(224) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ INIT(224);
+
+ SUB(7); SUB(11); NEXT; // A0 += -A7 - A11
+ SUB(8); SUB(12); NEXT; // A1 += -A8 - A12
+ SUB(9); SUB(13); NEXT; // A2 += -A9 - A13
+ SUB(10); ADD(7); ADD(11); NEXT; // A3 += -A10 + A7 + A11
+ SUB(11); ADD(8); ADD(12); NEXT; // A4 += -A11 + A8 + A12
+ SUB(12); ADD(9); ADD(13); NEXT; // A5 += -A12 + A9 + A13
+ SUB(13); ADD(10); // A6 += -A13 + A10
+
+ RESET;
+
+ /* Use 2^224 = P + 2^96 - 1 to modulo reduce the final carry */
+ SUB_LAST; NEXT; // A0 -= last_c
+ ; NEXT; // A1
+ ; NEXT; // A2
+ ADD_LAST; NEXT; // A3 += last_c
+ ; NEXT; // A4
+ ; NEXT; // A5
+ // A6
+
+ /* The carry reduction cannot generate a carry
+ * (see commit 73e8553 for details)*/
+
+ LAST;
+
+ return 0;
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
+ */
+static int ecp_mod_p256(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(256) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p256_raw(N->p, expected_width);
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ if (X_limbs != BITS_TO_LIMBS(256) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ INIT(256);
+
+ ADD(8); ADD(9);
+ SUB(11); SUB(12); SUB(13); SUB(14); NEXT; // A0
+
+ ADD(9); ADD(10);
+ SUB(12); SUB(13); SUB(14); SUB(15); NEXT; // A1
+
+ ADD(10); ADD(11);
+ SUB(13); SUB(14); SUB(15); NEXT; // A2
+
+ ADD(11); ADD(11); ADD(12); ADD(12); ADD(13);
+ SUB(15); SUB(8); SUB(9); NEXT; // A3
+
+ ADD(12); ADD(12); ADD(13); ADD(13); ADD(14);
+ SUB(9); SUB(10); NEXT; // A4
+
+ ADD(13); ADD(13); ADD(14); ADD(14); ADD(15);
+ SUB(10); SUB(11); NEXT; // A5
+
+ ADD(14); ADD(14); ADD(15); ADD(15); ADD(14); ADD(13);
+ SUB(8); SUB(9); NEXT; // A6
+
+ ADD(15); ADD(15); ADD(15); ADD(8);
+ SUB(10); SUB(11); SUB(12); SUB(13); // A7
+
+ RESET;
+
+ /* Use 2^224 * (2^32 - 1) + 2^192 + 2^96 - 1
+ * to modulo reduce the final carry. */
+ ADD_LAST; NEXT; // A0
+ ; NEXT; // A1
+ ; NEXT; // A2
+ SUB_LAST; NEXT; // A3
+ ; NEXT; // A4
+ ; NEXT; // A5
+ SUB_LAST; NEXT; // A6
+ ADD_LAST; // A7
+
+ RESET;
+
+ /* Use 2^224 * (2^32 - 1) + 2^192 + 2^96 - 1
+ * to modulo reduce the carry generated by the previous reduction. */
+ ADD_LAST; NEXT; // A0
+ ; NEXT; // A1
+ ; NEXT; // A2
+ SUB_LAST; NEXT; // A3
+ ; NEXT; // A4
+ ; NEXT; // A5
+ SUB_LAST; NEXT; // A6
+ ADD_LAST; // A7
+
+ LAST;
+
+ return 0;
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP256R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+/*
+ * Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
+ */
+static int ecp_mod_p384(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(384) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p384_raw(N->p, expected_width);
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ if (X_limbs != BITS_TO_LIMBS(384) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ INIT(384);
+
+ ADD(12); ADD(21); ADD(20);
+ SUB(23); NEXT; // A0
+
+ ADD(13); ADD(22); ADD(23);
+ SUB(12); SUB(20); NEXT; // A1
+
+ ADD(14); ADD(23);
+ SUB(13); SUB(21); NEXT; // A2
+
+ ADD(15); ADD(12); ADD(20); ADD(21);
+ SUB(14); SUB(22); SUB(23); NEXT; // A3
+
+ ADD(21); ADD(21); ADD(16); ADD(13); ADD(12); ADD(20); ADD(22);
+ SUB(15); SUB(23); SUB(23); NEXT; // A4
+
+ ADD(22); ADD(22); ADD(17); ADD(14); ADD(13); ADD(21); ADD(23);
+ SUB(16); NEXT; // A5
+
+ ADD(23); ADD(23); ADD(18); ADD(15); ADD(14); ADD(22);
+ SUB(17); NEXT; // A6
+
+ ADD(19); ADD(16); ADD(15); ADD(23);
+ SUB(18); NEXT; // A7
+
+ ADD(20); ADD(17); ADD(16);
+ SUB(19); NEXT; // A8
+
+ ADD(21); ADD(18); ADD(17);
+ SUB(20); NEXT; // A9
+
+ ADD(22); ADD(19); ADD(18);
+ SUB(21); NEXT; // A10
+
+ ADD(23); ADD(20); ADD(19);
+ SUB(22); // A11
+
+ RESET;
+
+ /* Use 2^384 = P + 2^128 + 2^96 - 2^32 + 1 to modulo reduce the final carry */
+ ADD_LAST; NEXT; // A0
+ SUB_LAST; NEXT; // A1
+ ; NEXT; // A2
+ ADD_LAST; NEXT; // A3
+ ADD_LAST; NEXT; // A4
+ ; NEXT; // A5
+ ; NEXT; // A6
+ ; NEXT; // A7
+ ; NEXT; // A8
+ ; NEXT; // A9
+ ; NEXT; // A10
+ // A11
+
+ RESET;
+
+ ADD_LAST; NEXT; // A0
+ SUB_LAST; NEXT; // A1
+ ; NEXT; // A2
+ ADD_LAST; NEXT; // A3
+ ADD_LAST; NEXT; // A4
+ ; NEXT; // A5
+ ; NEXT; // A6
+ ; NEXT; // A7
+ ; NEXT; // A8
+ ; NEXT; // A9
+ ; NEXT; // A10
+ // A11
+
+ LAST;
+
+ return 0;
+}
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#undef LOAD32
+#undef MAX32
+#undef A
+#undef STORE32
+#undef STORE0
+#undef ADD
+#undef SUB
+#undef ADD_CARRY
+#undef SUB_CARRY
+#undef ADD_LAST
+#undef SUB_LAST
+#undef INIT
+#undef NEXT
+#undef RESET
+#undef LAST
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED ||
+ MBEDTLS_ECP_DP_SECP256R1_ENABLED ||
+ MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+/* Size of p521 in terms of mbedtls_mpi_uint */
+#define P521_WIDTH (521 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/* Bits to keep in the most significant mbedtls_mpi_uint */
+#define P521_MASK 0x01FF
+
+/*
+ * Fast quasi-reduction modulo p521 = 2^521 - 1 (FIPS 186-3 D.2.5)
+ */
+static int ecp_mod_p521(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(521) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p521_raw(N->p, expected_width);
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p521_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ mbedtls_mpi_uint carry = 0;
+
+ if (X_limbs != BITS_TO_LIMBS(521) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* Step 1: Reduction to P521_WIDTH limbs */
+ /* Helper references for bottom part of X */
+ mbedtls_mpi_uint *X0 = X;
+ size_t X0_limbs = P521_WIDTH;
+ /* Helper references for top part of X */
+ mbedtls_mpi_uint *X1 = X + X0_limbs;
+ size_t X1_limbs = X_limbs - X0_limbs;
+ /* Split X as X0 + 2^P521_WIDTH X1 and compute X0 + 2^(biL - 9) X1.
+ * (We are using that 2^P521_WIDTH = 2^(512 + biL) and that
+ * 2^(512 + biL) X1 = 2^(biL - 9) X1 mod P521.)
+ * The high order limb of the result will be held in carry and the rest
+ * in X0 (that is the result will be represented as
+ * 2^P521_WIDTH carry + X0).
+ *
+ * Also, note that the resulting carry is either 0 or 1:
+ * X0 < 2^P521_WIDTH = 2^(512 + biL) and X1 < 2^(P521_WIDTH-biL) = 2^512
+ * therefore
+ * X0 + 2^(biL - 9) X1 < 2^(512 + biL) + 2^(512 + biL - 9)
+ * which in turn is less than 2 * 2^(512 + biL).
+ */
+ mbedtls_mpi_uint shift = ((mbedtls_mpi_uint) 1u) << (biL - 9);
+ carry = mbedtls_mpi_core_mla(X0, X0_limbs, X1, X1_limbs, shift);
+ /* Set X to X0 (by clearing the top part). */
+ memset(X1, 0, X1_limbs * sizeof(mbedtls_mpi_uint));
+
+ /* Step 2: Reduction modulo P521
+ *
+ * At this point X is reduced to P521_WIDTH limbs. What remains is to add
+ * the carry (that is 2^P521_WIDTH carry) and to reduce mod P521. */
+
+ /* 2^P521_WIDTH carry = 2^(512 + biL) carry = 2^(biL - 9) carry mod P521.
+ * Also, recall that carry is either 0 or 1. */
+ mbedtls_mpi_uint addend = carry << (biL - 9);
+ /* Keep the top 9 bits and reduce the rest, using 2^521 = 1 mod P521. */
+ addend += (X[P521_WIDTH - 1] >> 9);
+ X[P521_WIDTH - 1] &= P521_MASK;
+
+ /* Reuse the top part of X (already zeroed) as a helper array for
+ * carrying out the addition. */
+ mbedtls_mpi_uint *addend_arr = X + P521_WIDTH;
+ addend_arr[0] = addend;
+ (void) mbedtls_mpi_core_add(X, X, addend_arr, P521_WIDTH);
+ /* Both addends were less than P521 therefore X < 2 * P521. (This also means
+ * that the result fit in P521_WIDTH limbs and there won't be any carry.) */
+
+ /* Clear the reused part of X. */
+ addend_arr[0] = 0;
+
+ return 0;
+}
+
+#undef P521_WIDTH
+#undef P521_MASK
+
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#endif /* MBEDTLS_ECP_NIST_OPTIM */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+
+/* Size of p255 in terms of mbedtls_mpi_uint */
+#define P255_WIDTH (255 / 8 / sizeof(mbedtls_mpi_uint) + 1)
+
+/*
+ * Fast quasi-reduction modulo p255 = 2^255 - 19
+ * Write N as A0 + 2^256 A1, return A0 + 38 * A1
+ */
+static int ecp_mod_p255(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(255) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p255_raw(N->p, expected_width);
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p255_raw(mbedtls_mpi_uint *X, size_t X_Limbs)
+{
+
+ if (X_Limbs != BITS_TO_LIMBS(255) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_uint *carry = mbedtls_calloc(P255_WIDTH, ciL);
+ if (carry == NULL) {
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ }
+
+ /* Step 1: Reduction to P255_WIDTH limbs */
+ if (X_Limbs > P255_WIDTH) {
+ /* Helper references for top part of X */
+ mbedtls_mpi_uint * const A1 = X + P255_WIDTH;
+ const size_t A1_limbs = X_Limbs - P255_WIDTH;
+
+ /* X = A0 + 38 * A1, capture carry out */
+ *carry = mbedtls_mpi_core_mla(X, P255_WIDTH, A1, A1_limbs, 38);
+ /* Clear top part */
+ memset(A1, 0, sizeof(mbedtls_mpi_uint) * A1_limbs);
+ }
+
+ /* Step 2: Reduce to <2p
+ * Split as A0 + 2^255*c, with c a scalar, and compute A0 + 19*c */
+ *carry <<= 1;
+ *carry += (X[P255_WIDTH - 1] >> (biL - 1));
+ *carry *= 19;
+
+ /* Clear top bit */
+ X[P255_WIDTH - 1] <<= 1; X[P255_WIDTH - 1] >>= 1;
+ /* Since the top bit for X has been cleared 0 + 0 + Carry
+ * will not overflow.
+ *
+ * Furthermore for 2p = 2^256-38. When a carry propagation on the highest
+ * limb occurs, X > 2^255 and all the remaining bits on the limb are zero.
+ * - If X < 2^255 ==> X < 2p
+ * - If X > 2^255 ==> X < 2^256 - 2^255 < 2p */
+ (void) mbedtls_mpi_core_add(X, X, carry, P255_WIDTH);
+
+ mbedtls_free(carry);
+ return 0;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+
+/* Size of p448 in terms of mbedtls_mpi_uint */
+#define P448_WIDTH (448 / 8 / sizeof(mbedtls_mpi_uint))
+
+/* Number of limbs fully occupied by 2^224 (max), and limbs used by it (min) */
+#define DIV_ROUND_UP(X, Y) (((X) + (Y) -1) / (Y))
+#define P224_SIZE (224 / 8)
+#define P224_WIDTH_MIN (P224_SIZE / sizeof(mbedtls_mpi_uint))
+#define P224_WIDTH_MAX DIV_ROUND_UP(P224_SIZE, sizeof(mbedtls_mpi_uint))
+#define P224_UNUSED_BITS ((P224_WIDTH_MAX * sizeof(mbedtls_mpi_uint) * 8) - 224)
+
+static int ecp_mod_p448(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(448) * 2;
+
+ /* This is required as some tests and use cases do not pass in a Bignum of
+ * the correct size, and expect the growth to be done automatically, which
+ * will no longer happen. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+
+ ret = mbedtls_ecp_mod_p448_raw(N->p, N->n);
+
+cleanup:
+ return ret;
+}
+
+/*
+ * Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
+ * Write X as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return A0 + A1 + B1 +
+ * (B0 + B1) * 2^224. This is different to the reference implementation of
+ * Curve448, which uses its own special 56-bit limbs rather than a generic
+ * bignum library. We could squeeze some extra speed out on 32-bit machines by
+ * splitting N up into 32-bit limbs and doing the arithmetic using the limbs
+ * directly as we do for the NIST primes above, but for 64-bit targets it should
+ * use half the number of operations if we do the reduction with 224-bit limbs,
+ * since mpi_core_add will then use 64-bit adds.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p448_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ size_t round;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (X_limbs != BITS_TO_LIMBS(448) * 2) {
+ return 0;
+ }
+
+ size_t M_limbs = X_limbs - (P448_WIDTH);
+
+ if (M_limbs > P448_WIDTH) {
+ /* Shouldn't be called with X larger than 2^896! */
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ /* Both M and Q require an extra limb to catch carries. */
+ M_limbs++;
+
+ const size_t Q_limbs = M_limbs;
+ mbedtls_mpi_uint *M = NULL;
+ mbedtls_mpi_uint *Q = NULL;
+
+ M = mbedtls_calloc(M_limbs, ciL);
+
+ if (M == NULL) {
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ }
+
+ Q = mbedtls_calloc(Q_limbs, ciL);
+
+ if (Q == NULL) {
+ ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ goto cleanup;
+ }
+
+ /* M = A1 */
+ memset(M, 0, (M_limbs * ciL));
+ /* Do not copy into the overflow limb, as this would read past the end of
+ * X. */
+ memcpy(M, X + P448_WIDTH, ((M_limbs - 1) * ciL));
+
+ /* X = A0 */
+ memset(X + P448_WIDTH, 0, ((M_limbs - 1) * ciL));
+
+ /* X = X + M = A0 + A1 */
+ /* Carry here fits in oversize X. Oversize M means it will get
+ * added in, not returned as carry. */
+ (void) mbedtls_mpi_core_add(X, X, M, M_limbs);
+
+ /* Q = B1 = M >> 224 */
+ memcpy(Q, (char *) M + P224_SIZE, P224_SIZE);
+ memset((char *) Q + P224_SIZE, 0, P224_SIZE);
+
+ /* X = X + Q = (A0 + A1) + B1
+ * Oversize Q catches potential carry here when X is already max 448 bits.
+ */
+ (void) mbedtls_mpi_core_add(X, X, Q, Q_limbs);
+
+ /* M = B0 */
+#ifdef MBEDTLS_HAVE_INT64
+ M[P224_WIDTH_MIN] &= ((mbedtls_mpi_uint)-1) >> (P224_UNUSED_BITS);
+ #endif
+ memset(M + P224_WIDTH_MAX, 0, ((M_limbs - P224_WIDTH_MAX) * ciL));
+
+ /* M = M + Q = B0 + B1 */
+ (void) mbedtls_mpi_core_add(M, M, Q, Q_limbs);
+
+ /* M = (B0 + B1) * 2^224 */
+ /* Shifted carry bit from the addition fits in oversize M. */
+ memmove((char *) M + P224_SIZE, M, P224_SIZE + ciL);
+ memset(M, 0, P224_SIZE);
+
+ /* X = X + M = (A0 + A1 + B1) + (B0 + B1) * 2^224 */
+ (void) mbedtls_mpi_core_add(X, X, M, M_limbs);
+
+ /* In the second and third rounds A1 and B0 have at most 1 non-zero limb and
+ * B1=0.
+ * Using this we need to calculate:
+ * A0 + A1 + B1 + (B0 + B1) * 2^224 = A0 + A1 + B0 * 2^224. */
+ for (round = 0; round < 2; ++round) {
+
+ /* M = A1 */
+ memset(M, 0, (M_limbs * ciL));
+ memcpy(M, X + P448_WIDTH, ((M_limbs - 1) * ciL));
+
+ /* X = A0 */
+ memset(X + P448_WIDTH, 0, ((M_limbs - 1) * ciL));
+
+ /* M = A1 + B0 * 2^224
+ * We know that only one limb of A1 will be non-zero and that it will be
+ * limb 0. We also know that B0 is the bottom 224 bits of A1 (which is
+ * then shifted up 224 bits), so, given M is currently A1 this turns
+ * into:
+ * M = M + (M << 224)
+ * As the single non-zero limb in B0 will be A1 limb 0 shifted up by 224
+ * bits, we can just move that into the right place, shifted up
+ * accordingly.*/
+ M[P224_WIDTH_MIN] = M[0] << (224 & (biL - 1));
+
+ /* X = A0 + (A1 + B0 * 2^224) */
+ (void) mbedtls_mpi_core_add(X, X, M, M_limbs);
+ }
+
+ ret = 0;
+
+cleanup:
+ mbedtls_free(M);
+ mbedtls_free(Q);
+
+ return ret;
+}
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED) || \
+ defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo P = 2^s - R,
+ * with R about 33 bits, used by the Koblitz curves.
+ *
+ * Write X as A0 + 2^224 A1, return A0 + R * A1.
+ */
+#define P_KOBLITZ_R (8 / sizeof(mbedtls_mpi_uint)) // Limbs in R
+
+static inline int ecp_mod_koblitz(mbedtls_mpi_uint *X,
+ size_t X_limbs,
+ mbedtls_mpi_uint *R,
+ size_t bits)
+{
+ int ret = 0;
+
+ /* Determine if A1 is aligned to limb bitsize. If not then the used limbs
+ * of P, A0 and A1 must be set accordingly and there is a middle limb
+ * which is shared by A0 and A1 and need to handle accordingly.
+ */
+ size_t shift = bits % biL;
+ size_t adjust = (shift + biL - 1) / biL;
+ size_t P_limbs = bits / biL + adjust;
+
+ mbedtls_mpi_uint *A1 = mbedtls_calloc(P_limbs, ciL);
+ if (A1 == NULL) {
+ return MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ }
+
+ /* Create a buffer to store the value of `R * A1` */
+ size_t R_limbs = P_KOBLITZ_R;
+ size_t M_limbs = P_limbs + R_limbs;
+ mbedtls_mpi_uint *M = mbedtls_calloc(M_limbs, ciL);
+ if (M == NULL) {
+ ret = MBEDTLS_ERR_ECP_ALLOC_FAILED;
+ goto cleanup;
+ }
+
+ mbedtls_mpi_uint mask = 0;
+ if (adjust != 0) {
+ mask = ((mbedtls_mpi_uint) 1 << shift) - 1;
+ }
+
+ /* Two passes are needed to reduce the value of `A0 + R * A1` and then
+ * we need an additional one to reduce the possible overflow during
+ * the addition.
+ */
+ for (size_t pass = 0; pass < 3; pass++) {
+ /* Copy A1 */
+ memcpy(A1, X + P_limbs - adjust, P_limbs * ciL);
+
+ /* Shift A1 to be aligned */
+ if (shift != 0) {
+ mbedtls_mpi_core_shift_r(A1, P_limbs, shift);
+ }
+
+ /* Zeroize the A1 part of the shared limb */
+ if (mask != 0) {
+ X[P_limbs - 1] &= mask;
+ }
+
+ /* X = A0
+ * Zeroize the A1 part of X to keep only the A0 part.
+ */
+ for (size_t i = P_limbs; i < X_limbs; i++) {
+ X[i] = 0;
+ }
+
+ /* X = A0 + R * A1 */
+ mbedtls_mpi_core_mul(M, A1, P_limbs, R, R_limbs);
+ (void) mbedtls_mpi_core_add(X, X, M, P_limbs + R_limbs);
+
+ /* Carry can not be generated since R is a 33-bit value and stored in
+ * 64 bits. The result value of the multiplication is at most
+ * P length + 33 bits in length and the result value of the addition
+ * is at most P length + 34 bits in length. So the result of the
+ * addition always fits in P length + 64 bits.
+ */
+ }
+
+cleanup:
+ mbedtls_free(M);
+ mbedtls_free(A1);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED) ||
+ MBEDTLS_ECP_DP_SECP224K1_ENABLED) ||
+ MBEDTLS_ECP_DP_SECP256K1_ENABLED) */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p192k1 = 2^192 - R,
+ * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x01000011C9
+ */
+static int ecp_mod_p192k1(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(192) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p192k1_raw(N->p, expected_width);
+
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192k1_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ static mbedtls_mpi_uint Rp[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xC9, 0x11, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x00)
+ };
+
+ if (X_limbs != BITS_TO_LIMBS(192) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ return ecp_mod_koblitz(X, X_limbs, Rp, 192);
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p224k1 = 2^224 - R,
+ * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
+ */
+static int ecp_mod_p224k1(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(224) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p224k1_raw(N->p, expected_width);
+
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224k1_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ static mbedtls_mpi_uint Rp[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0x93, 0x1A, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x00)
+ };
+
+ if (X_limbs != BITS_TO_LIMBS(224) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ return ecp_mod_koblitz(X, X_limbs, Rp, 224);
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+
+/*
+ * Fast quasi-reduction modulo p256k1 = 2^256 - R,
+ * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
+ */
+static int ecp_mod_p256k1(mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t expected_width = BITS_TO_LIMBS(256) * 2;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(N, expected_width));
+ ret = mbedtls_ecp_mod_p256k1_raw(N->p, expected_width);
+
+cleanup:
+ return ret;
+}
+
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256k1_raw(mbedtls_mpi_uint *X, size_t X_limbs)
+{
+ static mbedtls_mpi_uint Rp[] = {
+ MBEDTLS_BYTES_TO_T_UINT_8(0xD1, 0x03, 0x00, 0x00,
+ 0x01, 0x00, 0x00, 0x00)
+ };
+
+ if (X_limbs != BITS_TO_LIMBS(256) * 2) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ return ecp_mod_koblitz(X, X_limbs, Rp, 256);
+}
+
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_modulus_setup(mbedtls_mpi_mod_modulus *N,
+ const mbedtls_ecp_group_id id,
+ const mbedtls_ecp_modulus_type ctype)
+{
+ mbedtls_mpi_modp_fn modp = NULL;
+ mbedtls_mpi_uint *p = NULL;
+ size_t p_limbs;
+
+ if (!(ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE || \
+ ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_SCALAR)) {
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ switch (id) {
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP192R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+ modp = &mbedtls_ecp_mod_p192_raw;
+#endif
+ p = (mbedtls_mpi_uint *) secp192r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp192r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp192r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp192r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP224R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+ modp = &mbedtls_ecp_mod_p224_raw;
+#endif
+ p = (mbedtls_mpi_uint *) secp224r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp224r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp224r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp224r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP256R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+ modp = &mbedtls_ecp_mod_p256_raw;
+#endif
+ p = (mbedtls_mpi_uint *) secp256r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp256r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp256r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp256r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP384R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+ modp = &mbedtls_ecp_mod_p384_raw;
+#endif
+ p = (mbedtls_mpi_uint *) secp384r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp384r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp384r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp384r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP521R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+#if defined(MBEDTLS_ECP_NIST_OPTIM)
+ modp = &mbedtls_ecp_mod_p521_raw;
+#endif
+ p = (mbedtls_mpi_uint *) secp521r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp521r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp521r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp521r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_BP256R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP256R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ p = (mbedtls_mpi_uint *) brainpoolP256r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP256r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) brainpoolP256r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP256r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_BP384R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP384R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ p = (mbedtls_mpi_uint *) brainpoolP384r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP384r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) brainpoolP384r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP384r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_BP512R1_ENABLED)
+ case MBEDTLS_ECP_DP_BP512R1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ p = (mbedtls_mpi_uint *) brainpoolP512r1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP512r1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) brainpoolP512r1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(brainpoolP512r1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE25519:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ modp = &mbedtls_ecp_mod_p255_raw;
+ p = (mbedtls_mpi_uint *) curve25519_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(curve25519_p));
+ } else {
+ p = (mbedtls_mpi_uint *) curve25519_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(curve25519_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP192K1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ modp = &mbedtls_ecp_mod_p192k1_raw;
+ p = (mbedtls_mpi_uint *) secp192k1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp192k1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp192k1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp192k1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP224K1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ modp = &mbedtls_ecp_mod_p224k1_raw;
+ p = (mbedtls_mpi_uint *) secp224k1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp224k1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp224k1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp224k1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+ case MBEDTLS_ECP_DP_SECP256K1:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ modp = &mbedtls_ecp_mod_p256k1_raw;
+ p = (mbedtls_mpi_uint *) secp256k1_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp256k1_p));
+ } else {
+ p = (mbedtls_mpi_uint *) secp256k1_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(secp256k1_n));
+ }
+ break;
+#endif
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+ case MBEDTLS_ECP_DP_CURVE448:
+ if (ctype == (mbedtls_ecp_modulus_type) MBEDTLS_ECP_MOD_COORDINATE) {
+ modp = &mbedtls_ecp_mod_p448_raw;
+ p = (mbedtls_mpi_uint *) curve448_p;
+ p_limbs = CHARS_TO_LIMBS(sizeof(curve448_p));
+ } else {
+ p = (mbedtls_mpi_uint *) curve448_n;
+ p_limbs = CHARS_TO_LIMBS(sizeof(curve448_n));
+ }
+ break;
+#endif
+
+ default:
+ case MBEDTLS_ECP_DP_NONE:
+ return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
+ }
+
+ if (modp != NULL) {
+ if (mbedtls_mpi_mod_optred_modulus_setup(N, p, p_limbs, modp)) {
+ return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ }
+ } else {
+ if (mbedtls_mpi_mod_modulus_setup(N, p, p_limbs)) {
+ return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ }
+ }
+ return 0;
+}
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+
+MBEDTLS_STATIC_TESTABLE
+mbedtls_ecp_variant mbedtls_ecp_get_variant(void)
+{
+ return MBEDTLS_ECP_VARIANT_WITH_MPI_UINT;
+}
+
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#endif /* MBEDTLS_ECP_LIGHT */
+#endif /* MBEDTLS_ECP_WITH_MPI_UINT */
diff --git a/tf-psa-crypto/drivers/builtin/src/ecp_invasive.h b/tf-psa-crypto/drivers/builtin/src/ecp_invasive.h
new file mode 100644
index 0000000..ff9f9ec
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ecp_invasive.h
@@ -0,0 +1,325 @@
+/**
+ * \file ecp_invasive.h
+ *
+ * \brief ECP module: interfaces for invasive testing only.
+ *
+ * The interfaces in this file are intended for testing purposes only.
+ * They SHOULD NOT be made available in library integrations except when
+ * building the library for testing.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_ECP_INVASIVE_H
+#define MBEDTLS_ECP_INVASIVE_H
+
+#include "common.h"
+#include "mbedtls/bignum.h"
+#include "bignum_mod.h"
+#include "mbedtls/ecp.h"
+
+/*
+ * Curve modulus types
+ */
+typedef enum {
+ MBEDTLS_ECP_MOD_NONE = 0,
+ MBEDTLS_ECP_MOD_COORDINATE,
+ MBEDTLS_ECP_MOD_SCALAR
+} mbedtls_ecp_modulus_type;
+
+typedef enum {
+ MBEDTLS_ECP_VARIANT_NONE = 0,
+ MBEDTLS_ECP_VARIANT_WITH_MPI_STRUCT,
+ MBEDTLS_ECP_VARIANT_WITH_MPI_UINT
+} mbedtls_ecp_variant;
+
+#if defined(MBEDTLS_TEST_HOOKS) && defined(MBEDTLS_ECP_LIGHT)
+
+/** Queries the ecp variant.
+ *
+ * \return The id of the ecp variant.
+ */
+MBEDTLS_STATIC_TESTABLE
+mbedtls_ecp_variant mbedtls_ecp_get_variant(void);
+
+#if defined(MBEDTLS_ECP_MONTGOMERY_ENABLED)
+/** Generate a private key on a Montgomery curve (Curve25519 or Curve448).
+ *
+ * This function implements key generation for the set of secret keys
+ * specified in [Curve25519] p. 5 and in [Curve448]. The resulting value
+ * has the lower bits masked but is not necessarily canonical.
+ *
+ * \note - [Curve25519] http://cr.yp.to/ecdh/curve25519-20060209.pdf
+ * - [RFC7748] https://tools.ietf.org/html/rfc7748
+ *
+ * \p high_bit The position of the high-order bit of the key to generate.
+ * This is the bit-size of the key minus 1:
+ * 254 for Curve25519 or 447 for Curve448.
+ * \param d The randomly generated key. This is a number of size
+ * exactly \p high_bit + 1 bits, with the least significant bits
+ * masked as specified in [Curve25519] and in [RFC7748] §5.
+ * \param f_rng The RNG function.
+ * \param p_rng The RNG context to be passed to \p f_rng.
+ *
+ * \return \c 0 on success.
+ * \return \c MBEDTLS_ERR_ECP_xxx or MBEDTLS_ERR_MPI_xxx on failure.
+ */
+int mbedtls_ecp_gen_privkey_mx(size_t high_bit,
+ mbedtls_mpi *d,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+#endif /* MBEDTLS_ECP_MONTGOMERY_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192R1_ENABLED)
+
+/** Fast quasi-reduction modulo p192 (FIPS 186-3 D.2.1)
+ *
+ * This operation expects a 384 bit MPI and the result of the reduction
+ * is a 192 bit MPI.
+ *
+ * \param[in,out] Np The address of the MPI to be converted.
+ * Must have twice as many limbs as the modulus.
+ * Upon return this holds the reduced value. The bitlength
+ * of the reduced value is the same as that of the modulus
+ * (192 bits).
+ * \param[in] Nn The length of \p Np in limbs.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192_raw(mbedtls_mpi_uint *Np, size_t Nn);
+
+#endif /* MBEDTLS_ECP_DP_SECP192R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224R1_ENABLED)
+
+/** Fast quasi-reduction modulo p224 (FIPS 186-3 D.2.2)
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 448-bit MPI
+ * (double the bitlength of the modulus).
+ * Upon return holds the reduced value which is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * The bitlength of the reduced value is the same as
+ * that of the modulus (224 bits).
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X_limbs is not the
+ * limb size that sores a 448-bit MPI.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP224R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256R1_ENABLED)
+
+/** Fast quasi-reduction modulo p256 (FIPS 186-3 D.2.3)
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 512-bit MPI
+ * (double the bitlength of the modulus).
+ * Upon return holds the reduced value which is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * The bitlength of the reduced value is the same as
+ * that of the modulus (256 bits).
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X_limbs is not the
+ * limb size that sores a 512-bit MPI.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif
+
+#if defined(MBEDTLS_ECP_DP_SECP521R1_ENABLED)
+
+/** Fast quasi-reduction modulo p521 = 2^521 - 1 (FIPS 186-3 D.2.5)
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have twice as many limbs as the modulus
+ * (the modulus is 521 bits long). Upon return this
+ * holds the reduced value. The reduced value is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * and its the bitlength is one plus the bitlength
+ * of the modulus.
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X_limbs does not have
+ * twice as many limbs as the modulus.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p521_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP521R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP384R1_ENABLED)
+
+/** Fast quasi-reduction modulo p384 (FIPS 186-3 D.2.4)
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 768-bit MPI
+ * (double the bitlength of the modulus).
+ * Upon return holds the reduced value which is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * The bitlength of the reduced value is the same as
+ * that of the modulus (384 bits).
+ * \param[in] X_limbs The length of \p N in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p N_n does not have
+ * twice as many limbs as the modulus.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p384_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP384R1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP192K1_ENABLED)
+
+/** Fast quasi-reduction modulo p192k1 = 2^192 - R,
+ * with R = 2^32 + 2^12 + 2^8 + 2^7 + 2^6 + 2^3 + 1 = 0x01000011C9
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 384-bit MPI
+ * (double the bitlength of the modulus).
+ * Upon return holds the reduced value which is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * The bitlength of the reduced value is the same as
+ * that of the modulus (192 bits).
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ * twice as many limbs as the modulus.
+ * \return #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p192k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP192K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP224K1_ENABLED)
+
+/** Fast quasi-reduction modulo p224k1 = 2^224 - R,
+ * with R = 2^32 + 2^12 + 2^11 + 2^9 + 2^7 + 2^4 + 2 + 1 = 0x0100001A93
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 448-bit MPI
+ * (double the bitlength of the modulus).
+ * Upon return holds the reduced value which is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * The bitlength of the reduced value is the same as
+ * that of the modulus (224 bits).
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ * twice as many limbs as the modulus.
+ * \return #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p224k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP224K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_SECP256K1_ENABLED)
+
+/** Fast quasi-reduction modulo p256k1 = 2^256 - R,
+ * with R = 2^32 + 2^9 + 2^8 + 2^7 + 2^6 + 2^4 + 1 = 0x01000003D1
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 512-bit MPI
+ * (double the bitlength of the modulus).
+ * Upon return holds the reduced value which is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * The bitlength of the reduced value is the same as
+ * that of the modulus (256 bits).
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ * twice as many limbs as the modulus.
+ * \return #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p256k1_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_SECP256K1_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE25519_ENABLED)
+
+/** Fast quasi-reduction modulo p255 = 2^255 - 19
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 510-bit MPI
+ * (double the bitlength of the modulus).
+ * Upon return holds the reduced value which is
+ * in range `0 <= X < 2 * N` (where N is the modulus).
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ * twice as many limbs as the modulus.
+ * \return #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p255_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_CURVE25519_ENABLED */
+
+#if defined(MBEDTLS_ECP_DP_CURVE448_ENABLED)
+
+/** Fast quasi-reduction modulo p448 = 2^448 - 2^224 - 1
+ * Write X as A0 + 2^448 A1 and A1 as B0 + 2^224 B1, and return A0 + A1 + B1 +
+ * (B0 + B1) * 2^224.
+ *
+ * \param[in,out] X The address of the MPI to be converted.
+ * Must have exact limb size that stores a 896-bit MPI
+ * (double the bitlength of the modulus). Upon return
+ * holds the reduced value which is in range `0 <= X <
+ * N` (where N is the modulus). The bitlength of the
+ * reduced value is the same as that of the modulus
+ * (448 bits).
+ * \param[in] X_limbs The length of \p X in limbs.
+ *
+ * \return \c 0 on Success.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if \p X does not have
+ * twice as many limbs as the modulus.
+ * \return #MBEDTLS_ERR_ECP_ALLOC_FAILED if memory allocation
+ * failed.
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_mod_p448_raw(mbedtls_mpi_uint *X, size_t X_limbs);
+
+#endif /* MBEDTLS_ECP_DP_CURVE448_ENABLED */
+
+/** Initialise a modulus with hard-coded const curve data.
+ *
+ * \note The caller is responsible for the \p N modulus' memory.
+ * mbedtls_mpi_mod_modulus_free(&N) should be invoked at the
+ * end of its lifecycle.
+ *
+ * \param[in,out] N The address of the modulus structure to populate.
+ * Must be initialized.
+ * \param[in] id The mbedtls_ecp_group_id for which to initialise the modulus.
+ * \param[in] ctype The mbedtls_ecp_modulus_type identifier for a coordinate modulus (P)
+ * or a scalar modulus (N).
+ *
+ * \return \c 0 if successful.
+ * \return #MBEDTLS_ERR_ECP_BAD_INPUT_DATA if the given MPIs do not
+ * have the correct number of limbs.
+ *
+ */
+MBEDTLS_STATIC_TESTABLE
+int mbedtls_ecp_modulus_setup(mbedtls_mpi_mod_modulus *N,
+ const mbedtls_ecp_group_id id,
+ const mbedtls_ecp_modulus_type ctype);
+
+#endif /* MBEDTLS_TEST_HOOKS && MBEDTLS_ECP_C */
+
+#endif /* MBEDTLS_ECP_INVASIVE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/entropy.c b/tf-psa-crypto/drivers/builtin/src/entropy.c
new file mode 100644
index 0000000..7dcf067
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/entropy.c
@@ -0,0 +1,680 @@
+/*
+ * Entropy accumulator implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_ENTROPY_C)
+
+#include "mbedtls/entropy.h"
+#include "entropy_poll.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+#define ENTROPY_MAX_LOOP 256 /**< Maximum amount to loop before error */
+
+void mbedtls_entropy_init(mbedtls_entropy_context *ctx)
+{
+ ctx->source_count = 0;
+ memset(ctx->source, 0, sizeof(ctx->source));
+
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+ ctx->accumulator_started = 0;
+ mbedtls_md_init(&ctx->accumulator);
+
+ /* Reminder: Update ENTROPY_HAVE_STRONG in the test files
+ * when adding more strong entropy sources here. */
+
+#if !defined(MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES)
+#if !defined(MBEDTLS_NO_PLATFORM_ENTROPY)
+ mbedtls_entropy_add_source(ctx, mbedtls_platform_entropy_poll, NULL,
+ MBEDTLS_ENTROPY_MIN_PLATFORM,
+ MBEDTLS_ENTROPY_SOURCE_STRONG);
+#endif
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+ mbedtls_entropy_add_source(ctx, mbedtls_hardware_poll, NULL,
+ MBEDTLS_ENTROPY_MIN_HARDWARE,
+ MBEDTLS_ENTROPY_SOURCE_STRONG);
+#endif
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+ mbedtls_entropy_add_source(ctx, mbedtls_nv_seed_poll, NULL,
+ MBEDTLS_ENTROPY_BLOCK_SIZE,
+ MBEDTLS_ENTROPY_SOURCE_STRONG);
+ ctx->initial_entropy_run = 0;
+#endif
+#endif /* MBEDTLS_NO_DEFAULT_ENTROPY_SOURCES */
+}
+
+void mbedtls_entropy_free(mbedtls_entropy_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ /* If the context was already free, don't call free() again.
+ * This is important for mutexes which don't allow double-free. */
+ if (ctx->accumulator_started == -1) {
+ return;
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_free(&ctx->mutex);
+#endif
+ mbedtls_md_free(&ctx->accumulator);
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+ ctx->initial_entropy_run = 0;
+#endif
+ ctx->source_count = 0;
+ mbedtls_platform_zeroize(ctx->source, sizeof(ctx->source));
+ ctx->accumulator_started = -1;
+}
+
+int mbedtls_entropy_add_source(mbedtls_entropy_context *ctx,
+ mbedtls_entropy_f_source_ptr f_source, void *p_source,
+ size_t threshold, int strong)
+{
+ int idx, ret = 0;
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ idx = ctx->source_count;
+ if (idx >= MBEDTLS_ENTROPY_MAX_SOURCES) {
+ ret = MBEDTLS_ERR_ENTROPY_MAX_SOURCES;
+ goto exit;
+ }
+
+ ctx->source[idx].f_source = f_source;
+ ctx->source[idx].p_source = p_source;
+ ctx->source[idx].threshold = threshold;
+ ctx->source[idx].strong = strong;
+
+ ctx->source_count++;
+
+exit:
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Entropy accumulator update
+ */
+static int entropy_update(mbedtls_entropy_context *ctx, unsigned char source_id,
+ const unsigned char *data, size_t len)
+{
+ unsigned char header[2];
+ unsigned char tmp[MBEDTLS_ENTROPY_BLOCK_SIZE];
+ size_t use_len = len;
+ const unsigned char *p = data;
+ int ret = 0;
+
+ if (use_len > MBEDTLS_ENTROPY_BLOCK_SIZE) {
+ if ((ret = mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD),
+ data, len, tmp)) != 0) {
+ goto cleanup;
+ }
+ p = tmp;
+ use_len = MBEDTLS_ENTROPY_BLOCK_SIZE;
+ }
+
+ header[0] = source_id;
+ header[1] = use_len & 0xFF;
+
+ /*
+ * Start the accumulator if this has not already happened. Note that
+ * it is sufficient to start the accumulator here only because all calls to
+ * gather entropy eventually execute this code.
+ */
+ if (ctx->accumulator_started == 0) {
+ ret = mbedtls_md_setup(&ctx->accumulator,
+ mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD), 0);
+ if (ret != 0) {
+ goto cleanup;
+ }
+ ret = mbedtls_md_starts(&ctx->accumulator);
+ if (ret != 0) {
+ goto cleanup;
+ }
+ ctx->accumulator_started = 1;
+ }
+ if ((ret = mbedtls_md_update(&ctx->accumulator, header, 2)) != 0) {
+ goto cleanup;
+ }
+ ret = mbedtls_md_update(&ctx->accumulator, p, use_len);
+
+cleanup:
+ mbedtls_platform_zeroize(tmp, sizeof(tmp));
+
+ return ret;
+}
+
+int mbedtls_entropy_update_manual(mbedtls_entropy_context *ctx,
+ const unsigned char *data, size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ ret = entropy_update(ctx, MBEDTLS_ENTROPY_SOURCE_MANUAL, data, len);
+
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * Run through the different sources to add entropy to our accumulator
+ */
+static int entropy_gather_internal(mbedtls_entropy_context *ctx)
+{
+ int ret = MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ int i;
+ int have_one_strong = 0;
+ unsigned char buf[MBEDTLS_ENTROPY_MAX_GATHER];
+ size_t olen;
+
+ if (ctx->source_count == 0) {
+ return MBEDTLS_ERR_ENTROPY_NO_SOURCES_DEFINED;
+ }
+
+ /*
+ * Run through our entropy sources
+ */
+ for (i = 0; i < ctx->source_count; i++) {
+ if (ctx->source[i].strong == MBEDTLS_ENTROPY_SOURCE_STRONG) {
+ have_one_strong = 1;
+ }
+
+ olen = 0;
+ if ((ret = ctx->source[i].f_source(ctx->source[i].p_source,
+ buf, MBEDTLS_ENTROPY_MAX_GATHER, &olen)) != 0) {
+ goto cleanup;
+ }
+
+ /*
+ * Add if we actually gathered something
+ */
+ if (olen > 0) {
+ if ((ret = entropy_update(ctx, (unsigned char) i,
+ buf, olen)) != 0) {
+ return ret;
+ }
+ ctx->source[i].size += olen;
+ }
+ }
+
+ if (have_one_strong == 0) {
+ ret = MBEDTLS_ERR_ENTROPY_NO_STRONG_SOURCE;
+ }
+
+cleanup:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+
+ return ret;
+}
+
+/*
+ * Thread-safe wrapper for entropy_gather_internal()
+ */
+int mbedtls_entropy_gather(mbedtls_entropy_context *ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ ret = entropy_gather_internal(ctx);
+
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ return ret;
+}
+
+int mbedtls_entropy_func(void *data, unsigned char *output, size_t len)
+{
+ int ret, count = 0, i, thresholds_reached;
+ size_t strong_size;
+ mbedtls_entropy_context *ctx = (mbedtls_entropy_context *) data;
+ unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+
+ if (len > MBEDTLS_ENTROPY_BLOCK_SIZE) {
+ return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ }
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+ /* Update the NV entropy seed before generating any entropy for outside
+ * use.
+ */
+ if (ctx->initial_entropy_run == 0) {
+ ctx->initial_entropy_run = 1;
+ if ((ret = mbedtls_entropy_update_nv_seed(ctx)) != 0) {
+ return ret;
+ }
+ }
+#endif
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ /*
+ * Always gather extra entropy before a call
+ */
+ do {
+ if (count++ > ENTROPY_MAX_LOOP) {
+ ret = MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ goto exit;
+ }
+
+ if ((ret = entropy_gather_internal(ctx)) != 0) {
+ goto exit;
+ }
+
+ thresholds_reached = 1;
+ strong_size = 0;
+ for (i = 0; i < ctx->source_count; i++) {
+ if (ctx->source[i].size < ctx->source[i].threshold) {
+ thresholds_reached = 0;
+ }
+ if (ctx->source[i].strong == MBEDTLS_ENTROPY_SOURCE_STRONG) {
+ strong_size += ctx->source[i].size;
+ }
+ }
+ } while (!thresholds_reached || strong_size < MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+ memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+ /*
+ * Note that at this stage it is assumed that the accumulator was started
+ * in a previous call to entropy_update(). If this is not guaranteed, the
+ * code below will fail.
+ */
+ if ((ret = mbedtls_md_finish(&ctx->accumulator, buf)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * Reset accumulator and counters and recycle existing entropy
+ */
+ mbedtls_md_free(&ctx->accumulator);
+ mbedtls_md_init(&ctx->accumulator);
+ ret = mbedtls_md_setup(&ctx->accumulator,
+ mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD), 0);
+ if (ret != 0) {
+ goto exit;
+ }
+ ret = mbedtls_md_starts(&ctx->accumulator);
+ if (ret != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&ctx->accumulator, buf,
+ MBEDTLS_ENTROPY_BLOCK_SIZE)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * Perform second hashing on entropy
+ */
+ if ((ret = mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_ENTROPY_MD),
+ buf, MBEDTLS_ENTROPY_BLOCK_SIZE, buf)) != 0) {
+ goto exit;
+ }
+
+ for (i = 0; i < ctx->source_count; i++) {
+ ctx->source[i].size = 0;
+ }
+
+ memcpy(output, buf, len);
+
+ ret = 0;
+
+exit:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ return ret;
+}
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+int mbedtls_entropy_update_nv_seed(mbedtls_entropy_context *ctx)
+{
+ int ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+ unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+
+ /* Read new seed and write it to NV */
+ if ((ret = mbedtls_entropy_func(ctx, buf, MBEDTLS_ENTROPY_BLOCK_SIZE)) != 0) {
+ return ret;
+ }
+
+ if (mbedtls_nv_seed_write(buf, MBEDTLS_ENTROPY_BLOCK_SIZE) < 0) {
+ return MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+ }
+
+ /* Manually update the remaining stream with a separator value to diverge */
+ memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE);
+ ret = mbedtls_entropy_update_manual(ctx, buf, MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+ return ret;
+}
+#endif /* MBEDTLS_ENTROPY_NV_SEED */
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_entropy_write_seed_file(mbedtls_entropy_context *ctx, const char *path)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ FILE *f = NULL;
+ unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+
+ if ((ret = mbedtls_entropy_func(ctx, buf, MBEDTLS_ENTROPY_BLOCK_SIZE)) != 0) {
+ ret = MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ goto exit;
+ }
+
+ if ((f = fopen(path, "wb")) == NULL) {
+ ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+ goto exit;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ if (fwrite(buf, 1, MBEDTLS_ENTROPY_BLOCK_SIZE, f) != MBEDTLS_ENTROPY_BLOCK_SIZE) {
+ ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+ goto exit;
+ }
+
+ ret = 0;
+
+exit:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+
+ if (f != NULL) {
+ fclose(f);
+ }
+
+ return ret;
+}
+
+int mbedtls_entropy_update_seed_file(mbedtls_entropy_context *ctx, const char *path)
+{
+ int ret = 0;
+ FILE *f;
+ size_t n;
+ unsigned char buf[MBEDTLS_ENTROPY_MAX_SEED_SIZE];
+
+ if ((f = fopen(path, "rb")) == NULL) {
+ return MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ fseek(f, 0, SEEK_END);
+ n = (size_t) ftell(f);
+ fseek(f, 0, SEEK_SET);
+
+ if (n > MBEDTLS_ENTROPY_MAX_SEED_SIZE) {
+ n = MBEDTLS_ENTROPY_MAX_SEED_SIZE;
+ }
+
+ if (fread(buf, 1, n, f) != n) {
+ ret = MBEDTLS_ERR_ENTROPY_FILE_IO_ERROR;
+ } else {
+ ret = mbedtls_entropy_update_manual(ctx, buf, n);
+ }
+
+ fclose(f);
+
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ return mbedtls_entropy_write_seed_file(ctx, path);
+}
+#endif /* MBEDTLS_FS_IO */
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * Dummy source function
+ */
+static int entropy_dummy_source(void *data, unsigned char *output,
+ size_t len, size_t *olen)
+{
+ ((void) data);
+
+ memset(output, 0x2a, len);
+ *olen = len;
+
+ return 0;
+}
+
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+
+static int mbedtls_entropy_source_self_test_gather(unsigned char *buf, size_t buf_len)
+{
+ int ret = 0;
+ size_t entropy_len = 0;
+ size_t olen = 0;
+ size_t attempts = buf_len;
+
+ while (attempts > 0 && entropy_len < buf_len) {
+ if ((ret = mbedtls_hardware_poll(NULL, buf + entropy_len,
+ buf_len - entropy_len, &olen)) != 0) {
+ return ret;
+ }
+
+ entropy_len += olen;
+ attempts--;
+ }
+
+ if (entropy_len < buf_len) {
+ ret = 1;
+ }
+
+ return ret;
+}
+
+
+static int mbedtls_entropy_source_self_test_check_bits(const unsigned char *buf,
+ size_t buf_len)
+{
+ unsigned char set = 0xFF;
+ unsigned char unset = 0x00;
+ size_t i;
+
+ for (i = 0; i < buf_len; i++) {
+ set &= buf[i];
+ unset |= buf[i];
+ }
+
+ return set == 0xFF || unset == 0x00;
+}
+
+/*
+ * A test to ensure that the entropy sources are functioning correctly
+ * and there is no obvious failure. The test performs the following checks:
+ * - The entropy source is not providing only 0s (all bits unset) or 1s (all
+ * bits set).
+ * - The entropy source is not providing values in a pattern. Because the
+ * hardware could be providing data in an arbitrary length, this check polls
+ * the hardware entropy source twice and compares the result to ensure they
+ * are not equal.
+ * - The error code returned by the entropy source is not an error.
+ */
+int mbedtls_entropy_source_self_test(int verbose)
+{
+ int ret = 0;
+ unsigned char buf0[2 * sizeof(unsigned long long int)];
+ unsigned char buf1[2 * sizeof(unsigned long long int)];
+
+ if (verbose != 0) {
+ mbedtls_printf(" ENTROPY_BIAS test: ");
+ }
+
+ memset(buf0, 0x00, sizeof(buf0));
+ memset(buf1, 0x00, sizeof(buf1));
+
+ if ((ret = mbedtls_entropy_source_self_test_gather(buf0, sizeof(buf0))) != 0) {
+ goto cleanup;
+ }
+ if ((ret = mbedtls_entropy_source_self_test_gather(buf1, sizeof(buf1))) != 0) {
+ goto cleanup;
+ }
+
+ /* Make sure that the returned values are not all 0 or 1 */
+ if ((ret = mbedtls_entropy_source_self_test_check_bits(buf0, sizeof(buf0))) != 0) {
+ goto cleanup;
+ }
+ if ((ret = mbedtls_entropy_source_self_test_check_bits(buf1, sizeof(buf1))) != 0) {
+ goto cleanup;
+ }
+
+ /* Make sure that the entropy source is not returning values in a
+ * pattern */
+ ret = memcmp(buf0, buf1, sizeof(buf0)) == 0;
+
+cleanup:
+ if (verbose != 0) {
+ if (ret != 0) {
+ mbedtls_printf("failed\n");
+ } else {
+ mbedtls_printf("passed\n");
+ }
+
+ mbedtls_printf("\n");
+ }
+
+ return ret != 0;
+}
+
+#endif /* MBEDTLS_ENTROPY_HARDWARE_ALT */
+
+/*
+ * The actual entropy quality is hard to test, but we can at least
+ * test that the functions don't cause errors and write the correct
+ * amount of data to buffers.
+ */
+int mbedtls_entropy_self_test(int verbose)
+{
+ int ret = 1;
+ mbedtls_entropy_context ctx;
+ unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE] = { 0 };
+ unsigned char acc[MBEDTLS_ENTROPY_BLOCK_SIZE] = { 0 };
+ size_t i, j;
+
+ if (verbose != 0) {
+ mbedtls_printf(" ENTROPY test: ");
+ }
+
+ mbedtls_entropy_init(&ctx);
+
+ /* First do a gather to make sure we have default sources */
+ if ((ret = mbedtls_entropy_gather(&ctx)) != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_entropy_add_source(&ctx, entropy_dummy_source, NULL, 16,
+ MBEDTLS_ENTROPY_SOURCE_WEAK);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_entropy_update_manual(&ctx, buf, sizeof(buf))) != 0) {
+ goto cleanup;
+ }
+
+ /*
+ * To test that mbedtls_entropy_func writes correct number of bytes:
+ * - use the whole buffer and rely on ASan to detect overruns
+ * - collect entropy 8 times and OR the result in an accumulator:
+ * any byte should then be 0 with probably 2^(-64), so requiring
+ * each of the 32 or 64 bytes to be non-zero has a false failure rate
+ * of at most 2^(-58) which is acceptable.
+ */
+ for (i = 0; i < 8; i++) {
+ if ((ret = mbedtls_entropy_func(&ctx, buf, sizeof(buf))) != 0) {
+ goto cleanup;
+ }
+
+ for (j = 0; j < sizeof(buf); j++) {
+ acc[j] |= buf[j];
+ }
+ }
+
+ for (j = 0; j < sizeof(buf); j++) {
+ if (acc[j] == 0) {
+ ret = 1;
+ goto cleanup;
+ }
+ }
+
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+ if ((ret = mbedtls_entropy_source_self_test(0)) != 0) {
+ goto cleanup;
+ }
+#endif
+
+cleanup:
+ mbedtls_entropy_free(&ctx);
+
+ if (verbose != 0) {
+ if (ret != 0) {
+ mbedtls_printf("failed\n");
+ } else {
+ mbedtls_printf("passed\n");
+ }
+
+ mbedtls_printf("\n");
+ }
+
+ return ret != 0;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_ENTROPY_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/entropy_poll.c b/tf-psa-crypto/drivers/builtin/src/entropy_poll.c
new file mode 100644
index 0000000..611768c
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/entropy_poll.c
@@ -0,0 +1,231 @@
+/*
+ * Platform-specific and custom entropy polling functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#if defined(__linux__) || defined(__midipix__)
+/* Ensure that syscall() is available even when compiling with -std=c99 */
+#if !defined(_GNU_SOURCE)
+#define _GNU_SOURCE
+#endif
+#endif
+
+#include "common.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ENTROPY_C)
+
+#include "mbedtls/entropy.h"
+#include "entropy_poll.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_TIMING_C)
+#include "mbedtls/timing.h"
+#endif
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_NO_PLATFORM_ENTROPY)
+
+#if !defined(unix) && !defined(__unix__) && !defined(__unix) && \
+ !defined(__APPLE__) && !defined(_WIN32) && !defined(__QNXNTO__) && \
+ !defined(__HAIKU__) && !defined(__midipix__) && !defined(__MVS__)
+#error \
+ "Platform entropy sources only work on Unix and Windows, see MBEDTLS_NO_PLATFORM_ENTROPY in mbedtls_config.h"
+#endif
+
+#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
+
+#include <windows.h>
+#include <bcrypt.h>
+#include <intsafe.h>
+
+int mbedtls_platform_entropy_poll(void *data, unsigned char *output, size_t len,
+ size_t *olen)
+{
+ ((void) data);
+ *olen = 0;
+
+ /*
+ * BCryptGenRandom takes ULONG for size, which is smaller than size_t on
+ * 64-bit Windows platforms. Extract entropy in chunks of len (dependent
+ * on ULONG_MAX) size.
+ */
+ while (len != 0) {
+ unsigned long ulong_bytes =
+ (len > ULONG_MAX) ? ULONG_MAX : (unsigned long) len;
+
+ if (!BCRYPT_SUCCESS(BCryptGenRandom(NULL, output, ulong_bytes,
+ BCRYPT_USE_SYSTEM_PREFERRED_RNG))) {
+ return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ }
+
+ *olen += ulong_bytes;
+ len -= ulong_bytes;
+ }
+
+ return 0;
+}
+#else /* _WIN32 && !EFIX64 && !EFI32 */
+
+/*
+ * Test for Linux getrandom() support.
+ * Since there is no wrapper in the libc yet, use the generic syscall wrapper
+ * available in GNU libc and compatible libc's (eg uClibc).
+ */
+#if ((defined(__linux__) && defined(__GLIBC__)) || defined(__midipix__))
+#include <unistd.h>
+#include <sys/syscall.h>
+#if defined(SYS_getrandom)
+#define HAVE_GETRANDOM
+#include <errno.h>
+
+static int getrandom_wrapper(void *buf, size_t buflen, unsigned int flags)
+{
+ /* MemSan cannot understand that the syscall writes to the buffer */
+#if defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+ memset(buf, 0, buflen);
+#endif
+#endif
+ return (int) syscall(SYS_getrandom, buf, buflen, flags);
+}
+#endif /* SYS_getrandom */
+#endif /* __linux__ || __midipix__ */
+
+#if defined(__FreeBSD__) || defined(__DragonFly__)
+#include <sys/param.h>
+#if (defined(__FreeBSD__) && __FreeBSD_version >= 1200000) || \
+ (defined(__DragonFly__) && __DragonFly_version >= 500700)
+#include <errno.h>
+#include <sys/random.h>
+#define HAVE_GETRANDOM
+static int getrandom_wrapper(void *buf, size_t buflen, unsigned int flags)
+{
+ return (int) getrandom(buf, buflen, flags);
+}
+#endif /* (__FreeBSD__ && __FreeBSD_version >= 1200000) ||
+ (__DragonFly__ && __DragonFly_version >= 500700) */
+#endif /* __FreeBSD__ || __DragonFly__ */
+
+/*
+ * Some BSD systems provide KERN_ARND.
+ * This is equivalent to reading from /dev/urandom, only it doesn't require an
+ * open file descriptor, and provides up to 256 bytes per call (basically the
+ * same as getentropy(), but with a longer history).
+ *
+ * Documentation: https://netbsd.gw.com/cgi-bin/man-cgi?sysctl+7
+ */
+#if (defined(__FreeBSD__) || defined(__NetBSD__)) && !defined(HAVE_GETRANDOM)
+#include <sys/param.h>
+#include <sys/sysctl.h>
+#if defined(KERN_ARND)
+#define HAVE_SYSCTL_ARND
+
+static int sysctl_arnd_wrapper(unsigned char *buf, size_t buflen)
+{
+ int name[2];
+ size_t len;
+
+ name[0] = CTL_KERN;
+ name[1] = KERN_ARND;
+
+ while (buflen > 0) {
+ len = buflen > 256 ? 256 : buflen;
+ if (sysctl(name, 2, buf, &len, NULL, 0) == -1) {
+ return -1;
+ }
+ buflen -= len;
+ buf += len;
+ }
+ return 0;
+}
+#endif /* KERN_ARND */
+#endif /* __FreeBSD__ || __NetBSD__ */
+
+#include <stdio.h>
+
+int mbedtls_platform_entropy_poll(void *data,
+ unsigned char *output, size_t len, size_t *olen)
+{
+ FILE *file;
+ size_t read_len;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ ((void) data);
+
+#if defined(HAVE_GETRANDOM)
+ ret = getrandom_wrapper(output, len, 0);
+ if (ret >= 0) {
+ *olen = (size_t) ret;
+ return 0;
+ } else if (errno != ENOSYS) {
+ return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ }
+ /* Fall through if the system call isn't known. */
+#else
+ ((void) ret);
+#endif /* HAVE_GETRANDOM */
+
+#if defined(HAVE_SYSCTL_ARND)
+ ((void) file);
+ ((void) read_len);
+ if (sysctl_arnd_wrapper(output, len) == -1) {
+ return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ }
+ *olen = len;
+ return 0;
+#else
+
+ *olen = 0;
+
+ file = fopen("/dev/urandom", "rb");
+ if (file == NULL) {
+ return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(file, NULL);
+
+ read_len = fread(output, 1, len, file);
+ if (read_len != len) {
+ fclose(file);
+ return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ }
+
+ fclose(file);
+ *olen = len;
+
+ return 0;
+#endif /* HAVE_SYSCTL_ARND */
+}
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+#endif /* !MBEDTLS_NO_PLATFORM_ENTROPY */
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+int mbedtls_nv_seed_poll(void *data,
+ unsigned char *output, size_t len, size_t *olen)
+{
+ unsigned char buf[MBEDTLS_ENTROPY_BLOCK_SIZE];
+ size_t use_len = MBEDTLS_ENTROPY_BLOCK_SIZE;
+ ((void) data);
+
+ memset(buf, 0, MBEDTLS_ENTROPY_BLOCK_SIZE);
+
+ if (mbedtls_nv_seed_read(buf, MBEDTLS_ENTROPY_BLOCK_SIZE) < 0) {
+ return MBEDTLS_ERR_ENTROPY_SOURCE_FAILED;
+ }
+
+ if (len < use_len) {
+ use_len = len;
+ }
+
+ memcpy(output, buf, use_len);
+ *olen = use_len;
+
+ return 0;
+}
+#endif /* MBEDTLS_ENTROPY_NV_SEED */
+
+#endif /* MBEDTLS_ENTROPY_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/entropy_poll.h b/tf-psa-crypto/drivers/builtin/src/entropy_poll.h
new file mode 100644
index 0000000..6b4aec0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/entropy_poll.h
@@ -0,0 +1,64 @@
+/**
+ * \file entropy_poll.h
+ *
+ * \brief Platform-specific and custom entropy polling functions
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_ENTROPY_POLL_H
+#define MBEDTLS_ENTROPY_POLL_H
+
+#include "mbedtls/build_info.h"
+
+#include <stddef.h>
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/*
+ * Default thresholds for built-in sources, in bytes
+ */
+#define MBEDTLS_ENTROPY_MIN_PLATFORM 32 /**< Minimum for platform source */
+#if !defined(MBEDTLS_ENTROPY_MIN_HARDWARE)
+#define MBEDTLS_ENTROPY_MIN_HARDWARE 32 /**< Minimum for the hardware source */
+#endif
+
+#if !defined(MBEDTLS_NO_PLATFORM_ENTROPY)
+/**
+ * \brief Platform-specific entropy poll callback
+ */
+int mbedtls_platform_entropy_poll(void *data,
+ unsigned char *output, size_t len, size_t *olen);
+#endif
+
+#if defined(MBEDTLS_ENTROPY_HARDWARE_ALT)
+/**
+ * \brief Entropy poll callback for a hardware source
+ *
+ * \warning This is not provided by Mbed TLS!
+ * See \c MBEDTLS_ENTROPY_HARDWARE_ALT in mbedtls_config.h.
+ *
+ * \note This must accept NULL as its first argument.
+ */
+int mbedtls_hardware_poll(void *data,
+ unsigned char *output, size_t len, size_t *olen);
+#endif
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+/**
+ * \brief Entropy poll callback for a non-volatile seed file
+ *
+ * \note This must accept NULL as its first argument.
+ */
+int mbedtls_nv_seed_poll(void *data,
+ unsigned char *output, size_t len, size_t *olen);
+#endif
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* entropy_poll.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/gcm.c b/tf-psa-crypto/drivers/builtin/src/gcm.c
new file mode 100644
index 0000000..5dfac23
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/gcm.c
@@ -0,0 +1,1330 @@
+/*
+ * NIST SP800-38D compliant GCM implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
+ *
+ * See also:
+ * [MGV] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf
+ *
+ * We use the algorithm described as Shoup's method with 4-bit tables in
+ * [MGV] 4.1, pp. 12-13, to enhance speed without using too much memory.
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_GCM_C)
+
+#include "mbedtls/gcm.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+#include "block_cipher_internal.h"
+#endif
+
+#include <string.h>
+
+#if defined(MBEDTLS_AESNI_C)
+#include "aesni.h"
+#endif
+
+#if defined(MBEDTLS_AESCE_C)
+#include "aesce.h"
+#endif
+
+#if !defined(MBEDTLS_GCM_ALT)
+
+/* Used to select the acceleration mechanism */
+#define MBEDTLS_GCM_ACC_SMALLTABLE 0
+#define MBEDTLS_GCM_ACC_LARGETABLE 1
+#define MBEDTLS_GCM_ACC_AESNI 2
+#define MBEDTLS_GCM_ACC_AESCE 3
+
+/*
+ * Initialize a context
+ */
+void mbedtls_gcm_init(mbedtls_gcm_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_gcm_context));
+}
+
+static inline void gcm_set_acceleration(mbedtls_gcm_context *ctx)
+{
+#if defined(MBEDTLS_GCM_LARGE_TABLE)
+ ctx->acceleration = MBEDTLS_GCM_ACC_LARGETABLE;
+#else
+ ctx->acceleration = MBEDTLS_GCM_ACC_SMALLTABLE;
+#endif
+
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+ /* With CLMUL support, we need only h, not the rest of the table */
+ if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
+ ctx->acceleration = MBEDTLS_GCM_ACC_AESNI;
+ }
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+ ctx->acceleration = MBEDTLS_GCM_ACC_AESCE;
+ }
+#endif
+}
+
+static inline void gcm_gen_table_rightshift(uint64_t dst[2], const uint64_t src[2])
+{
+ uint8_t *u8Dst = (uint8_t *) dst;
+ uint8_t *u8Src = (uint8_t *) src;
+
+ MBEDTLS_PUT_UINT64_BE(MBEDTLS_GET_UINT64_BE(&src[1], 0) >> 1, &dst[1], 0);
+ u8Dst[8] |= (u8Src[7] & 0x01) << 7;
+ MBEDTLS_PUT_UINT64_BE(MBEDTLS_GET_UINT64_BE(&src[0], 0) >> 1, &dst[0], 0);
+ u8Dst[0] ^= (u8Src[15] & 0x01) ? 0xE1 : 0;
+}
+
+/*
+ * Precompute small multiples of H, that is set
+ * HH[i] || HL[i] = H times i,
+ * where i is seen as a field element as in [MGV], ie high-order bits
+ * correspond to low powers of P. The result is stored in the same way, that
+ * is the high-order bit of HH corresponds to P^0 and the low-order bit of HL
+ * corresponds to P^127.
+ */
+static int gcm_gen_table(mbedtls_gcm_context *ctx)
+{
+ int ret, i, j;
+ uint64_t u64h[2] = { 0 };
+ uint8_t *h = (uint8_t *) u64h;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, h, h);
+#else
+ size_t olen = 0;
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, h, 16, h, &olen);
+#endif
+ if (ret != 0) {
+ return ret;
+ }
+
+ gcm_set_acceleration(ctx);
+
+ /* MBEDTLS_GCM_HTABLE_SIZE/2 = 1000 corresponds to 1 in GF(2^128) */
+ ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2][0] = u64h[0];
+ ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2][1] = u64h[1];
+
+ switch (ctx->acceleration) {
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+ case MBEDTLS_GCM_ACC_AESNI:
+ return 0;
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ case MBEDTLS_GCM_ACC_AESCE:
+ return 0;
+#endif
+
+ default:
+ /* 0 corresponds to 0 in GF(2^128) */
+ ctx->H[0][0] = 0;
+ ctx->H[0][1] = 0;
+
+ for (i = MBEDTLS_GCM_HTABLE_SIZE/4; i > 0; i >>= 1) {
+ gcm_gen_table_rightshift(ctx->H[i], ctx->H[i*2]);
+ }
+
+#if !defined(MBEDTLS_GCM_LARGE_TABLE)
+ /* pack elements of H as 64-bits ints, big-endian */
+ for (i = MBEDTLS_GCM_HTABLE_SIZE/2; i > 0; i >>= 1) {
+ MBEDTLS_PUT_UINT64_BE(ctx->H[i][0], &ctx->H[i][0], 0);
+ MBEDTLS_PUT_UINT64_BE(ctx->H[i][1], &ctx->H[i][1], 0);
+ }
+#endif
+
+ for (i = 2; i < MBEDTLS_GCM_HTABLE_SIZE; i <<= 1) {
+ for (j = 1; j < i; j++) {
+ mbedtls_xor_no_simd((unsigned char *) ctx->H[i+j],
+ (unsigned char *) ctx->H[i],
+ (unsigned char *) ctx->H[j],
+ 16);
+ }
+ }
+ }
+
+ return 0;
+}
+
+int mbedtls_gcm_setkey(mbedtls_gcm_context *ctx,
+ mbedtls_cipher_id_t cipher,
+ const unsigned char *key,
+ unsigned int keybits)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (keybits != 128 && keybits != 192 && keybits != 256) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+
+ if ((ret = mbedtls_block_cipher_setup(&ctx->block_cipher_ctx, cipher)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_block_cipher_setkey(&ctx->block_cipher_ctx, key, keybits)) != 0) {
+ return ret;
+ }
+#else
+ const mbedtls_cipher_info_t *cipher_info;
+
+ cipher_info = mbedtls_cipher_info_from_values(cipher, keybits,
+ MBEDTLS_MODE_ECB);
+ if (cipher_info == NULL) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+ if (mbedtls_cipher_info_get_block_size(cipher_info) != 16) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+ mbedtls_cipher_free(&ctx->cipher_ctx);
+
+ if ((ret = mbedtls_cipher_setup(&ctx->cipher_ctx, cipher_info)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_cipher_setkey(&ctx->cipher_ctx, key, keybits,
+ MBEDTLS_ENCRYPT)) != 0) {
+ return ret;
+ }
+#endif
+
+ if ((ret = gcm_gen_table(ctx)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_GCM_LARGE_TABLE)
+static const uint16_t last8[256] = {
+ 0x0000, 0xc201, 0x8403, 0x4602, 0x0807, 0xca06, 0x8c04, 0x4e05,
+ 0x100e, 0xd20f, 0x940d, 0x560c, 0x1809, 0xda08, 0x9c0a, 0x5e0b,
+ 0x201c, 0xe21d, 0xa41f, 0x661e, 0x281b, 0xea1a, 0xac18, 0x6e19,
+ 0x3012, 0xf213, 0xb411, 0x7610, 0x3815, 0xfa14, 0xbc16, 0x7e17,
+ 0x4038, 0x8239, 0xc43b, 0x063a, 0x483f, 0x8a3e, 0xcc3c, 0x0e3d,
+ 0x5036, 0x9237, 0xd435, 0x1634, 0x5831, 0x9a30, 0xdc32, 0x1e33,
+ 0x6024, 0xa225, 0xe427, 0x2626, 0x6823, 0xaa22, 0xec20, 0x2e21,
+ 0x702a, 0xb22b, 0xf429, 0x3628, 0x782d, 0xba2c, 0xfc2e, 0x3e2f,
+ 0x8070, 0x4271, 0x0473, 0xc672, 0x8877, 0x4a76, 0x0c74, 0xce75,
+ 0x907e, 0x527f, 0x147d, 0xd67c, 0x9879, 0x5a78, 0x1c7a, 0xde7b,
+ 0xa06c, 0x626d, 0x246f, 0xe66e, 0xa86b, 0x6a6a, 0x2c68, 0xee69,
+ 0xb062, 0x7263, 0x3461, 0xf660, 0xb865, 0x7a64, 0x3c66, 0xfe67,
+ 0xc048, 0x0249, 0x444b, 0x864a, 0xc84f, 0x0a4e, 0x4c4c, 0x8e4d,
+ 0xd046, 0x1247, 0x5445, 0x9644, 0xd841, 0x1a40, 0x5c42, 0x9e43,
+ 0xe054, 0x2255, 0x6457, 0xa656, 0xe853, 0x2a52, 0x6c50, 0xae51,
+ 0xf05a, 0x325b, 0x7459, 0xb658, 0xf85d, 0x3a5c, 0x7c5e, 0xbe5f,
+ 0x00e1, 0xc2e0, 0x84e2, 0x46e3, 0x08e6, 0xcae7, 0x8ce5, 0x4ee4,
+ 0x10ef, 0xd2ee, 0x94ec, 0x56ed, 0x18e8, 0xdae9, 0x9ceb, 0x5eea,
+ 0x20fd, 0xe2fc, 0xa4fe, 0x66ff, 0x28fa, 0xeafb, 0xacf9, 0x6ef8,
+ 0x30f3, 0xf2f2, 0xb4f0, 0x76f1, 0x38f4, 0xfaf5, 0xbcf7, 0x7ef6,
+ 0x40d9, 0x82d8, 0xc4da, 0x06db, 0x48de, 0x8adf, 0xccdd, 0x0edc,
+ 0x50d7, 0x92d6, 0xd4d4, 0x16d5, 0x58d0, 0x9ad1, 0xdcd3, 0x1ed2,
+ 0x60c5, 0xa2c4, 0xe4c6, 0x26c7, 0x68c2, 0xaac3, 0xecc1, 0x2ec0,
+ 0x70cb, 0xb2ca, 0xf4c8, 0x36c9, 0x78cc, 0xbacd, 0xfccf, 0x3ece,
+ 0x8091, 0x4290, 0x0492, 0xc693, 0x8896, 0x4a97, 0x0c95, 0xce94,
+ 0x909f, 0x529e, 0x149c, 0xd69d, 0x9898, 0x5a99, 0x1c9b, 0xde9a,
+ 0xa08d, 0x628c, 0x248e, 0xe68f, 0xa88a, 0x6a8b, 0x2c89, 0xee88,
+ 0xb083, 0x7282, 0x3480, 0xf681, 0xb884, 0x7a85, 0x3c87, 0xfe86,
+ 0xc0a9, 0x02a8, 0x44aa, 0x86ab, 0xc8ae, 0x0aaf, 0x4cad, 0x8eac,
+ 0xd0a7, 0x12a6, 0x54a4, 0x96a5, 0xd8a0, 0x1aa1, 0x5ca3, 0x9ea2,
+ 0xe0b5, 0x22b4, 0x64b6, 0xa6b7, 0xe8b2, 0x2ab3, 0x6cb1, 0xaeb0,
+ 0xf0bb, 0x32ba, 0x74b8, 0xb6b9, 0xf8bc, 0x3abd, 0x7cbf, 0xbebe
+};
+
+static void gcm_mult_largetable(uint8_t *output, const uint8_t *x, uint64_t H[256][2])
+{
+ int i;
+ uint64_t u64z[2];
+ uint16_t *u16z = (uint16_t *) u64z;
+ uint8_t *u8z = (uint8_t *) u64z;
+ uint8_t rem;
+
+ u64z[0] = 0;
+ u64z[1] = 0;
+
+ if (MBEDTLS_IS_BIG_ENDIAN) {
+ for (i = 15; i > 0; i--) {
+ mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[x[i]], 16);
+ rem = u8z[15];
+
+ u64z[1] >>= 8;
+ u8z[8] = u8z[7];
+ u64z[0] >>= 8;
+
+ u16z[0] ^= MBEDTLS_GET_UINT16_LE(&last8[rem], 0);
+ }
+ } else {
+ for (i = 15; i > 0; i--) {
+ mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[x[i]], 16);
+ rem = u8z[15];
+
+ u64z[1] <<= 8;
+ u8z[8] = u8z[7];
+ u64z[0] <<= 8;
+
+ u16z[0] ^= last8[rem];
+ }
+ }
+
+ mbedtls_xor_no_simd(output, u8z, (uint8_t *) H[x[0]], 16);
+}
+#else
+/*
+ * Shoup's method for multiplication use this table with
+ * last4[x] = x times P^128
+ * where x and last4[x] are seen as elements of GF(2^128) as in [MGV]
+ */
+static const uint16_t last4[16] =
+{
+ 0x0000, 0x1c20, 0x3840, 0x2460,
+ 0x7080, 0x6ca0, 0x48c0, 0x54e0,
+ 0xe100, 0xfd20, 0xd940, 0xc560,
+ 0x9180, 0x8da0, 0xa9c0, 0xb5e0
+};
+
+static void gcm_mult_smalltable(uint8_t *output, const uint8_t *x, uint64_t H[16][2])
+{
+ int i = 0;
+ unsigned char lo, hi, rem;
+ uint64_t u64z[2];
+ const uint64_t *pu64z = NULL;
+ uint8_t *u8z = (uint8_t *) u64z;
+
+ lo = x[15] & 0xf;
+ hi = (x[15] >> 4) & 0xf;
+
+ pu64z = H[lo];
+
+ rem = (unsigned char) pu64z[1] & 0xf;
+ u64z[1] = (pu64z[0] << 60) | (pu64z[1] >> 4);
+ u64z[0] = (pu64z[0] >> 4);
+ u64z[0] ^= (uint64_t) last4[rem] << 48;
+ mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[hi], 16);
+
+ for (i = 14; i >= 0; i--) {
+ lo = x[i] & 0xf;
+ hi = (x[i] >> 4) & 0xf;
+
+ rem = (unsigned char) u64z[1] & 0xf;
+ u64z[1] = (u64z[0] << 60) | (u64z[1] >> 4);
+ u64z[0] = (u64z[0] >> 4);
+ u64z[0] ^= (uint64_t) last4[rem] << 48;
+ mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[lo], 16);
+
+ rem = (unsigned char) u64z[1] & 0xf;
+ u64z[1] = (u64z[0] << 60) | (u64z[1] >> 4);
+ u64z[0] = (u64z[0] >> 4);
+ u64z[0] ^= (uint64_t) last4[rem] << 48;
+ mbedtls_xor_no_simd(u8z, u8z, (uint8_t *) H[hi], 16);
+ }
+
+ MBEDTLS_PUT_UINT64_BE(u64z[0], output, 0);
+ MBEDTLS_PUT_UINT64_BE(u64z[1], output, 8);
+}
+#endif
+
+/*
+ * Sets output to x times H using the precomputed tables.
+ * x and output are seen as elements of GF(2^128) as in [MGV].
+ */
+static void gcm_mult(mbedtls_gcm_context *ctx, const unsigned char x[16],
+ unsigned char output[16])
+{
+ switch (ctx->acceleration) {
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+ case MBEDTLS_GCM_ACC_AESNI:
+ mbedtls_aesni_gcm_mult(output, x, (uint8_t *) ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2]);
+ break;
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ case MBEDTLS_GCM_ACC_AESCE:
+ mbedtls_aesce_gcm_mult(output, x, (uint8_t *) ctx->H[MBEDTLS_GCM_HTABLE_SIZE/2]);
+ break;
+#endif
+
+#if defined(MBEDTLS_GCM_LARGE_TABLE)
+ case MBEDTLS_GCM_ACC_LARGETABLE:
+ gcm_mult_largetable(output, x, ctx->H);
+ break;
+#else
+ case MBEDTLS_GCM_ACC_SMALLTABLE:
+ gcm_mult_smalltable(output, x, ctx->H);
+ break;
+#endif
+ }
+
+ return;
+}
+
+int mbedtls_gcm_starts(mbedtls_gcm_context *ctx,
+ int mode,
+ const unsigned char *iv, size_t iv_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char work_buf[16];
+ const unsigned char *p;
+ size_t use_len;
+ uint64_t iv_bits;
+#if !defined(MBEDTLS_BLOCK_CIPHER_C)
+ size_t olen = 0;
+#endif
+
+ /* IV is limited to 2^64 bits, so 2^61 bytes */
+ /* IV is not allowed to be zero length */
+ if (iv_len == 0 || (uint64_t) iv_len >> 61 != 0) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+ memset(ctx->y, 0x00, sizeof(ctx->y));
+ memset(ctx->buf, 0x00, sizeof(ctx->buf));
+
+ ctx->mode = mode;
+ ctx->len = 0;
+ ctx->add_len = 0;
+
+ if (iv_len == 12) {
+ memcpy(ctx->y, iv, iv_len);
+ ctx->y[15] = 1;
+ } else {
+ memset(work_buf, 0x00, 16);
+ iv_bits = (uint64_t) iv_len * 8;
+ MBEDTLS_PUT_UINT64_BE(iv_bits, work_buf, 8);
+
+ p = iv;
+ while (iv_len > 0) {
+ use_len = (iv_len < 16) ? iv_len : 16;
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 70110)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic warning "-Wstringop-overflow=0"
+#endif
+
+ mbedtls_xor(ctx->y, ctx->y, p, use_len);
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && (MBEDTLS_GCC_VERSION >= 70110)
+#pragma GCC diagnostic pop
+#endif
+
+ gcm_mult(ctx, ctx->y, ctx->y);
+
+ iv_len -= use_len;
+ p += use_len;
+ }
+
+ mbedtls_xor(ctx->y, ctx->y, work_buf, 16);
+
+ gcm_mult(ctx, ctx->y, ctx->y);
+ }
+
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ctx->base_ectr);
+#else
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ctx->base_ectr, &olen);
+#endif
+ if (ret != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/**
+ * mbedtls_gcm_context::buf contains the partial state of the computation of
+ * the authentication tag.
+ * mbedtls_gcm_context::add_len and mbedtls_gcm_context::len indicate
+ * different stages of the computation:
+ * * len == 0 && add_len == 0: initial state
+ * * len == 0 && add_len % 16 != 0: the first `add_len % 16` bytes have
+ * a partial block of AD that has been
+ * xored in but not yet multiplied in.
+ * * len == 0 && add_len % 16 == 0: the authentication tag is correct if
+ * the data ends now.
+ * * len % 16 != 0: the first `len % 16` bytes have
+ * a partial block of ciphertext that has
+ * been xored in but not yet multiplied in.
+ * * len > 0 && len % 16 == 0: the authentication tag is correct if
+ * the data ends now.
+ */
+int mbedtls_gcm_update_ad(mbedtls_gcm_context *ctx,
+ const unsigned char *add, size_t add_len)
+{
+ const unsigned char *p;
+ size_t use_len, offset;
+ uint64_t new_add_len;
+
+ /* AD is limited to 2^64 bits, ie 2^61 bytes
+ * Also check for possible overflow */
+#if SIZE_MAX > 0xFFFFFFFFFFFFFFFFULL
+ if (add_len > 0xFFFFFFFFFFFFFFFFULL) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+#endif
+ new_add_len = ctx->add_len + (uint64_t) add_len;
+ if (new_add_len < ctx->add_len || new_add_len >> 61 != 0) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+ offset = ctx->add_len % 16;
+ p = add;
+
+ if (offset != 0) {
+ use_len = 16 - offset;
+ if (use_len > add_len) {
+ use_len = add_len;
+ }
+
+ mbedtls_xor(ctx->buf + offset, ctx->buf + offset, p, use_len);
+
+ if (offset + use_len == 16) {
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+ }
+
+ ctx->add_len += use_len;
+ add_len -= use_len;
+ p += use_len;
+ }
+
+ ctx->add_len += add_len;
+
+ while (add_len >= 16) {
+ mbedtls_xor(ctx->buf, ctx->buf, p, 16);
+
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+
+ add_len -= 16;
+ p += 16;
+ }
+
+ if (add_len > 0) {
+ mbedtls_xor(ctx->buf, ctx->buf, p, add_len);
+ }
+
+ return 0;
+}
+
+/* Increment the counter. */
+static void gcm_incr(unsigned char y[16])
+{
+ uint32_t x = MBEDTLS_GET_UINT32_BE(y, 12);
+ x++;
+ MBEDTLS_PUT_UINT32_BE(x, y, 12);
+}
+
+/* Calculate and apply the encryption mask. Process use_len bytes of data,
+ * starting at position offset in the mask block. */
+static int gcm_mask(mbedtls_gcm_context *ctx,
+ unsigned char ectr[16],
+ size_t offset, size_t use_len,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ ret = mbedtls_block_cipher_encrypt(&ctx->block_cipher_ctx, ctx->y, ectr);
+#else
+ size_t olen = 0;
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx, ctx->y, 16, ectr, &olen);
+#endif
+ if (ret != 0) {
+ mbedtls_platform_zeroize(ectr, 16);
+ return ret;
+ }
+
+ if (ctx->mode == MBEDTLS_GCM_DECRYPT) {
+ mbedtls_xor(ctx->buf + offset, ctx->buf + offset, input, use_len);
+ }
+ mbedtls_xor(output, ectr + offset, input, use_len);
+ if (ctx->mode == MBEDTLS_GCM_ENCRYPT) {
+ mbedtls_xor(ctx->buf + offset, ctx->buf + offset, output, use_len);
+ }
+
+ return 0;
+}
+
+int mbedtls_gcm_update(mbedtls_gcm_context *ctx,
+ const unsigned char *input, size_t input_length,
+ unsigned char *output, size_t output_size,
+ size_t *output_length)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const unsigned char *p = input;
+ unsigned char *out_p = output;
+ size_t offset;
+ unsigned char ectr[16] = { 0 };
+
+ if (output_size < input_length) {
+ return MBEDTLS_ERR_GCM_BUFFER_TOO_SMALL;
+ }
+ *output_length = input_length;
+
+ /* Exit early if input_length==0 so that we don't do any pointer arithmetic
+ * on a potentially null pointer.
+ * Returning early also means that the last partial block of AD remains
+ * untouched for mbedtls_gcm_finish */
+ if (input_length == 0) {
+ return 0;
+ }
+
+ if (output > input && (size_t) (output - input) < input_length) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+ /* Total length is restricted to 2^39 - 256 bits, ie 2^36 - 2^5 bytes
+ * Also check for possible overflow */
+ if (ctx->len + input_length < ctx->len ||
+ (uint64_t) ctx->len + input_length > 0xFFFFFFFE0ull) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+ if (ctx->len == 0 && ctx->add_len % 16 != 0) {
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+ }
+
+ offset = ctx->len % 16;
+ if (offset != 0) {
+ size_t use_len = 16 - offset;
+ if (use_len > input_length) {
+ use_len = input_length;
+ }
+
+ if ((ret = gcm_mask(ctx, ectr, offset, use_len, p, out_p)) != 0) {
+ return ret;
+ }
+
+ if (offset + use_len == 16) {
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+ }
+
+ ctx->len += use_len;
+ input_length -= use_len;
+ p += use_len;
+ out_p += use_len;
+ }
+
+ ctx->len += input_length;
+
+ while (input_length >= 16) {
+ gcm_incr(ctx->y);
+ if ((ret = gcm_mask(ctx, ectr, 0, 16, p, out_p)) != 0) {
+ return ret;
+ }
+
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+
+ input_length -= 16;
+ p += 16;
+ out_p += 16;
+ }
+
+ if (input_length > 0) {
+ gcm_incr(ctx->y);
+ if ((ret = gcm_mask(ctx, ectr, 0, input_length, p, out_p)) != 0) {
+ return ret;
+ }
+ }
+
+ mbedtls_platform_zeroize(ectr, sizeof(ectr));
+ return 0;
+}
+
+int mbedtls_gcm_finish(mbedtls_gcm_context *ctx,
+ unsigned char *output, size_t output_size,
+ size_t *output_length,
+ unsigned char *tag, size_t tag_len)
+{
+ unsigned char work_buf[16];
+ uint64_t orig_len;
+ uint64_t orig_add_len;
+
+ /* We never pass any output in finish(). The output parameter exists only
+ * for the sake of alternative implementations. */
+ (void) output;
+ (void) output_size;
+ *output_length = 0;
+
+ /* Total length is restricted to 2^39 - 256 bits, ie 2^36 - 2^5 bytes
+ * and AD length is restricted to 2^64 bits, ie 2^61 bytes so neither of
+ * the two multiplications would overflow. */
+ orig_len = ctx->len * 8;
+ orig_add_len = ctx->add_len * 8;
+
+ if (ctx->len == 0 && ctx->add_len % 16 != 0) {
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+ }
+
+ if (tag_len > 16 || tag_len < 4) {
+ return MBEDTLS_ERR_GCM_BAD_INPUT;
+ }
+
+ if (ctx->len % 16 != 0) {
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+ }
+
+ memcpy(tag, ctx->base_ectr, tag_len);
+
+ if (orig_len || orig_add_len) {
+ memset(work_buf, 0x00, 16);
+
+ MBEDTLS_PUT_UINT32_BE((orig_add_len >> 32), work_buf, 0);
+ MBEDTLS_PUT_UINT32_BE((orig_add_len), work_buf, 4);
+ MBEDTLS_PUT_UINT32_BE((orig_len >> 32), work_buf, 8);
+ MBEDTLS_PUT_UINT32_BE((orig_len), work_buf, 12);
+
+ mbedtls_xor(ctx->buf, ctx->buf, work_buf, 16);
+
+ gcm_mult(ctx, ctx->buf, ctx->buf);
+
+ mbedtls_xor(tag, tag, ctx->buf, tag_len);
+ }
+
+ return 0;
+}
+
+int mbedtls_gcm_crypt_and_tag(mbedtls_gcm_context *ctx,
+ int mode,
+ size_t length,
+ const unsigned char *iv,
+ size_t iv_len,
+ const unsigned char *add,
+ size_t add_len,
+ const unsigned char *input,
+ unsigned char *output,
+ size_t tag_len,
+ unsigned char *tag)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t olen;
+
+ if ((ret = mbedtls_gcm_starts(ctx, mode, iv, iv_len)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_gcm_update_ad(ctx, add, add_len)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_gcm_update(ctx, input, length,
+ output, length, &olen)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_gcm_finish(ctx, NULL, 0, &olen, tag, tag_len)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+int mbedtls_gcm_auth_decrypt(mbedtls_gcm_context *ctx,
+ size_t length,
+ const unsigned char *iv,
+ size_t iv_len,
+ const unsigned char *add,
+ size_t add_len,
+ const unsigned char *tag,
+ size_t tag_len,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char check_tag[16];
+ int diff;
+
+ if ((ret = mbedtls_gcm_crypt_and_tag(ctx, MBEDTLS_GCM_DECRYPT, length,
+ iv, iv_len, add, add_len,
+ input, output, tag_len, check_tag)) != 0) {
+ return ret;
+ }
+
+ /* Check tag in "constant-time" */
+ diff = mbedtls_ct_memcmp(tag, check_tag, tag_len);
+
+ if (diff != 0) {
+ mbedtls_platform_zeroize(output, length);
+ return MBEDTLS_ERR_GCM_AUTH_FAILED;
+ }
+
+ return 0;
+}
+
+void mbedtls_gcm_free(mbedtls_gcm_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+#if defined(MBEDTLS_BLOCK_CIPHER_C)
+ mbedtls_block_cipher_free(&ctx->block_cipher_ctx);
+#else
+ mbedtls_cipher_free(&ctx->cipher_ctx);
+#endif
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_gcm_context));
+}
+
+#endif /* !MBEDTLS_GCM_ALT */
+
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_CCM_GCM_CAN_AES)
+/*
+ * AES-GCM test vectors from:
+ *
+ * http://csrc.nist.gov/groups/STM/cavp/documents/mac/gcmtestvectors.zip
+ */
+#define MAX_TESTS 6
+
+static const int key_index_test_data[MAX_TESTS] =
+{ 0, 0, 1, 1, 1, 1 };
+
+static const unsigned char key_test_data[][32] =
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
+ 0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08,
+ 0xfe, 0xff, 0xe9, 0x92, 0x86, 0x65, 0x73, 0x1c,
+ 0x6d, 0x6a, 0x8f, 0x94, 0x67, 0x30, 0x83, 0x08 },
+};
+
+static const size_t iv_len_test_data[MAX_TESTS] =
+{ 12, 12, 12, 12, 8, 60 };
+
+static const int iv_index_test_data[MAX_TESTS] =
+{ 0, 0, 1, 1, 1, 2 };
+
+static const unsigned char iv_test_data[][64] =
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00 },
+ { 0xca, 0xfe, 0xba, 0xbe, 0xfa, 0xce, 0xdb, 0xad,
+ 0xde, 0xca, 0xf8, 0x88 },
+ { 0x93, 0x13, 0x22, 0x5d, 0xf8, 0x84, 0x06, 0xe5,
+ 0x55, 0x90, 0x9c, 0x5a, 0xff, 0x52, 0x69, 0xaa,
+ 0x6a, 0x7a, 0x95, 0x38, 0x53, 0x4f, 0x7d, 0xa1,
+ 0xe4, 0xc3, 0x03, 0xd2, 0xa3, 0x18, 0xa7, 0x28,
+ 0xc3, 0xc0, 0xc9, 0x51, 0x56, 0x80, 0x95, 0x39,
+ 0xfc, 0xf0, 0xe2, 0x42, 0x9a, 0x6b, 0x52, 0x54,
+ 0x16, 0xae, 0xdb, 0xf5, 0xa0, 0xde, 0x6a, 0x57,
+ 0xa6, 0x37, 0xb3, 0x9b },
+};
+
+static const size_t add_len_test_data[MAX_TESTS] =
+{ 0, 0, 0, 20, 20, 20 };
+
+static const int add_index_test_data[MAX_TESTS] =
+{ 0, 0, 0, 1, 1, 1 };
+
+static const unsigned char additional_test_data[][64] =
+{
+ { 0x00 },
+ { 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
+ 0xfe, 0xed, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
+ 0xab, 0xad, 0xda, 0xd2 },
+};
+
+static const size_t pt_len_test_data[MAX_TESTS] =
+{ 0, 16, 64, 60, 60, 60 };
+
+static const int pt_index_test_data[MAX_TESTS] =
+{ 0, 0, 1, 1, 1, 1 };
+
+static const unsigned char pt_test_data[][64] =
+{
+ { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 },
+ { 0xd9, 0x31, 0x32, 0x25, 0xf8, 0x84, 0x06, 0xe5,
+ 0xa5, 0x59, 0x09, 0xc5, 0xaf, 0xf5, 0x26, 0x9a,
+ 0x86, 0xa7, 0xa9, 0x53, 0x15, 0x34, 0xf7, 0xda,
+ 0x2e, 0x4c, 0x30, 0x3d, 0x8a, 0x31, 0x8a, 0x72,
+ 0x1c, 0x3c, 0x0c, 0x95, 0x95, 0x68, 0x09, 0x53,
+ 0x2f, 0xcf, 0x0e, 0x24, 0x49, 0xa6, 0xb5, 0x25,
+ 0xb1, 0x6a, 0xed, 0xf5, 0xaa, 0x0d, 0xe6, 0x57,
+ 0xba, 0x63, 0x7b, 0x39, 0x1a, 0xaf, 0xd2, 0x55 },
+};
+
+static const unsigned char ct_test_data[][64] =
+{
+ { 0x00 },
+ { 0x03, 0x88, 0xda, 0xce, 0x60, 0xb6, 0xa3, 0x92,
+ 0xf3, 0x28, 0xc2, 0xb9, 0x71, 0xb2, 0xfe, 0x78 },
+ { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
+ 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
+ 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
+ 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
+ 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
+ 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
+ 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
+ 0x3d, 0x58, 0xe0, 0x91, 0x47, 0x3f, 0x59, 0x85 },
+ { 0x42, 0x83, 0x1e, 0xc2, 0x21, 0x77, 0x74, 0x24,
+ 0x4b, 0x72, 0x21, 0xb7, 0x84, 0xd0, 0xd4, 0x9c,
+ 0xe3, 0xaa, 0x21, 0x2f, 0x2c, 0x02, 0xa4, 0xe0,
+ 0x35, 0xc1, 0x7e, 0x23, 0x29, 0xac, 0xa1, 0x2e,
+ 0x21, 0xd5, 0x14, 0xb2, 0x54, 0x66, 0x93, 0x1c,
+ 0x7d, 0x8f, 0x6a, 0x5a, 0xac, 0x84, 0xaa, 0x05,
+ 0x1b, 0xa3, 0x0b, 0x39, 0x6a, 0x0a, 0xac, 0x97,
+ 0x3d, 0x58, 0xe0, 0x91 },
+ { 0x61, 0x35, 0x3b, 0x4c, 0x28, 0x06, 0x93, 0x4a,
+ 0x77, 0x7f, 0xf5, 0x1f, 0xa2, 0x2a, 0x47, 0x55,
+ 0x69, 0x9b, 0x2a, 0x71, 0x4f, 0xcd, 0xc6, 0xf8,
+ 0x37, 0x66, 0xe5, 0xf9, 0x7b, 0x6c, 0x74, 0x23,
+ 0x73, 0x80, 0x69, 0x00, 0xe4, 0x9f, 0x24, 0xb2,
+ 0x2b, 0x09, 0x75, 0x44, 0xd4, 0x89, 0x6b, 0x42,
+ 0x49, 0x89, 0xb5, 0xe1, 0xeb, 0xac, 0x0f, 0x07,
+ 0xc2, 0x3f, 0x45, 0x98 },
+ { 0x8c, 0xe2, 0x49, 0x98, 0x62, 0x56, 0x15, 0xb6,
+ 0x03, 0xa0, 0x33, 0xac, 0xa1, 0x3f, 0xb8, 0x94,
+ 0xbe, 0x91, 0x12, 0xa5, 0xc3, 0xa2, 0x11, 0xa8,
+ 0xba, 0x26, 0x2a, 0x3c, 0xca, 0x7e, 0x2c, 0xa7,
+ 0x01, 0xe4, 0xa9, 0xa4, 0xfb, 0xa4, 0x3c, 0x90,
+ 0xcc, 0xdc, 0xb2, 0x81, 0xd4, 0x8c, 0x7c, 0x6f,
+ 0xd6, 0x28, 0x75, 0xd2, 0xac, 0xa4, 0x17, 0x03,
+ 0x4c, 0x34, 0xae, 0xe5 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x00 },
+ { 0x98, 0xe7, 0x24, 0x7c, 0x07, 0xf0, 0xfe, 0x41,
+ 0x1c, 0x26, 0x7e, 0x43, 0x84, 0xb0, 0xf6, 0x00 },
+ { 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41,
+ 0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57,
+ 0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84,
+ 0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c,
+ 0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25,
+ 0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47,
+ 0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9,
+ 0xcc, 0xda, 0x27, 0x10, 0xac, 0xad, 0xe2, 0x56 },
+ { 0x39, 0x80, 0xca, 0x0b, 0x3c, 0x00, 0xe8, 0x41,
+ 0xeb, 0x06, 0xfa, 0xc4, 0x87, 0x2a, 0x27, 0x57,
+ 0x85, 0x9e, 0x1c, 0xea, 0xa6, 0xef, 0xd9, 0x84,
+ 0x62, 0x85, 0x93, 0xb4, 0x0c, 0xa1, 0xe1, 0x9c,
+ 0x7d, 0x77, 0x3d, 0x00, 0xc1, 0x44, 0xc5, 0x25,
+ 0xac, 0x61, 0x9d, 0x18, 0xc8, 0x4a, 0x3f, 0x47,
+ 0x18, 0xe2, 0x44, 0x8b, 0x2f, 0xe3, 0x24, 0xd9,
+ 0xcc, 0xda, 0x27, 0x10 },
+ { 0x0f, 0x10, 0xf5, 0x99, 0xae, 0x14, 0xa1, 0x54,
+ 0xed, 0x24, 0xb3, 0x6e, 0x25, 0x32, 0x4d, 0xb8,
+ 0xc5, 0x66, 0x63, 0x2e, 0xf2, 0xbb, 0xb3, 0x4f,
+ 0x83, 0x47, 0x28, 0x0f, 0xc4, 0x50, 0x70, 0x57,
+ 0xfd, 0xdc, 0x29, 0xdf, 0x9a, 0x47, 0x1f, 0x75,
+ 0xc6, 0x65, 0x41, 0xd4, 0xd4, 0xda, 0xd1, 0xc9,
+ 0xe9, 0x3a, 0x19, 0xa5, 0x8e, 0x8b, 0x47, 0x3f,
+ 0xa0, 0xf0, 0x62, 0xf7 },
+ { 0xd2, 0x7e, 0x88, 0x68, 0x1c, 0xe3, 0x24, 0x3c,
+ 0x48, 0x30, 0x16, 0x5a, 0x8f, 0xdc, 0xf9, 0xff,
+ 0x1d, 0xe9, 0xa1, 0xd8, 0xe6, 0xb4, 0x47, 0xef,
+ 0x6e, 0xf7, 0xb7, 0x98, 0x28, 0x66, 0x6e, 0x45,
+ 0x81, 0xe7, 0x90, 0x12, 0xaf, 0x34, 0xdd, 0xd9,
+ 0xe2, 0xf0, 0x37, 0x58, 0x9b, 0x29, 0x2d, 0xb3,
+ 0xe6, 0x7c, 0x03, 0x67, 0x45, 0xfa, 0x22, 0xe7,
+ 0xe9, 0xb7, 0x37, 0x3b },
+ { 0x00 },
+ { 0xce, 0xa7, 0x40, 0x3d, 0x4d, 0x60, 0x6b, 0x6e,
+ 0x07, 0x4e, 0xc5, 0xd3, 0xba, 0xf3, 0x9d, 0x18 },
+ { 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07,
+ 0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d,
+ 0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9,
+ 0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa,
+ 0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d,
+ 0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38,
+ 0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a,
+ 0xbc, 0xc9, 0xf6, 0x62, 0x89, 0x80, 0x15, 0xad },
+ { 0x52, 0x2d, 0xc1, 0xf0, 0x99, 0x56, 0x7d, 0x07,
+ 0xf4, 0x7f, 0x37, 0xa3, 0x2a, 0x84, 0x42, 0x7d,
+ 0x64, 0x3a, 0x8c, 0xdc, 0xbf, 0xe5, 0xc0, 0xc9,
+ 0x75, 0x98, 0xa2, 0xbd, 0x25, 0x55, 0xd1, 0xaa,
+ 0x8c, 0xb0, 0x8e, 0x48, 0x59, 0x0d, 0xbb, 0x3d,
+ 0xa7, 0xb0, 0x8b, 0x10, 0x56, 0x82, 0x88, 0x38,
+ 0xc5, 0xf6, 0x1e, 0x63, 0x93, 0xba, 0x7a, 0x0a,
+ 0xbc, 0xc9, 0xf6, 0x62 },
+ { 0xc3, 0x76, 0x2d, 0xf1, 0xca, 0x78, 0x7d, 0x32,
+ 0xae, 0x47, 0xc1, 0x3b, 0xf1, 0x98, 0x44, 0xcb,
+ 0xaf, 0x1a, 0xe1, 0x4d, 0x0b, 0x97, 0x6a, 0xfa,
+ 0xc5, 0x2f, 0xf7, 0xd7, 0x9b, 0xba, 0x9d, 0xe0,
+ 0xfe, 0xb5, 0x82, 0xd3, 0x39, 0x34, 0xa4, 0xf0,
+ 0x95, 0x4c, 0xc2, 0x36, 0x3b, 0xc7, 0x3f, 0x78,
+ 0x62, 0xac, 0x43, 0x0e, 0x64, 0xab, 0xe4, 0x99,
+ 0xf4, 0x7c, 0x9b, 0x1f },
+ { 0x5a, 0x8d, 0xef, 0x2f, 0x0c, 0x9e, 0x53, 0xf1,
+ 0xf7, 0x5d, 0x78, 0x53, 0x65, 0x9e, 0x2a, 0x20,
+ 0xee, 0xb2, 0xb2, 0x2a, 0xaf, 0xde, 0x64, 0x19,
+ 0xa0, 0x58, 0xab, 0x4f, 0x6f, 0x74, 0x6b, 0xf4,
+ 0x0f, 0xc0, 0xc3, 0xb7, 0x80, 0xf2, 0x44, 0x45,
+ 0x2d, 0xa3, 0xeb, 0xf1, 0xc5, 0xd8, 0x2c, 0xde,
+ 0xa2, 0x41, 0x89, 0x97, 0x20, 0x0e, 0xf8, 0x2e,
+ 0x44, 0xae, 0x7e, 0x3f },
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+};
+
+static const unsigned char tag_test_data[][16] =
+{
+ { 0x58, 0xe2, 0xfc, 0xce, 0xfa, 0x7e, 0x30, 0x61,
+ 0x36, 0x7f, 0x1d, 0x57, 0xa4, 0xe7, 0x45, 0x5a },
+ { 0xab, 0x6e, 0x47, 0xd4, 0x2c, 0xec, 0x13, 0xbd,
+ 0xf5, 0x3a, 0x67, 0xb2, 0x12, 0x57, 0xbd, 0xdf },
+ { 0x4d, 0x5c, 0x2a, 0xf3, 0x27, 0xcd, 0x64, 0xa6,
+ 0x2c, 0xf3, 0x5a, 0xbd, 0x2b, 0xa6, 0xfa, 0xb4 },
+ { 0x5b, 0xc9, 0x4f, 0xbc, 0x32, 0x21, 0xa5, 0xdb,
+ 0x94, 0xfa, 0xe9, 0x5a, 0xe7, 0x12, 0x1a, 0x47 },
+ { 0x36, 0x12, 0xd2, 0xe7, 0x9e, 0x3b, 0x07, 0x85,
+ 0x56, 0x1b, 0xe1, 0x4a, 0xac, 0xa2, 0xfc, 0xcb },
+ { 0x61, 0x9c, 0xc5, 0xae, 0xff, 0xfe, 0x0b, 0xfa,
+ 0x46, 0x2a, 0xf4, 0x3c, 0x16, 0x99, 0xd0, 0x50 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0xcd, 0x33, 0xb2, 0x8a, 0xc7, 0x73, 0xf7, 0x4b,
+ 0xa0, 0x0e, 0xd1, 0xf3, 0x12, 0x57, 0x24, 0x35 },
+ { 0x2f, 0xf5, 0x8d, 0x80, 0x03, 0x39, 0x27, 0xab,
+ 0x8e, 0xf4, 0xd4, 0x58, 0x75, 0x14, 0xf0, 0xfb },
+ { 0x99, 0x24, 0xa7, 0xc8, 0x58, 0x73, 0x36, 0xbf,
+ 0xb1, 0x18, 0x02, 0x4d, 0xb8, 0x67, 0x4a, 0x14 },
+ { 0x25, 0x19, 0x49, 0x8e, 0x80, 0xf1, 0x47, 0x8f,
+ 0x37, 0xba, 0x55, 0xbd, 0x6d, 0x27, 0x61, 0x8c },
+ { 0x65, 0xdc, 0xc5, 0x7f, 0xcf, 0x62, 0x3a, 0x24,
+ 0x09, 0x4f, 0xcc, 0xa4, 0x0d, 0x35, 0x33, 0xf8 },
+ { 0xdc, 0xf5, 0x66, 0xff, 0x29, 0x1c, 0x25, 0xbb,
+ 0xb8, 0x56, 0x8f, 0xc3, 0xd3, 0x76, 0xa6, 0xd9 },
+ { 0x53, 0x0f, 0x8a, 0xfb, 0xc7, 0x45, 0x36, 0xb9,
+ 0xa9, 0x63, 0xb4, 0xf1, 0xc4, 0xcb, 0x73, 0x8b },
+ { 0xd0, 0xd1, 0xc8, 0xa7, 0x99, 0x99, 0x6b, 0xf0,
+ 0x26, 0x5b, 0x98, 0xb5, 0xd4, 0x8a, 0xb9, 0x19 },
+ { 0xb0, 0x94, 0xda, 0xc5, 0xd9, 0x34, 0x71, 0xbd,
+ 0xec, 0x1a, 0x50, 0x22, 0x70, 0xe3, 0xcc, 0x6c },
+ { 0x76, 0xfc, 0x6e, 0xce, 0x0f, 0x4e, 0x17, 0x68,
+ 0xcd, 0xdf, 0x88, 0x53, 0xbb, 0x2d, 0x55, 0x1b },
+ { 0x3a, 0x33, 0x7d, 0xbf, 0x46, 0xa7, 0x92, 0xc4,
+ 0x5e, 0x45, 0x49, 0x13, 0xfe, 0x2e, 0xa8, 0xf2 },
+ { 0xa4, 0x4a, 0x82, 0x66, 0xee, 0x1c, 0x8e, 0xb0,
+ 0xc8, 0xb5, 0xd4, 0xcf, 0x5a, 0xe9, 0xf1, 0x9a },
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+};
+
+int mbedtls_gcm_self_test(int verbose)
+{
+ mbedtls_gcm_context ctx;
+ unsigned char buf[64];
+ unsigned char tag_buf[16];
+ int i, j, ret;
+ mbedtls_cipher_id_t cipher = MBEDTLS_CIPHER_ID_AES;
+ size_t olen;
+
+ if (verbose != 0) {
+#if defined(MBEDTLS_GCM_ALT)
+ mbedtls_printf(" GCM note: alternative implementation.\n");
+#else /* MBEDTLS_GCM_ALT */
+#if defined(MBEDTLS_AESNI_HAVE_CODE)
+ if (mbedtls_aesni_has_support(MBEDTLS_AESNI_CLMUL)) {
+ mbedtls_printf(" GCM note: using AESNI.\n");
+ } else
+#endif
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+ if (MBEDTLS_AESCE_HAS_SUPPORT()) {
+ mbedtls_printf(" GCM note: using AESCE.\n");
+ } else
+#endif
+
+ mbedtls_printf(" GCM note: built-in implementation.\n");
+#endif /* MBEDTLS_GCM_ALT */
+ }
+
+ static const int loop_limit =
+ (sizeof(ct_test_data) / sizeof(*ct_test_data)) / MAX_TESTS;
+
+ for (j = 0; j < loop_limit; j++) {
+ int key_len = 128 + 64 * j;
+
+ for (i = 0; i < MAX_TESTS; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" AES-GCM-%3d #%d (%s): ",
+ key_len, i, "enc");
+ }
+
+ mbedtls_gcm_init(&ctx);
+
+ ret = mbedtls_gcm_setkey(&ctx, cipher,
+ key_test_data[key_index_test_data[i]],
+ key_len);
+ /*
+ * AES-192 is an optional feature that may be unavailable when
+ * there is an alternative underlying implementation i.e. when
+ * MBEDTLS_AES_ALT is defined.
+ */
+ if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED && key_len == 192) {
+ mbedtls_printf("skipped\n");
+ break;
+ } else if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_GCM_ENCRYPT,
+ pt_len_test_data[i],
+ iv_test_data[iv_index_test_data[i]],
+ iv_len_test_data[i],
+ additional_test_data[add_index_test_data[i]],
+ add_len_test_data[i],
+ pt_test_data[pt_index_test_data[i]],
+ buf, 16, tag_buf);
+#if defined(MBEDTLS_GCM_ALT)
+ /* Allow alternative implementations to only support 12-byte nonces. */
+ if (ret == MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED &&
+ iv_len_test_data[i] != 12) {
+ mbedtls_printf("skipped\n");
+ break;
+ }
+#endif /* defined(MBEDTLS_GCM_ALT) */
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, ct_test_data[j * 6 + i],
+ pt_len_test_data[i]) != 0 ||
+ memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ mbedtls_gcm_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ mbedtls_gcm_init(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-GCM-%3d #%d (%s): ",
+ key_len, i, "dec");
+ }
+
+ ret = mbedtls_gcm_setkey(&ctx, cipher,
+ key_test_data[key_index_test_data[i]],
+ key_len);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_gcm_crypt_and_tag(&ctx, MBEDTLS_GCM_DECRYPT,
+ pt_len_test_data[i],
+ iv_test_data[iv_index_test_data[i]],
+ iv_len_test_data[i],
+ additional_test_data[add_index_test_data[i]],
+ add_len_test_data[i],
+ ct_test_data[j * 6 + i], buf, 16, tag_buf);
+
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, pt_test_data[pt_index_test_data[i]],
+ pt_len_test_data[i]) != 0 ||
+ memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ mbedtls_gcm_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ mbedtls_gcm_init(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-GCM-%3d #%d split (%s): ",
+ key_len, i, "enc");
+ }
+
+ ret = mbedtls_gcm_setkey(&ctx, cipher,
+ key_test_data[key_index_test_data[i]],
+ key_len);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_ENCRYPT,
+ iv_test_data[iv_index_test_data[i]],
+ iv_len_test_data[i]);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_gcm_update_ad(&ctx,
+ additional_test_data[add_index_test_data[i]],
+ add_len_test_data[i]);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (pt_len_test_data[i] > 32) {
+ size_t rest_len = pt_len_test_data[i] - 32;
+ ret = mbedtls_gcm_update(&ctx,
+ pt_test_data[pt_index_test_data[i]],
+ 32,
+ buf, sizeof(buf), &olen);
+ if (ret != 0) {
+ goto exit;
+ }
+ if (olen != 32) {
+ goto exit;
+ }
+
+ ret = mbedtls_gcm_update(&ctx,
+ pt_test_data[pt_index_test_data[i]] + 32,
+ rest_len,
+ buf + 32, sizeof(buf) - 32, &olen);
+ if (ret != 0) {
+ goto exit;
+ }
+ if (olen != rest_len) {
+ goto exit;
+ }
+ } else {
+ ret = mbedtls_gcm_update(&ctx,
+ pt_test_data[pt_index_test_data[i]],
+ pt_len_test_data[i],
+ buf, sizeof(buf), &olen);
+ if (ret != 0) {
+ goto exit;
+ }
+ if (olen != pt_len_test_data[i]) {
+ goto exit;
+ }
+ }
+
+ ret = mbedtls_gcm_finish(&ctx, NULL, 0, &olen, tag_buf, 16);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, ct_test_data[j * 6 + i],
+ pt_len_test_data[i]) != 0 ||
+ memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ mbedtls_gcm_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ mbedtls_gcm_init(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf(" AES-GCM-%3d #%d split (%s): ",
+ key_len, i, "dec");
+ }
+
+ ret = mbedtls_gcm_setkey(&ctx, cipher,
+ key_test_data[key_index_test_data[i]],
+ key_len);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_gcm_starts(&ctx, MBEDTLS_GCM_DECRYPT,
+ iv_test_data[iv_index_test_data[i]],
+ iv_len_test_data[i]);
+ if (ret != 0) {
+ goto exit;
+ }
+ ret = mbedtls_gcm_update_ad(&ctx,
+ additional_test_data[add_index_test_data[i]],
+ add_len_test_data[i]);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (pt_len_test_data[i] > 32) {
+ size_t rest_len = pt_len_test_data[i] - 32;
+ ret = mbedtls_gcm_update(&ctx,
+ ct_test_data[j * 6 + i], 32,
+ buf, sizeof(buf), &olen);
+ if (ret != 0) {
+ goto exit;
+ }
+ if (olen != 32) {
+ goto exit;
+ }
+
+ ret = mbedtls_gcm_update(&ctx,
+ ct_test_data[j * 6 + i] + 32,
+ rest_len,
+ buf + 32, sizeof(buf) - 32, &olen);
+ if (ret != 0) {
+ goto exit;
+ }
+ if (olen != rest_len) {
+ goto exit;
+ }
+ } else {
+ ret = mbedtls_gcm_update(&ctx,
+ ct_test_data[j * 6 + i],
+ pt_len_test_data[i],
+ buf, sizeof(buf), &olen);
+ if (ret != 0) {
+ goto exit;
+ }
+ if (olen != pt_len_test_data[i]) {
+ goto exit;
+ }
+ }
+
+ ret = mbedtls_gcm_finish(&ctx, NULL, 0, &olen, tag_buf, 16);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (memcmp(buf, pt_test_data[pt_index_test_data[i]],
+ pt_len_test_data[i]) != 0 ||
+ memcmp(tag_buf, tag_test_data[j * 6 + i], 16) != 0) {
+ ret = 1;
+ goto exit;
+ }
+
+ mbedtls_gcm_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ ret = 0;
+
+exit:
+ if (ret != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ mbedtls_gcm_free(&ctx);
+ }
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+
+#endif /* MBEDTLS_GCM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/hkdf.c b/tf-psa-crypto/drivers/builtin/src/hkdf.c
new file mode 100644
index 0000000..631ac24
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/hkdf.c
@@ -0,0 +1,161 @@
+/*
+ * HKDF implementation -- RFC 5869
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#include "common.h"
+
+#if defined(MBEDTLS_HKDF_C)
+
+#include <string.h>
+#include "mbedtls/hkdf.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+int mbedtls_hkdf(const mbedtls_md_info_t *md, const unsigned char *salt,
+ size_t salt_len, const unsigned char *ikm, size_t ikm_len,
+ const unsigned char *info, size_t info_len,
+ unsigned char *okm, size_t okm_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char prk[MBEDTLS_MD_MAX_SIZE];
+
+ ret = mbedtls_hkdf_extract(md, salt, salt_len, ikm, ikm_len, prk);
+
+ if (ret == 0) {
+ ret = mbedtls_hkdf_expand(md, prk, mbedtls_md_get_size(md),
+ info, info_len, okm, okm_len);
+ }
+
+ mbedtls_platform_zeroize(prk, sizeof(prk));
+
+ return ret;
+}
+
+int mbedtls_hkdf_extract(const mbedtls_md_info_t *md,
+ const unsigned char *salt, size_t salt_len,
+ const unsigned char *ikm, size_t ikm_len,
+ unsigned char *prk)
+{
+ unsigned char null_salt[MBEDTLS_MD_MAX_SIZE] = { '\0' };
+
+ if (salt == NULL) {
+ size_t hash_len;
+
+ if (salt_len != 0) {
+ return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+ }
+
+ hash_len = mbedtls_md_get_size(md);
+
+ if (hash_len == 0) {
+ return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+ }
+
+ salt = null_salt;
+ salt_len = hash_len;
+ }
+
+ return mbedtls_md_hmac(md, salt, salt_len, ikm, ikm_len, prk);
+}
+
+int mbedtls_hkdf_expand(const mbedtls_md_info_t *md, const unsigned char *prk,
+ size_t prk_len, const unsigned char *info,
+ size_t info_len, unsigned char *okm, size_t okm_len)
+{
+ size_t hash_len;
+ size_t where = 0;
+ size_t n;
+ size_t t_len = 0;
+ size_t i;
+ int ret = 0;
+ mbedtls_md_context_t ctx;
+ unsigned char t[MBEDTLS_MD_MAX_SIZE];
+
+ if (okm == NULL) {
+ return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+ }
+
+ hash_len = mbedtls_md_get_size(md);
+
+ if (prk_len < hash_len || hash_len == 0) {
+ return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+ }
+
+ if (info == NULL) {
+ info = (const unsigned char *) "";
+ info_len = 0;
+ }
+
+ n = okm_len / hash_len;
+
+ if (okm_len % hash_len != 0) {
+ n++;
+ }
+
+ /*
+ * Per RFC 5869 Section 2.3, okm_len must not exceed
+ * 255 times the hash length
+ */
+ if (n > 255) {
+ return MBEDTLS_ERR_HKDF_BAD_INPUT_DATA;
+ }
+
+ mbedtls_md_init(&ctx);
+
+ if ((ret = mbedtls_md_setup(&ctx, md, 1)) != 0) {
+ goto exit;
+ }
+
+ memset(t, 0, hash_len);
+
+ /*
+ * Compute T = T(1) | T(2) | T(3) | ... | T(N)
+ * Where T(N) is defined in RFC 5869 Section 2.3
+ */
+ for (i = 1; i <= n; i++) {
+ size_t num_to_copy;
+ unsigned char c = i & 0xff;
+
+ ret = mbedtls_md_hmac_starts(&ctx, prk, prk_len);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_md_hmac_update(&ctx, t, t_len);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_md_hmac_update(&ctx, info, info_len);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ /* The constant concatenated to the end of each T(n) is a single octet.
+ * */
+ ret = mbedtls_md_hmac_update(&ctx, &c, 1);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_md_hmac_finish(&ctx, t);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ num_to_copy = i != n ? hash_len : okm_len - where;
+ memcpy(okm + where, t, num_to_copy);
+ where += hash_len;
+ t_len = hash_len;
+ }
+
+exit:
+ mbedtls_md_free(&ctx);
+ mbedtls_platform_zeroize(t, sizeof(t));
+
+ return ret;
+}
+
+#endif /* MBEDTLS_HKDF_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/hmac_drbg.c b/tf-psa-crypto/drivers/builtin/src/hmac_drbg.c
new file mode 100644
index 0000000..90174d5
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/hmac_drbg.c
@@ -0,0 +1,633 @@
+/*
+ * HMAC_DRBG implementation (NIST SP 800-90)
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The NIST SP 800-90A DRBGs are described in the following publication.
+ * http://csrc.nist.gov/publications/nistpubs/800-90A/SP800-90A.pdf
+ * References below are based on rev. 1 (January 2012).
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_HMAC_DRBG_C)
+
+#include "mbedtls/hmac_drbg.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * HMAC_DRBG context initialization
+ */
+void mbedtls_hmac_drbg_init(mbedtls_hmac_drbg_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_hmac_drbg_context));
+
+ ctx->reseed_interval = MBEDTLS_HMAC_DRBG_RESEED_INTERVAL;
+}
+
+/*
+ * HMAC_DRBG update, using optional additional data (10.1.2.2)
+ */
+int mbedtls_hmac_drbg_update(mbedtls_hmac_drbg_context *ctx,
+ const unsigned char *additional,
+ size_t add_len)
+{
+ size_t md_len = mbedtls_md_get_size(ctx->md_ctx.md_info);
+ unsigned char rounds = (additional != NULL && add_len != 0) ? 2 : 1;
+ unsigned char sep[1];
+ unsigned char K[MBEDTLS_MD_MAX_SIZE];
+ int ret = MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+
+ for (sep[0] = 0; sep[0] < rounds; sep[0]++) {
+ /* Step 1 or 4 */
+ if ((ret = mbedtls_md_hmac_reset(&ctx->md_ctx)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+ ctx->V, md_len)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+ sep, 1)) != 0) {
+ goto exit;
+ }
+ if (rounds == 2) {
+ if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+ additional, add_len)) != 0) {
+ goto exit;
+ }
+ }
+ if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, K)) != 0) {
+ goto exit;
+ }
+
+ /* Step 2 or 5 */
+ if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, K, md_len)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+ ctx->V, md_len)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, ctx->V)) != 0) {
+ goto exit;
+ }
+ }
+
+exit:
+ mbedtls_platform_zeroize(K, sizeof(K));
+ return ret;
+}
+
+/*
+ * Simplified HMAC_DRBG initialisation (for use with deterministic ECDSA)
+ */
+int mbedtls_hmac_drbg_seed_buf(mbedtls_hmac_drbg_context *ctx,
+ const mbedtls_md_info_t *md_info,
+ const unsigned char *data, size_t data_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ret = mbedtls_md_setup(&ctx->md_ctx, md_info, 1)) != 0) {
+ return ret;
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+ /*
+ * Set initial working state.
+ * Use the V memory location, which is currently all 0, to initialize the
+ * MD context with an all-zero key. Then set V to its initial value.
+ */
+ if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, ctx->V,
+ mbedtls_md_get_size(md_info))) != 0) {
+ return ret;
+ }
+ memset(ctx->V, 0x01, mbedtls_md_get_size(md_info));
+
+ if ((ret = mbedtls_hmac_drbg_update(ctx, data, data_len)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Internal function used both for seeding and reseeding the DRBG.
+ * Comments starting with arabic numbers refer to section 10.1.2.4
+ * of SP800-90A, while roman numbers refer to section 9.2.
+ */
+static int hmac_drbg_reseed_core(mbedtls_hmac_drbg_context *ctx,
+ const unsigned char *additional, size_t len,
+ int use_nonce)
+{
+ unsigned char seed[MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT];
+ size_t seedlen = 0;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ {
+ size_t total_entropy_len;
+
+ if (use_nonce == 0) {
+ total_entropy_len = ctx->entropy_len;
+ } else {
+ total_entropy_len = ctx->entropy_len * 3 / 2;
+ }
+
+ /* III. Check input length */
+ if (len > MBEDTLS_HMAC_DRBG_MAX_INPUT ||
+ total_entropy_len + len > MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT) {
+ return MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG;
+ }
+ }
+
+ memset(seed, 0, MBEDTLS_HMAC_DRBG_MAX_SEED_INPUT);
+
+ /* IV. Gather entropy_len bytes of entropy for the seed */
+ if ((ret = ctx->f_entropy(ctx->p_entropy,
+ seed, ctx->entropy_len)) != 0) {
+ return MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED;
+ }
+ seedlen += ctx->entropy_len;
+
+ /* For initial seeding, allow adding of nonce generated
+ * from the entropy source. See Sect 8.6.7 in SP800-90A. */
+ if (use_nonce) {
+ /* Note: We don't merge the two calls to f_entropy() in order
+ * to avoid requesting too much entropy from f_entropy()
+ * at once. Specifically, if the underlying digest is not
+ * SHA-1, 3 / 2 * entropy_len is at least 36 Bytes, which
+ * is larger than the maximum of 32 Bytes that our own
+ * entropy source implementation can emit in a single
+ * call in configurations disabling SHA-512. */
+ if ((ret = ctx->f_entropy(ctx->p_entropy,
+ seed + seedlen,
+ ctx->entropy_len / 2)) != 0) {
+ return MBEDTLS_ERR_HMAC_DRBG_ENTROPY_SOURCE_FAILED;
+ }
+
+ seedlen += ctx->entropy_len / 2;
+ }
+
+
+ /* 1. Concatenate entropy and additional data if any */
+ if (additional != NULL && len != 0) {
+ memcpy(seed + seedlen, additional, len);
+ seedlen += len;
+ }
+
+ /* 2. Update state */
+ if ((ret = mbedtls_hmac_drbg_update(ctx, seed, seedlen)) != 0) {
+ goto exit;
+ }
+
+ /* 3. Reset reseed_counter */
+ ctx->reseed_counter = 1;
+
+exit:
+ /* 4. Done */
+ mbedtls_platform_zeroize(seed, seedlen);
+ return ret;
+}
+
+/*
+ * HMAC_DRBG reseeding: 10.1.2.4 + 9.2
+ */
+int mbedtls_hmac_drbg_reseed(mbedtls_hmac_drbg_context *ctx,
+ const unsigned char *additional, size_t len)
+{
+ return hmac_drbg_reseed_core(ctx, additional, len, 0);
+}
+
+/*
+ * HMAC_DRBG initialisation (10.1.2.3 + 9.1)
+ *
+ * The nonce is not passed as a separate parameter but extracted
+ * from the entropy source as suggested in 8.6.7.
+ */
+int mbedtls_hmac_drbg_seed(mbedtls_hmac_drbg_context *ctx,
+ const mbedtls_md_info_t *md_info,
+ int (*f_entropy)(void *, unsigned char *, size_t),
+ void *p_entropy,
+ const unsigned char *custom,
+ size_t len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t md_size;
+
+ if ((ret = mbedtls_md_setup(&ctx->md_ctx, md_info, 1)) != 0) {
+ return ret;
+ }
+
+ /* The mutex is initialized iff the md context is set up. */
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_init(&ctx->mutex);
+#endif
+
+ md_size = mbedtls_md_get_size(md_info);
+
+ /*
+ * Set initial working state.
+ * Use the V memory location, which is currently all 0, to initialize the
+ * MD context with an all-zero key. Then set V to its initial value.
+ */
+ if ((ret = mbedtls_md_hmac_starts(&ctx->md_ctx, ctx->V, md_size)) != 0) {
+ return ret;
+ }
+ memset(ctx->V, 0x01, md_size);
+
+ ctx->f_entropy = f_entropy;
+ ctx->p_entropy = p_entropy;
+
+ if (ctx->entropy_len == 0) {
+ /*
+ * See SP800-57 5.6.1 (p. 65-66) for the security strength provided by
+ * each hash function, then according to SP800-90A rev1 10.1 table 2,
+ * min_entropy_len (in bits) is security_strength.
+ *
+ * (This also matches the sizes used in the NIST test vectors.)
+ */
+ ctx->entropy_len = md_size <= 20 ? 16 : /* 160-bits hash -> 128 bits */
+ md_size <= 28 ? 24 : /* 224-bits hash -> 192 bits */
+ 32; /* better (256+) -> 256 bits */
+ }
+
+ if ((ret = hmac_drbg_reseed_core(ctx, custom, len,
+ 1 /* add nonce */)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Set prediction resistance
+ */
+void mbedtls_hmac_drbg_set_prediction_resistance(mbedtls_hmac_drbg_context *ctx,
+ int resistance)
+{
+ ctx->prediction_resistance = resistance;
+}
+
+/*
+ * Set entropy length grabbed for seeding
+ */
+void mbedtls_hmac_drbg_set_entropy_len(mbedtls_hmac_drbg_context *ctx, size_t len)
+{
+ ctx->entropy_len = len;
+}
+
+/*
+ * Set reseed interval
+ */
+void mbedtls_hmac_drbg_set_reseed_interval(mbedtls_hmac_drbg_context *ctx, int interval)
+{
+ ctx->reseed_interval = interval;
+}
+
+/*
+ * HMAC_DRBG random function with optional additional data:
+ * 10.1.2.5 (arabic) + 9.3 (Roman)
+ */
+int mbedtls_hmac_drbg_random_with_add(void *p_rng,
+ unsigned char *output, size_t out_len,
+ const unsigned char *additional, size_t add_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_hmac_drbg_context *ctx = (mbedtls_hmac_drbg_context *) p_rng;
+ size_t md_len = mbedtls_md_get_size(ctx->md_ctx.md_info);
+ size_t left = out_len;
+ unsigned char *out = output;
+
+ /* II. Check request length */
+ if (out_len > MBEDTLS_HMAC_DRBG_MAX_REQUEST) {
+ return MBEDTLS_ERR_HMAC_DRBG_REQUEST_TOO_BIG;
+ }
+
+ /* III. Check input length */
+ if (add_len > MBEDTLS_HMAC_DRBG_MAX_INPUT) {
+ return MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG;
+ }
+
+ /* 1. (aka VII and IX) Check reseed counter and PR */
+ if (ctx->f_entropy != NULL && /* For no-reseeding instances */
+ (ctx->prediction_resistance == MBEDTLS_HMAC_DRBG_PR_ON ||
+ ctx->reseed_counter > ctx->reseed_interval)) {
+ if ((ret = mbedtls_hmac_drbg_reseed(ctx, additional, add_len)) != 0) {
+ return ret;
+ }
+
+ add_len = 0; /* VII.4 */
+ }
+
+ /* 2. Use additional data if any */
+ if (additional != NULL && add_len != 0) {
+ if ((ret = mbedtls_hmac_drbg_update(ctx,
+ additional, add_len)) != 0) {
+ goto exit;
+ }
+ }
+
+ /* 3, 4, 5. Generate bytes */
+ while (left != 0) {
+ size_t use_len = left > md_len ? md_len : left;
+
+ if ((ret = mbedtls_md_hmac_reset(&ctx->md_ctx)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_hmac_update(&ctx->md_ctx,
+ ctx->V, md_len)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_hmac_finish(&ctx->md_ctx, ctx->V)) != 0) {
+ goto exit;
+ }
+
+ memcpy(out, ctx->V, use_len);
+ out += use_len;
+ left -= use_len;
+ }
+
+ /* 6. Update */
+ if ((ret = mbedtls_hmac_drbg_update(ctx,
+ additional, add_len)) != 0) {
+ goto exit;
+ }
+
+ /* 7. Update reseed counter */
+ ctx->reseed_counter++;
+
+exit:
+ /* 8. Done */
+ return ret;
+}
+
+/*
+ * HMAC_DRBG random function
+ */
+int mbedtls_hmac_drbg_random(void *p_rng, unsigned char *output, size_t out_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_hmac_drbg_context *ctx = (mbedtls_hmac_drbg_context *) p_rng;
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ ret = mbedtls_hmac_drbg_random_with_add(ctx, output, out_len, NULL, 0);
+
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ return ret;
+}
+
+/*
+ * This function resets HMAC_DRBG context to the state immediately
+ * after initial call of mbedtls_hmac_drbg_init().
+ */
+void mbedtls_hmac_drbg_free(mbedtls_hmac_drbg_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ /* The mutex is initialized iff the md context is set up. */
+ if (ctx->md_ctx.md_info != NULL) {
+ mbedtls_mutex_free(&ctx->mutex);
+ }
+#endif
+ mbedtls_md_free(&ctx->md_ctx);
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_hmac_drbg_context));
+ ctx->reseed_interval = MBEDTLS_HMAC_DRBG_RESEED_INTERVAL;
+}
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_hmac_drbg_write_seed_file(mbedtls_hmac_drbg_context *ctx, const char *path)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ FILE *f;
+ unsigned char buf[MBEDTLS_HMAC_DRBG_MAX_INPUT];
+
+ if ((f = fopen(path, "wb")) == NULL) {
+ return MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ if ((ret = mbedtls_hmac_drbg_random(ctx, buf, sizeof(buf))) != 0) {
+ goto exit;
+ }
+
+ if (fwrite(buf, 1, sizeof(buf), f) != sizeof(buf)) {
+ ret = MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+ goto exit;
+ }
+
+ ret = 0;
+
+exit:
+ fclose(f);
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+
+ return ret;
+}
+
+int mbedtls_hmac_drbg_update_seed_file(mbedtls_hmac_drbg_context *ctx, const char *path)
+{
+ int ret = 0;
+ FILE *f = NULL;
+ size_t n;
+ unsigned char buf[MBEDTLS_HMAC_DRBG_MAX_INPUT];
+ unsigned char c;
+
+ if ((f = fopen(path, "rb")) == NULL) {
+ return MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ n = fread(buf, 1, sizeof(buf), f);
+ if (fread(&c, 1, 1, f) != 0) {
+ ret = MBEDTLS_ERR_HMAC_DRBG_INPUT_TOO_BIG;
+ goto exit;
+ }
+ if (n == 0 || ferror(f)) {
+ ret = MBEDTLS_ERR_HMAC_DRBG_FILE_IO_ERROR;
+ goto exit;
+ }
+ fclose(f);
+ f = NULL;
+
+ ret = mbedtls_hmac_drbg_update(ctx, buf, n);
+
+exit:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+ if (f != NULL) {
+ fclose(f);
+ }
+ if (ret != 0) {
+ return ret;
+ }
+ return mbedtls_hmac_drbg_write_seed_file(ctx, path);
+}
+#endif /* MBEDTLS_FS_IO */
+
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if !defined(MBEDTLS_MD_CAN_SHA1)
+/* Dummy checkup routine */
+int mbedtls_hmac_drbg_self_test(int verbose)
+{
+ (void) verbose;
+ return 0;
+}
+#else
+
+#define OUTPUT_LEN 80
+
+/* From a NIST PR=true test vector */
+static const unsigned char entropy_pr[] = {
+ 0xa0, 0xc9, 0xab, 0x58, 0xf1, 0xe2, 0xe5, 0xa4, 0xde, 0x3e, 0xbd, 0x4f,
+ 0xf7, 0x3e, 0x9c, 0x5b, 0x64, 0xef, 0xd8, 0xca, 0x02, 0x8c, 0xf8, 0x11,
+ 0x48, 0xa5, 0x84, 0xfe, 0x69, 0xab, 0x5a, 0xee, 0x42, 0xaa, 0x4d, 0x42,
+ 0x17, 0x60, 0x99, 0xd4, 0x5e, 0x13, 0x97, 0xdc, 0x40, 0x4d, 0x86, 0xa3,
+ 0x7b, 0xf5, 0x59, 0x54, 0x75, 0x69, 0x51, 0xe4
+};
+static const unsigned char result_pr[OUTPUT_LEN] = {
+ 0x9a, 0x00, 0xa2, 0xd0, 0x0e, 0xd5, 0x9b, 0xfe, 0x31, 0xec, 0xb1, 0x39,
+ 0x9b, 0x60, 0x81, 0x48, 0xd1, 0x96, 0x9d, 0x25, 0x0d, 0x3c, 0x1e, 0x94,
+ 0x10, 0x10, 0x98, 0x12, 0x93, 0x25, 0xca, 0xb8, 0xfc, 0xcc, 0x2d, 0x54,
+ 0x73, 0x19, 0x70, 0xc0, 0x10, 0x7a, 0xa4, 0x89, 0x25, 0x19, 0x95, 0x5e,
+ 0x4b, 0xc6, 0x00, 0x1d, 0x7f, 0x4e, 0x6a, 0x2b, 0xf8, 0xa3, 0x01, 0xab,
+ 0x46, 0x05, 0x5c, 0x09, 0xa6, 0x71, 0x88, 0xf1, 0xa7, 0x40, 0xee, 0xf3,
+ 0xe1, 0x5c, 0x02, 0x9b, 0x44, 0xaf, 0x03, 0x44
+};
+
+/* From a NIST PR=false test vector */
+static const unsigned char entropy_nopr[] = {
+ 0x79, 0x34, 0x9b, 0xbf, 0x7c, 0xdd, 0xa5, 0x79, 0x95, 0x57, 0x86, 0x66,
+ 0x21, 0xc9, 0x13, 0x83, 0x11, 0x46, 0x73, 0x3a, 0xbf, 0x8c, 0x35, 0xc8,
+ 0xc7, 0x21, 0x5b, 0x5b, 0x96, 0xc4, 0x8e, 0x9b, 0x33, 0x8c, 0x74, 0xe3,
+ 0xe9, 0x9d, 0xfe, 0xdf
+};
+static const unsigned char result_nopr[OUTPUT_LEN] = {
+ 0xc6, 0xa1, 0x6a, 0xb8, 0xd4, 0x20, 0x70, 0x6f, 0x0f, 0x34, 0xab, 0x7f,
+ 0xec, 0x5a, 0xdc, 0xa9, 0xd8, 0xca, 0x3a, 0x13, 0x3e, 0x15, 0x9c, 0xa6,
+ 0xac, 0x43, 0xc6, 0xf8, 0xa2, 0xbe, 0x22, 0x83, 0x4a, 0x4c, 0x0a, 0x0a,
+ 0xff, 0xb1, 0x0d, 0x71, 0x94, 0xf1, 0xc1, 0xa5, 0xcf, 0x73, 0x22, 0xec,
+ 0x1a, 0xe0, 0x96, 0x4e, 0xd4, 0xbf, 0x12, 0x27, 0x46, 0xe0, 0x87, 0xfd,
+ 0xb5, 0xb3, 0xe9, 0x1b, 0x34, 0x93, 0xd5, 0xbb, 0x98, 0xfa, 0xed, 0x49,
+ 0xe8, 0x5f, 0x13, 0x0f, 0xc8, 0xa4, 0x59, 0xb7
+};
+
+/* "Entropy" from buffer */
+static size_t test_offset;
+static int hmac_drbg_self_test_entropy(void *data,
+ unsigned char *buf, size_t len)
+{
+ const unsigned char *p = data;
+ memcpy(buf, p + test_offset, len);
+ test_offset += len;
+ return 0;
+}
+
+#define CHK(c) if ((c) != 0) \
+ { \
+ if (verbose != 0) \
+ mbedtls_printf("failed\n"); \
+ return 1; \
+ }
+
+/*
+ * Checkup routine for HMAC_DRBG with SHA-1
+ */
+int mbedtls_hmac_drbg_self_test(int verbose)
+{
+ mbedtls_hmac_drbg_context ctx;
+ unsigned char buf[OUTPUT_LEN];
+ const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(MBEDTLS_MD_SHA1);
+
+ mbedtls_hmac_drbg_init(&ctx);
+
+ /*
+ * PR = True
+ */
+ if (verbose != 0) {
+ mbedtls_printf(" HMAC_DRBG (PR = True) : ");
+ }
+
+ test_offset = 0;
+ CHK(mbedtls_hmac_drbg_seed(&ctx, md_info,
+ hmac_drbg_self_test_entropy, (void *) entropy_pr,
+ NULL, 0));
+ mbedtls_hmac_drbg_set_prediction_resistance(&ctx, MBEDTLS_HMAC_DRBG_PR_ON);
+ CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+ CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+ CHK(memcmp(buf, result_pr, OUTPUT_LEN));
+ mbedtls_hmac_drbg_free(&ctx);
+
+ mbedtls_hmac_drbg_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ /*
+ * PR = False
+ */
+ if (verbose != 0) {
+ mbedtls_printf(" HMAC_DRBG (PR = False) : ");
+ }
+
+ mbedtls_hmac_drbg_init(&ctx);
+
+ test_offset = 0;
+ CHK(mbedtls_hmac_drbg_seed(&ctx, md_info,
+ hmac_drbg_self_test_entropy, (void *) entropy_nopr,
+ NULL, 0));
+ CHK(mbedtls_hmac_drbg_reseed(&ctx, NULL, 0));
+ CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+ CHK(mbedtls_hmac_drbg_random(&ctx, buf, OUTPUT_LEN));
+ CHK(memcmp(buf, result_nopr, OUTPUT_LEN));
+ mbedtls_hmac_drbg_free(&ctx);
+
+ mbedtls_hmac_drbg_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_HMAC_DRBG_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/lmots.c b/tf-psa-crypto/drivers/builtin/src/lmots.c
new file mode 100644
index 0000000..c51cb41
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/lmots.c
@@ -0,0 +1,786 @@
+/*
+ * The LM-OTS one-time public-key signature scheme
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The following sources were referenced in the design of this implementation
+ * of the LM-OTS algorithm:
+ *
+ * [1] IETF RFC8554
+ * D. McGrew, M. Curcio, S.Fluhrer
+ * https://datatracker.ietf.org/doc/html/rfc8554
+ *
+ * [2] NIST Special Publication 800-208
+ * David A. Cooper et. al.
+ * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_LMS_C)
+
+#include <string.h>
+
+#include "lmots.h"
+
+#include "mbedtls/lms.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "psa_util_internal.h"
+
+#include "psa/crypto.h"
+
+/* Define a local translating function to save code size by not using too many
+ * arguments in each translating place. */
+static int local_err_translation(psa_status_t status)
+{
+ return psa_status_to_mbedtls(status, psa_to_lms_errors,
+ ARRAY_LENGTH(psa_to_lms_errors),
+ psa_generic_status_to_mbedtls);
+}
+#define PSA_TO_MBEDTLS_ERR(status) local_err_translation(status)
+
+#define PUBLIC_KEY_TYPE_OFFSET (0)
+#define PUBLIC_KEY_I_KEY_ID_OFFSET (PUBLIC_KEY_TYPE_OFFSET + \
+ MBEDTLS_LMOTS_TYPE_LEN)
+#define PUBLIC_KEY_Q_LEAF_ID_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \
+ MBEDTLS_LMOTS_I_KEY_ID_LEN)
+#define PUBLIC_KEY_KEY_HASH_OFFSET (PUBLIC_KEY_Q_LEAF_ID_OFFSET + \
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN)
+
+/* We only support parameter sets that use 8-bit digits, as it does not require
+ * translation logic between digits and bytes */
+#define W_WINTERNITZ_PARAMETER (8u)
+#define CHECKSUM_LEN (2)
+#define I_DIGIT_IDX_LEN (2)
+#define J_HASH_IDX_LEN (1)
+#define D_CONST_LEN (2)
+
+#define DIGIT_MAX_VALUE ((1u << W_WINTERNITZ_PARAMETER) - 1u)
+
+#define D_CONST_LEN (2)
+static const unsigned char D_PUBLIC_CONSTANT_BYTES[D_CONST_LEN] = { 0x80, 0x80 };
+static const unsigned char D_MESSAGE_CONSTANT_BYTES[D_CONST_LEN] = { 0x81, 0x81 };
+
+#if defined(MBEDTLS_TEST_HOOKS)
+int (*mbedtls_lmots_sign_private_key_invalidated_hook)(unsigned char *) = NULL;
+#endif /* defined(MBEDTLS_TEST_HOOKS) */
+
+/* Calculate the checksum digits that are appended to the end of the LMOTS digit
+ * string. See NIST SP800-208 section 3.1 or RFC8554 Algorithm 2 for details of
+ * the checksum algorithm.
+ *
+ * params The LMOTS parameter set, I and q values which
+ * describe the key being used.
+ *
+ * digest The digit string to create the digest from. As
+ * this does not contain a checksum, it is the same
+ * size as a hash output.
+ */
+static unsigned short lmots_checksum_calculate(const mbedtls_lmots_parameters_t *params,
+ const unsigned char *digest)
+{
+ size_t idx;
+ unsigned sum = 0;
+
+ for (idx = 0; idx < MBEDTLS_LMOTS_N_HASH_LEN(params->type); idx++) {
+ sum += DIGIT_MAX_VALUE - digest[idx];
+ }
+
+ return sum;
+}
+
+/* Create the string of digest digits (in the base determined by the Winternitz
+ * parameter with the checksum appended to the end (Q || cksm(Q)). See NIST
+ * SP800-208 section 3.1 or RFC8554 Algorithm 3 step 5 (also used in Algorithm
+ * 4b step 3) for details.
+ *
+ * params The LMOTS parameter set, I and q values which
+ * describe the key being used.
+ *
+ * msg The message that will be hashed to create the
+ * digest.
+ *
+ * msg_size The size of the message.
+ *
+ * C_random_value The random value that will be combined with the
+ * message digest. This is always the same size as a
+ * hash output for whichever hash algorithm is
+ * determined by the parameter set.
+ *
+ * output An output containing the digit string (+
+ * checksum) of length P digits (in the case of
+ * MBEDTLS_LMOTS_SHA256_N32_W8, this means it is of
+ * size P bytes).
+ */
+static int create_digit_array_with_checksum(const mbedtls_lmots_parameters_t *params,
+ const unsigned char *msg,
+ size_t msg_len,
+ const unsigned char *C_random_value,
+ unsigned char *out)
+{
+ psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ size_t output_hash_len;
+ unsigned short checksum;
+
+ status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, params->I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, params->q_leaf_identifier,
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, D_MESSAGE_CONSTANT_BYTES, D_CONST_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, C_random_value,
+ MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(params->type));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, msg, msg_len);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_finish(&op, out,
+ MBEDTLS_LMOTS_N_HASH_LEN(params->type),
+ &output_hash_len);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ checksum = lmots_checksum_calculate(params, out);
+ MBEDTLS_PUT_UINT16_BE(checksum, out, MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+
+exit:
+ psa_hash_abort(&op);
+
+ return PSA_TO_MBEDTLS_ERR(status);
+}
+
+/* Hash each element of the string of digits (+ checksum), producing a hash
+ * output for each element. This is used in several places (by varying the
+ * hash_idx_min/max_values) in order to calculate a public key from a private
+ * key (RFC8554 Algorithm 1 step 4), in order to sign a message (RFC8554
+ * Algorithm 3 step 5), and to calculate a public key candidate from a
+ * signature and message (RFC8554 Algorithm 4b step 3).
+ *
+ * params The LMOTS parameter set, I and q values which
+ * describe the key being used.
+ *
+ * x_digit_array The array of digits (of size P, 34 in the case of
+ * MBEDTLS_LMOTS_SHA256_N32_W8).
+ *
+ * hash_idx_min_values An array of the starting values of the j iterator
+ * for each of the members of the digit array. If
+ * this value in NULL, then all iterators will start
+ * at 0.
+ *
+ * hash_idx_max_values An array of the upper bound values of the j
+ * iterator for each of the members of the digit
+ * array. If this value in NULL, then iterator is
+ * bounded to be less than 2^w - 1 (255 in the case
+ * of MBEDTLS_LMOTS_SHA256_N32_W8)
+ *
+ * output An array containing a hash output for each member
+ * of the digit string P. In the case of
+ * MBEDTLS_LMOTS_SHA256_N32_W8, this is of size 32 *
+ * 34.
+ */
+static int hash_digit_array(const mbedtls_lmots_parameters_t *params,
+ const unsigned char *x_digit_array,
+ const unsigned char *hash_idx_min_values,
+ const unsigned char *hash_idx_max_values,
+ unsigned char *output)
+{
+ unsigned int i_digit_idx;
+ unsigned char i_digit_idx_bytes[I_DIGIT_IDX_LEN];
+ unsigned int j_hash_idx;
+ unsigned char j_hash_idx_bytes[J_HASH_IDX_LEN];
+ unsigned int j_hash_idx_min;
+ unsigned int j_hash_idx_max;
+ psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ size_t output_hash_len;
+ unsigned char tmp_hash[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+
+ for (i_digit_idx = 0;
+ i_digit_idx < MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(params->type);
+ i_digit_idx++) {
+
+ memcpy(tmp_hash,
+ &x_digit_array[i_digit_idx * MBEDTLS_LMOTS_N_HASH_LEN(params->type)],
+ MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+
+ j_hash_idx_min = hash_idx_min_values != NULL ?
+ hash_idx_min_values[i_digit_idx] : 0;
+ j_hash_idx_max = hash_idx_max_values != NULL ?
+ hash_idx_max_values[i_digit_idx] : DIGIT_MAX_VALUE;
+
+ for (j_hash_idx = j_hash_idx_min;
+ j_hash_idx < j_hash_idx_max;
+ j_hash_idx++) {
+ status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op,
+ params->I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op,
+ params->q_leaf_identifier,
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ MBEDTLS_PUT_UINT16_BE(i_digit_idx, i_digit_idx_bytes, 0);
+ status = psa_hash_update(&op, i_digit_idx_bytes, I_DIGIT_IDX_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ j_hash_idx_bytes[0] = (uint8_t) j_hash_idx;
+ status = psa_hash_update(&op, j_hash_idx_bytes, J_HASH_IDX_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, tmp_hash,
+ MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_finish(&op, tmp_hash, sizeof(tmp_hash),
+ &output_hash_len);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ psa_hash_abort(&op);
+ }
+
+ memcpy(&output[i_digit_idx * MBEDTLS_LMOTS_N_HASH_LEN(params->type)],
+ tmp_hash, MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+ }
+
+exit:
+ psa_hash_abort(&op);
+ mbedtls_platform_zeroize(tmp_hash, sizeof(tmp_hash));
+
+ return PSA_TO_MBEDTLS_ERR(status);
+}
+
+/* Combine the hashes of the digit array into a public key. This is used in
+ * in order to calculate a public key from a private key (RFC8554 Algorithm 1
+ * step 4), and to calculate a public key candidate from a signature and message
+ * (RFC8554 Algorithm 4b step 3).
+ *
+ * params The LMOTS parameter set, I and q values which describe
+ * the key being used.
+ * y_hashed_digits The array of hashes, one hash for each digit of the
+ * symbol array (which is of size P, 34 in the case of
+ * MBEDTLS_LMOTS_SHA256_N32_W8)
+ *
+ * pub_key The output public key (or candidate public key in
+ * case this is being run as part of signature
+ * verification), in the form of a hash output.
+ */
+static int public_key_from_hashed_digit_array(const mbedtls_lmots_parameters_t *params,
+ const unsigned char *y_hashed_digits,
+ unsigned char *pub_key)
+{
+ psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ size_t output_hash_len;
+
+ status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op,
+ params->I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, params->q_leaf_identifier,
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, D_PUBLIC_CONSTANT_BYTES, D_CONST_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, y_hashed_digits,
+ MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(params->type) *
+ MBEDTLS_LMOTS_N_HASH_LEN(params->type));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_finish(&op, pub_key,
+ MBEDTLS_LMOTS_N_HASH_LEN(params->type),
+ &output_hash_len);
+ if (status != PSA_SUCCESS) {
+
+exit:
+ psa_hash_abort(&op);
+ }
+
+ return PSA_TO_MBEDTLS_ERR(status);
+}
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_lms_error_from_psa(psa_status_t status)
+{
+ switch (status) {
+ case PSA_SUCCESS:
+ return 0;
+ case PSA_ERROR_HARDWARE_FAILURE:
+ return MBEDTLS_ERR_PLATFORM_HW_ACCEL_FAILED;
+ case PSA_ERROR_NOT_SUPPORTED:
+ return MBEDTLS_ERR_PLATFORM_FEATURE_UNSUPPORTED;
+ case PSA_ERROR_BUFFER_TOO_SMALL:
+ return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+ case PSA_ERROR_INVALID_ARGUMENT:
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ default:
+ return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
+ }
+}
+#endif /* !MBEDTLS_DEPRECATED_REMOVED */
+
+void mbedtls_lmots_public_init(mbedtls_lmots_public_t *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lmots_public_free(mbedtls_lmots_public_t *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(*ctx));
+}
+
+int mbedtls_lmots_import_public_key(mbedtls_lmots_public_t *ctx,
+ const unsigned char *key, size_t key_len)
+{
+ if (key_len < MBEDTLS_LMOTS_SIG_TYPE_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ ctx->params.type = (mbedtls_lmots_algorithm_type_t)
+ MBEDTLS_GET_UINT32_BE(key, MBEDTLS_LMOTS_SIG_TYPE_OFFSET);
+
+ if (key_len != MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type)) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ memcpy(ctx->params.I_key_identifier,
+ key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+
+ memcpy(ctx->params.q_leaf_identifier,
+ key + PUBLIC_KEY_Q_LEAF_ID_OFFSET,
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+
+ memcpy(ctx->public_key,
+ key + PUBLIC_KEY_KEY_HASH_OFFSET,
+ MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+
+ ctx->have_public_key = 1;
+
+ return 0;
+}
+
+int mbedtls_lmots_export_public_key(const mbedtls_lmots_public_t *ctx,
+ unsigned char *key, size_t key_size,
+ size_t *key_len)
+{
+ if (key_size < MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type)) {
+ return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+ }
+
+ if (!ctx->have_public_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(ctx->params.type, key, MBEDTLS_LMOTS_SIG_TYPE_OFFSET);
+
+ memcpy(key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+ ctx->params.I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+
+ memcpy(key + PUBLIC_KEY_Q_LEAF_ID_OFFSET,
+ ctx->params.q_leaf_identifier,
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+
+ memcpy(key + PUBLIC_KEY_KEY_HASH_OFFSET, ctx->public_key,
+ MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+
+ if (key_len != NULL) {
+ *key_len = MBEDTLS_LMOTS_PUBLIC_KEY_LEN(ctx->params.type);
+ }
+
+ return 0;
+}
+
+int mbedtls_lmots_calculate_public_key_candidate(const mbedtls_lmots_parameters_t *params,
+ const unsigned char *msg,
+ size_t msg_size,
+ const unsigned char *sig,
+ size_t sig_size,
+ unsigned char *out,
+ size_t out_size,
+ size_t *out_len)
+{
+ unsigned char tmp_digit_array[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX];
+ unsigned char y_hashed_digits[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (msg == NULL && msg_size != 0) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (sig_size != MBEDTLS_LMOTS_SIG_LEN(params->type) ||
+ out_size < MBEDTLS_LMOTS_N_HASH_LEN(params->type)) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ ret = create_digit_array_with_checksum(params, msg, msg_size,
+ sig + MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET,
+ tmp_digit_array);
+ if (ret) {
+ return ret;
+ }
+
+ ret = hash_digit_array(params,
+ sig + MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(params->type),
+ tmp_digit_array, NULL, (unsigned char *) y_hashed_digits);
+ if (ret) {
+ return ret;
+ }
+
+ ret = public_key_from_hashed_digit_array(params,
+ (unsigned char *) y_hashed_digits,
+ out);
+ if (ret) {
+ return ret;
+ }
+
+ if (out_len != NULL) {
+ *out_len = MBEDTLS_LMOTS_N_HASH_LEN(params->type);
+ }
+
+ return 0;
+}
+
+int mbedtls_lmots_verify(const mbedtls_lmots_public_t *ctx,
+ const unsigned char *msg, size_t msg_size,
+ const unsigned char *sig, size_t sig_size)
+{
+ unsigned char Kc_public_key_candidate[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (msg == NULL && msg_size != 0) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (!ctx->have_public_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (ctx->params.type != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (sig_size < MBEDTLS_LMOTS_SIG_TYPE_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ if (MBEDTLS_GET_UINT32_BE(sig, MBEDTLS_LMOTS_SIG_TYPE_OFFSET) != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ ret = mbedtls_lmots_calculate_public_key_candidate(&ctx->params,
+ msg, msg_size, sig, sig_size,
+ Kc_public_key_candidate,
+ MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type),
+ NULL);
+ if (ret) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ if (memcmp(&Kc_public_key_candidate, ctx->public_key,
+ sizeof(ctx->public_key))) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_LMS_PRIVATE)
+
+void mbedtls_lmots_private_init(mbedtls_lmots_private_t *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lmots_private_free(mbedtls_lmots_private_t *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx,
+ sizeof(*ctx));
+}
+
+int mbedtls_lmots_generate_private_key(mbedtls_lmots_private_t *ctx,
+ mbedtls_lmots_algorithm_type_t type,
+ const unsigned char I_key_identifier[MBEDTLS_LMOTS_I_KEY_ID_LEN],
+ uint32_t q_leaf_identifier,
+ const unsigned char *seed,
+ size_t seed_size)
+{
+ psa_hash_operation_t op = PSA_HASH_OPERATION_INIT;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ size_t output_hash_len;
+ unsigned int i_digit_idx;
+ unsigned char i_digit_idx_bytes[2];
+ unsigned char const_bytes[1] = { 0xFF };
+
+ if (ctx->have_private_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (type != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ ctx->params.type = type;
+
+ memcpy(ctx->params.I_key_identifier,
+ I_key_identifier,
+ sizeof(ctx->params.I_key_identifier));
+
+ MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, ctx->params.q_leaf_identifier, 0);
+
+ for (i_digit_idx = 0;
+ i_digit_idx < MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(ctx->params.type);
+ i_digit_idx++) {
+ status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op,
+ ctx->params.I_key_identifier,
+ sizeof(ctx->params.I_key_identifier));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op,
+ ctx->params.q_leaf_identifier,
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ MBEDTLS_PUT_UINT16_BE(i_digit_idx, i_digit_idx_bytes, 0);
+ status = psa_hash_update(&op, i_digit_idx_bytes, I_DIGIT_IDX_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, const_bytes, sizeof(const_bytes));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, seed, seed_size);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_finish(&op,
+ ctx->private_key[i_digit_idx],
+ MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type),
+ &output_hash_len);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ psa_hash_abort(&op);
+ }
+
+ ctx->have_private_key = 1;
+
+exit:
+ psa_hash_abort(&op);
+
+ return PSA_TO_MBEDTLS_ERR(status);
+}
+
+int mbedtls_lmots_calculate_public_key(mbedtls_lmots_public_t *ctx,
+ const mbedtls_lmots_private_t *priv_ctx)
+{
+ unsigned char y_hashed_digits[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Check that a private key is loaded */
+ if (!priv_ctx->have_private_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ ret = hash_digit_array(&priv_ctx->params,
+ (unsigned char *) priv_ctx->private_key, NULL,
+ NULL, (unsigned char *) y_hashed_digits);
+ if (ret) {
+ goto exit;
+ }
+
+ ret = public_key_from_hashed_digit_array(&priv_ctx->params,
+ (unsigned char *) y_hashed_digits,
+ ctx->public_key);
+ if (ret) {
+ goto exit;
+ }
+
+ memcpy(&ctx->params, &priv_ctx->params,
+ sizeof(ctx->params));
+
+ ctx->have_public_key = 1;
+
+exit:
+ mbedtls_platform_zeroize(y_hashed_digits, sizeof(y_hashed_digits));
+
+ return ret;
+}
+
+int mbedtls_lmots_sign(mbedtls_lmots_private_t *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng, const unsigned char *msg, size_t msg_size,
+ unsigned char *sig, size_t sig_size, size_t *sig_len)
+{
+ unsigned char tmp_digit_array[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX];
+ /* Create a temporary buffer to prepare the signature in. This allows us to
+ * finish creating a signature (ensuring the process doesn't fail), and then
+ * erase the private key **before** writing any data into the sig parameter
+ * buffer. If data were directly written into the sig buffer, it might leak
+ * a partial signature on failure, which effectively compromises the private
+ * key.
+ */
+ unsigned char tmp_sig[MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT_MAX][MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+ unsigned char tmp_c_random[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (msg == NULL && msg_size != 0) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (sig_size < MBEDTLS_LMOTS_SIG_LEN(ctx->params.type)) {
+ return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+ }
+
+ /* Check that a private key is loaded */
+ if (!ctx->have_private_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ ret = f_rng(p_rng, tmp_c_random,
+ MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+ if (ret) {
+ return ret;
+ }
+
+ ret = create_digit_array_with_checksum(&ctx->params,
+ msg, msg_size,
+ tmp_c_random,
+ tmp_digit_array);
+ if (ret) {
+ goto exit;
+ }
+
+ ret = hash_digit_array(&ctx->params, (unsigned char *) ctx->private_key,
+ NULL, tmp_digit_array, (unsigned char *) tmp_sig);
+ if (ret) {
+ goto exit;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(ctx->params.type, sig, MBEDTLS_LMOTS_SIG_TYPE_OFFSET);
+
+ /* Test hook to check if sig is being written to before we invalidate the
+ * private key.
+ */
+#if defined(MBEDTLS_TEST_HOOKS)
+ if (mbedtls_lmots_sign_private_key_invalidated_hook != NULL) {
+ ret = (*mbedtls_lmots_sign_private_key_invalidated_hook)(sig);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+#endif /* defined(MBEDTLS_TEST_HOOKS) */
+
+ /* We've got a valid signature now, so it's time to make sure the private
+ * key can't be reused.
+ */
+ ctx->have_private_key = 0;
+ mbedtls_platform_zeroize(ctx->private_key,
+ sizeof(ctx->private_key));
+
+ memcpy(sig + MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET, tmp_c_random,
+ MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(ctx->params.type));
+
+ memcpy(sig + MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(ctx->params.type), tmp_sig,
+ MBEDTLS_LMOTS_P_SIG_DIGIT_COUNT(ctx->params.type)
+ * MBEDTLS_LMOTS_N_HASH_LEN(ctx->params.type));
+
+ if (sig_len != NULL) {
+ *sig_len = MBEDTLS_LMOTS_SIG_LEN(ctx->params.type);
+ }
+
+ ret = 0;
+
+exit:
+ mbedtls_platform_zeroize(tmp_digit_array, sizeof(tmp_digit_array));
+ mbedtls_platform_zeroize(tmp_sig, sizeof(tmp_sig));
+
+ return ret;
+}
+
+#endif /* defined(MBEDTLS_LMS_PRIVATE) */
+#endif /* defined(MBEDTLS_LMS_C) */
diff --git a/tf-psa-crypto/drivers/builtin/src/lmots.h b/tf-psa-crypto/drivers/builtin/src/lmots.h
new file mode 100644
index 0000000..cf92d32
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/lmots.h
@@ -0,0 +1,288 @@
+/**
+ * \file lmots.h
+ *
+ * \brief This file provides an API for the LM-OTS post-quantum-safe one-time
+ * public-key signature scheme as defined in RFC8554 and NIST.SP.200-208.
+ * This implementation currently only supports a single parameter set
+ * MBEDTLS_LMOTS_SHA256_N32_W8 in order to reduce complexity.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_LMOTS_H
+#define MBEDTLS_LMOTS_H
+
+#include "mbedtls/build_info.h"
+
+#include "psa/crypto.h"
+
+#include "mbedtls/lms.h"
+
+#include <stdint.h>
+#include <stddef.h>
+
+
+#define MBEDTLS_LMOTS_PUBLIC_KEY_LEN(type) (MBEDTLS_LMOTS_TYPE_LEN + \
+ MBEDTLS_LMOTS_I_KEY_ID_LEN + \
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN + \
+ MBEDTLS_LMOTS_N_HASH_LEN(type))
+
+#define MBEDTLS_LMOTS_SIG_TYPE_OFFSET (0)
+#define MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET (MBEDTLS_LMOTS_SIG_TYPE_OFFSET + \
+ MBEDTLS_LMOTS_TYPE_LEN)
+#define MBEDTLS_LMOTS_SIG_SIGNATURE_OFFSET(type) (MBEDTLS_LMOTS_SIG_C_RANDOM_OFFSET + \
+ MBEDTLS_LMOTS_C_RANDOM_VALUE_LEN(type))
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+#if defined(MBEDTLS_TEST_HOOKS)
+extern int (*mbedtls_lmots_sign_private_key_invalidated_hook)(unsigned char *);
+#endif /* defined(MBEDTLS_TEST_HOOKS) */
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+/**
+ * \brief This function converts a \ref psa_status_t to a
+ * low-level LMS error code.
+ *
+ * \param status The psa_status_t to convert
+ *
+ * \return The corresponding LMS error code.
+ */
+int MBEDTLS_DEPRECATED mbedtls_lms_error_from_psa(psa_status_t status);
+#endif
+
+/**
+ * \brief This function initializes a public LMOTS context
+ *
+ * \param ctx The uninitialized LMOTS context that will then be
+ * initialized.
+ */
+void mbedtls_lmots_public_init(mbedtls_lmots_public_t *ctx);
+
+/**
+ * \brief This function uninitializes a public LMOTS context
+ *
+ * \param ctx The initialized LMOTS context that will then be
+ * uninitialized.
+ */
+void mbedtls_lmots_public_free(mbedtls_lmots_public_t *ctx);
+
+/**
+ * \brief This function imports an LMOTS public key into a
+ * LMOTS context.
+ *
+ * \note Before this function is called, the context must
+ * have been initialized.
+ *
+ * \note See IETF RFC8554 for details of the encoding of
+ * this public key.
+ *
+ * \param ctx The initialized LMOTS context store the key in.
+ * \param key The buffer from which the key will be read.
+ * #MBEDTLS_LMOTS_PUBLIC_KEY_LEN bytes will be read
+ * from this.
+ *
+ * \return \c 0 on success.
+ * \return A non-zero error code on failure.
+ */
+int mbedtls_lmots_import_public_key(mbedtls_lmots_public_t *ctx,
+ const unsigned char *key, size_t key_size);
+
+/**
+ * \brief This function exports an LMOTS public key from a
+ * LMOTS context that already contains a public key.
+ *
+ * \note Before this function is called, the context must
+ * have been initialized and the context must contain
+ * a public key.
+ *
+ * \note See IETF RFC8554 for details of the encoding of
+ * this public key.
+ *
+ * \param ctx The initialized LMOTS context that contains the
+ * public key.
+ * \param key The buffer into which the key will be output. Must
+ * be at least #MBEDTLS_LMOTS_PUBLIC_KEY_LEN in size.
+ *
+ * \return \c 0 on success.
+ * \return A non-zero error code on failure.
+ */
+int mbedtls_lmots_export_public_key(const mbedtls_lmots_public_t *ctx,
+ unsigned char *key, size_t key_size,
+ size_t *key_len);
+
+/**
+ * \brief This function creates a candidate public key from
+ * an LMOTS signature. This can then be compared to
+ * the real public key to determine the validity of
+ * the signature.
+ *
+ * \note This function is exposed publicly to be used in LMS
+ * signature verification, it is expected that
+ * mbedtls_lmots_verify will be used for LMOTS
+ * signature verification.
+ *
+ * \param params The LMOTS parameter set, q and I values as an
+ * mbedtls_lmots_parameters_t struct.
+ * \param msg The buffer from which the message will be read.
+ * \param msg_size The size of the message that will be read.
+ * \param sig The buffer from which the signature will be read.
+ * #MBEDTLS_LMOTS_SIG_LEN bytes will be read from
+ * this.
+ * \param out The buffer where the candidate public key will be
+ * stored. Must be at least #MBEDTLS_LMOTS_N_HASH_LEN
+ * bytes in size.
+ *
+ * \return \c 0 on success.
+ * \return A non-zero error code on failure.
+ */
+int mbedtls_lmots_calculate_public_key_candidate(const mbedtls_lmots_parameters_t *params,
+ const unsigned char *msg,
+ size_t msg_size,
+ const unsigned char *sig,
+ size_t sig_size,
+ unsigned char *out,
+ size_t out_size,
+ size_t *out_len);
+
+/**
+ * \brief This function verifies a LMOTS signature, using a
+ * LMOTS context that contains a public key.
+ *
+ * \warning This function is **not intended for use in
+ * production**, due to as-yet unsolved problems with
+ * handling stateful keys. The API for this function
+ * may change considerably in future versions.
+ *
+ * \note Before this function is called, the context must
+ * have been initialized and must contain a public key
+ * (either by import or calculation from a private
+ * key).
+ *
+ * \param ctx The initialized LMOTS context from which the public
+ * key will be read.
+ * \param msg The buffer from which the message will be read.
+ * \param msg_size The size of the message that will be read.
+ * \param sig The buf from which the signature will be read.
+ * #MBEDTLS_LMOTS_SIG_LEN bytes will be read from
+ * this.
+ *
+ * \return \c 0 on successful verification.
+ * \return A non-zero error code on failure.
+ */
+int mbedtls_lmots_verify(const mbedtls_lmots_public_t *ctx,
+ const unsigned char *msg,
+ size_t msg_size, const unsigned char *sig,
+ size_t sig_size);
+
+#if defined(MBEDTLS_LMS_PRIVATE)
+
+/**
+ * \brief This function initializes a private LMOTS context
+ *
+ * \param ctx The uninitialized LMOTS context that will then be
+ * initialized.
+ */
+void mbedtls_lmots_private_init(mbedtls_lmots_private_t *ctx);
+
+/**
+ * \brief This function uninitializes a private LMOTS context
+ *
+ * \param ctx The initialized LMOTS context that will then be
+ * uninitialized.
+ */
+void mbedtls_lmots_private_free(mbedtls_lmots_private_t *ctx);
+
+/**
+ * \brief This function calculates an LMOTS private key, and
+ * stores in into an LMOTS context.
+ *
+ * \warning This function is **not intended for use in
+ * production**, due to as-yet unsolved problems with
+ * handling stateful keys. The API for this function
+ * may change considerably in future versions.
+ *
+ * \note The seed must have at least 256 bits of entropy.
+ *
+ * \param ctx The initialized LMOTS context to generate the key
+ * into.
+ * \param I_key_identifier The key identifier of the key, as a 16-byte string.
+ * \param q_leaf_identifier The leaf identifier of key. If this LMOTS key is
+ * not being used as part of an LMS key, this should
+ * be set to 0.
+ * \param seed The seed used to deterministically generate the
+ * key.
+ * \param seed_size The length of the seed.
+ *
+ * \return \c 0 on success.
+ * \return A non-zero error code on failure.
+ */
+int mbedtls_lmots_generate_private_key(mbedtls_lmots_private_t *ctx,
+ mbedtls_lmots_algorithm_type_t type,
+ const unsigned char I_key_identifier[MBEDTLS_LMOTS_I_KEY_ID_LEN],
+ uint32_t q_leaf_identifier,
+ const unsigned char *seed,
+ size_t seed_size);
+
+/**
+ * \brief This function generates an LMOTS public key from a
+ * LMOTS context that already contains a private key.
+ *
+ * \note Before this function is called, the context must
+ * have been initialized and the context must contain
+ * a private key.
+ *
+ * \param ctx The initialized LMOTS context to generate the key
+ * from and store it into.
+ *
+ * \return \c 0 on success.
+ * \return A non-zero error code on failure.
+ */
+int mbedtls_lmots_calculate_public_key(mbedtls_lmots_public_t *ctx,
+ const mbedtls_lmots_private_t *priv_ctx);
+
+/**
+ * \brief This function creates a LMOTS signature, using a
+ * LMOTS context that contains a private key.
+ *
+ * \note Before this function is called, the context must
+ * have been initialized and must contain a private
+ * key.
+ *
+ * \note LMOTS private keys can only be used once, otherwise
+ * attackers may be able to create forged signatures.
+ * If the signing operation is successful, the private
+ * key in the context will be erased, and no further
+ * signing will be possible until another private key
+ * is loaded
+ *
+ * \param ctx The initialized LMOTS context from which the
+ * private key will be read.
+ * \param f_rng The RNG function to be used for signature
+ * generation.
+ * \param p_rng The RNG context to be passed to f_rng
+ * \param msg The buffer from which the message will be read.
+ * \param msg_size The size of the message that will be read.
+ * \param sig The buf into which the signature will be stored.
+ * Must be at least #MBEDTLS_LMOTS_SIG_LEN in size.
+ *
+ * \return \c 0 on success.
+ * \return A non-zero error code on failure.
+ */
+int mbedtls_lmots_sign(mbedtls_lmots_private_t *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng, const unsigned char *msg, size_t msg_size,
+ unsigned char *sig, size_t sig_size, size_t *sig_len);
+
+#endif /* defined(MBEDTLS_LMS_PRIVATE) */
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_LMOTS_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/lms.c b/tf-psa-crypto/drivers/builtin/src/lms.c
new file mode 100644
index 0000000..7f7bec0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/lms.c
@@ -0,0 +1,769 @@
+/*
+ * The LMS stateful-hash public-key signature scheme
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The following sources were referenced in the design of this implementation
+ * of the LMS algorithm:
+ *
+ * [1] IETF RFC8554
+ * D. McGrew, M. Curcio, S.Fluhrer
+ * https://datatracker.ietf.org/doc/html/rfc8554
+ *
+ * [2] NIST Special Publication 800-208
+ * David A. Cooper et. al.
+ * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-208.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_LMS_C)
+
+#include <string.h>
+
+#include "lmots.h"
+
+#include "psa/crypto.h"
+#include "psa_util_internal.h"
+#include "mbedtls/lms.h"
+#include "mbedtls/error.h"
+#include "mbedtls/platform_util.h"
+
+#include "mbedtls/platform.h"
+
+/* Define a local translating function to save code size by not using too many
+ * arguments in each translating place. */
+static int local_err_translation(psa_status_t status)
+{
+ return psa_status_to_mbedtls(status, psa_to_lms_errors,
+ ARRAY_LENGTH(psa_to_lms_errors),
+ psa_generic_status_to_mbedtls);
+}
+#define PSA_TO_MBEDTLS_ERR(status) local_err_translation(status)
+
+#define SIG_Q_LEAF_ID_OFFSET (0)
+#define SIG_OTS_SIG_OFFSET (SIG_Q_LEAF_ID_OFFSET + \
+ MBEDTLS_LMOTS_Q_LEAF_ID_LEN)
+#define SIG_TYPE_OFFSET(otstype) (SIG_OTS_SIG_OFFSET + \
+ MBEDTLS_LMOTS_SIG_LEN(otstype))
+#define SIG_PATH_OFFSET(otstype) (SIG_TYPE_OFFSET(otstype) + \
+ MBEDTLS_LMS_TYPE_LEN)
+
+#define PUBLIC_KEY_TYPE_OFFSET (0)
+#define PUBLIC_KEY_OTSTYPE_OFFSET (PUBLIC_KEY_TYPE_OFFSET + \
+ MBEDTLS_LMS_TYPE_LEN)
+#define PUBLIC_KEY_I_KEY_ID_OFFSET (PUBLIC_KEY_OTSTYPE_OFFSET + \
+ MBEDTLS_LMOTS_TYPE_LEN)
+#define PUBLIC_KEY_ROOT_NODE_OFFSET (PUBLIC_KEY_I_KEY_ID_OFFSET + \
+ MBEDTLS_LMOTS_I_KEY_ID_LEN)
+
+
+/* Currently only support H=10 */
+#define H_TREE_HEIGHT_MAX 10
+#define MERKLE_TREE_NODE_AM(type) ((size_t) 1 << (MBEDTLS_LMS_H_TREE_HEIGHT(type) + 1u))
+#define MERKLE_TREE_LEAF_NODE_AM(type) ((size_t) 1 << MBEDTLS_LMS_H_TREE_HEIGHT(type))
+#define MERKLE_TREE_INTERNAL_NODE_AM(type) ((unsigned int) \
+ (1u << MBEDTLS_LMS_H_TREE_HEIGHT(type)))
+
+#define D_CONST_LEN (2)
+static const unsigned char D_LEAF_CONSTANT_BYTES[D_CONST_LEN] = { 0x82, 0x82 };
+static const unsigned char D_INTR_CONSTANT_BYTES[D_CONST_LEN] = { 0x83, 0x83 };
+
+
+/* Calculate the value of a leaf node of the Merkle tree (which is a hash of a
+ * public key and some other parameters like the leaf index). This function
+ * implements RFC8554 section 5.3, in the case where r >= 2^h.
+ *
+ * params The LMS parameter set, the underlying LMOTS
+ * parameter set, and I value which describe the key
+ * being used.
+ *
+ * pub_key The public key of the private whose index
+ * corresponds to the index of this leaf node. This
+ * is a hash output.
+ *
+ * r_node_idx The index of this node in the Merkle tree. Note
+ * that the root node of the Merkle tree is
+ * 1-indexed.
+ *
+ * out The output node value, which is a hash output.
+ */
+static int create_merkle_leaf_value(const mbedtls_lms_parameters_t *params,
+ unsigned char *pub_key,
+ unsigned int r_node_idx,
+ unsigned char *out)
+{
+ psa_hash_operation_t op;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ size_t output_hash_len;
+ unsigned char r_node_idx_bytes[4];
+
+ op = psa_hash_operation_init();
+ status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, params->I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0);
+ status = psa_hash_update(&op, r_node_idx_bytes, 4);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, D_LEAF_CONSTANT_BYTES, D_CONST_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, pub_key,
+ MBEDTLS_LMOTS_N_HASH_LEN(params->otstype));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type),
+ &output_hash_len);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+exit:
+ psa_hash_abort(&op);
+
+ return PSA_TO_MBEDTLS_ERR(status);
+}
+
+/* Calculate the value of an internal node of the Merkle tree (which is a hash
+ * of a public key and some other parameters like the node index). This function
+ * implements RFC8554 section 5.3, in the case where r < 2^h.
+ *
+ * params The LMS parameter set, the underlying LMOTS
+ * parameter set, and I value which describe the key
+ * being used.
+ *
+ * left_node The value of the child of this node which is on
+ * the left-hand side. As with all nodes on the
+ * Merkle tree, this is a hash output.
+ *
+ * right_node The value of the child of this node which is on
+ * the right-hand side. As with all nodes on the
+ * Merkle tree, this is a hash output.
+ *
+ * r_node_idx The index of this node in the Merkle tree. Note
+ * that the root node of the Merkle tree is
+ * 1-indexed.
+ *
+ * out The output node value, which is a hash output.
+ */
+static int create_merkle_internal_value(const mbedtls_lms_parameters_t *params,
+ const unsigned char *left_node,
+ const unsigned char *right_node,
+ unsigned int r_node_idx,
+ unsigned char *out)
+{
+ psa_hash_operation_t op;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ size_t output_hash_len;
+ unsigned char r_node_idx_bytes[4];
+
+ op = psa_hash_operation_init();
+ status = psa_hash_setup(&op, PSA_ALG_SHA_256);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, params->I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(r_node_idx, r_node_idx_bytes, 0);
+ status = psa_hash_update(&op, r_node_idx_bytes, 4);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, D_INTR_CONSTANT_BYTES, D_CONST_LEN);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, left_node,
+ MBEDTLS_LMS_M_NODE_BYTES(params->type));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_update(&op, right_node,
+ MBEDTLS_LMS_M_NODE_BYTES(params->type));
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+ status = psa_hash_finish(&op, out, MBEDTLS_LMS_M_NODE_BYTES(params->type),
+ &output_hash_len);
+ if (status != PSA_SUCCESS) {
+ goto exit;
+ }
+
+exit:
+ psa_hash_abort(&op);
+
+ return PSA_TO_MBEDTLS_ERR(status);
+}
+
+void mbedtls_lms_public_init(mbedtls_lms_public_t *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lms_public_free(mbedtls_lms_public_t *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(*ctx));
+}
+
+int mbedtls_lms_import_public_key(mbedtls_lms_public_t *ctx,
+ const unsigned char *key, size_t key_size)
+{
+ mbedtls_lms_algorithm_type_t type;
+ mbedtls_lmots_algorithm_type_t otstype;
+
+ type = (mbedtls_lms_algorithm_type_t) MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_TYPE_OFFSET);
+ if (type != MBEDTLS_LMS_SHA256_M32_H10) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+ ctx->params.type = type;
+
+ if (key_size != MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ otstype = (mbedtls_lmots_algorithm_type_t)
+ MBEDTLS_GET_UINT32_BE(key, PUBLIC_KEY_OTSTYPE_OFFSET);
+ if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+ ctx->params.otstype = otstype;
+
+ memcpy(ctx->params.I_key_identifier,
+ key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ memcpy(ctx->T_1_pub_key, key + PUBLIC_KEY_ROOT_NODE_OFFSET,
+ MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type));
+
+ ctx->have_public_key = 1;
+
+ return 0;
+}
+
+int mbedtls_lms_export_public_key(const mbedtls_lms_public_t *ctx,
+ unsigned char *key,
+ size_t key_size, size_t *key_len)
+{
+ if (key_size < MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type)) {
+ return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+ }
+
+ if (!ctx->have_public_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(ctx->params.type, key, PUBLIC_KEY_TYPE_OFFSET);
+ MBEDTLS_PUT_UINT32_BE(ctx->params.otstype, key, PUBLIC_KEY_OTSTYPE_OFFSET);
+ memcpy(key + PUBLIC_KEY_I_KEY_ID_OFFSET,
+ ctx->params.I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ memcpy(key +PUBLIC_KEY_ROOT_NODE_OFFSET,
+ ctx->T_1_pub_key,
+ MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type));
+
+ if (key_len != NULL) {
+ *key_len = MBEDTLS_LMS_PUBLIC_KEY_LEN(ctx->params.type);
+ }
+
+ return 0;
+}
+
+int mbedtls_lms_verify(const mbedtls_lms_public_t *ctx,
+ const unsigned char *msg, size_t msg_size,
+ const unsigned char *sig, size_t sig_size)
+{
+ unsigned int q_leaf_identifier;
+ unsigned char Kc_candidate_ots_pub_key[MBEDTLS_LMOTS_N_HASH_LEN_MAX];
+ unsigned char Tc_candidate_root_node[MBEDTLS_LMS_M_NODE_BYTES_MAX];
+ unsigned int height;
+ unsigned int curr_node_id;
+ unsigned int parent_node_id;
+ const unsigned char *left_node;
+ const unsigned char *right_node;
+ mbedtls_lmots_parameters_t ots_params;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (!ctx->have_public_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (ctx->params.type
+ != MBEDTLS_LMS_SHA256_M32_H10) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (ctx->params.otstype
+ != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (sig_size != MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ if (sig_size < SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_TYPE_LEN) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ if (MBEDTLS_GET_UINT32_BE(sig, SIG_OTS_SIG_OFFSET + MBEDTLS_LMOTS_SIG_TYPE_OFFSET)
+ != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ if (sig_size < SIG_TYPE_OFFSET(ctx->params.otstype) + MBEDTLS_LMS_TYPE_LEN) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ if (MBEDTLS_GET_UINT32_BE(sig, SIG_TYPE_OFFSET(ctx->params.otstype))
+ != MBEDTLS_LMS_SHA256_M32_H10) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+
+ q_leaf_identifier = MBEDTLS_GET_UINT32_BE(sig, SIG_Q_LEAF_ID_OFFSET);
+
+ if (q_leaf_identifier >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ memcpy(ots_params.I_key_identifier,
+ ctx->params.I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, ots_params.q_leaf_identifier, 0);
+ ots_params.type = ctx->params.otstype;
+
+ ret = mbedtls_lmots_calculate_public_key_candidate(&ots_params,
+ msg,
+ msg_size,
+ sig + SIG_OTS_SIG_OFFSET,
+ MBEDTLS_LMOTS_SIG_LEN(ctx->params.otstype),
+ Kc_candidate_ots_pub_key,
+ sizeof(Kc_candidate_ots_pub_key),
+ NULL);
+ if (ret != 0) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ create_merkle_leaf_value(
+ &ctx->params,
+ Kc_candidate_ots_pub_key,
+ MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier,
+ Tc_candidate_root_node);
+
+ curr_node_id = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) +
+ q_leaf_identifier;
+
+ for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type);
+ height++) {
+ parent_node_id = curr_node_id / 2;
+
+ /* Left/right node ordering matters for the hash */
+ if (curr_node_id & 1) {
+ left_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) +
+ height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
+ right_node = Tc_candidate_root_node;
+ } else {
+ left_node = Tc_candidate_root_node;
+ right_node = sig + SIG_PATH_OFFSET(ctx->params.otstype) +
+ height * MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
+ }
+
+ create_merkle_internal_value(&ctx->params, left_node, right_node,
+ parent_node_id, Tc_candidate_root_node);
+
+ curr_node_id /= 2;
+ }
+
+ if (memcmp(Tc_candidate_root_node, ctx->T_1_pub_key,
+ MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type))) {
+ return MBEDTLS_ERR_LMS_VERIFY_FAILED;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_LMS_PRIVATE)
+
+/* Calculate a full Merkle tree based on a private key. This function
+ * implements RFC8554 section 5.3, and is used to generate a public key (as the
+ * public key is the root node of the Merkle tree).
+ *
+ * ctx The LMS private context, containing a parameter
+ * set and private key material consisting of both
+ * public and private OTS.
+ *
+ * tree The output tree, which is 2^(H + 1) hash outputs.
+ * In the case of H=10 we have 2048 tree nodes (of
+ * which 1024 of them are leaf nodes). Note that
+ * because the Merkle tree root is 1-indexed, the 0
+ * index tree node is never used.
+ */
+static int calculate_merkle_tree(const mbedtls_lms_private_t *ctx,
+ unsigned char *tree)
+{
+ unsigned int priv_key_idx;
+ unsigned int r_node_idx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* First create the leaf nodes, in ascending order */
+ for (priv_key_idx = 0;
+ priv_key_idx < MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type);
+ priv_key_idx++) {
+ r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + priv_key_idx;
+
+ ret = create_merkle_leaf_value(&ctx->params,
+ ctx->ots_public_keys[priv_key_idx].public_key,
+ r_node_idx,
+ &tree[r_node_idx * MBEDTLS_LMS_M_NODE_BYTES(
+ ctx->params.type)]);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ /* Then the internal nodes, in reverse order so that we can guarantee the
+ * parent has been created */
+ for (r_node_idx = MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) - 1;
+ r_node_idx > 0;
+ r_node_idx--) {
+ ret = create_merkle_internal_value(&ctx->params,
+ &tree[(r_node_idx * 2) *
+ MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)],
+ &tree[(r_node_idx * 2 + 1) *
+ MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)],
+ r_node_idx,
+ &tree[r_node_idx *
+ MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type)]);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ return 0;
+}
+
+/* Calculate a path from a leaf node of the Merkle tree to the root of the tree,
+ * and return the full path. This function implements RFC8554 section 5.4.1, as
+ * the Merkle path is the main component of an LMS signature.
+ *
+ * ctx The LMS private context, containing a parameter
+ * set and private key material consisting of both
+ * public and private OTS.
+ *
+ * leaf_node_id Which leaf node to calculate the path from.
+ *
+ * path The output path, which is H hash outputs.
+ */
+static int get_merkle_path(mbedtls_lms_private_t *ctx,
+ unsigned int leaf_node_id,
+ unsigned char *path)
+{
+ const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(ctx->params.type);
+ unsigned int curr_node_id = leaf_node_id;
+ unsigned int adjacent_node_id;
+ unsigned char *tree = NULL;
+ unsigned int height;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(ctx->params.type),
+ node_bytes);
+ if (tree == NULL) {
+ return MBEDTLS_ERR_LMS_ALLOC_FAILED;
+ }
+
+ ret = calculate_merkle_tree(ctx, tree);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ for (height = 0; height < MBEDTLS_LMS_H_TREE_HEIGHT(ctx->params.type);
+ height++) {
+ adjacent_node_id = curr_node_id ^ 1;
+
+ memcpy(&path[height * node_bytes],
+ &tree[adjacent_node_id * node_bytes], node_bytes);
+
+ curr_node_id >>= 1;
+ }
+
+ ret = 0;
+
+exit:
+ mbedtls_zeroize_and_free(tree, node_bytes *
+ (size_t) MERKLE_TREE_NODE_AM(ctx->params.type));
+
+ return ret;
+}
+
+void mbedtls_lms_private_init(mbedtls_lms_private_t *ctx)
+{
+ memset(ctx, 0, sizeof(*ctx));
+}
+
+void mbedtls_lms_private_free(mbedtls_lms_private_t *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ unsigned int idx;
+
+ if (ctx->have_private_key) {
+ if (ctx->ots_private_keys != NULL) {
+ for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+ mbedtls_lmots_private_free(&ctx->ots_private_keys[idx]);
+ }
+ }
+
+ if (ctx->ots_public_keys != NULL) {
+ for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+ mbedtls_lmots_public_free(&ctx->ots_public_keys[idx]);
+ }
+ }
+
+ mbedtls_free(ctx->ots_private_keys);
+ mbedtls_free(ctx->ots_public_keys);
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(*ctx));
+}
+
+
+int mbedtls_lms_generate_private_key(mbedtls_lms_private_t *ctx,
+ mbedtls_lms_algorithm_type_t type,
+ mbedtls_lmots_algorithm_type_t otstype,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng, const unsigned char *seed,
+ size_t seed_size)
+{
+ unsigned int idx = 0;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (type != MBEDTLS_LMS_SHA256_M32_H10) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (otstype != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (ctx->have_private_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ ctx->params.type = type;
+ ctx->params.otstype = otstype;
+ ctx->have_private_key = 1;
+
+ ret = f_rng(p_rng,
+ ctx->params.I_key_identifier,
+ MBEDTLS_LMOTS_I_KEY_ID_LEN);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ /* Requires a cast to size_t to avoid an implicit cast warning on certain
+ * platforms (particularly Windows) */
+ ctx->ots_private_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type),
+ sizeof(*ctx->ots_private_keys));
+ if (ctx->ots_private_keys == NULL) {
+ ret = MBEDTLS_ERR_LMS_ALLOC_FAILED;
+ goto exit;
+ }
+
+ /* Requires a cast to size_t to avoid an implicit cast warning on certain
+ * platforms (particularly Windows) */
+ ctx->ots_public_keys = mbedtls_calloc((size_t) MERKLE_TREE_LEAF_NODE_AM(ctx->params.type),
+ sizeof(*ctx->ots_public_keys));
+ if (ctx->ots_public_keys == NULL) {
+ ret = MBEDTLS_ERR_LMS_ALLOC_FAILED;
+ goto exit;
+ }
+
+ for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+ mbedtls_lmots_private_init(&ctx->ots_private_keys[idx]);
+ mbedtls_lmots_public_init(&ctx->ots_public_keys[idx]);
+ }
+
+
+ for (idx = 0; idx < MERKLE_TREE_LEAF_NODE_AM(ctx->params.type); idx++) {
+ ret = mbedtls_lmots_generate_private_key(&ctx->ots_private_keys[idx],
+ otstype,
+ ctx->params.I_key_identifier,
+ idx, seed, seed_size);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_lmots_calculate_public_key(&ctx->ots_public_keys[idx],
+ &ctx->ots_private_keys[idx]);
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+
+ ctx->q_next_usable_key = 0;
+
+exit:
+ if (ret != 0) {
+ mbedtls_lms_private_free(ctx);
+ }
+
+ return ret;
+}
+
+int mbedtls_lms_calculate_public_key(mbedtls_lms_public_t *ctx,
+ const mbedtls_lms_private_t *priv_ctx)
+{
+ const size_t node_bytes = MBEDTLS_LMS_M_NODE_BYTES(priv_ctx->params.type);
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *tree = NULL;
+
+ if (!priv_ctx->have_private_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (priv_ctx->params.type
+ != MBEDTLS_LMS_SHA256_M32_H10) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (priv_ctx->params.otstype
+ != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ tree = mbedtls_calloc((size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type),
+ node_bytes);
+ if (tree == NULL) {
+ return MBEDTLS_ERR_LMS_ALLOC_FAILED;
+ }
+
+ memcpy(&ctx->params, &priv_ctx->params,
+ sizeof(mbedtls_lmots_parameters_t));
+
+ ret = calculate_merkle_tree(priv_ctx, tree);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ /* Root node is always at position 1, due to 1-based indexing */
+ memcpy(ctx->T_1_pub_key, &tree[node_bytes], node_bytes);
+
+ ctx->have_public_key = 1;
+
+ ret = 0;
+
+exit:
+ mbedtls_zeroize_and_free(tree, node_bytes *
+ (size_t) MERKLE_TREE_NODE_AM(priv_ctx->params.type));
+
+ return ret;
+}
+
+
+int mbedtls_lms_sign(mbedtls_lms_private_t *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng, const unsigned char *msg,
+ unsigned int msg_size, unsigned char *sig, size_t sig_size,
+ size_t *sig_len)
+{
+ uint32_t q_leaf_identifier;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (!ctx->have_private_key) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (sig_size < MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)) {
+ return MBEDTLS_ERR_LMS_BUFFER_TOO_SMALL;
+ }
+
+ if (ctx->params.type != MBEDTLS_LMS_SHA256_M32_H10) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (ctx->params.otstype
+ != MBEDTLS_LMOTS_SHA256_N32_W8) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ if (ctx->q_next_usable_key >= MERKLE_TREE_LEAF_NODE_AM(ctx->params.type)) {
+ return MBEDTLS_ERR_LMS_OUT_OF_PRIVATE_KEYS;
+ }
+
+
+ q_leaf_identifier = ctx->q_next_usable_key;
+ /* This new value must _always_ be written back to the disk before the
+ * signature is returned.
+ */
+ ctx->q_next_usable_key += 1;
+
+ if (MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype)
+ < SIG_OTS_SIG_OFFSET) {
+ return MBEDTLS_ERR_LMS_BAD_INPUT_DATA;
+ }
+
+ ret = mbedtls_lmots_sign(&ctx->ots_private_keys[q_leaf_identifier],
+ f_rng,
+ p_rng,
+ msg,
+ msg_size,
+ sig + SIG_OTS_SIG_OFFSET,
+ MBEDTLS_LMS_SIG_LEN(ctx->params.type,
+ ctx->params.otstype) - SIG_OTS_SIG_OFFSET,
+ NULL);
+ if (ret != 0) {
+ return ret;
+ }
+
+ MBEDTLS_PUT_UINT32_BE(ctx->params.type, sig, SIG_TYPE_OFFSET(ctx->params.otstype));
+ MBEDTLS_PUT_UINT32_BE(q_leaf_identifier, sig, SIG_Q_LEAF_ID_OFFSET);
+
+ ret = get_merkle_path(ctx,
+ MERKLE_TREE_INTERNAL_NODE_AM(ctx->params.type) + q_leaf_identifier,
+ sig + SIG_PATH_OFFSET(ctx->params.otstype));
+ if (ret != 0) {
+ return ret;
+ }
+
+ if (sig_len != NULL) {
+ *sig_len = MBEDTLS_LMS_SIG_LEN(ctx->params.type, ctx->params.otstype);
+ }
+
+
+ return 0;
+}
+
+#endif /* defined(MBEDTLS_LMS_PRIVATE) */
+#endif /* defined(MBEDTLS_LMS_C) */
diff --git a/tf-psa-crypto/drivers/builtin/src/md.c b/tf-psa-crypto/drivers/builtin/src/md.c
new file mode 100644
index 0000000..7e0465d
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md.c
@@ -0,0 +1,1108 @@
+/**
+ * \file md.c
+ *
+ * \brief Generic message digest wrapper for Mbed TLS
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+/*
+ * Availability of functions in this module is controlled by two
+ * feature macros:
+ * - MBEDTLS_MD_C enables the whole module;
+ * - MBEDTLS_MD_LIGHT enables only functions for hashing and accessing
+ * most hash metadata (everything except string names); is it
+ * automatically set whenever MBEDTLS_MD_C is defined.
+ *
+ * In this file, functions from MD_LIGHT are at the top, MD_C at the end.
+ *
+ * In the future we may want to change the contract of some functions
+ * (behaviour with NULL arguments) depending on whether MD_C is defined or
+ * only MD_LIGHT. Also, the exact scope of MD_LIGHT might vary.
+ *
+ * For these reasons, we're keeping MD_LIGHT internal for now.
+ */
+#if defined(MBEDTLS_MD_LIGHT)
+
+#include "mbedtls/md.h"
+#include "md_wrap.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include "mbedtls/md5.h"
+#include "mbedtls/ripemd160.h"
+#include "mbedtls/sha1.h"
+#include "mbedtls/sha256.h"
+#include "mbedtls/sha512.h"
+#include "mbedtls/sha3.h"
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#include <psa/crypto.h>
+#include "md_psa.h"
+#include "psa_util_internal.h"
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+#include "psa_crypto_core.h"
+#endif
+
+#include "mbedtls/platform.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_FS_IO)
+#include <stdio.h>
+#endif
+
+/* See comment above MBEDTLS_MD_MAX_SIZE in md.h */
+#if defined(MBEDTLS_PSA_CRYPTO_C) && MBEDTLS_MD_MAX_SIZE < PSA_HASH_MAX_SIZE
+#error "Internal error: MBEDTLS_MD_MAX_SIZE < PSA_HASH_MAX_SIZE"
+#endif
+
+#if defined(MBEDTLS_MD_C)
+#define MD_INFO(type, out_size, block_size) type, out_size, block_size,
+#else
+#define MD_INFO(type, out_size, block_size) type, out_size,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_MD5)
+static const mbedtls_md_info_t mbedtls_md5_info = {
+ MD_INFO(MBEDTLS_MD_MD5, 16, 64)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_RIPEMD160)
+static const mbedtls_md_info_t mbedtls_ripemd160_info = {
+ MD_INFO(MBEDTLS_MD_RIPEMD160, 20, 64)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA1)
+static const mbedtls_md_info_t mbedtls_sha1_info = {
+ MD_INFO(MBEDTLS_MD_SHA1, 20, 64)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA_224)
+static const mbedtls_md_info_t mbedtls_sha224_info = {
+ MD_INFO(MBEDTLS_MD_SHA224, 28, 64)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA256)
+static const mbedtls_md_info_t mbedtls_sha256_info = {
+ MD_INFO(MBEDTLS_MD_SHA256, 32, 64)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA_384)
+static const mbedtls_md_info_t mbedtls_sha384_info = {
+ MD_INFO(MBEDTLS_MD_SHA384, 48, 128)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA512)
+static const mbedtls_md_info_t mbedtls_sha512_info = {
+ MD_INFO(MBEDTLS_MD_SHA512, 64, 128)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+static const mbedtls_md_info_t mbedtls_sha3_224_info = {
+ MD_INFO(MBEDTLS_MD_SHA3_224, 28, 144)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_256)
+static const mbedtls_md_info_t mbedtls_sha3_256_info = {
+ MD_INFO(MBEDTLS_MD_SHA3_256, 32, 136)
+};
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+static const mbedtls_md_info_t mbedtls_sha3_384_info = {
+ MD_INFO(MBEDTLS_MD_SHA3_384, 48, 104)
+};
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_512)
+static const mbedtls_md_info_t mbedtls_sha3_512_info = {
+ MD_INFO(MBEDTLS_MD_SHA3_512, 64, 72)
+};
+#endif
+
+const mbedtls_md_info_t *mbedtls_md_info_from_type(mbedtls_md_type_t md_type)
+{
+ switch (md_type) {
+#if defined(MBEDTLS_MD_CAN_MD5)
+ case MBEDTLS_MD_MD5:
+ return &mbedtls_md5_info;
+#endif
+#if defined(PSA_WANT_ALG_RIPEMD160)
+ case MBEDTLS_MD_RIPEMD160:
+ return &mbedtls_ripemd160_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ case MBEDTLS_MD_SHA1:
+ return &mbedtls_sha1_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+ case MBEDTLS_MD_SHA224:
+ return &mbedtls_sha224_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+ case MBEDTLS_MD_SHA256:
+ return &mbedtls_sha256_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA_384)
+ case MBEDTLS_MD_SHA384:
+ return &mbedtls_sha384_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA512)
+ case MBEDTLS_MD_SHA512:
+ return &mbedtls_sha512_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+ case MBEDTLS_MD_SHA3_224:
+ return &mbedtls_sha3_224_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA3_256)
+ case MBEDTLS_MD_SHA3_256:
+ return &mbedtls_sha3_256_info;
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+ case MBEDTLS_MD_SHA3_384:
+ return &mbedtls_sha3_384_info;
+#endif
+#if defined(PSA_WANT_ALG_SHA3_512)
+ case MBEDTLS_MD_SHA3_512:
+ return &mbedtls_sha3_512_info;
+#endif
+ default:
+ return NULL;
+ }
+}
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+static psa_algorithm_t psa_alg_of_md(const mbedtls_md_info_t *info)
+{
+ switch (info->type) {
+#if defined(MBEDTLS_MD_MD5_VIA_PSA)
+ case MBEDTLS_MD_MD5:
+ return PSA_ALG_MD5;
+#endif
+#if defined(MBEDTLS_MD_RIPEMD160_VIA_PSA)
+ case MBEDTLS_MD_RIPEMD160:
+ return PSA_ALG_RIPEMD160;
+#endif
+#if defined(MBEDTLS_MD_SHA1_VIA_PSA)
+ case MBEDTLS_MD_SHA1:
+ return PSA_ALG_SHA_1;
+#endif
+#if defined(MBEDTLS_MD_SHA224_VIA_PSA)
+ case MBEDTLS_MD_SHA224:
+ return PSA_ALG_SHA_224;
+#endif
+#if defined(MBEDTLS_MD_SHA256_VIA_PSA)
+ case MBEDTLS_MD_SHA256:
+ return PSA_ALG_SHA_256;
+#endif
+#if defined(MBEDTLS_MD_SHA384_VIA_PSA)
+ case MBEDTLS_MD_SHA384:
+ return PSA_ALG_SHA_384;
+#endif
+#if defined(MBEDTLS_MD_SHA512_VIA_PSA)
+ case MBEDTLS_MD_SHA512:
+ return PSA_ALG_SHA_512;
+#endif
+#if defined(MBEDTLS_MD_SHA3_224_VIA_PSA)
+ case MBEDTLS_MD_SHA3_224:
+ return PSA_ALG_SHA3_224;
+#endif
+#if defined(MBEDTLS_MD_SHA3_256_VIA_PSA)
+ case MBEDTLS_MD_SHA3_256:
+ return PSA_ALG_SHA3_256;
+#endif
+#if defined(MBEDTLS_MD_SHA3_384_VIA_PSA)
+ case MBEDTLS_MD_SHA3_384:
+ return PSA_ALG_SHA3_384;
+#endif
+#if defined(MBEDTLS_MD_SHA3_512_VIA_PSA)
+ case MBEDTLS_MD_SHA3_512:
+ return PSA_ALG_SHA3_512;
+#endif
+ default:
+ return PSA_ALG_NONE;
+ }
+}
+
+static int md_can_use_psa(const mbedtls_md_info_t *info)
+{
+ psa_algorithm_t alg = psa_alg_of_md(info);
+ if (alg == PSA_ALG_NONE) {
+ return 0;
+ }
+
+ return psa_can_do_hash(alg);
+}
+#endif /* MBEDTLS_MD_SOME_PSA */
+
+void mbedtls_md_init(mbedtls_md_context_t *ctx)
+{
+ /* Note: this sets engine (if present) to MBEDTLS_MD_ENGINE_LEGACY */
+ memset(ctx, 0, sizeof(mbedtls_md_context_t));
+}
+
+void mbedtls_md_free(mbedtls_md_context_t *ctx)
+{
+ if (ctx == NULL || ctx->md_info == NULL) {
+ return;
+ }
+
+ if (ctx->md_ctx != NULL) {
+#if defined(MBEDTLS_MD_SOME_PSA)
+ if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+ psa_hash_abort(ctx->md_ctx);
+ } else
+#endif
+ switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+ case MBEDTLS_MD_MD5:
+ mbedtls_md5_free(ctx->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+ case MBEDTLS_MD_RIPEMD160:
+ mbedtls_ripemd160_free(ctx->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA1_C)
+ case MBEDTLS_MD_SHA1:
+ mbedtls_sha1_free(ctx->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA224_C)
+ case MBEDTLS_MD_SHA224:
+ mbedtls_sha256_free(ctx->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA256_C)
+ case MBEDTLS_MD_SHA256:
+ mbedtls_sha256_free(ctx->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA384_C)
+ case MBEDTLS_MD_SHA384:
+ mbedtls_sha512_free(ctx->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA512_C)
+ case MBEDTLS_MD_SHA512:
+ mbedtls_sha512_free(ctx->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA3_C)
+ case MBEDTLS_MD_SHA3_224:
+ case MBEDTLS_MD_SHA3_256:
+ case MBEDTLS_MD_SHA3_384:
+ case MBEDTLS_MD_SHA3_512:
+ mbedtls_sha3_free(ctx->md_ctx);
+ break;
+#endif
+ default:
+ /* Shouldn't happen */
+ break;
+ }
+ mbedtls_free(ctx->md_ctx);
+ }
+
+#if defined(MBEDTLS_MD_C)
+ if (ctx->hmac_ctx != NULL) {
+ mbedtls_zeroize_and_free(ctx->hmac_ctx,
+ 2 * ctx->md_info->block_size);
+ }
+#endif
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_md_context_t));
+}
+
+int mbedtls_md_clone(mbedtls_md_context_t *dst,
+ const mbedtls_md_context_t *src)
+{
+ if (dst == NULL || dst->md_info == NULL ||
+ src == NULL || src->md_info == NULL ||
+ dst->md_info != src->md_info) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+ if (src->engine != dst->engine) {
+ /* This can happen with src set to legacy because PSA wasn't ready
+ * yet, and dst to PSA because it became ready in the meantime.
+ * We currently don't support that case (we'd need to re-allocate
+ * md_ctx to the size of the appropriate MD context). */
+ return MBEDTLS_ERR_MD_FEATURE_UNAVAILABLE;
+ }
+
+ if (src->engine == MBEDTLS_MD_ENGINE_PSA) {
+ psa_status_t status = psa_hash_clone(src->md_ctx, dst->md_ctx);
+ return mbedtls_md_error_from_psa(status);
+ }
+#endif
+
+ switch (src->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+ case MBEDTLS_MD_MD5:
+ mbedtls_md5_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+ case MBEDTLS_MD_RIPEMD160:
+ mbedtls_ripemd160_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA1_C)
+ case MBEDTLS_MD_SHA1:
+ mbedtls_sha1_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA224_C)
+ case MBEDTLS_MD_SHA224:
+ mbedtls_sha256_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA256_C)
+ case MBEDTLS_MD_SHA256:
+ mbedtls_sha256_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA384_C)
+ case MBEDTLS_MD_SHA384:
+ mbedtls_sha512_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA512_C)
+ case MBEDTLS_MD_SHA512:
+ mbedtls_sha512_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+#if defined(MBEDTLS_SHA3_C)
+ case MBEDTLS_MD_SHA3_224:
+ case MBEDTLS_MD_SHA3_256:
+ case MBEDTLS_MD_SHA3_384:
+ case MBEDTLS_MD_SHA3_512:
+ mbedtls_sha3_clone(dst->md_ctx, src->md_ctx);
+ break;
+#endif
+ default:
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+
+#define ALLOC(type) \
+ do { \
+ ctx->md_ctx = mbedtls_calloc(1, sizeof(mbedtls_##type##_context)); \
+ if (ctx->md_ctx == NULL) \
+ return MBEDTLS_ERR_MD_ALLOC_FAILED; \
+ mbedtls_##type##_init(ctx->md_ctx); \
+ } \
+ while (0)
+
+int mbedtls_md_setup(mbedtls_md_context_t *ctx, const mbedtls_md_info_t *md_info, int hmac)
+{
+#if defined(MBEDTLS_MD_C)
+ if (ctx == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+#endif
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ ctx->md_info = md_info;
+ ctx->md_ctx = NULL;
+#if defined(MBEDTLS_MD_C)
+ ctx->hmac_ctx = NULL;
+#else
+ if (hmac != 0) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+ if (md_can_use_psa(ctx->md_info)) {
+ ctx->md_ctx = mbedtls_calloc(1, sizeof(psa_hash_operation_t));
+ if (ctx->md_ctx == NULL) {
+ return MBEDTLS_ERR_MD_ALLOC_FAILED;
+ }
+ ctx->engine = MBEDTLS_MD_ENGINE_PSA;
+ } else
+#endif
+ switch (md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+ case MBEDTLS_MD_MD5:
+ ALLOC(md5);
+ break;
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+ case MBEDTLS_MD_RIPEMD160:
+ ALLOC(ripemd160);
+ break;
+#endif
+#if defined(MBEDTLS_SHA1_C)
+ case MBEDTLS_MD_SHA1:
+ ALLOC(sha1);
+ break;
+#endif
+#if defined(MBEDTLS_SHA224_C)
+ case MBEDTLS_MD_SHA224:
+ ALLOC(sha256);
+ break;
+#endif
+#if defined(MBEDTLS_SHA256_C)
+ case MBEDTLS_MD_SHA256:
+ ALLOC(sha256);
+ break;
+#endif
+#if defined(MBEDTLS_SHA384_C)
+ case MBEDTLS_MD_SHA384:
+ ALLOC(sha512);
+ break;
+#endif
+#if defined(MBEDTLS_SHA512_C)
+ case MBEDTLS_MD_SHA512:
+ ALLOC(sha512);
+ break;
+#endif
+#if defined(MBEDTLS_SHA3_C)
+ case MBEDTLS_MD_SHA3_224:
+ case MBEDTLS_MD_SHA3_256:
+ case MBEDTLS_MD_SHA3_384:
+ case MBEDTLS_MD_SHA3_512:
+ ALLOC(sha3);
+ break;
+#endif
+ default:
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_MD_C)
+ if (hmac != 0) {
+ ctx->hmac_ctx = mbedtls_calloc(2, md_info->block_size);
+ if (ctx->hmac_ctx == NULL) {
+ mbedtls_md_free(ctx);
+ return MBEDTLS_ERR_MD_ALLOC_FAILED;
+ }
+ }
+#endif
+
+ return 0;
+}
+#undef ALLOC
+
+int mbedtls_md_starts(mbedtls_md_context_t *ctx)
+{
+#if defined(MBEDTLS_MD_C)
+ if (ctx == NULL || ctx->md_info == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+ if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+ psa_algorithm_t alg = psa_alg_of_md(ctx->md_info);
+ psa_hash_abort(ctx->md_ctx);
+ psa_status_t status = psa_hash_setup(ctx->md_ctx, alg);
+ return mbedtls_md_error_from_psa(status);
+ }
+#endif
+
+ switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+ case MBEDTLS_MD_MD5:
+ return mbedtls_md5_starts(ctx->md_ctx);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+ case MBEDTLS_MD_RIPEMD160:
+ return mbedtls_ripemd160_starts(ctx->md_ctx);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+ case MBEDTLS_MD_SHA1:
+ return mbedtls_sha1_starts(ctx->md_ctx);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+ case MBEDTLS_MD_SHA224:
+ return mbedtls_sha256_starts(ctx->md_ctx, 1);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+ case MBEDTLS_MD_SHA256:
+ return mbedtls_sha256_starts(ctx->md_ctx, 0);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+ case MBEDTLS_MD_SHA384:
+ return mbedtls_sha512_starts(ctx->md_ctx, 1);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+ case MBEDTLS_MD_SHA512:
+ return mbedtls_sha512_starts(ctx->md_ctx, 0);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+ case MBEDTLS_MD_SHA3_224:
+ return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_224);
+ case MBEDTLS_MD_SHA3_256:
+ return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_256);
+ case MBEDTLS_MD_SHA3_384:
+ return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_384);
+ case MBEDTLS_MD_SHA3_512:
+ return mbedtls_sha3_starts(ctx->md_ctx, MBEDTLS_SHA3_512);
+#endif
+ default:
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+}
+
+int mbedtls_md_update(mbedtls_md_context_t *ctx, const unsigned char *input, size_t ilen)
+{
+#if defined(MBEDTLS_MD_C)
+ if (ctx == NULL || ctx->md_info == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+ if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+ psa_status_t status = psa_hash_update(ctx->md_ctx, input, ilen);
+ return mbedtls_md_error_from_psa(status);
+ }
+#endif
+
+ switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+ case MBEDTLS_MD_MD5:
+ return mbedtls_md5_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+ case MBEDTLS_MD_RIPEMD160:
+ return mbedtls_ripemd160_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+ case MBEDTLS_MD_SHA1:
+ return mbedtls_sha1_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+ case MBEDTLS_MD_SHA224:
+ return mbedtls_sha256_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+ case MBEDTLS_MD_SHA256:
+ return mbedtls_sha256_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+ case MBEDTLS_MD_SHA384:
+ return mbedtls_sha512_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+ case MBEDTLS_MD_SHA512:
+ return mbedtls_sha512_update(ctx->md_ctx, input, ilen);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+ case MBEDTLS_MD_SHA3_224:
+ case MBEDTLS_MD_SHA3_256:
+ case MBEDTLS_MD_SHA3_384:
+ case MBEDTLS_MD_SHA3_512:
+ return mbedtls_sha3_update(ctx->md_ctx, input, ilen);
+#endif
+ default:
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+}
+
+int mbedtls_md_finish(mbedtls_md_context_t *ctx, unsigned char *output)
+{
+#if defined(MBEDTLS_MD_C)
+ if (ctx == NULL || ctx->md_info == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+#endif
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+ if (ctx->engine == MBEDTLS_MD_ENGINE_PSA) {
+ size_t size = ctx->md_info->size;
+ psa_status_t status = psa_hash_finish(ctx->md_ctx,
+ output, size, &size);
+ return mbedtls_md_error_from_psa(status);
+ }
+#endif
+
+ switch (ctx->md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+ case MBEDTLS_MD_MD5:
+ return mbedtls_md5_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+ case MBEDTLS_MD_RIPEMD160:
+ return mbedtls_ripemd160_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+ case MBEDTLS_MD_SHA1:
+ return mbedtls_sha1_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+ case MBEDTLS_MD_SHA224:
+ return mbedtls_sha256_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+ case MBEDTLS_MD_SHA256:
+ return mbedtls_sha256_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+ case MBEDTLS_MD_SHA384:
+ return mbedtls_sha512_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+ case MBEDTLS_MD_SHA512:
+ return mbedtls_sha512_finish(ctx->md_ctx, output);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+ case MBEDTLS_MD_SHA3_224:
+ case MBEDTLS_MD_SHA3_256:
+ case MBEDTLS_MD_SHA3_384:
+ case MBEDTLS_MD_SHA3_512:
+ return mbedtls_sha3_finish(ctx->md_ctx, output, ctx->md_info->size);
+#endif
+ default:
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+}
+
+int mbedtls_md(const mbedtls_md_info_t *md_info, const unsigned char *input, size_t ilen,
+ unsigned char *output)
+{
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_MD_SOME_PSA)
+ if (md_can_use_psa(md_info)) {
+ size_t size = md_info->size;
+ psa_status_t status = psa_hash_compute(psa_alg_of_md(md_info),
+ input, ilen,
+ output, size, &size);
+ return mbedtls_md_error_from_psa(status);
+ }
+#endif
+
+ switch (md_info->type) {
+#if defined(MBEDTLS_MD5_C)
+ case MBEDTLS_MD_MD5:
+ return mbedtls_md5(input, ilen, output);
+#endif
+#if defined(MBEDTLS_RIPEMD160_C)
+ case MBEDTLS_MD_RIPEMD160:
+ return mbedtls_ripemd160(input, ilen, output);
+#endif
+#if defined(MBEDTLS_SHA1_C)
+ case MBEDTLS_MD_SHA1:
+ return mbedtls_sha1(input, ilen, output);
+#endif
+#if defined(MBEDTLS_SHA224_C)
+ case MBEDTLS_MD_SHA224:
+ return mbedtls_sha256(input, ilen, output, 1);
+#endif
+#if defined(MBEDTLS_SHA256_C)
+ case MBEDTLS_MD_SHA256:
+ return mbedtls_sha256(input, ilen, output, 0);
+#endif
+#if defined(MBEDTLS_SHA384_C)
+ case MBEDTLS_MD_SHA384:
+ return mbedtls_sha512(input, ilen, output, 1);
+#endif
+#if defined(MBEDTLS_SHA512_C)
+ case MBEDTLS_MD_SHA512:
+ return mbedtls_sha512(input, ilen, output, 0);
+#endif
+#if defined(MBEDTLS_SHA3_C)
+ case MBEDTLS_MD_SHA3_224:
+ return mbedtls_sha3(MBEDTLS_SHA3_224, input, ilen, output, md_info->size);
+ case MBEDTLS_MD_SHA3_256:
+ return mbedtls_sha3(MBEDTLS_SHA3_256, input, ilen, output, md_info->size);
+ case MBEDTLS_MD_SHA3_384:
+ return mbedtls_sha3(MBEDTLS_SHA3_384, input, ilen, output, md_info->size);
+ case MBEDTLS_MD_SHA3_512:
+ return mbedtls_sha3(MBEDTLS_SHA3_512, input, ilen, output, md_info->size);
+#endif
+ default:
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+}
+
+unsigned char mbedtls_md_get_size(const mbedtls_md_info_t *md_info)
+{
+ if (md_info == NULL) {
+ return 0;
+ }
+
+ return md_info->size;
+}
+
+mbedtls_md_type_t mbedtls_md_get_type(const mbedtls_md_info_t *md_info)
+{
+ if (md_info == NULL) {
+ return MBEDTLS_MD_NONE;
+ }
+
+ return md_info->type;
+}
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+int mbedtls_md_error_from_psa(psa_status_t status)
+{
+ return PSA_TO_MBEDTLS_ERR_LIST(status, psa_to_md_errors,
+ psa_generic_status_to_mbedtls);
+}
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+
+
+/************************************************************************
+ * Functions above this separator are part of MBEDTLS_MD_LIGHT, *
+ * functions below are only available when MBEDTLS_MD_C is set. *
+ ************************************************************************/
+#if defined(MBEDTLS_MD_C)
+
+/*
+ * Reminder: update profiles in x509_crt.c when adding a new hash!
+ */
+static const int supported_digests[] = {
+
+#if defined(MBEDTLS_MD_CAN_SHA512)
+ MBEDTLS_MD_SHA512,
+#endif
+
+#if defined(PSA_WANT_ALG_SHA_384)
+ MBEDTLS_MD_SHA384,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA256)
+ MBEDTLS_MD_SHA256,
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+ MBEDTLS_MD_SHA224,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ MBEDTLS_MD_SHA1,
+#endif
+
+#if defined(PSA_WANT_ALG_RIPEMD160)
+ MBEDTLS_MD_RIPEMD160,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_MD5)
+ MBEDTLS_MD_MD5,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+ MBEDTLS_MD_SHA3_224,
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_256)
+ MBEDTLS_MD_SHA3_256,
+#endif
+
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+ MBEDTLS_MD_SHA3_384,
+#endif
+
+#if defined(PSA_WANT_ALG_SHA3_512)
+ MBEDTLS_MD_SHA3_512,
+#endif
+
+ MBEDTLS_MD_NONE
+};
+
+const int *mbedtls_md_list(void)
+{
+ return supported_digests;
+}
+
+typedef struct {
+ const char *md_name;
+ mbedtls_md_type_t md_type;
+} md_name_entry;
+
+static const md_name_entry md_names[] = {
+#if defined(MBEDTLS_MD_CAN_MD5)
+ { "MD5", MBEDTLS_MD_MD5 },
+#endif
+#if defined(PSA_WANT_ALG_RIPEMD160)
+ { "RIPEMD160", MBEDTLS_MD_RIPEMD160 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ { "SHA1", MBEDTLS_MD_SHA1 },
+ { "SHA", MBEDTLS_MD_SHA1 }, // compatibility fallback
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+ { "SHA224", MBEDTLS_MD_SHA224 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+ { "SHA256", MBEDTLS_MD_SHA256 },
+#endif
+#if defined(PSA_WANT_ALG_SHA_384)
+ { "SHA384", MBEDTLS_MD_SHA384 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA512)
+ { "SHA512", MBEDTLS_MD_SHA512 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+ { "SHA3-224", MBEDTLS_MD_SHA3_224 },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_256)
+ { "SHA3-256", MBEDTLS_MD_SHA3_256 },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+ { "SHA3-384", MBEDTLS_MD_SHA3_384 },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_512)
+ { "SHA3-512", MBEDTLS_MD_SHA3_512 },
+#endif
+ { NULL, MBEDTLS_MD_NONE },
+};
+
+const mbedtls_md_info_t *mbedtls_md_info_from_string(const char *md_name)
+{
+ if (NULL == md_name) {
+ return NULL;
+ }
+
+ const md_name_entry *entry = md_names;
+ while (entry->md_name != NULL &&
+ strcmp(entry->md_name, md_name) != 0) {
+ ++entry;
+ }
+
+ return mbedtls_md_info_from_type(entry->md_type);
+}
+
+const char *mbedtls_md_get_name(const mbedtls_md_info_t *md_info)
+{
+ if (md_info == NULL) {
+ return NULL;
+ }
+
+ const md_name_entry *entry = md_names;
+ while (entry->md_type != MBEDTLS_MD_NONE &&
+ entry->md_type != md_info->type) {
+ ++entry;
+ }
+
+ return entry->md_name;
+}
+
+const mbedtls_md_info_t *mbedtls_md_info_from_ctx(
+ const mbedtls_md_context_t *ctx)
+{
+ if (ctx == NULL) {
+ return NULL;
+ }
+
+ return ctx->MBEDTLS_PRIVATE(md_info);
+}
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_md_file(const mbedtls_md_info_t *md_info, const char *path, unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ FILE *f;
+ size_t n;
+ mbedtls_md_context_t ctx;
+ unsigned char buf[1024];
+
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ if ((f = fopen(path, "rb")) == NULL) {
+ return MBEDTLS_ERR_MD_FILE_IO_ERROR;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ mbedtls_md_init(&ctx);
+
+ if ((ret = mbedtls_md_setup(&ctx, md_info, 0)) != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_md_starts(&ctx)) != 0) {
+ goto cleanup;
+ }
+
+ while ((n = fread(buf, 1, sizeof(buf), f)) > 0) {
+ if ((ret = mbedtls_md_update(&ctx, buf, n)) != 0) {
+ goto cleanup;
+ }
+ }
+
+ if (ferror(f) != 0) {
+ ret = MBEDTLS_ERR_MD_FILE_IO_ERROR;
+ } else {
+ ret = mbedtls_md_finish(&ctx, output);
+ }
+
+cleanup:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+ fclose(f);
+ mbedtls_md_free(&ctx);
+
+ return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+
+int mbedtls_md_hmac_starts(mbedtls_md_context_t *ctx, const unsigned char *key, size_t keylen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char sum[MBEDTLS_MD_MAX_SIZE];
+ unsigned char *ipad, *opad;
+
+ if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ if (keylen > (size_t) ctx->md_info->block_size) {
+ if ((ret = mbedtls_md_starts(ctx)) != 0) {
+ goto cleanup;
+ }
+ if ((ret = mbedtls_md_update(ctx, key, keylen)) != 0) {
+ goto cleanup;
+ }
+ if ((ret = mbedtls_md_finish(ctx, sum)) != 0) {
+ goto cleanup;
+ }
+
+ keylen = ctx->md_info->size;
+ key = sum;
+ }
+
+ ipad = (unsigned char *) ctx->hmac_ctx;
+ opad = (unsigned char *) ctx->hmac_ctx + ctx->md_info->block_size;
+
+ memset(ipad, 0x36, ctx->md_info->block_size);
+ memset(opad, 0x5C, ctx->md_info->block_size);
+
+ mbedtls_xor(ipad, ipad, key, keylen);
+ mbedtls_xor(opad, opad, key, keylen);
+
+ if ((ret = mbedtls_md_starts(ctx)) != 0) {
+ goto cleanup;
+ }
+ if ((ret = mbedtls_md_update(ctx, ipad,
+ ctx->md_info->block_size)) != 0) {
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_platform_zeroize(sum, sizeof(sum));
+
+ return ret;
+}
+
+int mbedtls_md_hmac_update(mbedtls_md_context_t *ctx, const unsigned char *input, size_t ilen)
+{
+ if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_md_update(ctx, input, ilen);
+}
+
+int mbedtls_md_hmac_finish(mbedtls_md_context_t *ctx, unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char tmp[MBEDTLS_MD_MAX_SIZE];
+ unsigned char *opad;
+
+ if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ opad = (unsigned char *) ctx->hmac_ctx + ctx->md_info->block_size;
+
+ if ((ret = mbedtls_md_finish(ctx, tmp)) != 0) {
+ return ret;
+ }
+ if ((ret = mbedtls_md_starts(ctx)) != 0) {
+ return ret;
+ }
+ if ((ret = mbedtls_md_update(ctx, opad,
+ ctx->md_info->block_size)) != 0) {
+ return ret;
+ }
+ if ((ret = mbedtls_md_update(ctx, tmp,
+ ctx->md_info->size)) != 0) {
+ return ret;
+ }
+ return mbedtls_md_finish(ctx, output);
+}
+
+int mbedtls_md_hmac_reset(mbedtls_md_context_t *ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *ipad;
+
+ if (ctx == NULL || ctx->md_info == NULL || ctx->hmac_ctx == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ ipad = (unsigned char *) ctx->hmac_ctx;
+
+ if ((ret = mbedtls_md_starts(ctx)) != 0) {
+ return ret;
+ }
+ return mbedtls_md_update(ctx, ipad, ctx->md_info->block_size);
+}
+
+int mbedtls_md_hmac(const mbedtls_md_info_t *md_info,
+ const unsigned char *key, size_t keylen,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output)
+{
+ mbedtls_md_context_t ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_MD_BAD_INPUT_DATA;
+ }
+
+ mbedtls_md_init(&ctx);
+
+ if ((ret = mbedtls_md_setup(&ctx, md_info, 1)) != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_md_hmac_starts(&ctx, key, keylen)) != 0) {
+ goto cleanup;
+ }
+ if ((ret = mbedtls_md_hmac_update(&ctx, input, ilen)) != 0) {
+ goto cleanup;
+ }
+ if ((ret = mbedtls_md_hmac_finish(&ctx, output)) != 0) {
+ goto cleanup;
+ }
+
+cleanup:
+ mbedtls_md_free(&ctx);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_MD_C */
+
+#endif /* MBEDTLS_MD_LIGHT */
diff --git a/tf-psa-crypto/drivers/builtin/src/md5.c b/tf-psa-crypto/drivers/builtin/src/md5.c
new file mode 100644
index 0000000..e4a87a2
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md5.c
@@ -0,0 +1,426 @@
+/*
+ * RFC 1321 compliant MD5 implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The MD5 algorithm was designed by Ron Rivest in 1991.
+ *
+ * http://www.ietf.org/rfc/rfc1321.txt
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_MD5_C)
+
+#include "mbedtls/md5.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_MD5_ALT)
+
+void mbedtls_md5_init(mbedtls_md5_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_md5_context));
+}
+
+void mbedtls_md5_free(mbedtls_md5_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_md5_context));
+}
+
+void mbedtls_md5_clone(mbedtls_md5_context *dst,
+ const mbedtls_md5_context *src)
+{
+ *dst = *src;
+}
+
+/*
+ * MD5 context setup
+ */
+int mbedtls_md5_starts(mbedtls_md5_context *ctx)
+{
+ ctx->total[0] = 0;
+ ctx->total[1] = 0;
+
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xEFCDAB89;
+ ctx->state[2] = 0x98BADCFE;
+ ctx->state[3] = 0x10325476;
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_MD5_PROCESS_ALT)
+int mbedtls_internal_md5_process(mbedtls_md5_context *ctx,
+ const unsigned char data[64])
+{
+ struct {
+ uint32_t X[16], A, B, C, D;
+ } local;
+
+ local.X[0] = MBEDTLS_GET_UINT32_LE(data, 0);
+ local.X[1] = MBEDTLS_GET_UINT32_LE(data, 4);
+ local.X[2] = MBEDTLS_GET_UINT32_LE(data, 8);
+ local.X[3] = MBEDTLS_GET_UINT32_LE(data, 12);
+ local.X[4] = MBEDTLS_GET_UINT32_LE(data, 16);
+ local.X[5] = MBEDTLS_GET_UINT32_LE(data, 20);
+ local.X[6] = MBEDTLS_GET_UINT32_LE(data, 24);
+ local.X[7] = MBEDTLS_GET_UINT32_LE(data, 28);
+ local.X[8] = MBEDTLS_GET_UINT32_LE(data, 32);
+ local.X[9] = MBEDTLS_GET_UINT32_LE(data, 36);
+ local.X[10] = MBEDTLS_GET_UINT32_LE(data, 40);
+ local.X[11] = MBEDTLS_GET_UINT32_LE(data, 44);
+ local.X[12] = MBEDTLS_GET_UINT32_LE(data, 48);
+ local.X[13] = MBEDTLS_GET_UINT32_LE(data, 52);
+ local.X[14] = MBEDTLS_GET_UINT32_LE(data, 56);
+ local.X[15] = MBEDTLS_GET_UINT32_LE(data, 60);
+
+#define S(x, n) \
+ (((x) << (n)) | (((x) & 0xFFFFFFFF) >> (32 - (n))))
+
+#define P(a, b, c, d, k, s, t) \
+ do \
+ { \
+ (a) += F((b), (c), (d)) + local.X[(k)] + (t); \
+ (a) = S((a), (s)) + (b); \
+ } while (0)
+
+ local.A = ctx->state[0];
+ local.B = ctx->state[1];
+ local.C = ctx->state[2];
+ local.D = ctx->state[3];
+
+#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+
+ P(local.A, local.B, local.C, local.D, 0, 7, 0xD76AA478);
+ P(local.D, local.A, local.B, local.C, 1, 12, 0xE8C7B756);
+ P(local.C, local.D, local.A, local.B, 2, 17, 0x242070DB);
+ P(local.B, local.C, local.D, local.A, 3, 22, 0xC1BDCEEE);
+ P(local.A, local.B, local.C, local.D, 4, 7, 0xF57C0FAF);
+ P(local.D, local.A, local.B, local.C, 5, 12, 0x4787C62A);
+ P(local.C, local.D, local.A, local.B, 6, 17, 0xA8304613);
+ P(local.B, local.C, local.D, local.A, 7, 22, 0xFD469501);
+ P(local.A, local.B, local.C, local.D, 8, 7, 0x698098D8);
+ P(local.D, local.A, local.B, local.C, 9, 12, 0x8B44F7AF);
+ P(local.C, local.D, local.A, local.B, 10, 17, 0xFFFF5BB1);
+ P(local.B, local.C, local.D, local.A, 11, 22, 0x895CD7BE);
+ P(local.A, local.B, local.C, local.D, 12, 7, 0x6B901122);
+ P(local.D, local.A, local.B, local.C, 13, 12, 0xFD987193);
+ P(local.C, local.D, local.A, local.B, 14, 17, 0xA679438E);
+ P(local.B, local.C, local.D, local.A, 15, 22, 0x49B40821);
+
+#undef F
+
+#define F(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
+
+ P(local.A, local.B, local.C, local.D, 1, 5, 0xF61E2562);
+ P(local.D, local.A, local.B, local.C, 6, 9, 0xC040B340);
+ P(local.C, local.D, local.A, local.B, 11, 14, 0x265E5A51);
+ P(local.B, local.C, local.D, local.A, 0, 20, 0xE9B6C7AA);
+ P(local.A, local.B, local.C, local.D, 5, 5, 0xD62F105D);
+ P(local.D, local.A, local.B, local.C, 10, 9, 0x02441453);
+ P(local.C, local.D, local.A, local.B, 15, 14, 0xD8A1E681);
+ P(local.B, local.C, local.D, local.A, 4, 20, 0xE7D3FBC8);
+ P(local.A, local.B, local.C, local.D, 9, 5, 0x21E1CDE6);
+ P(local.D, local.A, local.B, local.C, 14, 9, 0xC33707D6);
+ P(local.C, local.D, local.A, local.B, 3, 14, 0xF4D50D87);
+ P(local.B, local.C, local.D, local.A, 8, 20, 0x455A14ED);
+ P(local.A, local.B, local.C, local.D, 13, 5, 0xA9E3E905);
+ P(local.D, local.A, local.B, local.C, 2, 9, 0xFCEFA3F8);
+ P(local.C, local.D, local.A, local.B, 7, 14, 0x676F02D9);
+ P(local.B, local.C, local.D, local.A, 12, 20, 0x8D2A4C8A);
+
+#undef F
+
+#define F(x, y, z) ((x) ^ (y) ^ (z))
+
+ P(local.A, local.B, local.C, local.D, 5, 4, 0xFFFA3942);
+ P(local.D, local.A, local.B, local.C, 8, 11, 0x8771F681);
+ P(local.C, local.D, local.A, local.B, 11, 16, 0x6D9D6122);
+ P(local.B, local.C, local.D, local.A, 14, 23, 0xFDE5380C);
+ P(local.A, local.B, local.C, local.D, 1, 4, 0xA4BEEA44);
+ P(local.D, local.A, local.B, local.C, 4, 11, 0x4BDECFA9);
+ P(local.C, local.D, local.A, local.B, 7, 16, 0xF6BB4B60);
+ P(local.B, local.C, local.D, local.A, 10, 23, 0xBEBFBC70);
+ P(local.A, local.B, local.C, local.D, 13, 4, 0x289B7EC6);
+ P(local.D, local.A, local.B, local.C, 0, 11, 0xEAA127FA);
+ P(local.C, local.D, local.A, local.B, 3, 16, 0xD4EF3085);
+ P(local.B, local.C, local.D, local.A, 6, 23, 0x04881D05);
+ P(local.A, local.B, local.C, local.D, 9, 4, 0xD9D4D039);
+ P(local.D, local.A, local.B, local.C, 12, 11, 0xE6DB99E5);
+ P(local.C, local.D, local.A, local.B, 15, 16, 0x1FA27CF8);
+ P(local.B, local.C, local.D, local.A, 2, 23, 0xC4AC5665);
+
+#undef F
+
+#define F(x, y, z) ((y) ^ ((x) | ~(z)))
+
+ P(local.A, local.B, local.C, local.D, 0, 6, 0xF4292244);
+ P(local.D, local.A, local.B, local.C, 7, 10, 0x432AFF97);
+ P(local.C, local.D, local.A, local.B, 14, 15, 0xAB9423A7);
+ P(local.B, local.C, local.D, local.A, 5, 21, 0xFC93A039);
+ P(local.A, local.B, local.C, local.D, 12, 6, 0x655B59C3);
+ P(local.D, local.A, local.B, local.C, 3, 10, 0x8F0CCC92);
+ P(local.C, local.D, local.A, local.B, 10, 15, 0xFFEFF47D);
+ P(local.B, local.C, local.D, local.A, 1, 21, 0x85845DD1);
+ P(local.A, local.B, local.C, local.D, 8, 6, 0x6FA87E4F);
+ P(local.D, local.A, local.B, local.C, 15, 10, 0xFE2CE6E0);
+ P(local.C, local.D, local.A, local.B, 6, 15, 0xA3014314);
+ P(local.B, local.C, local.D, local.A, 13, 21, 0x4E0811A1);
+ P(local.A, local.B, local.C, local.D, 4, 6, 0xF7537E82);
+ P(local.D, local.A, local.B, local.C, 11, 10, 0xBD3AF235);
+ P(local.C, local.D, local.A, local.B, 2, 15, 0x2AD7D2BB);
+ P(local.B, local.C, local.D, local.A, 9, 21, 0xEB86D391);
+
+#undef F
+
+ ctx->state[0] += local.A;
+ ctx->state[1] += local.B;
+ ctx->state[2] += local.C;
+ ctx->state[3] += local.D;
+
+ /* Zeroise variables to clear sensitive data from memory. */
+ mbedtls_platform_zeroize(&local, sizeof(local));
+
+ return 0;
+}
+
+#endif /* !MBEDTLS_MD5_PROCESS_ALT */
+
+/*
+ * MD5 process buffer
+ */
+int mbedtls_md5_update(mbedtls_md5_context *ctx,
+ const unsigned char *input,
+ size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t fill;
+ uint32_t left;
+
+ if (ilen == 0) {
+ return 0;
+ }
+
+ left = ctx->total[0] & 0x3F;
+ fill = 64 - left;
+
+ ctx->total[0] += (uint32_t) ilen;
+ ctx->total[0] &= 0xFFFFFFFF;
+
+ if (ctx->total[0] < (uint32_t) ilen) {
+ ctx->total[1]++;
+ }
+
+ if (left && ilen >= fill) {
+ memcpy((void *) (ctx->buffer + left), input, fill);
+ if ((ret = mbedtls_internal_md5_process(ctx, ctx->buffer)) != 0) {
+ return ret;
+ }
+
+ input += fill;
+ ilen -= fill;
+ left = 0;
+ }
+
+ while (ilen >= 64) {
+ if ((ret = mbedtls_internal_md5_process(ctx, input)) != 0) {
+ return ret;
+ }
+
+ input += 64;
+ ilen -= 64;
+ }
+
+ if (ilen > 0) {
+ memcpy((void *) (ctx->buffer + left), input, ilen);
+ }
+
+ return 0;
+}
+
+/*
+ * MD5 final digest
+ */
+int mbedtls_md5_finish(mbedtls_md5_context *ctx,
+ unsigned char output[16])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ uint32_t used;
+ uint32_t high, low;
+
+ /*
+ * Add padding: 0x80 then 0x00 until 8 bytes remain for the length
+ */
+ used = ctx->total[0] & 0x3F;
+
+ ctx->buffer[used++] = 0x80;
+
+ if (used <= 56) {
+ /* Enough room for padding + length in current block */
+ memset(ctx->buffer + used, 0, 56 - used);
+ } else {
+ /* We'll need an extra block */
+ memset(ctx->buffer + used, 0, 64 - used);
+
+ if ((ret = mbedtls_internal_md5_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ memset(ctx->buffer, 0, 56);
+ }
+
+ /*
+ * Add message length
+ */
+ high = (ctx->total[0] >> 29)
+ | (ctx->total[1] << 3);
+ low = (ctx->total[0] << 3);
+
+ MBEDTLS_PUT_UINT32_LE(low, ctx->buffer, 56);
+ MBEDTLS_PUT_UINT32_LE(high, ctx->buffer, 60);
+
+ if ((ret = mbedtls_internal_md5_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * Output final state
+ */
+ MBEDTLS_PUT_UINT32_LE(ctx->state[0], output, 0);
+ MBEDTLS_PUT_UINT32_LE(ctx->state[1], output, 4);
+ MBEDTLS_PUT_UINT32_LE(ctx->state[2], output, 8);
+ MBEDTLS_PUT_UINT32_LE(ctx->state[3], output, 12);
+
+ ret = 0;
+
+exit:
+ mbedtls_md5_free(ctx);
+ return ret;
+}
+
+#endif /* !MBEDTLS_MD5_ALT */
+
+/*
+ * output = MD5( input buffer )
+ */
+int mbedtls_md5(const unsigned char *input,
+ size_t ilen,
+ unsigned char output[16])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_md5_context ctx;
+
+ mbedtls_md5_init(&ctx);
+
+ if ((ret = mbedtls_md5_starts(&ctx)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_md5_update(&ctx, input, ilen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_md5_finish(&ctx, output)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_md5_free(&ctx);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * RFC 1321 test vectors
+ */
+static const unsigned char md5_test_buf[7][81] =
+{
+ { "" },
+ { "a" },
+ { "abc" },
+ { "message digest" },
+ { "abcdefghijklmnopqrstuvwxyz" },
+ { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
+ { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" }
+};
+
+static const size_t md5_test_buflen[7] =
+{
+ 0, 1, 3, 14, 26, 62, 80
+};
+
+static const unsigned char md5_test_sum[7][16] =
+{
+ { 0xD4, 0x1D, 0x8C, 0xD9, 0x8F, 0x00, 0xB2, 0x04,
+ 0xE9, 0x80, 0x09, 0x98, 0xEC, 0xF8, 0x42, 0x7E },
+ { 0x0C, 0xC1, 0x75, 0xB9, 0xC0, 0xF1, 0xB6, 0xA8,
+ 0x31, 0xC3, 0x99, 0xE2, 0x69, 0x77, 0x26, 0x61 },
+ { 0x90, 0x01, 0x50, 0x98, 0x3C, 0xD2, 0x4F, 0xB0,
+ 0xD6, 0x96, 0x3F, 0x7D, 0x28, 0xE1, 0x7F, 0x72 },
+ { 0xF9, 0x6B, 0x69, 0x7D, 0x7C, 0xB7, 0x93, 0x8D,
+ 0x52, 0x5A, 0x2F, 0x31, 0xAA, 0xF1, 0x61, 0xD0 },
+ { 0xC3, 0xFC, 0xD3, 0xD7, 0x61, 0x92, 0xE4, 0x00,
+ 0x7D, 0xFB, 0x49, 0x6C, 0xCA, 0x67, 0xE1, 0x3B },
+ { 0xD1, 0x74, 0xAB, 0x98, 0xD2, 0x77, 0xD9, 0xF5,
+ 0xA5, 0x61, 0x1C, 0x2C, 0x9F, 0x41, 0x9D, 0x9F },
+ { 0x57, 0xED, 0xF4, 0xA2, 0x2B, 0xE3, 0xC9, 0x55,
+ 0xAC, 0x49, 0xDA, 0x2E, 0x21, 0x07, 0xB6, 0x7A }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_md5_self_test(int verbose)
+{
+ int i, ret = 0;
+ unsigned char md5sum[16];
+
+ for (i = 0; i < 7; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" MD5 test #%d: ", i + 1);
+ }
+
+ ret = mbedtls_md5(md5_test_buf[i], md5_test_buflen[i], md5sum);
+ if (ret != 0) {
+ goto fail;
+ }
+
+ if (memcmp(md5sum, md5_test_sum[i], 16) != 0) {
+ ret = 1;
+ goto fail;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+
+fail:
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_MD5_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/md_psa.h b/tf-psa-crypto/drivers/builtin/src/md_psa.h
new file mode 100644
index 0000000..028ba24
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md_psa.h
@@ -0,0 +1,26 @@
+/**
+ * Translation between MD and PSA identifiers (algorithms, errors).
+ *
+ * Note: this internal module will go away when everything becomes based on
+ * PSA Crypto; it is a helper for the transition period.
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_MD_PSA_H
+#define MBEDTLS_MD_PSA_H
+
+#include "common.h"
+
+#include "mbedtls/md.h"
+#include "psa/crypto.h"
+
+/** Convert PSA status to MD error code.
+ *
+ * \param status PSA status.
+ *
+ * \return The corresponding MD error code,
+ */
+int mbedtls_md_error_from_psa(psa_status_t status);
+
+#endif /* MBEDTLS_MD_PSA_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/md_wrap.h b/tf-psa-crypto/drivers/builtin/src/md_wrap.h
new file mode 100644
index 0000000..dad1235
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/md_wrap.h
@@ -0,0 +1,46 @@
+/**
+ * \file md_wrap.h
+ *
+ * \brief Message digest wrappers.
+ *
+ * \warning This in an internal header. Do not include directly.
+ *
+ * \author Adriaan de Jong <dejong@fox-it.com>
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_MD_WRAP_H
+#define MBEDTLS_MD_WRAP_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/md.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+/**
+ * Message digest information.
+ * Allows message digest functions to be called in a generic way.
+ */
+struct mbedtls_md_info_t {
+ /** Digest identifier */
+ mbedtls_md_type_t type;
+
+ /** Output length of the digest function in bytes */
+ unsigned char size;
+
+#if defined(MBEDTLS_MD_C)
+ /** Block length of the digest function in bytes */
+ unsigned char block_size;
+#endif
+};
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* MBEDTLS_MD_WRAP_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/memory_buffer_alloc.c b/tf-psa-crypto/drivers/builtin/src/memory_buffer_alloc.c
new file mode 100644
index 0000000..79b0a8b
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/memory_buffer_alloc.c
@@ -0,0 +1,745 @@
+/*
+ * Buffer-based memory allocator
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_MEMORY_BUFFER_ALLOC_C)
+#include "mbedtls/memory_buffer_alloc.h"
+
+/* No need for the header guard as MBEDTLS_MEMORY_BUFFER_ALLOC_C
+ is dependent upon MBEDTLS_PLATFORM_C */
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+#include <execinfo.h>
+#endif
+
+#if defined(MBEDTLS_THREADING_C)
+#include "mbedtls/threading.h"
+#endif
+
+#define MAGIC1 0xFF00AA55
+#define MAGIC2 0xEE119966
+#define MAX_BT 20
+
+typedef struct _memory_header memory_header;
+struct _memory_header {
+ size_t magic1;
+ size_t size;
+ size_t alloc;
+ memory_header *prev;
+ memory_header *next;
+ memory_header *prev_free;
+ memory_header *next_free;
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ char **trace;
+ size_t trace_count;
+#endif
+ size_t magic2;
+};
+
+typedef struct {
+ unsigned char *buf;
+ size_t len;
+ memory_header *first;
+ memory_header *first_free;
+ int verify;
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ size_t alloc_count;
+ size_t free_count;
+ size_t total_used;
+ size_t maximum_used;
+ size_t header_count;
+ size_t maximum_header_count;
+#endif
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_threading_mutex_t mutex;
+#endif
+}
+buffer_alloc_ctx;
+
+static buffer_alloc_ctx heap;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+static void debug_header(memory_header *hdr)
+{
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ size_t i;
+#endif
+
+ mbedtls_fprintf(stderr, "HDR: PTR(%10zu), PREV(%10zu), NEXT(%10zu), "
+ "ALLOC(%zu), SIZE(%10zu)\n",
+ (size_t) hdr, (size_t) hdr->prev, (size_t) hdr->next,
+ hdr->alloc, hdr->size);
+ mbedtls_fprintf(stderr, " FPREV(%10zu), FNEXT(%10zu)\n",
+ (size_t) hdr->prev_free, (size_t) hdr->next_free);
+
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ mbedtls_fprintf(stderr, "TRACE: \n");
+ for (i = 0; i < hdr->trace_count; i++) {
+ mbedtls_fprintf(stderr, "%s\n", hdr->trace[i]);
+ }
+ mbedtls_fprintf(stderr, "\n");
+#endif
+}
+
+static void debug_chain(void)
+{
+ memory_header *cur = heap.first;
+
+ mbedtls_fprintf(stderr, "\nBlock list\n");
+ while (cur != NULL) {
+ debug_header(cur);
+ cur = cur->next;
+ }
+
+ mbedtls_fprintf(stderr, "Free list\n");
+ cur = heap.first_free;
+
+ while (cur != NULL) {
+ debug_header(cur);
+ cur = cur->next_free;
+ }
+}
+#endif /* MBEDTLS_MEMORY_DEBUG */
+
+static int verify_header(memory_header *hdr)
+{
+ if (hdr->magic1 != MAGIC1) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: MAGIC1 mismatch\n");
+#endif
+ return 1;
+ }
+
+ if (hdr->magic2 != MAGIC2) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: MAGIC2 mismatch\n");
+#endif
+ return 1;
+ }
+
+ if (hdr->alloc > 1) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: alloc has illegal value\n");
+#endif
+ return 1;
+ }
+
+ if (hdr->prev != NULL && hdr->prev == hdr->next) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: prev == next\n");
+#endif
+ return 1;
+ }
+
+ if (hdr->prev_free != NULL && hdr->prev_free == hdr->next_free) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: prev_free == next_free\n");
+#endif
+ return 1;
+ }
+
+ return 0;
+}
+
+static int verify_chain(void)
+{
+ memory_header *prv = heap.first, *cur;
+
+ if (prv == NULL || verify_header(prv) != 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: verification of first header "
+ "failed\n");
+#endif
+ return 1;
+ }
+
+ if (heap.first->prev != NULL) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: verification failed: "
+ "first->prev != NULL\n");
+#endif
+ return 1;
+ }
+
+ cur = heap.first->next;
+
+ while (cur != NULL) {
+ if (verify_header(cur) != 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: verification of header "
+ "failed\n");
+#endif
+ return 1;
+ }
+
+ if (cur->prev != prv) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: verification failed: "
+ "cur->prev != prv\n");
+#endif
+ return 1;
+ }
+
+ prv = cur;
+ cur = cur->next;
+ }
+
+ return 0;
+}
+
+static void *buffer_alloc_calloc(size_t n, size_t size)
+{
+ memory_header *new, *cur = heap.first_free;
+ unsigned char *p;
+ void *ret;
+ size_t original_len, len;
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ void *trace_buffer[MAX_BT];
+ size_t trace_cnt;
+#endif
+
+ if (heap.buf == NULL || heap.first == NULL) {
+ return NULL;
+ }
+
+ original_len = len = n * size;
+
+ if (n == 0 || size == 0 || len / n != size) {
+ return NULL;
+ } else if (len > (size_t) -MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+ return NULL;
+ }
+
+ if (len % MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+ len -= len % MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+ len += MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+ }
+
+ // Find block that fits
+ //
+ while (cur != NULL) {
+ if (cur->size >= len) {
+ break;
+ }
+
+ cur = cur->next_free;
+ }
+
+ if (cur == NULL) {
+ return NULL;
+ }
+
+ if (cur->alloc != 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: block in free_list but allocated "
+ "data\n");
+#endif
+ mbedtls_exit(1);
+ }
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ heap.alloc_count++;
+#endif
+
+ // Found location, split block if > memory_header + 4 room left
+ //
+ if (cur->size - len < sizeof(memory_header) +
+ MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+ cur->alloc = 1;
+
+ // Remove from free_list
+ //
+ if (cur->prev_free != NULL) {
+ cur->prev_free->next_free = cur->next_free;
+ } else {
+ heap.first_free = cur->next_free;
+ }
+
+ if (cur->next_free != NULL) {
+ cur->next_free->prev_free = cur->prev_free;
+ }
+
+ cur->prev_free = NULL;
+ cur->next_free = NULL;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ heap.total_used += cur->size;
+ if (heap.total_used > heap.maximum_used) {
+ heap.maximum_used = heap.total_used;
+ }
+#endif
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ trace_cnt = backtrace(trace_buffer, MAX_BT);
+ cur->trace = backtrace_symbols(trace_buffer, trace_cnt);
+ cur->trace_count = trace_cnt;
+#endif
+
+ if ((heap.verify & MBEDTLS_MEMORY_VERIFY_ALLOC) && verify_chain() != 0) {
+ mbedtls_exit(1);
+ }
+
+ ret = (unsigned char *) cur + sizeof(memory_header);
+ memset(ret, 0, original_len);
+
+ return ret;
+ }
+
+ p = ((unsigned char *) cur) + sizeof(memory_header) + len;
+ new = (memory_header *) p;
+
+ new->size = cur->size - len - sizeof(memory_header);
+ new->alloc = 0;
+ new->prev = cur;
+ new->next = cur->next;
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ new->trace = NULL;
+ new->trace_count = 0;
+#endif
+ new->magic1 = MAGIC1;
+ new->magic2 = MAGIC2;
+
+ if (new->next != NULL) {
+ new->next->prev = new;
+ }
+
+ // Replace cur with new in free_list
+ //
+ new->prev_free = cur->prev_free;
+ new->next_free = cur->next_free;
+ if (new->prev_free != NULL) {
+ new->prev_free->next_free = new;
+ } else {
+ heap.first_free = new;
+ }
+
+ if (new->next_free != NULL) {
+ new->next_free->prev_free = new;
+ }
+
+ cur->alloc = 1;
+ cur->size = len;
+ cur->next = new;
+ cur->prev_free = NULL;
+ cur->next_free = NULL;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ heap.header_count++;
+ if (heap.header_count > heap.maximum_header_count) {
+ heap.maximum_header_count = heap.header_count;
+ }
+ heap.total_used += cur->size;
+ if (heap.total_used > heap.maximum_used) {
+ heap.maximum_used = heap.total_used;
+ }
+#endif
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ trace_cnt = backtrace(trace_buffer, MAX_BT);
+ cur->trace = backtrace_symbols(trace_buffer, trace_cnt);
+ cur->trace_count = trace_cnt;
+#endif
+
+ if ((heap.verify & MBEDTLS_MEMORY_VERIFY_ALLOC) && verify_chain() != 0) {
+ mbedtls_exit(1);
+ }
+
+ ret = (unsigned char *) cur + sizeof(memory_header);
+ memset(ret, 0, original_len);
+
+ return ret;
+}
+
+static void buffer_alloc_free(void *ptr)
+{
+ memory_header *hdr, *old = NULL;
+ unsigned char *p = (unsigned char *) ptr;
+
+ if (ptr == NULL || heap.buf == NULL || heap.first == NULL) {
+ return;
+ }
+
+ if (p < heap.buf || p >= heap.buf + heap.len) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: mbedtls_free() outside of managed "
+ "space\n");
+#endif
+ mbedtls_exit(1);
+ }
+
+ p -= sizeof(memory_header);
+ hdr = (memory_header *) p;
+
+ if (verify_header(hdr) != 0) {
+ mbedtls_exit(1);
+ }
+
+ if (hdr->alloc != 1) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ mbedtls_fprintf(stderr, "FATAL: mbedtls_free() on unallocated "
+ "data\n");
+#endif
+ mbedtls_exit(1);
+ }
+
+ hdr->alloc = 0;
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ heap.free_count++;
+ heap.total_used -= hdr->size;
+#endif
+
+#if defined(MBEDTLS_MEMORY_BACKTRACE)
+ free(hdr->trace);
+ hdr->trace = NULL;
+ hdr->trace_count = 0;
+#endif
+
+ // Regroup with block before
+ //
+ if (hdr->prev != NULL && hdr->prev->alloc == 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ heap.header_count--;
+#endif
+ hdr->prev->size += sizeof(memory_header) + hdr->size;
+ hdr->prev->next = hdr->next;
+ old = hdr;
+ hdr = hdr->prev;
+
+ if (hdr->next != NULL) {
+ hdr->next->prev = hdr;
+ }
+
+ memset(old, 0, sizeof(memory_header));
+ }
+
+ // Regroup with block after
+ //
+ if (hdr->next != NULL && hdr->next->alloc == 0) {
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ heap.header_count--;
+#endif
+ hdr->size += sizeof(memory_header) + hdr->next->size;
+ old = hdr->next;
+ hdr->next = hdr->next->next;
+
+ if (hdr->prev_free != NULL || hdr->next_free != NULL) {
+ if (hdr->prev_free != NULL) {
+ hdr->prev_free->next_free = hdr->next_free;
+ } else {
+ heap.first_free = hdr->next_free;
+ }
+
+ if (hdr->next_free != NULL) {
+ hdr->next_free->prev_free = hdr->prev_free;
+ }
+ }
+
+ hdr->prev_free = old->prev_free;
+ hdr->next_free = old->next_free;
+
+ if (hdr->prev_free != NULL) {
+ hdr->prev_free->next_free = hdr;
+ } else {
+ heap.first_free = hdr;
+ }
+
+ if (hdr->next_free != NULL) {
+ hdr->next_free->prev_free = hdr;
+ }
+
+ if (hdr->next != NULL) {
+ hdr->next->prev = hdr;
+ }
+
+ memset(old, 0, sizeof(memory_header));
+ }
+
+ // Prepend to free_list if we have not merged
+ // (Does not have to stay in same order as prev / next list)
+ //
+ if (old == NULL) {
+ hdr->next_free = heap.first_free;
+ if (heap.first_free != NULL) {
+ heap.first_free->prev_free = hdr;
+ }
+ heap.first_free = hdr;
+ }
+
+ if ((heap.verify & MBEDTLS_MEMORY_VERIFY_FREE) && verify_chain() != 0) {
+ mbedtls_exit(1);
+ }
+}
+
+void mbedtls_memory_buffer_set_verify(int verify)
+{
+ heap.verify = verify;
+}
+
+int mbedtls_memory_buffer_alloc_verify(void)
+{
+ return verify_chain();
+}
+
+#if defined(MBEDTLS_MEMORY_DEBUG)
+void mbedtls_memory_buffer_alloc_status(void)
+{
+ mbedtls_fprintf(stderr,
+ "Current use: %zu blocks / %zu bytes, max: %zu blocks / "
+ "%zu bytes (total %zu bytes), alloc / free: %zu / %zu\n",
+ heap.header_count, heap.total_used,
+ heap.maximum_header_count, heap.maximum_used,
+ heap.maximum_header_count * sizeof(memory_header)
+ + heap.maximum_used,
+ heap.alloc_count, heap.free_count);
+
+ if (heap.first->next == NULL) {
+ mbedtls_fprintf(stderr, "All memory de-allocated in stack buffer\n");
+ } else {
+ mbedtls_fprintf(stderr, "Memory currently allocated:\n");
+ debug_chain();
+ }
+}
+
+void mbedtls_memory_buffer_alloc_count_get(size_t *alloc_count, size_t *free_count)
+{
+ *alloc_count = heap.alloc_count;
+ *free_count = heap.free_count;
+}
+
+void mbedtls_memory_buffer_alloc_max_get(size_t *max_used, size_t *max_blocks)
+{
+ *max_used = heap.maximum_used;
+ *max_blocks = heap.maximum_header_count;
+}
+
+void mbedtls_memory_buffer_alloc_max_reset(void)
+{
+ heap.maximum_used = 0;
+ heap.maximum_header_count = 0;
+}
+
+void mbedtls_memory_buffer_alloc_cur_get(size_t *cur_used, size_t *cur_blocks)
+{
+ *cur_used = heap.total_used;
+ *cur_blocks = heap.header_count;
+}
+#endif /* MBEDTLS_MEMORY_DEBUG */
+
+#if defined(MBEDTLS_THREADING_C)
+static void *buffer_alloc_calloc_mutexed(size_t n, size_t size)
+{
+ void *buf;
+ if (mbedtls_mutex_lock(&heap.mutex) != 0) {
+ return NULL;
+ }
+ buf = buffer_alloc_calloc(n, size);
+ if (mbedtls_mutex_unlock(&heap.mutex)) {
+ return NULL;
+ }
+ return buf;
+}
+
+static void buffer_alloc_free_mutexed(void *ptr)
+{
+ /* We have no good option here, but corrupting the heap seems
+ * worse than losing memory. */
+ if (mbedtls_mutex_lock(&heap.mutex)) {
+ return;
+ }
+ buffer_alloc_free(ptr);
+ (void) mbedtls_mutex_unlock(&heap.mutex);
+}
+#endif /* MBEDTLS_THREADING_C */
+
+void mbedtls_memory_buffer_alloc_init(unsigned char *buf, size_t len)
+{
+ memset(&heap, 0, sizeof(buffer_alloc_ctx));
+
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_init(&heap.mutex);
+ mbedtls_platform_set_calloc_free(buffer_alloc_calloc_mutexed,
+ buffer_alloc_free_mutexed);
+#else
+ mbedtls_platform_set_calloc_free(buffer_alloc_calloc, buffer_alloc_free);
+#endif
+
+ if (len < sizeof(memory_header) + MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+ return;
+ } else if ((size_t) buf % MBEDTLS_MEMORY_ALIGN_MULTIPLE) {
+ /* Adjust len first since buf is used in the computation */
+ len -= MBEDTLS_MEMORY_ALIGN_MULTIPLE
+ - (size_t) buf % MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+ buf += MBEDTLS_MEMORY_ALIGN_MULTIPLE
+ - (size_t) buf % MBEDTLS_MEMORY_ALIGN_MULTIPLE;
+ }
+
+ memset(buf, 0, len);
+
+ heap.buf = buf;
+ heap.len = len;
+
+ heap.first = (memory_header *) buf;
+ heap.first->size = len - sizeof(memory_header);
+ heap.first->magic1 = MAGIC1;
+ heap.first->magic2 = MAGIC2;
+ heap.first_free = heap.first;
+}
+
+void mbedtls_memory_buffer_alloc_free(void)
+{
+#if defined(MBEDTLS_THREADING_C)
+ mbedtls_mutex_free(&heap.mutex);
+#endif
+ mbedtls_platform_zeroize(&heap, sizeof(buffer_alloc_ctx));
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+static int check_pointer(void *p)
+{
+ if (p == NULL) {
+ return -1;
+ }
+
+ if ((size_t) p % MBEDTLS_MEMORY_ALIGN_MULTIPLE != 0) {
+ return -1;
+ }
+
+ return 0;
+}
+
+static int check_all_free(void)
+{
+ if (
+#if defined(MBEDTLS_MEMORY_DEBUG)
+ heap.total_used != 0 ||
+#endif
+ heap.first != heap.first_free ||
+ (void *) heap.first != (void *) heap.buf) {
+ return -1;
+ }
+
+ return 0;
+}
+
+#define TEST_ASSERT(condition) \
+ if (!(condition)) \
+ { \
+ if (verbose != 0) \
+ mbedtls_printf("failed\n"); \
+ \
+ ret = 1; \
+ goto cleanup; \
+ }
+
+int mbedtls_memory_buffer_alloc_self_test(int verbose)
+{
+ unsigned char buf[1024];
+ unsigned char *p, *q, *r, *end;
+ int ret = 0;
+
+ if (verbose != 0) {
+ mbedtls_printf(" MBA test #1 (basic alloc-free cycle): ");
+ }
+
+ mbedtls_memory_buffer_alloc_init(buf, sizeof(buf));
+
+ p = mbedtls_calloc(1, 1);
+ q = mbedtls_calloc(1, 128);
+ r = mbedtls_calloc(1, 16);
+
+ TEST_ASSERT(check_pointer(p) == 0 &&
+ check_pointer(q) == 0 &&
+ check_pointer(r) == 0);
+
+ mbedtls_free(r);
+ mbedtls_free(q);
+ mbedtls_free(p);
+
+ TEST_ASSERT(check_all_free() == 0);
+
+ /* Memorize end to compare with the next test */
+ end = heap.buf + heap.len;
+
+ mbedtls_memory_buffer_alloc_free();
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" MBA test #2 (buf not aligned): ");
+ }
+
+ mbedtls_memory_buffer_alloc_init(buf + 1, sizeof(buf) - 1);
+
+ TEST_ASSERT(heap.buf + heap.len == end);
+
+ p = mbedtls_calloc(1, 1);
+ q = mbedtls_calloc(1, 128);
+ r = mbedtls_calloc(1, 16);
+
+ TEST_ASSERT(check_pointer(p) == 0 &&
+ check_pointer(q) == 0 &&
+ check_pointer(r) == 0);
+
+ mbedtls_free(r);
+ mbedtls_free(q);
+ mbedtls_free(p);
+
+ TEST_ASSERT(check_all_free() == 0);
+
+ mbedtls_memory_buffer_alloc_free();
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" MBA test #3 (full): ");
+ }
+
+ mbedtls_memory_buffer_alloc_init(buf, sizeof(buf));
+
+ p = mbedtls_calloc(1, sizeof(buf) - sizeof(memory_header));
+
+ TEST_ASSERT(check_pointer(p) == 0);
+ TEST_ASSERT(mbedtls_calloc(1, 1) == NULL);
+
+ mbedtls_free(p);
+
+ p = mbedtls_calloc(1, sizeof(buf) - 2 * sizeof(memory_header) - 16);
+ q = mbedtls_calloc(1, 16);
+
+ TEST_ASSERT(check_pointer(p) == 0 && check_pointer(q) == 0);
+ TEST_ASSERT(mbedtls_calloc(1, 1) == NULL);
+
+ mbedtls_free(q);
+
+ TEST_ASSERT(mbedtls_calloc(1, 17) == NULL);
+
+ mbedtls_free(p);
+
+ TEST_ASSERT(check_all_free() == 0);
+
+ mbedtls_memory_buffer_alloc_free();
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+cleanup:
+ mbedtls_memory_buffer_alloc_free();
+
+ return ret;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_MEMORY_BUFFER_ALLOC_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/nist_kw.c b/tf-psa-crypto/drivers/builtin/src/nist_kw.c
new file mode 100644
index 0000000..8faafe4
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/nist_kw.c
@@ -0,0 +1,729 @@
+/*
+ * Implementation of NIST SP 800-38F key wrapping, supporting KW and KWP modes
+ * only
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * Definition of Key Wrapping:
+ * https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-38F.pdf
+ * RFC 3394 "Advanced Encryption Standard (AES) Key Wrap Algorithm"
+ * RFC 5649 "Advanced Encryption Standard (AES) Key Wrap with Padding Algorithm"
+ *
+ * Note: RFC 3394 defines different methodology for intermediate operations for
+ * the wrapping and unwrapping operation than the definition in NIST SP 800-38F.
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_NIST_KW_C)
+
+#include "mbedtls/nist_kw.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "mbedtls/constant_time.h"
+#include "constant_time_internal.h"
+
+#include <stdint.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_NIST_KW_ALT)
+
+#define KW_SEMIBLOCK_LENGTH 8
+#define MIN_SEMIBLOCKS_COUNT 3
+
+/*! The 64-bit default integrity check value (ICV) for KW mode. */
+static const unsigned char NIST_KW_ICV1[] = { 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6, 0xA6 };
+/*! The 32-bit default integrity check value (ICV) for KWP mode. */
+static const unsigned char NIST_KW_ICV2[] = { 0xA6, 0x59, 0x59, 0xA6 };
+
+/*
+ * Initialize context
+ */
+void mbedtls_nist_kw_init(mbedtls_nist_kw_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_nist_kw_context));
+}
+
+int mbedtls_nist_kw_setkey(mbedtls_nist_kw_context *ctx,
+ mbedtls_cipher_id_t cipher,
+ const unsigned char *key,
+ unsigned int keybits,
+ const int is_wrap)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const mbedtls_cipher_info_t *cipher_info;
+
+ cipher_info = mbedtls_cipher_info_from_values(cipher,
+ keybits,
+ MBEDTLS_MODE_ECB);
+ if (cipher_info == NULL) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_cipher_info_get_block_size(cipher_info) != 16) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ /*
+ * SP 800-38F currently defines AES cipher as the only block cipher allowed:
+ * "For KW and KWP, the underlying block cipher shall be approved, and the
+ * block size shall be 128 bits. Currently, the AES block cipher, with key
+ * lengths of 128, 192, or 256 bits, is the only block cipher that fits
+ * this profile."
+ * Currently we don't support other 128 bit block ciphers for key wrapping,
+ * such as Camellia and Aria.
+ */
+ if (cipher != MBEDTLS_CIPHER_ID_AES) {
+ return MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ }
+
+ mbedtls_cipher_free(&ctx->cipher_ctx);
+
+ if ((ret = mbedtls_cipher_setup(&ctx->cipher_ctx, cipher_info)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_cipher_setkey(&ctx->cipher_ctx, key, keybits,
+ is_wrap ? MBEDTLS_ENCRYPT :
+ MBEDTLS_DECRYPT)
+ ) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Free context
+ */
+void mbedtls_nist_kw_free(mbedtls_nist_kw_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_cipher_free(&ctx->cipher_ctx);
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_nist_kw_context));
+}
+
+/*
+ * Helper function for Xoring the uint64_t "t" with the encrypted A.
+ * Defined in NIST SP 800-38F section 6.1
+ */
+static void calc_a_xor_t(unsigned char A[KW_SEMIBLOCK_LENGTH], uint64_t t)
+{
+ size_t i = 0;
+ for (i = 0; i < sizeof(t); i++) {
+ A[i] ^= (t >> ((sizeof(t) - 1 - i) * 8)) & 0xff;
+ }
+}
+
+/*
+ * KW-AE as defined in SP 800-38F section 6.2
+ * KWP-AE as defined in SP 800-38F section 6.3
+ */
+int mbedtls_nist_kw_wrap(mbedtls_nist_kw_context *ctx,
+ mbedtls_nist_kw_mode_t mode,
+ const unsigned char *input, size_t in_len,
+ unsigned char *output, size_t *out_len, size_t out_size)
+{
+ int ret = 0;
+ size_t semiblocks = 0;
+ size_t s;
+ size_t olen, padlen = 0;
+ uint64_t t = 0;
+ unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
+ unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
+
+ *out_len = 0;
+ /*
+ * Generate the String to work on
+ */
+ if (mode == MBEDTLS_KW_MODE_KW) {
+ if (out_size < in_len + KW_SEMIBLOCK_LENGTH) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ /*
+ * According to SP 800-38F Table 1, the plaintext length for KW
+ * must be between 2 to 2^54-1 semiblocks inclusive.
+ */
+ if (in_len < 16 ||
+#if SIZE_MAX > 0x1FFFFFFFFFFFFF8
+ in_len > 0x1FFFFFFFFFFFFF8 ||
+#endif
+ in_len % KW_SEMIBLOCK_LENGTH != 0) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ memcpy(output, NIST_KW_ICV1, KW_SEMIBLOCK_LENGTH);
+ memmove(output + KW_SEMIBLOCK_LENGTH, input, in_len);
+ } else {
+ if (in_len % 8 != 0) {
+ padlen = (8 - (in_len % 8));
+ }
+
+ if (out_size < in_len + KW_SEMIBLOCK_LENGTH + padlen) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ /*
+ * According to SP 800-38F Table 1, the plaintext length for KWP
+ * must be between 1 and 2^32-1 octets inclusive.
+ */
+ if (in_len < 1
+#if SIZE_MAX > 0xFFFFFFFF
+ || in_len > 0xFFFFFFFF
+#endif
+ ) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ memcpy(output, NIST_KW_ICV2, KW_SEMIBLOCK_LENGTH / 2);
+ MBEDTLS_PUT_UINT32_BE((in_len & 0xffffffff), output,
+ KW_SEMIBLOCK_LENGTH / 2);
+
+ memcpy(output + KW_SEMIBLOCK_LENGTH, input, in_len);
+ memset(output + KW_SEMIBLOCK_LENGTH + in_len, 0, padlen);
+ }
+ semiblocks = ((in_len + padlen) / KW_SEMIBLOCK_LENGTH) + 1;
+
+ s = 6 * (semiblocks - 1);
+
+ if (mode == MBEDTLS_KW_MODE_KWP
+ && in_len <= KW_SEMIBLOCK_LENGTH) {
+ memcpy(inbuff, output, 16);
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+ inbuff, 16, output, &olen);
+ if (ret != 0) {
+ goto cleanup;
+ }
+ } else {
+ unsigned char *R2 = output + KW_SEMIBLOCK_LENGTH;
+ unsigned char *A = output;
+
+ /*
+ * Do the wrapping function W, as defined in RFC 3394 section 2.2.1
+ */
+ if (semiblocks < MIN_SEMIBLOCKS_COUNT) {
+ ret = MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ /* Calculate intermediate values */
+ for (t = 1; t <= s; t++) {
+ memcpy(inbuff, A, KW_SEMIBLOCK_LENGTH);
+ memcpy(inbuff + KW_SEMIBLOCK_LENGTH, R2, KW_SEMIBLOCK_LENGTH);
+
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+ inbuff, 16, outbuff, &olen);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
+ calc_a_xor_t(A, t);
+
+ memcpy(R2, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
+ R2 += KW_SEMIBLOCK_LENGTH;
+ if (R2 >= output + (semiblocks * KW_SEMIBLOCK_LENGTH)) {
+ R2 = output + KW_SEMIBLOCK_LENGTH;
+ }
+ }
+ }
+
+ *out_len = semiblocks * KW_SEMIBLOCK_LENGTH;
+
+cleanup:
+
+ if (ret != 0) {
+ memset(output, 0, semiblocks * KW_SEMIBLOCK_LENGTH);
+ }
+ mbedtls_platform_zeroize(inbuff, KW_SEMIBLOCK_LENGTH * 2);
+ mbedtls_platform_zeroize(outbuff, KW_SEMIBLOCK_LENGTH * 2);
+
+ return ret;
+}
+
+/*
+ * W-1 function as defined in RFC 3394 section 2.2.2
+ * This function assumes the following:
+ * 1. Output buffer is at least of size ( semiblocks - 1 ) * KW_SEMIBLOCK_LENGTH.
+ * 2. The input buffer is of size semiblocks * KW_SEMIBLOCK_LENGTH.
+ * 3. Minimal number of semiblocks is 3.
+ * 4. A is a buffer to hold the first semiblock of the input buffer.
+ */
+static int unwrap(mbedtls_nist_kw_context *ctx,
+ const unsigned char *input, size_t semiblocks,
+ unsigned char A[KW_SEMIBLOCK_LENGTH],
+ unsigned char *output, size_t *out_len)
+{
+ int ret = 0;
+ const size_t s = 6 * (semiblocks - 1);
+ size_t olen;
+ uint64_t t = 0;
+ unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
+ unsigned char inbuff[KW_SEMIBLOCK_LENGTH * 2];
+ unsigned char *R = NULL;
+ *out_len = 0;
+
+ if (semiblocks < MIN_SEMIBLOCKS_COUNT) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ memcpy(A, input, KW_SEMIBLOCK_LENGTH);
+ memmove(output, input + KW_SEMIBLOCK_LENGTH, (semiblocks - 1) * KW_SEMIBLOCK_LENGTH);
+ R = output + (semiblocks - 2) * KW_SEMIBLOCK_LENGTH;
+
+ /* Calculate intermediate values */
+ for (t = s; t >= 1; t--) {
+ calc_a_xor_t(A, t);
+
+ memcpy(inbuff, A, KW_SEMIBLOCK_LENGTH);
+ memcpy(inbuff + KW_SEMIBLOCK_LENGTH, R, KW_SEMIBLOCK_LENGTH);
+
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+ inbuff, 16, outbuff, &olen);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
+
+ /* Set R as LSB64 of outbuff */
+ memcpy(R, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
+
+ if (R == output) {
+ R = output + (semiblocks - 2) * KW_SEMIBLOCK_LENGTH;
+ } else {
+ R -= KW_SEMIBLOCK_LENGTH;
+ }
+ }
+
+ *out_len = (semiblocks - 1) * KW_SEMIBLOCK_LENGTH;
+
+cleanup:
+ if (ret != 0) {
+ memset(output, 0, (semiblocks - 1) * KW_SEMIBLOCK_LENGTH);
+ }
+ mbedtls_platform_zeroize(inbuff, sizeof(inbuff));
+ mbedtls_platform_zeroize(outbuff, sizeof(outbuff));
+
+ return ret;
+}
+
+/*
+ * KW-AD as defined in SP 800-38F section 6.2
+ * KWP-AD as defined in SP 800-38F section 6.3
+ */
+int mbedtls_nist_kw_unwrap(mbedtls_nist_kw_context *ctx,
+ mbedtls_nist_kw_mode_t mode,
+ const unsigned char *input, size_t in_len,
+ unsigned char *output, size_t *out_len, size_t out_size)
+{
+ int ret = 0;
+ size_t olen;
+ unsigned char A[KW_SEMIBLOCK_LENGTH];
+ int diff;
+
+ *out_len = 0;
+ if (out_size < in_len - KW_SEMIBLOCK_LENGTH) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (mode == MBEDTLS_KW_MODE_KW) {
+ /*
+ * According to SP 800-38F Table 1, the ciphertext length for KW
+ * must be between 3 to 2^54 semiblocks inclusive.
+ */
+ if (in_len < 24 ||
+#if SIZE_MAX > 0x200000000000000
+ in_len > 0x200000000000000 ||
+#endif
+ in_len % KW_SEMIBLOCK_LENGTH != 0) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ ret = unwrap(ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
+ A, output, out_len);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ /* Check ICV in "constant-time" */
+ diff = mbedtls_ct_memcmp(NIST_KW_ICV1, A, KW_SEMIBLOCK_LENGTH);
+
+ if (diff != 0) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ goto cleanup;
+ }
+
+ } else if (mode == MBEDTLS_KW_MODE_KWP) {
+ size_t padlen = 0;
+ uint32_t Plen;
+ /*
+ * According to SP 800-38F Table 1, the ciphertext length for KWP
+ * must be between 2 to 2^29 semiblocks inclusive.
+ */
+ if (in_len < KW_SEMIBLOCK_LENGTH * 2 ||
+#if SIZE_MAX > 0x100000000
+ in_len > 0x100000000 ||
+#endif
+ in_len % KW_SEMIBLOCK_LENGTH != 0) {
+ return MBEDTLS_ERR_CIPHER_BAD_INPUT_DATA;
+ }
+
+ if (in_len == KW_SEMIBLOCK_LENGTH * 2) {
+ unsigned char outbuff[KW_SEMIBLOCK_LENGTH * 2];
+ ret = mbedtls_cipher_update(&ctx->cipher_ctx,
+ input, 16, outbuff, &olen);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ memcpy(A, outbuff, KW_SEMIBLOCK_LENGTH);
+ memcpy(output, outbuff + KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH);
+ mbedtls_platform_zeroize(outbuff, sizeof(outbuff));
+ *out_len = KW_SEMIBLOCK_LENGTH;
+ } else {
+ /* in_len >= KW_SEMIBLOCK_LENGTH * 3 */
+ ret = unwrap(ctx, input, in_len / KW_SEMIBLOCK_LENGTH,
+ A, output, out_len);
+ if (ret != 0) {
+ goto cleanup;
+ }
+ }
+
+ /* Check ICV in "constant-time" */
+ diff = mbedtls_ct_memcmp(NIST_KW_ICV2, A, KW_SEMIBLOCK_LENGTH / 2);
+
+ if (diff != 0) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ }
+
+ Plen = MBEDTLS_GET_UINT32_BE(A, KW_SEMIBLOCK_LENGTH / 2);
+
+ /*
+ * Plen is the length of the plaintext, when the input is valid.
+ * If Plen is larger than the plaintext and padding, padlen will be
+ * larger than 8, because of the type wrap around.
+ */
+ padlen = in_len - KW_SEMIBLOCK_LENGTH - Plen;
+ ret = mbedtls_ct_error_if(mbedtls_ct_uint_gt(padlen, 7),
+ MBEDTLS_ERR_CIPHER_AUTH_FAILED, ret);
+ padlen &= 7;
+
+ /* Check padding in "constant-time" */
+ const uint8_t zero[KW_SEMIBLOCK_LENGTH] = { 0 };
+ diff = mbedtls_ct_memcmp_partial(
+ &output[*out_len - KW_SEMIBLOCK_LENGTH], zero,
+ KW_SEMIBLOCK_LENGTH, KW_SEMIBLOCK_LENGTH - padlen, 0);
+
+ if (diff != 0) {
+ ret = MBEDTLS_ERR_CIPHER_AUTH_FAILED;
+ }
+
+ if (ret != 0) {
+ goto cleanup;
+ }
+ memset(output + Plen, 0, padlen);
+ *out_len = Plen;
+ } else {
+ ret = MBEDTLS_ERR_CIPHER_FEATURE_UNAVAILABLE;
+ goto cleanup;
+ }
+
+cleanup:
+ if (ret != 0) {
+ memset(output, 0, *out_len);
+ *out_len = 0;
+ }
+
+ mbedtls_platform_zeroize(&diff, sizeof(diff));
+ mbedtls_platform_zeroize(A, sizeof(A));
+
+ return ret;
+}
+
+#endif /* !MBEDTLS_NIST_KW_ALT */
+
+#if defined(MBEDTLS_SELF_TEST) && defined(MBEDTLS_AES_C)
+
+/*
+ * Test vectors taken from NIST
+ * https://csrc.nist.gov/Projects/Cryptographic-Algorithm-Validation-Program/CAVP-TESTING-BLOCK-CIPHER-MODES#KW
+ */
+static const unsigned int key_len[] = {
+ 16,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ 24,
+ 32
+#endif
+};
+
+static const unsigned char kw_key[][32] = {
+ { 0x75, 0x75, 0xda, 0x3a, 0x93, 0x60, 0x7c, 0xc2,
+ 0xbf, 0xd8, 0xce, 0xc7, 0xaa, 0xdf, 0xd9, 0xa6 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x2d, 0x85, 0x26, 0x08, 0x1d, 0x02, 0xfb, 0x5b,
+ 0x85, 0xf6, 0x9a, 0xc2, 0x86, 0xec, 0xd5, 0x7d,
+ 0x40, 0xdf, 0x5d, 0xf3, 0x49, 0x47, 0x44, 0xd3 },
+ { 0x11, 0x2a, 0xd4, 0x1b, 0x48, 0x56, 0xc7, 0x25,
+ 0x4a, 0x98, 0x48, 0xd3, 0x0f, 0xdd, 0x78, 0x33,
+ 0x5b, 0x03, 0x9a, 0x48, 0xa8, 0x96, 0x2c, 0x4d,
+ 0x1c, 0xb7, 0x8e, 0xab, 0xd5, 0xda, 0xd7, 0x88 }
+#endif
+};
+
+static const unsigned char kw_msg[][40] = {
+ { 0x42, 0x13, 0x6d, 0x3c, 0x38, 0x4a, 0x3e, 0xea,
+ 0xc9, 0x5a, 0x06, 0x6f, 0xd2, 0x8f, 0xed, 0x3f },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x95, 0xc1, 0x1b, 0xf5, 0x35, 0x3a, 0xfe, 0xdb,
+ 0x98, 0xfd, 0xd6, 0xc8, 0xca, 0x6f, 0xdb, 0x6d,
+ 0xa5, 0x4b, 0x74, 0xb4, 0x99, 0x0f, 0xdc, 0x45,
+ 0xc0, 0x9d, 0x15, 0x8f, 0x51, 0xce, 0x62, 0x9d,
+ 0xe2, 0xaf, 0x26, 0xe3, 0x25, 0x0e, 0x6b, 0x4c },
+ { 0x1b, 0x20, 0xbf, 0x19, 0x90, 0xb0, 0x65, 0xd7,
+ 0x98, 0xe1, 0xb3, 0x22, 0x64, 0xad, 0x50, 0xa8,
+ 0x74, 0x74, 0x92, 0xba, 0x09, 0xa0, 0x4d, 0xd1 }
+#endif
+};
+
+static const size_t kw_msg_len[] = {
+ 16,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ 40,
+ 24
+#endif
+};
+static const size_t kw_out_len[] = {
+ 24,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ 48,
+ 32
+#endif
+};
+static const unsigned char kw_res[][48] = {
+ { 0x03, 0x1f, 0x6b, 0xd7, 0xe6, 0x1e, 0x64, 0x3d,
+ 0xf6, 0x85, 0x94, 0x81, 0x6f, 0x64, 0xca, 0xa3,
+ 0xf5, 0x6f, 0xab, 0xea, 0x25, 0x48, 0xf5, 0xfb },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x44, 0x3c, 0x6f, 0x15, 0x09, 0x83, 0x71, 0x91,
+ 0x3e, 0x5c, 0x81, 0x4c, 0xa1, 0xa0, 0x42, 0xec,
+ 0x68, 0x2f, 0x7b, 0x13, 0x6d, 0x24, 0x3a, 0x4d,
+ 0x6c, 0x42, 0x6f, 0xc6, 0x97, 0x15, 0x63, 0xe8,
+ 0xa1, 0x4a, 0x55, 0x8e, 0x09, 0x64, 0x16, 0x19,
+ 0xbf, 0x03, 0xfc, 0xaf, 0x90, 0xb1, 0xfc, 0x2d },
+ { 0xba, 0x8a, 0x25, 0x9a, 0x47, 0x1b, 0x78, 0x7d,
+ 0xd5, 0xd5, 0x40, 0xec, 0x25, 0xd4, 0x3d, 0x87,
+ 0x20, 0x0f, 0xda, 0xdc, 0x6d, 0x1f, 0x05, 0xd9,
+ 0x16, 0x58, 0x4f, 0xa9, 0xf6, 0xcb, 0xf5, 0x12 }
+#endif
+};
+
+static const unsigned char kwp_key[][32] = {
+ { 0x78, 0x65, 0xe2, 0x0f, 0x3c, 0x21, 0x65, 0x9a,
+ 0xb4, 0x69, 0x0b, 0x62, 0x9c, 0xdf, 0x3c, 0xc4 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0xf5, 0xf8, 0x96, 0xa3, 0xbd, 0x2f, 0x4a, 0x98,
+ 0x23, 0xef, 0x16, 0x2b, 0x00, 0xb8, 0x05, 0xd7,
+ 0xde, 0x1e, 0xa4, 0x66, 0x26, 0x96, 0xa2, 0x58 },
+ { 0x95, 0xda, 0x27, 0x00, 0xca, 0x6f, 0xd9, 0xa5,
+ 0x25, 0x54, 0xee, 0x2a, 0x8d, 0xf1, 0x38, 0x6f,
+ 0x5b, 0x94, 0xa1, 0xa6, 0x0e, 0xd8, 0xa4, 0xae,
+ 0xf6, 0x0a, 0x8d, 0x61, 0xab, 0x5f, 0x22, 0x5a }
+#endif
+};
+
+static const unsigned char kwp_msg[][31] = {
+ { 0xbd, 0x68, 0x43, 0xd4, 0x20, 0x37, 0x8d, 0xc8,
+ 0x96 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x6c, 0xcd, 0xd5, 0x85, 0x18, 0x40, 0x97, 0xeb,
+ 0xd5, 0xc3, 0xaf, 0x3e, 0x47, 0xd0, 0x2c, 0x19,
+ 0x14, 0x7b, 0x4d, 0x99, 0x5f, 0x96, 0x43, 0x66,
+ 0x91, 0x56, 0x75, 0x8c, 0x13, 0x16, 0x8f },
+ { 0xd1 }
+#endif
+};
+static const size_t kwp_msg_len[] = {
+ 9,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ 31,
+ 1
+#endif
+};
+
+static const unsigned char kwp_res[][48] = {
+ { 0x41, 0xec, 0xa9, 0x56, 0xd4, 0xaa, 0x04, 0x7e,
+ 0xb5, 0xcf, 0x4e, 0xfe, 0x65, 0x96, 0x61, 0xe7,
+ 0x4d, 0xb6, 0xf8, 0xc5, 0x64, 0xe2, 0x35, 0x00 },
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ { 0x4e, 0x9b, 0xc2, 0xbc, 0xbc, 0x6c, 0x1e, 0x13,
+ 0xd3, 0x35, 0xbc, 0xc0, 0xf7, 0x73, 0x6a, 0x88,
+ 0xfa, 0x87, 0x53, 0x66, 0x15, 0xbb, 0x8e, 0x63,
+ 0x8b, 0xcc, 0x81, 0x66, 0x84, 0x68, 0x17, 0x90,
+ 0x67, 0xcf, 0xa9, 0x8a, 0x9d, 0x0e, 0x33, 0x26 },
+ { 0x06, 0xba, 0x7a, 0xe6, 0xf3, 0x24, 0x8c, 0xfd,
+ 0xcf, 0x26, 0x75, 0x07, 0xfa, 0x00, 0x1b, 0xc4 }
+#endif
+};
+static const size_t kwp_out_len[] = {
+ 24,
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ 40,
+ 16
+#endif
+};
+
+int mbedtls_nist_kw_self_test(int verbose)
+{
+ mbedtls_nist_kw_context ctx;
+ unsigned char out[48];
+ size_t olen;
+ int i;
+ int ret = 0;
+ mbedtls_nist_kw_init(&ctx);
+
+ /*
+ * KW mode
+ */
+ {
+ static const int num_tests = sizeof(kw_key) / sizeof(*kw_key);
+
+ for (i = 0; i < num_tests; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" KW-AES-%u ", (unsigned int) key_len[i] * 8);
+ }
+
+ ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
+ kw_key[i], key_len[i] * 8, 1);
+ if (ret != 0) {
+ if (verbose != 0) {
+ mbedtls_printf(" KW: setup failed ");
+ }
+
+ goto end;
+ }
+
+ ret = mbedtls_nist_kw_wrap(&ctx, MBEDTLS_KW_MODE_KW, kw_msg[i],
+ kw_msg_len[i], out, &olen, sizeof(out));
+ if (ret != 0 || kw_out_len[i] != olen ||
+ memcmp(out, kw_res[i], kw_out_len[i]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed. ");
+ }
+
+ ret = 1;
+ goto end;
+ }
+
+ if ((ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
+ kw_key[i], key_len[i] * 8, 0))
+ != 0) {
+ if (verbose != 0) {
+ mbedtls_printf(" KW: setup failed ");
+ }
+
+ goto end;
+ }
+
+ ret = mbedtls_nist_kw_unwrap(&ctx, MBEDTLS_KW_MODE_KW,
+ out, olen, out, &olen, sizeof(out));
+
+ if (ret != 0 || olen != kw_msg_len[i] ||
+ memcmp(out, kw_msg[i], kw_msg_len[i]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto end;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" passed\n");
+ }
+ }
+ }
+
+ /*
+ * KWP mode
+ */
+ {
+ static const int num_tests = sizeof(kwp_key) / sizeof(*kwp_key);
+
+ for (i = 0; i < num_tests; i++) {
+ olen = sizeof(out);
+ if (verbose != 0) {
+ mbedtls_printf(" KWP-AES-%u ", (unsigned int) key_len[i] * 8);
+ }
+
+ ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES, kwp_key[i],
+ key_len[i] * 8, 1);
+ if (ret != 0) {
+ if (verbose != 0) {
+ mbedtls_printf(" KWP: setup failed ");
+ }
+
+ goto end;
+ }
+ ret = mbedtls_nist_kw_wrap(&ctx, MBEDTLS_KW_MODE_KWP, kwp_msg[i],
+ kwp_msg_len[i], out, &olen, sizeof(out));
+
+ if (ret != 0 || kwp_out_len[i] != olen ||
+ memcmp(out, kwp_res[i], kwp_out_len[i]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed. ");
+ }
+
+ ret = 1;
+ goto end;
+ }
+
+ if ((ret = mbedtls_nist_kw_setkey(&ctx, MBEDTLS_CIPHER_ID_AES,
+ kwp_key[i], key_len[i] * 8, 0))
+ != 0) {
+ if (verbose != 0) {
+ mbedtls_printf(" KWP: setup failed ");
+ }
+
+ goto end;
+ }
+
+ ret = mbedtls_nist_kw_unwrap(&ctx, MBEDTLS_KW_MODE_KWP, out,
+ olen, out, &olen, sizeof(out));
+
+ if (ret != 0 || olen != kwp_msg_len[i] ||
+ memcmp(out, kwp_msg[i], kwp_msg_len[i]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed. ");
+ }
+
+ ret = 1;
+ goto end;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" passed\n");
+ }
+ }
+ }
+end:
+ mbedtls_nist_kw_free(&ctx);
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST && MBEDTLS_AES_C */
+
+#endif /* MBEDTLS_NIST_KW_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/oid.c b/tf-psa-crypto/drivers/builtin/src/oid.c
new file mode 100644
index 0000000..972a859
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/oid.c
@@ -0,0 +1,1166 @@
+/**
+ * \file oid.c
+ *
+ * \brief Object Identifier (OID) database
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_OID_C)
+
+#include "mbedtls/oid.h"
+#include "mbedtls/rsa.h"
+#include "mbedtls/error.h"
+#include "mbedtls/pk.h"
+
+#include <stdio.h>
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+/*
+ * Macro to automatically add the size of #define'd OIDs
+ */
+#define ADD_LEN(s) s, MBEDTLS_OID_SIZE(s)
+
+/*
+ * Macro to generate mbedtls_oid_descriptor_t
+ */
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+#define OID_DESCRIPTOR(s, name, description) { ADD_LEN(s), name, description }
+#define NULL_OID_DESCRIPTOR { NULL, 0, NULL, NULL }
+#else
+#define OID_DESCRIPTOR(s, name, description) { ADD_LEN(s) }
+#define NULL_OID_DESCRIPTOR { NULL, 0 }
+#endif
+
+/*
+ * Macro to generate an internal function for oid_XXX_from_asn1() (used by
+ * the other functions)
+ */
+#define FN_OID_TYPED_FROM_ASN1(TYPE_T, NAME, LIST) \
+ static const TYPE_T *oid_ ## NAME ## _from_asn1( \
+ const mbedtls_asn1_buf *oid) \
+ { \
+ const TYPE_T *p = (LIST); \
+ const mbedtls_oid_descriptor_t *cur = \
+ (const mbedtls_oid_descriptor_t *) p; \
+ if (p == NULL || oid == NULL) return NULL; \
+ while (cur->asn1 != NULL) { \
+ if (cur->asn1_len == oid->len && \
+ memcmp(cur->asn1, oid->p, oid->len) == 0) { \
+ return p; \
+ } \
+ p++; \
+ cur = (const mbedtls_oid_descriptor_t *) p; \
+ } \
+ return NULL; \
+ }
+
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+/*
+ * Macro to generate a function for retrieving a single attribute from the
+ * descriptor of an mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_DESCRIPTOR_ATTR1(FN_NAME, TYPE_T, TYPE_NAME, ATTR1_TYPE, ATTR1) \
+ int FN_NAME(const mbedtls_asn1_buf *oid, ATTR1_TYPE * ATTR1) \
+ { \
+ const TYPE_T *data = oid_ ## TYPE_NAME ## _from_asn1(oid); \
+ if (data == NULL) return MBEDTLS_ERR_OID_NOT_FOUND; \
+ *ATTR1 = data->descriptor.ATTR1; \
+ return 0; \
+ }
+#endif /* MBEDTLS_X509_REMOVE_INFO */
+
+/*
+ * Macro to generate a function for retrieving a single attribute from an
+ * mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_ATTR1(FN_NAME, TYPE_T, TYPE_NAME, ATTR1_TYPE, ATTR1) \
+ int FN_NAME(const mbedtls_asn1_buf *oid, ATTR1_TYPE * ATTR1) \
+ { \
+ const TYPE_T *data = oid_ ## TYPE_NAME ## _from_asn1(oid); \
+ if (data == NULL) return MBEDTLS_ERR_OID_NOT_FOUND; \
+ *ATTR1 = data->ATTR1; \
+ return 0; \
+ }
+
+/*
+ * Macro to generate a function for retrieving two attributes from an
+ * mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_ATTR2(FN_NAME, TYPE_T, TYPE_NAME, ATTR1_TYPE, ATTR1, \
+ ATTR2_TYPE, ATTR2) \
+ int FN_NAME(const mbedtls_asn1_buf *oid, ATTR1_TYPE * ATTR1, \
+ ATTR2_TYPE * ATTR2) \
+ { \
+ const TYPE_T *data = oid_ ## TYPE_NAME ## _from_asn1(oid); \
+ if (data == NULL) return MBEDTLS_ERR_OID_NOT_FOUND; \
+ *(ATTR1) = data->ATTR1; \
+ *(ATTR2) = data->ATTR2; \
+ return 0; \
+ }
+
+/*
+ * Macro to generate a function for retrieving the OID based on a single
+ * attribute from a mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_OID_BY_ATTR1(FN_NAME, TYPE_T, LIST, ATTR1_TYPE, ATTR1) \
+ int FN_NAME(ATTR1_TYPE ATTR1, const char **oid, size_t *olen) \
+ { \
+ const TYPE_T *cur = (LIST); \
+ while (cur->descriptor.asn1 != NULL) { \
+ if (cur->ATTR1 == (ATTR1)) { \
+ *oid = cur->descriptor.asn1; \
+ *olen = cur->descriptor.asn1_len; \
+ return 0; \
+ } \
+ cur++; \
+ } \
+ return MBEDTLS_ERR_OID_NOT_FOUND; \
+ }
+
+/*
+ * Macro to generate a function for retrieving the OID based on two
+ * attributes from a mbedtls_oid_descriptor_t wrapper.
+ */
+#define FN_OID_GET_OID_BY_ATTR2(FN_NAME, TYPE_T, LIST, ATTR1_TYPE, ATTR1, \
+ ATTR2_TYPE, ATTR2) \
+ int FN_NAME(ATTR1_TYPE ATTR1, ATTR2_TYPE ATTR2, const char **oid, \
+ size_t *olen) \
+ { \
+ const TYPE_T *cur = (LIST); \
+ while (cur->descriptor.asn1 != NULL) { \
+ if (cur->ATTR1 == (ATTR1) && cur->ATTR2 == (ATTR2)) { \
+ *oid = cur->descriptor.asn1; \
+ *olen = cur->descriptor.asn1_len; \
+ return 0; \
+ } \
+ cur++; \
+ } \
+ return MBEDTLS_ERR_OID_NOT_FOUND; \
+ }
+
+/*
+ * For X520 attribute types
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ const char *short_name;
+} oid_x520_attr_t;
+
+static const oid_x520_attr_t oid_x520_attr_type[] =
+{
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_CN, "id-at-commonName", "Common Name"),
+ "CN",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_COUNTRY, "id-at-countryName", "Country"),
+ "C",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_LOCALITY, "id-at-locality", "Locality"),
+ "L",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_STATE, "id-at-state", "State"),
+ "ST",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_ORGANIZATION, "id-at-organizationName",
+ "Organization"),
+ "O",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_ORG_UNIT, "id-at-organizationalUnitName", "Org Unit"),
+ "OU",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS9_EMAIL,
+ "emailAddress",
+ "E-mail address"),
+ "emailAddress",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_SERIAL_NUMBER,
+ "id-at-serialNumber",
+ "Serial number"),
+ "serialNumber",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_POSTAL_ADDRESS,
+ "id-at-postalAddress",
+ "Postal address"),
+ "postalAddress",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_POSTAL_CODE, "id-at-postalCode", "Postal code"),
+ "postalCode",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_SUR_NAME, "id-at-surName", "Surname"),
+ "SN",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_GIVEN_NAME, "id-at-givenName", "Given name"),
+ "GN",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_INITIALS, "id-at-initials", "Initials"),
+ "initials",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_GENERATION_QUALIFIER,
+ "id-at-generationQualifier",
+ "Generation qualifier"),
+ "generationQualifier",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_TITLE, "id-at-title", "Title"),
+ "title",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_DN_QUALIFIER,
+ "id-at-dnQualifier",
+ "Distinguished Name qualifier"),
+ "dnQualifier",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_PSEUDONYM, "id-at-pseudonym", "Pseudonym"),
+ "pseudonym",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_UID, "id-uid", "User Id"),
+ "uid",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DOMAIN_COMPONENT,
+ "id-domainComponent",
+ "Domain component"),
+ "DC",
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AT_UNIQUE_IDENTIFIER,
+ "id-at-uniqueIdentifier",
+ "Unique Identifier"),
+ "uniqueIdentifier",
+ },
+ {
+ NULL_OID_DESCRIPTOR,
+ NULL,
+ }
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_x520_attr_t, x520_attr, oid_x520_attr_type)
+FN_OID_GET_ATTR1(mbedtls_oid_get_attr_short_name,
+ oid_x520_attr_t,
+ x520_attr,
+ const char *,
+ short_name)
+
+/*
+ * For X509 extensions
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ int ext_type;
+} oid_x509_ext_t;
+
+static const oid_x509_ext_t oid_x509_ext[] =
+{
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_BASIC_CONSTRAINTS,
+ "id-ce-basicConstraints",
+ "Basic Constraints"),
+ MBEDTLS_OID_X509_EXT_BASIC_CONSTRAINTS,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_KEY_USAGE, "id-ce-keyUsage", "Key Usage"),
+ MBEDTLS_OID_X509_EXT_KEY_USAGE,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EXTENDED_KEY_USAGE,
+ "id-ce-extKeyUsage",
+ "Extended Key Usage"),
+ MBEDTLS_OID_X509_EXT_EXTENDED_KEY_USAGE,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_SUBJECT_ALT_NAME,
+ "id-ce-subjectAltName",
+ "Subject Alt Name"),
+ MBEDTLS_OID_X509_EXT_SUBJECT_ALT_NAME,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_NS_CERT_TYPE,
+ "id-netscape-certtype",
+ "Netscape Certificate Type"),
+ MBEDTLS_OID_X509_EXT_NS_CERT_TYPE,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_CERTIFICATE_POLICIES,
+ "id-ce-certificatePolicies",
+ "Certificate Policies"),
+ MBEDTLS_OID_X509_EXT_CERTIFICATE_POLICIES,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_SUBJECT_KEY_IDENTIFIER,
+ "id-ce-subjectKeyIdentifier",
+ "Subject Key Identifier"),
+ MBEDTLS_OID_X509_EXT_SUBJECT_KEY_IDENTIFIER,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AUTHORITY_KEY_IDENTIFIER,
+ "id-ce-authorityKeyIdentifier",
+ "Authority Key Identifier"),
+ MBEDTLS_OID_X509_EXT_AUTHORITY_KEY_IDENTIFIER,
+ },
+ {
+ NULL_OID_DESCRIPTOR,
+ 0,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_x509_ext_t, x509_ext, oid_x509_ext)
+FN_OID_GET_ATTR1(mbedtls_oid_get_x509_ext_type, oid_x509_ext_t, x509_ext, int, ext_type)
+
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+static const mbedtls_oid_descriptor_t oid_ext_key_usage[] =
+{
+ OID_DESCRIPTOR(MBEDTLS_OID_SERVER_AUTH,
+ "id-kp-serverAuth",
+ "TLS Web Server Authentication"),
+ OID_DESCRIPTOR(MBEDTLS_OID_CLIENT_AUTH,
+ "id-kp-clientAuth",
+ "TLS Web Client Authentication"),
+ OID_DESCRIPTOR(MBEDTLS_OID_CODE_SIGNING, "id-kp-codeSigning", "Code Signing"),
+ OID_DESCRIPTOR(MBEDTLS_OID_EMAIL_PROTECTION, "id-kp-emailProtection", "E-mail Protection"),
+ OID_DESCRIPTOR(MBEDTLS_OID_TIME_STAMPING, "id-kp-timeStamping", "Time Stamping"),
+ OID_DESCRIPTOR(MBEDTLS_OID_OCSP_SIGNING, "id-kp-OCSPSigning", "OCSP Signing"),
+ OID_DESCRIPTOR(MBEDTLS_OID_WISUN_FAN,
+ "id-kp-wisun-fan-device",
+ "Wi-SUN Alliance Field Area Network (FAN)"),
+ NULL_OID_DESCRIPTOR,
+};
+
+FN_OID_TYPED_FROM_ASN1(mbedtls_oid_descriptor_t, ext_key_usage, oid_ext_key_usage)
+FN_OID_GET_ATTR1(mbedtls_oid_get_extended_key_usage,
+ mbedtls_oid_descriptor_t,
+ ext_key_usage,
+ const char *,
+ description)
+
+static const mbedtls_oid_descriptor_t oid_certificate_policies[] =
+{
+ OID_DESCRIPTOR(MBEDTLS_OID_ANY_POLICY, "anyPolicy", "Any Policy"),
+ NULL_OID_DESCRIPTOR,
+};
+
+FN_OID_TYPED_FROM_ASN1(mbedtls_oid_descriptor_t, certificate_policies, oid_certificate_policies)
+FN_OID_GET_ATTR1(mbedtls_oid_get_certificate_policies,
+ mbedtls_oid_descriptor_t,
+ certificate_policies,
+ const char *,
+ description)
+#endif /* MBEDTLS_X509_REMOVE_INFO */
+
+/*
+ * For SignatureAlgorithmIdentifier
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_md_type_t md_alg;
+ mbedtls_pk_type_t pk_alg;
+} oid_sig_alg_t;
+
+static const oid_sig_alg_t oid_sig_alg[] =
+{
+#if defined(MBEDTLS_RSA_C)
+#if defined(MBEDTLS_MD_CAN_MD5)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_MD5, "md5WithRSAEncryption", "RSA with MD5"),
+ MBEDTLS_MD_MD5, MBEDTLS_PK_RSA,
+ },
+#endif /* MBEDTLS_MD_CAN_MD5 */
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA1, "sha-1WithRSAEncryption", "RSA with SHA1"),
+ MBEDTLS_MD_SHA1, MBEDTLS_PK_RSA,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#if defined(PSA_WANT_ALG_SHA_224)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA224, "sha224WithRSAEncryption",
+ "RSA with SHA-224"),
+ MBEDTLS_MD_SHA224, MBEDTLS_PK_RSA,
+ },
+#endif /* PSA_WANT_ALG_SHA_224 */
+#if defined(MBEDTLS_MD_CAN_SHA256)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA256, "sha256WithRSAEncryption",
+ "RSA with SHA-256"),
+ MBEDTLS_MD_SHA256, MBEDTLS_PK_RSA,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA256 */
+#if defined(PSA_WANT_ALG_SHA_384)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA384, "sha384WithRSAEncryption",
+ "RSA with SHA-384"),
+ MBEDTLS_MD_SHA384, MBEDTLS_PK_RSA,
+ },
+#endif /* PSA_WANT_ALG_SHA_384 */
+#if defined(MBEDTLS_MD_CAN_SHA512)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_SHA512, "sha512WithRSAEncryption",
+ "RSA with SHA-512"),
+ MBEDTLS_MD_SHA512, MBEDTLS_PK_RSA,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA512 */
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_RSA_SHA_OBS, "sha-1WithRSAEncryption", "RSA with SHA1"),
+ MBEDTLS_MD_SHA1, MBEDTLS_PK_RSA,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA1, "ecdsa-with-SHA1", "ECDSA with SHA1"),
+ MBEDTLS_MD_SHA1, MBEDTLS_PK_ECDSA,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#if defined(PSA_WANT_ALG_SHA_224)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA224, "ecdsa-with-SHA224", "ECDSA with SHA224"),
+ MBEDTLS_MD_SHA224, MBEDTLS_PK_ECDSA,
+ },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA256, "ecdsa-with-SHA256", "ECDSA with SHA256"),
+ MBEDTLS_MD_SHA256, MBEDTLS_PK_ECDSA,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA256 */
+#if defined(PSA_WANT_ALG_SHA_384)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA384, "ecdsa-with-SHA384", "ECDSA with SHA384"),
+ MBEDTLS_MD_SHA384, MBEDTLS_PK_ECDSA,
+ },
+#endif /* PSA_WANT_ALG_SHA_384 */
+#if defined(MBEDTLS_MD_CAN_SHA512)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_ECDSA_SHA512, "ecdsa-with-SHA512", "ECDSA with SHA512"),
+ MBEDTLS_MD_SHA512, MBEDTLS_PK_ECDSA,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA512 */
+#endif /* MBEDTLS_PK_CAN_ECDSA_SOME */
+#if defined(MBEDTLS_RSA_C)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_RSASSA_PSS, "RSASSA-PSS", "RSASSA-PSS"),
+ MBEDTLS_MD_NONE, MBEDTLS_PK_RSASSA_PSS,
+ },
+#endif /* MBEDTLS_RSA_C */
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_MD_NONE, MBEDTLS_PK_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_sig_alg_t, sig_alg, oid_sig_alg)
+
+#if !defined(MBEDTLS_X509_REMOVE_INFO)
+FN_OID_GET_DESCRIPTOR_ATTR1(mbedtls_oid_get_sig_alg_desc,
+ oid_sig_alg_t,
+ sig_alg,
+ const char *,
+ description)
+#endif
+
+FN_OID_GET_ATTR2(mbedtls_oid_get_sig_alg,
+ oid_sig_alg_t,
+ sig_alg,
+ mbedtls_md_type_t,
+ md_alg,
+ mbedtls_pk_type_t,
+ pk_alg)
+FN_OID_GET_OID_BY_ATTR2(mbedtls_oid_get_oid_by_sig_alg,
+ oid_sig_alg_t,
+ oid_sig_alg,
+ mbedtls_pk_type_t,
+ pk_alg,
+ mbedtls_md_type_t,
+ md_alg)
+
+/*
+ * For PublicKeyInfo (PKCS1, RFC 5480)
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_pk_type_t pk_alg;
+} oid_pk_alg_t;
+
+static const oid_pk_alg_t oid_pk_alg[] =
+{
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS1_RSA, "rsaEncryption", "RSA"),
+ MBEDTLS_PK_RSA,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_ALG_UNRESTRICTED, "id-ecPublicKey", "Generic EC key"),
+ MBEDTLS_PK_ECKEY,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_ALG_ECDH, "id-ecDH", "EC key for ECDH"),
+ MBEDTLS_PK_ECKEY_DH,
+ },
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_PK_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_pk_alg_t, pk_alg, oid_pk_alg)
+FN_OID_GET_ATTR1(mbedtls_oid_get_pk_alg, oid_pk_alg_t, pk_alg, mbedtls_pk_type_t, pk_alg)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_pk_alg,
+ oid_pk_alg_t,
+ oid_pk_alg,
+ mbedtls_pk_type_t,
+ pk_alg)
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+/*
+ * For elliptic curves that use namedCurve inside ECParams (RFC 5480)
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_ecp_group_id grp_id;
+} oid_ecp_grp_t;
+
+static const oid_ecp_grp_t oid_ecp_grp[] =
+{
+#if defined(MBEDTLS_ECP_HAVE_SECP192R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP192R1, "secp192r1", "secp192r1"),
+ MBEDTLS_ECP_DP_SECP192R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP192R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP224R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP224R1, "secp224r1", "secp224r1"),
+ MBEDTLS_ECP_DP_SECP224R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP224R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP256R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP256R1, "secp256r1", "secp256r1"),
+ MBEDTLS_ECP_DP_SECP256R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP256R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP384R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP384R1, "secp384r1", "secp384r1"),
+ MBEDTLS_ECP_DP_SECP384R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP384R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP521R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP521R1, "secp521r1", "secp521r1"),
+ MBEDTLS_ECP_DP_SECP521R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP521R1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP192K1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP192K1, "secp192k1", "secp192k1"),
+ MBEDTLS_ECP_DP_SECP192K1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP192K1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP224K1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP224K1, "secp224k1", "secp224k1"),
+ MBEDTLS_ECP_DP_SECP224K1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP224K1 */
+#if defined(MBEDTLS_ECP_HAVE_SECP256K1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_SECP256K1, "secp256k1", "secp256k1"),
+ MBEDTLS_ECP_DP_SECP256K1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_SECP256K1 */
+#if defined(MBEDTLS_ECP_HAVE_BP256R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_BP256R1, "brainpoolP256r1", "brainpool256r1"),
+ MBEDTLS_ECP_DP_BP256R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_BP256R1 */
+#if defined(MBEDTLS_ECP_HAVE_BP384R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_BP384R1, "brainpoolP384r1", "brainpool384r1"),
+ MBEDTLS_ECP_DP_BP384R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_BP384R1 */
+#if defined(MBEDTLS_ECP_HAVE_BP512R1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_EC_GRP_BP512R1, "brainpoolP512r1", "brainpool512r1"),
+ MBEDTLS_ECP_DP_BP512R1,
+ },
+#endif /* MBEDTLS_ECP_HAVE_BP512R1 */
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_ECP_DP_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_ecp_grp_t, grp_id, oid_ecp_grp)
+FN_OID_GET_ATTR1(mbedtls_oid_get_ec_grp, oid_ecp_grp_t, grp_id, mbedtls_ecp_group_id, grp_id)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_ec_grp,
+ oid_ecp_grp_t,
+ oid_ecp_grp,
+ mbedtls_ecp_group_id,
+ grp_id)
+
+/*
+ * For Elliptic Curve algorithms that are directly
+ * encoded in the AlgorithmIdentifier (RFC 8410)
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_ecp_group_id grp_id;
+} oid_ecp_grp_algid_t;
+
+static const oid_ecp_grp_algid_t oid_ecp_grp_algid[] =
+{
+#if defined(MBEDTLS_ECP_HAVE_CURVE25519)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_X25519, "X25519", "X25519"),
+ MBEDTLS_ECP_DP_CURVE25519,
+ },
+#endif /* MBEDTLS_ECP_HAVE_CURVE25519 */
+#if defined(MBEDTLS_ECP_HAVE_CURVE448)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_X448, "X448", "X448"),
+ MBEDTLS_ECP_DP_CURVE448,
+ },
+#endif /* MBEDTLS_ECP_HAVE_CURVE448 */
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_ECP_DP_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_ecp_grp_algid_t, grp_id_algid, oid_ecp_grp_algid)
+FN_OID_GET_ATTR1(mbedtls_oid_get_ec_grp_algid,
+ oid_ecp_grp_algid_t,
+ grp_id_algid,
+ mbedtls_ecp_group_id,
+ grp_id)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_ec_grp_algid,
+ oid_ecp_grp_algid_t,
+ oid_ecp_grp_algid,
+ mbedtls_ecp_group_id,
+ grp_id)
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_CIPHER_C)
+/*
+ * For PKCS#5 PBES2 encryption algorithm
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_cipher_type_t cipher_alg;
+} oid_cipher_alg_t;
+
+static const oid_cipher_alg_t oid_cipher_alg[] =
+{
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DES_CBC, "desCBC", "DES-CBC"),
+ MBEDTLS_CIPHER_DES_CBC,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DES_EDE3_CBC, "des-ede3-cbc", "DES-EDE3-CBC"),
+ MBEDTLS_CIPHER_DES_EDE3_CBC,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AES_128_CBC, "aes128-cbc", "AES128-CBC"),
+ MBEDTLS_CIPHER_AES_128_CBC,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AES_192_CBC, "aes192-cbc", "AES192-CBC"),
+ MBEDTLS_CIPHER_AES_192_CBC,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_AES_256_CBC, "aes256-cbc", "AES256-CBC"),
+ MBEDTLS_CIPHER_AES_256_CBC,
+ },
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_CIPHER_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_cipher_alg_t, cipher_alg, oid_cipher_alg)
+FN_OID_GET_ATTR1(mbedtls_oid_get_cipher_alg,
+ oid_cipher_alg_t,
+ cipher_alg,
+ mbedtls_cipher_type_t,
+ cipher_alg)
+#endif /* MBEDTLS_CIPHER_C */
+
+/*
+ * For digestAlgorithm
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_md_type_t md_alg;
+} oid_md_alg_t;
+
+static const oid_md_alg_t oid_md_alg[] =
+{
+#if defined(MBEDTLS_MD_CAN_MD5)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_MD5, "id-md5", "MD5"),
+ MBEDTLS_MD_MD5,
+ },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA1, "id-sha1", "SHA-1"),
+ MBEDTLS_MD_SHA1,
+ },
+#endif
+#if defined(PSA_WANT_ALG_SHA_224)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA224, "id-sha224", "SHA-224"),
+ MBEDTLS_MD_SHA224,
+ },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA256)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA256, "id-sha256", "SHA-256"),
+ MBEDTLS_MD_SHA256,
+ },
+#endif
+#if defined(PSA_WANT_ALG_SHA_384)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA384, "id-sha384", "SHA-384"),
+ MBEDTLS_MD_SHA384,
+ },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA512)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA512, "id-sha512", "SHA-512"),
+ MBEDTLS_MD_SHA512,
+ },
+#endif
+#if defined(PSA_WANT_ALG_RIPEMD160)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_RIPEMD160, "id-ripemd160", "RIPEMD-160"),
+ MBEDTLS_MD_RIPEMD160,
+ },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_224, "id-sha3-224", "SHA-3-224"),
+ MBEDTLS_MD_SHA3_224,
+ },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_256)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_256, "id-sha3-256", "SHA-3-256"),
+ MBEDTLS_MD_SHA3_256,
+ },
+#endif
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_384, "id-sha3-384", "SHA-3-384"),
+ MBEDTLS_MD_SHA3_384,
+ },
+#endif
+#if defined(PSA_WANT_ALG_SHA3_512)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_DIGEST_ALG_SHA3_512, "id-sha3-512", "SHA-3-512"),
+ MBEDTLS_MD_SHA3_512,
+ },
+#endif
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_MD_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_md_alg_t, md_alg, oid_md_alg)
+FN_OID_GET_ATTR1(mbedtls_oid_get_md_alg, oid_md_alg_t, md_alg, mbedtls_md_type_t, md_alg)
+FN_OID_GET_OID_BY_ATTR1(mbedtls_oid_get_oid_by_md,
+ oid_md_alg_t,
+ oid_md_alg,
+ mbedtls_md_type_t,
+ md_alg)
+
+/*
+ * For HMAC digestAlgorithm
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_md_type_t md_hmac;
+} oid_md_hmac_t;
+
+static const oid_md_hmac_t oid_md_hmac[] =
+{
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA1, "hmacSHA1", "HMAC-SHA-1"),
+ MBEDTLS_MD_SHA1,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+#if defined(PSA_WANT_ALG_SHA_224)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA224, "hmacSHA224", "HMAC-SHA-224"),
+ MBEDTLS_MD_SHA224,
+ },
+#endif /* PSA_WANT_ALG_SHA_224 */
+#if defined(MBEDTLS_MD_CAN_SHA256)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA256, "hmacSHA256", "HMAC-SHA-256"),
+ MBEDTLS_MD_SHA256,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA256 */
+#if defined(PSA_WANT_ALG_SHA_384)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA384, "hmacSHA384", "HMAC-SHA-384"),
+ MBEDTLS_MD_SHA384,
+ },
+#endif /* PSA_WANT_ALG_SHA_384 */
+#if defined(MBEDTLS_MD_CAN_SHA512)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA512, "hmacSHA512", "HMAC-SHA-512"),
+ MBEDTLS_MD_SHA512,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA512 */
+#if defined(MBEDTLS_MD_CAN_SHA3_224)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_224, "hmacSHA3-224", "HMAC-SHA3-224"),
+ MBEDTLS_MD_SHA3_224,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA3_224 */
+#if defined(PSA_WANT_ALG_SHA3_256)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_256, "hmacSHA3-256", "HMAC-SHA3-256"),
+ MBEDTLS_MD_SHA3_256,
+ },
+#endif /* PSA_WANT_ALG_SHA3_256 */
+#if defined(MBEDTLS_MD_CAN_SHA3_384)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_384, "hmacSHA3-384", "HMAC-SHA3-384"),
+ MBEDTLS_MD_SHA3_384,
+ },
+#endif /* MBEDTLS_MD_CAN_SHA3_384 */
+#if defined(PSA_WANT_ALG_SHA3_512)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_SHA3_512, "hmacSHA3-512", "HMAC-SHA3-512"),
+ MBEDTLS_MD_SHA3_512,
+ },
+#endif /* PSA_WANT_ALG_SHA3_512 */
+#if defined(PSA_WANT_ALG_RIPEMD160)
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_HMAC_RIPEMD160, "hmacRIPEMD160", "HMAC-RIPEMD160"),
+ MBEDTLS_MD_RIPEMD160,
+ },
+#endif /* PSA_WANT_ALG_RIPEMD160 */
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_MD_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_md_hmac_t, md_hmac, oid_md_hmac)
+FN_OID_GET_ATTR1(mbedtls_oid_get_md_hmac, oid_md_hmac_t, md_hmac, mbedtls_md_type_t, md_hmac)
+
+#if defined(MBEDTLS_PKCS12_C) && defined(MBEDTLS_CIPHER_C)
+/*
+ * For PKCS#12 PBEs
+ */
+typedef struct {
+ mbedtls_oid_descriptor_t descriptor;
+ mbedtls_md_type_t md_alg;
+ mbedtls_cipher_type_t cipher_alg;
+} oid_pkcs12_pbe_alg_t;
+
+static const oid_pkcs12_pbe_alg_t oid_pkcs12_pbe_alg[] =
+{
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS12_PBE_SHA1_DES3_EDE_CBC,
+ "pbeWithSHAAnd3-KeyTripleDES-CBC",
+ "PBE with SHA1 and 3-Key 3DES"),
+ MBEDTLS_MD_SHA1, MBEDTLS_CIPHER_DES_EDE3_CBC,
+ },
+ {
+ OID_DESCRIPTOR(MBEDTLS_OID_PKCS12_PBE_SHA1_DES2_EDE_CBC,
+ "pbeWithSHAAnd2-KeyTripleDES-CBC",
+ "PBE with SHA1 and 2-Key 3DES"),
+ MBEDTLS_MD_SHA1, MBEDTLS_CIPHER_DES_EDE_CBC,
+ },
+ {
+ NULL_OID_DESCRIPTOR,
+ MBEDTLS_MD_NONE, MBEDTLS_CIPHER_NONE,
+ },
+};
+
+FN_OID_TYPED_FROM_ASN1(oid_pkcs12_pbe_alg_t, pkcs12_pbe_alg, oid_pkcs12_pbe_alg)
+FN_OID_GET_ATTR2(mbedtls_oid_get_pkcs12_pbe_alg,
+ oid_pkcs12_pbe_alg_t,
+ pkcs12_pbe_alg,
+ mbedtls_md_type_t,
+ md_alg,
+ mbedtls_cipher_type_t,
+ cipher_alg)
+#endif /* MBEDTLS_PKCS12_C && MBEDTLS_CIPHER_C */
+
+/* Return the x.y.z.... style numeric string for the given OID */
+int mbedtls_oid_get_numeric_string(char *buf, size_t size,
+ const mbedtls_asn1_buf *oid)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ char *p = buf;
+ size_t n = size;
+ unsigned int value = 0;
+
+ if (size > INT_MAX) {
+ /* Avoid overflow computing return value */
+ return MBEDTLS_ERR_ASN1_INVALID_LENGTH;
+ }
+
+ if (oid->len <= 0) {
+ /* OID must not be empty */
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+
+ for (size_t i = 0; i < oid->len; i++) {
+ /* Prevent overflow in value. */
+ if (value > (UINT_MAX >> 7)) {
+ return MBEDTLS_ERR_ASN1_INVALID_DATA;
+ }
+ if ((value == 0) && ((oid->p[i]) == 0x80)) {
+ /* Overlong encoding is not allowed */
+ return MBEDTLS_ERR_ASN1_INVALID_DATA;
+ }
+
+ value <<= 7;
+ value |= oid->p[i] & 0x7F;
+
+ if (!(oid->p[i] & 0x80)) {
+ /* Last byte */
+ if (n == size) {
+ int component1;
+ unsigned int component2;
+ /* First subidentifier contains first two OID components */
+ if (value >= 80) {
+ component1 = '2';
+ component2 = value - 80;
+ } else if (value >= 40) {
+ component1 = '1';
+ component2 = value - 40;
+ } else {
+ component1 = '0';
+ component2 = value;
+ }
+ ret = mbedtls_snprintf(p, n, "%c.%u", component1, component2);
+ } else {
+ ret = mbedtls_snprintf(p, n, ".%u", value);
+ }
+ if (ret < 2 || (size_t) ret >= n) {
+ return MBEDTLS_ERR_OID_BUF_TOO_SMALL;
+ }
+ n -= (size_t) ret;
+ p += ret;
+ value = 0;
+ }
+ }
+
+ if (value != 0) {
+ /* Unterminated subidentifier */
+ return MBEDTLS_ERR_ASN1_OUT_OF_DATA;
+ }
+
+ return (int) (size - n);
+}
+
+static int oid_parse_number(unsigned int *num, const char **p, const char *bound)
+{
+ int ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+
+ *num = 0;
+
+ while (*p < bound && **p >= '0' && **p <= '9') {
+ ret = 0;
+ if (*num > (UINT_MAX / 10)) {
+ return MBEDTLS_ERR_ASN1_INVALID_DATA;
+ }
+ *num *= 10;
+ *num += **p - '0';
+ (*p)++;
+ }
+ return ret;
+}
+
+static size_t oid_subidentifier_num_bytes(unsigned int value)
+{
+ size_t num_bytes = 0;
+
+ do {
+ value >>= 7;
+ num_bytes++;
+ } while (value != 0);
+
+ return num_bytes;
+}
+
+static int oid_subidentifier_encode_into(unsigned char **p,
+ unsigned char *bound,
+ unsigned int value)
+{
+ size_t num_bytes = oid_subidentifier_num_bytes(value);
+
+ if ((size_t) (bound - *p) < num_bytes) {
+ return MBEDTLS_ERR_OID_BUF_TOO_SMALL;
+ }
+ (*p)[num_bytes - 1] = (unsigned char) (value & 0x7f);
+ value >>= 7;
+
+ for (size_t i = 2; i <= num_bytes; i++) {
+ (*p)[num_bytes - i] = 0x80 | (unsigned char) (value & 0x7f);
+ value >>= 7;
+ }
+ *p += num_bytes;
+
+ return 0;
+}
+
+/* Return the OID for the given x.y.z.... style numeric string */
+int mbedtls_oid_from_numeric_string(mbedtls_asn1_buf *oid,
+ const char *oid_str, size_t size)
+{
+ int ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+ const char *str_ptr = oid_str;
+ const char *str_bound = oid_str + size;
+ unsigned int val = 0;
+ unsigned int component1, component2;
+ size_t encoded_len;
+ unsigned char *resized_mem;
+
+ /* Count the number of dots to get a worst-case allocation size. */
+ size_t num_dots = 0;
+ for (size_t i = 0; i < size; i++) {
+ if (oid_str[i] == '.') {
+ num_dots++;
+ }
+ }
+ /* Allocate maximum possible required memory:
+ * There are (num_dots + 1) integer components, but the first 2 share the
+ * same subidentifier, so we only need num_dots subidentifiers maximum. */
+ if (num_dots == 0 || (num_dots > MBEDTLS_OID_MAX_COMPONENTS - 1)) {
+ return MBEDTLS_ERR_ASN1_INVALID_DATA;
+ }
+ /* Each byte can store 7 bits, calculate number of bytes for a
+ * subidentifier:
+ *
+ * bytes = ceil(subidentifer_size * 8 / 7)
+ */
+ size_t bytes_per_subidentifier = (((sizeof(unsigned int) * 8) - 1) / 7)
+ + 1;
+ size_t max_possible_bytes = num_dots * bytes_per_subidentifier;
+ oid->p = mbedtls_calloc(max_possible_bytes, 1);
+ if (oid->p == NULL) {
+ return MBEDTLS_ERR_ASN1_ALLOC_FAILED;
+ }
+ unsigned char *out_ptr = oid->p;
+ unsigned char *out_bound = oid->p + max_possible_bytes;
+
+ ret = oid_parse_number(&component1, &str_ptr, str_bound);
+ if (ret != 0) {
+ goto error;
+ }
+ if (component1 > 2) {
+ /* First component can't be > 2 */
+ ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+ goto error;
+ }
+ if (str_ptr >= str_bound || *str_ptr != '.') {
+ ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+ goto error;
+ }
+ str_ptr++;
+
+ ret = oid_parse_number(&component2, &str_ptr, str_bound);
+ if (ret != 0) {
+ goto error;
+ }
+ if ((component1 < 2) && (component2 > 39)) {
+ /* Root nodes 0 and 1 may have up to 40 children, numbered 0-39 */
+ ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+ goto error;
+ }
+ if (str_ptr < str_bound) {
+ if (*str_ptr == '.') {
+ str_ptr++;
+ } else {
+ ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+ goto error;
+ }
+ }
+
+ if (component2 > (UINT_MAX - (component1 * 40))) {
+ ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+ goto error;
+ }
+ ret = oid_subidentifier_encode_into(&out_ptr, out_bound,
+ (component1 * 40) + component2);
+ if (ret != 0) {
+ goto error;
+ }
+
+ while (str_ptr < str_bound) {
+ ret = oid_parse_number(&val, &str_ptr, str_bound);
+ if (ret != 0) {
+ goto error;
+ }
+ if (str_ptr < str_bound) {
+ if (*str_ptr == '.') {
+ str_ptr++;
+ } else {
+ ret = MBEDTLS_ERR_ASN1_INVALID_DATA;
+ goto error;
+ }
+ }
+
+ ret = oid_subidentifier_encode_into(&out_ptr, out_bound, val);
+ if (ret != 0) {
+ goto error;
+ }
+ }
+
+ encoded_len = (size_t) (out_ptr - oid->p);
+ resized_mem = mbedtls_calloc(encoded_len, 1);
+ if (resized_mem == NULL) {
+ ret = MBEDTLS_ERR_ASN1_ALLOC_FAILED;
+ goto error;
+ }
+ memcpy(resized_mem, oid->p, encoded_len);
+ mbedtls_free(oid->p);
+ oid->p = resized_mem;
+ oid->len = encoded_len;
+
+ oid->tag = MBEDTLS_ASN1_OID;
+
+ return 0;
+
+error:
+ mbedtls_free(oid->p);
+ oid->p = NULL;
+ oid->len = 0;
+ return ret;
+}
+
+#endif /* MBEDTLS_OID_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pem.c b/tf-psa-crypto/drivers/builtin/src/pem.c
new file mode 100644
index 0000000..0207601
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pem.c
@@ -0,0 +1,551 @@
+/*
+ * Privacy Enhanced Mail (PEM) decoding
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PEM_PARSE_C) || defined(MBEDTLS_PEM_WRITE_C)
+
+#include "mbedtls/pem.h"
+#include "mbedtls/base64.h"
+#include "mbedtls/des.h"
+#include "mbedtls/aes.h"
+#include "mbedtls/md.h"
+#include "mbedtls/cipher.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif
+
+#if defined(MBEDTLS_MD_CAN_MD5) && \
+ defined(MBEDTLS_CIPHER_MODE_CBC) && \
+ (defined(MBEDTLS_DES_C) || defined(MBEDTLS_AES_C))
+#define PEM_RFC1421
+#endif /* MBEDTLS_MD_CAN_MD5 &&
+ MBEDTLS_CIPHER_MODE_CBC &&
+ ( MBEDTLS_AES_C || MBEDTLS_DES_C ) */
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+void mbedtls_pem_init(mbedtls_pem_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_pem_context));
+}
+
+#if defined(PEM_RFC1421)
+/*
+ * Read a 16-byte hex string and convert it to binary
+ */
+static int pem_get_iv(const unsigned char *s, unsigned char *iv,
+ size_t iv_len)
+{
+ size_t i, j, k;
+
+ memset(iv, 0, iv_len);
+
+ for (i = 0; i < iv_len * 2; i++, s++) {
+ if (*s >= '0' && *s <= '9') {
+ j = *s - '0';
+ } else
+ if (*s >= 'A' && *s <= 'F') {
+ j = *s - '7';
+ } else
+ if (*s >= 'a' && *s <= 'f') {
+ j = *s - 'W';
+ } else {
+ return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+ }
+
+ k = ((i & 1) != 0) ? j : j << 4;
+
+ iv[i >> 1] = (unsigned char) (iv[i >> 1] | k);
+ }
+
+ return 0;
+}
+
+static int pem_pbkdf1(unsigned char *key, size_t keylen,
+ unsigned char *iv,
+ const unsigned char *pwd, size_t pwdlen)
+{
+ mbedtls_md_context_t md5_ctx;
+ const mbedtls_md_info_t *md5_info;
+ unsigned char md5sum[16];
+ size_t use_len;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_md_init(&md5_ctx);
+
+ /* Prepare the context. (setup() errors gracefully on NULL info.) */
+ md5_info = mbedtls_md_info_from_type(MBEDTLS_MD_MD5);
+ if ((ret = mbedtls_md_setup(&md5_ctx, md5_info, 0)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * key[ 0..15] = MD5(pwd || IV)
+ */
+ if ((ret = mbedtls_md_starts(&md5_ctx)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md5_ctx, pwd, pwdlen)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md5_ctx, iv, 8)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_finish(&md5_ctx, md5sum)) != 0) {
+ goto exit;
+ }
+
+ if (keylen <= 16) {
+ memcpy(key, md5sum, keylen);
+ goto exit;
+ }
+
+ memcpy(key, md5sum, 16);
+
+ /*
+ * key[16..23] = MD5(key[ 0..15] || pwd || IV])
+ */
+ if ((ret = mbedtls_md_starts(&md5_ctx)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md5_ctx, md5sum, 16)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md5_ctx, pwd, pwdlen)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md5_ctx, iv, 8)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_finish(&md5_ctx, md5sum)) != 0) {
+ goto exit;
+ }
+
+ use_len = 16;
+ if (keylen < 32) {
+ use_len = keylen - 16;
+ }
+
+ memcpy(key + 16, md5sum, use_len);
+
+exit:
+ mbedtls_md_free(&md5_ctx);
+ mbedtls_platform_zeroize(md5sum, 16);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_DES_C)
+/*
+ * Decrypt with DES-CBC, using PBKDF1 for key derivation
+ */
+static int pem_des_decrypt(unsigned char des_iv[8],
+ unsigned char *buf, size_t buflen,
+ const unsigned char *pwd, size_t pwdlen)
+{
+ mbedtls_des_context des_ctx;
+ unsigned char des_key[8];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_des_init(&des_ctx);
+
+ if ((ret = pem_pbkdf1(des_key, 8, des_iv, pwd, pwdlen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_des_setkey_dec(&des_ctx, des_key)) != 0) {
+ goto exit;
+ }
+ ret = mbedtls_des_crypt_cbc(&des_ctx, MBEDTLS_DES_DECRYPT, buflen,
+ des_iv, buf, buf);
+
+exit:
+ mbedtls_des_free(&des_ctx);
+ mbedtls_platform_zeroize(des_key, 8);
+
+ return ret;
+}
+
+/*
+ * Decrypt with 3DES-CBC, using PBKDF1 for key derivation
+ */
+static int pem_des3_decrypt(unsigned char des3_iv[8],
+ unsigned char *buf, size_t buflen,
+ const unsigned char *pwd, size_t pwdlen)
+{
+ mbedtls_des3_context des3_ctx;
+ unsigned char des3_key[24];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_des3_init(&des3_ctx);
+
+ if ((ret = pem_pbkdf1(des3_key, 24, des3_iv, pwd, pwdlen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_des3_set3key_dec(&des3_ctx, des3_key)) != 0) {
+ goto exit;
+ }
+ ret = mbedtls_des3_crypt_cbc(&des3_ctx, MBEDTLS_DES_DECRYPT, buflen,
+ des3_iv, buf, buf);
+
+exit:
+ mbedtls_des3_free(&des3_ctx);
+ mbedtls_platform_zeroize(des3_key, 24);
+
+ return ret;
+}
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+/*
+ * Decrypt with AES-XXX-CBC, using PBKDF1 for key derivation
+ */
+static int pem_aes_decrypt(unsigned char aes_iv[16], unsigned int keylen,
+ unsigned char *buf, size_t buflen,
+ const unsigned char *pwd, size_t pwdlen)
+{
+ mbedtls_aes_context aes_ctx;
+ unsigned char aes_key[32];
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_aes_init(&aes_ctx);
+
+ if ((ret = pem_pbkdf1(aes_key, keylen, aes_iv, pwd, pwdlen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_aes_setkey_dec(&aes_ctx, aes_key, keylen * 8)) != 0) {
+ goto exit;
+ }
+ ret = mbedtls_aes_crypt_cbc(&aes_ctx, MBEDTLS_AES_DECRYPT, buflen,
+ aes_iv, buf, buf);
+
+exit:
+ mbedtls_aes_free(&aes_ctx);
+ mbedtls_platform_zeroize(aes_key, keylen);
+
+ return ret;
+}
+#endif /* MBEDTLS_AES_C */
+
+#if defined(MBEDTLS_DES_C) || defined(MBEDTLS_AES_C)
+static int pem_check_pkcs_padding(unsigned char *input, size_t input_len, size_t *data_len)
+{
+ /* input_len > 0 is guaranteed by mbedtls_pem_read_buffer(). */
+ size_t pad_len = input[input_len - 1];
+ size_t i;
+
+ if (pad_len > input_len) {
+ return MBEDTLS_ERR_PEM_PASSWORD_MISMATCH;
+ }
+
+ *data_len = input_len - pad_len;
+
+ for (i = *data_len; i < input_len; i++) {
+ if (input[i] != pad_len) {
+ return MBEDTLS_ERR_PEM_PASSWORD_MISMATCH;
+ }
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_DES_C || MBEDTLS_AES_C */
+
+#endif /* PEM_RFC1421 */
+
+int mbedtls_pem_read_buffer(mbedtls_pem_context *ctx, const char *header, const char *footer,
+ const unsigned char *data, const unsigned char *pwd,
+ size_t pwdlen, size_t *use_len)
+{
+ int ret, enc;
+ size_t len;
+ unsigned char *buf;
+ const unsigned char *s1, *s2, *end;
+#if defined(PEM_RFC1421)
+ unsigned char pem_iv[16];
+ mbedtls_cipher_type_t enc_alg = MBEDTLS_CIPHER_NONE;
+#else
+ ((void) pwd);
+ ((void) pwdlen);
+#endif /* PEM_RFC1421 */
+
+ if (ctx == NULL) {
+ return MBEDTLS_ERR_PEM_BAD_INPUT_DATA;
+ }
+
+ s1 = (unsigned char *) strstr((const char *) data, header);
+
+ if (s1 == NULL) {
+ return MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ }
+
+ s2 = (unsigned char *) strstr((const char *) data, footer);
+
+ if (s2 == NULL || s2 <= s1) {
+ return MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ }
+
+ s1 += strlen(header);
+ if (*s1 == ' ') {
+ s1++;
+ }
+ if (*s1 == '\r') {
+ s1++;
+ }
+ if (*s1 == '\n') {
+ s1++;
+ } else {
+ return MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ }
+
+ end = s2;
+ end += strlen(footer);
+ if (*end == ' ') {
+ end++;
+ }
+ if (*end == '\r') {
+ end++;
+ }
+ if (*end == '\n') {
+ end++;
+ }
+ *use_len = (size_t) (end - data);
+
+ enc = 0;
+
+ if (s2 - s1 >= 22 && memcmp(s1, "Proc-Type: 4,ENCRYPTED", 22) == 0) {
+#if defined(PEM_RFC1421)
+ enc++;
+
+ s1 += 22;
+ if (*s1 == '\r') {
+ s1++;
+ }
+ if (*s1 == '\n') {
+ s1++;
+ } else {
+ return MBEDTLS_ERR_PEM_INVALID_DATA;
+ }
+
+
+#if defined(MBEDTLS_DES_C)
+ if (s2 - s1 >= 23 && memcmp(s1, "DEK-Info: DES-EDE3-CBC,", 23) == 0) {
+ enc_alg = MBEDTLS_CIPHER_DES_EDE3_CBC;
+
+ s1 += 23;
+ if (s2 - s1 < 16 || pem_get_iv(s1, pem_iv, 8) != 0) {
+ return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+ }
+
+ s1 += 16;
+ } else if (s2 - s1 >= 18 && memcmp(s1, "DEK-Info: DES-CBC,", 18) == 0) {
+ enc_alg = MBEDTLS_CIPHER_DES_CBC;
+
+ s1 += 18;
+ if (s2 - s1 < 16 || pem_get_iv(s1, pem_iv, 8) != 0) {
+ return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+ }
+
+ s1 += 16;
+ }
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+ if (s2 - s1 >= 14 && memcmp(s1, "DEK-Info: AES-", 14) == 0) {
+ if (s2 - s1 < 22) {
+ return MBEDTLS_ERR_PEM_UNKNOWN_ENC_ALG;
+ } else if (memcmp(s1, "DEK-Info: AES-128-CBC,", 22) == 0) {
+ enc_alg = MBEDTLS_CIPHER_AES_128_CBC;
+ } else if (memcmp(s1, "DEK-Info: AES-192-CBC,", 22) == 0) {
+ enc_alg = MBEDTLS_CIPHER_AES_192_CBC;
+ } else if (memcmp(s1, "DEK-Info: AES-256-CBC,", 22) == 0) {
+ enc_alg = MBEDTLS_CIPHER_AES_256_CBC;
+ } else {
+ return MBEDTLS_ERR_PEM_UNKNOWN_ENC_ALG;
+ }
+
+ s1 += 22;
+ if (s2 - s1 < 32 || pem_get_iv(s1, pem_iv, 16) != 0) {
+ return MBEDTLS_ERR_PEM_INVALID_ENC_IV;
+ }
+
+ s1 += 32;
+ }
+#endif /* MBEDTLS_AES_C */
+
+ if (enc_alg == MBEDTLS_CIPHER_NONE) {
+ return MBEDTLS_ERR_PEM_UNKNOWN_ENC_ALG;
+ }
+
+ if (*s1 == '\r') {
+ s1++;
+ }
+ if (*s1 == '\n') {
+ s1++;
+ } else {
+ return MBEDTLS_ERR_PEM_INVALID_DATA;
+ }
+#else
+ return MBEDTLS_ERR_PEM_FEATURE_UNAVAILABLE;
+#endif /* PEM_RFC1421 */
+ }
+
+ if (s1 >= s2) {
+ return MBEDTLS_ERR_PEM_INVALID_DATA;
+ }
+
+ ret = mbedtls_base64_decode(NULL, 0, &len, s1, (size_t) (s2 - s1));
+
+ if (ret == MBEDTLS_ERR_BASE64_INVALID_CHARACTER) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PEM_INVALID_DATA, ret);
+ }
+
+ if (len == 0) {
+ return MBEDTLS_ERR_PEM_BAD_INPUT_DATA;
+ }
+
+ if ((buf = mbedtls_calloc(1, len)) == NULL) {
+ return MBEDTLS_ERR_PEM_ALLOC_FAILED;
+ }
+
+ if ((ret = mbedtls_base64_decode(buf, len, &len, s1, (size_t) (s2 - s1))) != 0) {
+ mbedtls_zeroize_and_free(buf, len);
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PEM_INVALID_DATA, ret);
+ }
+
+ if (enc != 0) {
+#if defined(PEM_RFC1421)
+ if (pwd == NULL) {
+ mbedtls_zeroize_and_free(buf, len);
+ return MBEDTLS_ERR_PEM_PASSWORD_REQUIRED;
+ }
+
+ ret = 0;
+
+#if defined(MBEDTLS_DES_C)
+ if (enc_alg == MBEDTLS_CIPHER_DES_EDE3_CBC) {
+ ret = pem_des3_decrypt(pem_iv, buf, len, pwd, pwdlen);
+ } else if (enc_alg == MBEDTLS_CIPHER_DES_CBC) {
+ ret = pem_des_decrypt(pem_iv, buf, len, pwd, pwdlen);
+ }
+#endif /* MBEDTLS_DES_C */
+
+#if defined(MBEDTLS_AES_C)
+ if (enc_alg == MBEDTLS_CIPHER_AES_128_CBC) {
+ ret = pem_aes_decrypt(pem_iv, 16, buf, len, pwd, pwdlen);
+ } else if (enc_alg == MBEDTLS_CIPHER_AES_192_CBC) {
+ ret = pem_aes_decrypt(pem_iv, 24, buf, len, pwd, pwdlen);
+ } else if (enc_alg == MBEDTLS_CIPHER_AES_256_CBC) {
+ ret = pem_aes_decrypt(pem_iv, 32, buf, len, pwd, pwdlen);
+ }
+#endif /* MBEDTLS_AES_C */
+
+ if (ret != 0) {
+ mbedtls_zeroize_and_free(buf, len);
+ return ret;
+ }
+
+ /* Check PKCS padding and update data length based on padding info.
+ * This can be used to detect invalid padding data and password
+ * mismatches. */
+ size_t unpadded_len;
+ ret = pem_check_pkcs_padding(buf, len, &unpadded_len);
+ if (ret != 0) {
+ mbedtls_zeroize_and_free(buf, len);
+ return ret;
+ }
+ len = unpadded_len;
+#else
+ mbedtls_zeroize_and_free(buf, len);
+ return MBEDTLS_ERR_PEM_FEATURE_UNAVAILABLE;
+#endif /* PEM_RFC1421 */
+ }
+
+ ctx->buf = buf;
+ ctx->buflen = len;
+
+ return 0;
+}
+
+void mbedtls_pem_free(mbedtls_pem_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ if (ctx->buf != NULL) {
+ mbedtls_zeroize_and_free(ctx->buf, ctx->buflen);
+ }
+ mbedtls_free(ctx->info);
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_pem_context));
+}
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+#if defined(MBEDTLS_PEM_WRITE_C)
+int mbedtls_pem_write_buffer(const char *header, const char *footer,
+ const unsigned char *der_data, size_t der_len,
+ unsigned char *buf, size_t buf_len, size_t *olen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *encode_buf = NULL, *c, *p = buf;
+ size_t len = 0, use_len, add_len = 0;
+
+ mbedtls_base64_encode(NULL, 0, &use_len, der_data, der_len);
+ add_len = strlen(header) + strlen(footer) + (((use_len > 2) ? (use_len - 2) : 0) / 64) + 1;
+
+ if (use_len + add_len > buf_len) {
+ *olen = use_len + add_len;
+ return MBEDTLS_ERR_BASE64_BUFFER_TOO_SMALL;
+ }
+
+ if (use_len != 0 &&
+ ((encode_buf = mbedtls_calloc(1, use_len)) == NULL)) {
+ return MBEDTLS_ERR_PEM_ALLOC_FAILED;
+ }
+
+ if ((ret = mbedtls_base64_encode(encode_buf, use_len, &use_len, der_data,
+ der_len)) != 0) {
+ mbedtls_free(encode_buf);
+ return ret;
+ }
+
+ memcpy(p, header, strlen(header));
+ p += strlen(header);
+ c = encode_buf;
+
+ while (use_len) {
+ len = (use_len > 64) ? 64 : use_len;
+ memcpy(p, c, len);
+ use_len -= len;
+ p += len;
+ c += len;
+ *p++ = '\n';
+ }
+
+ memcpy(p, footer, strlen(footer));
+ p += strlen(footer);
+
+ *p++ = '\0';
+ *olen = (size_t) (p - buf);
+
+ /* Clean any remaining data previously written to the buffer */
+ memset(buf + *olen, 0, buf_len - *olen);
+
+ mbedtls_free(encode_buf);
+ return 0;
+}
+#endif /* MBEDTLS_PEM_WRITE_C */
+#endif /* MBEDTLS_PEM_PARSE_C || MBEDTLS_PEM_WRITE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk.c b/tf-psa-crypto/drivers/builtin/src/pk.c
new file mode 100644
index 0000000..3fe51ea
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk.c
@@ -0,0 +1,1507 @@
+/*
+ * Public Key abstraction layer
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PK_C)
+#include "mbedtls/pk.h"
+#include "pk_wrap.h"
+#include "pkwrite.h"
+#include "pk_internal.h"
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_RSA_C)
+#include "mbedtls/rsa.h"
+#include "rsa_internal.h"
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "mbedtls/ecp.h"
+#endif
+#if defined(MBEDTLS_ECDSA_C)
+#include "mbedtls/ecdsa.h"
+#endif
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#include "psa_util_internal.h"
+#include "mbedtls/psa_util.h"
+#endif
+
+#include <limits.h>
+#include <stdint.h>
+
+#define PSA_EXPORT_KEY_PAIR_OR_PUBLIC_MAX_SIZE \
+ (PSA_EXPORT_KEY_PAIR_MAX_SIZE > PSA_EXPORT_PUBLIC_KEY_MAX_SIZE) ? \
+ PSA_EXPORT_KEY_PAIR_MAX_SIZE : PSA_EXPORT_PUBLIC_KEY_MAX_SIZE
+
+/*
+ * Initialise a mbedtls_pk_context
+ */
+void mbedtls_pk_init(mbedtls_pk_context *ctx)
+{
+ ctx->pk_info = NULL;
+ ctx->pk_ctx = NULL;
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ ctx->priv_id = MBEDTLS_SVC_KEY_ID_INIT;
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ memset(ctx->pub_raw, 0, sizeof(ctx->pub_raw));
+ ctx->pub_raw_len = 0;
+ ctx->ec_family = 0;
+ ctx->ec_bits = 0;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+/*
+ * Free (the components of) a mbedtls_pk_context
+ */
+void mbedtls_pk_free(mbedtls_pk_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ if ((ctx->pk_info != NULL) && (ctx->pk_info->ctx_free_func != NULL)) {
+ ctx->pk_info->ctx_free_func(ctx->pk_ctx);
+ }
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ /* The ownership of the priv_id key for opaque keys is external of the PK
+ * module. It's the user responsibility to clear it after use. */
+ if ((ctx->pk_info != NULL) && (ctx->pk_info->type != MBEDTLS_PK_OPAQUE)) {
+ psa_destroy_key(ctx->priv_id);
+ }
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_pk_context));
+}
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Initialize a restart context
+ */
+void mbedtls_pk_restart_init(mbedtls_pk_restart_ctx *ctx)
+{
+ ctx->pk_info = NULL;
+ ctx->rs_ctx = NULL;
+}
+
+/*
+ * Free the components of a restart context
+ */
+void mbedtls_pk_restart_free(mbedtls_pk_restart_ctx *ctx)
+{
+ if (ctx == NULL || ctx->pk_info == NULL ||
+ ctx->pk_info->rs_free_func == NULL) {
+ return;
+ }
+
+ ctx->pk_info->rs_free_func(ctx->rs_ctx);
+
+ ctx->pk_info = NULL;
+ ctx->rs_ctx = NULL;
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+/*
+ * Get pk_info structure from type
+ */
+const mbedtls_pk_info_t *mbedtls_pk_info_from_type(mbedtls_pk_type_t pk_type)
+{
+ switch (pk_type) {
+#if defined(MBEDTLS_RSA_C)
+ case MBEDTLS_PK_RSA:
+ return &mbedtls_rsa_info;
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ case MBEDTLS_PK_ECKEY:
+ return &mbedtls_eckey_info;
+ case MBEDTLS_PK_ECKEY_DH:
+ return &mbedtls_eckeydh_info;
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+ case MBEDTLS_PK_ECDSA:
+ return &mbedtls_ecdsa_info;
+#endif /* MBEDTLS_PK_CAN_ECDSA_SOME */
+ /* MBEDTLS_PK_RSA_ALT omitted on purpose */
+ default:
+ return NULL;
+ }
+}
+
+/*
+ * Initialise context
+ */
+int mbedtls_pk_setup(mbedtls_pk_context *ctx, const mbedtls_pk_info_t *info)
+{
+ if (info == NULL || ctx->pk_info != NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if ((info->ctx_alloc_func != NULL) &&
+ ((ctx->pk_ctx = info->ctx_alloc_func()) == NULL)) {
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+
+ ctx->pk_info = info;
+
+ return 0;
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/*
+ * Initialise a PSA-wrapping context
+ */
+int mbedtls_pk_setup_opaque(mbedtls_pk_context *ctx,
+ const mbedtls_svc_key_id_t key)
+{
+ const mbedtls_pk_info_t *info = NULL;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_key_type_t type;
+
+ if (ctx == NULL || ctx->pk_info != NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (PSA_SUCCESS != psa_get_key_attributes(key, &attributes)) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ type = psa_get_key_type(&attributes);
+ psa_reset_key_attributes(&attributes);
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(type)) {
+ info = &mbedtls_ecdsa_opaque_info;
+ } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+ if (type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+ info = &mbedtls_rsa_opaque_info;
+ } else {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+
+ ctx->pk_info = info;
+ ctx->priv_id = key;
+
+ return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+/*
+ * Initialize an RSA-alt context
+ */
+int mbedtls_pk_setup_rsa_alt(mbedtls_pk_context *ctx, void *key,
+ mbedtls_pk_rsa_alt_decrypt_func decrypt_func,
+ mbedtls_pk_rsa_alt_sign_func sign_func,
+ mbedtls_pk_rsa_alt_key_len_func key_len_func)
+{
+ mbedtls_rsa_alt_context *rsa_alt;
+ const mbedtls_pk_info_t *info = &mbedtls_rsa_alt_info;
+
+ if (ctx->pk_info != NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if ((ctx->pk_ctx = info->ctx_alloc_func()) == NULL) {
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+
+ ctx->pk_info = info;
+
+ rsa_alt = (mbedtls_rsa_alt_context *) ctx->pk_ctx;
+
+ rsa_alt->key = key;
+ rsa_alt->decrypt_func = decrypt_func;
+ rsa_alt->sign_func = sign_func;
+ rsa_alt->key_len_func = key_len_func;
+
+ return 0;
+}
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+/*
+ * Tell if a PK can do the operations of the given type
+ */
+int mbedtls_pk_can_do(const mbedtls_pk_context *ctx, mbedtls_pk_type_t type)
+{
+ /* A context with null pk_info is not set up yet and can't do anything.
+ * For backward compatibility, also accept NULL instead of a context
+ * pointer. */
+ if (ctx == NULL || ctx->pk_info == NULL) {
+ return 0;
+ }
+
+ return ctx->pk_info->can_do(type);
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/*
+ * Tell if a PK can do the operations of the given PSA algorithm
+ */
+int mbedtls_pk_can_do_ext(const mbedtls_pk_context *ctx, psa_algorithm_t alg,
+ psa_key_usage_t usage)
+{
+ psa_key_usage_t key_usage;
+
+ /* A context with null pk_info is not set up yet and can't do anything.
+ * For backward compatibility, also accept NULL instead of a context
+ * pointer. */
+ if (ctx == NULL || ctx->pk_info == NULL) {
+ return 0;
+ }
+
+ /* Filter out non allowed algorithms */
+ if (PSA_ALG_IS_ECDSA(alg) == 0 &&
+ PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) == 0 &&
+ PSA_ALG_IS_RSA_PSS(alg) == 0 &&
+ alg != PSA_ALG_RSA_PKCS1V15_CRYPT &&
+ PSA_ALG_IS_ECDH(alg) == 0) {
+ return 0;
+ }
+
+ /* Filter out non allowed usage flags */
+ if (usage == 0 ||
+ (usage & ~(PSA_KEY_USAGE_SIGN_HASH |
+ PSA_KEY_USAGE_DECRYPT |
+ PSA_KEY_USAGE_DERIVE)) != 0) {
+ return 0;
+ }
+
+ /* Wildcard hash is not allowed */
+ if (PSA_ALG_IS_SIGN_HASH(alg) &&
+ PSA_ALG_SIGN_GET_HASH(alg) == PSA_ALG_ANY_HASH) {
+ return 0;
+ }
+
+ if (mbedtls_pk_get_type(ctx) != MBEDTLS_PK_OPAQUE) {
+ mbedtls_pk_type_t type;
+
+ if (PSA_ALG_IS_ECDSA(alg) || PSA_ALG_IS_ECDH(alg)) {
+ type = MBEDTLS_PK_ECKEY;
+ } else if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg) ||
+ alg == PSA_ALG_RSA_PKCS1V15_CRYPT) {
+ type = MBEDTLS_PK_RSA;
+ } else if (PSA_ALG_IS_RSA_PSS(alg)) {
+ type = MBEDTLS_PK_RSASSA_PSS;
+ } else {
+ return 0;
+ }
+
+ if (ctx->pk_info->can_do(type) == 0) {
+ return 0;
+ }
+
+ switch (type) {
+ case MBEDTLS_PK_ECKEY:
+ key_usage = PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_DERIVE;
+ break;
+ case MBEDTLS_PK_RSA:
+ case MBEDTLS_PK_RSASSA_PSS:
+ key_usage = PSA_KEY_USAGE_SIGN_HASH |
+ PSA_KEY_USAGE_SIGN_MESSAGE |
+ PSA_KEY_USAGE_DECRYPT;
+ break;
+ default:
+ /* Should never happen */
+ return 0;
+ }
+
+ return (key_usage & usage) == usage;
+ }
+
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_status_t status;
+
+ status = psa_get_key_attributes(ctx->priv_id, &attributes);
+ if (status != PSA_SUCCESS) {
+ return 0;
+ }
+
+ psa_algorithm_t key_alg = psa_get_key_algorithm(&attributes);
+ /* Key's enrollment is available only when an Mbed TLS implementation of PSA
+ * Crypto is being used, i.e. when MBEDTLS_PSA_CRYPTO_C is defined.
+ * Even though we don't officially support using other implementations of PSA
+ * Crypto with TLS and X.509 (yet), we try to keep vendor's customizations
+ * separated. */
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+ psa_algorithm_t key_alg2 = psa_get_key_enrollment_algorithm(&attributes);
+#endif /* MBEDTLS_PSA_CRYPTO_C */
+ key_usage = psa_get_key_usage_flags(&attributes);
+ psa_reset_key_attributes(&attributes);
+
+ if ((key_usage & usage) != usage) {
+ return 0;
+ }
+
+ /*
+ * Common case: the key alg [or alg2] only allows alg.
+ * This will match PSA_ALG_RSA_PKCS1V15_CRYPT & PSA_ALG_IS_ECDH
+ * directly.
+ * This would also match ECDSA/RSA_PKCS1V15_SIGN/RSA_PSS with
+ * a fixed hash on key_alg [or key_alg2].
+ */
+ if (alg == key_alg) {
+ return 1;
+ }
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+ if (alg == key_alg2) {
+ return 1;
+ }
+#endif /* MBEDTLS_PSA_CRYPTO_C */
+
+ /*
+ * If key_alg [or key_alg2] is a hash-and-sign with a wildcard for the hash,
+ * and alg is the same hash-and-sign family with any hash,
+ * then alg is compliant with this key alg
+ */
+ if (PSA_ALG_IS_SIGN_HASH(alg)) {
+ if (PSA_ALG_IS_SIGN_HASH(key_alg) &&
+ PSA_ALG_SIGN_GET_HASH(key_alg) == PSA_ALG_ANY_HASH &&
+ (alg & ~PSA_ALG_HASH_MASK) == (key_alg & ~PSA_ALG_HASH_MASK)) {
+ return 1;
+ }
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+ if (PSA_ALG_IS_SIGN_HASH(key_alg2) &&
+ PSA_ALG_SIGN_GET_HASH(key_alg2) == PSA_ALG_ANY_HASH &&
+ (alg & ~PSA_ALG_HASH_MASK) == (key_alg2 & ~PSA_ALG_HASH_MASK)) {
+ return 1;
+ }
+#endif /* MBEDTLS_PSA_CRYPTO_C */
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#if defined(MBEDTLS_RSA_C)
+static psa_algorithm_t psa_algorithm_for_rsa(const mbedtls_rsa_context *rsa,
+ int want_crypt)
+{
+ if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+ if (want_crypt) {
+ mbedtls_md_type_t md_type = (mbedtls_md_type_t) mbedtls_rsa_get_md_alg(rsa);
+ return PSA_ALG_RSA_OAEP(mbedtls_md_psa_alg_from_type(md_type));
+ } else {
+ return PSA_ALG_RSA_PSS_ANY_SALT(PSA_ALG_ANY_HASH);
+ }
+ } else {
+ if (want_crypt) {
+ return PSA_ALG_RSA_PKCS1V15_CRYPT;
+ } else {
+ return PSA_ALG_RSA_PKCS1V15_SIGN(PSA_ALG_ANY_HASH);
+ }
+ }
+}
+#endif /* MBEDTLS_RSA_C */
+
+int mbedtls_pk_get_psa_attributes(const mbedtls_pk_context *pk,
+ psa_key_usage_t usage,
+ psa_key_attributes_t *attributes)
+{
+ mbedtls_pk_type_t pk_type = mbedtls_pk_get_type(pk);
+
+ psa_key_usage_t more_usage = usage;
+ if (usage == PSA_KEY_USAGE_SIGN_MESSAGE) {
+ more_usage |= PSA_KEY_USAGE_VERIFY_MESSAGE;
+ } else if (usage == PSA_KEY_USAGE_SIGN_HASH) {
+ more_usage |= PSA_KEY_USAGE_VERIFY_HASH;
+ } else if (usage == PSA_KEY_USAGE_DECRYPT) {
+ more_usage |= PSA_KEY_USAGE_ENCRYPT;
+ }
+ more_usage |= PSA_KEY_USAGE_EXPORT | PSA_KEY_USAGE_COPY;
+
+ int want_private = !(usage == PSA_KEY_USAGE_VERIFY_MESSAGE ||
+ usage == PSA_KEY_USAGE_VERIFY_HASH ||
+ usage == PSA_KEY_USAGE_ENCRYPT);
+
+ switch (pk_type) {
+#if defined(MBEDTLS_RSA_C)
+ case MBEDTLS_PK_RSA:
+ {
+ int want_crypt = 0; /* 0: sign/verify; 1: encrypt/decrypt */
+ switch (usage) {
+ case PSA_KEY_USAGE_SIGN_MESSAGE:
+ case PSA_KEY_USAGE_SIGN_HASH:
+ case PSA_KEY_USAGE_VERIFY_MESSAGE:
+ case PSA_KEY_USAGE_VERIFY_HASH:
+ /* Nothing to do. */
+ break;
+ case PSA_KEY_USAGE_DECRYPT:
+ case PSA_KEY_USAGE_ENCRYPT:
+ want_crypt = 1;
+ break;
+ default:
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ /* Detect the presence of a private key in a way that works both
+ * in CRT and non-CRT configurations. */
+ mbedtls_rsa_context *rsa = mbedtls_pk_rsa(*pk);
+ int has_private = (mbedtls_rsa_check_privkey(rsa) == 0);
+ if (want_private && !has_private) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ psa_set_key_type(attributes, (want_private ?
+ PSA_KEY_TYPE_RSA_KEY_PAIR :
+ PSA_KEY_TYPE_RSA_PUBLIC_KEY));
+ psa_set_key_bits(attributes, mbedtls_pk_get_bitlen(pk));
+ psa_set_key_algorithm(attributes,
+ psa_algorithm_for_rsa(rsa, want_crypt));
+ break;
+ }
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ case MBEDTLS_PK_ECKEY:
+ case MBEDTLS_PK_ECKEY_DH:
+ case MBEDTLS_PK_ECDSA:
+ {
+ int sign_ok = (pk_type != MBEDTLS_PK_ECKEY_DH);
+ int derive_ok = (pk_type != MBEDTLS_PK_ECDSA);
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ psa_ecc_family_t family = pk->ec_family;
+ size_t bits = pk->ec_bits;
+ int has_private = 0;
+ if (pk->priv_id != MBEDTLS_SVC_KEY_ID_INIT) {
+ has_private = 1;
+ }
+#else
+ const mbedtls_ecp_keypair *ec = mbedtls_pk_ec_ro(*pk);
+ int has_private = (ec->d.n != 0);
+ size_t bits = 0;
+ psa_ecc_family_t family =
+ mbedtls_ecc_group_to_psa(ec->grp.id, &bits);
+#endif
+ psa_algorithm_t alg = 0;
+ switch (usage) {
+ case PSA_KEY_USAGE_SIGN_MESSAGE:
+ case PSA_KEY_USAGE_SIGN_HASH:
+ case PSA_KEY_USAGE_VERIFY_MESSAGE:
+ case PSA_KEY_USAGE_VERIFY_HASH:
+ if (!sign_ok) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+ alg = PSA_ALG_DETERMINISTIC_ECDSA(PSA_ALG_ANY_HASH);
+#else
+ alg = PSA_ALG_ECDSA(PSA_ALG_ANY_HASH);
+#endif
+ break;
+ case PSA_KEY_USAGE_DERIVE:
+ alg = PSA_ALG_ECDH;
+ if (!derive_ok) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ break;
+ default:
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ if (want_private && !has_private) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ psa_set_key_type(attributes, (want_private ?
+ PSA_KEY_TYPE_ECC_KEY_PAIR(family) :
+ PSA_KEY_TYPE_ECC_PUBLIC_KEY(family)));
+ psa_set_key_bits(attributes, bits);
+ psa_set_key_algorithm(attributes, alg);
+ break;
+ }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+ case MBEDTLS_PK_RSA_ALT:
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ case MBEDTLS_PK_OPAQUE:
+ {
+ psa_key_attributes_t old_attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_status_t status = PSA_ERROR_CORRUPTION_DETECTED;
+ status = psa_get_key_attributes(pk->priv_id, &old_attributes);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ psa_key_type_t old_type = psa_get_key_type(&old_attributes);
+ switch (usage) {
+ case PSA_KEY_USAGE_SIGN_MESSAGE:
+ case PSA_KEY_USAGE_SIGN_HASH:
+ case PSA_KEY_USAGE_VERIFY_MESSAGE:
+ case PSA_KEY_USAGE_VERIFY_HASH:
+ if (!(PSA_KEY_TYPE_IS_ECC_KEY_PAIR(old_type) ||
+ old_type == PSA_KEY_TYPE_RSA_KEY_PAIR)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ break;
+ case PSA_KEY_USAGE_DECRYPT:
+ case PSA_KEY_USAGE_ENCRYPT:
+ if (old_type != PSA_KEY_TYPE_RSA_KEY_PAIR) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ break;
+ case PSA_KEY_USAGE_DERIVE:
+ if (!(PSA_KEY_TYPE_IS_ECC_KEY_PAIR(old_type))) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ break;
+ default:
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ psa_key_type_t new_type = old_type;
+ /* Opaque keys are always key pairs, so we don't need a check
+ * on the input if the required usage is private. We just need
+ * to adjust the type correctly if the required usage is public. */
+ if (!want_private) {
+ new_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(new_type);
+ }
+ more_usage = psa_get_key_usage_flags(&old_attributes);
+ if ((usage & more_usage) == 0) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ psa_set_key_type(attributes, new_type);
+ psa_set_key_bits(attributes, psa_get_key_bits(&old_attributes));
+ psa_set_key_algorithm(attributes, psa_get_key_algorithm(&old_attributes));
+ break;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+ default:
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ psa_set_key_usage_flags(attributes, more_usage);
+ /* Key's enrollment is available only when an Mbed TLS implementation of PSA
+ * Crypto is being used, i.e. when MBEDTLS_PSA_CRYPTO_C is defined.
+ * Even though we don't officially support using other implementations of PSA
+ * Crypto with TLS and X.509 (yet), we try to keep vendor's customizations
+ * separated. */
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+ psa_set_key_enrollment_algorithm(attributes, PSA_ALG_NONE);
+#endif
+
+ return 0;
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA) || defined(MBEDTLS_USE_PSA_CRYPTO)
+static psa_status_t export_import_into_psa(mbedtls_svc_key_id_t old_key_id,
+ const psa_key_attributes_t *attributes,
+ mbedtls_svc_key_id_t *new_key_id)
+{
+ unsigned char key_buffer[PSA_EXPORT_KEY_PAIR_MAX_SIZE];
+ size_t key_length = 0;
+ psa_status_t status = psa_export_key(old_key_id,
+ key_buffer, sizeof(key_buffer),
+ &key_length);
+ if (status != PSA_SUCCESS) {
+ return status;
+ }
+ status = psa_import_key(attributes, key_buffer, key_length, new_key_id);
+ mbedtls_platform_zeroize(key_buffer, key_length);
+ return status;
+}
+
+static int copy_into_psa(mbedtls_svc_key_id_t old_key_id,
+ const psa_key_attributes_t *attributes,
+ mbedtls_svc_key_id_t *new_key_id)
+{
+ /* Normally, we prefer copying: it's more efficient and works even
+ * for non-exportable keys. */
+ psa_status_t status = psa_copy_key(old_key_id, attributes, new_key_id);
+ if (status == PSA_ERROR_NOT_PERMITTED /*missing COPY usage*/ ||
+ status == PSA_ERROR_INVALID_ARGUMENT /*incompatible policy*/) {
+ /* There are edge cases where copying won't work, but export+import
+ * might:
+ * - If the old key does not allow PSA_KEY_USAGE_COPY.
+ * - If the old key's usage does not allow what attributes wants.
+ * Because the key was intended for use in the pk module, and may
+ * have had a policy chosen solely for what pk needs rather than
+ * based on a detailed understanding of PSA policies, we are a bit
+ * more liberal than psa_copy_key() here.
+ */
+ /* Here we need to check that the types match, otherwise we risk
+ * importing nonsensical data. */
+ psa_key_attributes_t old_attributes = PSA_KEY_ATTRIBUTES_INIT;
+ status = psa_get_key_attributes(old_key_id, &old_attributes);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ psa_key_type_t old_type = psa_get_key_type(&old_attributes);
+ psa_reset_key_attributes(&old_attributes);
+ if (old_type != psa_get_key_type(attributes)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ status = export_import_into_psa(old_key_id, attributes, new_key_id);
+ }
+ return PSA_PK_TO_MBEDTLS_ERR(status);
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA || MBEDTLS_USE_PSA_CRYPTO */
+
+static int import_pair_into_psa(const mbedtls_pk_context *pk,
+ const psa_key_attributes_t *attributes,
+ mbedtls_svc_key_id_t *key_id)
+{
+ switch (mbedtls_pk_get_type(pk)) {
+#if defined(MBEDTLS_RSA_C)
+ case MBEDTLS_PK_RSA:
+ {
+ if (psa_get_key_type(attributes) != PSA_KEY_TYPE_RSA_KEY_PAIR) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ unsigned char key_buffer[
+ PSA_KEY_EXPORT_RSA_KEY_PAIR_MAX_SIZE(PSA_VENDOR_RSA_MAX_KEY_BITS)];
+ unsigned char *const key_end = key_buffer + sizeof(key_buffer);
+ unsigned char *key_data = key_end;
+ int ret = mbedtls_rsa_write_key(mbedtls_pk_rsa(*pk),
+ key_buffer, &key_data);
+ if (ret < 0) {
+ return ret;
+ }
+ size_t key_length = key_end - key_data;
+ ret = PSA_PK_TO_MBEDTLS_ERR(psa_import_key(attributes,
+ key_data, key_length,
+ key_id));
+ mbedtls_platform_zeroize(key_data, key_length);
+ return ret;
+ }
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ case MBEDTLS_PK_ECKEY:
+ case MBEDTLS_PK_ECKEY_DH:
+ case MBEDTLS_PK_ECDSA:
+ {
+ /* We need to check the curve family, otherwise the import could
+ * succeed with nonsensical data.
+ * We don't check the bit-size: it's optional in attributes,
+ * and if it's specified, psa_import_key() will know from the key
+ * data length and will check that the bit-size matches. */
+ psa_key_type_t to_type = psa_get_key_type(attributes);
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ psa_ecc_family_t from_family = pk->ec_family;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ const mbedtls_ecp_keypair *ec = mbedtls_pk_ec_ro(*pk);
+ size_t from_bits = 0;
+ psa_ecc_family_t from_family = mbedtls_ecc_group_to_psa(ec->grp.id,
+ &from_bits);
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ if (to_type != PSA_KEY_TYPE_ECC_KEY_PAIR(from_family)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ if (mbedtls_svc_key_id_is_null(pk->priv_id)) {
+ /* We have a public key and want a key pair. */
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ return copy_into_psa(pk->priv_id, attributes, key_id);
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ if (ec->d.n == 0) {
+ /* Private key not set. Assume the input is a public key only.
+ * (The other possibility is that it's an incomplete object
+ * where the group is set but neither the public key nor
+ * the private key. This is not possible through ecp.h
+ * functions, so we don't bother reporting a more suitable
+ * error in that case.) */
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ unsigned char key_buffer[PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS)];
+ size_t key_length = 0;
+ int ret = mbedtls_ecp_write_key_ext(ec, &key_length,
+ key_buffer, sizeof(key_buffer));
+ if (ret < 0) {
+ return ret;
+ }
+ ret = PSA_PK_TO_MBEDTLS_ERR(psa_import_key(attributes,
+ key_buffer, key_length,
+ key_id));
+ mbedtls_platform_zeroize(key_buffer, key_length);
+ return ret;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ case MBEDTLS_PK_OPAQUE:
+ return copy_into_psa(pk->priv_id, attributes, key_id);
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+ default:
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+}
+
+static int import_public_into_psa(const mbedtls_pk_context *pk,
+ const psa_key_attributes_t *attributes,
+ mbedtls_svc_key_id_t *key_id)
+{
+ psa_key_type_t psa_type = psa_get_key_type(attributes);
+
+#if defined(MBEDTLS_RSA_C) || \
+ (defined(MBEDTLS_PK_HAVE_ECC_KEYS) && !defined(MBEDTLS_PK_USE_PSA_EC_DATA)) || \
+ defined(MBEDTLS_USE_PSA_CRYPTO)
+ unsigned char key_buffer[PSA_EXPORT_PUBLIC_KEY_MAX_SIZE];
+#endif
+ unsigned char *key_data = NULL;
+ size_t key_length = 0;
+
+ switch (mbedtls_pk_get_type(pk)) {
+#if defined(MBEDTLS_RSA_C)
+ case MBEDTLS_PK_RSA:
+ {
+ if (psa_type != PSA_KEY_TYPE_RSA_PUBLIC_KEY) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ unsigned char *const key_end = key_buffer + sizeof(key_buffer);
+ key_data = key_end;
+ int ret = mbedtls_rsa_write_pubkey(mbedtls_pk_rsa(*pk),
+ key_buffer, &key_data);
+ if (ret < 0) {
+ return ret;
+ }
+ key_length = (size_t) ret;
+ break;
+ }
+#endif /*MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ case MBEDTLS_PK_ECKEY:
+ case MBEDTLS_PK_ECKEY_DH:
+ case MBEDTLS_PK_ECDSA:
+ {
+ /* We need to check the curve family, otherwise the import could
+ * succeed with nonsensical data.
+ * We don't check the bit-size: it's optional in attributes,
+ * and if it's specified, psa_import_key() will know from the key
+ * data length and will check that the bit-size matches. */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ if (psa_type != PSA_KEY_TYPE_ECC_PUBLIC_KEY(pk->ec_family)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ key_data = (unsigned char *) pk->pub_raw;
+ key_length = pk->pub_raw_len;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ const mbedtls_ecp_keypair *ec = mbedtls_pk_ec_ro(*pk);
+ size_t from_bits = 0;
+ psa_ecc_family_t from_family = mbedtls_ecc_group_to_psa(ec->grp.id,
+ &from_bits);
+ if (psa_type != PSA_KEY_TYPE_ECC_PUBLIC_KEY(from_family)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ int ret = mbedtls_ecp_write_public_key(
+ ec, MBEDTLS_ECP_PF_UNCOMPRESSED,
+ &key_length, key_buffer, sizeof(key_buffer));
+ if (ret < 0) {
+ return ret;
+ }
+ key_data = key_buffer;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ break;
+ }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ case MBEDTLS_PK_OPAQUE:
+ {
+ psa_key_attributes_t old_attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_status_t status =
+ psa_get_key_attributes(pk->priv_id, &old_attributes);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ psa_key_type_t old_type = psa_get_key_type(&old_attributes);
+ psa_reset_key_attributes(&old_attributes);
+ if (psa_type != PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(old_type)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ status = psa_export_public_key(pk->priv_id,
+ key_buffer, sizeof(key_buffer),
+ &key_length);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+ key_data = key_buffer;
+ break;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+ default:
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ return PSA_PK_TO_MBEDTLS_ERR(psa_import_key(attributes,
+ key_data, key_length,
+ key_id));
+}
+
+int mbedtls_pk_import_into_psa(const mbedtls_pk_context *pk,
+ const psa_key_attributes_t *attributes,
+ mbedtls_svc_key_id_t *key_id)
+{
+ /* Set the output immediately so that it won't contain garbage even
+ * if we error out before calling psa_import_key(). */
+ *key_id = MBEDTLS_SVC_KEY_ID_INIT;
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+ if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_RSA_ALT) {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+ int want_public = PSA_KEY_TYPE_IS_PUBLIC_KEY(psa_get_key_type(attributes));
+ if (want_public) {
+ return import_public_into_psa(pk, attributes, key_id);
+ } else {
+ return import_pair_into_psa(pk, attributes, key_id);
+ }
+}
+
+static int copy_from_psa(mbedtls_svc_key_id_t key_id,
+ mbedtls_pk_context *pk,
+ int public_only)
+{
+ psa_status_t status;
+ psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+ psa_key_type_t key_type;
+ size_t key_bits;
+ /* Use a buffer size large enough to contain either a key pair or public key. */
+ unsigned char exp_key[PSA_EXPORT_KEY_PAIR_OR_PUBLIC_MAX_SIZE];
+ size_t exp_key_len;
+ int ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+
+ if (pk == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ status = psa_get_key_attributes(key_id, &key_attr);
+ if (status != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (public_only) {
+ status = psa_export_public_key(key_id, exp_key, sizeof(exp_key), &exp_key_len);
+ } else {
+ status = psa_export_key(key_id, exp_key, sizeof(exp_key), &exp_key_len);
+ }
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ goto exit;
+ }
+
+ key_type = psa_get_key_type(&key_attr);
+ if (public_only) {
+ key_type = PSA_KEY_TYPE_PUBLIC_KEY_OF_KEY_PAIR(key_type);
+ }
+ key_bits = psa_get_key_bits(&key_attr);
+
+#if defined(MBEDTLS_RSA_C)
+ if ((key_type == PSA_KEY_TYPE_RSA_KEY_PAIR) ||
+ (key_type == PSA_KEY_TYPE_RSA_PUBLIC_KEY)) {
+
+ ret = mbedtls_pk_setup(pk, mbedtls_pk_info_from_type(MBEDTLS_PK_RSA));
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (key_type == PSA_KEY_TYPE_RSA_KEY_PAIR) {
+ ret = mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk), exp_key, exp_key_len);
+ } else {
+ ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*pk), exp_key, exp_key_len);
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+
+ psa_algorithm_t alg_type = psa_get_key_algorithm(&key_attr);
+ mbedtls_md_type_t md_type = MBEDTLS_MD_NONE;
+ if (PSA_ALG_GET_HASH(alg_type) != PSA_ALG_ANY_HASH) {
+ md_type = mbedtls_md_type_from_psa_alg(alg_type);
+ }
+
+ if (PSA_ALG_IS_RSA_OAEP(alg_type) || PSA_ALG_IS_RSA_PSS(alg_type)) {
+ ret = mbedtls_rsa_set_padding(mbedtls_pk_rsa(*pk), MBEDTLS_RSA_PKCS_V21, md_type);
+ } else if (PSA_ALG_IS_RSA_PKCS1V15_SIGN(alg_type) ||
+ alg_type == PSA_ALG_RSA_PKCS1V15_CRYPT) {
+ ret = mbedtls_rsa_set_padding(mbedtls_pk_rsa(*pk), MBEDTLS_RSA_PKCS_V15, md_type);
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+ } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(key_type) ||
+ PSA_KEY_TYPE_IS_ECC_PUBLIC_KEY(key_type)) {
+ mbedtls_ecp_group_id grp_id;
+
+ ret = mbedtls_pk_setup(pk, mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY));
+ if (ret != 0) {
+ goto exit;
+ }
+
+ grp_id = mbedtls_ecc_group_from_psa(PSA_KEY_TYPE_ECC_GET_FAMILY(key_type), key_bits);
+ ret = mbedtls_pk_ecc_set_group(pk, grp_id);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ if (PSA_KEY_TYPE_IS_ECC_KEY_PAIR(key_type)) {
+ ret = mbedtls_pk_ecc_set_key(pk, exp_key, exp_key_len);
+ if (ret != 0) {
+ goto exit;
+ }
+ ret = mbedtls_pk_ecc_set_pubkey_from_prv(pk, exp_key, exp_key_len,
+ mbedtls_psa_get_random,
+ MBEDTLS_PSA_RANDOM_STATE);
+ } else {
+ ret = mbedtls_pk_ecc_set_pubkey(pk, exp_key, exp_key_len);
+ }
+ if (ret != 0) {
+ goto exit;
+ }
+ } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+ {
+ (void) key_bits;
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+exit:
+ psa_reset_key_attributes(&key_attr);
+ mbedtls_platform_zeroize(exp_key, sizeof(exp_key));
+
+ return ret;
+}
+
+int mbedtls_pk_copy_from_psa(mbedtls_svc_key_id_t key_id,
+ mbedtls_pk_context *pk)
+{
+ return copy_from_psa(key_id, pk, 0);
+}
+
+int mbedtls_pk_copy_public_from_psa(mbedtls_svc_key_id_t key_id,
+ mbedtls_pk_context *pk)
+{
+ return copy_from_psa(key_id, pk, 1);
+}
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+
+/*
+ * Helper for mbedtls_pk_sign and mbedtls_pk_verify
+ */
+static inline int pk_hashlen_helper(mbedtls_md_type_t md_alg, size_t *hash_len)
+{
+ if (*hash_len != 0) {
+ return 0;
+ }
+
+ *hash_len = mbedtls_md_get_size_from_type(md_alg);
+
+ if (*hash_len == 0) {
+ return -1;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+/*
+ * Helper to set up a restart context if needed
+ */
+static int pk_restart_setup(mbedtls_pk_restart_ctx *ctx,
+ const mbedtls_pk_info_t *info)
+{
+ /* Don't do anything if already set up or invalid */
+ if (ctx == NULL || ctx->pk_info != NULL) {
+ return 0;
+ }
+
+ /* Should never happen when we're called */
+ if (info->rs_alloc_func == NULL || info->rs_free_func == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if ((ctx->rs_ctx = info->rs_alloc_func()) == NULL) {
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+
+ ctx->pk_info = info;
+
+ return 0;
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+/*
+ * Verify a signature (restartable)
+ */
+int mbedtls_pk_verify_restartable(mbedtls_pk_context *ctx,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len,
+ mbedtls_pk_restart_ctx *rs_ctx)
+{
+ if ((md_alg != MBEDTLS_MD_NONE || hash_len != 0) && hash == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (ctx->pk_info == NULL ||
+ pk_hashlen_helper(md_alg, &hash_len) != 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ /* optimization: use non-restartable version if restart disabled */
+ if (rs_ctx != NULL &&
+ mbedtls_ecp_restart_is_enabled() &&
+ ctx->pk_info->verify_rs_func != NULL) {
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ret = pk_restart_setup(rs_ctx, ctx->pk_info)) != 0) {
+ return ret;
+ }
+
+ ret = ctx->pk_info->verify_rs_func(ctx,
+ md_alg, hash, hash_len, sig, sig_len, rs_ctx->rs_ctx);
+
+ if (ret != MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ mbedtls_pk_restart_free(rs_ctx);
+ }
+
+ return ret;
+ }
+#else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ (void) rs_ctx;
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+ if (ctx->pk_info->verify_func == NULL) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+ return ctx->pk_info->verify_func(ctx, md_alg, hash, hash_len,
+ sig, sig_len);
+}
+
+/*
+ * Verify a signature
+ */
+int mbedtls_pk_verify(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ return mbedtls_pk_verify_restartable(ctx, md_alg, hash, hash_len,
+ sig, sig_len, NULL);
+}
+
+/*
+ * Verify a signature with options
+ */
+int mbedtls_pk_verify_ext(mbedtls_pk_type_t type, const void *options,
+ mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ if ((md_alg != MBEDTLS_MD_NONE || hash_len != 0) && hash == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (ctx->pk_info == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (!mbedtls_pk_can_do(ctx, type)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+ if (type != MBEDTLS_PK_RSASSA_PSS) {
+ /* General case: no options */
+ if (options != NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_pk_verify(ctx, md_alg, hash, hash_len, sig, sig_len);
+ }
+
+ /* Ensure the PK context is of the right type otherwise mbedtls_pk_rsa()
+ * below would return a NULL pointer. */
+ if (mbedtls_pk_get_type(ctx) != MBEDTLS_PK_RSA) {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+
+#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21)
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const mbedtls_pk_rsassa_pss_options *pss_opts;
+
+#if SIZE_MAX > UINT_MAX
+ if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+#endif
+
+ if (options == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ pss_opts = (const mbedtls_pk_rsassa_pss_options *) options;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ if (pss_opts->mgf1_hash_id == md_alg) {
+ unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
+ unsigned char *p;
+ int key_len;
+ size_t signature_length;
+ psa_status_t status = PSA_ERROR_DATA_CORRUPT;
+ psa_status_t destruction_status = PSA_ERROR_DATA_CORRUPT;
+
+ psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_algorithm_t psa_sig_alg = PSA_ALG_RSA_PSS_ANY_SALT(psa_md_alg);
+ p = buf + sizeof(buf);
+ key_len = mbedtls_rsa_write_pubkey(mbedtls_pk_rsa(*ctx), buf, &p);
+
+ if (key_len < 0) {
+ return key_len;
+ }
+
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
+ psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
+ psa_set_key_algorithm(&attributes, psa_sig_alg);
+
+ status = psa_import_key(&attributes,
+ buf + sizeof(buf) - key_len, key_len,
+ &key_id);
+ if (status != PSA_SUCCESS) {
+ psa_destroy_key(key_id);
+ return PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ /* This function requires returning MBEDTLS_ERR_PK_SIG_LEN_MISMATCH
+ * on a valid signature with trailing data in a buffer, but
+ * mbedtls_psa_rsa_verify_hash requires the sig_len to be exact,
+ * so for this reason the passed sig_len is overwritten. Smaller
+ * signature lengths should not be accepted for verification. */
+ signature_length = sig_len > mbedtls_pk_get_len(ctx) ?
+ mbedtls_pk_get_len(ctx) : sig_len;
+ status = psa_verify_hash(key_id, psa_sig_alg, hash,
+ hash_len, sig, signature_length);
+ destruction_status = psa_destroy_key(key_id);
+
+ if (status == PSA_SUCCESS && sig_len > mbedtls_pk_get_len(ctx)) {
+ return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+ }
+
+ if (status == PSA_SUCCESS) {
+ status = destruction_status;
+ }
+
+ return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+ {
+ if (sig_len < mbedtls_pk_get_len(ctx)) {
+ return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+ }
+
+ ret = mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_pk_rsa(*ctx),
+ md_alg, (unsigned int) hash_len, hash,
+ pss_opts->mgf1_hash_id,
+ pss_opts->expected_salt_len,
+ sig);
+ if (ret != 0) {
+ return ret;
+ }
+
+ if (sig_len > mbedtls_pk_get_len(ctx)) {
+ return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+ }
+
+ return 0;
+ }
+#else
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_RSA_C && MBEDTLS_PKCS1_V21 */
+}
+
+/*
+ * Make a signature (restartable)
+ */
+int mbedtls_pk_sign_restartable(mbedtls_pk_context *ctx,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ mbedtls_pk_restart_ctx *rs_ctx)
+{
+ if ((md_alg != MBEDTLS_MD_NONE || hash_len != 0) && hash == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (ctx->pk_info == NULL || pk_hashlen_helper(md_alg, &hash_len) != 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ /* optimization: use non-restartable version if restart disabled */
+ if (rs_ctx != NULL &&
+ mbedtls_ecp_restart_is_enabled() &&
+ ctx->pk_info->sign_rs_func != NULL) {
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((ret = pk_restart_setup(rs_ctx, ctx->pk_info)) != 0) {
+ return ret;
+ }
+
+ ret = ctx->pk_info->sign_rs_func(ctx, md_alg,
+ hash, hash_len,
+ sig, sig_size, sig_len,
+ f_rng, p_rng, rs_ctx->rs_ctx);
+
+ if (ret != MBEDTLS_ERR_ECP_IN_PROGRESS) {
+ mbedtls_pk_restart_free(rs_ctx);
+ }
+
+ return ret;
+ }
+#else /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ (void) rs_ctx;
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+ if (ctx->pk_info->sign_func == NULL) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+ return ctx->pk_info->sign_func(ctx, md_alg,
+ hash, hash_len,
+ sig, sig_size, sig_len,
+ f_rng, p_rng);
+}
+
+/*
+ * Make a signature
+ */
+int mbedtls_pk_sign(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ return mbedtls_pk_sign_restartable(ctx, md_alg, hash, hash_len,
+ sig, sig_size, sig_len,
+ f_rng, p_rng, NULL);
+}
+
+/*
+ * Make a signature given a signature type.
+ */
+int mbedtls_pk_sign_ext(mbedtls_pk_type_t pk_type,
+ mbedtls_pk_context *ctx,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ if (ctx->pk_info == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (!mbedtls_pk_can_do(ctx, pk_type)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+ if (pk_type != MBEDTLS_PK_RSASSA_PSS) {
+ return mbedtls_pk_sign(ctx, md_alg, hash, hash_len,
+ sig, sig_size, sig_len, f_rng, p_rng);
+ }
+
+#if defined(MBEDTLS_RSA_C) && defined(MBEDTLS_PKCS1_V21)
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ const psa_algorithm_t psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
+ if (psa_md_alg == 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_pk_get_type(ctx) == MBEDTLS_PK_OPAQUE) {
+ psa_status_t status;
+
+ /* PSA_ALG_RSA_PSS() behaves the same as PSA_ALG_RSA_PSS_ANY_SALT() when
+ * performing a signature, but they are encoded differently. Instead of
+ * extracting the proper one from the wrapped key policy, just try both. */
+ status = psa_sign_hash(ctx->priv_id, PSA_ALG_RSA_PSS(psa_md_alg),
+ hash, hash_len,
+ sig, sig_size, sig_len);
+ if (status == PSA_ERROR_NOT_PERMITTED) {
+ status = psa_sign_hash(ctx->priv_id, PSA_ALG_RSA_PSS_ANY_SALT(psa_md_alg),
+ hash, hash_len,
+ sig, sig_size, sig_len);
+ }
+ return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ }
+
+ return mbedtls_pk_psa_rsa_sign_ext(PSA_ALG_RSA_PSS(psa_md_alg),
+ ctx->pk_ctx, hash, hash_len,
+ sig, sig_size, sig_len);
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+
+ if (sig_size < mbedtls_pk_get_len(ctx)) {
+ return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+ }
+
+ if (pk_hashlen_helper(md_alg, &hash_len) != 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ mbedtls_rsa_context *const rsa_ctx = mbedtls_pk_rsa(*ctx);
+
+ const int ret = mbedtls_rsa_rsassa_pss_sign_no_mode_check(rsa_ctx, f_rng, p_rng, md_alg,
+ (unsigned int) hash_len, hash, sig);
+ if (ret == 0) {
+ *sig_len = rsa_ctx->len;
+ }
+ return ret;
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#else
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* MBEDTLS_RSA_C && MBEDTLS_PKCS1_V21 */
+}
+
+/*
+ * Decrypt message
+ */
+int mbedtls_pk_decrypt(mbedtls_pk_context *ctx,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ if (ctx->pk_info == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (ctx->pk_info->decrypt_func == NULL) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+ return ctx->pk_info->decrypt_func(ctx, input, ilen,
+ output, olen, osize, f_rng, p_rng);
+}
+
+/*
+ * Encrypt message
+ */
+int mbedtls_pk_encrypt(mbedtls_pk_context *ctx,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ if (ctx->pk_info == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (ctx->pk_info->encrypt_func == NULL) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+ return ctx->pk_info->encrypt_func(ctx, input, ilen,
+ output, olen, osize, f_rng, p_rng);
+}
+
+/*
+ * Check public-private key pair
+ */
+int mbedtls_pk_check_pair(const mbedtls_pk_context *pub,
+ const mbedtls_pk_context *prv,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ if (pub->pk_info == NULL ||
+ prv->pk_info == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (prv->pk_info->check_pair_func == NULL) {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+
+ if (prv->pk_info->type == MBEDTLS_PK_RSA_ALT) {
+ if (pub->pk_info->type != MBEDTLS_PK_RSA) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ } else {
+ if ((prv->pk_info->type != MBEDTLS_PK_OPAQUE) &&
+ (pub->pk_info != prv->pk_info)) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+ }
+
+ return prv->pk_info->check_pair_func((mbedtls_pk_context *) pub,
+ (mbedtls_pk_context *) prv,
+ f_rng, p_rng);
+}
+
+/*
+ * Get key size in bits
+ */
+size_t mbedtls_pk_get_bitlen(const mbedtls_pk_context *ctx)
+{
+ /* For backward compatibility, accept NULL or a context that
+ * isn't set up yet, and return a fake value that should be safe. */
+ if (ctx == NULL || ctx->pk_info == NULL) {
+ return 0;
+ }
+
+ return ctx->pk_info->get_bitlen((mbedtls_pk_context *) ctx);
+}
+
+/*
+ * Export debug information
+ */
+int mbedtls_pk_debug(const mbedtls_pk_context *ctx, mbedtls_pk_debug_item *items)
+{
+ if (ctx->pk_info == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (ctx->pk_info->debug_func == NULL) {
+ return MBEDTLS_ERR_PK_TYPE_MISMATCH;
+ }
+
+ ctx->pk_info->debug_func((mbedtls_pk_context *) ctx, items);
+ return 0;
+}
+
+/*
+ * Access the PK type name
+ */
+const char *mbedtls_pk_get_name(const mbedtls_pk_context *ctx)
+{
+ if (ctx == NULL || ctx->pk_info == NULL) {
+ return "invalid PK";
+ }
+
+ return ctx->pk_info->name;
+}
+
+/*
+ * Access the PK type
+ */
+mbedtls_pk_type_t mbedtls_pk_get_type(const mbedtls_pk_context *ctx)
+{
+ if (ctx == NULL || ctx->pk_info == NULL) {
+ return MBEDTLS_PK_NONE;
+ }
+
+ return ctx->pk_info->type;
+}
+
+#endif /* MBEDTLS_PK_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_ecc.c b/tf-psa-crypto/drivers/builtin/src/pk_ecc.c
new file mode 100644
index 0000000..86218ff
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_ecc.c
@@ -0,0 +1,255 @@
+/*
+ * ECC setters for PK.
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#include "mbedtls/pk.h"
+#include "mbedtls/error.h"
+#include "mbedtls/ecp.h"
+#include "pk_internal.h"
+
+#if defined(MBEDTLS_PK_C) && defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+
+int mbedtls_pk_ecc_set_group(mbedtls_pk_context *pk, mbedtls_ecp_group_id grp_id)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ size_t ec_bits;
+ psa_ecc_family_t ec_family = mbedtls_ecc_group_to_psa(grp_id, &ec_bits);
+
+ /* group may already be initialized; if so, make sure IDs match */
+ if ((pk->ec_family != 0 && pk->ec_family != ec_family) ||
+ (pk->ec_bits != 0 && pk->ec_bits != ec_bits)) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+
+ /* set group */
+ pk->ec_family = ec_family;
+ pk->ec_bits = ec_bits;
+
+ return 0;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ mbedtls_ecp_keypair *ecp = mbedtls_pk_ec_rw(*pk);
+
+ /* grp may already be initialized; if so, make sure IDs match */
+ if (mbedtls_pk_ec_ro(*pk)->grp.id != MBEDTLS_ECP_DP_NONE &&
+ mbedtls_pk_ec_ro(*pk)->grp.id != grp_id) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+
+ /* set group */
+ return mbedtls_ecp_group_load(&(ecp->grp), grp_id);
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+int mbedtls_pk_ecc_set_key(mbedtls_pk_context *pk, unsigned char *key, size_t key_len)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_key_usage_t flags;
+ psa_status_t status;
+
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(pk->ec_family));
+ if (pk->ec_family == PSA_ECC_FAMILY_MONTGOMERY) {
+ /* Do not set algorithm here because Montgomery keys cannot do ECDSA and
+ * the PK module cannot do ECDH. When the key will be used in TLS for
+ * ECDH, it will be exported and then re-imported with proper flags
+ * and algorithm. */
+ flags = PSA_KEY_USAGE_EXPORT;
+ } else {
+ psa_set_key_algorithm(&attributes,
+ MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET(PSA_ALG_ANY_HASH));
+ flags = PSA_KEY_USAGE_SIGN_HASH | PSA_KEY_USAGE_SIGN_MESSAGE |
+ PSA_KEY_USAGE_EXPORT;
+ }
+ psa_set_key_usage_flags(&attributes, flags);
+
+ status = psa_import_key(&attributes, key, key_len, &pk->priv_id);
+ return psa_pk_status_to_mbedtls(status);
+
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+ mbedtls_ecp_keypair *eck = mbedtls_pk_ec_rw(*pk);
+ int ret = mbedtls_ecp_read_key(eck->grp.id, eck, key, key_len);
+ if (ret != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+ return 0;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+int mbedtls_pk_ecc_set_pubkey_from_prv(mbedtls_pk_context *pk,
+ const unsigned char *prv, size_t prv_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+
+ (void) f_rng;
+ (void) p_rng;
+ (void) prv;
+ (void) prv_len;
+ psa_status_t status;
+
+ status = psa_export_public_key(pk->priv_id, pk->pub_raw, sizeof(pk->pub_raw),
+ &pk->pub_raw_len);
+ return psa_pk_status_to_mbedtls(status);
+
+#elif defined(MBEDTLS_USE_PSA_CRYPTO) /* && !MBEDTLS_PK_USE_PSA_EC_DATA */
+
+ (void) f_rng;
+ (void) p_rng;
+ psa_status_t status;
+
+ mbedtls_ecp_keypair *eck = (mbedtls_ecp_keypair *) pk->pk_ctx;
+ size_t curve_bits;
+ psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(eck->grp.id, &curve_bits);
+
+ /* Import private key into PSA, from serialized input */
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+ psa_set_key_type(&key_attr, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
+ psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_EXPORT);
+ status = psa_import_key(&key_attr, prv, prv_len, &key_id);
+ if (status != PSA_SUCCESS) {
+ return psa_pk_status_to_mbedtls(status);
+ }
+
+ /* Export public key from PSA */
+ unsigned char pub[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+ size_t pub_len;
+ status = psa_export_public_key(key_id, pub, sizeof(pub), &pub_len);
+ psa_status_t destruction_status = psa_destroy_key(key_id);
+ if (status != PSA_SUCCESS) {
+ return psa_pk_status_to_mbedtls(status);
+ } else if (destruction_status != PSA_SUCCESS) {
+ return psa_pk_status_to_mbedtls(destruction_status);
+ }
+
+ /* Load serialized public key into ecp_keypair structure */
+ return mbedtls_ecp_point_read_binary(&eck->grp, &eck->Q, pub, pub_len);
+
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+
+ (void) prv;
+ (void) prv_len;
+
+ mbedtls_ecp_keypair *eck = (mbedtls_ecp_keypair *) pk->pk_ctx;
+ return mbedtls_ecp_mul(&eck->grp, &eck->Q, &eck->d, &eck->grp.G, f_rng, p_rng);
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/*
+ * Set the public key: fallback using ECP_LIGHT in the USE_PSA_EC_DATA case.
+ *
+ * Normally, when MBEDTLS_PK_USE_PSA_EC_DATA is enabled, we only use PSA
+ * functions to handle keys. However, currently psa_import_key() does not
+ * support compressed points. In case that support was explicitly requested,
+ * this fallback uses ECP functions to get the job done. This is the reason
+ * why MBEDTLS_PK_PARSE_EC_COMPRESSED auto-enables MBEDTLS_ECP_LIGHT.
+ *
+ * [in/out] pk: in: must have the group set, see mbedtls_pk_ecc_set_group().
+ * out: will have the public key set.
+ * [in] pub, pub_len: the public key as an ECPoint,
+ * in any format supported by ECP.
+ *
+ * Return:
+ * - 0 on success;
+ * - MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE if the format is potentially valid
+ * but not supported;
+ * - another error code otherwise.
+ */
+static int pk_ecc_set_pubkey_psa_ecp_fallback(mbedtls_pk_context *pk,
+ const unsigned char *pub,
+ size_t pub_len)
+{
+#if !defined(MBEDTLS_PK_PARSE_EC_COMPRESSED)
+ (void) pk;
+ (void) pub;
+ (void) pub_len;
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+#else /* MBEDTLS_PK_PARSE_EC_COMPRESSED */
+ mbedtls_ecp_keypair ecp_key;
+ mbedtls_ecp_group_id ecp_group_id;
+ int ret;
+
+ ecp_group_id = mbedtls_ecc_group_from_psa(pk->ec_family, pk->ec_bits);
+
+ mbedtls_ecp_keypair_init(&ecp_key);
+ ret = mbedtls_ecp_group_load(&(ecp_key.grp), ecp_group_id);
+ if (ret != 0) {
+ goto exit;
+ }
+ ret = mbedtls_ecp_point_read_binary(&(ecp_key.grp), &ecp_key.Q,
+ pub, pub_len);
+ if (ret != 0) {
+ goto exit;
+ }
+ ret = mbedtls_ecp_point_write_binary(&(ecp_key.grp), &ecp_key.Q,
+ MBEDTLS_ECP_PF_UNCOMPRESSED,
+ &pk->pub_raw_len, pk->pub_raw,
+ sizeof(pk->pub_raw));
+
+exit:
+ mbedtls_ecp_keypair_free(&ecp_key);
+ return ret;
+#endif /* MBEDTLS_PK_PARSE_EC_COMPRESSED */
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+int mbedtls_pk_ecc_set_pubkey(mbedtls_pk_context *pk, const unsigned char *pub, size_t pub_len)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+
+ /* Load the key */
+ if (!PSA_ECC_FAMILY_IS_WEIERSTRASS(pk->ec_family) || *pub == 0x04) {
+ /* Format directly supported by PSA:
+ * - non-Weierstrass curves that only have one format;
+ * - uncompressed format for Weierstrass curves. */
+ if (pub_len > sizeof(pk->pub_raw)) {
+ return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+ }
+ memcpy(pk->pub_raw, pub, pub_len);
+ pk->pub_raw_len = pub_len;
+ } else {
+ /* Other format, try the fallback */
+ int ret = pk_ecc_set_pubkey_psa_ecp_fallback(pk, pub, pub_len);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ /* Validate the key by trying to import it */
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_key_attributes_t key_attrs = PSA_KEY_ATTRIBUTES_INIT;
+
+ psa_set_key_usage_flags(&key_attrs, 0);
+ psa_set_key_type(&key_attrs, PSA_KEY_TYPE_ECC_PUBLIC_KEY(pk->ec_family));
+ psa_set_key_bits(&key_attrs, pk->ec_bits);
+
+ if ((psa_import_key(&key_attrs, pk->pub_raw, pk->pub_raw_len,
+ &key_id) != PSA_SUCCESS) ||
+ (psa_destroy_key(key_id) != PSA_SUCCESS)) {
+ return MBEDTLS_ERR_PK_INVALID_PUBKEY;
+ }
+
+ return 0;
+
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+ int ret;
+ mbedtls_ecp_keypair *ec_key = (mbedtls_ecp_keypair *) pk->pk_ctx;
+ ret = mbedtls_ecp_point_read_binary(&ec_key->grp, &ec_key->Q, pub, pub_len);
+ if (ret != 0) {
+ return ret;
+ }
+ return mbedtls_ecp_check_pubkey(&ec_key->grp, &ec_key->Q);
+
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+#endif /* MBEDTLS_PK_C && MBEDTLS_PK_HAVE_ECC_KEYS */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_internal.h b/tf-psa-crypto/drivers/builtin/src/pk_internal.h
new file mode 100644
index 0000000..e86a3a0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_internal.h
@@ -0,0 +1,207 @@
+/**
+ * \file pk_internal.h
+ *
+ * \brief Public Key abstraction layer: internal (i.e. library only) functions
+ * and definitions.
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_PK_INTERNAL_H
+#define MBEDTLS_PK_INTERNAL_H
+
+#include "mbedtls/pk.h"
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "mbedtls/ecp.h"
+#endif
+
+#if defined(MBEDTLS_PSA_CRYPTO_CLIENT)
+#include "psa/crypto.h"
+
+#include "psa_util_internal.h"
+#define PSA_PK_TO_MBEDTLS_ERR(status) psa_pk_status_to_mbedtls(status)
+#define PSA_PK_RSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \
+ psa_to_pk_rsa_errors, \
+ psa_pk_status_to_mbedtls)
+#define PSA_PK_ECDSA_TO_MBEDTLS_ERR(status) PSA_TO_MBEDTLS_ERR_LIST(status, \
+ psa_to_pk_ecdsa_errors, \
+ psa_pk_status_to_mbedtls)
+#endif /* MBEDTLS_PSA_CRYPTO_CLIENT */
+
+/* Headers/footers for PEM files */
+#define PEM_BEGIN_PUBLIC_KEY "-----BEGIN PUBLIC KEY-----"
+#define PEM_END_PUBLIC_KEY "-----END PUBLIC KEY-----"
+#define PEM_BEGIN_PRIVATE_KEY_RSA "-----BEGIN RSA PRIVATE KEY-----"
+#define PEM_END_PRIVATE_KEY_RSA "-----END RSA PRIVATE KEY-----"
+#define PEM_BEGIN_PUBLIC_KEY_RSA "-----BEGIN RSA PUBLIC KEY-----"
+#define PEM_END_PUBLIC_KEY_RSA "-----END RSA PUBLIC KEY-----"
+#define PEM_BEGIN_PRIVATE_KEY_EC "-----BEGIN EC PRIVATE KEY-----"
+#define PEM_END_PRIVATE_KEY_EC "-----END EC PRIVATE KEY-----"
+#define PEM_BEGIN_PRIVATE_KEY_PKCS8 "-----BEGIN PRIVATE KEY-----"
+#define PEM_END_PRIVATE_KEY_PKCS8 "-----END PRIVATE KEY-----"
+#define PEM_BEGIN_ENCRYPTED_PRIVATE_KEY_PKCS8 "-----BEGIN ENCRYPTED PRIVATE KEY-----"
+#define PEM_END_ENCRYPTED_PRIVATE_KEY_PKCS8 "-----END ENCRYPTED PRIVATE KEY-----"
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS) && !defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/**
+ * Public function mbedtls_pk_ec() can be used to get direct access to the
+ * wrapped ecp_keypair structure pointed to the pk_ctx. However this is not
+ * ideal because it bypasses the PK module on the control of its internal
+ * structure (pk_context) fields.
+ * For backward compatibility we keep mbedtls_pk_ec() when ECP_C is defined, but
+ * we provide 2 very similar functions when only ECP_LIGHT is enabled and not
+ * ECP_C.
+ * These variants embed the "ro" or "rw" keywords in their name to make the
+ * usage of the returned pointer explicit. Of course the returned value is
+ * const or non-const accordingly.
+ */
+static inline const mbedtls_ecp_keypair *mbedtls_pk_ec_ro(const mbedtls_pk_context pk)
+{
+ switch (mbedtls_pk_get_type(&pk)) {
+ case MBEDTLS_PK_ECKEY:
+ case MBEDTLS_PK_ECKEY_DH:
+ case MBEDTLS_PK_ECDSA:
+ return (const mbedtls_ecp_keypair *) (pk).MBEDTLS_PRIVATE(pk_ctx);
+ default:
+ return NULL;
+ }
+}
+
+static inline mbedtls_ecp_keypair *mbedtls_pk_ec_rw(const mbedtls_pk_context pk)
+{
+ switch (mbedtls_pk_get_type(&pk)) {
+ case MBEDTLS_PK_ECKEY:
+ case MBEDTLS_PK_ECKEY_DH:
+ case MBEDTLS_PK_ECDSA:
+ return (mbedtls_ecp_keypair *) (pk).MBEDTLS_PRIVATE(pk_ctx);
+ default:
+ return NULL;
+ }
+}
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS && !MBEDTLS_PK_USE_PSA_EC_DATA */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+static inline mbedtls_ecp_group_id mbedtls_pk_get_ec_group_id(const mbedtls_pk_context *pk)
+{
+ mbedtls_ecp_group_id id;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+ psa_key_attributes_t opaque_attrs = PSA_KEY_ATTRIBUTES_INIT;
+ psa_key_type_t opaque_key_type;
+ psa_ecc_family_t curve;
+
+ if (psa_get_key_attributes(pk->priv_id, &opaque_attrs) != PSA_SUCCESS) {
+ return MBEDTLS_ECP_DP_NONE;
+ }
+ opaque_key_type = psa_get_key_type(&opaque_attrs);
+ curve = PSA_KEY_TYPE_ECC_GET_FAMILY(opaque_key_type);
+ id = mbedtls_ecc_group_from_psa(curve, psa_get_key_bits(&opaque_attrs));
+ psa_reset_key_attributes(&opaque_attrs);
+ } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+ {
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ id = mbedtls_ecc_group_from_psa(pk->ec_family, pk->ec_bits);
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ id = mbedtls_pk_ec_ro(*pk)->grp.id;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ }
+
+ return id;
+}
+
+/* Helper for Montgomery curves */
+#if defined(MBEDTLS_ECP_HAVE_CURVE25519) || defined(MBEDTLS_ECP_HAVE_CURVE448)
+#define MBEDTLS_PK_HAVE_RFC8410_CURVES
+#endif /* MBEDTLS_ECP_HAVE_CURVE25519 || MBEDTLS_ECP_DP_CURVE448 */
+
+#define MBEDTLS_PK_IS_RFC8410_GROUP_ID(id) \
+ ((id == MBEDTLS_ECP_DP_CURVE25519) || (id == MBEDTLS_ECP_DP_CURVE448))
+
+static inline int mbedtls_pk_is_rfc8410(const mbedtls_pk_context *pk)
+{
+ mbedtls_ecp_group_id id = mbedtls_pk_get_ec_group_id(pk);
+
+ return MBEDTLS_PK_IS_RFC8410_GROUP_ID(id);
+}
+
+/*
+ * Set the group used by this key.
+ *
+ * [in/out] pk: in: must have been pk_setup() to an ECC type
+ * out: will have group (curve) information set
+ * [in] grp_in: a supported group ID (not NONE)
+ */
+int mbedtls_pk_ecc_set_group(mbedtls_pk_context *pk, mbedtls_ecp_group_id grp_id);
+
+/*
+ * Set the private key material
+ *
+ * [in/out] pk: in: must have the group set already, see mbedtls_pk_ecc_set_group().
+ * out: will have the private key set.
+ * [in] key, key_len: the raw private key (no ASN.1 wrapping).
+ */
+int mbedtls_pk_ecc_set_key(mbedtls_pk_context *pk, unsigned char *key, size_t key_len);
+
+/*
+ * Set the public key.
+ *
+ * [in/out] pk: in: must have its group set, see mbedtls_pk_ecc_set_group().
+ * out: will have the public key set.
+ * [in] pub, pub_len: the raw public key (an ECPoint).
+ *
+ * Return:
+ * - 0 on success;
+ * - MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE if the format is potentially valid
+ * but not supported;
+ * - another error code otherwise.
+ */
+int mbedtls_pk_ecc_set_pubkey(mbedtls_pk_context *pk, const unsigned char *pub, size_t pub_len);
+
+/*
+ * Derive a public key from its private counterpart.
+ * Computationally intensive, only use when public key is not available.
+ *
+ * [in/out] pk: in: must have the private key set, see mbedtls_pk_ecc_set_key().
+ * out: will have the public key set.
+ * [in] prv, prv_len: the raw private key (see note below).
+ * [in] f_rng, p_rng: RNG function and context.
+ *
+ * Note: the private key information is always available from pk,
+ * however for convenience the serialized version is also passed,
+ * as it's available at each calling site, and useful in some configs
+ * (as otherwise we would have to re-serialize it from the pk context).
+ *
+ * There are three implementations of this function:
+ * 1. MBEDTLS_PK_USE_PSA_EC_DATA,
+ * 2. MBEDTLS_USE_PSA_CRYPTO but not MBEDTLS_PK_USE_PSA_EC_DATA,
+ * 3. not MBEDTLS_USE_PSA_CRYPTO.
+ */
+int mbedtls_pk_ecc_set_pubkey_from_prv(mbedtls_pk_context *pk,
+ const unsigned char *prv, size_t prv_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/* Helper for (deterministic) ECDSA */
+#if defined(MBEDTLS_ECDSA_DETERMINISTIC)
+#define MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET PSA_ALG_DETERMINISTIC_ECDSA
+#else
+#define MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET PSA_ALG_ECDSA
+#endif
+
+#if defined(MBEDTLS_TEST_HOOKS)
+MBEDTLS_STATIC_TESTABLE int mbedtls_pk_parse_key_pkcs8_encrypted_der(
+ mbedtls_pk_context *pk,
+ unsigned char *key, size_t keylen,
+ const unsigned char *pwd, size_t pwdlen,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng);
+#endif
+
+#if defined(MBEDTLS_FS_IO)
+int mbedtls_pk_load_file(const char *path, unsigned char **buf, size_t *n);
+#endif
+
+#endif /* MBEDTLS_PK_INTERNAL_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_wrap.c b/tf-psa-crypto/drivers/builtin/src/pk_wrap.c
new file mode 100644
index 0000000..8710889
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_wrap.c
@@ -0,0 +1,1578 @@
+/*
+ * Public Key abstraction layer: wrapper functions
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#include "mbedtls/platform_util.h"
+
+#if defined(MBEDTLS_PK_C)
+#include "pk_wrap.h"
+#include "pk_internal.h"
+#include "mbedtls/error.h"
+#include "mbedtls/psa_util.h"
+
+/* Even if RSA not activated, for the sake of RSA-alt */
+#include "mbedtls/rsa.h"
+
+#if defined(MBEDTLS_ECP_C)
+#include "mbedtls/ecp.h"
+#endif
+
+#if defined(MBEDTLS_ECDSA_C)
+#include "mbedtls/ecdsa.h"
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa_util_internal.h"
+#include "psa/crypto.h"
+#include "mbedtls/psa_util.h"
+
+#if defined(MBEDTLS_RSA_C)
+#include "pkwrite.h"
+#include "rsa_internal.h"
+#endif
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+#include "mbedtls/asn1write.h"
+#include "mbedtls/asn1.h"
+#endif
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#include "mbedtls/platform.h"
+
+#include <limits.h>
+#include <stdint.h>
+#include <string.h>
+
+#if defined(MBEDTLS_RSA_C)
+static int rsa_can_do(mbedtls_pk_type_t type)
+{
+ return type == MBEDTLS_PK_RSA ||
+ type == MBEDTLS_PK_RSASSA_PSS;
+}
+
+static size_t rsa_get_bitlen(mbedtls_pk_context *pk)
+{
+ const mbedtls_rsa_context *rsa = (const mbedtls_rsa_context *) pk->pk_ctx;
+ return mbedtls_rsa_get_bitlen(rsa);
+}
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_status_t status;
+ int key_len;
+ unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
+ unsigned char *p = buf + sizeof(buf);
+ psa_algorithm_t psa_alg_md;
+ size_t rsa_len = mbedtls_rsa_get_len(rsa);
+
+#if SIZE_MAX > UINT_MAX
+ if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+#endif
+
+ if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+ psa_alg_md = PSA_ALG_RSA_PSS(mbedtls_md_psa_alg_from_type(md_alg));
+ } else {
+ psa_alg_md = PSA_ALG_RSA_PKCS1V15_SIGN(mbedtls_md_psa_alg_from_type(md_alg));
+ }
+
+ if (sig_len < rsa_len) {
+ return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+ }
+
+ key_len = mbedtls_rsa_write_pubkey(rsa, buf, &p);
+ if (key_len <= 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
+ psa_set_key_algorithm(&attributes, psa_alg_md);
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
+
+ status = psa_import_key(&attributes,
+ buf + sizeof(buf) - key_len, key_len,
+ &key_id);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ status = psa_verify_hash(key_id, psa_alg_md, hash, hash_len,
+ sig, sig_len);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+ ret = 0;
+
+cleanup:
+ status = psa_destroy_key(key_id);
+ if (ret == 0 && status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ return ret;
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+ size_t rsa_len = mbedtls_rsa_get_len(rsa);
+
+#if SIZE_MAX > UINT_MAX
+ if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+#endif
+
+ if (sig_len < rsa_len) {
+ return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+ }
+
+ if ((ret = mbedtls_rsa_pkcs1_verify(rsa, md_alg,
+ (unsigned int) hash_len,
+ hash, sig)) != 0) {
+ return ret;
+ }
+
+ /* The buffer contains a valid signature followed by extra data.
+ * We have a special error code for that so that so that callers can
+ * use mbedtls_pk_verify() to check "Does the buffer start with a
+ * valid signature?" and not just "Does the buffer contain a valid
+ * signature?". */
+ if (sig_len > rsa_len) {
+ return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+int mbedtls_pk_psa_rsa_sign_ext(psa_algorithm_t alg,
+ mbedtls_rsa_context *rsa_ctx,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size,
+ size_t *sig_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_status_t status;
+ int key_len;
+ unsigned char *buf = NULL;
+ unsigned char *p;
+
+ buf = mbedtls_calloc(1, MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES);
+ if (buf == NULL) {
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+ p = buf + MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES;
+
+ *sig_len = mbedtls_rsa_get_len(rsa_ctx);
+ if (sig_size < *sig_len) {
+ mbedtls_free(buf);
+ return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+ }
+
+ key_len = mbedtls_rsa_write_key(rsa_ctx, buf, &p);
+ if (key_len <= 0) {
+ mbedtls_free(buf);
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
+ psa_set_key_algorithm(&attributes, alg);
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);
+
+ status = psa_import_key(&attributes,
+ buf + MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES - key_len, key_len,
+ &key_id);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+ status = psa_sign_hash(key_id, alg, hash, hash_len,
+ sig, sig_size, sig_len);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ ret = 0;
+
+cleanup:
+ mbedtls_free(buf);
+ status = psa_destroy_key(key_id);
+ if (ret == 0 && status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+ return ret;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ ((void) f_rng);
+ ((void) p_rng);
+
+ psa_algorithm_t psa_md_alg;
+ psa_md_alg = mbedtls_md_psa_alg_from_type(md_alg);
+ if (psa_md_alg == 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ psa_algorithm_t psa_alg;
+ if (mbedtls_rsa_get_padding_mode(mbedtls_pk_rsa(*pk)) == MBEDTLS_RSA_PKCS_V21) {
+ psa_alg = PSA_ALG_RSA_PSS(psa_md_alg);
+ } else {
+ psa_alg = PSA_ALG_RSA_PKCS1V15_SIGN(psa_md_alg);
+ }
+
+ return mbedtls_pk_psa_rsa_sign_ext(psa_alg, pk->pk_ctx, hash, hash_len,
+ sig, sig_size, sig_len);
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+
+#if SIZE_MAX > UINT_MAX
+ if (md_alg == MBEDTLS_MD_NONE && UINT_MAX < hash_len) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+#endif
+
+ *sig_len = mbedtls_rsa_get_len(rsa);
+ if (sig_size < *sig_len) {
+ return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+ }
+
+ return mbedtls_rsa_pkcs1_sign(rsa, f_rng, p_rng,
+ md_alg, (unsigned int) hash_len,
+ hash, sig);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_decrypt_wrap(mbedtls_pk_context *pk,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_algorithm_t psa_md_alg, decrypt_alg;
+ psa_status_t status;
+ int key_len;
+ unsigned char buf[MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES];
+ unsigned char *p = buf + sizeof(buf);
+
+ ((void) f_rng);
+ ((void) p_rng);
+
+ if (ilen != mbedtls_rsa_get_len(rsa)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ key_len = mbedtls_rsa_write_key(rsa, buf, &p);
+ if (key_len <= 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_KEY_PAIR);
+ psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_DECRYPT);
+ if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+ psa_md_alg = mbedtls_md_psa_alg_from_type((mbedtls_md_type_t) mbedtls_rsa_get_md_alg(rsa));
+ decrypt_alg = PSA_ALG_RSA_OAEP(psa_md_alg);
+ } else {
+ decrypt_alg = PSA_ALG_RSA_PKCS1V15_CRYPT;
+ }
+ psa_set_key_algorithm(&attributes, decrypt_alg);
+
+ status = psa_import_key(&attributes,
+ buf + sizeof(buf) - key_len, key_len,
+ &key_id);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ status = psa_asymmetric_decrypt(key_id, decrypt_alg,
+ input, ilen,
+ NULL, 0,
+ output, osize, olen);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ ret = 0;
+
+cleanup:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+ status = psa_destroy_key(key_id);
+ if (ret == 0 && status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ return ret;
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_decrypt_wrap(mbedtls_pk_context *pk,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+
+ if (ilen != mbedtls_rsa_get_len(rsa)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_rsa_pkcs1_decrypt(rsa, f_rng, p_rng,
+ olen, input, output, osize);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int rsa_encrypt_wrap(mbedtls_pk_context *pk,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_algorithm_t psa_md_alg, psa_encrypt_alg;
+ psa_status_t status;
+ int key_len;
+ unsigned char buf[MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES];
+ unsigned char *p = buf + sizeof(buf);
+
+ ((void) f_rng);
+ ((void) p_rng);
+
+ if (mbedtls_rsa_get_len(rsa) > osize) {
+ return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
+ }
+
+ key_len = mbedtls_rsa_write_pubkey(rsa, buf, &p);
+ if (key_len <= 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_ENCRYPT);
+ if (mbedtls_rsa_get_padding_mode(rsa) == MBEDTLS_RSA_PKCS_V21) {
+ psa_md_alg = mbedtls_md_psa_alg_from_type((mbedtls_md_type_t) mbedtls_rsa_get_md_alg(rsa));
+ psa_encrypt_alg = PSA_ALG_RSA_OAEP(psa_md_alg);
+ } else {
+ psa_encrypt_alg = PSA_ALG_RSA_PKCS1V15_CRYPT;
+ }
+ psa_set_key_algorithm(&attributes, psa_encrypt_alg);
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_RSA_PUBLIC_KEY);
+
+ status = psa_import_key(&attributes,
+ buf + sizeof(buf) - key_len, key_len,
+ &key_id);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ status = psa_asymmetric_encrypt(key_id, psa_encrypt_alg,
+ input, ilen,
+ NULL, 0,
+ output, osize, olen);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ ret = 0;
+
+cleanup:
+ status = psa_destroy_key(key_id);
+ if (ret == 0 && status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ return ret;
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int rsa_encrypt_wrap(mbedtls_pk_context *pk,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+ *olen = mbedtls_rsa_get_len(rsa);
+
+ if (*olen > osize) {
+ return MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
+ }
+
+ return mbedtls_rsa_pkcs1_encrypt(rsa, f_rng, p_rng,
+ ilen, input, output);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+static int rsa_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ (void) f_rng;
+ (void) p_rng;
+ return mbedtls_rsa_check_pub_priv((const mbedtls_rsa_context *) pub->pk_ctx,
+ (const mbedtls_rsa_context *) prv->pk_ctx);
+}
+
+static void *rsa_alloc_wrap(void)
+{
+ void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_context));
+
+ if (ctx != NULL) {
+ mbedtls_rsa_init((mbedtls_rsa_context *) ctx);
+ }
+
+ return ctx;
+}
+
+static void rsa_free_wrap(void *ctx)
+{
+ mbedtls_rsa_free((mbedtls_rsa_context *) ctx);
+ mbedtls_free(ctx);
+}
+
+static void rsa_debug(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items)
+{
+ mbedtls_rsa_context *rsa = (mbedtls_rsa_context *) pk->pk_ctx;
+
+ items->type = MBEDTLS_PK_DEBUG_MPI;
+ items->name = "rsa.N";
+ items->value = &(rsa->N);
+
+ items++;
+
+ items->type = MBEDTLS_PK_DEBUG_MPI;
+ items->name = "rsa.E";
+ items->value = &(rsa->E);
+}
+
+const mbedtls_pk_info_t mbedtls_rsa_info = {
+ .type = MBEDTLS_PK_RSA,
+ .name = "RSA",
+ .get_bitlen = rsa_get_bitlen,
+ .can_do = rsa_can_do,
+ .verify_func = rsa_verify_wrap,
+ .sign_func = rsa_sign_wrap,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ .verify_rs_func = NULL,
+ .sign_rs_func = NULL,
+ .rs_alloc_func = NULL,
+ .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ .decrypt_func = rsa_decrypt_wrap,
+ .encrypt_func = rsa_encrypt_wrap,
+ .check_pair_func = rsa_check_pair_wrap,
+ .ctx_alloc_func = rsa_alloc_wrap,
+ .ctx_free_func = rsa_free_wrap,
+ .debug_func = rsa_debug,
+};
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+/*
+ * Generic EC key
+ */
+static int eckey_can_do(mbedtls_pk_type_t type)
+{
+ return type == MBEDTLS_PK_ECKEY ||
+ type == MBEDTLS_PK_ECKEY_DH ||
+ type == MBEDTLS_PK_ECDSA;
+}
+
+static size_t eckey_get_bitlen(mbedtls_pk_context *pk)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ return pk->ec_bits;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ mbedtls_ecp_keypair *ecp = (mbedtls_ecp_keypair *) pk->pk_ctx;
+ return ecp->grp.pbits;
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/* Common helper for ECDSA verify using PSA functions. */
+static int ecdsa_verify_psa(unsigned char *key, size_t key_len,
+ psa_ecc_family_t curve, size_t curve_bits,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_algorithm_t psa_sig_md = PSA_ALG_ECDSA_ANY;
+ size_t signature_len = PSA_ECDSA_SIGNATURE_SIZE(curve_bits);
+ size_t converted_sig_len;
+ unsigned char extracted_sig[PSA_VENDOR_ECDSA_SIGNATURE_MAX_SIZE];
+ unsigned char *p;
+ psa_status_t status;
+
+ if (curve == 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_PUBLIC_KEY(curve));
+ psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_VERIFY_HASH);
+ psa_set_key_algorithm(&attributes, psa_sig_md);
+
+ status = psa_import_key(&attributes, key, key_len, &key_id);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ if (signature_len > sizeof(extracted_sig)) {
+ ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ p = (unsigned char *) sig;
+ ret = mbedtls_ecdsa_der_to_raw(curve_bits, p, sig_len, extracted_sig,
+ sizeof(extracted_sig), &converted_sig_len);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ if (converted_sig_len != signature_len) {
+ ret = MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ status = psa_verify_hash(key_id, psa_sig_md, hash, hash_len,
+ extracted_sig, signature_len);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ ret = 0;
+
+cleanup:
+ status = psa_destroy_key(key_id);
+ if (ret == 0 && status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ return ret;
+}
+
+static int ecdsa_opaque_verify_wrap(mbedtls_pk_context *pk,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ (void) md_alg;
+ unsigned char key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
+ size_t key_len;
+ psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+ psa_ecc_family_t curve;
+ size_t curve_bits;
+ psa_status_t status;
+
+ status = psa_get_key_attributes(pk->priv_id, &key_attr);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ }
+ curve = PSA_KEY_TYPE_ECC_GET_FAMILY(psa_get_key_type(&key_attr));
+ curve_bits = psa_get_key_bits(&key_attr);
+ psa_reset_key_attributes(&key_attr);
+
+ status = psa_export_public_key(pk->priv_id, key, sizeof(key), &key_len);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ }
+
+ return ecdsa_verify_psa(key, key_len, curve, curve_bits,
+ hash, hash_len, sig, sig_len);
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int ecdsa_verify_wrap(mbedtls_pk_context *pk,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ (void) md_alg;
+ psa_ecc_family_t curve = pk->ec_family;
+ size_t curve_bits = pk->ec_bits;
+
+ return ecdsa_verify_psa(pk->pub_raw, pk->pub_raw_len, curve, curve_bits,
+ hash, hash_len, sig, sig_len);
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int ecdsa_verify_wrap(mbedtls_pk_context *pk,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ (void) md_alg;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_keypair *ctx = pk->pk_ctx;
+ unsigned char key[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+ size_t key_len;
+ size_t curve_bits;
+ psa_ecc_family_t curve = mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits);
+
+ ret = mbedtls_ecp_point_write_binary(&ctx->grp, &ctx->Q,
+ MBEDTLS_ECP_PF_UNCOMPRESSED,
+ &key_len, key, sizeof(key));
+ if (ret != 0) {
+ return ret;
+ }
+
+ return ecdsa_verify_psa(key, key_len, curve, curve_bits,
+ hash, hash_len, sig, sig_len);
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int ecdsa_verify_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ ((void) md_alg);
+
+ ret = mbedtls_ecdsa_read_signature((mbedtls_ecdsa_context *) pk->pk_ctx,
+ hash, hash_len, sig, sig_len);
+
+ if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) {
+ return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+ }
+
+ return ret;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+/* Common helper for ECDSA sign using PSA functions.
+ * Instead of extracting key's properties in order to check which kind of ECDSA
+ * signature it supports, we try both deterministic and non-deterministic.
+ */
+static int ecdsa_sign_psa(mbedtls_svc_key_id_t key_id, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ psa_status_t status;
+ psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+ size_t key_bits = 0;
+
+ status = psa_get_key_attributes(key_id, &key_attr);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ }
+ key_bits = psa_get_key_bits(&key_attr);
+ psa_reset_key_attributes(&key_attr);
+
+ status = psa_sign_hash(key_id,
+ PSA_ALG_DETERMINISTIC_ECDSA(mbedtls_md_psa_alg_from_type(md_alg)),
+ hash, hash_len, sig, sig_size, sig_len);
+ if (status == PSA_SUCCESS) {
+ goto done;
+ } else if (status != PSA_ERROR_NOT_PERMITTED) {
+ return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ }
+
+ status = psa_sign_hash(key_id,
+ PSA_ALG_ECDSA(mbedtls_md_psa_alg_from_type(md_alg)),
+ hash, hash_len, sig, sig_size, sig_len);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ }
+
+done:
+ ret = mbedtls_ecdsa_raw_to_der(key_bits, sig, *sig_len, sig, sig_size, sig_len);
+
+ return ret;
+}
+
+static int ecdsa_opaque_sign_wrap(mbedtls_pk_context *pk,
+ mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size,
+ size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ ((void) f_rng);
+ ((void) p_rng);
+
+ return ecdsa_sign_psa(pk->priv_id, md_alg, hash, hash_len, sig, sig_size,
+ sig_len);
+}
+
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/* When PK_USE_PSA_EC_DATA is defined opaque and non-opaque keys end up
+ * using the same function. */
+#define ecdsa_sign_wrap ecdsa_opaque_sign_wrap
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int ecdsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_status_t status;
+ mbedtls_ecp_keypair *ctx = pk->pk_ctx;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ unsigned char buf[MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH];
+ size_t curve_bits;
+ psa_ecc_family_t curve =
+ mbedtls_ecc_group_to_psa(ctx->grp.id, &curve_bits);
+ size_t key_len = PSA_BITS_TO_BYTES(curve_bits);
+ psa_algorithm_t psa_hash = mbedtls_md_psa_alg_from_type(md_alg);
+ psa_algorithm_t psa_sig_md = MBEDTLS_PK_PSA_ALG_ECDSA_MAYBE_DET(psa_hash);
+ ((void) f_rng);
+ ((void) p_rng);
+
+ if (curve == 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ if (key_len > sizeof(buf)) {
+ return MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ }
+ ret = mbedtls_mpi_write_binary(&ctx->d, buf, key_len);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ psa_set_key_type(&attributes, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
+ psa_set_key_usage_flags(&attributes, PSA_KEY_USAGE_SIGN_HASH);
+ psa_set_key_algorithm(&attributes, psa_sig_md);
+
+ status = psa_import_key(&attributes, buf, key_len, &key_id);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ goto cleanup;
+ }
+
+ ret = ecdsa_sign_psa(key_id, md_alg, hash, hash_len, sig, sig_size, sig_len);
+
+cleanup:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+ status = psa_destroy_key(key_id);
+ if (ret == 0 && status != PSA_SUCCESS) {
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ return ret;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int ecdsa_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ return mbedtls_ecdsa_write_signature((mbedtls_ecdsa_context *) pk->pk_ctx,
+ md_alg, hash, hash_len,
+ sig, sig_size, sig_len,
+ f_rng, p_rng);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+/* Forward declarations */
+static int ecdsa_verify_rs_wrap(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len,
+ void *rs_ctx);
+
+static int ecdsa_sign_rs_wrap(mbedtls_pk_context *ctx, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ void *rs_ctx);
+
+/*
+ * Restart context for ECDSA operations with ECKEY context
+ *
+ * We need to store an actual ECDSA context, as we need to pass the same to
+ * the underlying ecdsa function, so we can't create it on the fly every time.
+ */
+typedef struct {
+ mbedtls_ecdsa_restart_ctx ecdsa_rs;
+ mbedtls_ecdsa_context ecdsa_ctx;
+} eckey_restart_ctx;
+
+static void *eckey_rs_alloc(void)
+{
+ eckey_restart_ctx *rs_ctx;
+
+ void *ctx = mbedtls_calloc(1, sizeof(eckey_restart_ctx));
+
+ if (ctx != NULL) {
+ rs_ctx = ctx;
+ mbedtls_ecdsa_restart_init(&rs_ctx->ecdsa_rs);
+ mbedtls_ecdsa_init(&rs_ctx->ecdsa_ctx);
+ }
+
+ return ctx;
+}
+
+static void eckey_rs_free(void *ctx)
+{
+ eckey_restart_ctx *rs_ctx;
+
+ if (ctx == NULL) {
+ return;
+ }
+
+ rs_ctx = ctx;
+ mbedtls_ecdsa_restart_free(&rs_ctx->ecdsa_rs);
+ mbedtls_ecdsa_free(&rs_ctx->ecdsa_ctx);
+
+ mbedtls_free(ctx);
+}
+
+static int eckey_verify_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len,
+ void *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ eckey_restart_ctx *rs = rs_ctx;
+
+ /* Should never happen */
+ if (rs == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ /* set up our own sub-context if needed (that is, on first run) */
+ if (rs->ecdsa_ctx.grp.pbits == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, pk->pk_ctx));
+ }
+
+ MBEDTLS_MPI_CHK(ecdsa_verify_rs_wrap(pk,
+ md_alg, hash, hash_len,
+ sig, sig_len, &rs->ecdsa_rs));
+
+cleanup:
+ return ret;
+}
+
+static int eckey_sign_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ void *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ eckey_restart_ctx *rs = rs_ctx;
+
+ /* Should never happen */
+ if (rs == NULL) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ /* set up our own sub-context if needed (that is, on first run) */
+ if (rs->ecdsa_ctx.grp.pbits == 0) {
+ MBEDTLS_MPI_CHK(mbedtls_ecdsa_from_keypair(&rs->ecdsa_ctx, pk->pk_ctx));
+ }
+
+ MBEDTLS_MPI_CHK(ecdsa_sign_rs_wrap(pk, md_alg,
+ hash, hash_len, sig, sig_size, sig_len,
+ f_rng, p_rng, &rs->ecdsa_rs));
+
+cleanup:
+ return ret;
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int eckey_check_pair_psa(mbedtls_pk_context *pub, mbedtls_pk_context *prv)
+{
+ psa_status_t status;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ uint8_t prv_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+ size_t prv_key_len;
+ mbedtls_svc_key_id_t key_id = prv->priv_id;
+
+ status = psa_export_public_key(key_id, prv_key_buf, sizeof(prv_key_buf),
+ &prv_key_len);
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ if (ret != 0) {
+ return ret;
+ }
+
+ if (memcmp(prv_key_buf, pub->pub_raw, pub->pub_raw_len) != 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int eckey_check_pair_psa(mbedtls_pk_context *pub, mbedtls_pk_context *prv)
+{
+ psa_status_t status;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ uint8_t prv_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+ size_t prv_key_len;
+ psa_status_t destruction_status;
+ mbedtls_svc_key_id_t key_id = MBEDTLS_SVC_KEY_ID_INIT;
+ psa_key_attributes_t key_attr = PSA_KEY_ATTRIBUTES_INIT;
+ uint8_t pub_key_buf[MBEDTLS_PSA_MAX_EC_PUBKEY_LENGTH];
+ size_t pub_key_len;
+ size_t curve_bits;
+ const psa_ecc_family_t curve =
+ mbedtls_ecc_group_to_psa(mbedtls_pk_ec_ro(*prv)->grp.id, &curve_bits);
+ const size_t curve_bytes = PSA_BITS_TO_BYTES(curve_bits);
+
+ if (curve == 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ psa_set_key_type(&key_attr, PSA_KEY_TYPE_ECC_KEY_PAIR(curve));
+ psa_set_key_usage_flags(&key_attr, PSA_KEY_USAGE_EXPORT);
+
+ ret = mbedtls_mpi_write_binary(&mbedtls_pk_ec_ro(*prv)->d,
+ prv_key_buf, curve_bytes);
+ if (ret != 0) {
+ mbedtls_platform_zeroize(prv_key_buf, sizeof(prv_key_buf));
+ return ret;
+ }
+
+ status = psa_import_key(&key_attr, prv_key_buf, curve_bytes, &key_id);
+ mbedtls_platform_zeroize(prv_key_buf, sizeof(prv_key_buf));
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ if (ret != 0) {
+ return ret;
+ }
+
+ // From now on prv_key_buf is used to store the public key of prv.
+ status = psa_export_public_key(key_id, prv_key_buf, sizeof(prv_key_buf),
+ &prv_key_len);
+ ret = PSA_PK_TO_MBEDTLS_ERR(status);
+ destruction_status = psa_destroy_key(key_id);
+ if (ret != 0) {
+ return ret;
+ } else if (destruction_status != PSA_SUCCESS) {
+ return PSA_PK_TO_MBEDTLS_ERR(destruction_status);
+ }
+
+ ret = mbedtls_ecp_point_write_binary(&mbedtls_pk_ec_rw(*pub)->grp,
+ &mbedtls_pk_ec_rw(*pub)->Q,
+ MBEDTLS_ECP_PF_UNCOMPRESSED,
+ &pub_key_len, pub_key_buf,
+ sizeof(pub_key_buf));
+ if (ret != 0) {
+ return ret;
+ }
+
+ if (memcmp(prv_key_buf, pub_key_buf, curve_bytes) != 0) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+static int eckey_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ (void) f_rng;
+ (void) p_rng;
+ return eckey_check_pair_psa(pub, prv);
+}
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+static int eckey_check_pair_wrap(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ return mbedtls_ecp_check_pub_priv((const mbedtls_ecp_keypair *) pub->pk_ctx,
+ (const mbedtls_ecp_keypair *) prv->pk_ctx,
+ f_rng, p_rng);
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+/* When PK_USE_PSA_EC_DATA is defined opaque and non-opaque keys end up
+ * using the same function. */
+#define ecdsa_opaque_check_pair_wrap eckey_check_pair_wrap
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int ecdsa_opaque_check_pair_wrap(mbedtls_pk_context *pub,
+ mbedtls_pk_context *prv,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ psa_status_t status;
+ uint8_t exp_pub_key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
+ size_t exp_pub_key_len = 0;
+ uint8_t pub_key[MBEDTLS_PK_MAX_EC_PUBKEY_RAW_LEN];
+ size_t pub_key_len = 0;
+ int ret;
+ (void) f_rng;
+ (void) p_rng;
+
+ status = psa_export_public_key(prv->priv_id, exp_pub_key, sizeof(exp_pub_key),
+ &exp_pub_key_len);
+ if (status != PSA_SUCCESS) {
+ ret = psa_pk_status_to_mbedtls(status);
+ return ret;
+ }
+ ret = mbedtls_ecp_point_write_binary(&(mbedtls_pk_ec_ro(*pub)->grp),
+ &(mbedtls_pk_ec_ro(*pub)->Q),
+ MBEDTLS_ECP_PF_UNCOMPRESSED,
+ &pub_key_len, pub_key, sizeof(pub_key));
+ if (ret != 0) {
+ return ret;
+ }
+ if ((exp_pub_key_len != pub_key_len) ||
+ memcmp(exp_pub_key, pub_key, exp_pub_key_len)) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ return 0;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#if !defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static void *eckey_alloc_wrap(void)
+{
+ void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecp_keypair));
+
+ if (ctx != NULL) {
+ mbedtls_ecp_keypair_init(ctx);
+ }
+
+ return ctx;
+}
+
+static void eckey_free_wrap(void *ctx)
+{
+ mbedtls_ecp_keypair_free((mbedtls_ecp_keypair *) ctx);
+ mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+static void eckey_debug(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items)
+{
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ items->type = MBEDTLS_PK_DEBUG_PSA_EC;
+ items->name = "eckey.Q";
+ items->value = pk;
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ mbedtls_ecp_keypair *ecp = (mbedtls_ecp_keypair *) pk->pk_ctx;
+ items->type = MBEDTLS_PK_DEBUG_ECP;
+ items->name = "eckey.Q";
+ items->value = &(ecp->Q);
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+}
+
+const mbedtls_pk_info_t mbedtls_eckey_info = {
+ .type = MBEDTLS_PK_ECKEY,
+ .name = "EC",
+ .get_bitlen = eckey_get_bitlen,
+ .can_do = eckey_can_do,
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+ .verify_func = ecdsa_verify_wrap, /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+ .verify_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+ .sign_func = ecdsa_sign_wrap, /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+ .sign_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ .verify_rs_func = eckey_verify_rs_wrap,
+ .sign_rs_func = eckey_sign_rs_wrap,
+ .rs_alloc_func = eckey_rs_alloc,
+ .rs_free_func = eckey_rs_free,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ .decrypt_func = NULL,
+ .encrypt_func = NULL,
+ .check_pair_func = eckey_check_pair_wrap,
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ .ctx_alloc_func = NULL,
+ .ctx_free_func = NULL,
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ .ctx_alloc_func = eckey_alloc_wrap,
+ .ctx_free_func = eckey_free_wrap,
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ .debug_func = eckey_debug,
+};
+
+/*
+ * EC key restricted to ECDH
+ */
+static int eckeydh_can_do(mbedtls_pk_type_t type)
+{
+ return type == MBEDTLS_PK_ECKEY ||
+ type == MBEDTLS_PK_ECKEY_DH;
+}
+
+const mbedtls_pk_info_t mbedtls_eckeydh_info = {
+ .type = MBEDTLS_PK_ECKEY_DH,
+ .name = "EC_DH",
+ .get_bitlen = eckey_get_bitlen, /* Same underlying key structure */
+ .can_do = eckeydh_can_do,
+ .verify_func = NULL,
+ .sign_func = NULL,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ .verify_rs_func = NULL,
+ .sign_rs_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ .decrypt_func = NULL,
+ .encrypt_func = NULL,
+ .check_pair_func = eckey_check_pair_wrap,
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ .ctx_alloc_func = NULL,
+ .ctx_free_func = NULL,
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ .ctx_alloc_func = eckey_alloc_wrap, /* Same underlying key structure */
+ .ctx_free_func = eckey_free_wrap, /* Same underlying key structure */
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ .debug_func = eckey_debug, /* Same underlying key structure */
+};
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+static int ecdsa_can_do(mbedtls_pk_type_t type)
+{
+ return type == MBEDTLS_PK_ECDSA;
+}
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+static int ecdsa_verify_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len,
+ void *rs_ctx)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ ((void) md_alg);
+
+ ret = mbedtls_ecdsa_read_signature_restartable(
+ (mbedtls_ecdsa_context *) pk->pk_ctx,
+ hash, hash_len, sig, sig_len,
+ (mbedtls_ecdsa_restart_ctx *) rs_ctx);
+
+ if (ret == MBEDTLS_ERR_ECP_SIG_LEN_MISMATCH) {
+ return MBEDTLS_ERR_PK_SIG_LEN_MISMATCH;
+ }
+
+ return ret;
+}
+
+static int ecdsa_sign_rs_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng,
+ void *rs_ctx)
+{
+ return mbedtls_ecdsa_write_signature_restartable(
+ (mbedtls_ecdsa_context *) pk->pk_ctx,
+ md_alg, hash, hash_len, sig, sig_size, sig_len, f_rng, p_rng,
+ (mbedtls_ecdsa_restart_ctx *) rs_ctx);
+
+}
+
+static void *ecdsa_rs_alloc(void)
+{
+ void *ctx = mbedtls_calloc(1, sizeof(mbedtls_ecdsa_restart_ctx));
+
+ if (ctx != NULL) {
+ mbedtls_ecdsa_restart_init(ctx);
+ }
+
+ return ctx;
+}
+
+static void ecdsa_rs_free(void *ctx)
+{
+ mbedtls_ecdsa_restart_free(ctx);
+ mbedtls_free(ctx);
+}
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+const mbedtls_pk_info_t mbedtls_ecdsa_info = {
+ .type = MBEDTLS_PK_ECDSA,
+ .name = "ECDSA",
+ .get_bitlen = eckey_get_bitlen, /* Compatible key structures */
+ .can_do = ecdsa_can_do,
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+ .verify_func = ecdsa_verify_wrap, /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+ .verify_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+ .sign_func = ecdsa_sign_wrap, /* Compatible key structures */
+#else /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+ .sign_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ .verify_rs_func = ecdsa_verify_rs_wrap,
+ .sign_rs_func = ecdsa_sign_rs_wrap,
+ .rs_alloc_func = ecdsa_rs_alloc,
+ .rs_free_func = ecdsa_rs_free,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ .decrypt_func = NULL,
+ .encrypt_func = NULL,
+ .check_pair_func = eckey_check_pair_wrap, /* Compatible key structures */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+ .ctx_alloc_func = NULL,
+ .ctx_free_func = NULL,
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ .ctx_alloc_func = eckey_alloc_wrap, /* Compatible key structures */
+ .ctx_free_func = eckey_free_wrap, /* Compatible key structures */
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+ .debug_func = eckey_debug, /* Compatible key structures */
+};
+#endif /* MBEDTLS_PK_CAN_ECDSA_SOME */
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+/*
+ * Support for alternative RSA-private implementations
+ */
+
+static int rsa_alt_can_do(mbedtls_pk_type_t type)
+{
+ return type == MBEDTLS_PK_RSA;
+}
+
+static size_t rsa_alt_get_bitlen(mbedtls_pk_context *pk)
+{
+ const mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
+
+ return 8 * rsa_alt->key_len_func(rsa_alt->key);
+}
+
+static int rsa_alt_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
+
+#if SIZE_MAX > UINT_MAX
+ if (UINT_MAX < hash_len) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+#endif
+
+ *sig_len = rsa_alt->key_len_func(rsa_alt->key);
+ if (*sig_len > MBEDTLS_PK_SIGNATURE_MAX_SIZE) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ if (*sig_len > sig_size) {
+ return MBEDTLS_ERR_PK_BUFFER_TOO_SMALL;
+ }
+
+ return rsa_alt->sign_func(rsa_alt->key, f_rng, p_rng,
+ md_alg, (unsigned int) hash_len, hash, sig);
+}
+
+static int rsa_alt_decrypt_wrap(mbedtls_pk_context *pk,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ mbedtls_rsa_alt_context *rsa_alt = pk->pk_ctx;
+
+ ((void) f_rng);
+ ((void) p_rng);
+
+ if (ilen != rsa_alt->key_len_func(rsa_alt->key)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ return rsa_alt->decrypt_func(rsa_alt->key,
+ olen, input, output, osize);
+}
+
+#if defined(MBEDTLS_RSA_C)
+static int rsa_alt_check_pair(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ unsigned char sig[MBEDTLS_MPI_MAX_SIZE];
+ unsigned char hash[32];
+ size_t sig_len = 0;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (rsa_alt_get_bitlen(prv) != rsa_get_bitlen(pub)) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ memset(hash, 0x2a, sizeof(hash));
+
+ if ((ret = rsa_alt_sign_wrap(prv, MBEDTLS_MD_NONE,
+ hash, sizeof(hash),
+ sig, sizeof(sig), &sig_len,
+ f_rng, p_rng)) != 0) {
+ return ret;
+ }
+
+ if (rsa_verify_wrap(pub, MBEDTLS_MD_NONE,
+ hash, sizeof(hash), sig, sig_len) != 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_RSA_C */
+
+static void *rsa_alt_alloc_wrap(void)
+{
+ void *ctx = mbedtls_calloc(1, sizeof(mbedtls_rsa_alt_context));
+
+ if (ctx != NULL) {
+ memset(ctx, 0, sizeof(mbedtls_rsa_alt_context));
+ }
+
+ return ctx;
+}
+
+static void rsa_alt_free_wrap(void *ctx)
+{
+ mbedtls_zeroize_and_free(ctx, sizeof(mbedtls_rsa_alt_context));
+}
+
+const mbedtls_pk_info_t mbedtls_rsa_alt_info = {
+ .type = MBEDTLS_PK_RSA_ALT,
+ .name = "RSA-alt",
+ .get_bitlen = rsa_alt_get_bitlen,
+ .can_do = rsa_alt_can_do,
+ .verify_func = NULL,
+ .sign_func = rsa_alt_sign_wrap,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ .verify_rs_func = NULL,
+ .sign_rs_func = NULL,
+ .rs_alloc_func = NULL,
+ .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ .decrypt_func = rsa_alt_decrypt_wrap,
+ .encrypt_func = NULL,
+#if defined(MBEDTLS_RSA_C)
+ .check_pair_func = rsa_alt_check_pair,
+#else
+ .check_pair_func = NULL,
+#endif
+ .ctx_alloc_func = rsa_alt_alloc_wrap,
+ .ctx_free_func = rsa_alt_free_wrap,
+ .debug_func = NULL,
+};
+#endif /* MBEDTLS_PK_RSA_ALT_SUPPORT */
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static size_t opaque_get_bitlen(mbedtls_pk_context *pk)
+{
+ size_t bits;
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+
+ if (PSA_SUCCESS != psa_get_key_attributes(pk->priv_id, &attributes)) {
+ return 0;
+ }
+
+ bits = psa_get_key_bits(&attributes);
+ psa_reset_key_attributes(&attributes);
+ return bits;
+}
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+static int ecdsa_opaque_can_do(mbedtls_pk_type_t type)
+{
+ return type == MBEDTLS_PK_ECKEY ||
+ type == MBEDTLS_PK_ECDSA;
+}
+
+const mbedtls_pk_info_t mbedtls_ecdsa_opaque_info = {
+ .type = MBEDTLS_PK_OPAQUE,
+ .name = "Opaque",
+ .get_bitlen = opaque_get_bitlen,
+ .can_do = ecdsa_opaque_can_do,
+#if defined(MBEDTLS_PK_CAN_ECDSA_VERIFY)
+ .verify_func = ecdsa_opaque_verify_wrap,
+#else /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+ .verify_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_VERIFY */
+#if defined(MBEDTLS_PK_CAN_ECDSA_SIGN)
+ .sign_func = ecdsa_opaque_sign_wrap,
+#else /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+ .sign_func = NULL,
+#endif /* MBEDTLS_PK_CAN_ECDSA_SIGN */
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ .verify_rs_func = NULL,
+ .sign_rs_func = NULL,
+ .rs_alloc_func = NULL,
+ .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+ .decrypt_func = NULL,
+ .encrypt_func = NULL,
+ .check_pair_func = ecdsa_opaque_check_pair_wrap,
+ .ctx_alloc_func = NULL,
+ .ctx_free_func = NULL,
+ .debug_func = NULL,
+};
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+static int rsa_opaque_can_do(mbedtls_pk_type_t type)
+{
+ return type == MBEDTLS_PK_RSA ||
+ type == MBEDTLS_PK_RSASSA_PSS;
+}
+
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
+static int rsa_opaque_decrypt(mbedtls_pk_context *pk,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_algorithm_t alg;
+ psa_key_type_t type;
+ psa_status_t status;
+
+ /* PSA has its own RNG */
+ (void) f_rng;
+ (void) p_rng;
+
+ status = psa_get_key_attributes(pk->priv_id, &attributes);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ type = psa_get_key_type(&attributes);
+ alg = psa_get_key_algorithm(&attributes);
+ psa_reset_key_attributes(&attributes);
+
+ if (!PSA_KEY_TYPE_IS_RSA(type)) {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+
+ status = psa_asymmetric_decrypt(pk->priv_id, alg, input, ilen, NULL, 0, output, osize, olen);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ }
+
+ return 0;
+}
+#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
+
+static int rsa_opaque_sign_wrap(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+#if defined(MBEDTLS_RSA_C)
+ psa_key_attributes_t attributes = PSA_KEY_ATTRIBUTES_INIT;
+ psa_algorithm_t alg;
+ psa_key_type_t type;
+ psa_status_t status;
+
+ /* PSA has its own RNG */
+ (void) f_rng;
+ (void) p_rng;
+
+ status = psa_get_key_attributes(pk->priv_id, &attributes);
+ if (status != PSA_SUCCESS) {
+ return PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+
+ type = psa_get_key_type(&attributes);
+ alg = psa_get_key_algorithm(&attributes);
+ psa_reset_key_attributes(&attributes);
+
+ if (PSA_KEY_TYPE_IS_RSA(type)) {
+ alg = (alg & ~PSA_ALG_HASH_MASK) | mbedtls_md_psa_alg_from_type(md_alg);
+ } else {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+
+ status = psa_sign_hash(pk->priv_id, alg, hash, hash_len, sig, sig_size, sig_len);
+ if (status != PSA_SUCCESS) {
+ if (PSA_KEY_TYPE_IS_RSA(type)) {
+ return PSA_PK_RSA_TO_MBEDTLS_ERR(status);
+ } else {
+ return PSA_PK_TO_MBEDTLS_ERR(status);
+ }
+ }
+
+ return 0;
+#else /* !MBEDTLS_RSA_C */
+ ((void) pk);
+ ((void) md_alg);
+ ((void) hash);
+ ((void) hash_len);
+ ((void) sig);
+ ((void) sig_size);
+ ((void) sig_len);
+ ((void) f_rng);
+ ((void) p_rng);
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+#endif /* !MBEDTLS_RSA_C */
+}
+
+const mbedtls_pk_info_t mbedtls_rsa_opaque_info = {
+ .type = MBEDTLS_PK_OPAQUE,
+ .name = "Opaque",
+ .get_bitlen = opaque_get_bitlen,
+ .can_do = rsa_opaque_can_do,
+ .verify_func = NULL,
+ .sign_func = rsa_opaque_sign_wrap,
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ .verify_rs_func = NULL,
+ .sign_rs_func = NULL,
+ .rs_alloc_func = NULL,
+ .rs_free_func = NULL,
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+#if defined(PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC)
+ .decrypt_func = rsa_opaque_decrypt,
+#else /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
+ .decrypt_func = NULL,
+#endif /* PSA_WANT_KEY_TYPE_RSA_KEY_PAIR_BASIC */
+ .encrypt_func = NULL,
+ .check_pair_func = NULL,
+ .ctx_alloc_func = NULL,
+ .ctx_free_func = NULL,
+ .debug_func = NULL,
+};
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#endif /* MBEDTLS_PK_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pk_wrap.h b/tf-psa-crypto/drivers/builtin/src/pk_wrap.h
new file mode 100644
index 0000000..be096da
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pk_wrap.h
@@ -0,0 +1,138 @@
+/**
+ * \file pk_wrap.h
+ *
+ * \brief Public Key abstraction layer: wrapper functions
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_PK_WRAP_H
+#define MBEDTLS_PK_WRAP_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/pk.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif
+
+struct mbedtls_pk_info_t {
+ /** Public key type */
+ mbedtls_pk_type_t type;
+
+ /** Type name */
+ const char *name;
+
+ /** Get key size in bits */
+ size_t (*get_bitlen)(mbedtls_pk_context *pk);
+
+ /** Tell if the context implements this type (e.g. ECKEY can do ECDSA) */
+ int (*can_do)(mbedtls_pk_type_t type);
+
+ /** Verify signature */
+ int (*verify_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len);
+
+ /** Make signature */
+ int (*sign_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ /** Verify signature (restartable) */
+ int (*verify_rs_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ const unsigned char *sig, size_t sig_len,
+ void *rs_ctx);
+
+ /** Make signature (restartable) */
+ int (*sign_rs_func)(mbedtls_pk_context *pk, mbedtls_md_type_t md_alg,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size, size_t *sig_len,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng, void *rs_ctx);
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+ /** Decrypt message */
+ int (*decrypt_func)(mbedtls_pk_context *pk, const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+ /** Encrypt message */
+ int (*encrypt_func)(mbedtls_pk_context *pk, const unsigned char *input, size_t ilen,
+ unsigned char *output, size_t *olen, size_t osize,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+ /** Check public-private key pair */
+ int (*check_pair_func)(mbedtls_pk_context *pub, mbedtls_pk_context *prv,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+ /** Allocate a new context */
+ void * (*ctx_alloc_func)(void);
+
+ /** Free the given context */
+ void (*ctx_free_func)(void *ctx);
+
+#if defined(MBEDTLS_ECDSA_C) && defined(MBEDTLS_ECP_RESTARTABLE)
+ /** Allocate the restart context */
+ void *(*rs_alloc_func)(void);
+
+ /** Free the restart context */
+ void (*rs_free_func)(void *rs_ctx);
+#endif /* MBEDTLS_ECDSA_C && MBEDTLS_ECP_RESTARTABLE */
+
+ /** Interface with the debug module */
+ void (*debug_func)(mbedtls_pk_context *pk, mbedtls_pk_debug_item *items);
+
+};
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+/* Container for RSA-alt */
+typedef struct {
+ void *key;
+ mbedtls_pk_rsa_alt_decrypt_func decrypt_func;
+ mbedtls_pk_rsa_alt_sign_func sign_func;
+ mbedtls_pk_rsa_alt_key_len_func key_len_func;
+} mbedtls_rsa_alt_context;
+#endif
+
+#if defined(MBEDTLS_RSA_C)
+extern const mbedtls_pk_info_t mbedtls_rsa_info;
+#endif
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+extern const mbedtls_pk_info_t mbedtls_eckey_info;
+extern const mbedtls_pk_info_t mbedtls_eckeydh_info;
+#endif
+
+#if defined(MBEDTLS_PK_CAN_ECDSA_SOME)
+extern const mbedtls_pk_info_t mbedtls_ecdsa_info;
+#endif
+
+#if defined(MBEDTLS_PK_RSA_ALT_SUPPORT)
+extern const mbedtls_pk_info_t mbedtls_rsa_alt_info;
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+extern const mbedtls_pk_info_t mbedtls_ecdsa_opaque_info;
+extern const mbedtls_pk_info_t mbedtls_rsa_opaque_info;
+
+#if defined(MBEDTLS_RSA_C)
+int mbedtls_pk_psa_rsa_sign_ext(psa_algorithm_t psa_alg_md,
+ mbedtls_rsa_context *rsa_ctx,
+ const unsigned char *hash, size_t hash_len,
+ unsigned char *sig, size_t sig_size,
+ size_t *sig_len);
+#endif /* MBEDTLS_RSA_C */
+
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+#endif /* MBEDTLS_PK_WRAP_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkcs12.c b/tf-psa-crypto/drivers/builtin/src/pkcs12.c
new file mode 100644
index 0000000..a3467b9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkcs12.c
@@ -0,0 +1,437 @@
+/*
+ * PKCS#12 Personal Information Exchange Syntax
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The PKCS #12 Personal Information Exchange Syntax Standard v1.1
+ *
+ * http://www.rsa.com/rsalabs/pkcs/files/h11301-wp-pkcs-12v1-1-personal-information-exchange-syntax.pdf
+ * ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1-1.asn
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PKCS12_C)
+
+#include "mbedtls/pkcs12.h"
+#include "mbedtls/asn1.h"
+#if defined(MBEDTLS_CIPHER_C)
+#include "mbedtls/cipher.h"
+#endif /* MBEDTLS_CIPHER_C */
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_DES_C)
+#include "mbedtls/des.h"
+#endif
+
+#include "psa_util_internal.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C) && defined(MBEDTLS_CIPHER_C)
+
+static int pkcs12_parse_pbe_params(mbedtls_asn1_buf *params,
+ mbedtls_asn1_buf *salt, int *iterations)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char **p = &params->p;
+ const unsigned char *end = params->p + params->len;
+
+ /*
+ * pkcs-12PbeParams ::= SEQUENCE {
+ * salt OCTET STRING,
+ * iterations INTEGER
+ * }
+ *
+ */
+ if (params->tag != (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+ }
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &salt->len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT, ret);
+ }
+
+ salt->p = *p;
+ *p += salt->len;
+
+ if ((ret = mbedtls_asn1_get_int(p, end, iterations)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT, ret);
+ }
+
+ if (*p != end) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS12_PBE_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ return 0;
+}
+
+#define PKCS12_MAX_PWDLEN 128
+
+static int pkcs12_pbe_derive_key_iv(mbedtls_asn1_buf *pbe_params, mbedtls_md_type_t md_type,
+ const unsigned char *pwd, size_t pwdlen,
+ unsigned char *key, size_t keylen,
+ unsigned char *iv, size_t ivlen)
+{
+ int ret, iterations = 0;
+ mbedtls_asn1_buf salt;
+ size_t i;
+ unsigned char unipwd[PKCS12_MAX_PWDLEN * 2 + 2];
+
+ if (pwdlen > PKCS12_MAX_PWDLEN) {
+ return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+ }
+
+ memset(&salt, 0, sizeof(mbedtls_asn1_buf));
+ memset(&unipwd, 0, sizeof(unipwd));
+
+ if ((ret = pkcs12_parse_pbe_params(pbe_params, &salt,
+ &iterations)) != 0) {
+ return ret;
+ }
+
+ for (i = 0; i < pwdlen; i++) {
+ unipwd[i * 2 + 1] = pwd[i];
+ }
+
+ if ((ret = mbedtls_pkcs12_derivation(key, keylen, unipwd, pwdlen * 2 + 2,
+ salt.p, salt.len, md_type,
+ MBEDTLS_PKCS12_DERIVE_KEY, iterations)) != 0) {
+ return ret;
+ }
+
+ if (iv == NULL || ivlen == 0) {
+ return 0;
+ }
+
+ if ((ret = mbedtls_pkcs12_derivation(iv, ivlen, unipwd, pwdlen * 2 + 2,
+ salt.p, salt.len, md_type,
+ MBEDTLS_PKCS12_DERIVE_IV, iterations)) != 0) {
+ return ret;
+ }
+ return 0;
+}
+
+#undef PKCS12_MAX_PWDLEN
+
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+int mbedtls_pkcs12_pbe_ext(mbedtls_asn1_buf *pbe_params, int mode,
+ mbedtls_cipher_type_t cipher_type, mbedtls_md_type_t md_type,
+ const unsigned char *pwd, size_t pwdlen,
+ const unsigned char *data, size_t len,
+ unsigned char *output, size_t output_size,
+ size_t *output_len);
+#endif
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_pkcs12_pbe(mbedtls_asn1_buf *pbe_params, int mode,
+ mbedtls_cipher_type_t cipher_type, mbedtls_md_type_t md_type,
+ const unsigned char *pwd, size_t pwdlen,
+ const unsigned char *data, size_t len,
+ unsigned char *output)
+{
+ size_t output_len = 0;
+
+ /* We assume caller of the function is providing a big enough output buffer
+ * so we pass output_size as SIZE_MAX to pass checks, However, no guarantees
+ * for the output size actually being correct.
+ */
+ return mbedtls_pkcs12_pbe_ext(pbe_params, mode, cipher_type, md_type,
+ pwd, pwdlen, data, len, output, SIZE_MAX,
+ &output_len);
+}
+#endif
+
+int mbedtls_pkcs12_pbe_ext(mbedtls_asn1_buf *pbe_params, int mode,
+ mbedtls_cipher_type_t cipher_type, mbedtls_md_type_t md_type,
+ const unsigned char *pwd, size_t pwdlen,
+ const unsigned char *data, size_t len,
+ unsigned char *output, size_t output_size,
+ size_t *output_len)
+{
+ int ret, keylen = 0;
+ unsigned char key[32];
+ unsigned char iv[16];
+ const mbedtls_cipher_info_t *cipher_info;
+ mbedtls_cipher_context_t cipher_ctx;
+ size_t iv_len = 0;
+ size_t finish_olen = 0;
+ unsigned int padlen = 0;
+
+ if (pwd == NULL && pwdlen != 0) {
+ return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+ }
+
+ cipher_info = mbedtls_cipher_info_from_type(cipher_type);
+ if (cipher_info == NULL) {
+ return MBEDTLS_ERR_PKCS12_FEATURE_UNAVAILABLE;
+ }
+
+ keylen = (int) mbedtls_cipher_info_get_key_bitlen(cipher_info) / 8;
+
+ if (mode == MBEDTLS_PKCS12_PBE_DECRYPT) {
+ if (output_size < len) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+ }
+
+ if (mode == MBEDTLS_PKCS12_PBE_ENCRYPT) {
+ padlen = cipher_info->block_size - (len % cipher_info->block_size);
+ if (output_size < (len + padlen)) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+ }
+
+ iv_len = mbedtls_cipher_info_get_iv_size(cipher_info);
+ if ((ret = pkcs12_pbe_derive_key_iv(pbe_params, md_type, pwd, pwdlen,
+ key, keylen,
+ iv, iv_len)) != 0) {
+ return ret;
+ }
+
+ mbedtls_cipher_init(&cipher_ctx);
+
+ if ((ret = mbedtls_cipher_setup(&cipher_ctx, cipher_info)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_cipher_setkey(&cipher_ctx, key, 8 * keylen,
+ (mbedtls_operation_t) mode)) != 0) {
+ goto exit;
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+ {
+ /* PKCS12 uses CBC with PKCS7 padding */
+ mbedtls_cipher_padding_t padding = MBEDTLS_PADDING_PKCS7;
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+ /* For historical reasons, when decrypting, this function works when
+ * decrypting even when support for PKCS7 padding is disabled. In this
+ * case, it ignores the padding, and so will never report a
+ * password mismatch.
+ */
+ if (mode == MBEDTLS_PKCS12_PBE_DECRYPT) {
+ padding = MBEDTLS_PADDING_NONE;
+ }
+#endif
+ if ((ret = mbedtls_cipher_set_padding_mode(&cipher_ctx, padding)) != 0) {
+ goto exit;
+ }
+ }
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+
+ ret = mbedtls_cipher_crypt(&cipher_ctx, iv, iv_len, data, len, output, &finish_olen);
+ if (ret == MBEDTLS_ERR_CIPHER_INVALID_PADDING) {
+ ret = MBEDTLS_ERR_PKCS12_PASSWORD_MISMATCH;
+ }
+
+ *output_len += finish_olen;
+
+exit:
+ mbedtls_platform_zeroize(key, sizeof(key));
+ mbedtls_platform_zeroize(iv, sizeof(iv));
+ mbedtls_cipher_free(&cipher_ctx);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_ASN1_PARSE_C && MBEDTLS_CIPHER_C */
+
+static void pkcs12_fill_buffer(unsigned char *data, size_t data_len,
+ const unsigned char *filler, size_t fill_len)
+{
+ unsigned char *p = data;
+ size_t use_len;
+
+ if (filler != NULL && fill_len != 0) {
+ while (data_len > 0) {
+ use_len = (data_len > fill_len) ? fill_len : data_len;
+ memcpy(p, filler, use_len);
+ p += use_len;
+ data_len -= use_len;
+ }
+ } else {
+ /* If either of the above are not true then clearly there is nothing
+ * that this function can do. The function should *not* be called
+ * under either of those circumstances, as you could end up with an
+ * incorrect output but for safety's sake, leaving the check in as
+ * otherwise we could end up with memory corruption.*/
+ }
+}
+
+
+static int calculate_hashes(mbedtls_md_type_t md_type, int iterations,
+ unsigned char *diversifier, unsigned char *salt_block,
+ unsigned char *pwd_block, unsigned char *hash_output, int use_salt,
+ int use_password, size_t hlen, size_t v)
+{
+ int ret = -1;
+ size_t i;
+ const mbedtls_md_info_t *md_info;
+ mbedtls_md_context_t md_ctx;
+ md_info = mbedtls_md_info_from_type(md_type);
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_PKCS12_FEATURE_UNAVAILABLE;
+ }
+
+ mbedtls_md_init(&md_ctx);
+
+ if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
+ return ret;
+ }
+ // Calculate hash( diversifier || salt_block || pwd_block )
+ if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_md_update(&md_ctx, diversifier, v)) != 0) {
+ goto exit;
+ }
+
+ if (use_salt != 0) {
+ if ((ret = mbedtls_md_update(&md_ctx, salt_block, v)) != 0) {
+ goto exit;
+ }
+ }
+
+ if (use_password != 0) {
+ if ((ret = mbedtls_md_update(&md_ctx, pwd_block, v)) != 0) {
+ goto exit;
+ }
+ }
+
+ if ((ret = mbedtls_md_finish(&md_ctx, hash_output)) != 0) {
+ goto exit;
+ }
+
+ // Perform remaining ( iterations - 1 ) recursive hash calculations
+ for (i = 1; i < (size_t) iterations; i++) {
+ if ((ret = mbedtls_md(md_info, hash_output, hlen, hash_output))
+ != 0) {
+ goto exit;
+ }
+ }
+
+exit:
+ mbedtls_md_free(&md_ctx);
+ return ret;
+}
+
+
+int mbedtls_pkcs12_derivation(unsigned char *data, size_t datalen,
+ const unsigned char *pwd, size_t pwdlen,
+ const unsigned char *salt, size_t saltlen,
+ mbedtls_md_type_t md_type, int id, int iterations)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned int j;
+
+ unsigned char diversifier[128];
+ unsigned char salt_block[128], pwd_block[128], hash_block[128] = { 0 };
+ unsigned char hash_output[MBEDTLS_MD_MAX_SIZE];
+ unsigned char *p;
+ unsigned char c;
+ int use_password = 0;
+ int use_salt = 0;
+
+ size_t hlen, use_len, v, i;
+
+ // This version only allows max of 64 bytes of password or salt
+ if (datalen > 128 || pwdlen > 64 || saltlen > 64) {
+ return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+ }
+
+ if (pwd == NULL && pwdlen != 0) {
+ return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+ }
+
+ if (salt == NULL && saltlen != 0) {
+ return MBEDTLS_ERR_PKCS12_BAD_INPUT_DATA;
+ }
+
+ use_password = (pwd && pwdlen != 0);
+ use_salt = (salt && saltlen != 0);
+
+ hlen = mbedtls_md_get_size_from_type(md_type);
+
+ if (hlen <= 32) {
+ v = 64;
+ } else {
+ v = 128;
+ }
+
+ memset(diversifier, (unsigned char) id, v);
+
+ if (use_salt != 0) {
+ pkcs12_fill_buffer(salt_block, v, salt, saltlen);
+ }
+
+ if (use_password != 0) {
+ pkcs12_fill_buffer(pwd_block, v, pwd, pwdlen);
+ }
+
+ p = data;
+ while (datalen > 0) {
+ if (calculate_hashes(md_type, iterations, diversifier, salt_block,
+ pwd_block, hash_output, use_salt, use_password, hlen,
+ v) != 0) {
+ goto exit;
+ }
+
+ use_len = (datalen > hlen) ? hlen : datalen;
+ memcpy(p, hash_output, use_len);
+ datalen -= use_len;
+ p += use_len;
+
+ if (datalen == 0) {
+ break;
+ }
+
+ // Concatenating copies of hash_output into hash_block (B)
+ pkcs12_fill_buffer(hash_block, v, hash_output, hlen);
+
+ // B += 1
+ for (i = v; i > 0; i--) {
+ if (++hash_block[i - 1] != 0) {
+ break;
+ }
+ }
+
+ if (use_salt != 0) {
+ // salt_block += B
+ c = 0;
+ for (i = v; i > 0; i--) {
+ j = salt_block[i - 1] + hash_block[i - 1] + c;
+ c = MBEDTLS_BYTE_1(j);
+ salt_block[i - 1] = MBEDTLS_BYTE_0(j);
+ }
+ }
+
+ if (use_password != 0) {
+ // pwd_block += B
+ c = 0;
+ for (i = v; i > 0; i--) {
+ j = pwd_block[i - 1] + hash_block[i - 1] + c;
+ c = MBEDTLS_BYTE_1(j);
+ pwd_block[i - 1] = MBEDTLS_BYTE_0(j);
+ }
+ }
+ }
+
+ ret = 0;
+
+exit:
+ mbedtls_platform_zeroize(salt_block, sizeof(salt_block));
+ mbedtls_platform_zeroize(pwd_block, sizeof(pwd_block));
+ mbedtls_platform_zeroize(hash_block, sizeof(hash_block));
+ mbedtls_platform_zeroize(hash_output, sizeof(hash_output));
+
+ return ret;
+}
+
+#endif /* MBEDTLS_PKCS12_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkcs5.c b/tf-psa-crypto/drivers/builtin/src/pkcs5.c
new file mode 100644
index 0000000..c6c5305
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkcs5.c
@@ -0,0 +1,500 @@
+/**
+ * \file pkcs5.c
+ *
+ * \brief PKCS#5 functions
+ *
+ * \author Mathias Olsson <mathias@kompetensum.com>
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * PKCS#5 includes PBKDF2 and more
+ *
+ * http://tools.ietf.org/html/rfc2898 (Specification)
+ * http://tools.ietf.org/html/rfc6070 (Test vectors)
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PKCS5_C)
+
+#include "mbedtls/pkcs5.h"
+#include "mbedtls/error.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C)
+#include "mbedtls/asn1.h"
+#if defined(MBEDTLS_CIPHER_C)
+#include "mbedtls/cipher.h"
+#endif /* MBEDTLS_CIPHER_C */
+#include "mbedtls/oid.h"
+#endif /* MBEDTLS_ASN1_PARSE_C */
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#include "psa_util_internal.h"
+
+#if defined(MBEDTLS_ASN1_PARSE_C) && defined(MBEDTLS_CIPHER_C)
+static int pkcs5_parse_pbkdf2_params(const mbedtls_asn1_buf *params,
+ mbedtls_asn1_buf *salt, int *iterations,
+ int *keylen, mbedtls_md_type_t *md_type)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_asn1_buf prf_alg_oid;
+ unsigned char *p = params->p;
+ const unsigned char *end = params->p + params->len;
+
+ if (params->tag != (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+ }
+ /*
+ * PBKDF2-params ::= SEQUENCE {
+ * salt OCTET STRING,
+ * iterationCount INTEGER,
+ * keyLength INTEGER OPTIONAL
+ * prf AlgorithmIdentifier DEFAULT algid-hmacWithSHA1
+ * }
+ *
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &salt->len,
+ MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+ }
+
+ salt->p = p;
+ p += salt->len;
+
+ if ((ret = mbedtls_asn1_get_int(&p, end, iterations)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+ }
+
+ if (p == end) {
+ return 0;
+ }
+
+ if ((ret = mbedtls_asn1_get_int(&p, end, keylen)) != 0) {
+ if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+ }
+ }
+
+ if (p == end) {
+ return 0;
+ }
+
+ if ((ret = mbedtls_asn1_get_alg_null(&p, end, &prf_alg_oid)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+ }
+
+ if (mbedtls_oid_get_md_hmac(&prf_alg_oid, md_type) != 0) {
+ return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+ }
+
+ if (p != end) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+int mbedtls_pkcs5_pbes2_ext(const mbedtls_asn1_buf *pbe_params, int mode,
+ const unsigned char *pwd, size_t pwdlen,
+ const unsigned char *data, size_t datalen,
+ unsigned char *output, size_t output_size,
+ size_t *output_len);
+#endif
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_pkcs5_pbes2(const mbedtls_asn1_buf *pbe_params, int mode,
+ const unsigned char *pwd, size_t pwdlen,
+ const unsigned char *data, size_t datalen,
+ unsigned char *output)
+{
+ size_t output_len = 0;
+
+ /* We assume caller of the function is providing a big enough output buffer
+ * so we pass output_size as SIZE_MAX to pass checks, However, no guarantees
+ * for the output size actually being correct.
+ */
+ return mbedtls_pkcs5_pbes2_ext(pbe_params, mode, pwd, pwdlen, data,
+ datalen, output, SIZE_MAX, &output_len);
+}
+#endif
+
+int mbedtls_pkcs5_pbes2_ext(const mbedtls_asn1_buf *pbe_params, int mode,
+ const unsigned char *pwd, size_t pwdlen,
+ const unsigned char *data, size_t datalen,
+ unsigned char *output, size_t output_size,
+ size_t *output_len)
+{
+ int ret, iterations = 0, keylen = 0;
+ unsigned char *p, *end;
+ mbedtls_asn1_buf kdf_alg_oid, enc_scheme_oid, kdf_alg_params, enc_scheme_params;
+ mbedtls_asn1_buf salt;
+ mbedtls_md_type_t md_type = MBEDTLS_MD_SHA1;
+ unsigned char key[32], iv[32];
+ const mbedtls_cipher_info_t *cipher_info;
+ mbedtls_cipher_type_t cipher_alg;
+ mbedtls_cipher_context_t cipher_ctx;
+ unsigned int padlen = 0;
+
+ p = pbe_params->p;
+ end = p + pbe_params->len;
+
+ /*
+ * PBES2-params ::= SEQUENCE {
+ * keyDerivationFunc AlgorithmIdentifier {{PBES2-KDFs}},
+ * encryptionScheme AlgorithmIdentifier {{PBES2-Encs}}
+ * }
+ */
+ if (pbe_params->tag != (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+ }
+
+ if ((ret = mbedtls_asn1_get_alg(&p, end, &kdf_alg_oid,
+ &kdf_alg_params)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+ }
+
+ // Only PBKDF2 supported at the moment
+ //
+ if (MBEDTLS_OID_CMP(MBEDTLS_OID_PKCS5_PBKDF2, &kdf_alg_oid) != 0) {
+ return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+ }
+
+ if ((ret = pkcs5_parse_pbkdf2_params(&kdf_alg_params,
+ &salt, &iterations, &keylen,
+ &md_type)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_asn1_get_alg(&p, end, &enc_scheme_oid,
+ &enc_scheme_params)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PKCS5_INVALID_FORMAT, ret);
+ }
+
+ if (mbedtls_oid_get_cipher_alg(&enc_scheme_oid, &cipher_alg) != 0) {
+ return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+ }
+
+ cipher_info = mbedtls_cipher_info_from_type(cipher_alg);
+ if (cipher_info == NULL) {
+ return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+ }
+
+ /*
+ * The value of keylen from pkcs5_parse_pbkdf2_params() is ignored
+ * since it is optional and we don't know if it was set or not
+ */
+ keylen = (int) mbedtls_cipher_info_get_key_bitlen(cipher_info) / 8;
+
+ if (enc_scheme_params.tag != MBEDTLS_ASN1_OCTET_STRING ||
+ enc_scheme_params.len != mbedtls_cipher_info_get_iv_size(cipher_info)) {
+ return MBEDTLS_ERR_PKCS5_INVALID_FORMAT;
+ }
+
+ if (mode == MBEDTLS_PKCS5_DECRYPT) {
+ if (output_size < datalen) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+ }
+
+ if (mode == MBEDTLS_PKCS5_ENCRYPT) {
+ padlen = cipher_info->block_size - (datalen % cipher_info->block_size);
+ if (output_size < (datalen + padlen)) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+ }
+
+ mbedtls_cipher_init(&cipher_ctx);
+
+ memcpy(iv, enc_scheme_params.p, enc_scheme_params.len);
+
+ if ((ret = mbedtls_pkcs5_pbkdf2_hmac_ext(md_type, pwd, pwdlen, salt.p,
+ salt.len, iterations, keylen,
+ key)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_cipher_setup(&cipher_ctx, cipher_info)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_cipher_setkey(&cipher_ctx, key, 8 * keylen,
+ (mbedtls_operation_t) mode)) != 0) {
+ goto exit;
+ }
+
+#if defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
+ {
+ /* PKCS5 uses CBC with PKCS7 padding (which is the same as
+ * "PKCS5 padding" except that it's typically only called PKCS5
+ * with 64-bit-block ciphers).
+ */
+ mbedtls_cipher_padding_t padding = MBEDTLS_PADDING_PKCS7;
+#if !defined(MBEDTLS_CIPHER_PADDING_PKCS7)
+ /* For historical reasons, when decrypting, this function works when
+ * decrypting even when support for PKCS7 padding is disabled. In this
+ * case, it ignores the padding, and so will never report a
+ * password mismatch.
+ */
+ if (mode == MBEDTLS_DECRYPT) {
+ padding = MBEDTLS_PADDING_NONE;
+ }
+#endif
+ if ((ret = mbedtls_cipher_set_padding_mode(&cipher_ctx, padding)) != 0) {
+ goto exit;
+ }
+ }
+#endif /* MBEDTLS_CIPHER_MODE_WITH_PADDING */
+ if ((ret = mbedtls_cipher_crypt(&cipher_ctx, iv, enc_scheme_params.len,
+ data, datalen, output, output_len)) != 0) {
+ ret = MBEDTLS_ERR_PKCS5_PASSWORD_MISMATCH;
+ }
+
+exit:
+ mbedtls_cipher_free(&cipher_ctx);
+
+ return ret;
+}
+#endif /* MBEDTLS_ASN1_PARSE_C && MBEDTLS_CIPHER_C */
+
+static int pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx,
+ const unsigned char *password,
+ size_t plen, const unsigned char *salt, size_t slen,
+ unsigned int iteration_count,
+ uint32_t key_length, unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned int i;
+ unsigned char md1[MBEDTLS_MD_MAX_SIZE];
+ unsigned char work[MBEDTLS_MD_MAX_SIZE];
+ unsigned char md_size = mbedtls_md_get_size(ctx->md_info);
+ size_t use_len;
+ unsigned char *out_p = output;
+ unsigned char counter[4];
+
+ memset(counter, 0, 4);
+ counter[3] = 1;
+
+#if UINT_MAX > 0xFFFFFFFF
+ if (iteration_count > 0xFFFFFFFF) {
+ return MBEDTLS_ERR_PKCS5_BAD_INPUT_DATA;
+ }
+#endif
+
+ if ((ret = mbedtls_md_hmac_starts(ctx, password, plen)) != 0) {
+ return ret;
+ }
+ while (key_length) {
+ // U1 ends up in work
+ //
+ if ((ret = mbedtls_md_hmac_update(ctx, salt, slen)) != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_md_hmac_update(ctx, counter, 4)) != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_md_hmac_finish(ctx, work)) != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_md_hmac_reset(ctx)) != 0) {
+ goto cleanup;
+ }
+
+ memcpy(md1, work, md_size);
+
+ for (i = 1; i < iteration_count; i++) {
+ // U2 ends up in md1
+ //
+ if ((ret = mbedtls_md_hmac_update(ctx, md1, md_size)) != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_md_hmac_finish(ctx, md1)) != 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_md_hmac_reset(ctx)) != 0) {
+ goto cleanup;
+ }
+
+ // U1 xor U2
+ //
+ mbedtls_xor(work, work, md1, md_size);
+ }
+
+ use_len = (key_length < md_size) ? key_length : md_size;
+ memcpy(out_p, work, use_len);
+
+ key_length -= (uint32_t) use_len;
+ out_p += use_len;
+
+ for (i = 4; i > 0; i--) {
+ if (++counter[i - 1] != 0) {
+ break;
+ }
+ }
+ }
+
+cleanup:
+ /* Zeroise buffers to clear sensitive data from memory. */
+ mbedtls_platform_zeroize(work, MBEDTLS_MD_MAX_SIZE);
+ mbedtls_platform_zeroize(md1, MBEDTLS_MD_MAX_SIZE);
+
+ return ret;
+}
+
+#if !defined(MBEDTLS_DEPRECATED_REMOVED)
+int mbedtls_pkcs5_pbkdf2_hmac(mbedtls_md_context_t *ctx,
+ const unsigned char *password,
+ size_t plen, const unsigned char *salt, size_t slen,
+ unsigned int iteration_count,
+ uint32_t key_length, unsigned char *output)
+{
+ return pkcs5_pbkdf2_hmac(ctx, password, plen, salt, slen, iteration_count,
+ key_length, output);
+}
+#endif
+
+int mbedtls_pkcs5_pbkdf2_hmac_ext(mbedtls_md_type_t md_alg,
+ const unsigned char *password,
+ size_t plen, const unsigned char *salt, size_t slen,
+ unsigned int iteration_count,
+ uint32_t key_length, unsigned char *output)
+{
+ mbedtls_md_context_t md_ctx;
+ const mbedtls_md_info_t *md_info = NULL;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ md_info = mbedtls_md_info_from_type(md_alg);
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_PKCS5_FEATURE_UNAVAILABLE;
+ }
+
+ mbedtls_md_init(&md_ctx);
+
+ if ((ret = mbedtls_md_setup(&md_ctx, md_info, 1)) != 0) {
+ goto exit;
+ }
+ ret = pkcs5_pbkdf2_hmac(&md_ctx, password, plen, salt, slen,
+ iteration_count, key_length, output);
+exit:
+ mbedtls_md_free(&md_ctx);
+ return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+#if !defined(MBEDTLS_MD_CAN_SHA1)
+int mbedtls_pkcs5_self_test(int verbose)
+{
+ if (verbose != 0) {
+ mbedtls_printf(" PBKDF2 (SHA1): skipped\n\n");
+ }
+
+ return 0;
+}
+#else
+
+#define MAX_TESTS 6
+
+static const size_t plen_test_data[MAX_TESTS] =
+{ 8, 8, 8, 24, 9 };
+
+static const unsigned char password_test_data[MAX_TESTS][32] =
+{
+ "password",
+ "password",
+ "password",
+ "passwordPASSWORDpassword",
+ "pass\0word",
+};
+
+static const size_t slen_test_data[MAX_TESTS] =
+{ 4, 4, 4, 36, 5 };
+
+static const unsigned char salt_test_data[MAX_TESTS][40] =
+{
+ "salt",
+ "salt",
+ "salt",
+ "saltSALTsaltSALTsaltSALTsaltSALTsalt",
+ "sa\0lt",
+};
+
+static const uint32_t it_cnt_test_data[MAX_TESTS] =
+{ 1, 2, 4096, 4096, 4096 };
+
+static const uint32_t key_len_test_data[MAX_TESTS] =
+{ 20, 20, 20, 25, 16 };
+
+static const unsigned char result_key_test_data[MAX_TESTS][32] =
+{
+ { 0x0c, 0x60, 0xc8, 0x0f, 0x96, 0x1f, 0x0e, 0x71,
+ 0xf3, 0xa9, 0xb5, 0x24, 0xaf, 0x60, 0x12, 0x06,
+ 0x2f, 0xe0, 0x37, 0xa6 },
+ { 0xea, 0x6c, 0x01, 0x4d, 0xc7, 0x2d, 0x6f, 0x8c,
+ 0xcd, 0x1e, 0xd9, 0x2a, 0xce, 0x1d, 0x41, 0xf0,
+ 0xd8, 0xde, 0x89, 0x57 },
+ { 0x4b, 0x00, 0x79, 0x01, 0xb7, 0x65, 0x48, 0x9a,
+ 0xbe, 0xad, 0x49, 0xd9, 0x26, 0xf7, 0x21, 0xd0,
+ 0x65, 0xa4, 0x29, 0xc1 },
+ { 0x3d, 0x2e, 0xec, 0x4f, 0xe4, 0x1c, 0x84, 0x9b,
+ 0x80, 0xc8, 0xd8, 0x36, 0x62, 0xc0, 0xe4, 0x4a,
+ 0x8b, 0x29, 0x1a, 0x96, 0x4c, 0xf2, 0xf0, 0x70,
+ 0x38 },
+ { 0x56, 0xfa, 0x6a, 0xa7, 0x55, 0x48, 0x09, 0x9d,
+ 0xcc, 0x37, 0xd7, 0xf0, 0x34, 0x25, 0xe0, 0xc3 },
+};
+
+int mbedtls_pkcs5_self_test(int verbose)
+{
+ int ret, i;
+ unsigned char key[64];
+
+ for (i = 0; i < MAX_TESTS; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" PBKDF2 (SHA1) #%d: ", i);
+ }
+
+ ret = mbedtls_pkcs5_pbkdf2_hmac_ext(MBEDTLS_MD_SHA1, password_test_data[i],
+ plen_test_data[i], salt_test_data[i],
+ slen_test_data[i], it_cnt_test_data[i],
+ key_len_test_data[i], key);
+ if (ret != 0 ||
+ memcmp(result_key_test_data[i], key, key_len_test_data[i]) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto exit;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+exit:
+ return ret;
+}
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_PKCS5_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkparse.c b/tf-psa-crypto/drivers/builtin/src/pkparse.c
new file mode 100644
index 0000000..4f6ee13
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkparse.c
@@ -0,0 +1,1392 @@
+/*
+ * Public Key layer for parsing key files and structures
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PK_PARSE_C)
+
+#include "mbedtls/pk.h"
+#include "mbedtls/asn1.h"
+#include "mbedtls/oid.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/error.h"
+#include "mbedtls/ecp.h"
+#include "pk_internal.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "mbedtls/psa_util.h"
+#include "psa/crypto.h"
+#endif
+
+/* Key types */
+#if defined(MBEDTLS_RSA_C)
+#include "mbedtls/rsa.h"
+#include "rsa_internal.h"
+#endif
+
+/* Extended formats */
+#if defined(MBEDTLS_PEM_PARSE_C)
+#include "mbedtls/pem.h"
+#endif
+#if defined(MBEDTLS_PKCS5_C)
+#include "mbedtls/pkcs5.h"
+#endif
+#if defined(MBEDTLS_PKCS12_C)
+#include "mbedtls/pkcs12.h"
+#endif
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+
+/***********************************************************************
+ *
+ * Low-level ECC parsing: optional support for SpecifiedECDomain
+ *
+ * There are two functions here that are used by the rest of the code:
+ * - pk_ecc_tag_is_speficied_ec_domain()
+ * - pk_ecc_group_id_from_specified()
+ *
+ * All the other functions are internal to this section.
+ *
+ * The two "public" functions have a dummy variant provided
+ * in configs without MBEDTLS_PK_PARSE_EC_EXTENDED. This acts as an
+ * abstraction layer for this macro, which should not appear outside
+ * this section.
+ *
+ **********************************************************************/
+
+#if !defined(MBEDTLS_PK_PARSE_EC_EXTENDED)
+/* See the "real" version for documentation */
+static int pk_ecc_tag_is_specified_ec_domain(int tag)
+{
+ (void) tag;
+ return 0;
+}
+
+/* See the "real" version for documentation */
+static int pk_ecc_group_id_from_specified(const mbedtls_asn1_buf *params,
+ mbedtls_ecp_group_id *grp_id)
+{
+ (void) params;
+ (void) grp_id;
+ return MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+}
+#else /* MBEDTLS_PK_PARSE_EC_EXTENDED */
+/*
+ * Tell if the passed tag might be the start of SpecifiedECDomain
+ * (that is, a sequence).
+ */
+static int pk_ecc_tag_is_specified_ec_domain(int tag)
+{
+ return tag == (MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE);
+}
+
+/*
+ * Parse a SpecifiedECDomain (SEC 1 C.2) and (mostly) fill the group with it.
+ * WARNING: the resulting group should only be used with
+ * pk_ecc_group_id_from_specified(), since its base point may not be set correctly
+ * if it was encoded compressed.
+ *
+ * SpecifiedECDomain ::= SEQUENCE {
+ * version SpecifiedECDomainVersion(ecdpVer1 | ecdpVer2 | ecdpVer3, ...),
+ * fieldID FieldID {{FieldTypes}},
+ * curve Curve,
+ * base ECPoint,
+ * order INTEGER,
+ * cofactor INTEGER OPTIONAL,
+ * hash HashAlgorithm OPTIONAL,
+ * ...
+ * }
+ *
+ * We only support prime-field as field type, and ignore hash and cofactor.
+ */
+static int pk_group_from_specified(const mbedtls_asn1_buf *params, mbedtls_ecp_group *grp)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *p = params->p;
+ const unsigned char *const end = params->p + params->len;
+ const unsigned char *end_field, *end_curve;
+ size_t len;
+ int ver;
+
+ /* SpecifiedECDomainVersion ::= INTEGER { 1, 2, 3 } */
+ if ((ret = mbedtls_asn1_get_int(&p, end, &ver)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if (ver < 1 || ver > 3) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+
+ /*
+ * FieldID { FIELD-ID:IOSet } ::= SEQUENCE { -- Finite field
+ * fieldType FIELD-ID.&id({IOSet}),
+ * parameters FIELD-ID.&Type({IOSet}{@fieldType})
+ * }
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return ret;
+ }
+
+ end_field = p + len;
+
+ /*
+ * FIELD-ID ::= TYPE-IDENTIFIER
+ * FieldTypes FIELD-ID ::= {
+ * { Prime-p IDENTIFIED BY prime-field } |
+ * { Characteristic-two IDENTIFIED BY characteristic-two-field }
+ * }
+ * prime-field OBJECT IDENTIFIER ::= { id-fieldType 1 }
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end_field, &len, MBEDTLS_ASN1_OID)) != 0) {
+ return ret;
+ }
+
+ if (len != MBEDTLS_OID_SIZE(MBEDTLS_OID_ANSI_X9_62_PRIME_FIELD) ||
+ memcmp(p, MBEDTLS_OID_ANSI_X9_62_PRIME_FIELD, len) != 0) {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+
+ p += len;
+
+ /* Prime-p ::= INTEGER -- Field of size p. */
+ if ((ret = mbedtls_asn1_get_mpi(&p, end_field, &grp->P)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ grp->pbits = mbedtls_mpi_bitlen(&grp->P);
+
+ if (p != end_field) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ /*
+ * Curve ::= SEQUENCE {
+ * a FieldElement,
+ * b FieldElement,
+ * seed BIT STRING OPTIONAL
+ * -- Shall be present if used in SpecifiedECDomain
+ * -- with version equal to ecdpVer2 or ecdpVer3
+ * }
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return ret;
+ }
+
+ end_curve = p + len;
+
+ /*
+ * FieldElement ::= OCTET STRING
+ * containing an integer in the case of a prime field
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end_curve, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0 ||
+ (ret = mbedtls_mpi_read_binary(&grp->A, p, len)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ p += len;
+
+ if ((ret = mbedtls_asn1_get_tag(&p, end_curve, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0 ||
+ (ret = mbedtls_mpi_read_binary(&grp->B, p, len)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ p += len;
+
+ /* Ignore seed BIT STRING OPTIONAL */
+ if ((ret = mbedtls_asn1_get_tag(&p, end_curve, &len, MBEDTLS_ASN1_BIT_STRING)) == 0) {
+ p += len;
+ }
+
+ if (p != end_curve) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ /*
+ * ECPoint ::= OCTET STRING
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if ((ret = mbedtls_ecp_point_read_binary(grp, &grp->G,
+ (const unsigned char *) p, len)) != 0) {
+ /*
+ * If we can't read the point because it's compressed, cheat by
+ * reading only the X coordinate and the parity bit of Y.
+ */
+ if (ret != MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE ||
+ (p[0] != 0x02 && p[0] != 0x03) ||
+ len != mbedtls_mpi_size(&grp->P) + 1 ||
+ mbedtls_mpi_read_binary(&grp->G.X, p + 1, len - 1) != 0 ||
+ mbedtls_mpi_lset(&grp->G.Y, p[0] - 2) != 0 ||
+ mbedtls_mpi_lset(&grp->G.Z, 1) != 0) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+ }
+
+ p += len;
+
+ /*
+ * order INTEGER
+ */
+ if ((ret = mbedtls_asn1_get_mpi(&p, end, &grp->N)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ grp->nbits = mbedtls_mpi_bitlen(&grp->N);
+
+ /*
+ * Allow optional elements by purposefully not enforcing p == end here.
+ */
+
+ return 0;
+}
+
+/*
+ * Find the group id associated with an (almost filled) group as generated by
+ * pk_group_from_specified(), or return an error if unknown.
+ */
+static int pk_group_id_from_group(const mbedtls_ecp_group *grp, mbedtls_ecp_group_id *grp_id)
+{
+ int ret = 0;
+ mbedtls_ecp_group ref;
+ const mbedtls_ecp_group_id *id;
+
+ mbedtls_ecp_group_init(&ref);
+
+ for (id = mbedtls_ecp_grp_id_list(); *id != MBEDTLS_ECP_DP_NONE; id++) {
+ /* Load the group associated to that id */
+ mbedtls_ecp_group_free(&ref);
+ MBEDTLS_MPI_CHK(mbedtls_ecp_group_load(&ref, *id));
+
+ /* Compare to the group we were given, starting with easy tests */
+ if (grp->pbits == ref.pbits && grp->nbits == ref.nbits &&
+ mbedtls_mpi_cmp_mpi(&grp->P, &ref.P) == 0 &&
+ mbedtls_mpi_cmp_mpi(&grp->A, &ref.A) == 0 &&
+ mbedtls_mpi_cmp_mpi(&grp->B, &ref.B) == 0 &&
+ mbedtls_mpi_cmp_mpi(&grp->N, &ref.N) == 0 &&
+ mbedtls_mpi_cmp_mpi(&grp->G.X, &ref.G.X) == 0 &&
+ mbedtls_mpi_cmp_mpi(&grp->G.Z, &ref.G.Z) == 0 &&
+ /* For Y we may only know the parity bit, so compare only that */
+ mbedtls_mpi_get_bit(&grp->G.Y, 0) == mbedtls_mpi_get_bit(&ref.G.Y, 0)) {
+ break;
+ }
+ }
+
+cleanup:
+ mbedtls_ecp_group_free(&ref);
+
+ *grp_id = *id;
+
+ if (ret == 0 && *id == MBEDTLS_ECP_DP_NONE) {
+ ret = MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE;
+ }
+
+ return ret;
+}
+
+/*
+ * Parse a SpecifiedECDomain (SEC 1 C.2) and find the associated group ID
+ */
+static int pk_ecc_group_id_from_specified(const mbedtls_asn1_buf *params,
+ mbedtls_ecp_group_id *grp_id)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_group grp;
+
+ mbedtls_ecp_group_init(&grp);
+
+ if ((ret = pk_group_from_specified(params, &grp)) != 0) {
+ goto cleanup;
+ }
+
+ ret = pk_group_id_from_group(&grp, grp_id);
+
+cleanup:
+ /* The API respecting lifecycle for mbedtls_ecp_group struct is
+ * _init(), _load() and _free(). In pk_ecc_group_id_from_specified() the
+ * temporary grp breaks that flow and it's members are populated
+ * by pk_group_id_from_group(). As such mbedtls_ecp_group_free()
+ * which is assuming a group populated by _setup() may not clean-up
+ * properly -> Manually free it's members.
+ */
+ mbedtls_mpi_free(&grp.N);
+ mbedtls_mpi_free(&grp.P);
+ mbedtls_mpi_free(&grp.A);
+ mbedtls_mpi_free(&grp.B);
+ mbedtls_ecp_point_free(&grp.G);
+
+ return ret;
+}
+#endif /* MBEDTLS_PK_PARSE_EC_EXTENDED */
+
+/***********************************************************************
+ *
+ * Unsorted (yet!) from this point on until the next section header
+ *
+ **********************************************************************/
+
+/* Minimally parse an ECParameters buffer to and mbedtls_asn1_buf
+ *
+ * ECParameters ::= CHOICE {
+ * namedCurve OBJECT IDENTIFIER
+ * specifiedCurve SpecifiedECDomain -- = SEQUENCE { ... }
+ * -- implicitCurve NULL
+ * }
+ */
+static int pk_get_ecparams(unsigned char **p, const unsigned char *end,
+ mbedtls_asn1_buf *params)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if (end - *p < 1) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_OUT_OF_DATA);
+ }
+
+ /* Acceptable tags: OID for namedCurve, or specifiedECDomain */
+ params->tag = **p;
+ if (params->tag != MBEDTLS_ASN1_OID &&
+ !pk_ecc_tag_is_specified_ec_domain(params->tag)) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_UNEXPECTED_TAG);
+ }
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &params->len, params->tag)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ params->p = *p;
+ *p += params->len;
+
+ if (*p != end) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ return 0;
+}
+
+/*
+ * Use EC parameters to initialise an EC group
+ *
+ * ECParameters ::= CHOICE {
+ * namedCurve OBJECT IDENTIFIER
+ * specifiedCurve SpecifiedECDomain -- = SEQUENCE { ... }
+ * -- implicitCurve NULL
+ */
+static int pk_use_ecparams(const mbedtls_asn1_buf *params, mbedtls_pk_context *pk)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ecp_group_id grp_id;
+
+ if (params->tag == MBEDTLS_ASN1_OID) {
+ if (mbedtls_oid_get_ec_grp(params, &grp_id) != 0) {
+ return MBEDTLS_ERR_PK_UNKNOWN_NAMED_CURVE;
+ }
+ } else {
+ ret = pk_ecc_group_id_from_specified(params, &grp_id);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ return mbedtls_pk_ecc_set_group(pk, grp_id);
+}
+
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+
+/*
+ * Load an RFC8410 EC key, which doesn't have any parameters
+ */
+static int pk_use_ecparams_rfc8410(const mbedtls_asn1_buf *params,
+ mbedtls_ecp_group_id grp_id,
+ mbedtls_pk_context *pk)
+{
+ if (params->tag != 0 || params->len != 0) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+
+ return mbedtls_pk_ecc_set_group(pk, grp_id);
+}
+
+/*
+ * Parse an RFC 8410 encoded private EC key
+ *
+ * CurvePrivateKey ::= OCTET STRING
+ */
+static int pk_parse_key_rfc8410_der(mbedtls_pk_context *pk,
+ unsigned char *key, size_t keylen, const unsigned char *end,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ if ((ret = mbedtls_asn1_get_tag(&key, (key + keylen), &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if (key + len != end) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+
+ /*
+ * Load the private key
+ */
+ ret = mbedtls_pk_ecc_set_key(pk, key, len);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* pk_parse_key_pkcs8_unencrypted_der() only supports version 1 PKCS8 keys,
+ * which never contain a public key. As such, derive the public key
+ * unconditionally. */
+ if ((ret = mbedtls_pk_ecc_set_pubkey_from_prv(pk, key, len, f_rng, p_rng)) != 0) {
+ return ret;
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_PK_HAVE_RFC8410_CURVES */
+
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/* Get a PK algorithm identifier
+ *
+ * AlgorithmIdentifier ::= SEQUENCE {
+ * algorithm OBJECT IDENTIFIER,
+ * parameters ANY DEFINED BY algorithm OPTIONAL }
+ */
+static int pk_get_pk_alg(unsigned char **p,
+ const unsigned char *end,
+ mbedtls_pk_type_t *pk_alg, mbedtls_asn1_buf *params,
+ mbedtls_ecp_group_id *ec_grp_id)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_asn1_buf alg_oid;
+
+ memset(params, 0, sizeof(mbedtls_asn1_buf));
+
+ if ((ret = mbedtls_asn1_get_alg(p, end, &alg_oid, params)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_ALG, ret);
+ }
+
+ ret = mbedtls_oid_get_pk_alg(&alg_oid, pk_alg);
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (ret == MBEDTLS_ERR_OID_NOT_FOUND) {
+ ret = mbedtls_oid_get_ec_grp_algid(&alg_oid, ec_grp_id);
+ if (ret == 0) {
+ *pk_alg = MBEDTLS_PK_ECKEY;
+ }
+ }
+#else
+ (void) ec_grp_id;
+#endif
+ if (ret != 0) {
+ return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+ }
+
+ /*
+ * No parameters with RSA (only for EC)
+ */
+ if (*pk_alg == MBEDTLS_PK_RSA &&
+ ((params->tag != MBEDTLS_ASN1_NULL && params->tag != 0) ||
+ params->len != 0)) {
+ return MBEDTLS_ERR_PK_INVALID_ALG;
+ }
+
+ return 0;
+}
+
+/*
+ * SubjectPublicKeyInfo ::= SEQUENCE {
+ * algorithm AlgorithmIdentifier,
+ * subjectPublicKey BIT STRING }
+ */
+int mbedtls_pk_parse_subpubkey(unsigned char **p, const unsigned char *end,
+ mbedtls_pk_context *pk)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+ mbedtls_asn1_buf alg_params;
+ mbedtls_pk_type_t pk_alg = MBEDTLS_PK_NONE;
+ mbedtls_ecp_group_id ec_grp_id = MBEDTLS_ECP_DP_NONE;
+ const mbedtls_pk_info_t *pk_info;
+
+ if ((ret = mbedtls_asn1_get_tag(p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ end = *p + len;
+
+ if ((ret = pk_get_pk_alg(p, end, &pk_alg, &alg_params, &ec_grp_id)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_asn1_get_bitstring_null(p, end, &len)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY, ret);
+ }
+
+ if (*p + len != end) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ if ((pk_info = mbedtls_pk_info_from_type(pk_alg)) == NULL) {
+ return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+ }
+
+ if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0) {
+ return ret;
+ }
+
+#if defined(MBEDTLS_RSA_C)
+ if (pk_alg == MBEDTLS_PK_RSA) {
+ ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*pk), *p, (size_t) (end - *p));
+ if (ret == 0) {
+ /* On success all the input has been consumed by the parsing function. */
+ *p += end - *p;
+ } else if ((ret <= MBEDTLS_ERR_ASN1_OUT_OF_DATA) &&
+ (ret >= MBEDTLS_ERR_ASN1_BUF_TOO_SMALL)) {
+ /* In case of ASN1 error codes add MBEDTLS_ERR_PK_INVALID_PUBKEY. */
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY, ret);
+ } else {
+ ret = MBEDTLS_ERR_PK_INVALID_PUBKEY;
+ }
+ } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (pk_alg == MBEDTLS_PK_ECKEY_DH || pk_alg == MBEDTLS_PK_ECKEY) {
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+ if (MBEDTLS_PK_IS_RFC8410_GROUP_ID(ec_grp_id)) {
+ ret = pk_use_ecparams_rfc8410(&alg_params, ec_grp_id, pk);
+ } else
+#endif
+ {
+ ret = pk_use_ecparams(&alg_params, pk);
+ }
+ if (ret == 0) {
+ ret = mbedtls_pk_ecc_set_pubkey(pk, *p, (size_t) (end - *p));
+ *p += end - *p;
+ }
+ } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+ ret = MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+
+ if (ret == 0 && *p != end) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_INVALID_PUBKEY,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ if (ret != 0) {
+ mbedtls_pk_free(pk);
+ }
+
+ return ret;
+}
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+/*
+ * Parse a SEC1 encoded private EC key
+ */
+static int pk_parse_key_sec1_der(mbedtls_pk_context *pk,
+ const unsigned char *key, size_t keylen,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ int version, pubkey_done;
+ size_t len, d_len;
+ mbedtls_asn1_buf params = { 0, 0, NULL };
+ unsigned char *p = (unsigned char *) key;
+ unsigned char *d;
+ unsigned char *end = p + keylen;
+ unsigned char *end2;
+
+ /*
+ * RFC 5915, or SEC1 Appendix C.4
+ *
+ * ECPrivateKey ::= SEQUENCE {
+ * version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
+ * privateKey OCTET STRING,
+ * parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
+ * publicKey [1] BIT STRING OPTIONAL
+ * }
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ end = p + len;
+
+ if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if (version != 1) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_VERSION;
+ }
+
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ /* Keep a reference to the position fo the private key. It will be used
+ * later in this function. */
+ d = p;
+ d_len = len;
+
+ p += len;
+
+ pubkey_done = 0;
+ if (p != end) {
+ /*
+ * Is 'parameters' present?
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED |
+ 0)) == 0) {
+ if ((ret = pk_get_ecparams(&p, p + len, &params)) != 0 ||
+ (ret = pk_use_ecparams(&params, pk)) != 0) {
+ return ret;
+ }
+ } else if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+ }
+
+ /*
+ * Load the private key
+ */
+ ret = mbedtls_pk_ecc_set_key(pk, d, d_len);
+ if (ret != 0) {
+ return ret;
+ }
+
+ if (p != end) {
+ /*
+ * Is 'publickey' present? If not, or if we can't read it (eg because it
+ * is compressed), create it from the private key.
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONTEXT_SPECIFIC | MBEDTLS_ASN1_CONSTRUCTED |
+ 1)) == 0) {
+ end2 = p + len;
+
+ if ((ret = mbedtls_asn1_get_bitstring_null(&p, end2, &len)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if (p + len != end2) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ if ((ret = mbedtls_pk_ecc_set_pubkey(pk, p, (size_t) (end2 - p))) == 0) {
+ pubkey_done = 1;
+ } else {
+ /*
+ * The only acceptable failure mode of mbedtls_pk_ecc_set_pubkey() above
+ * is if the point format is not recognized.
+ */
+ if (ret != MBEDTLS_ERR_ECP_FEATURE_UNAVAILABLE) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+ }
+ } else if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+ }
+
+ if (!pubkey_done) {
+ if ((ret = mbedtls_pk_ecc_set_pubkey_from_prv(pk, d, d_len, f_rng, p_rng)) != 0) {
+ return ret;
+ }
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/***********************************************************************
+ *
+ * PKCS#8 parsing functions
+ *
+ **********************************************************************/
+
+/*
+ * Parse an unencrypted PKCS#8 encoded private key
+ *
+ * Notes:
+ *
+ * - This function does not own the key buffer. It is the
+ * responsibility of the caller to take care of zeroizing
+ * and freeing it after use.
+ *
+ * - The function is responsible for freeing the provided
+ * PK context on failure.
+ *
+ */
+static int pk_parse_key_pkcs8_unencrypted_der(
+ mbedtls_pk_context *pk,
+ const unsigned char *key, size_t keylen,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret, version;
+ size_t len;
+ mbedtls_asn1_buf params;
+ unsigned char *p = (unsigned char *) key;
+ unsigned char *end = p + keylen;
+ mbedtls_pk_type_t pk_alg = MBEDTLS_PK_NONE;
+ mbedtls_ecp_group_id ec_grp_id = MBEDTLS_ECP_DP_NONE;
+ const mbedtls_pk_info_t *pk_info;
+
+#if !defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ (void) f_rng;
+ (void) p_rng;
+#endif
+
+ /*
+ * This function parses the PrivateKeyInfo object (PKCS#8 v1.2 = RFC 5208)
+ *
+ * PrivateKeyInfo ::= SEQUENCE {
+ * version Version,
+ * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
+ * privateKey PrivateKey,
+ * attributes [0] IMPLICIT Attributes OPTIONAL }
+ *
+ * Version ::= INTEGER
+ * PrivateKeyAlgorithmIdentifier ::= AlgorithmIdentifier
+ * PrivateKey ::= OCTET STRING
+ *
+ * The PrivateKey OCTET STRING is a SEC1 ECPrivateKey
+ */
+
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ end = p + len;
+
+ if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if (version != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_VERSION, ret);
+ }
+
+ if ((ret = pk_get_pk_alg(&p, end, &pk_alg, &params, &ec_grp_id)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if (len < 1) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_OUT_OF_DATA);
+ }
+
+ if ((pk_info = mbedtls_pk_info_from_type(pk_alg)) == NULL) {
+ return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+ }
+
+ if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0) {
+ return ret;
+ }
+
+#if defined(MBEDTLS_RSA_C)
+ if (pk_alg == MBEDTLS_PK_RSA) {
+ if ((ret = mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk), p, len)) != 0) {
+ mbedtls_pk_free(pk);
+ return ret;
+ }
+ } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (pk_alg == MBEDTLS_PK_ECKEY || pk_alg == MBEDTLS_PK_ECKEY_DH) {
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+ if (MBEDTLS_PK_IS_RFC8410_GROUP_ID(ec_grp_id)) {
+ if ((ret =
+ pk_use_ecparams_rfc8410(&params, ec_grp_id, pk)) != 0 ||
+ (ret =
+ pk_parse_key_rfc8410_der(pk, p, len, end, f_rng,
+ p_rng)) != 0) {
+ mbedtls_pk_free(pk);
+ return ret;
+ }
+ } else
+#endif
+ {
+ if ((ret = pk_use_ecparams(&params, pk)) != 0 ||
+ (ret = pk_parse_key_sec1_der(pk, p, len, f_rng, p_rng)) != 0) {
+ mbedtls_pk_free(pk);
+ return ret;
+ }
+ }
+ } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+ return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+
+ end = p + len;
+ if (end != (key + keylen)) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT,
+ MBEDTLS_ERR_ASN1_LENGTH_MISMATCH);
+ }
+
+ return 0;
+}
+
+/*
+ * Parse an encrypted PKCS#8 encoded private key
+ *
+ * To save space, the decryption happens in-place on the given key buffer.
+ * Also, while this function may modify the keybuffer, it doesn't own it,
+ * and instead it is the responsibility of the caller to zeroize and properly
+ * free it after use.
+ *
+ */
+#if defined(MBEDTLS_PKCS12_C) || defined(MBEDTLS_PKCS5_C)
+MBEDTLS_STATIC_TESTABLE int mbedtls_pk_parse_key_pkcs8_encrypted_der(
+ mbedtls_pk_context *pk,
+ unsigned char *key, size_t keylen,
+ const unsigned char *pwd, size_t pwdlen,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret, decrypted = 0;
+ size_t len;
+ unsigned char *buf;
+ unsigned char *p, *end;
+ mbedtls_asn1_buf pbe_alg_oid, pbe_params;
+#if defined(MBEDTLS_PKCS12_C) && defined(MBEDTLS_CIPHER_PADDING_PKCS7) && defined(MBEDTLS_CIPHER_C)
+ mbedtls_cipher_type_t cipher_alg;
+ mbedtls_md_type_t md_alg;
+#endif
+ size_t outlen = 0;
+
+ p = key;
+ end = p + keylen;
+
+ if (pwdlen == 0) {
+ return MBEDTLS_ERR_PK_PASSWORD_REQUIRED;
+ }
+
+ /*
+ * This function parses the EncryptedPrivateKeyInfo object (PKCS#8)
+ *
+ * EncryptedPrivateKeyInfo ::= SEQUENCE {
+ * encryptionAlgorithm EncryptionAlgorithmIdentifier,
+ * encryptedData EncryptedData
+ * }
+ *
+ * EncryptionAlgorithmIdentifier ::= AlgorithmIdentifier
+ *
+ * EncryptedData ::= OCTET STRING
+ *
+ * The EncryptedData OCTET STRING is a PKCS#8 PrivateKeyInfo
+ *
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ end = p + len;
+
+ if ((ret = mbedtls_asn1_get_alg(&p, end, &pbe_alg_oid, &pbe_params)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_OCTET_STRING)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_PK_KEY_INVALID_FORMAT, ret);
+ }
+
+ buf = p;
+
+ /*
+ * Decrypt EncryptedData with appropriate PBE
+ */
+#if defined(MBEDTLS_PKCS12_C) && defined(MBEDTLS_CIPHER_PADDING_PKCS7) && defined(MBEDTLS_CIPHER_C)
+ if (mbedtls_oid_get_pkcs12_pbe_alg(&pbe_alg_oid, &md_alg, &cipher_alg) == 0) {
+ if ((ret = mbedtls_pkcs12_pbe_ext(&pbe_params, MBEDTLS_PKCS12_PBE_DECRYPT,
+ cipher_alg, md_alg,
+ pwd, pwdlen, p, len, buf, len, &outlen)) != 0) {
+ if (ret == MBEDTLS_ERR_PKCS12_PASSWORD_MISMATCH) {
+ return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+ }
+
+ return ret;
+ }
+
+ decrypted = 1;
+ } else
+#endif /* MBEDTLS_PKCS12_C && MBEDTLS_CIPHER_PADDING_PKCS7 && MBEDTLS_CIPHER_C */
+#if defined(MBEDTLS_PKCS5_C) && defined(MBEDTLS_CIPHER_PADDING_PKCS7) && defined(MBEDTLS_CIPHER_C)
+ if (MBEDTLS_OID_CMP(MBEDTLS_OID_PKCS5_PBES2, &pbe_alg_oid) == 0) {
+ if ((ret = mbedtls_pkcs5_pbes2_ext(&pbe_params, MBEDTLS_PKCS5_DECRYPT, pwd, pwdlen,
+ p, len, buf, len, &outlen)) != 0) {
+ if (ret == MBEDTLS_ERR_PKCS5_PASSWORD_MISMATCH) {
+ return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+ }
+
+ return ret;
+ }
+
+ decrypted = 1;
+ } else
+#endif /* MBEDTLS_PKCS5_C && MBEDTLS_CIPHER_PADDING_PKCS7 && MBEDTLS_CIPHER_C */
+ {
+ ((void) pwd);
+ }
+
+ if (decrypted == 0) {
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ }
+ return pk_parse_key_pkcs8_unencrypted_der(pk, buf, outlen, f_rng, p_rng);
+}
+#endif /* MBEDTLS_PKCS12_C || MBEDTLS_PKCS5_C */
+
+/***********************************************************************
+ *
+ * Top-level functions, with format auto-discovery
+ *
+ **********************************************************************/
+
+/*
+ * Parse a private key
+ */
+int mbedtls_pk_parse_key(mbedtls_pk_context *pk,
+ const unsigned char *key, size_t keylen,
+ const unsigned char *pwd, size_t pwdlen,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const mbedtls_pk_info_t *pk_info;
+#if defined(MBEDTLS_PEM_PARSE_C)
+ size_t len;
+ mbedtls_pem_context pem;
+#endif
+
+ if (keylen == 0) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+ mbedtls_pem_init(&pem);
+
+#if defined(MBEDTLS_RSA_C)
+ /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+ if (key[keylen - 1] != '\0') {
+ ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ } else {
+ ret = mbedtls_pem_read_buffer(&pem,
+ PEM_BEGIN_PRIVATE_KEY_RSA, PEM_END_PRIVATE_KEY_RSA,
+ key, pwd, pwdlen, &len);
+ }
+
+ if (ret == 0) {
+ pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA);
+ if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0 ||
+ (ret = mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk),
+ pem.buf, pem.buflen)) != 0) {
+ mbedtls_pk_free(pk);
+ }
+
+ mbedtls_pem_free(&pem);
+ return ret;
+ } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_MISMATCH) {
+ return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+ } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_REQUIRED) {
+ return MBEDTLS_ERR_PK_PASSWORD_REQUIRED;
+ } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+ return ret;
+ }
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+ if (key[keylen - 1] != '\0') {
+ ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ } else {
+ ret = mbedtls_pem_read_buffer(&pem,
+ PEM_BEGIN_PRIVATE_KEY_EC,
+ PEM_END_PRIVATE_KEY_EC,
+ key, pwd, pwdlen, &len);
+ }
+ if (ret == 0) {
+ pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY);
+
+ if ((ret = mbedtls_pk_setup(pk, pk_info)) != 0 ||
+ (ret = pk_parse_key_sec1_der(pk,
+ pem.buf, pem.buflen,
+ f_rng, p_rng)) != 0) {
+ mbedtls_pk_free(pk);
+ }
+
+ mbedtls_pem_free(&pem);
+ return ret;
+ } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_MISMATCH) {
+ return MBEDTLS_ERR_PK_PASSWORD_MISMATCH;
+ } else if (ret == MBEDTLS_ERR_PEM_PASSWORD_REQUIRED) {
+ return MBEDTLS_ERR_PK_PASSWORD_REQUIRED;
+ } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+ return ret;
+ }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+ /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+ if (key[keylen - 1] != '\0') {
+ ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ } else {
+ ret = mbedtls_pem_read_buffer(&pem,
+ PEM_BEGIN_PRIVATE_KEY_PKCS8, PEM_END_PRIVATE_KEY_PKCS8,
+ key, NULL, 0, &len);
+ }
+ if (ret == 0) {
+ if ((ret = pk_parse_key_pkcs8_unencrypted_der(pk,
+ pem.buf, pem.buflen, f_rng, p_rng)) != 0) {
+ mbedtls_pk_free(pk);
+ }
+
+ mbedtls_pem_free(&pem);
+ return ret;
+ } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+ return ret;
+ }
+
+#if defined(MBEDTLS_PKCS12_C) || defined(MBEDTLS_PKCS5_C)
+ /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+ if (key[keylen - 1] != '\0') {
+ ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ } else {
+ ret = mbedtls_pem_read_buffer(&pem,
+ PEM_BEGIN_ENCRYPTED_PRIVATE_KEY_PKCS8,
+ PEM_END_ENCRYPTED_PRIVATE_KEY_PKCS8,
+ key, NULL, 0, &len);
+ }
+ if (ret == 0) {
+ if ((ret = mbedtls_pk_parse_key_pkcs8_encrypted_der(pk, pem.buf, pem.buflen,
+ pwd, pwdlen, f_rng, p_rng)) != 0) {
+ mbedtls_pk_free(pk);
+ }
+
+ mbedtls_pem_free(&pem);
+ return ret;
+ } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+ return ret;
+ }
+#endif /* MBEDTLS_PKCS12_C || MBEDTLS_PKCS5_C */
+#else
+ ((void) pwd);
+ ((void) pwdlen);
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+ /*
+ * At this point we only know it's not a PEM formatted key. Could be any
+ * of the known DER encoded private key formats
+ *
+ * We try the different DER format parsers to see if one passes without
+ * error
+ */
+#if defined(MBEDTLS_PKCS12_C) || defined(MBEDTLS_PKCS5_C)
+ if (pwdlen != 0) {
+ unsigned char *key_copy;
+
+ if ((key_copy = mbedtls_calloc(1, keylen)) == NULL) {
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+
+ memcpy(key_copy, key, keylen);
+
+ ret = mbedtls_pk_parse_key_pkcs8_encrypted_der(pk, key_copy, keylen,
+ pwd, pwdlen, f_rng, p_rng);
+
+ mbedtls_zeroize_and_free(key_copy, keylen);
+ }
+
+ if (ret == 0) {
+ return 0;
+ }
+
+ mbedtls_pk_free(pk);
+ mbedtls_pk_init(pk);
+
+ if (ret == MBEDTLS_ERR_PK_PASSWORD_MISMATCH) {
+ return ret;
+ }
+#endif /* MBEDTLS_PKCS12_C || MBEDTLS_PKCS5_C */
+
+ ret = pk_parse_key_pkcs8_unencrypted_der(pk, key, keylen, f_rng, p_rng);
+ if (ret == 0) {
+ return 0;
+ }
+
+ mbedtls_pk_free(pk);
+ mbedtls_pk_init(pk);
+
+#if defined(MBEDTLS_RSA_C)
+
+ pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA);
+ if (mbedtls_pk_setup(pk, pk_info) == 0 &&
+ mbedtls_rsa_parse_key(mbedtls_pk_rsa(*pk), key, keylen) == 0) {
+ return 0;
+ }
+
+ mbedtls_pk_free(pk);
+ mbedtls_pk_init(pk);
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_ECKEY);
+ if (mbedtls_pk_setup(pk, pk_info) == 0 &&
+ pk_parse_key_sec1_der(pk,
+ key, keylen, f_rng, p_rng) == 0) {
+ return 0;
+ }
+ mbedtls_pk_free(pk);
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+ /* If MBEDTLS_RSA_C is defined but MBEDTLS_PK_HAVE_ECC_KEYS isn't,
+ * it is ok to leave the PK context initialized but not
+ * freed: It is the caller's responsibility to call pk_init()
+ * before calling this function, and to call pk_free()
+ * when it fails. If MBEDTLS_PK_HAVE_ECC_KEYS is defined but MBEDTLS_RSA_C
+ * isn't, this leads to mbedtls_pk_free() being called
+ * twice, once here and once by the caller, but this is
+ * also ok and in line with the mbedtls_pk_free() calls
+ * on failed PEM parsing attempts. */
+
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+}
+
+/*
+ * Parse a public key
+ */
+int mbedtls_pk_parse_public_key(mbedtls_pk_context *ctx,
+ const unsigned char *key, size_t keylen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *p;
+#if defined(MBEDTLS_RSA_C)
+ const mbedtls_pk_info_t *pk_info;
+#endif
+#if defined(MBEDTLS_PEM_PARSE_C)
+ size_t len;
+ mbedtls_pem_context pem;
+#endif
+
+ if (keylen == 0) {
+ return MBEDTLS_ERR_PK_KEY_INVALID_FORMAT;
+ }
+
+#if defined(MBEDTLS_PEM_PARSE_C)
+ mbedtls_pem_init(&pem);
+#if defined(MBEDTLS_RSA_C)
+ /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+ if (key[keylen - 1] != '\0') {
+ ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ } else {
+ ret = mbedtls_pem_read_buffer(&pem,
+ PEM_BEGIN_PUBLIC_KEY_RSA, PEM_END_PUBLIC_KEY_RSA,
+ key, NULL, 0, &len);
+ }
+
+ if (ret == 0) {
+ p = pem.buf;
+ if ((pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == NULL) {
+ mbedtls_pem_free(&pem);
+ return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+ }
+
+ if ((ret = mbedtls_pk_setup(ctx, pk_info)) != 0) {
+ mbedtls_pem_free(&pem);
+ return ret;
+ }
+
+ if ((ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*ctx), p, pem.buflen)) != 0) {
+ mbedtls_pk_free(ctx);
+ }
+
+ mbedtls_pem_free(&pem);
+ return ret;
+ } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+ mbedtls_pem_free(&pem);
+ return ret;
+ }
+#endif /* MBEDTLS_RSA_C */
+
+ /* Avoid calling mbedtls_pem_read_buffer() on non-null-terminated string */
+ if (key[keylen - 1] != '\0') {
+ ret = MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT;
+ } else {
+ ret = mbedtls_pem_read_buffer(&pem,
+ PEM_BEGIN_PUBLIC_KEY, PEM_END_PUBLIC_KEY,
+ key, NULL, 0, &len);
+ }
+
+ if (ret == 0) {
+ /*
+ * Was PEM encoded
+ */
+ p = pem.buf;
+
+ ret = mbedtls_pk_parse_subpubkey(&p, p + pem.buflen, ctx);
+ mbedtls_pem_free(&pem);
+ return ret;
+ } else if (ret != MBEDTLS_ERR_PEM_NO_HEADER_FOOTER_PRESENT) {
+ mbedtls_pem_free(&pem);
+ return ret;
+ }
+ mbedtls_pem_free(&pem);
+#endif /* MBEDTLS_PEM_PARSE_C */
+
+#if defined(MBEDTLS_RSA_C)
+ if ((pk_info = mbedtls_pk_info_from_type(MBEDTLS_PK_RSA)) == NULL) {
+ return MBEDTLS_ERR_PK_UNKNOWN_PK_ALG;
+ }
+
+ if ((ret = mbedtls_pk_setup(ctx, pk_info)) != 0) {
+ return ret;
+ }
+
+ p = (unsigned char *) key;
+ ret = mbedtls_rsa_parse_pubkey(mbedtls_pk_rsa(*ctx), p, keylen);
+ if (ret == 0) {
+ return ret;
+ }
+ mbedtls_pk_free(ctx);
+ if (ret != MBEDTLS_ERR_ASN1_UNEXPECTED_TAG) {
+ return ret;
+ }
+#endif /* MBEDTLS_RSA_C */
+ p = (unsigned char *) key;
+
+ ret = mbedtls_pk_parse_subpubkey(&p, p + keylen, ctx);
+
+ return ret;
+}
+
+/***********************************************************************
+ *
+ * Top-level functions, with filesystem support
+ *
+ **********************************************************************/
+
+#if defined(MBEDTLS_FS_IO)
+/*
+ * Load all data from a file into a given buffer.
+ *
+ * The file is expected to contain either PEM or DER encoded data.
+ * A terminating null byte is always appended. It is included in the announced
+ * length only if the data looks like it is PEM encoded.
+ */
+int mbedtls_pk_load_file(const char *path, unsigned char **buf, size_t *n)
+{
+ FILE *f;
+ long size;
+
+ if ((f = fopen(path, "rb")) == NULL) {
+ return MBEDTLS_ERR_PK_FILE_IO_ERROR;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(f, NULL);
+
+ fseek(f, 0, SEEK_END);
+ if ((size = ftell(f)) == -1) {
+ fclose(f);
+ return MBEDTLS_ERR_PK_FILE_IO_ERROR;
+ }
+ fseek(f, 0, SEEK_SET);
+
+ *n = (size_t) size;
+
+ if (*n + 1 == 0 ||
+ (*buf = mbedtls_calloc(1, *n + 1)) == NULL) {
+ fclose(f);
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+
+ if (fread(*buf, 1, *n, f) != *n) {
+ fclose(f);
+
+ mbedtls_zeroize_and_free(*buf, *n);
+
+ return MBEDTLS_ERR_PK_FILE_IO_ERROR;
+ }
+
+ fclose(f);
+
+ (*buf)[*n] = '\0';
+
+ if (strstr((const char *) *buf, "-----BEGIN ") != NULL) {
+ ++*n;
+ }
+
+ return 0;
+}
+
+/*
+ * Load and parse a private key
+ */
+int mbedtls_pk_parse_keyfile(mbedtls_pk_context *ctx,
+ const char *path, const char *pwd,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n;
+ unsigned char *buf;
+
+ if ((ret = mbedtls_pk_load_file(path, &buf, &n)) != 0) {
+ return ret;
+ }
+
+ if (pwd == NULL) {
+ ret = mbedtls_pk_parse_key(ctx, buf, n, NULL, 0, f_rng, p_rng);
+ } else {
+ ret = mbedtls_pk_parse_key(ctx, buf, n,
+ (const unsigned char *) pwd, strlen(pwd), f_rng, p_rng);
+ }
+
+ mbedtls_zeroize_and_free(buf, n);
+
+ return ret;
+}
+
+/*
+ * Load and parse a public key
+ */
+int mbedtls_pk_parse_public_keyfile(mbedtls_pk_context *ctx, const char *path)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t n;
+ unsigned char *buf;
+
+ if ((ret = mbedtls_pk_load_file(path, &buf, &n)) != 0) {
+ return ret;
+ }
+
+ ret = mbedtls_pk_parse_public_key(ctx, buf, n);
+
+ mbedtls_zeroize_and_free(buf, n);
+
+ return ret;
+}
+#endif /* MBEDTLS_FS_IO */
+
+#endif /* MBEDTLS_PK_PARSE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkwrite.c b/tf-psa-crypto/drivers/builtin/src/pkwrite.c
new file mode 100644
index 0000000..5e009c5
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkwrite.c
@@ -0,0 +1,621 @@
+/*
+ * Public Key layer for writing key files and structures
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PK_WRITE_C)
+
+#include "mbedtls/pk.h"
+#include "mbedtls/asn1write.h"
+#include "mbedtls/oid.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "pk_internal.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_ECP_C)
+#include "mbedtls/bignum.h"
+#include "mbedtls/ecp.h"
+#include "mbedtls/platform_util.h"
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "pk_internal.h"
+#endif
+#if defined(MBEDTLS_RSA_C) || defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#include "pkwrite.h"
+#endif
+#if defined(MBEDTLS_PEM_WRITE_C)
+#include "mbedtls/pem.h"
+#endif
+#if defined(MBEDTLS_RSA_C)
+#include "rsa_internal.h"
+#endif
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#include "psa_util_internal.h"
+#endif
+#include "mbedtls/platform.h"
+
+/* Helpers for properly sizing buffers aimed at holding public keys or
+ * key-pairs based on build symbols. */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+#define PK_MAX_EC_PUBLIC_KEY_SIZE PSA_EXPORT_PUBLIC_KEY_MAX_SIZE
+#define PK_MAX_EC_KEY_PAIR_SIZE MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH
+#elif defined(MBEDTLS_USE_PSA_CRYPTO)
+#define PK_MAX_EC_PUBLIC_KEY_SIZE PSA_EXPORT_PUBLIC_KEY_MAX_SIZE
+#define PK_MAX_EC_KEY_PAIR_SIZE MBEDTLS_PSA_MAX_EC_KEY_PAIR_LENGTH
+#else
+#define PK_MAX_EC_PUBLIC_KEY_SIZE MBEDTLS_ECP_MAX_PT_LEN
+#define PK_MAX_EC_KEY_PAIR_SIZE MBEDTLS_ECP_MAX_BYTES
+#endif
+
+/******************************************************************************
+ * Internal functions for RSA keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_RSA_C)
+static int pk_write_rsa_der(unsigned char **p, unsigned char *buf,
+ const mbedtls_pk_context *pk)
+{
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+ uint8_t tmp[PSA_EXPORT_KEY_PAIR_MAX_SIZE];
+ size_t len = 0, tmp_len = 0;
+
+ if (psa_export_key(pk->priv_id, tmp, sizeof(tmp), &tmp_len) != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ *p -= tmp_len;
+ memcpy(*p, tmp, tmp_len);
+ len += tmp_len;
+ mbedtls_platform_zeroize(tmp, sizeof(tmp));
+
+ return (int) len;
+ }
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+ return mbedtls_rsa_write_key(mbedtls_pk_rsa(*pk), buf, p);
+}
+#endif /* MBEDTLS_RSA_C */
+
+/******************************************************************************
+ * Internal functions for EC keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int pk_write_ec_pubkey(unsigned char **p, unsigned char *start,
+ const mbedtls_pk_context *pk)
+{
+ size_t len = 0;
+ uint8_t buf[PK_MAX_EC_PUBLIC_KEY_SIZE];
+
+ if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+ if (psa_export_public_key(pk->priv_id, buf, sizeof(buf), &len) != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ } else {
+ len = pk->pub_raw_len;
+ memcpy(buf, pk->pub_raw, len);
+ }
+
+ if (*p < start || (size_t) (*p - start) < len) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ *p -= len;
+ memcpy(*p, buf, len);
+
+ return (int) len;
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int pk_write_ec_pubkey(unsigned char **p, unsigned char *start,
+ const mbedtls_pk_context *pk)
+{
+ size_t len = 0;
+ unsigned char buf[PK_MAX_EC_PUBLIC_KEY_SIZE];
+ mbedtls_ecp_keypair *ec = mbedtls_pk_ec(*pk);
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+ if (psa_export_public_key(pk->priv_id, buf, sizeof(buf), &len) != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+ *p -= len;
+ memcpy(*p, buf, len);
+ return (int) len;
+ } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+ {
+ if ((ret = mbedtls_ecp_point_write_binary(&ec->grp, &ec->Q,
+ MBEDTLS_ECP_PF_UNCOMPRESSED,
+ &len, buf, sizeof(buf))) != 0) {
+ return ret;
+ }
+ }
+
+ if (*p < start || (size_t) (*p - start) < len) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ *p -= len;
+ memcpy(*p, buf, len);
+
+ return (int) len;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+/*
+ * privateKey OCTET STRING -- always of length ceil(log2(n)/8)
+ */
+#if defined(MBEDTLS_PK_USE_PSA_EC_DATA)
+static int pk_write_ec_private(unsigned char **p, unsigned char *start,
+ const mbedtls_pk_context *pk)
+{
+ size_t byte_length;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char tmp[PK_MAX_EC_KEY_PAIR_SIZE];
+ psa_status_t status;
+
+ if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+ status = psa_export_key(pk->priv_id, tmp, sizeof(tmp), &byte_length);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ return ret;
+ }
+ } else {
+ status = psa_export_key(pk->priv_id, tmp, sizeof(tmp), &byte_length);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ goto exit;
+ }
+ }
+
+ ret = mbedtls_asn1_write_octet_string(p, start, tmp, byte_length);
+exit:
+ mbedtls_platform_zeroize(tmp, sizeof(tmp));
+ return ret;
+}
+#else /* MBEDTLS_PK_USE_PSA_EC_DATA */
+static int pk_write_ec_private(unsigned char **p, unsigned char *start,
+ const mbedtls_pk_context *pk)
+{
+ size_t byte_length;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char tmp[PK_MAX_EC_KEY_PAIR_SIZE];
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ psa_status_t status;
+ if (mbedtls_pk_get_type(pk) == MBEDTLS_PK_OPAQUE) {
+ status = psa_export_key(pk->priv_id, tmp, sizeof(tmp), &byte_length);
+ if (status != PSA_SUCCESS) {
+ ret = PSA_PK_ECDSA_TO_MBEDTLS_ERR(status);
+ return ret;
+ }
+ } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+ {
+ mbedtls_ecp_keypair *ec = mbedtls_pk_ec_rw(*pk);
+ byte_length = (ec->grp.pbits + 7) / 8;
+
+ ret = mbedtls_ecp_write_key_ext(ec, &byte_length, tmp, sizeof(tmp));
+ if (ret != 0) {
+ goto exit;
+ }
+ }
+ ret = mbedtls_asn1_write_octet_string(p, start, tmp, byte_length);
+exit:
+ mbedtls_platform_zeroize(tmp, sizeof(tmp));
+ return ret;
+}
+#endif /* MBEDTLS_PK_USE_PSA_EC_DATA */
+
+/*
+ * ECParameters ::= CHOICE {
+ * namedCurve OBJECT IDENTIFIER
+ * }
+ */
+static int pk_write_ec_param(unsigned char **p, unsigned char *start,
+ mbedtls_ecp_group_id grp_id)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+ const char *oid;
+ size_t oid_len;
+
+ if ((ret = mbedtls_oid_get_oid_by_ec_grp(grp_id, &oid, &oid_len)) != 0) {
+ return ret;
+ }
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_oid(p, start, oid, oid_len));
+
+ return (int) len;
+}
+
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+/*
+ * RFC8410 section 7
+ *
+ * OneAsymmetricKey ::= SEQUENCE {
+ * version Version,
+ * privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
+ * privateKey PrivateKey,
+ * attributes [0] IMPLICIT Attributes OPTIONAL,
+ * ...,
+ * [[2: publicKey [1] IMPLICIT PublicKey OPTIONAL ]],
+ * ...
+ * }
+ * ...
+ * CurvePrivateKey ::= OCTET STRING
+ */
+static int pk_write_ec_rfc8410_der(unsigned char **p, unsigned char *buf,
+ const mbedtls_pk_context *pk)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+ size_t oid_len = 0;
+ const char *oid;
+ mbedtls_ecp_group_id grp_id;
+
+ /* privateKey */
+ MBEDTLS_ASN1_CHK_ADD(len, pk_write_ec_private(p, buf, pk));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, buf, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_OCTET_STRING));
+
+ grp_id = mbedtls_pk_get_ec_group_id(pk);
+ /* privateKeyAlgorithm */
+ if ((ret = mbedtls_oid_get_oid_by_ec_grp_algid(grp_id, &oid, &oid_len)) != 0) {
+ return ret;
+ }
+ MBEDTLS_ASN1_CHK_ADD(len,
+ mbedtls_asn1_write_algorithm_identifier_ext(p, buf, oid, oid_len, 0, 0));
+
+ /* version */
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, buf, 0));
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, buf, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_CONSTRUCTED |
+ MBEDTLS_ASN1_SEQUENCE));
+
+ return (int) len;
+}
+#endif /* MBEDTLS_PK_HAVE_RFC8410_CURVES */
+
+/*
+ * RFC 5915, or SEC1 Appendix C.4
+ *
+ * ECPrivateKey ::= SEQUENCE {
+ * version INTEGER { ecPrivkeyVer1(1) } (ecPrivkeyVer1),
+ * privateKey OCTET STRING,
+ * parameters [0] ECParameters {{ NamedCurve }} OPTIONAL,
+ * publicKey [1] BIT STRING OPTIONAL
+ * }
+ */
+static int pk_write_ec_der(unsigned char **p, unsigned char *buf,
+ const mbedtls_pk_context *pk)
+{
+ size_t len = 0;
+ int ret;
+ size_t pub_len = 0, par_len = 0;
+ mbedtls_ecp_group_id grp_id;
+
+ /* publicKey */
+ MBEDTLS_ASN1_CHK_ADD(pub_len, pk_write_ec_pubkey(p, buf, pk));
+
+ if (*p - buf < 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+ (*p)--;
+ **p = 0;
+ pub_len += 1;
+
+ MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_len(p, buf, pub_len));
+ MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_BIT_STRING));
+
+ MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_len(p, buf, pub_len));
+ MBEDTLS_ASN1_CHK_ADD(pub_len, mbedtls_asn1_write_tag(p, buf,
+ MBEDTLS_ASN1_CONTEXT_SPECIFIC |
+ MBEDTLS_ASN1_CONSTRUCTED | 1));
+ len += pub_len;
+
+ /* parameters */
+ grp_id = mbedtls_pk_get_ec_group_id(pk);
+ MBEDTLS_ASN1_CHK_ADD(par_len, pk_write_ec_param(p, buf, grp_id));
+ MBEDTLS_ASN1_CHK_ADD(par_len, mbedtls_asn1_write_len(p, buf, par_len));
+ MBEDTLS_ASN1_CHK_ADD(par_len, mbedtls_asn1_write_tag(p, buf,
+ MBEDTLS_ASN1_CONTEXT_SPECIFIC |
+ MBEDTLS_ASN1_CONSTRUCTED | 0));
+ len += par_len;
+
+ /* privateKey */
+ MBEDTLS_ASN1_CHK_ADD(len, pk_write_ec_private(p, buf, pk));
+
+ /* version */
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, buf, 1));
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, buf, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, buf, MBEDTLS_ASN1_CONSTRUCTED |
+ MBEDTLS_ASN1_SEQUENCE));
+
+ return (int) len;
+}
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/******************************************************************************
+ * Internal functions for Opaque keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+static int pk_write_opaque_pubkey(unsigned char **p, unsigned char *start,
+ const mbedtls_pk_context *pk)
+{
+ size_t buffer_size;
+ size_t len = 0;
+
+ if (*p < start) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ buffer_size = (size_t) (*p - start);
+ if (psa_export_public_key(pk->priv_id, start, buffer_size,
+ &len) != PSA_SUCCESS) {
+ return MBEDTLS_ERR_PK_BAD_INPUT_DATA;
+ }
+
+ *p -= len;
+ memmove(*p, start, len);
+
+ return (int) len;
+}
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+/******************************************************************************
+ * Generic helpers
+ ******************************************************************************/
+
+/* Extend the public mbedtls_pk_get_type() by getting key type also in case of
+ * opaque keys. */
+static mbedtls_pk_type_t pk_get_type_ext(const mbedtls_pk_context *pk)
+{
+ mbedtls_pk_type_t pk_type = mbedtls_pk_get_type(pk);
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ if (pk_type == MBEDTLS_PK_OPAQUE) {
+ psa_key_attributes_t opaque_attrs = PSA_KEY_ATTRIBUTES_INIT;
+ psa_key_type_t opaque_key_type;
+
+ if (psa_get_key_attributes(pk->priv_id, &opaque_attrs) != PSA_SUCCESS) {
+ return MBEDTLS_PK_NONE;
+ }
+ opaque_key_type = psa_get_key_type(&opaque_attrs);
+ psa_reset_key_attributes(&opaque_attrs);
+
+ if (PSA_KEY_TYPE_IS_ECC(opaque_key_type)) {
+ return MBEDTLS_PK_ECKEY;
+ } else if (PSA_KEY_TYPE_IS_RSA(opaque_key_type)) {
+ return MBEDTLS_PK_RSA;
+ } else {
+ return MBEDTLS_PK_NONE;
+ }
+ } else
+#endif
+ return pk_type;
+}
+
+/******************************************************************************
+ * Public functions for writing private/public DER keys.
+ ******************************************************************************/
+int mbedtls_pk_write_pubkey(unsigned char **p, unsigned char *start,
+ const mbedtls_pk_context *key)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+
+#if defined(MBEDTLS_RSA_C)
+ if (mbedtls_pk_get_type(key) == MBEDTLS_PK_RSA) {
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_rsa_write_pubkey(mbedtls_pk_rsa(*key), start, p));
+ } else
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (mbedtls_pk_get_type(key) == MBEDTLS_PK_ECKEY) {
+ MBEDTLS_ASN1_CHK_ADD(len, pk_write_ec_pubkey(p, start, key));
+ } else
+#endif
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+ if (mbedtls_pk_get_type(key) == MBEDTLS_PK_OPAQUE) {
+ MBEDTLS_ASN1_CHK_ADD(len, pk_write_opaque_pubkey(p, start, key));
+ } else
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+
+ return (int) len;
+}
+
+int mbedtls_pk_write_pubkey_der(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *c;
+ int has_par = 1;
+ size_t len = 0, par_len = 0, oid_len = 0;
+ mbedtls_pk_type_t pk_type;
+ const char *oid = NULL;
+
+ if (size == 0) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ c = buf + size;
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_pk_write_pubkey(&c, buf, key));
+
+ if (c - buf < 1) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ /*
+ * SubjectPublicKeyInfo ::= SEQUENCE {
+ * algorithm AlgorithmIdentifier,
+ * subjectPublicKey BIT STRING }
+ */
+ *--c = 0;
+ len += 1;
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&c, buf, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&c, buf, MBEDTLS_ASN1_BIT_STRING));
+
+ pk_type = pk_get_type_ext(key);
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (pk_get_type_ext(key) == MBEDTLS_PK_ECKEY) {
+ mbedtls_ecp_group_id ec_grp_id = mbedtls_pk_get_ec_group_id(key);
+ if (MBEDTLS_PK_IS_RFC8410_GROUP_ID(ec_grp_id)) {
+ ret = mbedtls_oid_get_oid_by_ec_grp_algid(ec_grp_id, &oid, &oid_len);
+ if (ret != 0) {
+ return ret;
+ }
+ has_par = 0;
+ } else {
+ MBEDTLS_ASN1_CHK_ADD(par_len, pk_write_ec_param(&c, buf, ec_grp_id));
+ }
+ }
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+ /* At this point oid_len is not null only for EC Montgomery keys. */
+ if (oid_len == 0) {
+ ret = mbedtls_oid_get_oid_by_pk_alg(pk_type, &oid, &oid_len);
+ if (ret != 0) {
+ return ret;
+ }
+ }
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_algorithm_identifier_ext(&c, buf, oid, oid_len,
+ par_len, has_par));
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(&c, buf, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(&c, buf, MBEDTLS_ASN1_CONSTRUCTED |
+ MBEDTLS_ASN1_SEQUENCE));
+
+ return (int) len;
+}
+
+int mbedtls_pk_write_key_der(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+ unsigned char *c;
+
+ if (size == 0) {
+ return MBEDTLS_ERR_ASN1_BUF_TOO_SMALL;
+ }
+
+ c = buf + size;
+
+#if defined(MBEDTLS_RSA_C)
+ if (pk_get_type_ext(key) == MBEDTLS_PK_RSA) {
+ return pk_write_rsa_der(&c, buf, key);
+ } else
+#endif /* MBEDTLS_RSA_C */
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (pk_get_type_ext(key) == MBEDTLS_PK_ECKEY) {
+#if defined(MBEDTLS_PK_HAVE_RFC8410_CURVES)
+ if (mbedtls_pk_is_rfc8410(key)) {
+ return pk_write_ec_rfc8410_der(&c, buf, key);
+ }
+#endif /* MBEDTLS_PK_HAVE_RFC8410_CURVES */
+ return pk_write_ec_der(&c, buf, key);
+ } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+ return MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+}
+
+/******************************************************************************
+ * Public functions for wrinting private/public PEM keys.
+ ******************************************************************************/
+#if defined(MBEDTLS_PEM_WRITE_C)
+
+#define PUB_DER_MAX_BYTES \
+ (MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES > MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES ? \
+ MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES : MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES)
+#define PRV_DER_MAX_BYTES \
+ (MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES > MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES ? \
+ MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES : MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES)
+
+int mbedtls_pk_write_pubkey_pem(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *output_buf = NULL;
+ output_buf = mbedtls_calloc(1, PUB_DER_MAX_BYTES);
+ if (output_buf == NULL) {
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+ size_t olen = 0;
+
+ if ((ret = mbedtls_pk_write_pubkey_der(key, output_buf,
+ PUB_DER_MAX_BYTES)) < 0) {
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_pem_write_buffer(PEM_BEGIN_PUBLIC_KEY "\n", PEM_END_PUBLIC_KEY "\n",
+ output_buf + PUB_DER_MAX_BYTES - ret,
+ ret, buf, size, &olen)) != 0) {
+ goto cleanup;
+ }
+
+ ret = 0;
+cleanup:
+ mbedtls_free(output_buf);
+ return ret;
+}
+
+int mbedtls_pk_write_key_pem(const mbedtls_pk_context *key, unsigned char *buf, size_t size)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *output_buf = NULL;
+ output_buf = mbedtls_calloc(1, PRV_DER_MAX_BYTES);
+ if (output_buf == NULL) {
+ return MBEDTLS_ERR_PK_ALLOC_FAILED;
+ }
+ const char *begin, *end;
+ size_t olen = 0;
+
+ if ((ret = mbedtls_pk_write_key_der(key, output_buf, PRV_DER_MAX_BYTES)) < 0) {
+ goto cleanup;
+ }
+
+#if defined(MBEDTLS_RSA_C)
+ if (pk_get_type_ext(key) == MBEDTLS_PK_RSA) {
+ begin = PEM_BEGIN_PRIVATE_KEY_RSA "\n";
+ end = PEM_END_PRIVATE_KEY_RSA "\n";
+ } else
+#endif
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+ if (pk_get_type_ext(key) == MBEDTLS_PK_ECKEY) {
+ if (mbedtls_pk_is_rfc8410(key)) {
+ begin = PEM_BEGIN_PRIVATE_KEY_PKCS8 "\n";
+ end = PEM_END_PRIVATE_KEY_PKCS8 "\n";
+ } else {
+ begin = PEM_BEGIN_PRIVATE_KEY_EC "\n";
+ end = PEM_END_PRIVATE_KEY_EC "\n";
+ }
+ } else
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+ {
+ ret = MBEDTLS_ERR_PK_FEATURE_UNAVAILABLE;
+ goto cleanup;
+ }
+
+ if ((ret = mbedtls_pem_write_buffer(begin, end,
+ output_buf + PRV_DER_MAX_BYTES - ret,
+ ret, buf, size, &olen)) != 0) {
+ goto cleanup;
+ }
+
+ ret = 0;
+cleanup:
+ mbedtls_zeroize_and_free(output_buf, PRV_DER_MAX_BYTES);
+ return ret;
+}
+#endif /* MBEDTLS_PEM_WRITE_C */
+
+#endif /* MBEDTLS_PK_WRITE_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/pkwrite.h b/tf-psa-crypto/drivers/builtin/src/pkwrite.h
new file mode 100644
index 0000000..01dc3d2
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/pkwrite.h
@@ -0,0 +1,121 @@
+/**
+ * \file pkwrite.h
+ *
+ * \brief Internal defines shared by the PK write module
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#ifndef MBEDTLS_PK_WRITE_H
+#define MBEDTLS_PK_WRITE_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/pk.h"
+
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#include "psa/crypto.h"
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+/*
+ * Max sizes of key per types. Shown as tag + len (+ content).
+ */
+
+#if defined(MBEDTLS_RSA_C)
+/*
+ * RSA public keys:
+ * SubjectPublicKeyInfo ::= SEQUENCE { 1 + 3
+ * algorithm AlgorithmIdentifier, 1 + 1 (sequence)
+ * + 1 + 1 + 9 (rsa oid)
+ * + 1 + 1 (params null)
+ * subjectPublicKey BIT STRING } 1 + 3 + (1 + below)
+ * RSAPublicKey ::= SEQUENCE { 1 + 3
+ * modulus INTEGER, -- n 1 + 3 + MPI_MAX + 1
+ * publicExponent INTEGER -- e 1 + 3 + MPI_MAX + 1
+ * }
+ */
+#define MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES (38 + 2 * MBEDTLS_MPI_MAX_SIZE)
+
+/*
+ * RSA private keys:
+ * RSAPrivateKey ::= SEQUENCE { 1 + 3
+ * version Version, 1 + 1 + 1
+ * modulus INTEGER, 1 + 3 + MPI_MAX + 1
+ * publicExponent INTEGER, 1 + 3 + MPI_MAX + 1
+ * privateExponent INTEGER, 1 + 3 + MPI_MAX + 1
+ * prime1 INTEGER, 1 + 3 + MPI_MAX / 2 + 1
+ * prime2 INTEGER, 1 + 3 + MPI_MAX / 2 + 1
+ * exponent1 INTEGER, 1 + 3 + MPI_MAX / 2 + 1
+ * exponent2 INTEGER, 1 + 3 + MPI_MAX / 2 + 1
+ * coefficient INTEGER, 1 + 3 + MPI_MAX / 2 + 1
+ * otherPrimeInfos OtherPrimeInfos OPTIONAL 0 (not supported)
+ * }
+ */
+#define MBEDTLS_MPI_MAX_SIZE_2 (MBEDTLS_MPI_MAX_SIZE / 2 + \
+ MBEDTLS_MPI_MAX_SIZE % 2)
+#define MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES (47 + 3 * MBEDTLS_MPI_MAX_SIZE \
+ + 5 * MBEDTLS_MPI_MAX_SIZE_2)
+
+#else /* MBEDTLS_RSA_C */
+
+#define MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES 0
+#define MBEDTLS_PK_RSA_PRV_DER_MAX_BYTES 0
+
+#endif /* MBEDTLS_RSA_C */
+
+#if defined(MBEDTLS_PK_HAVE_ECC_KEYS)
+
+/* Find the maximum number of bytes necessary to store an EC point. When USE_PSA
+ * is defined this means looking for the maximum between PSA and built-in
+ * supported curves. */
+#if defined(MBEDTLS_USE_PSA_CRYPTO)
+#define MBEDTLS_PK_MAX_ECC_BYTES (PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS) > \
+ MBEDTLS_ECP_MAX_BYTES ? \
+ PSA_BITS_TO_BYTES(PSA_VENDOR_ECC_MAX_CURVE_BITS) : \
+ MBEDTLS_ECP_MAX_BYTES)
+#else /* MBEDTLS_USE_PSA_CRYPTO */
+#define MBEDTLS_PK_MAX_ECC_BYTES MBEDTLS_ECP_MAX_BYTES
+#endif /* MBEDTLS_USE_PSA_CRYPTO */
+
+/*
+ * EC public keys:
+ * SubjectPublicKeyInfo ::= SEQUENCE { 1 + 2
+ * algorithm AlgorithmIdentifier, 1 + 1 (sequence)
+ * + 1 + 1 + 7 (ec oid)
+ * + 1 + 1 + 9 (namedCurve oid)
+ * subjectPublicKey BIT STRING 1 + 2 + 1 [1]
+ * + 1 (point format) [1]
+ * + 2 * ECP_MAX (coords) [1]
+ * }
+ */
+#define MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES (30 + 2 * MBEDTLS_PK_MAX_ECC_BYTES)
+
+/*
+ * EC private keys:
+ * ECPrivateKey ::= SEQUENCE { 1 + 2
+ * version INTEGER , 1 + 1 + 1
+ * privateKey OCTET STRING, 1 + 1 + ECP_MAX
+ * parameters [0] ECParameters OPTIONAL, 1 + 1 + (1 + 1 + 9)
+ * publicKey [1] BIT STRING OPTIONAL 1 + 2 + [1] above
+ * }
+ */
+#define MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES (29 + 3 * MBEDTLS_PK_MAX_ECC_BYTES)
+
+#else /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+#define MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES 0
+#define MBEDTLS_PK_ECP_PRV_DER_MAX_BYTES 0
+
+#endif /* MBEDTLS_PK_HAVE_ECC_KEYS */
+
+/* Define the maximum available public key DER length based on the supported
+ * key types (EC and/or RSA). */
+#if (MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES > MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES)
+#define MBEDTLS_PK_WRITE_PUBKEY_MAX_SIZE MBEDTLS_PK_RSA_PUB_DER_MAX_BYTES
+#else
+#define MBEDTLS_PK_WRITE_PUBKEY_MAX_SIZE MBEDTLS_PK_ECP_PUB_DER_MAX_BYTES
+#endif
+
+#endif /* MBEDTLS_PK_WRITE_H */
diff --git a/tf-psa-crypto/drivers/builtin/src/platform.c b/tf-psa-crypto/drivers/builtin/src/platform.c
new file mode 100644
index 0000000..890c4cb
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/platform.c
@@ -0,0 +1,402 @@
+/*
+ * Platform abstraction layer
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_PLATFORM_C)
+
+#include "mbedtls/platform.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+/* The compile time configuration of memory allocation via the macros
+ * MBEDTLS_PLATFORM_{FREE/CALLOC}_MACRO takes precedence over the runtime
+ * configuration via mbedtls_platform_set_calloc_free(). So, omit everything
+ * related to the latter if MBEDTLS_PLATFORM_{FREE/CALLOC}_MACRO are defined. */
+#if defined(MBEDTLS_PLATFORM_MEMORY) && \
+ !(defined(MBEDTLS_PLATFORM_CALLOC_MACRO) && \
+ defined(MBEDTLS_PLATFORM_FREE_MACRO))
+
+#if !defined(MBEDTLS_PLATFORM_STD_CALLOC)
+static void *platform_calloc_uninit(size_t n, size_t size)
+{
+ ((void) n);
+ ((void) size);
+ return NULL;
+}
+
+#define MBEDTLS_PLATFORM_STD_CALLOC platform_calloc_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_CALLOC */
+
+#if !defined(MBEDTLS_PLATFORM_STD_FREE)
+static void platform_free_uninit(void *ptr)
+{
+ ((void) ptr);
+}
+
+#define MBEDTLS_PLATFORM_STD_FREE platform_free_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_FREE */
+
+static void * (*mbedtls_calloc_func)(size_t, size_t) = MBEDTLS_PLATFORM_STD_CALLOC;
+static void (*mbedtls_free_func)(void *) = MBEDTLS_PLATFORM_STD_FREE;
+
+void *mbedtls_calloc(size_t nmemb, size_t size)
+{
+ return (*mbedtls_calloc_func)(nmemb, size);
+}
+
+void mbedtls_free(void *ptr)
+{
+ (*mbedtls_free_func)(ptr);
+}
+
+int mbedtls_platform_set_calloc_free(void *(*calloc_func)(size_t, size_t),
+ void (*free_func)(void *))
+{
+ mbedtls_calloc_func = calloc_func;
+ mbedtls_free_func = free_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_MEMORY &&
+ !( defined(MBEDTLS_PLATFORM_CALLOC_MACRO) &&
+ defined(MBEDTLS_PLATFORM_FREE_MACRO) ) */
+
+#if defined(MBEDTLS_PLATFORM_HAS_NON_CONFORMING_SNPRINTF)
+#include <stdarg.h>
+int mbedtls_platform_win32_snprintf(char *s, size_t n, const char *fmt, ...)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ va_list argp;
+
+ va_start(argp, fmt);
+ ret = mbedtls_vsnprintf(s, n, fmt, argp);
+ va_end(argp);
+
+ return ret;
+}
+#endif
+
+#if defined(MBEDTLS_PLATFORM_SNPRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_SNPRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_snprintf_uninit(char *s, size_t n,
+ const char *format, ...)
+{
+ ((void) s);
+ ((void) n);
+ ((void) format);
+ return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_SNPRINTF platform_snprintf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_SNPRINTF */
+
+int (*mbedtls_snprintf)(char *s, size_t n,
+ const char *format,
+ ...) = MBEDTLS_PLATFORM_STD_SNPRINTF;
+
+int mbedtls_platform_set_snprintf(int (*snprintf_func)(char *s, size_t n,
+ const char *format,
+ ...))
+{
+ mbedtls_snprintf = snprintf_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_SNPRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_HAS_NON_CONFORMING_VSNPRINTF)
+#include <stdarg.h>
+int mbedtls_platform_win32_vsnprintf(char *s, size_t n, const char *fmt, va_list arg)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Avoid calling the invalid parameter handler by checking ourselves */
+ if (s == NULL || n == 0 || fmt == NULL) {
+ return -1;
+ }
+
+#if defined(_TRUNCATE)
+ ret = vsnprintf_s(s, n, _TRUNCATE, fmt, arg);
+#else
+ ret = vsnprintf(s, n, fmt, arg);
+ if (ret < 0 || (size_t) ret == n) {
+ s[n-1] = '\0';
+ ret = -1;
+ }
+#endif
+
+ return ret;
+}
+#endif
+
+#if defined(MBEDTLS_PLATFORM_VSNPRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_VSNPRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_vsnprintf_uninit(char *s, size_t n,
+ const char *format, va_list arg)
+{
+ ((void) s);
+ ((void) n);
+ ((void) format);
+ ((void) arg);
+ return -1;
+}
+
+#define MBEDTLS_PLATFORM_STD_VSNPRINTF platform_vsnprintf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_VSNPRINTF */
+
+int (*mbedtls_vsnprintf)(char *s, size_t n,
+ const char *format,
+ va_list arg) = MBEDTLS_PLATFORM_STD_VSNPRINTF;
+
+int mbedtls_platform_set_vsnprintf(int (*vsnprintf_func)(char *s, size_t n,
+ const char *format,
+ va_list arg))
+{
+ mbedtls_vsnprintf = vsnprintf_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_VSNPRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_PRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_PRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_printf_uninit(const char *format, ...)
+{
+ ((void) format);
+ return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_PRINTF platform_printf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_PRINTF */
+
+int (*mbedtls_printf)(const char *, ...) = MBEDTLS_PLATFORM_STD_PRINTF;
+
+int mbedtls_platform_set_printf(int (*printf_func)(const char *, ...))
+{
+ mbedtls_printf = printf_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_PRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_FPRINTF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_FPRINTF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_fprintf_uninit(FILE *stream, const char *format, ...)
+{
+ ((void) stream);
+ ((void) format);
+ return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_FPRINTF platform_fprintf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_FPRINTF */
+
+int (*mbedtls_fprintf)(FILE *, const char *, ...) =
+ MBEDTLS_PLATFORM_STD_FPRINTF;
+
+int mbedtls_platform_set_fprintf(int (*fprintf_func)(FILE *, const char *, ...))
+{
+ mbedtls_fprintf = fprintf_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_FPRINTF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_SETBUF_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_SETBUF)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static void platform_setbuf_uninit(FILE *stream, char *buf)
+{
+ ((void) stream);
+ ((void) buf);
+}
+
+#define MBEDTLS_PLATFORM_STD_SETBUF platform_setbuf_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_SETBUF */
+void (*mbedtls_setbuf)(FILE *stream, char *buf) = MBEDTLS_PLATFORM_STD_SETBUF;
+
+int mbedtls_platform_set_setbuf(void (*setbuf_func)(FILE *stream, char *buf))
+{
+ mbedtls_setbuf = setbuf_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_SETBUF_ALT */
+
+#if defined(MBEDTLS_PLATFORM_EXIT_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_EXIT)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static void platform_exit_uninit(int status)
+{
+ ((void) status);
+}
+
+#define MBEDTLS_PLATFORM_STD_EXIT platform_exit_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_EXIT */
+
+void (*mbedtls_exit)(int status) = MBEDTLS_PLATFORM_STD_EXIT;
+
+int mbedtls_platform_set_exit(void (*exit_func)(int status))
+{
+ mbedtls_exit = exit_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_EXIT_ALT */
+
+#if defined(MBEDTLS_HAVE_TIME)
+
+#if defined(MBEDTLS_PLATFORM_TIME_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_TIME)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static mbedtls_time_t platform_time_uninit(mbedtls_time_t *timer)
+{
+ ((void) timer);
+ return 0;
+}
+
+#define MBEDTLS_PLATFORM_STD_TIME platform_time_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_TIME */
+
+mbedtls_time_t (*mbedtls_time)(mbedtls_time_t *timer) = MBEDTLS_PLATFORM_STD_TIME;
+
+int mbedtls_platform_set_time(mbedtls_time_t (*time_func)(mbedtls_time_t *timer))
+{
+ mbedtls_time = time_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_TIME_ALT */
+
+#endif /* MBEDTLS_HAVE_TIME */
+
+#if defined(MBEDTLS_ENTROPY_NV_SEED)
+#if !defined(MBEDTLS_PLATFORM_NO_STD_FUNCTIONS) && defined(MBEDTLS_FS_IO)
+/* Default implementations for the platform independent seed functions use
+ * standard libc file functions to read from and write to a pre-defined filename
+ */
+int mbedtls_platform_std_nv_seed_read(unsigned char *buf, size_t buf_len)
+{
+ FILE *file;
+ size_t n;
+
+ if ((file = fopen(MBEDTLS_PLATFORM_STD_NV_SEED_FILE, "rb")) == NULL) {
+ return -1;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(file, NULL);
+
+ if ((n = fread(buf, 1, buf_len, file)) != buf_len) {
+ fclose(file);
+ mbedtls_platform_zeroize(buf, buf_len);
+ return -1;
+ }
+
+ fclose(file);
+ return (int) n;
+}
+
+int mbedtls_platform_std_nv_seed_write(unsigned char *buf, size_t buf_len)
+{
+ FILE *file;
+ size_t n;
+
+ if ((file = fopen(MBEDTLS_PLATFORM_STD_NV_SEED_FILE, "w")) == NULL) {
+ return -1;
+ }
+
+ /* Ensure no stdio buffering of secrets, as such buffers cannot be wiped. */
+ mbedtls_setbuf(file, NULL);
+
+ if ((n = fwrite(buf, 1, buf_len, file)) != buf_len) {
+ fclose(file);
+ return -1;
+ }
+
+ fclose(file);
+ return (int) n;
+}
+#endif /* MBEDTLS_PLATFORM_NO_STD_FUNCTIONS */
+
+#if defined(MBEDTLS_PLATFORM_NV_SEED_ALT)
+#if !defined(MBEDTLS_PLATFORM_STD_NV_SEED_READ)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_nv_seed_read_uninit(unsigned char *buf, size_t buf_len)
+{
+ ((void) buf);
+ ((void) buf_len);
+ return -1;
+}
+
+#define MBEDTLS_PLATFORM_STD_NV_SEED_READ platform_nv_seed_read_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_NV_SEED_READ */
+
+#if !defined(MBEDTLS_PLATFORM_STD_NV_SEED_WRITE)
+/*
+ * Make dummy function to prevent NULL pointer dereferences
+ */
+static int platform_nv_seed_write_uninit(unsigned char *buf, size_t buf_len)
+{
+ ((void) buf);
+ ((void) buf_len);
+ return -1;
+}
+
+#define MBEDTLS_PLATFORM_STD_NV_SEED_WRITE platform_nv_seed_write_uninit
+#endif /* !MBEDTLS_PLATFORM_STD_NV_SEED_WRITE */
+
+int (*mbedtls_nv_seed_read)(unsigned char *buf, size_t buf_len) =
+ MBEDTLS_PLATFORM_STD_NV_SEED_READ;
+int (*mbedtls_nv_seed_write)(unsigned char *buf, size_t buf_len) =
+ MBEDTLS_PLATFORM_STD_NV_SEED_WRITE;
+
+int mbedtls_platform_set_nv_seed(
+ int (*nv_seed_read_func)(unsigned char *buf, size_t buf_len),
+ int (*nv_seed_write_func)(unsigned char *buf, size_t buf_len))
+{
+ mbedtls_nv_seed_read = nv_seed_read_func;
+ mbedtls_nv_seed_write = nv_seed_write_func;
+ return 0;
+}
+#endif /* MBEDTLS_PLATFORM_NV_SEED_ALT */
+#endif /* MBEDTLS_ENTROPY_NV_SEED */
+
+#if !defined(MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT)
+/*
+ * Placeholder platform setup that does nothing by default
+ */
+int mbedtls_platform_setup(mbedtls_platform_context *ctx)
+{
+ (void) ctx;
+
+ return 0;
+}
+
+/*
+ * Placeholder platform teardown that does nothing by default
+ */
+void mbedtls_platform_teardown(mbedtls_platform_context *ctx)
+{
+ (void) ctx;
+}
+#endif /* MBEDTLS_PLATFORM_SETUP_TEARDOWN_ALT */
+
+#endif /* MBEDTLS_PLATFORM_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/platform_util.c b/tf-psa-crypto/drivers/builtin/src/platform_util.c
new file mode 100644
index 0000000..0741bf5
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/platform_util.c
@@ -0,0 +1,263 @@
+/*
+ * Common and shared functions used by multiple modules in the Mbed TLS
+ * library.
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * Ensure gmtime_r is available even with -std=c99; must be defined before
+ * mbedtls_config.h, which pulls in glibc's features.h. Harmless on other platforms
+ * except OpenBSD, where it stops us accessing explicit_bzero.
+ */
+#if !defined(_POSIX_C_SOURCE) && !defined(__OpenBSD__)
+#define _POSIX_C_SOURCE 200112L
+#endif
+
+#if !defined(_GNU_SOURCE)
+/* Clang requires this to get support for explicit_bzero */
+#define _GNU_SOURCE
+#endif
+
+#include "common.h"
+
+#include "mbedtls/platform_util.h"
+#include "mbedtls/platform.h"
+#include "mbedtls/threading.h"
+
+#include <stddef.h>
+
+#ifndef __STDC_WANT_LIB_EXT1__
+#define __STDC_WANT_LIB_EXT1__ 1 /* Ask for the C11 gmtime_s() and memset_s() if available */
+#endif
+#include <string.h>
+
+#if defined(_WIN32)
+#include <windows.h>
+#endif
+
+// Detect platforms known to support explicit_bzero()
+#if defined(__GLIBC__) && (__GLIBC__ >= 2) && (__GLIBC_MINOR__ >= 25)
+#define MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO 1
+#elif (defined(__FreeBSD__) && (__FreeBSD_version >= 1100037)) || defined(__OpenBSD__)
+#define MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO 1
+#endif
+
+#if !defined(MBEDTLS_PLATFORM_ZEROIZE_ALT)
+
+#undef HAVE_MEMORY_SANITIZER
+#if defined(__has_feature)
+#if __has_feature(memory_sanitizer)
+#include <sanitizer/msan_interface.h>
+#define HAVE_MEMORY_SANITIZER
+#endif
+#endif
+
+/*
+ * Where possible, we try to detect the presence of a platform-provided
+ * secure memset, such as explicit_bzero(), that is safe against being optimized
+ * out, and use that.
+ *
+ * For other platforms, we provide an implementation that aims not to be
+ * optimized out by the compiler.
+ *
+ * This implementation for mbedtls_platform_zeroize() was inspired from Colin
+ * Percival's blog article at:
+ *
+ * http://www.daemonology.net/blog/2014-09-04-how-to-zero-a-buffer.html
+ *
+ * It uses a volatile function pointer to the standard memset(). Because the
+ * pointer is volatile the compiler expects it to change at
+ * any time and will not optimize out the call that could potentially perform
+ * other operations on the input buffer instead of just setting it to 0.
+ * Nevertheless, as pointed out by davidtgoldblatt on Hacker News
+ * (refer to http://www.daemonology.net/blog/2014-09-05-erratum.html for
+ * details), optimizations of the following form are still possible:
+ *
+ * if (memset_func != memset)
+ * memset_func(buf, 0, len);
+ *
+ * Note that it is extremely difficult to guarantee that
+ * the memset() call will not be optimized out by aggressive compilers
+ * in a portable way. For this reason, Mbed TLS also provides the configuration
+ * option MBEDTLS_PLATFORM_ZEROIZE_ALT, which allows users to configure
+ * mbedtls_platform_zeroize() to use a suitable implementation for their
+ * platform and needs.
+ */
+#if !defined(MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO) && !(defined(__STDC_LIB_EXT1__) && \
+ !defined(__IAR_SYSTEMS_ICC__)) \
+ && !defined(_WIN32)
+static void *(*const volatile memset_func)(void *, int, size_t) = memset;
+#endif
+
+void mbedtls_platform_zeroize(void *buf, size_t len)
+{
+ if (len > 0) {
+#if defined(MBEDTLS_PLATFORM_HAS_EXPLICIT_BZERO)
+ explicit_bzero(buf, len);
+#if defined(HAVE_MEMORY_SANITIZER)
+ /* You'd think that Msan would recognize explicit_bzero() as
+ * equivalent to bzero(), but it actually doesn't on several
+ * platforms, including Linux (Ubuntu 20.04).
+ * https://github.com/google/sanitizers/issues/1507
+ * https://github.com/openssh/openssh-portable/commit/74433a19bb6f4cef607680fa4d1d7d81ca3826aa
+ */
+ __msan_unpoison(buf, len);
+#endif
+#elif defined(__STDC_LIB_EXT1__) && !defined(__IAR_SYSTEMS_ICC__)
+ memset_s(buf, len, 0, len);
+#elif defined(_WIN32)
+ SecureZeroMemory(buf, len);
+#else
+ memset_func(buf, 0, len);
+#endif
+
+#if defined(__GNUC__)
+ /* For clang and recent gcc, pretend that we have some assembly that reads the
+ * zero'd memory as an additional protection against being optimised away. */
+#if defined(__clang__) || (__GNUC__ >= 10)
+#if defined(__clang__)
+#pragma clang diagnostic push
+#pragma clang diagnostic ignored "-Wvla"
+#elif defined(MBEDTLS_COMPILER_IS_GCC)
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wvla"
+#endif
+ asm volatile ("" : : "m" (*(char (*)[len]) buf) :);
+#if defined(__clang__)
+#pragma clang diagnostic pop
+#elif defined(MBEDTLS_COMPILER_IS_GCC)
+#pragma GCC diagnostic pop
+#endif
+#endif
+#endif
+ }
+}
+#endif /* MBEDTLS_PLATFORM_ZEROIZE_ALT */
+
+void mbedtls_zeroize_and_free(void *buf, size_t len)
+{
+ if (buf != NULL) {
+ mbedtls_platform_zeroize(buf, len);
+ }
+
+ mbedtls_free(buf);
+}
+
+#if defined(MBEDTLS_HAVE_TIME_DATE) && !defined(MBEDTLS_PLATFORM_GMTIME_R_ALT)
+#include <time.h>
+#if !defined(_WIN32) && (defined(unix) || \
+ defined(__unix) || defined(__unix__) || (defined(__APPLE__) && \
+ defined(__MACH__)) || defined__midipix__)
+#include <unistd.h>
+#endif /* !_WIN32 && (unix || __unix || __unix__ ||
+ * (__APPLE__ && __MACH__) || __midipix__) */
+
+#if !((defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L) || \
+ (defined(_POSIX_THREAD_SAFE_FUNCTIONS) && \
+ _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L))
+/*
+ * This is a convenience shorthand macro to avoid checking the long
+ * preprocessor conditions above. Ideally, we could expose this macro in
+ * platform_util.h and simply use it in platform_util.c, threading.c and
+ * threading.h. However, this macro is not part of the Mbed TLS public API, so
+ * we keep it private by only defining it in this file
+ */
+#if !(defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)) || \
+ (defined(__MINGW32__) && !defined(__MINGW64_VERSION_MAJOR))
+#define PLATFORM_UTIL_USE_GMTIME
+#endif
+
+#endif /* !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \
+ ( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \
+ _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L ) ) */
+
+struct tm *mbedtls_platform_gmtime_r(const mbedtls_time_t *tt,
+ struct tm *tm_buf)
+{
+#if defined(_WIN32) && !defined(PLATFORM_UTIL_USE_GMTIME)
+#if defined(__STDC_LIB_EXT1__)
+ return (gmtime_s(tt, tm_buf) == 0) ? NULL : tm_buf;
+#else
+ /* MSVC and mingw64 argument order and return value are inconsistent with the C11 standard */
+ return (gmtime_s(tm_buf, tt) == 0) ? tm_buf : NULL;
+#endif
+#elif !defined(PLATFORM_UTIL_USE_GMTIME)
+ return gmtime_r(tt, tm_buf);
+#else
+ struct tm *lt;
+
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_lock(&mbedtls_threading_gmtime_mutex) != 0) {
+ return NULL;
+ }
+#endif /* MBEDTLS_THREADING_C */
+
+ lt = gmtime(tt);
+
+ if (lt != NULL) {
+ memcpy(tm_buf, lt, sizeof(struct tm));
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&mbedtls_threading_gmtime_mutex) != 0) {
+ return NULL;
+ }
+#endif /* MBEDTLS_THREADING_C */
+
+ return (lt == NULL) ? NULL : tm_buf;
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+}
+#endif /* MBEDTLS_HAVE_TIME_DATE && MBEDTLS_PLATFORM_GMTIME_R_ALT */
+
+#if defined(MBEDTLS_TEST_HOOKS)
+void (*mbedtls_test_hook_test_fail)(const char *, int, const char *);
+#endif /* MBEDTLS_TEST_HOOKS */
+
+#if defined(MBEDTLS_HAVE_TIME) && !defined(MBEDTLS_PLATFORM_MS_TIME_ALT)
+
+#include <time.h>
+#if !defined(_WIN32) && \
+ (defined(unix) || defined(__unix) || defined(__unix__) || \
+ (defined(__APPLE__) && defined(__MACH__)) || defined(__HAIKU__) || defined(__midipix__))
+#include <unistd.h>
+#endif \
+ /* !_WIN32 && (unix || __unix || __unix__ || (__APPLE__ && __MACH__) || __HAIKU__ || __midipix__) */
+#if (defined(_POSIX_VERSION) && _POSIX_VERSION >= 199309L) || defined(__HAIKU__)
+mbedtls_ms_time_t mbedtls_ms_time(void)
+{
+ int ret;
+ struct timespec tv;
+ mbedtls_ms_time_t current_ms;
+
+#if defined(__linux__) && defined(CLOCK_BOOTTIME) || defined(__midipix__)
+ ret = clock_gettime(CLOCK_BOOTTIME, &tv);
+#else
+ ret = clock_gettime(CLOCK_MONOTONIC, &tv);
+#endif
+ if (ret) {
+ return time(NULL) * 1000;
+ }
+
+ current_ms = tv.tv_sec;
+
+ return current_ms*1000 + tv.tv_nsec / 1000000;
+}
+#elif defined(_WIN32) || defined(WIN32) || defined(__CYGWIN__) || \
+ defined(__MINGW32__) || defined(_WIN64)
+#include <windows.h>
+mbedtls_ms_time_t mbedtls_ms_time(void)
+{
+ FILETIME ct;
+ mbedtls_ms_time_t current_ms;
+
+ GetSystemTimeAsFileTime(&ct);
+ current_ms = ((mbedtls_ms_time_t) ct.dwLowDateTime +
+ ((mbedtls_ms_time_t) (ct.dwHighDateTime) << 32LL))/10000;
+ return current_ms;
+}
+#else
+#error "No mbedtls_ms_time available"
+#endif
+#endif /* MBEDTLS_HAVE_TIME && !MBEDTLS_PLATFORM_MS_TIME_ALT */
diff --git a/tf-psa-crypto/drivers/builtin/src/poly1305.c b/tf-psa-crypto/drivers/builtin/src/poly1305.c
new file mode 100644
index 0000000..c9ebe9e
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/poly1305.c
@@ -0,0 +1,492 @@
+/**
+ * \file poly1305.c
+ *
+ * \brief Poly1305 authentication algorithm.
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#include "common.h"
+
+#if defined(MBEDTLS_POLY1305_C)
+
+#include "mbedtls/poly1305.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_POLY1305_ALT)
+
+#define POLY1305_BLOCK_SIZE_BYTES (16U)
+
+/*
+ * Our implementation is tuned for 32-bit platforms with a 64-bit multiplier.
+ * However we provided an alternative for platforms without such a multiplier.
+ */
+#if defined(MBEDTLS_NO_64BIT_MULTIPLICATION)
+static uint64_t mul64(uint32_t a, uint32_t b)
+{
+ /* a = al + 2**16 ah, b = bl + 2**16 bh */
+ const uint16_t al = (uint16_t) a;
+ const uint16_t bl = (uint16_t) b;
+ const uint16_t ah = a >> 16;
+ const uint16_t bh = b >> 16;
+
+ /* ab = al*bl + 2**16 (ah*bl + bl*bh) + 2**32 ah*bh */
+ const uint32_t lo = (uint32_t) al * bl;
+ const uint64_t me = (uint64_t) ((uint32_t) ah * bl) + (uint32_t) al * bh;
+ const uint32_t hi = (uint32_t) ah * bh;
+
+ return lo + (me << 16) + ((uint64_t) hi << 32);
+}
+#else
+static inline uint64_t mul64(uint32_t a, uint32_t b)
+{
+ return (uint64_t) a * b;
+}
+#endif
+
+
+/**
+ * \brief Process blocks with Poly1305.
+ *
+ * \param ctx The Poly1305 context.
+ * \param nblocks Number of blocks to process. Note that this
+ * function only processes full blocks.
+ * \param input Buffer containing the input block(s).
+ * \param needs_padding Set to 0 if the padding bit has already been
+ * applied to the input data before calling this
+ * function. Otherwise, set this parameter to 1.
+ */
+static void poly1305_process(mbedtls_poly1305_context *ctx,
+ size_t nblocks,
+ const unsigned char *input,
+ uint32_t needs_padding)
+{
+ uint64_t d0, d1, d2, d3;
+ uint32_t acc0, acc1, acc2, acc3, acc4;
+ uint32_t r0, r1, r2, r3;
+ uint32_t rs1, rs2, rs3;
+ size_t offset = 0U;
+ size_t i;
+
+ r0 = ctx->r[0];
+ r1 = ctx->r[1];
+ r2 = ctx->r[2];
+ r3 = ctx->r[3];
+
+ rs1 = r1 + (r1 >> 2U);
+ rs2 = r2 + (r2 >> 2U);
+ rs3 = r3 + (r3 >> 2U);
+
+ acc0 = ctx->acc[0];
+ acc1 = ctx->acc[1];
+ acc2 = ctx->acc[2];
+ acc3 = ctx->acc[3];
+ acc4 = ctx->acc[4];
+
+ /* Process full blocks */
+ for (i = 0U; i < nblocks; i++) {
+ /* The input block is treated as a 128-bit little-endian integer */
+ d0 = MBEDTLS_GET_UINT32_LE(input, offset + 0);
+ d1 = MBEDTLS_GET_UINT32_LE(input, offset + 4);
+ d2 = MBEDTLS_GET_UINT32_LE(input, offset + 8);
+ d3 = MBEDTLS_GET_UINT32_LE(input, offset + 12);
+
+ /* Compute: acc += (padded) block as a 130-bit integer */
+ d0 += (uint64_t) acc0;
+ d1 += (uint64_t) acc1 + (d0 >> 32U);
+ d2 += (uint64_t) acc2 + (d1 >> 32U);
+ d3 += (uint64_t) acc3 + (d2 >> 32U);
+ acc0 = (uint32_t) d0;
+ acc1 = (uint32_t) d1;
+ acc2 = (uint32_t) d2;
+ acc3 = (uint32_t) d3;
+ acc4 += (uint32_t) (d3 >> 32U) + needs_padding;
+
+ /* Compute: acc *= r */
+ d0 = mul64(acc0, r0) +
+ mul64(acc1, rs3) +
+ mul64(acc2, rs2) +
+ mul64(acc3, rs1);
+ d1 = mul64(acc0, r1) +
+ mul64(acc1, r0) +
+ mul64(acc2, rs3) +
+ mul64(acc3, rs2) +
+ mul64(acc4, rs1);
+ d2 = mul64(acc0, r2) +
+ mul64(acc1, r1) +
+ mul64(acc2, r0) +
+ mul64(acc3, rs3) +
+ mul64(acc4, rs2);
+ d3 = mul64(acc0, r3) +
+ mul64(acc1, r2) +
+ mul64(acc2, r1) +
+ mul64(acc3, r0) +
+ mul64(acc4, rs3);
+ acc4 *= r0;
+
+ /* Compute: acc %= (2^130 - 5) (partial remainder) */
+ d1 += (d0 >> 32);
+ d2 += (d1 >> 32);
+ d3 += (d2 >> 32);
+ acc0 = (uint32_t) d0;
+ acc1 = (uint32_t) d1;
+ acc2 = (uint32_t) d2;
+ acc3 = (uint32_t) d3;
+ acc4 = (uint32_t) (d3 >> 32) + acc4;
+
+ d0 = (uint64_t) acc0 + (acc4 >> 2) + (acc4 & 0xFFFFFFFCU);
+ acc4 &= 3U;
+ acc0 = (uint32_t) d0;
+ d0 = (uint64_t) acc1 + (d0 >> 32U);
+ acc1 = (uint32_t) d0;
+ d0 = (uint64_t) acc2 + (d0 >> 32U);
+ acc2 = (uint32_t) d0;
+ d0 = (uint64_t) acc3 + (d0 >> 32U);
+ acc3 = (uint32_t) d0;
+ d0 = (uint64_t) acc4 + (d0 >> 32U);
+ acc4 = (uint32_t) d0;
+
+ offset += POLY1305_BLOCK_SIZE_BYTES;
+ }
+
+ ctx->acc[0] = acc0;
+ ctx->acc[1] = acc1;
+ ctx->acc[2] = acc2;
+ ctx->acc[3] = acc3;
+ ctx->acc[4] = acc4;
+}
+
+/**
+ * \brief Compute the Poly1305 MAC
+ *
+ * \param ctx The Poly1305 context.
+ * \param mac The buffer to where the MAC is written. Must be
+ * big enough to contain the 16-byte MAC.
+ */
+static void poly1305_compute_mac(const mbedtls_poly1305_context *ctx,
+ unsigned char mac[16])
+{
+ uint64_t d;
+ uint32_t g0, g1, g2, g3, g4;
+ uint32_t acc0, acc1, acc2, acc3, acc4;
+ uint32_t mask;
+ uint32_t mask_inv;
+
+ acc0 = ctx->acc[0];
+ acc1 = ctx->acc[1];
+ acc2 = ctx->acc[2];
+ acc3 = ctx->acc[3];
+ acc4 = ctx->acc[4];
+
+ /* Before adding 's' we ensure that the accumulator is mod 2^130 - 5.
+ * We do this by calculating acc - (2^130 - 5), then checking if
+ * the 131st bit is set. If it is, then reduce: acc -= (2^130 - 5)
+ */
+
+ /* Calculate acc + -(2^130 - 5) */
+ d = ((uint64_t) acc0 + 5U);
+ g0 = (uint32_t) d;
+ d = ((uint64_t) acc1 + (d >> 32));
+ g1 = (uint32_t) d;
+ d = ((uint64_t) acc2 + (d >> 32));
+ g2 = (uint32_t) d;
+ d = ((uint64_t) acc3 + (d >> 32));
+ g3 = (uint32_t) d;
+ g4 = acc4 + (uint32_t) (d >> 32U);
+
+ /* mask == 0xFFFFFFFF if 131st bit is set, otherwise mask == 0 */
+ mask = (uint32_t) 0U - (g4 >> 2U);
+ mask_inv = ~mask;
+
+ /* If 131st bit is set then acc=g, otherwise, acc is unmodified */
+ acc0 = (acc0 & mask_inv) | (g0 & mask);
+ acc1 = (acc1 & mask_inv) | (g1 & mask);
+ acc2 = (acc2 & mask_inv) | (g2 & mask);
+ acc3 = (acc3 & mask_inv) | (g3 & mask);
+
+ /* Add 's' */
+ d = (uint64_t) acc0 + ctx->s[0];
+ acc0 = (uint32_t) d;
+ d = (uint64_t) acc1 + ctx->s[1] + (d >> 32U);
+ acc1 = (uint32_t) d;
+ d = (uint64_t) acc2 + ctx->s[2] + (d >> 32U);
+ acc2 = (uint32_t) d;
+ acc3 += ctx->s[3] + (uint32_t) (d >> 32U);
+
+ /* Compute MAC (128 least significant bits of the accumulator) */
+ MBEDTLS_PUT_UINT32_LE(acc0, mac, 0);
+ MBEDTLS_PUT_UINT32_LE(acc1, mac, 4);
+ MBEDTLS_PUT_UINT32_LE(acc2, mac, 8);
+ MBEDTLS_PUT_UINT32_LE(acc3, mac, 12);
+}
+
+void mbedtls_poly1305_init(mbedtls_poly1305_context *ctx)
+{
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_poly1305_context));
+}
+
+void mbedtls_poly1305_free(mbedtls_poly1305_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_poly1305_context));
+}
+
+int mbedtls_poly1305_starts(mbedtls_poly1305_context *ctx,
+ const unsigned char key[32])
+{
+ /* r &= 0x0ffffffc0ffffffc0ffffffc0fffffff */
+ ctx->r[0] = MBEDTLS_GET_UINT32_LE(key, 0) & 0x0FFFFFFFU;
+ ctx->r[1] = MBEDTLS_GET_UINT32_LE(key, 4) & 0x0FFFFFFCU;
+ ctx->r[2] = MBEDTLS_GET_UINT32_LE(key, 8) & 0x0FFFFFFCU;
+ ctx->r[3] = MBEDTLS_GET_UINT32_LE(key, 12) & 0x0FFFFFFCU;
+
+ ctx->s[0] = MBEDTLS_GET_UINT32_LE(key, 16);
+ ctx->s[1] = MBEDTLS_GET_UINT32_LE(key, 20);
+ ctx->s[2] = MBEDTLS_GET_UINT32_LE(key, 24);
+ ctx->s[3] = MBEDTLS_GET_UINT32_LE(key, 28);
+
+ /* Initial accumulator state */
+ ctx->acc[0] = 0U;
+ ctx->acc[1] = 0U;
+ ctx->acc[2] = 0U;
+ ctx->acc[3] = 0U;
+ ctx->acc[4] = 0U;
+
+ /* Queue initially empty */
+ mbedtls_platform_zeroize(ctx->queue, sizeof(ctx->queue));
+ ctx->queue_len = 0U;
+
+ return 0;
+}
+
+int mbedtls_poly1305_update(mbedtls_poly1305_context *ctx,
+ const unsigned char *input,
+ size_t ilen)
+{
+ size_t offset = 0U;
+ size_t remaining = ilen;
+ size_t queue_free_len;
+ size_t nblocks;
+
+ if ((remaining > 0U) && (ctx->queue_len > 0U)) {
+ queue_free_len = (POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len);
+
+ if (ilen < queue_free_len) {
+ /* Not enough data to complete the block.
+ * Store this data with the other leftovers.
+ */
+ memcpy(&ctx->queue[ctx->queue_len],
+ input,
+ ilen);
+
+ ctx->queue_len += ilen;
+
+ remaining = 0U;
+ } else {
+ /* Enough data to produce a complete block */
+ memcpy(&ctx->queue[ctx->queue_len],
+ input,
+ queue_free_len);
+
+ ctx->queue_len = 0U;
+
+ poly1305_process(ctx, 1U, ctx->queue, 1U); /* add padding bit */
+
+ offset += queue_free_len;
+ remaining -= queue_free_len;
+ }
+ }
+
+ if (remaining >= POLY1305_BLOCK_SIZE_BYTES) {
+ nblocks = remaining / POLY1305_BLOCK_SIZE_BYTES;
+
+ poly1305_process(ctx, nblocks, &input[offset], 1U);
+
+ offset += nblocks * POLY1305_BLOCK_SIZE_BYTES;
+ remaining %= POLY1305_BLOCK_SIZE_BYTES;
+ }
+
+ if (remaining > 0U) {
+ /* Store partial block */
+ ctx->queue_len = remaining;
+ memcpy(ctx->queue, &input[offset], remaining);
+ }
+
+ return 0;
+}
+
+int mbedtls_poly1305_finish(mbedtls_poly1305_context *ctx,
+ unsigned char mac[16])
+{
+ /* Process any leftover data */
+ if (ctx->queue_len > 0U) {
+ /* Add padding bit */
+ ctx->queue[ctx->queue_len] = 1U;
+ ctx->queue_len++;
+
+ /* Pad with zeroes */
+ memset(&ctx->queue[ctx->queue_len],
+ 0,
+ POLY1305_BLOCK_SIZE_BYTES - ctx->queue_len);
+
+ poly1305_process(ctx, 1U, /* Process 1 block */
+ ctx->queue, 0U); /* Already padded above */
+ }
+
+ poly1305_compute_mac(ctx, mac);
+
+ return 0;
+}
+
+int mbedtls_poly1305_mac(const unsigned char key[32],
+ const unsigned char *input,
+ size_t ilen,
+ unsigned char mac[16])
+{
+ mbedtls_poly1305_context ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ mbedtls_poly1305_init(&ctx);
+
+ ret = mbedtls_poly1305_starts(&ctx, key);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_poly1305_update(&ctx, input, ilen);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_poly1305_finish(&ctx, mac);
+
+cleanup:
+ mbedtls_poly1305_free(&ctx);
+ return ret;
+}
+
+#endif /* MBEDTLS_POLY1305_ALT */
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_keys[2][32] =
+{
+ {
+ 0x85, 0xd6, 0xbe, 0x78, 0x57, 0x55, 0x6d, 0x33,
+ 0x7f, 0x44, 0x52, 0xfe, 0x42, 0xd5, 0x06, 0xa8,
+ 0x01, 0x03, 0x80, 0x8a, 0xfb, 0x0d, 0xb2, 0xfd,
+ 0x4a, 0xbf, 0xf6, 0xaf, 0x41, 0x49, 0xf5, 0x1b
+ },
+ {
+ 0x1c, 0x92, 0x40, 0xa5, 0xeb, 0x55, 0xd3, 0x8a,
+ 0xf3, 0x33, 0x88, 0x86, 0x04, 0xf6, 0xb5, 0xf0,
+ 0x47, 0x39, 0x17, 0xc1, 0x40, 0x2b, 0x80, 0x09,
+ 0x9d, 0xca, 0x5c, 0xbc, 0x20, 0x70, 0x75, 0xc0
+ }
+};
+
+static const unsigned char test_data[2][127] =
+{
+ {
+ 0x43, 0x72, 0x79, 0x70, 0x74, 0x6f, 0x67, 0x72,
+ 0x61, 0x70, 0x68, 0x69, 0x63, 0x20, 0x46, 0x6f,
+ 0x72, 0x75, 0x6d, 0x20, 0x52, 0x65, 0x73, 0x65,
+ 0x61, 0x72, 0x63, 0x68, 0x20, 0x47, 0x72, 0x6f,
+ 0x75, 0x70
+ },
+ {
+ 0x27, 0x54, 0x77, 0x61, 0x73, 0x20, 0x62, 0x72,
+ 0x69, 0x6c, 0x6c, 0x69, 0x67, 0x2c, 0x20, 0x61,
+ 0x6e, 0x64, 0x20, 0x74, 0x68, 0x65, 0x20, 0x73,
+ 0x6c, 0x69, 0x74, 0x68, 0x79, 0x20, 0x74, 0x6f,
+ 0x76, 0x65, 0x73, 0x0a, 0x44, 0x69, 0x64, 0x20,
+ 0x67, 0x79, 0x72, 0x65, 0x20, 0x61, 0x6e, 0x64,
+ 0x20, 0x67, 0x69, 0x6d, 0x62, 0x6c, 0x65, 0x20,
+ 0x69, 0x6e, 0x20, 0x74, 0x68, 0x65, 0x20, 0x77,
+ 0x61, 0x62, 0x65, 0x3a, 0x0a, 0x41, 0x6c, 0x6c,
+ 0x20, 0x6d, 0x69, 0x6d, 0x73, 0x79, 0x20, 0x77,
+ 0x65, 0x72, 0x65, 0x20, 0x74, 0x68, 0x65, 0x20,
+ 0x62, 0x6f, 0x72, 0x6f, 0x67, 0x6f, 0x76, 0x65,
+ 0x73, 0x2c, 0x0a, 0x41, 0x6e, 0x64, 0x20, 0x74,
+ 0x68, 0x65, 0x20, 0x6d, 0x6f, 0x6d, 0x65, 0x20,
+ 0x72, 0x61, 0x74, 0x68, 0x73, 0x20, 0x6f, 0x75,
+ 0x74, 0x67, 0x72, 0x61, 0x62, 0x65, 0x2e
+ }
+};
+
+static const size_t test_data_len[2] =
+{
+ 34U,
+ 127U
+};
+
+static const unsigned char test_mac[2][16] =
+{
+ {
+ 0xa8, 0x06, 0x1d, 0xc1, 0x30, 0x51, 0x36, 0xc6,
+ 0xc2, 0x2b, 0x8b, 0xaf, 0x0c, 0x01, 0x27, 0xa9
+ },
+ {
+ 0x45, 0x41, 0x66, 0x9a, 0x7e, 0xaa, 0xee, 0x61,
+ 0xe7, 0x08, 0xdc, 0x7c, 0xbc, 0xc5, 0xeb, 0x62
+ }
+};
+
+/* Make sure no other definition is already present. */
+#undef ASSERT
+
+#define ASSERT(cond, args) \
+ do \
+ { \
+ if (!(cond)) \
+ { \
+ if (verbose != 0) \
+ mbedtls_printf args; \
+ \
+ return -1; \
+ } \
+ } \
+ while (0)
+
+int mbedtls_poly1305_self_test(int verbose)
+{
+ unsigned char mac[16];
+ unsigned i;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ for (i = 0U; i < 2U; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" Poly1305 test %u ", i);
+ }
+
+ ret = mbedtls_poly1305_mac(test_keys[i],
+ test_data[i],
+ test_data_len[i],
+ mac);
+ ASSERT(0 == ret, ("error code: %i\n", ret));
+
+ ASSERT(0 == memcmp(mac, test_mac[i], 16U), ("failed (mac)\n"));
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_POLY1305_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/ripemd160.c b/tf-psa-crypto/drivers/builtin/src/ripemd160.c
new file mode 100644
index 0000000..b4fc3cd
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/ripemd160.c
@@ -0,0 +1,490 @@
+/*
+ * RIPE MD-160 implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The RIPEMD-160 algorithm was designed by RIPE in 1996
+ * http://homes.esat.kuleuven.be/~bosselae/mbedtls_ripemd160.html
+ * http://ehash.iaik.tugraz.at/wiki/RIPEMD-160
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_RIPEMD160_C)
+
+#include "mbedtls/ripemd160.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_RIPEMD160_ALT)
+
+void mbedtls_ripemd160_init(mbedtls_ripemd160_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_ripemd160_context));
+}
+
+void mbedtls_ripemd160_free(mbedtls_ripemd160_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_ripemd160_context));
+}
+
+void mbedtls_ripemd160_clone(mbedtls_ripemd160_context *dst,
+ const mbedtls_ripemd160_context *src)
+{
+ *dst = *src;
+}
+
+/*
+ * RIPEMD-160 context setup
+ */
+int mbedtls_ripemd160_starts(mbedtls_ripemd160_context *ctx)
+{
+ ctx->total[0] = 0;
+ ctx->total[1] = 0;
+
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xEFCDAB89;
+ ctx->state[2] = 0x98BADCFE;
+ ctx->state[3] = 0x10325476;
+ ctx->state[4] = 0xC3D2E1F0;
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_RIPEMD160_PROCESS_ALT)
+/*
+ * Process one block
+ */
+int mbedtls_internal_ripemd160_process(mbedtls_ripemd160_context *ctx,
+ const unsigned char data[64])
+{
+ struct {
+ uint32_t A, B, C, D, E, Ap, Bp, Cp, Dp, Ep, X[16];
+ } local;
+
+ local.X[0] = MBEDTLS_GET_UINT32_LE(data, 0);
+ local.X[1] = MBEDTLS_GET_UINT32_LE(data, 4);
+ local.X[2] = MBEDTLS_GET_UINT32_LE(data, 8);
+ local.X[3] = MBEDTLS_GET_UINT32_LE(data, 12);
+ local.X[4] = MBEDTLS_GET_UINT32_LE(data, 16);
+ local.X[5] = MBEDTLS_GET_UINT32_LE(data, 20);
+ local.X[6] = MBEDTLS_GET_UINT32_LE(data, 24);
+ local.X[7] = MBEDTLS_GET_UINT32_LE(data, 28);
+ local.X[8] = MBEDTLS_GET_UINT32_LE(data, 32);
+ local.X[9] = MBEDTLS_GET_UINT32_LE(data, 36);
+ local.X[10] = MBEDTLS_GET_UINT32_LE(data, 40);
+ local.X[11] = MBEDTLS_GET_UINT32_LE(data, 44);
+ local.X[12] = MBEDTLS_GET_UINT32_LE(data, 48);
+ local.X[13] = MBEDTLS_GET_UINT32_LE(data, 52);
+ local.X[14] = MBEDTLS_GET_UINT32_LE(data, 56);
+ local.X[15] = MBEDTLS_GET_UINT32_LE(data, 60);
+
+ local.A = local.Ap = ctx->state[0];
+ local.B = local.Bp = ctx->state[1];
+ local.C = local.Cp = ctx->state[2];
+ local.D = local.Dp = ctx->state[3];
+ local.E = local.Ep = ctx->state[4];
+
+#define F1(x, y, z) ((x) ^ (y) ^ (z))
+#define F2(x, y, z) (((x) & (y)) | (~(x) & (z)))
+#define F3(x, y, z) (((x) | ~(y)) ^ (z))
+#define F4(x, y, z) (((x) & (z)) | ((y) & ~(z)))
+#define F5(x, y, z) ((x) ^ ((y) | ~(z)))
+
+#define S(x, n) (((x) << (n)) | ((x) >> (32 - (n))))
+
+#define P(a, b, c, d, e, r, s, f, k) \
+ do \
+ { \
+ (a) += f((b), (c), (d)) + local.X[r] + (k); \
+ (a) = S((a), (s)) + (e); \
+ (c) = S((c), 10); \
+ } while (0)
+
+#define P2(a, b, c, d, e, r, s, rp, sp) \
+ do \
+ { \
+ P((a), (b), (c), (d), (e), (r), (s), F, K); \
+ P(a ## p, b ## p, c ## p, d ## p, e ## p, \
+ (rp), (sp), Fp, Kp); \
+ } while (0)
+
+#define F F1
+#define K 0x00000000
+#define Fp F5
+#define Kp 0x50A28BE6
+ P2(local.A, local.B, local.C, local.D, local.E, 0, 11, 5, 8);
+ P2(local.E, local.A, local.B, local.C, local.D, 1, 14, 14, 9);
+ P2(local.D, local.E, local.A, local.B, local.C, 2, 15, 7, 9);
+ P2(local.C, local.D, local.E, local.A, local.B, 3, 12, 0, 11);
+ P2(local.B, local.C, local.D, local.E, local.A, 4, 5, 9, 13);
+ P2(local.A, local.B, local.C, local.D, local.E, 5, 8, 2, 15);
+ P2(local.E, local.A, local.B, local.C, local.D, 6, 7, 11, 15);
+ P2(local.D, local.E, local.A, local.B, local.C, 7, 9, 4, 5);
+ P2(local.C, local.D, local.E, local.A, local.B, 8, 11, 13, 7);
+ P2(local.B, local.C, local.D, local.E, local.A, 9, 13, 6, 7);
+ P2(local.A, local.B, local.C, local.D, local.E, 10, 14, 15, 8);
+ P2(local.E, local.A, local.B, local.C, local.D, 11, 15, 8, 11);
+ P2(local.D, local.E, local.A, local.B, local.C, 12, 6, 1, 14);
+ P2(local.C, local.D, local.E, local.A, local.B, 13, 7, 10, 14);
+ P2(local.B, local.C, local.D, local.E, local.A, 14, 9, 3, 12);
+ P2(local.A, local.B, local.C, local.D, local.E, 15, 8, 12, 6);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F F2
+#define K 0x5A827999
+#define Fp F4
+#define Kp 0x5C4DD124
+ P2(local.E, local.A, local.B, local.C, local.D, 7, 7, 6, 9);
+ P2(local.D, local.E, local.A, local.B, local.C, 4, 6, 11, 13);
+ P2(local.C, local.D, local.E, local.A, local.B, 13, 8, 3, 15);
+ P2(local.B, local.C, local.D, local.E, local.A, 1, 13, 7, 7);
+ P2(local.A, local.B, local.C, local.D, local.E, 10, 11, 0, 12);
+ P2(local.E, local.A, local.B, local.C, local.D, 6, 9, 13, 8);
+ P2(local.D, local.E, local.A, local.B, local.C, 15, 7, 5, 9);
+ P2(local.C, local.D, local.E, local.A, local.B, 3, 15, 10, 11);
+ P2(local.B, local.C, local.D, local.E, local.A, 12, 7, 14, 7);
+ P2(local.A, local.B, local.C, local.D, local.E, 0, 12, 15, 7);
+ P2(local.E, local.A, local.B, local.C, local.D, 9, 15, 8, 12);
+ P2(local.D, local.E, local.A, local.B, local.C, 5, 9, 12, 7);
+ P2(local.C, local.D, local.E, local.A, local.B, 2, 11, 4, 6);
+ P2(local.B, local.C, local.D, local.E, local.A, 14, 7, 9, 15);
+ P2(local.A, local.B, local.C, local.D, local.E, 11, 13, 1, 13);
+ P2(local.E, local.A, local.B, local.C, local.D, 8, 12, 2, 11);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F F3
+#define K 0x6ED9EBA1
+#define Fp F3
+#define Kp 0x6D703EF3
+ P2(local.D, local.E, local.A, local.B, local.C, 3, 11, 15, 9);
+ P2(local.C, local.D, local.E, local.A, local.B, 10, 13, 5, 7);
+ P2(local.B, local.C, local.D, local.E, local.A, 14, 6, 1, 15);
+ P2(local.A, local.B, local.C, local.D, local.E, 4, 7, 3, 11);
+ P2(local.E, local.A, local.B, local.C, local.D, 9, 14, 7, 8);
+ P2(local.D, local.E, local.A, local.B, local.C, 15, 9, 14, 6);
+ P2(local.C, local.D, local.E, local.A, local.B, 8, 13, 6, 6);
+ P2(local.B, local.C, local.D, local.E, local.A, 1, 15, 9, 14);
+ P2(local.A, local.B, local.C, local.D, local.E, 2, 14, 11, 12);
+ P2(local.E, local.A, local.B, local.C, local.D, 7, 8, 8, 13);
+ P2(local.D, local.E, local.A, local.B, local.C, 0, 13, 12, 5);
+ P2(local.C, local.D, local.E, local.A, local.B, 6, 6, 2, 14);
+ P2(local.B, local.C, local.D, local.E, local.A, 13, 5, 10, 13);
+ P2(local.A, local.B, local.C, local.D, local.E, 11, 12, 0, 13);
+ P2(local.E, local.A, local.B, local.C, local.D, 5, 7, 4, 7);
+ P2(local.D, local.E, local.A, local.B, local.C, 12, 5, 13, 5);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F F4
+#define K 0x8F1BBCDC
+#define Fp F2
+#define Kp 0x7A6D76E9
+ P2(local.C, local.D, local.E, local.A, local.B, 1, 11, 8, 15);
+ P2(local.B, local.C, local.D, local.E, local.A, 9, 12, 6, 5);
+ P2(local.A, local.B, local.C, local.D, local.E, 11, 14, 4, 8);
+ P2(local.E, local.A, local.B, local.C, local.D, 10, 15, 1, 11);
+ P2(local.D, local.E, local.A, local.B, local.C, 0, 14, 3, 14);
+ P2(local.C, local.D, local.E, local.A, local.B, 8, 15, 11, 14);
+ P2(local.B, local.C, local.D, local.E, local.A, 12, 9, 15, 6);
+ P2(local.A, local.B, local.C, local.D, local.E, 4, 8, 0, 14);
+ P2(local.E, local.A, local.B, local.C, local.D, 13, 9, 5, 6);
+ P2(local.D, local.E, local.A, local.B, local.C, 3, 14, 12, 9);
+ P2(local.C, local.D, local.E, local.A, local.B, 7, 5, 2, 12);
+ P2(local.B, local.C, local.D, local.E, local.A, 15, 6, 13, 9);
+ P2(local.A, local.B, local.C, local.D, local.E, 14, 8, 9, 12);
+ P2(local.E, local.A, local.B, local.C, local.D, 5, 6, 7, 5);
+ P2(local.D, local.E, local.A, local.B, local.C, 6, 5, 10, 15);
+ P2(local.C, local.D, local.E, local.A, local.B, 2, 12, 14, 8);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+#define F F5
+#define K 0xA953FD4E
+#define Fp F1
+#define Kp 0x00000000
+ P2(local.B, local.C, local.D, local.E, local.A, 4, 9, 12, 8);
+ P2(local.A, local.B, local.C, local.D, local.E, 0, 15, 15, 5);
+ P2(local.E, local.A, local.B, local.C, local.D, 5, 5, 10, 12);
+ P2(local.D, local.E, local.A, local.B, local.C, 9, 11, 4, 9);
+ P2(local.C, local.D, local.E, local.A, local.B, 7, 6, 1, 12);
+ P2(local.B, local.C, local.D, local.E, local.A, 12, 8, 5, 5);
+ P2(local.A, local.B, local.C, local.D, local.E, 2, 13, 8, 14);
+ P2(local.E, local.A, local.B, local.C, local.D, 10, 12, 7, 6);
+ P2(local.D, local.E, local.A, local.B, local.C, 14, 5, 6, 8);
+ P2(local.C, local.D, local.E, local.A, local.B, 1, 12, 2, 13);
+ P2(local.B, local.C, local.D, local.E, local.A, 3, 13, 13, 6);
+ P2(local.A, local.B, local.C, local.D, local.E, 8, 14, 14, 5);
+ P2(local.E, local.A, local.B, local.C, local.D, 11, 11, 0, 15);
+ P2(local.D, local.E, local.A, local.B, local.C, 6, 8, 3, 13);
+ P2(local.C, local.D, local.E, local.A, local.B, 15, 5, 9, 11);
+ P2(local.B, local.C, local.D, local.E, local.A, 13, 6, 11, 11);
+#undef F
+#undef K
+#undef Fp
+#undef Kp
+
+ local.C = ctx->state[1] + local.C + local.Dp;
+ ctx->state[1] = ctx->state[2] + local.D + local.Ep;
+ ctx->state[2] = ctx->state[3] + local.E + local.Ap;
+ ctx->state[3] = ctx->state[4] + local.A + local.Bp;
+ ctx->state[4] = ctx->state[0] + local.B + local.Cp;
+ ctx->state[0] = local.C;
+
+ /* Zeroise variables to clear sensitive data from memory. */
+ mbedtls_platform_zeroize(&local, sizeof(local));
+
+ return 0;
+}
+
+#endif /* !MBEDTLS_RIPEMD160_PROCESS_ALT */
+
+/*
+ * RIPEMD-160 process buffer
+ */
+int mbedtls_ripemd160_update(mbedtls_ripemd160_context *ctx,
+ const unsigned char *input,
+ size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t fill;
+ uint32_t left;
+
+ if (ilen == 0) {
+ return 0;
+ }
+
+ left = ctx->total[0] & 0x3F;
+ fill = 64 - left;
+
+ ctx->total[0] += (uint32_t) ilen;
+ ctx->total[0] &= 0xFFFFFFFF;
+
+ if (ctx->total[0] < (uint32_t) ilen) {
+ ctx->total[1]++;
+ }
+
+ if (left && ilen >= fill) {
+ memcpy((void *) (ctx->buffer + left), input, fill);
+
+ if ((ret = mbedtls_internal_ripemd160_process(ctx, ctx->buffer)) != 0) {
+ return ret;
+ }
+
+ input += fill;
+ ilen -= fill;
+ left = 0;
+ }
+
+ while (ilen >= 64) {
+ if ((ret = mbedtls_internal_ripemd160_process(ctx, input)) != 0) {
+ return ret;
+ }
+
+ input += 64;
+ ilen -= 64;
+ }
+
+ if (ilen > 0) {
+ memcpy((void *) (ctx->buffer + left), input, ilen);
+ }
+
+ return 0;
+}
+
+static const unsigned char ripemd160_padding[64] =
+{
+ 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
+};
+
+/*
+ * RIPEMD-160 final digest
+ */
+int mbedtls_ripemd160_finish(mbedtls_ripemd160_context *ctx,
+ unsigned char output[20])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ uint32_t last, padn;
+ uint32_t high, low;
+ unsigned char msglen[8];
+
+ high = (ctx->total[0] >> 29)
+ | (ctx->total[1] << 3);
+ low = (ctx->total[0] << 3);
+
+ MBEDTLS_PUT_UINT32_LE(low, msglen, 0);
+ MBEDTLS_PUT_UINT32_LE(high, msglen, 4);
+
+ last = ctx->total[0] & 0x3F;
+ padn = (last < 56) ? (56 - last) : (120 - last);
+
+ ret = mbedtls_ripemd160_update(ctx, ripemd160_padding, padn);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ ret = mbedtls_ripemd160_update(ctx, msglen, 8);
+ if (ret != 0) {
+ goto exit;
+ }
+
+ MBEDTLS_PUT_UINT32_LE(ctx->state[0], output, 0);
+ MBEDTLS_PUT_UINT32_LE(ctx->state[1], output, 4);
+ MBEDTLS_PUT_UINT32_LE(ctx->state[2], output, 8);
+ MBEDTLS_PUT_UINT32_LE(ctx->state[3], output, 12);
+ MBEDTLS_PUT_UINT32_LE(ctx->state[4], output, 16);
+
+ ret = 0;
+
+exit:
+ mbedtls_ripemd160_free(ctx);
+ return ret;
+}
+
+#endif /* ! MBEDTLS_RIPEMD160_ALT */
+
+/*
+ * output = RIPEMD-160( input buffer )
+ */
+int mbedtls_ripemd160(const unsigned char *input,
+ size_t ilen,
+ unsigned char output[20])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_ripemd160_context ctx;
+
+ mbedtls_ripemd160_init(&ctx);
+
+ if ((ret = mbedtls_ripemd160_starts(&ctx)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_ripemd160_update(&ctx, input, ilen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_ripemd160_finish(&ctx, output)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_ripemd160_free(&ctx);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * Test vectors from the RIPEMD-160 paper and
+ * http://homes.esat.kuleuven.be/~bosselae/mbedtls_ripemd160.html#HMAC
+ */
+#define TESTS 8
+static const unsigned char ripemd160_test_str[TESTS][81] =
+{
+ { "" },
+ { "a" },
+ { "abc" },
+ { "message digest" },
+ { "abcdefghijklmnopqrstuvwxyz" },
+ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
+ { "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789" },
+ { "12345678901234567890123456789012345678901234567890123456789012345678901234567890" },
+};
+
+static const size_t ripemd160_test_strlen[TESTS] =
+{
+ 0, 1, 3, 14, 26, 56, 62, 80
+};
+
+static const unsigned char ripemd160_test_md[TESTS][20] =
+{
+ { 0x9c, 0x11, 0x85, 0xa5, 0xc5, 0xe9, 0xfc, 0x54, 0x61, 0x28,
+ 0x08, 0x97, 0x7e, 0xe8, 0xf5, 0x48, 0xb2, 0x25, 0x8d, 0x31 },
+ { 0x0b, 0xdc, 0x9d, 0x2d, 0x25, 0x6b, 0x3e, 0xe9, 0xda, 0xae,
+ 0x34, 0x7b, 0xe6, 0xf4, 0xdc, 0x83, 0x5a, 0x46, 0x7f, 0xfe },
+ { 0x8e, 0xb2, 0x08, 0xf7, 0xe0, 0x5d, 0x98, 0x7a, 0x9b, 0x04,
+ 0x4a, 0x8e, 0x98, 0xc6, 0xb0, 0x87, 0xf1, 0x5a, 0x0b, 0xfc },
+ { 0x5d, 0x06, 0x89, 0xef, 0x49, 0xd2, 0xfa, 0xe5, 0x72, 0xb8,
+ 0x81, 0xb1, 0x23, 0xa8, 0x5f, 0xfa, 0x21, 0x59, 0x5f, 0x36 },
+ { 0xf7, 0x1c, 0x27, 0x10, 0x9c, 0x69, 0x2c, 0x1b, 0x56, 0xbb,
+ 0xdc, 0xeb, 0x5b, 0x9d, 0x28, 0x65, 0xb3, 0x70, 0x8d, 0xbc },
+ { 0x12, 0xa0, 0x53, 0x38, 0x4a, 0x9c, 0x0c, 0x88, 0xe4, 0x05,
+ 0xa0, 0x6c, 0x27, 0xdc, 0xf4, 0x9a, 0xda, 0x62, 0xeb, 0x2b },
+ { 0xb0, 0xe2, 0x0b, 0x6e, 0x31, 0x16, 0x64, 0x02, 0x86, 0xed,
+ 0x3a, 0x87, 0xa5, 0x71, 0x30, 0x79, 0xb2, 0x1f, 0x51, 0x89 },
+ { 0x9b, 0x75, 0x2e, 0x45, 0x57, 0x3d, 0x4b, 0x39, 0xf4, 0xdb,
+ 0xd3, 0x32, 0x3c, 0xab, 0x82, 0xbf, 0x63, 0x32, 0x6b, 0xfb },
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_ripemd160_self_test(int verbose)
+{
+ int i, ret = 0;
+ unsigned char output[20];
+
+ memset(output, 0, sizeof(output));
+
+ for (i = 0; i < TESTS; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" RIPEMD-160 test #%d: ", i + 1);
+ }
+
+ ret = mbedtls_ripemd160(ripemd160_test_str[i],
+ ripemd160_test_strlen[i], output);
+ if (ret != 0) {
+ goto fail;
+ }
+
+ if (memcmp(output, ripemd160_test_md[i], 20) != 0) {
+ ret = 1;
+ goto fail;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+
+fail:
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_RIPEMD160_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa.c b/tf-psa-crypto/drivers/builtin/src/rsa.c
new file mode 100644
index 0000000..8a4c3d0
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa.c
@@ -0,0 +1,3061 @@
+/*
+ * The RSA public-key cryptosystem
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * The following sources were referenced in the design of this implementation
+ * of the RSA algorithm:
+ *
+ * [1] A method for obtaining digital signatures and public-key cryptosystems
+ * R Rivest, A Shamir, and L Adleman
+ * http://people.csail.mit.edu/rivest/pubs.html#RSA78
+ *
+ * [2] Handbook of Applied Cryptography - 1997, Chapter 8
+ * Menezes, van Oorschot and Vanstone
+ *
+ * [3] Malware Guard Extension: Using SGX to Conceal Cache Attacks
+ * Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice and
+ * Stefan Mangard
+ * https://arxiv.org/abs/1702.08719v2
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_RSA_C)
+
+#include "mbedtls/rsa.h"
+#include "bignum_core.h"
+#include "rsa_alt_helpers.h"
+#include "rsa_internal.h"
+#include "mbedtls/oid.h"
+#include "mbedtls/asn1write.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+#include "constant_time_internal.h"
+#include "mbedtls/constant_time.h"
+#include "md_psa.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_PKCS1_V15) && !defined(__OpenBSD__) && !defined(__NetBSD__)
+#include <stdlib.h>
+#endif
+
+#include "mbedtls/platform.h"
+
+/*
+ * Wrapper around mbedtls_asn1_get_mpi() that rejects zero.
+ *
+ * The value zero is:
+ * - never a valid value for an RSA parameter
+ * - interpreted as "omitted, please reconstruct" by mbedtls_rsa_complete().
+ *
+ * Since values can't be omitted in PKCS#1, passing a zero value to
+ * rsa_complete() would be incorrect, so reject zero values early.
+ */
+static int asn1_get_nonzero_mpi(unsigned char **p,
+ const unsigned char *end,
+ mbedtls_mpi *X)
+{
+ int ret;
+
+ ret = mbedtls_asn1_get_mpi(p, end, X);
+ if (ret != 0) {
+ return ret;
+ }
+
+ if (mbedtls_mpi_cmp_int(X, 0) == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+
+int mbedtls_rsa_parse_key(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
+{
+ int ret, version;
+ size_t len;
+ unsigned char *p, *end;
+
+ mbedtls_mpi T;
+ mbedtls_mpi_init(&T);
+
+ p = (unsigned char *) key;
+ end = p + keylen;
+
+ /*
+ * This function parses the RSAPrivateKey (PKCS#1)
+ *
+ * RSAPrivateKey ::= SEQUENCE {
+ * version Version,
+ * modulus INTEGER, -- n
+ * publicExponent INTEGER, -- e
+ * privateExponent INTEGER, -- d
+ * prime1 INTEGER, -- p
+ * prime2 INTEGER, -- q
+ * exponent1 INTEGER, -- d mod (p-1)
+ * exponent2 INTEGER, -- d mod (q-1)
+ * coefficient INTEGER, -- (inverse of q) mod p
+ * otherPrimeInfos OtherPrimeInfos OPTIONAL
+ * }
+ */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return ret;
+ }
+
+ if (end != p + len) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if ((ret = mbedtls_asn1_get_int(&p, end, &version)) != 0) {
+ return ret;
+ }
+
+ if (version != 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /* Import N */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_rsa_import(rsa, &T, NULL, NULL,
+ NULL, NULL)) != 0) {
+ goto cleanup;
+ }
+
+ /* Import E */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
+ NULL, &T)) != 0) {
+ goto cleanup;
+ }
+
+ /* Import D */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_rsa_import(rsa, NULL, NULL, NULL,
+ &T, NULL)) != 0) {
+ goto cleanup;
+ }
+
+ /* Import P */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_rsa_import(rsa, NULL, &T, NULL,
+ NULL, NULL)) != 0) {
+ goto cleanup;
+ }
+
+ /* Import Q */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_rsa_import(rsa, NULL, NULL, &T,
+ NULL, NULL)) != 0) {
+ goto cleanup;
+ }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ /*
+ * The RSA CRT parameters DP, DQ and QP are nominally redundant, in
+ * that they can be easily recomputed from D, P and Q. However by
+ * parsing them from the PKCS1 structure it is possible to avoid
+ * recalculating them which both reduces the overhead of loading
+ * RSA private keys into memory and also avoids side channels which
+ * can arise when computing those values, since all of D, P, and Q
+ * are secret. See https://eprint.iacr.org/2020/055 for a
+ * description of one such attack.
+ */
+
+ /* Import DP */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_mpi_copy(&rsa->DP, &T)) != 0) {
+ goto cleanup;
+ }
+
+ /* Import DQ */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_mpi_copy(&rsa->DQ, &T)) != 0) {
+ goto cleanup;
+ }
+
+ /* Import QP */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = mbedtls_mpi_copy(&rsa->QP, &T)) != 0) {
+ goto cleanup;
+ }
+
+#else
+ /* Verify existence of the CRT params */
+ if ((ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0 ||
+ (ret = asn1_get_nonzero_mpi(&p, end, &T)) != 0) {
+ goto cleanup;
+ }
+#endif
+
+ /* rsa_complete() doesn't complete anything with the default
+ * implementation but is still called:
+ * - for the benefit of alternative implementation that may want to
+ * pre-compute stuff beyond what's provided (eg Montgomery factors)
+ * - as is also sanity-checks the key
+ *
+ * Furthermore, we also check the public part for consistency with
+ * mbedtls_pk_parse_pubkey(), as it includes size minima for example.
+ */
+ if ((ret = mbedtls_rsa_complete(rsa)) != 0 ||
+ (ret = mbedtls_rsa_check_pubkey(rsa)) != 0) {
+ goto cleanup;
+ }
+
+ if (p != end) {
+ ret = MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&T);
+
+ if (ret != 0) {
+ mbedtls_rsa_free(rsa);
+ }
+
+ return ret;
+}
+
+int mbedtls_rsa_parse_pubkey(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen)
+{
+ unsigned char *p = (unsigned char *) key;
+ unsigned char *end = (unsigned char *) (key + keylen);
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len;
+
+ /*
+ * RSAPublicKey ::= SEQUENCE {
+ * modulus INTEGER, -- n
+ * publicExponent INTEGER -- e
+ * }
+ */
+
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len,
+ MBEDTLS_ASN1_CONSTRUCTED | MBEDTLS_ASN1_SEQUENCE)) != 0) {
+ return ret;
+ }
+
+ if (end != p + len) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /* Import N */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_rsa_import_raw(rsa, p, len, NULL, 0, NULL, 0,
+ NULL, 0, NULL, 0)) != 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ p += len;
+
+ /* Import E */
+ if ((ret = mbedtls_asn1_get_tag(&p, end, &len, MBEDTLS_ASN1_INTEGER)) != 0) {
+ return ret;
+ }
+
+ if ((ret = mbedtls_rsa_import_raw(rsa, NULL, 0, NULL, 0, NULL, 0,
+ NULL, 0, p, len)) != 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ p += len;
+
+ if (mbedtls_rsa_complete(rsa) != 0 ||
+ mbedtls_rsa_check_pubkey(rsa) != 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (p != end) {
+ return MBEDTLS_ERR_ASN1_LENGTH_MISMATCH;
+ }
+
+ return 0;
+}
+
+int mbedtls_rsa_write_key(const mbedtls_rsa_context *rsa, unsigned char *start,
+ unsigned char **p)
+{
+ size_t len = 0;
+ int ret;
+
+ mbedtls_mpi T; /* Temporary holding the exported parameters */
+
+ /*
+ * Export the parameters one after another to avoid simultaneous copies.
+ */
+
+ mbedtls_mpi_init(&T);
+
+ /* Export QP */
+ if ((ret = mbedtls_rsa_export_crt(rsa, NULL, NULL, &T)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export DQ */
+ if ((ret = mbedtls_rsa_export_crt(rsa, NULL, &T, NULL)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export DP */
+ if ((ret = mbedtls_rsa_export_crt(rsa, &T, NULL, NULL)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export Q */
+ if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, &T, NULL, NULL)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export P */
+ if ((ret = mbedtls_rsa_export(rsa, NULL, &T, NULL, NULL, NULL)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export D */
+ if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, &T, NULL)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export E */
+ if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export N */
+ if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+end_of_export:
+
+ mbedtls_mpi_free(&T);
+ if (ret < 0) {
+ return ret;
+ }
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_int(p, start, 0));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start,
+ MBEDTLS_ASN1_CONSTRUCTED |
+ MBEDTLS_ASN1_SEQUENCE));
+
+ return (int) len;
+}
+
+/*
+ * RSAPublicKey ::= SEQUENCE {
+ * modulus INTEGER, -- n
+ * publicExponent INTEGER -- e
+ * }
+ */
+int mbedtls_rsa_write_pubkey(const mbedtls_rsa_context *rsa, unsigned char *start,
+ unsigned char **p)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t len = 0;
+ mbedtls_mpi T;
+
+ mbedtls_mpi_init(&T);
+
+ /* Export E */
+ if ((ret = mbedtls_rsa_export(rsa, NULL, NULL, NULL, NULL, &T)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+ /* Export N */
+ if ((ret = mbedtls_rsa_export(rsa, &T, NULL, NULL, NULL, NULL)) != 0 ||
+ (ret = mbedtls_asn1_write_mpi(p, start, &T)) < 0) {
+ goto end_of_export;
+ }
+ len += ret;
+
+end_of_export:
+
+ mbedtls_mpi_free(&T);
+ if (ret < 0) {
+ return ret;
+ }
+
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_len(p, start, len));
+ MBEDTLS_ASN1_CHK_ADD(len, mbedtls_asn1_write_tag(p, start, MBEDTLS_ASN1_CONSTRUCTED |
+ MBEDTLS_ASN1_SEQUENCE));
+
+ return (int) len;
+}
+
+#if defined(MBEDTLS_PKCS1_V15) && defined(MBEDTLS_RSA_C)
+
+/** This function performs the unpadding part of a PKCS#1 v1.5 decryption
+ * operation (EME-PKCS1-v1_5 decoding).
+ *
+ * \note The return value from this function is a sensitive value
+ * (this is unusual). #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE shouldn't happen
+ * in a well-written application, but 0 vs #MBEDTLS_ERR_RSA_INVALID_PADDING
+ * is often a situation that an attacker can provoke and leaking which
+ * one is the result is precisely the information the attacker wants.
+ *
+ * \param input The input buffer which is the payload inside PKCS#1v1.5
+ * encryption padding, called the "encoded message EM"
+ * by the terminology.
+ * \param ilen The length of the payload in the \p input buffer.
+ * \param output The buffer for the payload, called "message M" by the
+ * PKCS#1 terminology. This must be a writable buffer of
+ * length \p output_max_len bytes.
+ * \param olen The address at which to store the length of
+ * the payload. This must not be \c NULL.
+ * \param output_max_len The length in bytes of the output buffer \p output.
+ *
+ * \return \c 0 on success.
+ * \return #MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE
+ * The output buffer is too small for the unpadded payload.
+ * \return #MBEDTLS_ERR_RSA_INVALID_PADDING
+ * The input doesn't contain properly formatted padding.
+ */
+static int mbedtls_ct_rsaes_pkcs1_v15_unpadding(unsigned char *input,
+ size_t ilen,
+ unsigned char *output,
+ size_t output_max_len,
+ size_t *olen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t i, plaintext_max_size;
+
+ /* The following variables take sensitive values: their value must
+ * not leak into the observable behavior of the function other than
+ * the designated outputs (output, olen, return value). Otherwise
+ * this would open the execution of the function to
+ * side-channel-based variants of the Bleichenbacher padding oracle
+ * attack. Potential side channels include overall timing, memory
+ * access patterns (especially visible to an adversary who has access
+ * to a shared memory cache), and branches (especially visible to
+ * an adversary who has access to a shared code cache or to a shared
+ * branch predictor). */
+ size_t pad_count = 0;
+ mbedtls_ct_condition_t bad;
+ mbedtls_ct_condition_t pad_done;
+ size_t plaintext_size = 0;
+ mbedtls_ct_condition_t output_too_large;
+
+ plaintext_max_size = (output_max_len > ilen - 11) ? ilen - 11
+ : output_max_len;
+
+ /* Check and get padding length in constant time and constant
+ * memory trace. The first byte must be 0. */
+ bad = mbedtls_ct_bool(input[0]);
+
+
+ /* Decode EME-PKCS1-v1_5 padding: 0x00 || 0x02 || PS || 0x00
+ * where PS must be at least 8 nonzero bytes. */
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(input[1], MBEDTLS_RSA_CRYPT));
+
+ /* Read the whole buffer. Set pad_done to nonzero if we find
+ * the 0x00 byte and remember the padding length in pad_count. */
+ pad_done = MBEDTLS_CT_FALSE;
+ for (i = 2; i < ilen; i++) {
+ mbedtls_ct_condition_t found = mbedtls_ct_uint_eq(input[i], 0);
+ pad_done = mbedtls_ct_bool_or(pad_done, found);
+ pad_count += mbedtls_ct_uint_if_else_0(mbedtls_ct_bool_not(pad_done), 1);
+ }
+
+ /* If pad_done is still zero, there's no data, only unfinished padding. */
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool_not(pad_done));
+
+ /* There must be at least 8 bytes of padding. */
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_gt(8, pad_count));
+
+ /* If the padding is valid, set plaintext_size to the number of
+ * remaining bytes after stripping the padding. If the padding
+ * is invalid, avoid leaking this fact through the size of the
+ * output: use the maximum message size that fits in the output
+ * buffer. Do it without branches to avoid leaking the padding
+ * validity through timing. RSA keys are small enough that all the
+ * size_t values involved fit in unsigned int. */
+ plaintext_size = mbedtls_ct_uint_if(
+ bad, (unsigned) plaintext_max_size,
+ (unsigned) (ilen - pad_count - 3));
+
+ /* Set output_too_large to 0 if the plaintext fits in the output
+ * buffer and to 1 otherwise. */
+ output_too_large = mbedtls_ct_uint_gt(plaintext_size,
+ plaintext_max_size);
+
+ /* Set ret without branches to avoid timing attacks. Return:
+ * - INVALID_PADDING if the padding is bad (bad != 0).
+ * - OUTPUT_TOO_LARGE if the padding is good but the decrypted
+ * plaintext does not fit in the output buffer.
+ * - 0 if the padding is correct. */
+ ret = mbedtls_ct_error_if(
+ bad,
+ MBEDTLS_ERR_RSA_INVALID_PADDING,
+ mbedtls_ct_error_if_else_0(output_too_large, MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE)
+ );
+
+ /* If the padding is bad or the plaintext is too large, zero the
+ * data that we're about to copy to the output buffer.
+ * We need to copy the same amount of data
+ * from the same buffer whether the padding is good or not to
+ * avoid leaking the padding validity through overall timing or
+ * through memory or cache access patterns. */
+ mbedtls_ct_zeroize_if(mbedtls_ct_bool_or(bad, output_too_large), input + 11, ilen - 11);
+
+ /* If the plaintext is too large, truncate it to the buffer size.
+ * Copy anyway to avoid revealing the length through timing, because
+ * revealing the length is as bad as revealing the padding validity
+ * for a Bleichenbacher attack. */
+ plaintext_size = mbedtls_ct_uint_if(output_too_large,
+ (unsigned) plaintext_max_size,
+ (unsigned) plaintext_size);
+
+ /* Move the plaintext to the leftmost position where it can start in
+ * the working buffer, i.e. make it start plaintext_max_size from
+ * the end of the buffer. Do this with a memory access trace that
+ * does not depend on the plaintext size. After this move, the
+ * starting location of the plaintext is no longer sensitive
+ * information. */
+ mbedtls_ct_memmove_left(input + ilen - plaintext_max_size,
+ plaintext_max_size,
+ plaintext_max_size - plaintext_size);
+
+ /* Finally copy the decrypted plaintext plus trailing zeros into the output
+ * buffer. If output_max_len is 0, then output may be an invalid pointer
+ * and the result of memcpy() would be undefined; prevent undefined
+ * behavior making sure to depend only on output_max_len (the size of the
+ * user-provided output buffer), which is independent from plaintext
+ * length, validity of padding, success of the decryption, and other
+ * secrets. */
+ if (output_max_len != 0) {
+ memcpy(output, input + ilen - plaintext_max_size, plaintext_max_size);
+ }
+
+ /* Report the amount of data we copied to the output buffer. In case
+ * of errors (bad padding or output too large), the value of *olen
+ * when this function returns is not specified. Making it equivalent
+ * to the good case limits the risks of leaking the padding validity. */
+ *olen = plaintext_size;
+
+ return ret;
+}
+
+#endif /* MBEDTLS_PKCS1_V15 && MBEDTLS_RSA_C */
+
+int mbedtls_rsa_import(mbedtls_rsa_context *ctx,
+ const mbedtls_mpi *N,
+ const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, const mbedtls_mpi *E)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ if ((N != NULL && (ret = mbedtls_mpi_copy(&ctx->N, N)) != 0) ||
+ (P != NULL && (ret = mbedtls_mpi_copy(&ctx->P, P)) != 0) ||
+ (Q != NULL && (ret = mbedtls_mpi_copy(&ctx->Q, Q)) != 0) ||
+ (D != NULL && (ret = mbedtls_mpi_copy(&ctx->D, D)) != 0) ||
+ (E != NULL && (ret = mbedtls_mpi_copy(&ctx->E, E)) != 0)) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+
+ if (N != NULL) {
+ ctx->len = mbedtls_mpi_size(&ctx->N);
+ }
+
+ return 0;
+}
+
+int mbedtls_rsa_import_raw(mbedtls_rsa_context *ctx,
+ unsigned char const *N, size_t N_len,
+ unsigned char const *P, size_t P_len,
+ unsigned char const *Q, size_t Q_len,
+ unsigned char const *D, size_t D_len,
+ unsigned char const *E, size_t E_len)
+{
+ int ret = 0;
+
+ if (N != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->N, N, N_len));
+ ctx->len = mbedtls_mpi_size(&ctx->N);
+ }
+
+ if (P != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->P, P, P_len));
+ }
+
+ if (Q != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->Q, Q, Q_len));
+ }
+
+ if (D != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->D, D, D_len));
+ }
+
+ if (E != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&ctx->E, E, E_len));
+ }
+
+cleanup:
+
+ if (ret != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+
+ return 0;
+}
+
+/*
+ * Checks whether the context fields are set in such a way
+ * that the RSA primitives will be able to execute without error.
+ * It does *not* make guarantees for consistency of the parameters.
+ */
+static int rsa_check_context(mbedtls_rsa_context const *ctx, int is_priv,
+ int blinding_needed)
+{
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ /* blinding_needed is only used for NO_CRT to decide whether
+ * P,Q need to be present or not. */
+ ((void) blinding_needed);
+#endif
+
+ if (ctx->len != mbedtls_mpi_size(&ctx->N) ||
+ ctx->len > MBEDTLS_MPI_MAX_SIZE) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /*
+ * 1. Modular exponentiation needs positive, odd moduli.
+ */
+
+ /* Modular exponentiation wrt. N is always used for
+ * RSA public key operations. */
+ if (mbedtls_mpi_cmp_int(&ctx->N, 0) <= 0 ||
+ mbedtls_mpi_get_bit(&ctx->N, 0) == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ /* Modular exponentiation for P and Q is only
+ * used for private key operations and if CRT
+ * is used. */
+ if (is_priv &&
+ (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
+ mbedtls_mpi_get_bit(&ctx->P, 0) == 0 ||
+ mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0 ||
+ mbedtls_mpi_get_bit(&ctx->Q, 0) == 0)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+#endif /* !MBEDTLS_RSA_NO_CRT */
+
+ /*
+ * 2. Exponents must be positive
+ */
+
+ /* Always need E for public key operations */
+ if (mbedtls_mpi_cmp_int(&ctx->E, 0) <= 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+ /* For private key operations, use D or DP & DQ
+ * as (unblinded) exponents. */
+ if (is_priv && mbedtls_mpi_cmp_int(&ctx->D, 0) <= 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+#else
+ if (is_priv &&
+ (mbedtls_mpi_cmp_int(&ctx->DP, 0) <= 0 ||
+ mbedtls_mpi_cmp_int(&ctx->DQ, 0) <= 0)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+ /* Blinding shouldn't make exponents negative either,
+ * so check that P, Q >= 1 if that hasn't yet been
+ * done as part of 1. */
+#if defined(MBEDTLS_RSA_NO_CRT)
+ if (is_priv && blinding_needed &&
+ (mbedtls_mpi_cmp_int(&ctx->P, 0) <= 0 ||
+ mbedtls_mpi_cmp_int(&ctx->Q, 0) <= 0)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+#endif
+
+ /* It wouldn't lead to an error if it wasn't satisfied,
+ * but check for QP >= 1 nonetheless. */
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ if (is_priv &&
+ mbedtls_mpi_cmp_int(&ctx->QP, 0) <= 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+#endif
+
+ return 0;
+}
+
+int mbedtls_rsa_complete(mbedtls_rsa_context *ctx)
+{
+ int ret = 0;
+ int have_N, have_P, have_Q, have_D, have_E;
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ int have_DP, have_DQ, have_QP;
+#endif
+ int n_missing, pq_missing, d_missing, is_pub, is_priv;
+
+ have_N = (mbedtls_mpi_cmp_int(&ctx->N, 0) != 0);
+ have_P = (mbedtls_mpi_cmp_int(&ctx->P, 0) != 0);
+ have_Q = (mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0);
+ have_D = (mbedtls_mpi_cmp_int(&ctx->D, 0) != 0);
+ have_E = (mbedtls_mpi_cmp_int(&ctx->E, 0) != 0);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ have_DP = (mbedtls_mpi_cmp_int(&ctx->DP, 0) != 0);
+ have_DQ = (mbedtls_mpi_cmp_int(&ctx->DQ, 0) != 0);
+ have_QP = (mbedtls_mpi_cmp_int(&ctx->QP, 0) != 0);
+#endif
+
+ /*
+ * Check whether provided parameters are enough
+ * to deduce all others. The following incomplete
+ * parameter sets for private keys are supported:
+ *
+ * (1) P, Q missing.
+ * (2) D and potentially N missing.
+ *
+ */
+
+ n_missing = have_P && have_Q && have_D && have_E;
+ pq_missing = have_N && !have_P && !have_Q && have_D && have_E;
+ d_missing = have_P && have_Q && !have_D && have_E;
+ is_pub = have_N && !have_P && !have_Q && !have_D && have_E;
+
+ /* These three alternatives are mutually exclusive */
+ is_priv = n_missing || pq_missing || d_missing;
+
+ if (!is_priv && !is_pub) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Step 1: Deduce N if P, Q are provided.
+ */
+
+ if (!have_N && have_P && have_Q) {
+ if ((ret = mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P,
+ &ctx->Q)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+
+ ctx->len = mbedtls_mpi_size(&ctx->N);
+ }
+
+ /*
+ * Step 2: Deduce and verify all remaining core parameters.
+ */
+
+ if (pq_missing) {
+ ret = mbedtls_rsa_deduce_primes(&ctx->N, &ctx->E, &ctx->D,
+ &ctx->P, &ctx->Q);
+ if (ret != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+
+ } else if (d_missing) {
+ if ((ret = mbedtls_rsa_deduce_private_exponent(&ctx->P,
+ &ctx->Q,
+ &ctx->E,
+ &ctx->D)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+ }
+
+ /*
+ * Step 3: Deduce all additional parameters specific
+ * to our current RSA implementation.
+ */
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ if (is_priv && !(have_DP && have_DQ && have_QP)) {
+ ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
+ &ctx->DP, &ctx->DQ, &ctx->QP);
+ if (ret != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+ }
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+ /*
+ * Step 3: Basic sanity checks
+ */
+
+ return rsa_check_context(ctx, is_priv, 1);
+}
+
+int mbedtls_rsa_export_raw(const mbedtls_rsa_context *ctx,
+ unsigned char *N, size_t N_len,
+ unsigned char *P, size_t P_len,
+ unsigned char *Q, size_t Q_len,
+ unsigned char *D, size_t D_len,
+ unsigned char *E, size_t E_len)
+{
+ int ret = 0;
+ int is_priv;
+
+ /* Check if key is private or public */
+ is_priv =
+ mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
+
+ if (!is_priv) {
+ /* If we're trying to export private parameters for a public key,
+ * something must be wrong. */
+ if (P != NULL || Q != NULL || D != NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ }
+
+ if (N != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->N, N, N_len));
+ }
+
+ if (P != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->P, P, P_len));
+ }
+
+ if (Q != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->Q, Q, Q_len));
+ }
+
+ if (D != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->D, D, D_len));
+ }
+
+ if (E != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&ctx->E, E, E_len));
+ }
+
+cleanup:
+
+ return ret;
+}
+
+int mbedtls_rsa_export(const mbedtls_rsa_context *ctx,
+ mbedtls_mpi *N, mbedtls_mpi *P, mbedtls_mpi *Q,
+ mbedtls_mpi *D, mbedtls_mpi *E)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ int is_priv;
+
+ /* Check if key is private or public */
+ is_priv =
+ mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
+
+ if (!is_priv) {
+ /* If we're trying to export private parameters for a public key,
+ * something must be wrong. */
+ if (P != NULL || Q != NULL || D != NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ }
+
+ /* Export all requested core parameters. */
+
+ if ((N != NULL && (ret = mbedtls_mpi_copy(N, &ctx->N)) != 0) ||
+ (P != NULL && (ret = mbedtls_mpi_copy(P, &ctx->P)) != 0) ||
+ (Q != NULL && (ret = mbedtls_mpi_copy(Q, &ctx->Q)) != 0) ||
+ (D != NULL && (ret = mbedtls_mpi_copy(D, &ctx->D)) != 0) ||
+ (E != NULL && (ret = mbedtls_mpi_copy(E, &ctx->E)) != 0)) {
+ return ret;
+ }
+
+ return 0;
+}
+
+/*
+ * Export CRT parameters
+ * This must also be implemented if CRT is not used, for being able to
+ * write DER encoded RSA keys. The helper function mbedtls_rsa_deduce_crt
+ * can be used in this case.
+ */
+int mbedtls_rsa_export_crt(const mbedtls_rsa_context *ctx,
+ mbedtls_mpi *DP, mbedtls_mpi *DQ, mbedtls_mpi *QP)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ int is_priv;
+
+ /* Check if key is private or public */
+ is_priv =
+ mbedtls_mpi_cmp_int(&ctx->N, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->P, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->Q, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->D, 0) != 0 &&
+ mbedtls_mpi_cmp_int(&ctx->E, 0) != 0;
+
+ if (!is_priv) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ /* Export all requested blinding parameters. */
+ if ((DP != NULL && (ret = mbedtls_mpi_copy(DP, &ctx->DP)) != 0) ||
+ (DQ != NULL && (ret = mbedtls_mpi_copy(DQ, &ctx->DQ)) != 0) ||
+ (QP != NULL && (ret = mbedtls_mpi_copy(QP, &ctx->QP)) != 0)) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+#else
+ if ((ret = mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
+ DP, DQ, QP)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_BAD_INPUT_DATA, ret);
+ }
+#endif
+
+ return 0;
+}
+
+/*
+ * Initialize an RSA context
+ */
+void mbedtls_rsa_init(mbedtls_rsa_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_rsa_context));
+
+ ctx->padding = MBEDTLS_RSA_PKCS_V15;
+ ctx->hash_id = MBEDTLS_MD_NONE;
+
+#if defined(MBEDTLS_THREADING_C)
+ /* Set ctx->ver to nonzero to indicate that the mutex has been
+ * initialized and will need to be freed. */
+ ctx->ver = 1;
+ mbedtls_mutex_init(&ctx->mutex);
+#endif
+}
+
+/*
+ * Set padding for an existing RSA context
+ */
+int mbedtls_rsa_set_padding(mbedtls_rsa_context *ctx, int padding,
+ mbedtls_md_type_t hash_id)
+{
+ switch (padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+ case MBEDTLS_RSA_PKCS_V15:
+ break;
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+ case MBEDTLS_RSA_PKCS_V21:
+ break;
+#endif
+ default:
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+
+#if defined(MBEDTLS_PKCS1_V21)
+ if ((padding == MBEDTLS_RSA_PKCS_V21) &&
+ (hash_id != MBEDTLS_MD_NONE)) {
+ /* Just make sure this hash is supported in this build. */
+ if (mbedtls_md_info_from_type(hash_id) == NULL) {
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+ }
+#endif /* MBEDTLS_PKCS1_V21 */
+
+ ctx->padding = padding;
+ ctx->hash_id = hash_id;
+
+ return 0;
+}
+
+/*
+ * Get padding mode of initialized RSA context
+ */
+int mbedtls_rsa_get_padding_mode(const mbedtls_rsa_context *ctx)
+{
+ return ctx->padding;
+}
+
+/*
+ * Get hash identifier of mbedtls_md_type_t type
+ */
+int mbedtls_rsa_get_md_alg(const mbedtls_rsa_context *ctx)
+{
+ return ctx->hash_id;
+}
+
+/*
+ * Get length in bits of RSA modulus
+ */
+size_t mbedtls_rsa_get_bitlen(const mbedtls_rsa_context *ctx)
+{
+ return mbedtls_mpi_bitlen(&ctx->N);
+}
+
+/*
+ * Get length in bytes of RSA modulus
+ */
+size_t mbedtls_rsa_get_len(const mbedtls_rsa_context *ctx)
+{
+ return ctx->len;
+}
+
+#if defined(MBEDTLS_GENPRIME)
+
+/*
+ * Generate an RSA keypair
+ *
+ * This generation method follows the RSA key pair generation procedure of
+ * FIPS 186-4 if 2^16 < exponent < 2^256 and nbits = 2048 or nbits = 3072.
+ */
+int mbedtls_rsa_gen_key(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ unsigned int nbits, int exponent)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_mpi H, G, L;
+ int prime_quality = 0;
+
+ /*
+ * If the modulus is 1024 bit long or shorter, then the security strength of
+ * the RSA algorithm is less than or equal to 80 bits and therefore an error
+ * rate of 2^-80 is sufficient.
+ */
+ if (nbits > 1024) {
+ prime_quality = MBEDTLS_MPI_GEN_PRIME_FLAG_LOW_ERR;
+ }
+
+ mbedtls_mpi_init(&H);
+ mbedtls_mpi_init(&G);
+ mbedtls_mpi_init(&L);
+
+ if (exponent < 3 || nbits % 2 != 0) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ if (nbits < MBEDTLS_RSA_GEN_KEY_MIN_BITS) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ /*
+ * find primes P and Q with Q < P so that:
+ * 1. |P-Q| > 2^( nbits / 2 - 100 )
+ * 2. GCD( E, (P-1)*(Q-1) ) == 1
+ * 3. E^-1 mod LCM(P-1, Q-1) > 2^( nbits / 2 )
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&ctx->E, exponent));
+
+ do {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->P, nbits >> 1,
+ prime_quality, f_rng, p_rng));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gen_prime(&ctx->Q, nbits >> 1,
+ prime_quality, f_rng, p_rng));
+
+ /* make sure the difference between p and q is not too small (FIPS 186-4 §B.3.3 step 5.4) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&H, &ctx->P, &ctx->Q));
+ if (mbedtls_mpi_bitlen(&H) <= ((nbits >= 200) ? ((nbits >> 1) - 99) : 0)) {
+ continue;
+ }
+
+ /* not required by any standards, but some users rely on the fact that P > Q */
+ if (H.s < 0) {
+ mbedtls_mpi_swap(&ctx->P, &ctx->Q);
+ }
+
+ /* Temporarily replace P,Q by P-1, Q-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->P, &ctx->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&ctx->Q, &ctx->Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&H, &ctx->P, &ctx->Q));
+
+ /* check GCD( E, (P-1)*(Q-1) ) == 1 (FIPS 186-4 §B.3.1 criterion 2(a)) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->E, &H));
+ if (mbedtls_mpi_cmp_int(&G, 1) != 0) {
+ continue;
+ }
+
+ /* compute smallest possible D = E^-1 mod LCM(P-1, Q-1) (FIPS 186-4 §B.3.1 criterion 3(b)) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(&G, &ctx->P, &ctx->Q));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&L, NULL, &H, &G));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(&ctx->D, &ctx->E, &L));
+
+ if (mbedtls_mpi_bitlen(&ctx->D) <= ((nbits + 1) / 2)) { // (FIPS 186-4 §B.3.1 criterion 3(a))
+ continue;
+ }
+
+ break;
+ } while (1);
+
+ /* Restore P,Q */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->P, &ctx->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&ctx->Q, &ctx->Q, 1));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->N, &ctx->P, &ctx->Q));
+
+ ctx->len = mbedtls_mpi_size(&ctx->N);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ /*
+ * DP = D mod (P - 1)
+ * DQ = D mod (Q - 1)
+ * QP = Q^-1 mod P
+ */
+ MBEDTLS_MPI_CHK(mbedtls_rsa_deduce_crt(&ctx->P, &ctx->Q, &ctx->D,
+ &ctx->DP, &ctx->DQ, &ctx->QP));
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+ /* Double-check */
+ MBEDTLS_MPI_CHK(mbedtls_rsa_check_privkey(ctx));
+
+cleanup:
+
+ mbedtls_mpi_free(&H);
+ mbedtls_mpi_free(&G);
+ mbedtls_mpi_free(&L);
+
+ if (ret != 0) {
+ mbedtls_rsa_free(ctx);
+
+ if ((-ret & ~0x7f) == 0) {
+ ret = MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_KEY_GEN_FAILED, ret);
+ }
+ return ret;
+ }
+
+ return 0;
+}
+
+#endif /* MBEDTLS_GENPRIME */
+
+/*
+ * Check a public RSA key
+ */
+int mbedtls_rsa_check_pubkey(const mbedtls_rsa_context *ctx)
+{
+ if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */) != 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ if (mbedtls_mpi_bitlen(&ctx->N) < 128) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ if (mbedtls_mpi_get_bit(&ctx->E, 0) == 0 ||
+ mbedtls_mpi_bitlen(&ctx->E) < 2 ||
+ mbedtls_mpi_cmp_mpi(&ctx->E, &ctx->N) >= 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ return 0;
+}
+
+/*
+ * Check for the consistency of all fields in an RSA private key context
+ */
+int mbedtls_rsa_check_privkey(const mbedtls_rsa_context *ctx)
+{
+ if (mbedtls_rsa_check_pubkey(ctx) != 0 ||
+ rsa_check_context(ctx, 1 /* private */, 1 /* blinding */) != 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ if (mbedtls_rsa_validate_params(&ctx->N, &ctx->P, &ctx->Q,
+ &ctx->D, &ctx->E, NULL, NULL) != 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ else if (mbedtls_rsa_validate_crt(&ctx->P, &ctx->Q, &ctx->D,
+ &ctx->DP, &ctx->DQ, &ctx->QP) != 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+#endif
+
+ return 0;
+}
+
+/*
+ * Check if contexts holding a public and private key match
+ */
+int mbedtls_rsa_check_pub_priv(const mbedtls_rsa_context *pub,
+ const mbedtls_rsa_context *prv)
+{
+ if (mbedtls_rsa_check_pubkey(pub) != 0 ||
+ mbedtls_rsa_check_privkey(prv) != 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ if (mbedtls_mpi_cmp_mpi(&pub->N, &prv->N) != 0 ||
+ mbedtls_mpi_cmp_mpi(&pub->E, &prv->E) != 0) {
+ return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ return 0;
+}
+
+/*
+ * Do an RSA public key operation
+ */
+int mbedtls_rsa_public(mbedtls_rsa_context *ctx,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t olen;
+ mbedtls_mpi T;
+
+ if (rsa_check_context(ctx, 0 /* public */, 0 /* no blinding */)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&T);
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
+
+ if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ olen = ctx->len;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &ctx->E, &ctx->N, &ctx->RN));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
+
+cleanup:
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ mbedtls_mpi_free(&T);
+
+ if (ret != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PUBLIC_FAILED, ret);
+ }
+
+ return 0;
+}
+
+/*
+ * Generate or update blinding values, see section 10 of:
+ * KOCHER, Paul C. Timing attacks on implementations of Diffie-Hellman, RSA,
+ * DSS, and other systems. In : Advances in Cryptology-CRYPTO'96. Springer
+ * Berlin Heidelberg, 1996. p. 104-113.
+ */
+static int rsa_prepare_blinding(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t), void *p_rng)
+{
+ int ret, count = 0;
+ mbedtls_mpi R;
+
+ mbedtls_mpi_init(&R);
+
+ if (ctx->Vf.p != NULL) {
+ /* We already have blinding values, just update them by squaring */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &ctx->Vi));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vf, &ctx->Vf, &ctx->Vf));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vf, &ctx->Vf, &ctx->N));
+
+ goto cleanup;
+ }
+
+ /* Unblinding value: Vf = random number, invertible mod N */
+ do {
+ if (count++ > 10) {
+ ret = MBEDTLS_ERR_RSA_RNG_FAILED;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&ctx->Vf, ctx->len - 1, f_rng, p_rng));
+
+ /* Compute Vf^-1 as R * (R Vf)^-1 to avoid leaks from inv_mod. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, ctx->len - 1, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vf, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
+
+ /* At this point, Vi is invertible mod N if and only if both Vf and R
+ * are invertible mod N. If one of them isn't, we don't need to know
+ * which one, we just loop and choose new values for both of them.
+ * (Each iteration succeeds with overwhelming probability.) */
+ ret = mbedtls_mpi_inv_mod(&ctx->Vi, &ctx->Vi, &ctx->N);
+ if (ret != 0 && ret != MBEDTLS_ERR_MPI_NOT_ACCEPTABLE) {
+ goto cleanup;
+ }
+
+ } while (ret == MBEDTLS_ERR_MPI_NOT_ACCEPTABLE);
+
+ /* Finish the computation of Vf^-1 = R * (R Vf)^-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&ctx->Vi, &ctx->Vi, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&ctx->Vi, &ctx->Vi, &ctx->N));
+
+ /* Blinding value: Vi = Vf^(-e) mod N
+ * (Vi already contains Vf^-1 at this point) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&ctx->Vi, &ctx->Vi, &ctx->E, &ctx->N, &ctx->RN));
+
+
+cleanup:
+ mbedtls_mpi_free(&R);
+
+ return ret;
+}
+
+/*
+ * Unblind
+ * T = T * Vf mod N
+ */
+static int rsa_unblind(mbedtls_mpi *T, mbedtls_mpi *Vf, const mbedtls_mpi *N)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ const mbedtls_mpi_uint mm = mbedtls_mpi_core_montmul_init(N->p);
+ const size_t nlimbs = N->n;
+ const size_t tlimbs = mbedtls_mpi_core_montmul_working_limbs(nlimbs);
+ mbedtls_mpi RR, M_T;
+
+ mbedtls_mpi_init(&RR);
+ mbedtls_mpi_init(&M_T);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_core_get_mont_r2_unsafe(&RR, N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(&M_T, tlimbs));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(T, nlimbs));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_grow(Vf, nlimbs));
+
+ /* T = T * Vf mod N
+ * Reminder: montmul(A, B, N) = A * B * R^-1 mod N
+ * Usually both operands are multiplied by R mod N beforehand (by calling
+ * `to_mont_rep()` on them), yielding a result that's also * R mod N (aka
+ * "in the Montgomery domain"). Here we only multiply one operand by R mod
+ * N, so the result is directly what we want - no need to call
+ * `from_mont_rep()` on it. */
+ mbedtls_mpi_core_to_mont_rep(T->p, T->p, N->p, nlimbs, mm, RR.p, M_T.p);
+ mbedtls_mpi_core_montmul(T->p, T->p, Vf->p, nlimbs, N->p, nlimbs, mm, M_T.p);
+
+cleanup:
+
+ mbedtls_mpi_free(&RR);
+ mbedtls_mpi_free(&M_T);
+
+ return ret;
+}
+
+/*
+ * Exponent blinding supposed to prevent side-channel attacks using multiple
+ * traces of measurements to recover the RSA key. The more collisions are there,
+ * the more bits of the key can be recovered. See [3].
+ *
+ * Collecting n collisions with m bit long blinding value requires 2^(m-m/n)
+ * observations on average.
+ *
+ * For example with 28 byte blinding to achieve 2 collisions the adversary has
+ * to make 2^112 observations on average.
+ *
+ * (With the currently (as of 2017 April) known best algorithms breaking 2048
+ * bit RSA requires approximately as much time as trying out 2^112 random keys.
+ * Thus in this sense with 28 byte blinding the security is not reduced by
+ * side-channel attacks like the one in [3])
+ *
+ * This countermeasure does not help if the key recovery is possible with a
+ * single trace.
+ */
+#define RSA_EXPONENT_BLINDING 28
+
+/*
+ * Do an RSA private key operation
+ */
+int mbedtls_rsa_private(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t olen;
+
+ /* Temporary holding the result */
+ mbedtls_mpi T;
+
+ /* Temporaries holding P-1, Q-1 and the
+ * exponent blinding factor, respectively. */
+ mbedtls_mpi P1, Q1, R;
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ /* Temporaries holding the results mod p resp. mod q. */
+ mbedtls_mpi TP, TQ;
+
+ /* Temporaries holding the blinded exponents for
+ * the mod p resp. mod q computation (if used). */
+ mbedtls_mpi DP_blind, DQ_blind;
+#else
+ /* Temporary holding the blinded exponent (if used). */
+ mbedtls_mpi D_blind;
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+ /* Temporaries holding the initial input and the double
+ * checked result; should be the same in the end. */
+ mbedtls_mpi input_blinded, check_result_blinded;
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (rsa_check_context(ctx, 1 /* private key checks */,
+ 1 /* blinding on */) != 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+#if defined(MBEDTLS_THREADING_C)
+ if ((ret = mbedtls_mutex_lock(&ctx->mutex)) != 0) {
+ return ret;
+ }
+#endif
+
+ /* MPI Initialization */
+ mbedtls_mpi_init(&T);
+
+ mbedtls_mpi_init(&P1);
+ mbedtls_mpi_init(&Q1);
+ mbedtls_mpi_init(&R);
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+ mbedtls_mpi_init(&D_blind);
+#else
+ mbedtls_mpi_init(&DP_blind);
+ mbedtls_mpi_init(&DQ_blind);
+#endif
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ mbedtls_mpi_init(&TP); mbedtls_mpi_init(&TQ);
+#endif
+
+ mbedtls_mpi_init(&input_blinded);
+ mbedtls_mpi_init(&check_result_blinded);
+
+ /* End of MPI initialization */
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_binary(&T, input, ctx->len));
+ if (mbedtls_mpi_cmp_mpi(&T, &ctx->N) >= 0) {
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ /*
+ * Blinding
+ * T = T * Vi mod N
+ */
+ MBEDTLS_MPI_CHK(rsa_prepare_blinding(ctx, f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, &T, &ctx->Vi));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &T, &ctx->N));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&input_blinded, &T));
+
+ /*
+ * Exponent blinding
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&P1, &ctx->P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&Q1, &ctx->Q, 1));
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+ /*
+ * D_blind = ( P - 1 ) * ( Q - 1 ) * R + D
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
+ f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &P1, &Q1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&D_blind, &D_blind, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&D_blind, &D_blind, &ctx->D));
+#else
+ /*
+ * DP_blind = ( P - 1 ) * R + DP
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
+ f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DP_blind, &P1, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DP_blind, &DP_blind,
+ &ctx->DP));
+
+ /*
+ * DQ_blind = ( Q - 1 ) * R + DQ
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_fill_random(&R, RSA_EXPONENT_BLINDING,
+ f_rng, p_rng));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&DQ_blind, &Q1, &R));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&DQ_blind, &DQ_blind,
+ &ctx->DQ));
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&T, &T, &D_blind, &ctx->N, &ctx->RN));
+#else
+ /*
+ * Faster decryption using the CRT
+ *
+ * TP = input ^ dP mod P
+ * TQ = input ^ dQ mod Q
+ */
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TP, &T, &DP_blind, &ctx->P, &ctx->RP));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&TQ, &T, &DQ_blind, &ctx->Q, &ctx->RQ));
+
+ /*
+ * T = (TP - TQ) * (Q^-1 mod P) mod P
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&T, &TP, &TQ));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->QP));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&T, &TP, &ctx->P));
+
+ /*
+ * T = TQ + T * Q
+ */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&TP, &T, &ctx->Q));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_mpi(&T, &TQ, &TP));
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+ /* Verify the result to prevent glitching attacks. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&check_result_blinded, &T, &ctx->E,
+ &ctx->N, &ctx->RN));
+ if (mbedtls_mpi_cmp_mpi(&check_result_blinded, &input_blinded) != 0) {
+ ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
+ goto cleanup;
+ }
+
+ /*
+ * Unblind
+ * T = T * Vf mod N
+ */
+ MBEDTLS_MPI_CHK(rsa_unblind(&T, &ctx->Vf, &ctx->N));
+
+ olen = ctx->len;
+ MBEDTLS_MPI_CHK(mbedtls_mpi_write_binary(&T, output, olen));
+
+cleanup:
+#if defined(MBEDTLS_THREADING_C)
+ if (mbedtls_mutex_unlock(&ctx->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+#endif
+
+ mbedtls_mpi_free(&P1);
+ mbedtls_mpi_free(&Q1);
+ mbedtls_mpi_free(&R);
+
+#if defined(MBEDTLS_RSA_NO_CRT)
+ mbedtls_mpi_free(&D_blind);
+#else
+ mbedtls_mpi_free(&DP_blind);
+ mbedtls_mpi_free(&DQ_blind);
+#endif
+
+ mbedtls_mpi_free(&T);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ mbedtls_mpi_free(&TP); mbedtls_mpi_free(&TQ);
+#endif
+
+ mbedtls_mpi_free(&check_result_blinded);
+ mbedtls_mpi_free(&input_blinded);
+
+ if (ret != 0 && ret >= -0x007f) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_PRIVATE_FAILED, ret);
+ }
+
+ return ret;
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+/**
+ * Generate and apply the MGF1 operation (from PKCS#1 v2.1) to a buffer.
+ *
+ * \param dst buffer to mask
+ * \param dlen length of destination buffer
+ * \param src source of the mask generation
+ * \param slen length of the source buffer
+ * \param md_alg message digest to use
+ */
+static int mgf_mask(unsigned char *dst, size_t dlen, unsigned char *src,
+ size_t slen, mbedtls_md_type_t md_alg)
+{
+ unsigned char counter[4];
+ unsigned char *p;
+ unsigned int hlen;
+ size_t i, use_len;
+ unsigned char mask[MBEDTLS_MD_MAX_SIZE];
+ int ret = 0;
+ const mbedtls_md_info_t *md_info;
+ mbedtls_md_context_t md_ctx;
+
+ mbedtls_md_init(&md_ctx);
+ md_info = mbedtls_md_info_from_type(md_alg);
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ mbedtls_md_init(&md_ctx);
+ if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
+ goto exit;
+ }
+
+ hlen = mbedtls_md_get_size(md_info);
+
+ memset(mask, 0, sizeof(mask));
+ memset(counter, 0, 4);
+
+ /* Generate and apply dbMask */
+ p = dst;
+
+ while (dlen > 0) {
+ use_len = hlen;
+ if (dlen < hlen) {
+ use_len = dlen;
+ }
+
+ if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md_ctx, src, slen)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md_ctx, counter, 4)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_finish(&md_ctx, mask)) != 0) {
+ goto exit;
+ }
+
+ for (i = 0; i < use_len; ++i) {
+ *p++ ^= mask[i];
+ }
+
+ counter[3]++;
+
+ dlen -= use_len;
+ }
+
+exit:
+ mbedtls_platform_zeroize(mask, sizeof(mask));
+ mbedtls_md_free(&md_ctx);
+
+ return ret;
+}
+
+/**
+ * Generate Hash(M') as in RFC 8017 page 43 points 5 and 6.
+ *
+ * \param hash the input hash
+ * \param hlen length of the input hash
+ * \param salt the input salt
+ * \param slen length of the input salt
+ * \param out the output buffer - must be large enough for \p md_alg
+ * \param md_alg message digest to use
+ */
+static int hash_mprime(const unsigned char *hash, size_t hlen,
+ const unsigned char *salt, size_t slen,
+ unsigned char *out, mbedtls_md_type_t md_alg)
+{
+ const unsigned char zeros[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
+
+ mbedtls_md_context_t md_ctx;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ const mbedtls_md_info_t *md_info = mbedtls_md_info_from_type(md_alg);
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ mbedtls_md_init(&md_ctx);
+ if ((ret = mbedtls_md_setup(&md_ctx, md_info, 0)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_starts(&md_ctx)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md_ctx, zeros, sizeof(zeros))) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md_ctx, hash, hlen)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_update(&md_ctx, salt, slen)) != 0) {
+ goto exit;
+ }
+ if ((ret = mbedtls_md_finish(&md_ctx, out)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_md_free(&md_ctx);
+
+ return ret;
+}
+
+/**
+ * Compute a hash.
+ *
+ * \param md_alg algorithm to use
+ * \param input input message to hash
+ * \param ilen input length
+ * \param output the output buffer - must be large enough for \p md_alg
+ */
+static int compute_hash(mbedtls_md_type_t md_alg,
+ const unsigned char *input, size_t ilen,
+ unsigned char *output)
+{
+ const mbedtls_md_info_t *md_info;
+
+ md_info = mbedtls_md_info_from_type(md_alg);
+ if (md_info == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ return mbedtls_md(md_info, input, ilen, output);
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-OAEP-ENCRYPT function
+ */
+int mbedtls_rsa_rsaes_oaep_encrypt(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ const unsigned char *label, size_t label_len,
+ size_t ilen,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ size_t olen;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *p = output;
+ unsigned int hlen;
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
+ if (hlen == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ olen = ctx->len;
+
+ /* first comparison checks for overflow */
+ if (ilen + 2 * hlen + 2 < ilen || olen < ilen + 2 * hlen + 2) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ memset(output, 0, olen);
+
+ *p++ = 0;
+
+ /* Generate a random octet string seed */
+ if ((ret = f_rng(p_rng, p, hlen)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
+ }
+
+ p += hlen;
+
+ /* Construct DB */
+ ret = compute_hash((mbedtls_md_type_t) ctx->hash_id, label, label_len, p);
+ if (ret != 0) {
+ return ret;
+ }
+ p += hlen;
+ p += olen - 2 * hlen - 2 - ilen;
+ *p++ = 1;
+ if (ilen != 0) {
+ memcpy(p, input, ilen);
+ }
+
+ /* maskedDB: Apply dbMask to DB */
+ if ((ret = mgf_mask(output + hlen + 1, olen - hlen - 1, output + 1, hlen,
+ (mbedtls_md_type_t) ctx->hash_id)) != 0) {
+ return ret;
+ }
+
+ /* maskedSeed: Apply seedMask to seed */
+ if ((ret = mgf_mask(output + 1, hlen, output + hlen + 1, olen - hlen - 1,
+ (mbedtls_md_type_t) ctx->hash_id)) != 0) {
+ return ret;
+ }
+
+ return mbedtls_rsa_public(ctx, output, output);
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-ENCRYPT function
+ */
+int mbedtls_rsa_rsaes_pkcs1_v15_encrypt(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng, size_t ilen,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ size_t nb_pad, olen;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *p = output;
+
+ olen = ctx->len;
+
+ /* first comparison checks for overflow */
+ if (ilen + 11 < ilen || olen < ilen + 11) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ nb_pad = olen - 3 - ilen;
+
+ *p++ = 0;
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ *p++ = MBEDTLS_RSA_CRYPT;
+
+ while (nb_pad-- > 0) {
+ int rng_dl = 100;
+
+ do {
+ ret = f_rng(p_rng, p, 1);
+ } while (*p == 0 && --rng_dl && ret == 0);
+
+ /* Check if RNG failed to generate data */
+ if (rng_dl == 0 || ret != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
+ }
+
+ p++;
+ }
+
+ *p++ = 0;
+ if (ilen != 0) {
+ memcpy(p, input, ilen);
+ }
+
+ return mbedtls_rsa_public(ctx, output, output);
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Add the message padding, then do an RSA operation
+ */
+int mbedtls_rsa_pkcs1_encrypt(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ size_t ilen,
+ const unsigned char *input,
+ unsigned char *output)
+{
+ switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+ case MBEDTLS_RSA_PKCS_V15:
+ return mbedtls_rsa_rsaes_pkcs1_v15_encrypt(ctx, f_rng, p_rng,
+ ilen, input, output);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+ case MBEDTLS_RSA_PKCS_V21:
+ return mbedtls_rsa_rsaes_oaep_encrypt(ctx, f_rng, p_rng, NULL, 0,
+ ilen, input, output);
+#endif
+
+ default:
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-OAEP-DECRYPT function
+ */
+int mbedtls_rsa_rsaes_oaep_decrypt(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ const unsigned char *label, size_t label_len,
+ size_t *olen,
+ const unsigned char *input,
+ unsigned char *output,
+ size_t output_max_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t ilen, i, pad_len;
+ unsigned char *p;
+ mbedtls_ct_condition_t bad, in_padding;
+ unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
+ unsigned char lhash[MBEDTLS_MD_MAX_SIZE];
+ unsigned int hlen;
+
+ /*
+ * Parameters sanity checks
+ */
+ if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ ilen = ctx->len;
+
+ if (ilen < 16 || ilen > sizeof(buf)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ hlen = mbedtls_md_get_size_from_type((mbedtls_md_type_t) ctx->hash_id);
+ if (hlen == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ // checking for integer underflow
+ if (2 * hlen + 2 > ilen) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /*
+ * RSA operation
+ */
+ ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
+
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ /*
+ * Unmask data and generate lHash
+ */
+ /* seed: Apply seedMask to maskedSeed */
+ if ((ret = mgf_mask(buf + 1, hlen, buf + hlen + 1, ilen - hlen - 1,
+ (mbedtls_md_type_t) ctx->hash_id)) != 0 ||
+ /* DB: Apply dbMask to maskedDB */
+ (ret = mgf_mask(buf + hlen + 1, ilen - hlen - 1, buf + 1, hlen,
+ (mbedtls_md_type_t) ctx->hash_id)) != 0) {
+ goto cleanup;
+ }
+
+ /* Generate lHash */
+ ret = compute_hash((mbedtls_md_type_t) ctx->hash_id,
+ label, label_len, lhash);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ /*
+ * Check contents, in "constant-time"
+ */
+ p = buf;
+
+ bad = mbedtls_ct_bool(*p++); /* First byte must be 0 */
+
+ p += hlen; /* Skip seed */
+
+ /* Check lHash */
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_bool(mbedtls_ct_memcmp(lhash, p, hlen)));
+ p += hlen;
+
+ /* Get zero-padding len, but always read till end of buffer
+ * (minus one, for the 01 byte) */
+ pad_len = 0;
+ in_padding = MBEDTLS_CT_TRUE;
+ for (i = 0; i < ilen - 2 * hlen - 2; i++) {
+ in_padding = mbedtls_ct_bool_and(in_padding, mbedtls_ct_uint_eq(p[i], 0));
+ pad_len += mbedtls_ct_uint_if_else_0(in_padding, 1);
+ }
+
+ p += pad_len;
+ bad = mbedtls_ct_bool_or(bad, mbedtls_ct_uint_ne(*p++, 0x01));
+
+ /*
+ * The only information "leaked" is whether the padding was correct or not
+ * (eg, no data is copied if it was not correct). This meets the
+ * recommendations in PKCS#1 v2.2: an opponent cannot distinguish between
+ * the different error conditions.
+ */
+ if (bad != MBEDTLS_CT_FALSE) {
+ ret = MBEDTLS_ERR_RSA_INVALID_PADDING;
+ goto cleanup;
+ }
+
+ if (ilen - ((size_t) (p - buf)) > output_max_len) {
+ ret = MBEDTLS_ERR_RSA_OUTPUT_TOO_LARGE;
+ goto cleanup;
+ }
+
+ *olen = ilen - ((size_t) (p - buf));
+ if (*olen != 0) {
+ memcpy(output, p, *olen);
+ }
+ ret = 0;
+
+cleanup:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+ mbedtls_platform_zeroize(lhash, sizeof(lhash));
+
+ return ret;
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSAES-PKCS1-V1_5-DECRYPT function
+ */
+int mbedtls_rsa_rsaes_pkcs1_v15_decrypt(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ size_t *olen,
+ const unsigned char *input,
+ unsigned char *output,
+ size_t output_max_len)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t ilen;
+ unsigned char buf[MBEDTLS_MPI_MAX_SIZE];
+
+ ilen = ctx->len;
+
+ if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (ilen < 16 || ilen > sizeof(buf)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ ret = mbedtls_rsa_private(ctx, f_rng, p_rng, input, buf);
+
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ ret = mbedtls_ct_rsaes_pkcs1_v15_unpadding(buf, ilen,
+ output, output_max_len, olen);
+
+cleanup:
+ mbedtls_platform_zeroize(buf, sizeof(buf));
+
+ return ret;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Do an RSA operation, then remove the message padding
+ */
+int mbedtls_rsa_pkcs1_decrypt(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ size_t *olen,
+ const unsigned char *input,
+ unsigned char *output,
+ size_t output_max_len)
+{
+ switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+ case MBEDTLS_RSA_PKCS_V15:
+ return mbedtls_rsa_rsaes_pkcs1_v15_decrypt(ctx, f_rng, p_rng, olen,
+ input, output, output_max_len);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+ case MBEDTLS_RSA_PKCS_V21:
+ return mbedtls_rsa_rsaes_oaep_decrypt(ctx, f_rng, p_rng, NULL, 0,
+ olen, input, output,
+ output_max_len);
+#endif
+
+ default:
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+static int rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ int saltlen,
+ unsigned char *sig)
+{
+ size_t olen;
+ unsigned char *p = sig;
+ unsigned char *salt = NULL;
+ size_t slen, min_slen, hlen, offset = 0;
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t msb;
+ mbedtls_md_type_t hash_id;
+
+ if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (f_rng == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ olen = ctx->len;
+
+ if (md_alg != MBEDTLS_MD_NONE) {
+ /* Gather length of hash to sign */
+ size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
+ if (exp_hashlen == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (hashlen != exp_hashlen) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+ }
+
+ hash_id = (mbedtls_md_type_t) ctx->hash_id;
+ if (hash_id == MBEDTLS_MD_NONE) {
+ hash_id = md_alg;
+ }
+ hlen = mbedtls_md_get_size_from_type(hash_id);
+ if (hlen == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (saltlen == MBEDTLS_RSA_SALT_LEN_ANY) {
+ /* Calculate the largest possible salt length, up to the hash size.
+ * Normally this is the hash length, which is the maximum salt length
+ * according to FIPS 185-4 §5.5 (e) and common practice. If there is not
+ * enough room, use the maximum salt length that fits. The constraint is
+ * that the hash length plus the salt length plus 2 bytes must be at most
+ * the key length. This complies with FIPS 186-4 §5.5 (e) and RFC 8017
+ * (PKCS#1 v2.2) §9.1.1 step 3. */
+ min_slen = hlen - 2;
+ if (olen < hlen + min_slen + 2) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ } else if (olen >= hlen + hlen + 2) {
+ slen = hlen;
+ } else {
+ slen = olen - hlen - 2;
+ }
+ } else if ((saltlen < 0) || (saltlen + hlen + 2 > olen)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ } else {
+ slen = (size_t) saltlen;
+ }
+
+ memset(sig, 0, olen);
+
+ /* Note: EMSA-PSS encoding is over the length of N - 1 bits */
+ msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
+ p += olen - hlen - slen - 2;
+ *p++ = 0x01;
+
+ /* Generate salt of length slen in place in the encoded message */
+ salt = p;
+ if ((ret = f_rng(p_rng, salt, slen)) != 0) {
+ return MBEDTLS_ERROR_ADD(MBEDTLS_ERR_RSA_RNG_FAILED, ret);
+ }
+
+ p += slen;
+
+ /* Generate H = Hash( M' ) */
+ ret = hash_mprime(hash, hashlen, salt, slen, p, hash_id);
+ if (ret != 0) {
+ return ret;
+ }
+
+ /* Compensate for boundary condition when applying mask */
+ if (msb % 8 == 0) {
+ offset = 1;
+ }
+
+ /* maskedDB: Apply dbMask to DB */
+ ret = mgf_mask(sig + offset, olen - hlen - 1 - offset, p, hlen, hash_id);
+ if (ret != 0) {
+ return ret;
+ }
+
+ msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
+ sig[0] &= 0xFF >> (olen * 8 - msb);
+
+ p += hlen;
+ *p++ = 0xBC;
+
+ return mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig);
+}
+
+static int rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ int saltlen,
+ unsigned char *sig)
+{
+ if (ctx->padding != MBEDTLS_RSA_PKCS_V21) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+ if ((ctx->hash_id == MBEDTLS_MD_NONE) && (md_alg == MBEDTLS_MD_NONE)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+ return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg, hashlen, hash, saltlen,
+ sig);
+}
+
+int mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ unsigned char *sig)
+{
+ return rsa_rsassa_pss_sign_no_mode_check(ctx, f_rng, p_rng, md_alg,
+ hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
+}
+
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function with
+ * the option to pass in the salt length.
+ */
+int mbedtls_rsa_rsassa_pss_sign_ext(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ int saltlen,
+ unsigned char *sig)
+{
+ return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
+ hashlen, hash, saltlen, sig);
+}
+
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-SIGN function
+ */
+int mbedtls_rsa_rsassa_pss_sign(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ unsigned char *sig)
+{
+ return rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
+ hashlen, hash, MBEDTLS_RSA_SALT_LEN_ANY, sig);
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-V1_5-SIGN function
+ */
+
+/* Construct a PKCS v1.5 encoding of a hashed message
+ *
+ * This is used both for signature generation and verification.
+ *
+ * Parameters:
+ * - md_alg: Identifies the hash algorithm used to generate the given hash;
+ * MBEDTLS_MD_NONE if raw data is signed.
+ * - hashlen: Length of hash. Must match md_alg if that's not NONE.
+ * - hash: Buffer containing the hashed message or the raw data.
+ * - dst_len: Length of the encoded message.
+ * - dst: Buffer to hold the encoded message.
+ *
+ * Assumptions:
+ * - hash has size hashlen.
+ * - dst points to a buffer of size at least dst_len.
+ *
+ */
+static int rsa_rsassa_pkcs1_v15_encode(mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ size_t dst_len,
+ unsigned char *dst)
+{
+ size_t oid_size = 0;
+ size_t nb_pad = dst_len;
+ unsigned char *p = dst;
+ const char *oid = NULL;
+
+ /* Are we signing hashed or raw data? */
+ if (md_alg != MBEDTLS_MD_NONE) {
+ unsigned char md_size = mbedtls_md_get_size_from_type(md_alg);
+ if (md_size == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_oid_get_oid_by_md(md_alg, &oid, &oid_size) != 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (hashlen != md_size) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /* Double-check that 8 + hashlen + oid_size can be used as a
+ * 1-byte ASN.1 length encoding and that there's no overflow. */
+ if (8 + hashlen + oid_size >= 0x80 ||
+ 10 + hashlen < hashlen ||
+ 10 + hashlen + oid_size < 10 + hashlen) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Static bounds check:
+ * - Need 10 bytes for five tag-length pairs.
+ * (Insist on 1-byte length encodings to protect against variants of
+ * Bleichenbacher's forgery attack against lax PKCS#1v1.5 verification)
+ * - Need hashlen bytes for hash
+ * - Need oid_size bytes for hash alg OID.
+ */
+ if (nb_pad < 10 + hashlen + oid_size) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+ nb_pad -= 10 + hashlen + oid_size;
+ } else {
+ if (nb_pad < hashlen) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ nb_pad -= hashlen;
+ }
+
+ /* Need space for signature header and padding delimiter (3 bytes),
+ * and 8 bytes for the minimal padding */
+ if (nb_pad < 3 + 8) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+ nb_pad -= 3;
+
+ /* Now nb_pad is the amount of memory to be filled
+ * with padding, and at least 8 bytes long. */
+
+ /* Write signature header and padding */
+ *p++ = 0;
+ *p++ = MBEDTLS_RSA_SIGN;
+ memset(p, 0xFF, nb_pad);
+ p += nb_pad;
+ *p++ = 0;
+
+ /* Are we signing raw data? */
+ if (md_alg == MBEDTLS_MD_NONE) {
+ memcpy(p, hash, hashlen);
+ return 0;
+ }
+
+ /* Signing hashed data, add corresponding ASN.1 structure
+ *
+ * DigestInfo ::= SEQUENCE {
+ * digestAlgorithm DigestAlgorithmIdentifier,
+ * digest Digest }
+ * DigestAlgorithmIdentifier ::= AlgorithmIdentifier
+ * Digest ::= OCTET STRING
+ *
+ * Schematic:
+ * TAG-SEQ + LEN [ TAG-SEQ + LEN [ TAG-OID + LEN [ OID ]
+ * TAG-NULL + LEN [ NULL ] ]
+ * TAG-OCTET + LEN [ HASH ] ]
+ */
+ *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
+ *p++ = (unsigned char) (0x08 + oid_size + hashlen);
+ *p++ = MBEDTLS_ASN1_SEQUENCE | MBEDTLS_ASN1_CONSTRUCTED;
+ *p++ = (unsigned char) (0x04 + oid_size);
+ *p++ = MBEDTLS_ASN1_OID;
+ *p++ = (unsigned char) oid_size;
+ memcpy(p, oid, oid_size);
+ p += oid_size;
+ *p++ = MBEDTLS_ASN1_NULL;
+ *p++ = 0x00;
+ *p++ = MBEDTLS_ASN1_OCTET_STRING;
+ *p++ = (unsigned char) hashlen;
+ memcpy(p, hash, hashlen);
+ p += hashlen;
+
+ /* Just a sanity-check, should be automatic
+ * after the initial bounds check. */
+ if (p != dst + dst_len) {
+ mbedtls_platform_zeroize(dst, dst_len);
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ return 0;
+}
+
+/*
+ * Do an RSA operation to sign the message digest
+ */
+int mbedtls_rsa_rsassa_pkcs1_v15_sign(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ unsigned char *sig)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned char *sig_try = NULL, *verif = NULL;
+
+ if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (ctx->padding != MBEDTLS_RSA_PKCS_V15) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Prepare PKCS1-v1.5 encoding (padding and hash identifier)
+ */
+
+ if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash,
+ ctx->len, sig)) != 0) {
+ return ret;
+ }
+
+ /* Private key operation
+ *
+ * In order to prevent Lenstra's attack, make the signature in a
+ * temporary buffer and check it before returning it.
+ */
+
+ sig_try = mbedtls_calloc(1, ctx->len);
+ if (sig_try == NULL) {
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ verif = mbedtls_calloc(1, ctx->len);
+ if (verif == NULL) {
+ mbedtls_free(sig_try);
+ return MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_rsa_private(ctx, f_rng, p_rng, sig, sig_try));
+ MBEDTLS_MPI_CHK(mbedtls_rsa_public(ctx, sig_try, verif));
+
+ if (mbedtls_ct_memcmp(verif, sig, ctx->len) != 0) {
+ ret = MBEDTLS_ERR_RSA_PRIVATE_FAILED;
+ goto cleanup;
+ }
+
+ memcpy(sig, sig_try, ctx->len);
+
+cleanup:
+ mbedtls_zeroize_and_free(sig_try, ctx->len);
+ mbedtls_zeroize_and_free(verif, ctx->len);
+
+ if (ret != 0) {
+ memset(sig, '!', ctx->len);
+ }
+ return ret;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Do an RSA operation to sign the message digest
+ */
+int mbedtls_rsa_pkcs1_sign(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ unsigned char *sig)
+{
+ if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+ case MBEDTLS_RSA_PKCS_V15:
+ return mbedtls_rsa_rsassa_pkcs1_v15_sign(ctx, f_rng, p_rng,
+ md_alg, hashlen, hash, sig);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+ case MBEDTLS_RSA_PKCS_V21:
+ return mbedtls_rsa_rsassa_pss_sign(ctx, f_rng, p_rng, md_alg,
+ hashlen, hash, sig);
+#endif
+
+ default:
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+}
+
+#if defined(MBEDTLS_PKCS1_V21)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PSS-VERIFY function
+ */
+int mbedtls_rsa_rsassa_pss_verify_ext(mbedtls_rsa_context *ctx,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ mbedtls_md_type_t mgf1_hash_id,
+ int expected_salt_len,
+ const unsigned char *sig)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t siglen;
+ unsigned char *p;
+ unsigned char *hash_start;
+ unsigned char result[MBEDTLS_MD_MAX_SIZE];
+ unsigned int hlen;
+ size_t observed_salt_len, msb;
+ unsigned char buf[MBEDTLS_MPI_MAX_SIZE] = { 0 };
+
+ if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ siglen = ctx->len;
+
+ if (siglen < 16 || siglen > sizeof(buf)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ ret = mbedtls_rsa_public(ctx, sig, buf);
+
+ if (ret != 0) {
+ return ret;
+ }
+
+ p = buf;
+
+ if (buf[siglen - 1] != 0xBC) {
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+
+ if (md_alg != MBEDTLS_MD_NONE) {
+ /* Gather length of hash to sign */
+ size_t exp_hashlen = mbedtls_md_get_size_from_type(md_alg);
+ if (exp_hashlen == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ if (hashlen != exp_hashlen) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+ }
+
+ hlen = mbedtls_md_get_size_from_type(mgf1_hash_id);
+ if (hlen == 0) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Note: EMSA-PSS verification is over the length of N - 1 bits
+ */
+ msb = mbedtls_mpi_bitlen(&ctx->N) - 1;
+
+ if (buf[0] >> (8 - siglen * 8 + msb)) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ /* Compensate for boundary condition when applying mask */
+ if (msb % 8 == 0) {
+ p++;
+ siglen -= 1;
+ }
+
+ if (siglen < hlen + 2) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+ hash_start = p + siglen - hlen - 1;
+
+ ret = mgf_mask(p, siglen - hlen - 1, hash_start, hlen, mgf1_hash_id);
+ if (ret != 0) {
+ return ret;
+ }
+
+ buf[0] &= 0xFF >> (siglen * 8 - msb);
+
+ while (p < hash_start - 1 && *p == 0) {
+ p++;
+ }
+
+ if (*p++ != 0x01) {
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+
+ observed_salt_len = (size_t) (hash_start - p);
+
+ if (expected_salt_len != MBEDTLS_RSA_SALT_LEN_ANY &&
+ observed_salt_len != (size_t) expected_salt_len) {
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+
+ /*
+ * Generate H = Hash( M' )
+ */
+ ret = hash_mprime(hash, hashlen, p, observed_salt_len,
+ result, mgf1_hash_id);
+ if (ret != 0) {
+ return ret;
+ }
+
+ if (memcmp(hash_start, result, hlen) != 0) {
+ return MBEDTLS_ERR_RSA_VERIFY_FAILED;
+ }
+
+ return 0;
+}
+
+/*
+ * Simplified PKCS#1 v2.1 RSASSA-PSS-VERIFY function
+ */
+int mbedtls_rsa_rsassa_pss_verify(mbedtls_rsa_context *ctx,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ const unsigned char *sig)
+{
+ mbedtls_md_type_t mgf1_hash_id;
+ if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ mgf1_hash_id = (ctx->hash_id != MBEDTLS_MD_NONE)
+ ? (mbedtls_md_type_t) ctx->hash_id
+ : md_alg;
+
+ return mbedtls_rsa_rsassa_pss_verify_ext(ctx,
+ md_alg, hashlen, hash,
+ mgf1_hash_id,
+ MBEDTLS_RSA_SALT_LEN_ANY,
+ sig);
+
+}
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#if defined(MBEDTLS_PKCS1_V15)
+/*
+ * Implementation of the PKCS#1 v2.1 RSASSA-PKCS1-v1_5-VERIFY function
+ */
+int mbedtls_rsa_rsassa_pkcs1_v15_verify(mbedtls_rsa_context *ctx,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ const unsigned char *sig)
+{
+ int ret = 0;
+ size_t sig_len;
+ unsigned char *encoded = NULL, *encoded_expected = NULL;
+
+ if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ sig_len = ctx->len;
+
+ /*
+ * Prepare expected PKCS1 v1.5 encoding of hash.
+ */
+
+ if ((encoded = mbedtls_calloc(1, sig_len)) == NULL ||
+ (encoded_expected = mbedtls_calloc(1, sig_len)) == NULL) {
+ ret = MBEDTLS_ERR_MPI_ALLOC_FAILED;
+ goto cleanup;
+ }
+
+ if ((ret = rsa_rsassa_pkcs1_v15_encode(md_alg, hashlen, hash, sig_len,
+ encoded_expected)) != 0) {
+ goto cleanup;
+ }
+
+ /*
+ * Apply RSA primitive to get what should be PKCS1 encoded hash.
+ */
+
+ ret = mbedtls_rsa_public(ctx, sig, encoded);
+ if (ret != 0) {
+ goto cleanup;
+ }
+
+ /*
+ * Compare
+ */
+
+ if ((ret = mbedtls_ct_memcmp(encoded, encoded_expected,
+ sig_len)) != 0) {
+ ret = MBEDTLS_ERR_RSA_VERIFY_FAILED;
+ goto cleanup;
+ }
+
+cleanup:
+
+ if (encoded != NULL) {
+ mbedtls_zeroize_and_free(encoded, sig_len);
+ }
+
+ if (encoded_expected != NULL) {
+ mbedtls_zeroize_and_free(encoded_expected, sig_len);
+ }
+
+ return ret;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Do an RSA operation and check the message digest
+ */
+int mbedtls_rsa_pkcs1_verify(mbedtls_rsa_context *ctx,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ const unsigned char *sig)
+{
+ if ((md_alg != MBEDTLS_MD_NONE || hashlen != 0) && hash == NULL) {
+ return MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ }
+
+ switch (ctx->padding) {
+#if defined(MBEDTLS_PKCS1_V15)
+ case MBEDTLS_RSA_PKCS_V15:
+ return mbedtls_rsa_rsassa_pkcs1_v15_verify(ctx, md_alg,
+ hashlen, hash, sig);
+#endif
+
+#if defined(MBEDTLS_PKCS1_V21)
+ case MBEDTLS_RSA_PKCS_V21:
+ return mbedtls_rsa_rsassa_pss_verify(ctx, md_alg,
+ hashlen, hash, sig);
+#endif
+
+ default:
+ return MBEDTLS_ERR_RSA_INVALID_PADDING;
+ }
+}
+
+/*
+ * Copy the components of an RSA key
+ */
+int mbedtls_rsa_copy(mbedtls_rsa_context *dst, const mbedtls_rsa_context *src)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ dst->len = src->len;
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->N, &src->N));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->E, &src->E));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->D, &src->D));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->P, &src->P));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Q, &src->Q));
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DP, &src->DP));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->DQ, &src->DQ));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->QP, &src->QP));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RP, &src->RP));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RQ, &src->RQ));
+#endif
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->RN, &src->RN));
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vi, &src->Vi));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_copy(&dst->Vf, &src->Vf));
+
+ dst->padding = src->padding;
+ dst->hash_id = src->hash_id;
+
+cleanup:
+ if (ret != 0) {
+ mbedtls_rsa_free(dst);
+ }
+
+ return ret;
+}
+
+/*
+ * Free the components of an RSA key
+ */
+void mbedtls_rsa_free(mbedtls_rsa_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_mpi_free(&ctx->Vi);
+ mbedtls_mpi_free(&ctx->Vf);
+ mbedtls_mpi_free(&ctx->RN);
+ mbedtls_mpi_free(&ctx->D);
+ mbedtls_mpi_free(&ctx->Q);
+ mbedtls_mpi_free(&ctx->P);
+ mbedtls_mpi_free(&ctx->E);
+ mbedtls_mpi_free(&ctx->N);
+
+#if !defined(MBEDTLS_RSA_NO_CRT)
+ mbedtls_mpi_free(&ctx->RQ);
+ mbedtls_mpi_free(&ctx->RP);
+ mbedtls_mpi_free(&ctx->QP);
+ mbedtls_mpi_free(&ctx->DQ);
+ mbedtls_mpi_free(&ctx->DP);
+#endif /* MBEDTLS_RSA_NO_CRT */
+
+#if defined(MBEDTLS_THREADING_C)
+ /* Free the mutex, but only if it hasn't been freed already. */
+ if (ctx->ver != 0) {
+ mbedtls_mutex_free(&ctx->mutex);
+ ctx->ver = 0;
+ }
+#endif
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+
+/*
+ * Example RSA-1024 keypair, for test purposes
+ */
+#define KEY_LEN 128
+
+#define RSA_N "9292758453063D803DD603D5E777D788" \
+ "8ED1D5BF35786190FA2F23EBC0848AEA" \
+ "DDA92CA6C3D80B32C4D109BE0F36D6AE" \
+ "7130B9CED7ACDF54CFC7555AC14EEBAB" \
+ "93A89813FBF3C4F8066D2D800F7C38A8" \
+ "1AE31942917403FF4946B0A83D3D3E05" \
+ "EE57C6F5F5606FB5D4BC6CD34EE0801A" \
+ "5E94BB77B07507233A0BC7BAC8F90F79"
+
+#define RSA_E "10001"
+
+#define RSA_D "24BF6185468786FDD303083D25E64EFC" \
+ "66CA472BC44D253102F8B4A9D3BFA750" \
+ "91386C0077937FE33FA3252D28855837" \
+ "AE1B484A8A9A45F7EE8C0C634F99E8CD" \
+ "DF79C5CE07EE72C7F123142198164234" \
+ "CABB724CF78B8173B9F880FC86322407" \
+ "AF1FEDFDDE2BEB674CA15F3E81A1521E" \
+ "071513A1E85B5DFA031F21ECAE91A34D"
+
+#define RSA_P "C36D0EB7FCD285223CFB5AABA5BDA3D8" \
+ "2C01CAD19EA484A87EA4377637E75500" \
+ "FCB2005C5C7DD6EC4AC023CDA285D796" \
+ "C3D9E75E1EFC42488BB4F1D13AC30A57"
+
+#define RSA_Q "C000DF51A7C77AE8D7C7370C1FF55B69" \
+ "E211C2B9E5DB1ED0BF61D0D9899620F4" \
+ "910E4168387E3C30AA1E00C339A79508" \
+ "8452DD96A9A5EA5D9DCA68DA636032AF"
+
+#define PT_LEN 24
+#define RSA_PT "\xAA\xBB\xCC\x03\x02\x01\x00\xFF\xFF\xFF\xFF\xFF" \
+ "\x11\x22\x33\x0A\x0B\x0C\xCC\xDD\xDD\xDD\xDD\xDD"
+
+#if defined(MBEDTLS_PKCS1_V15)
+static int myrand(void *rng_state, unsigned char *output, size_t len)
+{
+#if !defined(__OpenBSD__) && !defined(__NetBSD__)
+ size_t i;
+
+ if (rng_state != NULL) {
+ rng_state = NULL;
+ }
+
+ for (i = 0; i < len; ++i) {
+ output[i] = rand();
+ }
+#else
+ if (rng_state != NULL) {
+ rng_state = NULL;
+ }
+
+ arc4random_buf(output, len);
+#endif /* !OpenBSD && !NetBSD */
+
+ return 0;
+}
+#endif /* MBEDTLS_PKCS1_V15 */
+
+/*
+ * Checkup routine
+ */
+int mbedtls_rsa_self_test(int verbose)
+{
+ int ret = 0;
+#if defined(MBEDTLS_PKCS1_V15)
+ size_t len;
+ mbedtls_rsa_context rsa;
+ unsigned char rsa_plaintext[PT_LEN];
+ unsigned char rsa_decrypted[PT_LEN];
+ unsigned char rsa_ciphertext[KEY_LEN];
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ unsigned char sha1sum[20];
+#endif
+
+ mbedtls_mpi K;
+
+ mbedtls_mpi_init(&K);
+ mbedtls_rsa_init(&rsa);
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_N));
+ MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, &K, NULL, NULL, NULL, NULL));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_P));
+ MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, &K, NULL, NULL, NULL));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_Q));
+ MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, &K, NULL, NULL));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_D));
+ MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, &K, NULL));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_read_string(&K, 16, RSA_E));
+ MBEDTLS_MPI_CHK(mbedtls_rsa_import(&rsa, NULL, NULL, NULL, NULL, &K));
+
+ MBEDTLS_MPI_CHK(mbedtls_rsa_complete(&rsa));
+
+ if (verbose != 0) {
+ mbedtls_printf(" RSA key validation: ");
+ }
+
+ if (mbedtls_rsa_check_pubkey(&rsa) != 0 ||
+ mbedtls_rsa_check_privkey(&rsa) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n PKCS#1 encryption : ");
+ }
+
+ memcpy(rsa_plaintext, RSA_PT, PT_LEN);
+
+ if (mbedtls_rsa_pkcs1_encrypt(&rsa, myrand, NULL,
+ PT_LEN, rsa_plaintext,
+ rsa_ciphertext) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n PKCS#1 decryption : ");
+ }
+
+ if (mbedtls_rsa_pkcs1_decrypt(&rsa, myrand, NULL,
+ &len, rsa_ciphertext, rsa_decrypted,
+ sizeof(rsa_decrypted)) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (memcmp(rsa_decrypted, rsa_plaintext, len) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+#if defined(MBEDTLS_MD_CAN_SHA1)
+ if (verbose != 0) {
+ mbedtls_printf(" PKCS#1 data sign : ");
+ }
+
+ if (mbedtls_md(mbedtls_md_info_from_type(MBEDTLS_MD_SHA1),
+ rsa_plaintext, PT_LEN, sha1sum) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ return 1;
+ }
+
+ if (mbedtls_rsa_pkcs1_sign(&rsa, myrand, NULL,
+ MBEDTLS_MD_SHA1, 20,
+ sha1sum, rsa_ciphertext) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n PKCS#1 sig. verify: ");
+ }
+
+ if (mbedtls_rsa_pkcs1_verify(&rsa, MBEDTLS_MD_SHA1, 20,
+ sha1sum, rsa_ciphertext) != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+ ret = 1;
+ goto cleanup;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+#endif /* MBEDTLS_MD_CAN_SHA1 */
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+cleanup:
+ mbedtls_mpi_free(&K);
+ mbedtls_rsa_free(&rsa);
+#else /* MBEDTLS_PKCS1_V15 */
+ ((void) verbose);
+#endif /* MBEDTLS_PKCS1_V15 */
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_RSA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.c b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.c
new file mode 100644
index 0000000..5c265a9
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.c
@@ -0,0 +1,447 @@
+/*
+ * Helper functions for the RSA module
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ *
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_RSA_C)
+
+#include "mbedtls/rsa.h"
+#include "mbedtls/bignum.h"
+#include "rsa_alt_helpers.h"
+
+/*
+ * Compute RSA prime factors from public and private exponents
+ *
+ * Summary of algorithm:
+ * Setting F := lcm(P-1,Q-1), the idea is as follows:
+ *
+ * (a) For any 1 <= X < N with gcd(X,N)=1, we have X^F = 1 modulo N, so X^(F/2)
+ * is a square root of 1 in Z/NZ. Since Z/NZ ~= Z/PZ x Z/QZ by CRT and the
+ * square roots of 1 in Z/PZ and Z/QZ are +1 and -1, this leaves the four
+ * possibilities X^(F/2) = (+-1, +-1). If it happens that X^(F/2) = (-1,+1)
+ * or (+1,-1), then gcd(X^(F/2) + 1, N) will be equal to one of the prime
+ * factors of N.
+ *
+ * (b) If we don't know F/2 but (F/2) * K for some odd (!) K, then the same
+ * construction still applies since (-)^K is the identity on the set of
+ * roots of 1 in Z/NZ.
+ *
+ * The public and private key primitives (-)^E and (-)^D are mutually inverse
+ * bijections on Z/NZ if and only if (-)^(DE) is the identity on Z/NZ, i.e.
+ * if and only if DE - 1 is a multiple of F, say DE - 1 = F * L.
+ * Splitting L = 2^t * K with K odd, we have
+ *
+ * DE - 1 = FL = (F/2) * (2^(t+1)) * K,
+ *
+ * so (F / 2) * K is among the numbers
+ *
+ * (DE - 1) >> 1, (DE - 1) >> 2, ..., (DE - 1) >> ord
+ *
+ * where ord is the order of 2 in (DE - 1).
+ * We can therefore iterate through these numbers apply the construction
+ * of (a) and (b) above to attempt to factor N.
+ *
+ */
+int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N,
+ mbedtls_mpi const *E, mbedtls_mpi const *D,
+ mbedtls_mpi *P, mbedtls_mpi *Q)
+{
+ int ret = 0;
+
+ uint16_t attempt; /* Number of current attempt */
+ uint16_t iter; /* Number of squares computed in the current attempt */
+
+ uint16_t order; /* Order of 2 in DE - 1 */
+
+ mbedtls_mpi T; /* Holds largest odd divisor of DE - 1 */
+ mbedtls_mpi K; /* Temporary holding the current candidate */
+
+ const unsigned char primes[] = { 2,
+ 3, 5, 7, 11, 13, 17, 19, 23,
+ 29, 31, 37, 41, 43, 47, 53, 59,
+ 61, 67, 71, 73, 79, 83, 89, 97,
+ 101, 103, 107, 109, 113, 127, 131, 137,
+ 139, 149, 151, 157, 163, 167, 173, 179,
+ 181, 191, 193, 197, 199, 211, 223, 227,
+ 229, 233, 239, 241, 251 };
+
+ const size_t num_primes = sizeof(primes) / sizeof(*primes);
+
+ if (P == NULL || Q == NULL || P->p != NULL || Q->p != NULL) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_cmp_int(N, 0) <= 0 ||
+ mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+ mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ /*
+ * Initializations and temporary changes
+ */
+
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&T);
+
+ /* T := DE - 1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&T, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&T, &T, 1));
+
+ if ((order = (uint16_t) mbedtls_mpi_lsb(&T)) == 0) {
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ /* After this operation, T holds the largest odd divisor of DE - 1. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_shift_r(&T, order));
+
+ /*
+ * Actual work
+ */
+
+ /* Skip trying 2 if N == 1 mod 8 */
+ attempt = 0;
+ if (N->p[0] % 8 == 1) {
+ attempt = 1;
+ }
+
+ for (; attempt < num_primes; ++attempt) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_lset(&K, primes[attempt]));
+
+ /* Check if gcd(K,N) = 1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+ if (mbedtls_mpi_cmp_int(P, 1) != 0) {
+ continue;
+ }
+
+ /* Go through K^T + 1, K^(2T) + 1, K^(4T) + 1, ...
+ * and check whether they have nontrivial GCD with N. */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_exp_mod(&K, &K, &T, N,
+ Q /* temporarily use Q for storing Montgomery
+ * multiplication helper values */));
+
+ for (iter = 1; iter <= order; ++iter) {
+ /* If we reach 1 prematurely, there's no point
+ * in continuing to square K */
+ if (mbedtls_mpi_cmp_int(&K, 1) == 0) {
+ break;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_add_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(P, &K, N));
+
+ if (mbedtls_mpi_cmp_int(P, 1) == 1 &&
+ mbedtls_mpi_cmp_mpi(P, N) == -1) {
+ /*
+ * Have found a nontrivial divisor P of N.
+ * Set Q := N / P.
+ */
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(Q, NULL, N, P));
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &K));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, N));
+ }
+
+ /*
+ * If we get here, then either we prematurely aborted the loop because
+ * we reached 1, or K holds primes[attempt]^(DE - 1) mod N, which must
+ * be 1 if D,E,N were consistent.
+ * Check if that's the case and abort if not, to avoid very long,
+ * yet eventually failing, computations if N,D,E were not sane.
+ */
+ if (mbedtls_mpi_cmp_int(&K, 1) != 0) {
+ break;
+ }
+ }
+
+ ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+
+cleanup:
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&T);
+ return ret;
+}
+
+/*
+ * Given P, Q and the public exponent E, deduce D.
+ * This is essentially a modular inversion.
+ */
+int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
+ mbedtls_mpi const *Q,
+ mbedtls_mpi const *E,
+ mbedtls_mpi *D)
+{
+ int ret = 0;
+ mbedtls_mpi K, L;
+
+ if (D == NULL || mbedtls_mpi_cmp_int(D, 0) != 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(Q, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(E, 0) == 0) {
+ return MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
+ }
+
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
+
+ /* Temporarily put K := P-1 and L := Q-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+
+ /* Temporarily put D := gcd(P-1, Q-1) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_gcd(D, &K, &L));
+
+ /* K := LCM(P-1, Q-1) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, &K, &L));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_div_mpi(&K, NULL, &K, D));
+
+ /* Compute modular inverse of E in LCM(P-1, Q-1) */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(D, E, &K));
+
+cleanup:
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
+
+ return ret;
+}
+
+int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, mbedtls_mpi *DP,
+ mbedtls_mpi *DQ, mbedtls_mpi *QP)
+{
+ int ret = 0;
+ mbedtls_mpi K;
+ mbedtls_mpi_init(&K);
+
+ /* DP = D mod P-1 */
+ if (DP != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DP, D, &K));
+ }
+
+ /* DQ = D mod Q-1 */
+ if (DQ != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(DQ, D, &K));
+ }
+
+ /* QP = Q^{-1} mod P */
+ if (QP != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_inv_mod(QP, Q, P));
+ }
+
+cleanup:
+ mbedtls_mpi_free(&K);
+
+ return ret;
+}
+
+/*
+ * Check that core RSA parameters are sane.
+ */
+int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
+ const mbedtls_mpi *Q, const mbedtls_mpi *D,
+ const mbedtls_mpi *E,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng)
+{
+ int ret = 0;
+ mbedtls_mpi K, L;
+
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
+
+ /*
+ * Step 1: If PRNG provided, check that P and Q are prime
+ */
+
+#if defined(MBEDTLS_GENPRIME)
+ /*
+ * When generating keys, the strongest security we support aims for an error
+ * rate of at most 2^-100 and we are aiming for the same certainty here as
+ * well.
+ */
+ if (f_rng != NULL && P != NULL &&
+ (ret = mbedtls_mpi_is_prime_ext(P, 50, f_rng, p_rng)) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+
+ if (f_rng != NULL && Q != NULL &&
+ (ret = mbedtls_mpi_is_prime_ext(Q, 50, f_rng, p_rng)) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+#else
+ ((void) f_rng);
+ ((void) p_rng);
+#endif /* MBEDTLS_GENPRIME */
+
+ /*
+ * Step 2: Check that 1 < N = P * Q
+ */
+
+ if (P != NULL && Q != NULL && N != NULL) {
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, P, Q));
+ if (mbedtls_mpi_cmp_int(N, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(&K, N) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /*
+ * Step 3: Check and 1 < D, E < N if present.
+ */
+
+ if (N != NULL && D != NULL && E != NULL) {
+ if (mbedtls_mpi_cmp_int(D, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(E, 1) <= 0 ||
+ mbedtls_mpi_cmp_mpi(D, N) >= 0 ||
+ mbedtls_mpi_cmp_mpi(E, N) >= 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /*
+ * Step 4: Check that D, E are inverse modulo P-1 and Q-1
+ */
+
+ if (P != NULL && Q != NULL && D != NULL && E != NULL) {
+ if (mbedtls_mpi_cmp_int(P, 1) <= 0 ||
+ mbedtls_mpi_cmp_int(Q, 1) <= 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+
+ /* Compute DE-1 mod P-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+
+ /* Compute DE-1 mod Q-1 */
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, D, E));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&L, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, &L));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+cleanup:
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
+
+ /* Wrap MPI error codes by RSA check failure error code */
+ if (ret != 0 && ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED) {
+ ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ return ret;
+}
+
+/*
+ * Check that RSA CRT parameters are in accordance with core parameters.
+ */
+int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, const mbedtls_mpi *DP,
+ const mbedtls_mpi *DQ, const mbedtls_mpi *QP)
+{
+ int ret = 0;
+
+ mbedtls_mpi K, L;
+ mbedtls_mpi_init(&K);
+ mbedtls_mpi_init(&L);
+
+ /* Check that DP - D == 0 mod P - 1 */
+ if (DP != NULL) {
+ if (P == NULL) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, P, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DP, D));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
+
+ if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /* Check that DQ - D == 0 mod Q - 1 */
+ if (DQ != NULL) {
+ if (Q == NULL) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, Q, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_mpi(&L, DQ, D));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&L, &L, &K));
+
+ if (mbedtls_mpi_cmp_int(&L, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+ /* Check that QP * Q - 1 == 0 mod P */
+ if (QP != NULL) {
+ if (P == NULL || Q == NULL) {
+ ret = MBEDTLS_ERR_RSA_BAD_INPUT_DATA;
+ goto cleanup;
+ }
+
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mul_mpi(&K, QP, Q));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_sub_int(&K, &K, 1));
+ MBEDTLS_MPI_CHK(mbedtls_mpi_mod_mpi(&K, &K, P));
+ if (mbedtls_mpi_cmp_int(&K, 0) != 0) {
+ ret = MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ goto cleanup;
+ }
+ }
+
+cleanup:
+
+ /* Wrap MPI error codes by RSA check failure error code */
+ if (ret != 0 &&
+ ret != MBEDTLS_ERR_RSA_KEY_CHECK_FAILED &&
+ ret != MBEDTLS_ERR_RSA_BAD_INPUT_DATA) {
+ ret += MBEDTLS_ERR_RSA_KEY_CHECK_FAILED;
+ }
+
+ mbedtls_mpi_free(&K);
+ mbedtls_mpi_free(&L);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_RSA_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.h b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.h
new file mode 100644
index 0000000..f234036
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa_alt_helpers.h
@@ -0,0 +1,212 @@
+/**
+ * \file rsa_alt_helpers.h
+ *
+ * \brief Context-independent RSA helper functions
+ *
+ * Please note: The below explanation is historical and is no longer relevant
+ * due to there being no compelling reason to keep these functions separate
+ * since the RSA alt interface was removed. A future refactoring will address
+ * this which is tracked by the following issue:
+ * https://github.com/Mbed-TLS/TF-PSA-Crypto/issues/105.
+ *
+ * This module declares some RSA-related helper functions useful when
+ * implementing the RSA interface. These functions are provided in a separate
+ * compilation unit in order to make it easy for designers of alternative RSA
+ * implementations to use them in their own code, as it is conceived that the
+ * functionality they provide will be necessary for most complete
+ * implementations.
+ *
+ * End-users of Mbed TLS who are not providing their own alternative RSA
+ * implementations should not use these functions directly, and should instead
+ * use only the functions declared in rsa.h.
+ *
+ * The interface provided by this module will be maintained through LTS (Long
+ * Term Support) branches of Mbed TLS, but may otherwise be subject to change,
+ * and must be considered an internal interface of the library.
+ *
+ * There are two classes of helper functions:
+ *
+ * (1) Parameter-generating helpers. These are:
+ * - mbedtls_rsa_deduce_primes
+ * - mbedtls_rsa_deduce_private_exponent
+ * - mbedtls_rsa_deduce_crt
+ * Each of these functions takes a set of core RSA parameters and
+ * generates some other, or CRT related parameters.
+ *
+ * (2) Parameter-checking helpers. These are:
+ * - mbedtls_rsa_validate_params
+ * - mbedtls_rsa_validate_crt
+ * They take a set of core or CRT related RSA parameters and check their
+ * validity.
+ *
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_RSA_ALT_HELPERS_H
+#define MBEDTLS_RSA_ALT_HELPERS_H
+
+#include "mbedtls/build_info.h"
+
+#include "mbedtls/bignum.h"
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+
+/**
+ * \brief Compute RSA prime moduli P, Q from public modulus N=PQ
+ * and a pair of private and public key.
+ *
+ * \note This is a 'static' helper function not operating on
+ * an RSA context. Alternative implementations need not
+ * overwrite it.
+ *
+ * \param N RSA modulus N = PQ, with P, Q to be found
+ * \param E RSA public exponent
+ * \param D RSA private exponent
+ * \param P Pointer to MPI holding first prime factor of N on success
+ * \param Q Pointer to MPI holding second prime factor of N on success
+ *
+ * \return
+ * - 0 if successful. In this case, P and Q constitute a
+ * factorization of N.
+ * - A non-zero error code otherwise.
+ *
+ * \note It is neither checked that P, Q are prime nor that
+ * D, E are modular inverses wrt. P-1 and Q-1. For that,
+ * use the helper function \c mbedtls_rsa_validate_params.
+ *
+ */
+int mbedtls_rsa_deduce_primes(mbedtls_mpi const *N, mbedtls_mpi const *E,
+ mbedtls_mpi const *D,
+ mbedtls_mpi *P, mbedtls_mpi *Q);
+
+/**
+ * \brief Compute RSA private exponent from
+ * prime moduli and public key.
+ *
+ * \note This is a 'static' helper function not operating on
+ * an RSA context. Alternative implementations need not
+ * overwrite it.
+ *
+ * \param P First prime factor of RSA modulus
+ * \param Q Second prime factor of RSA modulus
+ * \param E RSA public exponent
+ * \param D Pointer to MPI holding the private exponent on success.
+ *
+ * \return
+ * - 0 if successful. In this case, D is set to a simultaneous
+ * modular inverse of E modulo both P-1 and Q-1.
+ * - A non-zero error code otherwise.
+ *
+ * \note This function does not check whether P and Q are primes.
+ *
+ */
+int mbedtls_rsa_deduce_private_exponent(mbedtls_mpi const *P,
+ mbedtls_mpi const *Q,
+ mbedtls_mpi const *E,
+ mbedtls_mpi *D);
+
+
+/**
+ * \brief Generate RSA-CRT parameters
+ *
+ * \note This is a 'static' helper function not operating on
+ * an RSA context. Alternative implementations need not
+ * overwrite it.
+ *
+ * \param P First prime factor of N
+ * \param Q Second prime factor of N
+ * \param D RSA private exponent
+ * \param DP Output variable for D modulo P-1
+ * \param DQ Output variable for D modulo Q-1
+ * \param QP Output variable for the modular inverse of Q modulo P.
+ *
+ * \return 0 on success, non-zero error code otherwise.
+ *
+ * \note This function does not check whether P, Q are
+ * prime and whether D is a valid private exponent.
+ *
+ */
+int mbedtls_rsa_deduce_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, mbedtls_mpi *DP,
+ mbedtls_mpi *DQ, mbedtls_mpi *QP);
+
+
+/**
+ * \brief Check validity of core RSA parameters
+ *
+ * \note This is a 'static' helper function not operating on
+ * an RSA context. Alternative implementations need not
+ * overwrite it.
+ *
+ * \param N RSA modulus N = PQ
+ * \param P First prime factor of N
+ * \param Q Second prime factor of N
+ * \param D RSA private exponent
+ * \param E RSA public exponent
+ * \param f_rng PRNG to be used for primality check, or NULL
+ * \param p_rng PRNG context for f_rng, or NULL
+ *
+ * \return
+ * - 0 if the following conditions are satisfied
+ * if all relevant parameters are provided:
+ * - P prime if f_rng != NULL (%)
+ * - Q prime if f_rng != NULL (%)
+ * - 1 < N = P * Q
+ * - 1 < D, E < N
+ * - D and E are modular inverses modulo P-1 and Q-1
+ * (%) This is only done if MBEDTLS_GENPRIME is defined.
+ * - A non-zero error code otherwise.
+ *
+ * \note The function can be used with a restricted set of arguments
+ * to perform specific checks only. E.g., calling it with
+ * (-,P,-,-,-) and a PRNG amounts to a primality check for P.
+ */
+int mbedtls_rsa_validate_params(const mbedtls_mpi *N, const mbedtls_mpi *P,
+ const mbedtls_mpi *Q, const mbedtls_mpi *D,
+ const mbedtls_mpi *E,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng);
+
+/**
+ * \brief Check validity of RSA CRT parameters
+ *
+ * \note This is a 'static' helper function not operating on
+ * an RSA context. Alternative implementations need not
+ * overwrite it.
+ *
+ * \param P First prime factor of RSA modulus
+ * \param Q Second prime factor of RSA modulus
+ * \param D RSA private exponent
+ * \param DP MPI to check for D modulo P-1
+ * \param DQ MPI to check for D modulo P-1
+ * \param QP MPI to check for the modular inverse of Q modulo P.
+ *
+ * \return
+ * - 0 if the following conditions are satisfied:
+ * - D = DP mod P-1 if P, D, DP != NULL
+ * - Q = DQ mod P-1 if P, D, DQ != NULL
+ * - QP = Q^-1 mod P if P, Q, QP != NULL
+ * - \c MBEDTLS_ERR_RSA_KEY_CHECK_FAILED if check failed,
+ * potentially including \c MBEDTLS_ERR_MPI_XXX if some
+ * MPI calculations failed.
+ * - \c MBEDTLS_ERR_RSA_BAD_INPUT_DATA if insufficient
+ * data was provided to check DP, DQ or QP.
+ *
+ * \note The function can be used with a restricted set of arguments
+ * to perform specific checks only. E.g., calling it with the
+ * parameters (P, -, D, DP, -, -) will check DP = D mod P-1.
+ */
+int mbedtls_rsa_validate_crt(const mbedtls_mpi *P, const mbedtls_mpi *Q,
+ const mbedtls_mpi *D, const mbedtls_mpi *DP,
+ const mbedtls_mpi *DQ, const mbedtls_mpi *QP);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif /* rsa_alt_helpers.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/rsa_internal.h b/tf-psa-crypto/drivers/builtin/src/rsa_internal.h
new file mode 100644
index 0000000..f79c3b7
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/rsa_internal.h
@@ -0,0 +1,121 @@
+/**
+ * \file rsa_internal.h
+ *
+ * \brief Internal-only RSA public-key cryptosystem API.
+ *
+ * This file declares RSA-related functions that are to be used
+ * only from within the Mbed TLS library itself.
+ *
+ */
+/*
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+#ifndef MBEDTLS_RSA_INTERNAL_H
+#define MBEDTLS_RSA_INTERNAL_H
+
+#include "mbedtls/rsa.h"
+#include "mbedtls/asn1.h"
+
+/**
+ * \brief Parse a PKCS#1 (ASN.1) encoded private RSA key.
+ *
+ * \param rsa The RSA context where parsed data will be stored.
+ * \param key The buffer that contains the key.
+ * \param keylen The length of the key buffer in bytes.
+ *
+ * \return 0 on success.
+ * \return MBEDTLS_ERR_ASN1_xxx in case of ASN.1 parsing errors.
+ * \return MBEDTLS_ERR_RSA_xxx in case of RSA internal failures while
+ * parsing data.
+ * \return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED if validity checks on the
+ * provided key fail.
+ */
+int mbedtls_rsa_parse_key(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen);
+
+/**
+ * \brief Parse a PKCS#1 (ASN.1) encoded public RSA key.
+ *
+ * \param rsa The RSA context where parsed data will be stored.
+ * \param key The buffer that contains the key.
+ * \param keylen The length of the key buffer in bytes.
+ *
+ * \return 0 on success.
+ * \return MBEDTLS_ERR_ASN1_xxx in case of ASN.1 parsing errors.
+ * \return MBEDTLS_ERR_RSA_xxx in case of RSA internal failures while
+ * parsing data.
+ * \return MBEDTLS_ERR_RSA_KEY_CHECK_FAILED if validity checks on the
+ * provided key fail.
+ */
+int mbedtls_rsa_parse_pubkey(mbedtls_rsa_context *rsa, const unsigned char *key, size_t keylen);
+
+/**
+ * \brief Write a PKCS#1 (ASN.1) encoded private RSA key.
+ *
+ * \param rsa The RSA context which contains the data to be written.
+ * \param start Beginning of the buffer that will be filled with the
+ * private key.
+ * \param p End of the buffer that will be filled with the private key.
+ * On successful return, the referenced pointer will be
+ * updated in order to point to the beginning of written data.
+ *
+ * \return On success, the number of bytes written to the output buffer
+ * (i.e. a value > 0).
+ * \return MBEDTLS_ERR_RSA_BAD_INPUT_DATA if the RSA context does not
+ * contain a valid key pair.
+ * \return MBEDTLS_ERR_ASN1_xxx in case of failure while writing to the
+ * output buffer.
+ *
+ * \note The output buffer is filled backward, i.e. starting from its
+ * end and moving toward its start.
+ */
+int mbedtls_rsa_write_key(const mbedtls_rsa_context *rsa, unsigned char *start,
+ unsigned char **p);
+
+/**
+ * \brief Parse a PKCS#1 (ASN.1) encoded public RSA key.
+ *
+ * \param rsa The RSA context which contains the data to be written.
+ * \param start Beginning of the buffer that will be filled with the
+ * private key.
+ * \param p End of the buffer that will be filled with the private key.
+ * On successful return, the referenced pointer will be
+ * updated in order to point to the beginning of written data.
+ *
+ * \return On success, the number of bytes written to the output buffer
+ * (i.e. a value > 0).
+ * \return MBEDTLS_ERR_RSA_BAD_INPUT_DATA if the RSA context does not
+ * contain a valid public key.
+ * \return MBEDTLS_ERR_ASN1_xxx in case of failure while writing to the
+ * output buffer.
+ *
+ * \note The output buffer is filled backward, i.e. starting from its
+ * end and moving toward its start.
+ */
+int mbedtls_rsa_write_pubkey(const mbedtls_rsa_context *rsa, unsigned char *start,
+ unsigned char **p);
+
+#if defined(MBEDTLS_PKCS1_V21)
+/**
+ * \brief This function is analogue to \c mbedtls_rsa_rsassa_pss_sign().
+ * The only difference between them is that this function is more flexible
+ * on the parameters of \p ctx that are set with \c mbedtls_rsa_set_padding().
+ *
+ * \note Compared to its counterpart, this function:
+ * - does not check the padding setting of \p ctx.
+ * - allows the hash_id of \p ctx to be MBEDTLS_MD_NONE,
+ * in which case it uses \p md_alg as the hash_id.
+ *
+ * \note Refer to \c mbedtls_rsa_rsassa_pss_sign() for a description
+ * of the functioning and parameters of this function.
+ */
+int mbedtls_rsa_rsassa_pss_sign_no_mode_check(mbedtls_rsa_context *ctx,
+ int (*f_rng)(void *, unsigned char *, size_t),
+ void *p_rng,
+ mbedtls_md_type_t md_alg,
+ unsigned int hashlen,
+ const unsigned char *hash,
+ unsigned char *sig);
+#endif /* MBEDTLS_PKCS1_V21 */
+
+#endif /* rsa_internal.h */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha1.c b/tf-psa-crypto/drivers/builtin/src/sha1.c
new file mode 100644
index 0000000..dfbe481
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha1.c
@@ -0,0 +1,480 @@
+/*
+ * FIPS-180-1 compliant SHA-1 implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The SHA-1 standard was published by NIST in 1993.
+ *
+ * http://www.itl.nist.gov/fipspubs/fip180-1.htm
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA1_C)
+
+#include "mbedtls/sha1.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if !defined(MBEDTLS_SHA1_ALT)
+
+void mbedtls_sha1_init(mbedtls_sha1_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_sha1_context));
+}
+
+void mbedtls_sha1_free(mbedtls_sha1_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha1_context));
+}
+
+void mbedtls_sha1_clone(mbedtls_sha1_context *dst,
+ const mbedtls_sha1_context *src)
+{
+ *dst = *src;
+}
+
+/*
+ * SHA-1 context setup
+ */
+int mbedtls_sha1_starts(mbedtls_sha1_context *ctx)
+{
+ ctx->total[0] = 0;
+ ctx->total[1] = 0;
+
+ ctx->state[0] = 0x67452301;
+ ctx->state[1] = 0xEFCDAB89;
+ ctx->state[2] = 0x98BADCFE;
+ ctx->state[3] = 0x10325476;
+ ctx->state[4] = 0xC3D2E1F0;
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_SHA1_PROCESS_ALT)
+int mbedtls_internal_sha1_process(mbedtls_sha1_context *ctx,
+ const unsigned char data[64])
+{
+ struct {
+ uint32_t temp, W[16], A, B, C, D, E;
+ } local;
+
+ local.W[0] = MBEDTLS_GET_UINT32_BE(data, 0);
+ local.W[1] = MBEDTLS_GET_UINT32_BE(data, 4);
+ local.W[2] = MBEDTLS_GET_UINT32_BE(data, 8);
+ local.W[3] = MBEDTLS_GET_UINT32_BE(data, 12);
+ local.W[4] = MBEDTLS_GET_UINT32_BE(data, 16);
+ local.W[5] = MBEDTLS_GET_UINT32_BE(data, 20);
+ local.W[6] = MBEDTLS_GET_UINT32_BE(data, 24);
+ local.W[7] = MBEDTLS_GET_UINT32_BE(data, 28);
+ local.W[8] = MBEDTLS_GET_UINT32_BE(data, 32);
+ local.W[9] = MBEDTLS_GET_UINT32_BE(data, 36);
+ local.W[10] = MBEDTLS_GET_UINT32_BE(data, 40);
+ local.W[11] = MBEDTLS_GET_UINT32_BE(data, 44);
+ local.W[12] = MBEDTLS_GET_UINT32_BE(data, 48);
+ local.W[13] = MBEDTLS_GET_UINT32_BE(data, 52);
+ local.W[14] = MBEDTLS_GET_UINT32_BE(data, 56);
+ local.W[15] = MBEDTLS_GET_UINT32_BE(data, 60);
+
+#define S(x, n) (((x) << (n)) | (((x) & 0xFFFFFFFF) >> (32 - (n))))
+
+#define R(t) \
+ ( \
+ local.temp = local.W[((t) - 3) & 0x0F] ^ \
+ local.W[((t) - 8) & 0x0F] ^ \
+ local.W[((t) - 14) & 0x0F] ^ \
+ local.W[(t) & 0x0F], \
+ (local.W[(t) & 0x0F] = S(local.temp, 1)) \
+ )
+
+#define P(a, b, c, d, e, x) \
+ do \
+ { \
+ (e) += S((a), 5) + F((b), (c), (d)) + K + (x); \
+ (b) = S((b), 30); \
+ } while (0)
+
+ local.A = ctx->state[0];
+ local.B = ctx->state[1];
+ local.C = ctx->state[2];
+ local.D = ctx->state[3];
+ local.E = ctx->state[4];
+
+#define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+#define K 0x5A827999
+
+ P(local.A, local.B, local.C, local.D, local.E, local.W[0]);
+ P(local.E, local.A, local.B, local.C, local.D, local.W[1]);
+ P(local.D, local.E, local.A, local.B, local.C, local.W[2]);
+ P(local.C, local.D, local.E, local.A, local.B, local.W[3]);
+ P(local.B, local.C, local.D, local.E, local.A, local.W[4]);
+ P(local.A, local.B, local.C, local.D, local.E, local.W[5]);
+ P(local.E, local.A, local.B, local.C, local.D, local.W[6]);
+ P(local.D, local.E, local.A, local.B, local.C, local.W[7]);
+ P(local.C, local.D, local.E, local.A, local.B, local.W[8]);
+ P(local.B, local.C, local.D, local.E, local.A, local.W[9]);
+ P(local.A, local.B, local.C, local.D, local.E, local.W[10]);
+ P(local.E, local.A, local.B, local.C, local.D, local.W[11]);
+ P(local.D, local.E, local.A, local.B, local.C, local.W[12]);
+ P(local.C, local.D, local.E, local.A, local.B, local.W[13]);
+ P(local.B, local.C, local.D, local.E, local.A, local.W[14]);
+ P(local.A, local.B, local.C, local.D, local.E, local.W[15]);
+ P(local.E, local.A, local.B, local.C, local.D, R(16));
+ P(local.D, local.E, local.A, local.B, local.C, R(17));
+ P(local.C, local.D, local.E, local.A, local.B, R(18));
+ P(local.B, local.C, local.D, local.E, local.A, R(19));
+
+#undef K
+#undef F
+
+#define F(x, y, z) ((x) ^ (y) ^ (z))
+#define K 0x6ED9EBA1
+
+ P(local.A, local.B, local.C, local.D, local.E, R(20));
+ P(local.E, local.A, local.B, local.C, local.D, R(21));
+ P(local.D, local.E, local.A, local.B, local.C, R(22));
+ P(local.C, local.D, local.E, local.A, local.B, R(23));
+ P(local.B, local.C, local.D, local.E, local.A, R(24));
+ P(local.A, local.B, local.C, local.D, local.E, R(25));
+ P(local.E, local.A, local.B, local.C, local.D, R(26));
+ P(local.D, local.E, local.A, local.B, local.C, R(27));
+ P(local.C, local.D, local.E, local.A, local.B, R(28));
+ P(local.B, local.C, local.D, local.E, local.A, R(29));
+ P(local.A, local.B, local.C, local.D, local.E, R(30));
+ P(local.E, local.A, local.B, local.C, local.D, R(31));
+ P(local.D, local.E, local.A, local.B, local.C, R(32));
+ P(local.C, local.D, local.E, local.A, local.B, R(33));
+ P(local.B, local.C, local.D, local.E, local.A, R(34));
+ P(local.A, local.B, local.C, local.D, local.E, R(35));
+ P(local.E, local.A, local.B, local.C, local.D, R(36));
+ P(local.D, local.E, local.A, local.B, local.C, R(37));
+ P(local.C, local.D, local.E, local.A, local.B, R(38));
+ P(local.B, local.C, local.D, local.E, local.A, R(39));
+
+#undef K
+#undef F
+
+#define F(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
+#define K 0x8F1BBCDC
+
+ P(local.A, local.B, local.C, local.D, local.E, R(40));
+ P(local.E, local.A, local.B, local.C, local.D, R(41));
+ P(local.D, local.E, local.A, local.B, local.C, R(42));
+ P(local.C, local.D, local.E, local.A, local.B, R(43));
+ P(local.B, local.C, local.D, local.E, local.A, R(44));
+ P(local.A, local.B, local.C, local.D, local.E, R(45));
+ P(local.E, local.A, local.B, local.C, local.D, R(46));
+ P(local.D, local.E, local.A, local.B, local.C, R(47));
+ P(local.C, local.D, local.E, local.A, local.B, R(48));
+ P(local.B, local.C, local.D, local.E, local.A, R(49));
+ P(local.A, local.B, local.C, local.D, local.E, R(50));
+ P(local.E, local.A, local.B, local.C, local.D, R(51));
+ P(local.D, local.E, local.A, local.B, local.C, R(52));
+ P(local.C, local.D, local.E, local.A, local.B, R(53));
+ P(local.B, local.C, local.D, local.E, local.A, R(54));
+ P(local.A, local.B, local.C, local.D, local.E, R(55));
+ P(local.E, local.A, local.B, local.C, local.D, R(56));
+ P(local.D, local.E, local.A, local.B, local.C, R(57));
+ P(local.C, local.D, local.E, local.A, local.B, R(58));
+ P(local.B, local.C, local.D, local.E, local.A, R(59));
+
+#undef K
+#undef F
+
+#define F(x, y, z) ((x) ^ (y) ^ (z))
+#define K 0xCA62C1D6
+
+ P(local.A, local.B, local.C, local.D, local.E, R(60));
+ P(local.E, local.A, local.B, local.C, local.D, R(61));
+ P(local.D, local.E, local.A, local.B, local.C, R(62));
+ P(local.C, local.D, local.E, local.A, local.B, R(63));
+ P(local.B, local.C, local.D, local.E, local.A, R(64));
+ P(local.A, local.B, local.C, local.D, local.E, R(65));
+ P(local.E, local.A, local.B, local.C, local.D, R(66));
+ P(local.D, local.E, local.A, local.B, local.C, R(67));
+ P(local.C, local.D, local.E, local.A, local.B, R(68));
+ P(local.B, local.C, local.D, local.E, local.A, R(69));
+ P(local.A, local.B, local.C, local.D, local.E, R(70));
+ P(local.E, local.A, local.B, local.C, local.D, R(71));
+ P(local.D, local.E, local.A, local.B, local.C, R(72));
+ P(local.C, local.D, local.E, local.A, local.B, R(73));
+ P(local.B, local.C, local.D, local.E, local.A, R(74));
+ P(local.A, local.B, local.C, local.D, local.E, R(75));
+ P(local.E, local.A, local.B, local.C, local.D, R(76));
+ P(local.D, local.E, local.A, local.B, local.C, R(77));
+ P(local.C, local.D, local.E, local.A, local.B, R(78));
+ P(local.B, local.C, local.D, local.E, local.A, R(79));
+
+#undef K
+#undef F
+
+ ctx->state[0] += local.A;
+ ctx->state[1] += local.B;
+ ctx->state[2] += local.C;
+ ctx->state[3] += local.D;
+ ctx->state[4] += local.E;
+
+ /* Zeroise buffers and variables to clear sensitive data from memory. */
+ mbedtls_platform_zeroize(&local, sizeof(local));
+
+ return 0;
+}
+
+#endif /* !MBEDTLS_SHA1_PROCESS_ALT */
+
+/*
+ * SHA-1 process buffer
+ */
+int mbedtls_sha1_update(mbedtls_sha1_context *ctx,
+ const unsigned char *input,
+ size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t fill;
+ uint32_t left;
+
+ if (ilen == 0) {
+ return 0;
+ }
+
+ left = ctx->total[0] & 0x3F;
+ fill = 64 - left;
+
+ ctx->total[0] += (uint32_t) ilen;
+ ctx->total[0] &= 0xFFFFFFFF;
+
+ if (ctx->total[0] < (uint32_t) ilen) {
+ ctx->total[1]++;
+ }
+
+ if (left && ilen >= fill) {
+ memcpy((void *) (ctx->buffer + left), input, fill);
+
+ if ((ret = mbedtls_internal_sha1_process(ctx, ctx->buffer)) != 0) {
+ return ret;
+ }
+
+ input += fill;
+ ilen -= fill;
+ left = 0;
+ }
+
+ while (ilen >= 64) {
+ if ((ret = mbedtls_internal_sha1_process(ctx, input)) != 0) {
+ return ret;
+ }
+
+ input += 64;
+ ilen -= 64;
+ }
+
+ if (ilen > 0) {
+ memcpy((void *) (ctx->buffer + left), input, ilen);
+ }
+
+ return 0;
+}
+
+/*
+ * SHA-1 final digest
+ */
+int mbedtls_sha1_finish(mbedtls_sha1_context *ctx,
+ unsigned char output[20])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ uint32_t used;
+ uint32_t high, low;
+
+ /*
+ * Add padding: 0x80 then 0x00 until 8 bytes remain for the length
+ */
+ used = ctx->total[0] & 0x3F;
+
+ ctx->buffer[used++] = 0x80;
+
+ if (used <= 56) {
+ /* Enough room for padding + length in current block */
+ memset(ctx->buffer + used, 0, 56 - used);
+ } else {
+ /* We'll need an extra block */
+ memset(ctx->buffer + used, 0, 64 - used);
+
+ if ((ret = mbedtls_internal_sha1_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ memset(ctx->buffer, 0, 56);
+ }
+
+ /*
+ * Add message length
+ */
+ high = (ctx->total[0] >> 29)
+ | (ctx->total[1] << 3);
+ low = (ctx->total[0] << 3);
+
+ MBEDTLS_PUT_UINT32_BE(high, ctx->buffer, 56);
+ MBEDTLS_PUT_UINT32_BE(low, ctx->buffer, 60);
+
+ if ((ret = mbedtls_internal_sha1_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * Output final state
+ */
+ MBEDTLS_PUT_UINT32_BE(ctx->state[0], output, 0);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[1], output, 4);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[2], output, 8);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[3], output, 12);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[4], output, 16);
+
+ ret = 0;
+
+exit:
+ mbedtls_sha1_free(ctx);
+ return ret;
+}
+
+#endif /* !MBEDTLS_SHA1_ALT */
+
+/*
+ * output = SHA-1( input buffer )
+ */
+int mbedtls_sha1(const unsigned char *input,
+ size_t ilen,
+ unsigned char output[20])
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_sha1_context ctx;
+
+ mbedtls_sha1_init(&ctx);
+
+ if ((ret = mbedtls_sha1_starts(&ctx)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha1_update(&ctx, input, ilen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha1_finish(&ctx, output)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_sha1_free(&ctx);
+ return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * FIPS-180-1 test vectors
+ */
+static const unsigned char sha1_test_buf[3][57] =
+{
+ { "abc" },
+ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
+ { "" }
+};
+
+static const size_t sha1_test_buflen[3] =
+{
+ 3, 56, 1000
+};
+
+static const unsigned char sha1_test_sum[3][20] =
+{
+ { 0xA9, 0x99, 0x3E, 0x36, 0x47, 0x06, 0x81, 0x6A, 0xBA, 0x3E,
+ 0x25, 0x71, 0x78, 0x50, 0xC2, 0x6C, 0x9C, 0xD0, 0xD8, 0x9D },
+ { 0x84, 0x98, 0x3E, 0x44, 0x1C, 0x3B, 0xD2, 0x6E, 0xBA, 0xAE,
+ 0x4A, 0xA1, 0xF9, 0x51, 0x29, 0xE5, 0xE5, 0x46, 0x70, 0xF1 },
+ { 0x34, 0xAA, 0x97, 0x3C, 0xD4, 0xC4, 0xDA, 0xA4, 0xF6, 0x1E,
+ 0xEB, 0x2B, 0xDB, 0xAD, 0x27, 0x31, 0x65, 0x34, 0x01, 0x6F }
+};
+
+/*
+ * Checkup routine
+ */
+int mbedtls_sha1_self_test(int verbose)
+{
+ int i, j, buflen, ret = 0;
+ unsigned char buf[1024];
+ unsigned char sha1sum[20];
+ mbedtls_sha1_context ctx;
+
+ mbedtls_sha1_init(&ctx);
+
+ /*
+ * SHA-1
+ */
+ for (i = 0; i < 3; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" SHA-1 test #%d: ", i + 1);
+ }
+
+ if ((ret = mbedtls_sha1_starts(&ctx)) != 0) {
+ goto fail;
+ }
+
+ if (i == 2) {
+ memset(buf, 'a', buflen = 1000);
+
+ for (j = 0; j < 1000; j++) {
+ ret = mbedtls_sha1_update(&ctx, buf, buflen);
+ if (ret != 0) {
+ goto fail;
+ }
+ }
+ } else {
+ ret = mbedtls_sha1_update(&ctx, sha1_test_buf[i],
+ sha1_test_buflen[i]);
+ if (ret != 0) {
+ goto fail;
+ }
+ }
+
+ if ((ret = mbedtls_sha1_finish(&ctx, sha1sum)) != 0) {
+ goto fail;
+ }
+
+ if (memcmp(sha1sum, sha1_test_sum[i], 20) != 0) {
+ ret = 1;
+ goto fail;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ goto exit;
+
+fail:
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+exit:
+ mbedtls_sha1_free(&ctx);
+
+ return ret;
+}
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA1_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha256.c b/tf-psa-crypto/drivers/builtin/src/sha256.c
new file mode 100644
index 0000000..8b2c345
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha256.c
@@ -0,0 +1,978 @@
+/*
+ * FIPS-180-2 compliant SHA-256 implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The SHA-256 Secure Hash Standard was published by NIST in 2002.
+ *
+ * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
+ */
+
+#if defined(__clang__) && (__clang_major__ >= 4)
+
+/* Ideally, we would simply use MBEDTLS_ARCH_IS_ARMV8_A in the following #if,
+ * but that is defined by build_info.h, and we need this block to happen first. */
+#if defined(__ARM_ARCH) && (__ARM_ARCH_PROFILE == 'A')
+#if __ARM_ARCH >= 8
+#define MBEDTLS_SHA256_ARCH_IS_ARMV8_A
+#endif
+#endif
+
+#if defined(MBEDTLS_SHA256_ARCH_IS_ARMV8_A) && !defined(__ARM_FEATURE_CRYPTO)
+/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
+ *
+ * The intrinsic declaration are guarded by predefined ACLE macros in clang:
+ * these are normally only enabled by the -march option on the command line.
+ * By defining the macros ourselves we gain access to those declarations without
+ * requiring -march on the command line.
+ *
+ * `arm_neon.h` is included by common.h, so we put these defines
+ * at the top of this file, before any includes.
+ */
+#define __ARM_FEATURE_CRYPTO 1
+/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
+ *
+ * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
+ * for older compilers.
+ */
+#define __ARM_FEATURE_SHA2 1
+#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
+#endif
+
+#endif /* defined(__clang__) && (__clang_major__ >= 4) */
+
+/* Ensure that SIG_SETMASK is defined when -std=c99 is used. */
+#if !defined(_GNU_SOURCE)
+#define _GNU_SOURCE
+#endif
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA256_C) || defined(MBEDTLS_SHA224_C)
+
+#include "mbedtls/sha256.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(MBEDTLS_ARCH_IS_ARMV8_A)
+
+# if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT) || \
+ defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+# if !defined(MBEDTLS_HAVE_NEON_INTRINSICS)
+# if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+# warning "Target does not support NEON instructions"
+# undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT
+# else
+# error "Target does not support NEON instructions"
+# endif
+# endif
+# endif
+
+# if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT) || \
+ defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+/* *INDENT-OFF* */
+
+# if !defined(__ARM_FEATURE_CRYPTO) || defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
+# if defined(__ARMCOMPILER_VERSION)
+# if __ARMCOMPILER_VERSION <= 6090000
+# error "Must use minimum -march=armv8-a+crypto for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+# endif
+# pragma clang attribute push (__attribute__((target("sha2"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# elif defined(__clang__)
+# if __clang_major__ < 4
+# error "A more recent Clang is required for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+# endif
+# pragma clang attribute push (__attribute__((target("crypto"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# elif defined(__GNUC__)
+ /* FIXME: GCC 5 claims to support Armv8 Crypto Extensions, but some
+ * intrinsics are missing. Missing intrinsics could be worked around.
+ */
+# if __GNUC__ < 6
+# error "A more recent GCC is required for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+# else
+# pragma GCC push_options
+# pragma GCC target ("arch=armv8-a+crypto")
+# define MBEDTLS_POP_TARGET_PRAGMA
+# endif
+# else
+# error "Only GCC and Clang supported for MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_*"
+# endif
+# endif
+/* *INDENT-ON* */
+
+# endif
+# if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+# if defined(__unix__)
+# if defined(__linux__)
+/* Our preferred method of detection is getauxval() */
+# include <sys/auxv.h>
+/* These are not always defined via sys/auxv.h */
+# if !defined(HWCAP_SHA2)
+# define HWCAP_SHA2 (1 << 6)
+# endif
+# if !defined(HWCAP2_SHA2)
+# define HWCAP2_SHA2 (1 << 3)
+# endif
+# endif
+/* Use SIGILL on Unix, and fall back to it on Linux */
+# include <signal.h>
+# endif
+# endif
+#elif !defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+# undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY
+# undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT
+#endif
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+/*
+ * Capability detection code comes early, so we can disable
+ * MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT if no detection mechanism found
+ */
+#if defined(MBEDTLS_ARCH_IS_ARM64) && defined(HWCAP_SHA2)
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+ return (getauxval(AT_HWCAP) & HWCAP_SHA2) ? 1 : 0;
+}
+#elif defined(MBEDTLS_ARCH_IS_ARM32) && defined(HWCAP2_SHA2)
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+ return (getauxval(AT_HWCAP2) & HWCAP2_SHA2) ? 1 : 0;
+}
+#elif defined(__APPLE__)
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+ return 1;
+}
+#elif defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+#define WIN32_LEAN_AND_MEAN
+#include <Windows.h>
+#include <processthreadsapi.h>
+
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+ return IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE) ?
+ 1 : 0;
+}
+#elif defined(__unix__) && defined(SIG_SETMASK)
+/* Detection with SIGILL, setjmp() and longjmp() */
+#include <signal.h>
+#include <setjmp.h>
+
+static jmp_buf return_from_sigill;
+
+/*
+ * Armv8-A SHA256 support detection via SIGILL
+ */
+static void sigill_handler(int signal)
+{
+ (void) signal;
+ longjmp(return_from_sigill, 1);
+}
+
+static int mbedtls_a64_crypto_sha256_determine_support(void)
+{
+ struct sigaction old_action, new_action;
+
+ sigset_t old_mask;
+ if (sigprocmask(0, NULL, &old_mask)) {
+ return 0;
+ }
+
+ sigemptyset(&new_action.sa_mask);
+ new_action.sa_flags = 0;
+ new_action.sa_handler = sigill_handler;
+
+ sigaction(SIGILL, &new_action, &old_action);
+
+ static int ret = 0;
+
+ if (setjmp(return_from_sigill) == 0) { /* First return only */
+ /* If this traps, we will return a second time from setjmp() with 1 */
+#if defined(MBEDTLS_ARCH_IS_ARM64)
+ asm volatile ("sha256h q0, q0, v0.4s" : : : "v0");
+#else
+ asm volatile ("sha256h.32 q0, q0, q0" : : : "q0");
+#endif
+ ret = 1;
+ }
+
+ sigaction(SIGILL, &old_action, NULL);
+ sigprocmask(SIG_SETMASK, &old_mask, NULL);
+
+ return ret;
+}
+#else
+#warning "No mechanism to detect ARMV8_CRYPTO found, using C code only"
+#undef MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT
+#endif /* HWCAP_SHA2, __APPLE__, __unix__ && SIG_SETMASK */
+
+#endif /* MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT */
+
+#if !defined(MBEDTLS_SHA256_ALT)
+
+#define SHA256_BLOCK_SIZE 64
+
+void mbedtls_sha256_init(mbedtls_sha256_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_sha256_context));
+}
+
+void mbedtls_sha256_free(mbedtls_sha256_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha256_context));
+}
+
+void mbedtls_sha256_clone(mbedtls_sha256_context *dst,
+ const mbedtls_sha256_context *src)
+{
+ *dst = *src;
+}
+
+/*
+ * SHA-256 context setup
+ */
+int mbedtls_sha256_starts(mbedtls_sha256_context *ctx, int is224)
+{
+#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
+ if (is224 != 0 && is224 != 1) {
+ return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+ }
+#elif defined(MBEDTLS_SHA256_C)
+ if (is224 != 0) {
+ return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+ }
+#else /* defined MBEDTLS_SHA224_C only */
+ if (is224 == 0) {
+ return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+ }
+#endif
+
+ ctx->total[0] = 0;
+ ctx->total[1] = 0;
+
+ if (is224 == 0) {
+#if defined(MBEDTLS_SHA256_C)
+ ctx->state[0] = 0x6A09E667;
+ ctx->state[1] = 0xBB67AE85;
+ ctx->state[2] = 0x3C6EF372;
+ ctx->state[3] = 0xA54FF53A;
+ ctx->state[4] = 0x510E527F;
+ ctx->state[5] = 0x9B05688C;
+ ctx->state[6] = 0x1F83D9AB;
+ ctx->state[7] = 0x5BE0CD19;
+#endif
+ } else {
+#if defined(MBEDTLS_SHA224_C)
+ ctx->state[0] = 0xC1059ED8;
+ ctx->state[1] = 0x367CD507;
+ ctx->state[2] = 0x3070DD17;
+ ctx->state[3] = 0xF70E5939;
+ ctx->state[4] = 0xFFC00B31;
+ ctx->state[5] = 0x68581511;
+ ctx->state[6] = 0x64F98FA7;
+ ctx->state[7] = 0xBEFA4FA4;
+#endif
+ }
+
+#if defined(MBEDTLS_SHA224_C)
+ ctx->is224 = is224;
+#endif
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_SHA256_PROCESS_ALT)
+static const uint32_t K[] =
+{
+ 0x428A2F98, 0x71374491, 0xB5C0FBCF, 0xE9B5DBA5,
+ 0x3956C25B, 0x59F111F1, 0x923F82A4, 0xAB1C5ED5,
+ 0xD807AA98, 0x12835B01, 0x243185BE, 0x550C7DC3,
+ 0x72BE5D74, 0x80DEB1FE, 0x9BDC06A7, 0xC19BF174,
+ 0xE49B69C1, 0xEFBE4786, 0x0FC19DC6, 0x240CA1CC,
+ 0x2DE92C6F, 0x4A7484AA, 0x5CB0A9DC, 0x76F988DA,
+ 0x983E5152, 0xA831C66D, 0xB00327C8, 0xBF597FC7,
+ 0xC6E00BF3, 0xD5A79147, 0x06CA6351, 0x14292967,
+ 0x27B70A85, 0x2E1B2138, 0x4D2C6DFC, 0x53380D13,
+ 0x650A7354, 0x766A0ABB, 0x81C2C92E, 0x92722C85,
+ 0xA2BFE8A1, 0xA81A664B, 0xC24B8B70, 0xC76C51A3,
+ 0xD192E819, 0xD6990624, 0xF40E3585, 0x106AA070,
+ 0x19A4C116, 0x1E376C08, 0x2748774C, 0x34B0BCB5,
+ 0x391C0CB3, 0x4ED8AA4A, 0x5B9CCA4F, 0x682E6FF3,
+ 0x748F82EE, 0x78A5636F, 0x84C87814, 0x8CC70208,
+ 0x90BEFFFA, 0xA4506CEB, 0xBEF9A3F7, 0xC67178F2,
+};
+
+#endif
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT) || \
+ defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+# define mbedtls_internal_sha256_process_many_a64_crypto mbedtls_internal_sha256_process_many
+# define mbedtls_internal_sha256_process_a64_crypto mbedtls_internal_sha256_process
+#endif
+
+static size_t mbedtls_internal_sha256_process_many_a64_crypto(
+ mbedtls_sha256_context *ctx, const uint8_t *msg, size_t len)
+{
+ uint32x4_t abcd = vld1q_u32(&ctx->state[0]);
+ uint32x4_t efgh = vld1q_u32(&ctx->state[4]);
+
+ size_t processed = 0;
+
+ for (;
+ len >= SHA256_BLOCK_SIZE;
+ processed += SHA256_BLOCK_SIZE,
+ msg += SHA256_BLOCK_SIZE,
+ len -= SHA256_BLOCK_SIZE) {
+ uint32x4_t tmp, abcd_prev;
+
+ uint32x4_t abcd_orig = abcd;
+ uint32x4_t efgh_orig = efgh;
+
+ uint32x4_t sched0 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 0));
+ uint32x4_t sched1 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 1));
+ uint32x4_t sched2 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 2));
+ uint32x4_t sched3 = vreinterpretq_u32_u8(vld1q_u8(msg + 16 * 3));
+
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ /* Will be true if not defined */
+ /* Untested on BE */
+ sched0 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched0)));
+ sched1 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched1)));
+ sched2 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched2)));
+ sched3 = vreinterpretq_u32_u8(vrev32q_u8(vreinterpretq_u8_u32(sched3)));
+#endif
+
+ /* Rounds 0 to 3 */
+ tmp = vaddq_u32(sched0, vld1q_u32(&K[0]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+ /* Rounds 4 to 7 */
+ tmp = vaddq_u32(sched1, vld1q_u32(&K[4]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+ /* Rounds 8 to 11 */
+ tmp = vaddq_u32(sched2, vld1q_u32(&K[8]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+ /* Rounds 12 to 15 */
+ tmp = vaddq_u32(sched3, vld1q_u32(&K[12]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+ for (int t = 16; t < 64; t += 16) {
+ /* Rounds t to t + 3 */
+ sched0 = vsha256su1q_u32(vsha256su0q_u32(sched0, sched1), sched2, sched3);
+ tmp = vaddq_u32(sched0, vld1q_u32(&K[t]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+ /* Rounds t + 4 to t + 7 */
+ sched1 = vsha256su1q_u32(vsha256su0q_u32(sched1, sched2), sched3, sched0);
+ tmp = vaddq_u32(sched1, vld1q_u32(&K[t + 4]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+ /* Rounds t + 8 to t + 11 */
+ sched2 = vsha256su1q_u32(vsha256su0q_u32(sched2, sched3), sched0, sched1);
+ tmp = vaddq_u32(sched2, vld1q_u32(&K[t + 8]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+
+ /* Rounds t + 12 to t + 15 */
+ sched3 = vsha256su1q_u32(vsha256su0q_u32(sched3, sched0), sched1, sched2);
+ tmp = vaddq_u32(sched3, vld1q_u32(&K[t + 12]));
+ abcd_prev = abcd;
+ abcd = vsha256hq_u32(abcd_prev, efgh, tmp);
+ efgh = vsha256h2q_u32(efgh, abcd_prev, tmp);
+ }
+
+ abcd = vaddq_u32(abcd, abcd_orig);
+ efgh = vaddq_u32(efgh, efgh_orig);
+ }
+
+ vst1q_u32(&ctx->state[0], abcd);
+ vst1q_u32(&ctx->state[4], efgh);
+
+ return processed;
+}
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and Armv8-A
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process()
+ */
+static
+#endif
+int mbedtls_internal_sha256_process_a64_crypto(mbedtls_sha256_context *ctx,
+ const unsigned char data[SHA256_BLOCK_SIZE])
+{
+ return (mbedtls_internal_sha256_process_many_a64_crypto(ctx, data,
+ SHA256_BLOCK_SIZE) ==
+ SHA256_BLOCK_SIZE) ? 0 : -1;
+}
+
+#endif /* MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT || MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+#if !defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+#define mbedtls_internal_sha256_process_many_c mbedtls_internal_sha256_process_many
+#define mbedtls_internal_sha256_process_c mbedtls_internal_sha256_process
+#endif
+
+
+#if !defined(MBEDTLS_SHA256_PROCESS_ALT) && \
+ !defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+
+#define SHR(x, n) (((x) & 0xFFFFFFFF) >> (n))
+#define ROTR(x, n) (SHR(x, n) | ((x) << (32 - (n))))
+
+#define S0(x) (ROTR(x, 7) ^ ROTR(x, 18) ^ SHR(x, 3))
+#define S1(x) (ROTR(x, 17) ^ ROTR(x, 19) ^ SHR(x, 10))
+
+#define S2(x) (ROTR(x, 2) ^ ROTR(x, 13) ^ ROTR(x, 22))
+#define S3(x) (ROTR(x, 6) ^ ROTR(x, 11) ^ ROTR(x, 25))
+
+#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
+#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+
+#define R(t) \
+ ( \
+ local.W[t] = S1(local.W[(t) - 2]) + local.W[(t) - 7] + \
+ S0(local.W[(t) - 15]) + local.W[(t) - 16] \
+ )
+
+#define P(a, b, c, d, e, f, g, h, x, K) \
+ do \
+ { \
+ local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x); \
+ local.temp2 = S2(a) + F0((a), (b), (c)); \
+ (d) += local.temp1; (h) = local.temp1 + local.temp2; \
+ } while (0)
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and Armv8
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha256_process()
+ */
+static
+#endif
+int mbedtls_internal_sha256_process_c(mbedtls_sha256_context *ctx,
+ const unsigned char data[SHA256_BLOCK_SIZE])
+{
+ struct {
+ uint32_t temp1, temp2, W[64];
+ uint32_t A[8];
+ } local;
+
+ unsigned int i;
+
+ for (i = 0; i < 8; i++) {
+ local.A[i] = ctx->state[i];
+ }
+
+#if defined(MBEDTLS_SHA256_SMALLER)
+ for (i = 0; i < 64; i++) {
+ if (i < 16) {
+ local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
+ } else {
+ R(i);
+ }
+
+ P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+ local.A[5], local.A[6], local.A[7], local.W[i], K[i]);
+
+ local.temp1 = local.A[7]; local.A[7] = local.A[6];
+ local.A[6] = local.A[5]; local.A[5] = local.A[4];
+ local.A[4] = local.A[3]; local.A[3] = local.A[2];
+ local.A[2] = local.A[1]; local.A[1] = local.A[0];
+ local.A[0] = local.temp1;
+ }
+#else /* MBEDTLS_SHA256_SMALLER */
+ for (i = 0; i < 16; i++) {
+ local.W[i] = MBEDTLS_GET_UINT32_BE(data, 4 * i);
+ }
+
+ for (i = 0; i < 16; i += 8) {
+ P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+ local.A[5], local.A[6], local.A[7], local.W[i+0], K[i+0]);
+ P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
+ local.A[4], local.A[5], local.A[6], local.W[i+1], K[i+1]);
+ P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
+ local.A[3], local.A[4], local.A[5], local.W[i+2], K[i+2]);
+ P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
+ local.A[2], local.A[3], local.A[4], local.W[i+3], K[i+3]);
+ P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
+ local.A[1], local.A[2], local.A[3], local.W[i+4], K[i+4]);
+ P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
+ local.A[0], local.A[1], local.A[2], local.W[i+5], K[i+5]);
+ P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
+ local.A[7], local.A[0], local.A[1], local.W[i+6], K[i+6]);
+ P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
+ local.A[6], local.A[7], local.A[0], local.W[i+7], K[i+7]);
+ }
+
+ for (i = 16; i < 64; i += 8) {
+ P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+ local.A[5], local.A[6], local.A[7], R(i+0), K[i+0]);
+ P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
+ local.A[4], local.A[5], local.A[6], R(i+1), K[i+1]);
+ P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
+ local.A[3], local.A[4], local.A[5], R(i+2), K[i+2]);
+ P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
+ local.A[2], local.A[3], local.A[4], R(i+3), K[i+3]);
+ P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
+ local.A[1], local.A[2], local.A[3], R(i+4), K[i+4]);
+ P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
+ local.A[0], local.A[1], local.A[2], R(i+5), K[i+5]);
+ P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
+ local.A[7], local.A[0], local.A[1], R(i+6), K[i+6]);
+ P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
+ local.A[6], local.A[7], local.A[0], R(i+7), K[i+7]);
+ }
+#endif /* MBEDTLS_SHA256_SMALLER */
+
+ for (i = 0; i < 8; i++) {
+ ctx->state[i] += local.A[i];
+ }
+
+ /* Zeroise buffers and variables to clear sensitive data from memory. */
+ mbedtls_platform_zeroize(&local, sizeof(local));
+
+ return 0;
+}
+
+#endif /* !MBEDTLS_SHA256_PROCESS_ALT && !MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY */
+
+
+#if !defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY)
+
+static size_t mbedtls_internal_sha256_process_many_c(
+ mbedtls_sha256_context *ctx, const uint8_t *data, size_t len)
+{
+ size_t processed = 0;
+
+ while (len >= SHA256_BLOCK_SIZE) {
+ if (mbedtls_internal_sha256_process_c(ctx, data) != 0) {
+ return 0;
+ }
+
+ data += SHA256_BLOCK_SIZE;
+ len -= SHA256_BLOCK_SIZE;
+
+ processed += SHA256_BLOCK_SIZE;
+ }
+
+ return processed;
+}
+
+#endif /* !MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_ONLY */
+
+
+#if defined(MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT)
+
+static int mbedtls_a64_crypto_sha256_has_support(void)
+{
+ static int done = 0;
+ static int supported = 0;
+
+ if (!done) {
+ supported = mbedtls_a64_crypto_sha256_determine_support();
+ done = 1;
+ }
+
+ return supported;
+}
+
+static size_t mbedtls_internal_sha256_process_many(mbedtls_sha256_context *ctx,
+ const uint8_t *msg, size_t len)
+{
+ if (mbedtls_a64_crypto_sha256_has_support()) {
+ return mbedtls_internal_sha256_process_many_a64_crypto(ctx, msg, len);
+ } else {
+ return mbedtls_internal_sha256_process_many_c(ctx, msg, len);
+ }
+}
+
+int mbedtls_internal_sha256_process(mbedtls_sha256_context *ctx,
+ const unsigned char data[SHA256_BLOCK_SIZE])
+{
+ if (mbedtls_a64_crypto_sha256_has_support()) {
+ return mbedtls_internal_sha256_process_a64_crypto(ctx, data);
+ } else {
+ return mbedtls_internal_sha256_process_c(ctx, data);
+ }
+}
+
+#endif /* MBEDTLS_SHA256_USE_ARMV8_A_CRYPTO_IF_PRESENT */
+
+
+/*
+ * SHA-256 process buffer
+ */
+int mbedtls_sha256_update(mbedtls_sha256_context *ctx,
+ const unsigned char *input,
+ size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t fill;
+ uint32_t left;
+
+ if (ilen == 0) {
+ return 0;
+ }
+
+ left = ctx->total[0] & 0x3F;
+ fill = SHA256_BLOCK_SIZE - left;
+
+ ctx->total[0] += (uint32_t) ilen;
+ ctx->total[0] &= 0xFFFFFFFF;
+
+ if (ctx->total[0] < (uint32_t) ilen) {
+ ctx->total[1]++;
+ }
+
+ if (left && ilen >= fill) {
+ memcpy((void *) (ctx->buffer + left), input, fill);
+
+ if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
+ return ret;
+ }
+
+ input += fill;
+ ilen -= fill;
+ left = 0;
+ }
+
+ while (ilen >= SHA256_BLOCK_SIZE) {
+ size_t processed =
+ mbedtls_internal_sha256_process_many(ctx, input, ilen);
+ if (processed < SHA256_BLOCK_SIZE) {
+ return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
+ }
+
+ input += processed;
+ ilen -= processed;
+ }
+
+ if (ilen > 0) {
+ memcpy((void *) (ctx->buffer + left), input, ilen);
+ }
+
+ return 0;
+}
+
+/*
+ * SHA-256 final digest
+ */
+int mbedtls_sha256_finish(mbedtls_sha256_context *ctx,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ uint32_t used;
+ uint32_t high, low;
+ int truncated = 0;
+
+ /*
+ * Add padding: 0x80 then 0x00 until 8 bytes remain for the length
+ */
+ used = ctx->total[0] & 0x3F;
+
+ ctx->buffer[used++] = 0x80;
+
+ if (used <= 56) {
+ /* Enough room for padding + length in current block */
+ memset(ctx->buffer + used, 0, 56 - used);
+ } else {
+ /* We'll need an extra block */
+ memset(ctx->buffer + used, 0, SHA256_BLOCK_SIZE - used);
+
+ if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ memset(ctx->buffer, 0, 56);
+ }
+
+ /*
+ * Add message length
+ */
+ high = (ctx->total[0] >> 29)
+ | (ctx->total[1] << 3);
+ low = (ctx->total[0] << 3);
+
+ MBEDTLS_PUT_UINT32_BE(high, ctx->buffer, 56);
+ MBEDTLS_PUT_UINT32_BE(low, ctx->buffer, 60);
+
+ if ((ret = mbedtls_internal_sha256_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * Output final state
+ */
+ MBEDTLS_PUT_UINT32_BE(ctx->state[0], output, 0);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[1], output, 4);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[2], output, 8);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[3], output, 12);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[4], output, 16);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[5], output, 20);
+ MBEDTLS_PUT_UINT32_BE(ctx->state[6], output, 24);
+
+#if defined(MBEDTLS_SHA224_C)
+ truncated = ctx->is224;
+#endif
+ if (!truncated) {
+ MBEDTLS_PUT_UINT32_BE(ctx->state[7], output, 28);
+ }
+
+ ret = 0;
+
+exit:
+ mbedtls_sha256_free(ctx);
+ return ret;
+}
+
+#endif /* !MBEDTLS_SHA256_ALT */
+
+/*
+ * output = SHA-256( input buffer )
+ */
+int mbedtls_sha256(const unsigned char *input,
+ size_t ilen,
+ unsigned char *output,
+ int is224)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_sha256_context ctx;
+
+#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
+ if (is224 != 0 && is224 != 1) {
+ return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+ }
+#elif defined(MBEDTLS_SHA256_C)
+ if (is224 != 0) {
+ return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+ }
+#else /* defined MBEDTLS_SHA224_C only */
+ if (is224 == 0) {
+ return MBEDTLS_ERR_SHA256_BAD_INPUT_DATA;
+ }
+#endif
+
+ mbedtls_sha256_init(&ctx);
+
+ if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha256_update(&ctx, input, ilen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha256_finish(&ctx, output)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_sha256_free(&ctx);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+/*
+ * FIPS-180-2 test vectors
+ */
+static const unsigned char sha_test_buf[3][57] =
+{
+ { "abc" },
+ { "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq" },
+ { "" }
+};
+
+static const size_t sha_test_buflen[3] =
+{
+ 3, 56, 1000
+};
+
+typedef const unsigned char (sha_test_sum_t)[32];
+
+/*
+ * SHA-224 test vectors
+ */
+#if defined(MBEDTLS_SHA224_C)
+static sha_test_sum_t sha224_test_sum[] =
+{
+ { 0x23, 0x09, 0x7D, 0x22, 0x34, 0x05, 0xD8, 0x22,
+ 0x86, 0x42, 0xA4, 0x77, 0xBD, 0xA2, 0x55, 0xB3,
+ 0x2A, 0xAD, 0xBC, 0xE4, 0xBD, 0xA0, 0xB3, 0xF7,
+ 0xE3, 0x6C, 0x9D, 0xA7 },
+ { 0x75, 0x38, 0x8B, 0x16, 0x51, 0x27, 0x76, 0xCC,
+ 0x5D, 0xBA, 0x5D, 0xA1, 0xFD, 0x89, 0x01, 0x50,
+ 0xB0, 0xC6, 0x45, 0x5C, 0xB4, 0xF5, 0x8B, 0x19,
+ 0x52, 0x52, 0x25, 0x25 },
+ { 0x20, 0x79, 0x46, 0x55, 0x98, 0x0C, 0x91, 0xD8,
+ 0xBB, 0xB4, 0xC1, 0xEA, 0x97, 0x61, 0x8A, 0x4B,
+ 0xF0, 0x3F, 0x42, 0x58, 0x19, 0x48, 0xB2, 0xEE,
+ 0x4E, 0xE7, 0xAD, 0x67 }
+};
+#endif
+
+/*
+ * SHA-256 test vectors
+ */
+#if defined(MBEDTLS_SHA256_C)
+static sha_test_sum_t sha256_test_sum[] =
+{
+ { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA,
+ 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23,
+ 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C,
+ 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD },
+ { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8,
+ 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39,
+ 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67,
+ 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 },
+ { 0xCD, 0xC7, 0x6E, 0x5C, 0x99, 0x14, 0xFB, 0x92,
+ 0x81, 0xA1, 0xC7, 0xE2, 0x84, 0xD7, 0x3E, 0x67,
+ 0xF1, 0x80, 0x9A, 0x48, 0xA4, 0x97, 0x20, 0x0E,
+ 0x04, 0x6D, 0x39, 0xCC, 0xC7, 0x11, 0x2C, 0xD0 }
+};
+#endif
+
+/*
+ * Checkup routine
+ */
+static int mbedtls_sha256_common_self_test(int verbose, int is224)
+{
+ int i, buflen, ret = 0;
+ unsigned char *buf;
+ unsigned char sha256sum[32];
+ mbedtls_sha256_context ctx;
+
+#if defined(MBEDTLS_SHA224_C) && defined(MBEDTLS_SHA256_C)
+ sha_test_sum_t *sha_test_sum = (is224) ? sha224_test_sum : sha256_test_sum;
+#elif defined(MBEDTLS_SHA256_C)
+ sha_test_sum_t *sha_test_sum = sha256_test_sum;
+#else
+ sha_test_sum_t *sha_test_sum = sha224_test_sum;
+#endif
+
+ buf = mbedtls_calloc(1024, sizeof(unsigned char));
+ if (NULL == buf) {
+ if (verbose != 0) {
+ mbedtls_printf("Buffer allocation failed\n");
+ }
+
+ return 1;
+ }
+
+ mbedtls_sha256_init(&ctx);
+
+ for (i = 0; i < 3; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" SHA-%d test #%d: ", 256 - is224 * 32, i + 1);
+ }
+
+ if ((ret = mbedtls_sha256_starts(&ctx, is224)) != 0) {
+ goto fail;
+ }
+
+ if (i == 2) {
+ memset(buf, 'a', buflen = 1000);
+
+ for (int j = 0; j < 1000; j++) {
+ ret = mbedtls_sha256_update(&ctx, buf, buflen);
+ if (ret != 0) {
+ goto fail;
+ }
+ }
+
+ } else {
+ ret = mbedtls_sha256_update(&ctx, sha_test_buf[i],
+ sha_test_buflen[i]);
+ if (ret != 0) {
+ goto fail;
+ }
+ }
+
+ if ((ret = mbedtls_sha256_finish(&ctx, sha256sum)) != 0) {
+ goto fail;
+ }
+
+
+ if (memcmp(sha256sum, sha_test_sum[i], 32 - is224 * 4) != 0) {
+ ret = 1;
+ goto fail;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ goto exit;
+
+fail:
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+exit:
+ mbedtls_sha256_free(&ctx);
+ mbedtls_free(buf);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_SHA256_C)
+int mbedtls_sha256_self_test(int verbose)
+{
+ return mbedtls_sha256_common_self_test(verbose, 0);
+}
+#endif /* MBEDTLS_SHA256_C */
+
+#if defined(MBEDTLS_SHA224_C)
+int mbedtls_sha224_self_test(int verbose)
+{
+ return mbedtls_sha256_common_self_test(verbose, 1);
+}
+#endif /* MBEDTLS_SHA224_C */
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA256_C || MBEDTLS_SHA224_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha3.c b/tf-psa-crypto/drivers/builtin/src/sha3.c
new file mode 100644
index 0000000..5738559
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha3.c
@@ -0,0 +1,721 @@
+/*
+ * FIPS-202 compliant SHA3 implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The SHA-3 Secure Hash Standard was published by NIST in 2015.
+ *
+ * https://nvlpubs.nist.gov/nistpubs/fips/nist.fips.202.pdf
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA3_C)
+
+/*
+ * These macros select manually unrolled implementations of parts of the main permutation function.
+ *
+ * Unrolling has a major impact on both performance and code size. gcc performance benefits a lot
+ * from manually unrolling at higher optimisation levels.
+ *
+ * Depending on your size/perf priorities, compiler and target, it may be beneficial to adjust
+ * these; the defaults here should give sensible trade-offs for gcc and clang on aarch64 and
+ * x86-64.
+ */
+#if !defined(MBEDTLS_SHA3_THETA_UNROLL)
+ #define MBEDTLS_SHA3_THETA_UNROLL 0 //no-check-names
+#endif
+#if !defined(MBEDTLS_SHA3_CHI_UNROLL)
+ #if defined(__OPTIMIZE_SIZE__)
+ #define MBEDTLS_SHA3_CHI_UNROLL 0 //no-check-names
+ #else
+ #define MBEDTLS_SHA3_CHI_UNROLL 1 //no-check-names
+ #endif
+#endif
+#if !defined(MBEDTLS_SHA3_PI_UNROLL)
+ #define MBEDTLS_SHA3_PI_UNROLL 1 //no-check-names
+#endif
+#if !defined(MBEDTLS_SHA3_RHO_UNROLL)
+ #define MBEDTLS_SHA3_RHO_UNROLL 1 //no-check-names
+#endif
+
+#include "mbedtls/sha3.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#include <string.h>
+
+#if defined(MBEDTLS_SELF_TEST)
+#include "mbedtls/platform.h"
+#endif /* MBEDTLS_SELF_TEST */
+
+#define XOR_BYTE 0x6
+
+/* Precomputed masks for the iota transform.
+ *
+ * Each round uses a 64-bit mask value. In each mask values, only
+ * bits whose position is of the form 2^k-1 can be set, thus only
+ * 7 of 64 bits of the mask need to be known for each mask value.
+ *
+ * We use a compressed encoding of the mask where bits 63, 31 and 15
+ * are moved to bits 4-6. This allows us to make each mask value
+ * 1 byte rather than 8 bytes, saving 7*24 = 168 bytes of data (with
+ * perhaps a little variation due to alignment). Decompressing this
+ * requires a little code, but much less than the savings on the table.
+ *
+ * The impact on performance depends on the platform and compiler.
+ * There's a bit more computation, but less memory bandwidth. A quick
+ * benchmark on x86_64 shows a 7% speed improvement with GCC and a
+ * 5% speed penalty with Clang, compared to the naive uint64_t[24] table.
+ * YMMV.
+ */
+/* Helper macro to set the values of the higher bits in unused low positions */
+#define H(b63, b31, b15) (b63 << 6 | b31 << 5 | b15 << 4)
+static const uint8_t iota_r_packed[24] = {
+ H(0, 0, 0) | 0x01, H(0, 0, 1) | 0x82, H(1, 0, 1) | 0x8a, H(1, 1, 1) | 0x00,
+ H(0, 0, 1) | 0x8b, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x09,
+ H(0, 0, 0) | 0x8a, H(0, 0, 0) | 0x88, H(0, 1, 1) | 0x09, H(0, 1, 0) | 0x0a,
+ H(0, 1, 1) | 0x8b, H(1, 0, 0) | 0x8b, H(1, 0, 1) | 0x89, H(1, 0, 1) | 0x03,
+ H(1, 0, 1) | 0x02, H(1, 0, 0) | 0x80, H(0, 0, 1) | 0x0a, H(1, 1, 0) | 0x0a,
+ H(1, 1, 1) | 0x81, H(1, 0, 1) | 0x80, H(0, 1, 0) | 0x01, H(1, 1, 1) | 0x08,
+};
+#undef H
+
+static const uint32_t rho[6] = {
+ 0x3f022425, 0x1c143a09, 0x2c3d3615, 0x27191713, 0x312b382e, 0x3e030832
+};
+
+static const uint32_t pi[6] = {
+ 0x110b070a, 0x10050312, 0x04181508, 0x0d13170f, 0x0e14020c, 0x01060916
+};
+
+#define ROTR64(x, y) (((x) << (64U - (y))) | ((x) >> (y))) // 64-bit rotate right
+#define ABSORB(ctx, idx, v) do { ctx->state[(idx) >> 3] ^= ((uint64_t) (v)) << (((idx) & 0x7) << 3); \
+} while (0)
+#define SQUEEZE(ctx, idx) ((uint8_t) (ctx->state[(idx) >> 3] >> (((idx) & 0x7) << 3)))
+#define SWAP(x, y) do { uint64_t tmp = (x); (x) = (y); (y) = tmp; } while (0)
+
+/* The permutation function. */
+static void keccak_f1600(mbedtls_sha3_context *ctx)
+{
+ uint64_t lane[5];
+ uint64_t *s = ctx->state;
+ int i;
+
+ for (int round = 0; round < 24; round++) {
+ uint64_t t;
+
+ /* Theta */
+#if MBEDTLS_SHA3_THETA_UNROLL == 0 //no-check-names
+ for (i = 0; i < 5; i++) {
+ lane[i] = s[i] ^ s[i + 5] ^ s[i + 10] ^ s[i + 15] ^ s[i + 20];
+ }
+ for (i = 0; i < 5; i++) {
+ t = lane[(i + 4) % 5] ^ ROTR64(lane[(i + 1) % 5], 63);
+ s[i] ^= t; s[i + 5] ^= t; s[i + 10] ^= t; s[i + 15] ^= t; s[i + 20] ^= t;
+ }
+#else
+ lane[0] = s[0] ^ s[5] ^ s[10] ^ s[15] ^ s[20];
+ lane[1] = s[1] ^ s[6] ^ s[11] ^ s[16] ^ s[21];
+ lane[2] = s[2] ^ s[7] ^ s[12] ^ s[17] ^ s[22];
+ lane[3] = s[3] ^ s[8] ^ s[13] ^ s[18] ^ s[23];
+ lane[4] = s[4] ^ s[9] ^ s[14] ^ s[19] ^ s[24];
+
+ t = lane[4] ^ ROTR64(lane[1], 63);
+ s[0] ^= t; s[5] ^= t; s[10] ^= t; s[15] ^= t; s[20] ^= t;
+
+ t = lane[0] ^ ROTR64(lane[2], 63);
+ s[1] ^= t; s[6] ^= t; s[11] ^= t; s[16] ^= t; s[21] ^= t;
+
+ t = lane[1] ^ ROTR64(lane[3], 63);
+ s[2] ^= t; s[7] ^= t; s[12] ^= t; s[17] ^= t; s[22] ^= t;
+
+ t = lane[2] ^ ROTR64(lane[4], 63);
+ s[3] ^= t; s[8] ^= t; s[13] ^= t; s[18] ^= t; s[23] ^= t;
+
+ t = lane[3] ^ ROTR64(lane[0], 63);
+ s[4] ^= t; s[9] ^= t; s[14] ^= t; s[19] ^= t; s[24] ^= t;
+#endif
+
+ /* Rho */
+ for (i = 1; i < 25; i += 4) {
+ uint32_t r = rho[(i - 1) >> 2];
+#if MBEDTLS_SHA3_RHO_UNROLL == 0
+ for (int j = i; j < i + 4; j++) {
+ uint8_t r8 = (uint8_t) (r >> 24);
+ r <<= 8;
+ s[j] = ROTR64(s[j], r8);
+ }
+#else
+ s[i + 0] = ROTR64(s[i + 0], MBEDTLS_BYTE_3(r));
+ s[i + 1] = ROTR64(s[i + 1], MBEDTLS_BYTE_2(r));
+ s[i + 2] = ROTR64(s[i + 2], MBEDTLS_BYTE_1(r));
+ s[i + 3] = ROTR64(s[i + 3], MBEDTLS_BYTE_0(r));
+#endif
+ }
+
+ /* Pi */
+ t = s[1];
+#if MBEDTLS_SHA3_PI_UNROLL == 0
+ for (i = 0; i < 24; i += 4) {
+ uint32_t p = pi[i >> 2];
+ for (unsigned j = 0; j < 4; j++) {
+ SWAP(s[p & 0xff], t);
+ p >>= 8;
+ }
+ }
+#else
+ uint32_t p = pi[0];
+ SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+ SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+ p = pi[1];
+ SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+ SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+ p = pi[2];
+ SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+ SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+ p = pi[3];
+ SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+ SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+ p = pi[4];
+ SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+ SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+ p = pi[5];
+ SWAP(s[MBEDTLS_BYTE_0(p)], t); SWAP(s[MBEDTLS_BYTE_1(p)], t);
+ SWAP(s[MBEDTLS_BYTE_2(p)], t); SWAP(s[MBEDTLS_BYTE_3(p)], t);
+#endif
+
+ /* Chi */
+#if MBEDTLS_SHA3_CHI_UNROLL == 0 //no-check-names
+ for (i = 0; i <= 20; i += 5) {
+ lane[0] = s[i]; lane[1] = s[i + 1]; lane[2] = s[i + 2];
+ lane[3] = s[i + 3]; lane[4] = s[i + 4];
+ s[i + 0] ^= (~lane[1]) & lane[2];
+ s[i + 1] ^= (~lane[2]) & lane[3];
+ s[i + 2] ^= (~lane[3]) & lane[4];
+ s[i + 3] ^= (~lane[4]) & lane[0];
+ s[i + 4] ^= (~lane[0]) & lane[1];
+ }
+#else
+ lane[0] = s[0]; lane[1] = s[1]; lane[2] = s[2]; lane[3] = s[3]; lane[4] = s[4];
+ s[0] ^= (~lane[1]) & lane[2];
+ s[1] ^= (~lane[2]) & lane[3];
+ s[2] ^= (~lane[3]) & lane[4];
+ s[3] ^= (~lane[4]) & lane[0];
+ s[4] ^= (~lane[0]) & lane[1];
+
+ lane[0] = s[5]; lane[1] = s[6]; lane[2] = s[7]; lane[3] = s[8]; lane[4] = s[9];
+ s[5] ^= (~lane[1]) & lane[2];
+ s[6] ^= (~lane[2]) & lane[3];
+ s[7] ^= (~lane[3]) & lane[4];
+ s[8] ^= (~lane[4]) & lane[0];
+ s[9] ^= (~lane[0]) & lane[1];
+
+ lane[0] = s[10]; lane[1] = s[11]; lane[2] = s[12]; lane[3] = s[13]; lane[4] = s[14];
+ s[10] ^= (~lane[1]) & lane[2];
+ s[11] ^= (~lane[2]) & lane[3];
+ s[12] ^= (~lane[3]) & lane[4];
+ s[13] ^= (~lane[4]) & lane[0];
+ s[14] ^= (~lane[0]) & lane[1];
+
+ lane[0] = s[15]; lane[1] = s[16]; lane[2] = s[17]; lane[3] = s[18]; lane[4] = s[19];
+ s[15] ^= (~lane[1]) & lane[2];
+ s[16] ^= (~lane[2]) & lane[3];
+ s[17] ^= (~lane[3]) & lane[4];
+ s[18] ^= (~lane[4]) & lane[0];
+ s[19] ^= (~lane[0]) & lane[1];
+
+ lane[0] = s[20]; lane[1] = s[21]; lane[2] = s[22]; lane[3] = s[23]; lane[4] = s[24];
+ s[20] ^= (~lane[1]) & lane[2];
+ s[21] ^= (~lane[2]) & lane[3];
+ s[22] ^= (~lane[3]) & lane[4];
+ s[23] ^= (~lane[4]) & lane[0];
+ s[24] ^= (~lane[0]) & lane[1];
+#endif
+
+ /* Iota */
+ /* Decompress the round masks (see definition of rc) */
+ s[0] ^= ((iota_r_packed[round] & 0x40ull) << 57 |
+ (iota_r_packed[round] & 0x20ull) << 26 |
+ (iota_r_packed[round] & 0x10ull) << 11 |
+ (iota_r_packed[round] & 0x8f));
+ }
+}
+
+void mbedtls_sha3_init(mbedtls_sha3_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_sha3_context));
+}
+
+void mbedtls_sha3_free(mbedtls_sha3_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha3_context));
+}
+
+void mbedtls_sha3_clone(mbedtls_sha3_context *dst,
+ const mbedtls_sha3_context *src)
+{
+ *dst = *src;
+}
+
+/*
+ * SHA-3 context setup
+ */
+int mbedtls_sha3_starts(mbedtls_sha3_context *ctx, mbedtls_sha3_id id)
+{
+ switch (id) {
+ case MBEDTLS_SHA3_224:
+ ctx->olen = 224 / 8;
+ ctx->max_block_size = 1152 / 8;
+ break;
+ case MBEDTLS_SHA3_256:
+ ctx->olen = 256 / 8;
+ ctx->max_block_size = 1088 / 8;
+ break;
+ case MBEDTLS_SHA3_384:
+ ctx->olen = 384 / 8;
+ ctx->max_block_size = 832 / 8;
+ break;
+ case MBEDTLS_SHA3_512:
+ ctx->olen = 512 / 8;
+ ctx->max_block_size = 576 / 8;
+ break;
+ default:
+ return MBEDTLS_ERR_SHA3_BAD_INPUT_DATA;
+ }
+
+ memset(ctx->state, 0, sizeof(ctx->state));
+ ctx->index = 0;
+
+ return 0;
+}
+
+/*
+ * SHA-3 process buffer
+ */
+int mbedtls_sha3_update(mbedtls_sha3_context *ctx,
+ const uint8_t *input,
+ size_t ilen)
+{
+ if (ilen >= 8) {
+ // 8-byte align index
+ int align_bytes = 8 - (ctx->index % 8);
+ if (align_bytes) {
+ for (; align_bytes > 0; align_bytes--) {
+ ABSORB(ctx, ctx->index, *input++);
+ ilen--;
+ ctx->index++;
+ }
+ if ((ctx->index = ctx->index % ctx->max_block_size) == 0) {
+ keccak_f1600(ctx);
+ }
+ }
+
+ // process input in 8-byte chunks
+ while (ilen >= 8) {
+ ABSORB(ctx, ctx->index, MBEDTLS_GET_UINT64_LE(input, 0));
+ input += 8;
+ ilen -= 8;
+ if ((ctx->index = (ctx->index + 8) % ctx->max_block_size) == 0) {
+ keccak_f1600(ctx);
+ }
+ }
+ }
+
+ // handle remaining bytes
+ while (ilen-- > 0) {
+ ABSORB(ctx, ctx->index, *input++);
+ if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) {
+ keccak_f1600(ctx);
+ }
+ }
+
+ return 0;
+}
+
+int mbedtls_sha3_finish(mbedtls_sha3_context *ctx,
+ uint8_t *output, size_t olen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+
+ /* Catch SHA-3 families, with fixed output length */
+ if (ctx->olen > 0) {
+ if (ctx->olen > olen) {
+ ret = MBEDTLS_ERR_SHA3_BAD_INPUT_DATA;
+ goto exit;
+ }
+ olen = ctx->olen;
+ }
+
+ ABSORB(ctx, ctx->index, XOR_BYTE);
+ ABSORB(ctx, ctx->max_block_size - 1, 0x80);
+ keccak_f1600(ctx);
+ ctx->index = 0;
+
+ while (olen-- > 0) {
+ *output++ = SQUEEZE(ctx, ctx->index);
+
+ if ((ctx->index = (ctx->index + 1) % ctx->max_block_size) == 0) {
+ keccak_f1600(ctx);
+ }
+ }
+
+ ret = 0;
+
+exit:
+ mbedtls_sha3_free(ctx);
+ return ret;
+}
+
+/*
+ * output = SHA-3( input buffer )
+ */
+int mbedtls_sha3(mbedtls_sha3_id id, const uint8_t *input,
+ size_t ilen, uint8_t *output, size_t olen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_sha3_context ctx;
+
+ mbedtls_sha3_init(&ctx);
+
+ /* Sanity checks are performed in every mbedtls_sha3_xxx() */
+ if ((ret = mbedtls_sha3_starts(&ctx, id)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha3_update(&ctx, input, ilen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha3_finish(&ctx, output, olen)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_sha3_free(&ctx);
+
+ return ret;
+}
+
+/**************** Self-tests ****************/
+
+#if defined(MBEDTLS_SELF_TEST)
+
+static const unsigned char test_data[2][4] =
+{
+ "",
+ "abc",
+};
+
+static const size_t test_data_len[2] =
+{
+ 0, /* "" */
+ 3 /* "abc" */
+};
+
+static const unsigned char test_hash_sha3_224[2][28] =
+{
+ { /* "" */
+ 0x6B, 0x4E, 0x03, 0x42, 0x36, 0x67, 0xDB, 0xB7,
+ 0x3B, 0x6E, 0x15, 0x45, 0x4F, 0x0E, 0xB1, 0xAB,
+ 0xD4, 0x59, 0x7F, 0x9A, 0x1B, 0x07, 0x8E, 0x3F,
+ 0x5B, 0x5A, 0x6B, 0xC7
+ },
+ { /* "abc" */
+ 0xE6, 0x42, 0x82, 0x4C, 0x3F, 0x8C, 0xF2, 0x4A,
+ 0xD0, 0x92, 0x34, 0xEE, 0x7D, 0x3C, 0x76, 0x6F,
+ 0xC9, 0xA3, 0xA5, 0x16, 0x8D, 0x0C, 0x94, 0xAD,
+ 0x73, 0xB4, 0x6F, 0xDF
+ }
+};
+
+static const unsigned char test_hash_sha3_256[2][32] =
+{
+ { /* "" */
+ 0xA7, 0xFF, 0xC6, 0xF8, 0xBF, 0x1E, 0xD7, 0x66,
+ 0x51, 0xC1, 0x47, 0x56, 0xA0, 0x61, 0xD6, 0x62,
+ 0xF5, 0x80, 0xFF, 0x4D, 0xE4, 0x3B, 0x49, 0xFA,
+ 0x82, 0xD8, 0x0A, 0x4B, 0x80, 0xF8, 0x43, 0x4A
+ },
+ { /* "abc" */
+ 0x3A, 0x98, 0x5D, 0xA7, 0x4F, 0xE2, 0x25, 0xB2,
+ 0x04, 0x5C, 0x17, 0x2D, 0x6B, 0xD3, 0x90, 0xBD,
+ 0x85, 0x5F, 0x08, 0x6E, 0x3E, 0x9D, 0x52, 0x5B,
+ 0x46, 0xBF, 0xE2, 0x45, 0x11, 0x43, 0x15, 0x32
+ }
+};
+
+static const unsigned char test_hash_sha3_384[2][48] =
+{
+ { /* "" */
+ 0x0C, 0x63, 0xA7, 0x5B, 0x84, 0x5E, 0x4F, 0x7D,
+ 0x01, 0x10, 0x7D, 0x85, 0x2E, 0x4C, 0x24, 0x85,
+ 0xC5, 0x1A, 0x50, 0xAA, 0xAA, 0x94, 0xFC, 0x61,
+ 0x99, 0x5E, 0x71, 0xBB, 0xEE, 0x98, 0x3A, 0x2A,
+ 0xC3, 0x71, 0x38, 0x31, 0x26, 0x4A, 0xDB, 0x47,
+ 0xFB, 0x6B, 0xD1, 0xE0, 0x58, 0xD5, 0xF0, 0x04
+ },
+ { /* "abc" */
+ 0xEC, 0x01, 0x49, 0x82, 0x88, 0x51, 0x6F, 0xC9,
+ 0x26, 0x45, 0x9F, 0x58, 0xE2, 0xC6, 0xAD, 0x8D,
+ 0xF9, 0xB4, 0x73, 0xCB, 0x0F, 0xC0, 0x8C, 0x25,
+ 0x96, 0xDA, 0x7C, 0xF0, 0xE4, 0x9B, 0xE4, 0xB2,
+ 0x98, 0xD8, 0x8C, 0xEA, 0x92, 0x7A, 0xC7, 0xF5,
+ 0x39, 0xF1, 0xED, 0xF2, 0x28, 0x37, 0x6D, 0x25
+ }
+};
+
+static const unsigned char test_hash_sha3_512[2][64] =
+{
+ { /* "" */
+ 0xA6, 0x9F, 0x73, 0xCC, 0xA2, 0x3A, 0x9A, 0xC5,
+ 0xC8, 0xB5, 0x67, 0xDC, 0x18, 0x5A, 0x75, 0x6E,
+ 0x97, 0xC9, 0x82, 0x16, 0x4F, 0xE2, 0x58, 0x59,
+ 0xE0, 0xD1, 0xDC, 0xC1, 0x47, 0x5C, 0x80, 0xA6,
+ 0x15, 0xB2, 0x12, 0x3A, 0xF1, 0xF5, 0xF9, 0x4C,
+ 0x11, 0xE3, 0xE9, 0x40, 0x2C, 0x3A, 0xC5, 0x58,
+ 0xF5, 0x00, 0x19, 0x9D, 0x95, 0xB6, 0xD3, 0xE3,
+ 0x01, 0x75, 0x85, 0x86, 0x28, 0x1D, 0xCD, 0x26
+ },
+ { /* "abc" */
+ 0xB7, 0x51, 0x85, 0x0B, 0x1A, 0x57, 0x16, 0x8A,
+ 0x56, 0x93, 0xCD, 0x92, 0x4B, 0x6B, 0x09, 0x6E,
+ 0x08, 0xF6, 0x21, 0x82, 0x74, 0x44, 0xF7, 0x0D,
+ 0x88, 0x4F, 0x5D, 0x02, 0x40, 0xD2, 0x71, 0x2E,
+ 0x10, 0xE1, 0x16, 0xE9, 0x19, 0x2A, 0xF3, 0xC9,
+ 0x1A, 0x7E, 0xC5, 0x76, 0x47, 0xE3, 0x93, 0x40,
+ 0x57, 0x34, 0x0B, 0x4C, 0xF4, 0x08, 0xD5, 0xA5,
+ 0x65, 0x92, 0xF8, 0x27, 0x4E, 0xEC, 0x53, 0xF0
+ }
+};
+
+static const unsigned char long_kat_hash_sha3_224[28] =
+{
+ 0xD6, 0x93, 0x35, 0xB9, 0x33, 0x25, 0x19, 0x2E,
+ 0x51, 0x6A, 0x91, 0x2E, 0x6D, 0x19, 0xA1, 0x5C,
+ 0xB5, 0x1C, 0x6E, 0xD5, 0xC1, 0x52, 0x43, 0xE7,
+ 0xA7, 0xFD, 0x65, 0x3C
+};
+
+static const unsigned char long_kat_hash_sha3_256[32] =
+{
+ 0x5C, 0x88, 0x75, 0xAE, 0x47, 0x4A, 0x36, 0x34,
+ 0xBA, 0x4F, 0xD5, 0x5E, 0xC8, 0x5B, 0xFF, 0xD6,
+ 0x61, 0xF3, 0x2A, 0xCA, 0x75, 0xC6, 0xD6, 0x99,
+ 0xD0, 0xCD, 0xCB, 0x6C, 0x11, 0x58, 0x91, 0xC1
+};
+
+static const unsigned char long_kat_hash_sha3_384[48] =
+{
+ 0xEE, 0xE9, 0xE2, 0x4D, 0x78, 0xC1, 0x85, 0x53,
+ 0x37, 0x98, 0x34, 0x51, 0xDF, 0x97, 0xC8, 0xAD,
+ 0x9E, 0xED, 0xF2, 0x56, 0xC6, 0x33, 0x4F, 0x8E,
+ 0x94, 0x8D, 0x25, 0x2D, 0x5E, 0x0E, 0x76, 0x84,
+ 0x7A, 0xA0, 0x77, 0x4D, 0xDB, 0x90, 0xA8, 0x42,
+ 0x19, 0x0D, 0x2C, 0x55, 0x8B, 0x4B, 0x83, 0x40
+};
+
+static const unsigned char long_kat_hash_sha3_512[64] =
+{
+ 0x3C, 0x3A, 0x87, 0x6D, 0xA1, 0x40, 0x34, 0xAB,
+ 0x60, 0x62, 0x7C, 0x07, 0x7B, 0xB9, 0x8F, 0x7E,
+ 0x12, 0x0A, 0x2A, 0x53, 0x70, 0x21, 0x2D, 0xFF,
+ 0xB3, 0x38, 0x5A, 0x18, 0xD4, 0xF3, 0x88, 0x59,
+ 0xED, 0x31, 0x1D, 0x0A, 0x9D, 0x51, 0x41, 0xCE,
+ 0x9C, 0xC5, 0xC6, 0x6E, 0xE6, 0x89, 0xB2, 0x66,
+ 0xA8, 0xAA, 0x18, 0xAC, 0xE8, 0x28, 0x2A, 0x0E,
+ 0x0D, 0xB5, 0x96, 0xC9, 0x0B, 0x0A, 0x7B, 0x87
+};
+
+static int mbedtls_sha3_kat_test(int verbose,
+ const char *type_name,
+ mbedtls_sha3_id id,
+ int test_num)
+{
+ uint8_t hash[64];
+ int result;
+
+ result = mbedtls_sha3(id,
+ test_data[test_num], test_data_len[test_num],
+ hash, sizeof(hash));
+ if (result != 0) {
+ if (verbose != 0) {
+ mbedtls_printf(" %s test %d error code: %d\n",
+ type_name, test_num, result);
+ }
+
+ return result;
+ }
+
+ switch (id) {
+ case MBEDTLS_SHA3_224:
+ result = memcmp(hash, test_hash_sha3_224[test_num], 28);
+ break;
+ case MBEDTLS_SHA3_256:
+ result = memcmp(hash, test_hash_sha3_256[test_num], 32);
+ break;
+ case MBEDTLS_SHA3_384:
+ result = memcmp(hash, test_hash_sha3_384[test_num], 48);
+ break;
+ case MBEDTLS_SHA3_512:
+ result = memcmp(hash, test_hash_sha3_512[test_num], 64);
+ break;
+ default:
+ break;
+ }
+
+ if (0 != result) {
+ if (verbose != 0) {
+ mbedtls_printf(" %s test %d failed\n", type_name, test_num);
+ }
+
+ return -1;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf(" %s test %d passed\n", type_name, test_num);
+ }
+
+ return 0;
+}
+
+static int mbedtls_sha3_long_kat_test(int verbose,
+ const char *type_name,
+ mbedtls_sha3_id id)
+{
+ mbedtls_sha3_context ctx;
+ unsigned char buffer[1000];
+ unsigned char hash[64];
+ int result = 0;
+
+ memset(buffer, 'a', 1000);
+
+ if (verbose != 0) {
+ mbedtls_printf(" %s long KAT test ", type_name);
+ }
+
+ mbedtls_sha3_init(&ctx);
+
+ result = mbedtls_sha3_starts(&ctx, id);
+ if (result != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("setup failed\n ");
+ }
+ }
+
+ /* Process 1,000,000 (one million) 'a' characters */
+ for (int i = 0; i < 1000; i++) {
+ result = mbedtls_sha3_update(&ctx, buffer, 1000);
+ if (result != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("update error code: %i\n", result);
+ }
+
+ goto cleanup;
+ }
+ }
+
+ result = mbedtls_sha3_finish(&ctx, hash, sizeof(hash));
+ if (result != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("finish error code: %d\n", result);
+ }
+
+ goto cleanup;
+ }
+
+ switch (id) {
+ case MBEDTLS_SHA3_224:
+ result = memcmp(hash, long_kat_hash_sha3_224, 28);
+ break;
+ case MBEDTLS_SHA3_256:
+ result = memcmp(hash, long_kat_hash_sha3_256, 32);
+ break;
+ case MBEDTLS_SHA3_384:
+ result = memcmp(hash, long_kat_hash_sha3_384, 48);
+ break;
+ case MBEDTLS_SHA3_512:
+ result = memcmp(hash, long_kat_hash_sha3_512, 64);
+ break;
+ default:
+ break;
+ }
+
+ if (result != 0) {
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+
+cleanup:
+ mbedtls_sha3_free(&ctx);
+ return result;
+}
+
+int mbedtls_sha3_self_test(int verbose)
+{
+ int i;
+
+ /* SHA-3 Known Answer Tests (KAT) */
+ for (i = 0; i < 2; i++) {
+ if (0 != mbedtls_sha3_kat_test(verbose,
+ "SHA3-224", MBEDTLS_SHA3_224, i)) {
+ return 1;
+ }
+
+ if (0 != mbedtls_sha3_kat_test(verbose,
+ "SHA3-256", MBEDTLS_SHA3_256, i)) {
+ return 1;
+ }
+
+ if (0 != mbedtls_sha3_kat_test(verbose,
+ "SHA3-384", MBEDTLS_SHA3_384, i)) {
+ return 1;
+ }
+
+ if (0 != mbedtls_sha3_kat_test(verbose,
+ "SHA3-512", MBEDTLS_SHA3_512, i)) {
+ return 1;
+ }
+ }
+
+ /* SHA-3 long KAT tests */
+ if (0 != mbedtls_sha3_long_kat_test(verbose,
+ "SHA3-224", MBEDTLS_SHA3_224)) {
+ return 1;
+ }
+
+ if (0 != mbedtls_sha3_long_kat_test(verbose,
+ "SHA3-256", MBEDTLS_SHA3_256)) {
+ return 1;
+ }
+
+ if (0 != mbedtls_sha3_long_kat_test(verbose,
+ "SHA3-384", MBEDTLS_SHA3_384)) {
+ return 1;
+ }
+
+ if (0 != mbedtls_sha3_long_kat_test(verbose,
+ "SHA3-512", MBEDTLS_SHA3_512)) {
+ return 1;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ return 0;
+}
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA3_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/sha512.c b/tf-psa-crypto/drivers/builtin/src/sha512.c
new file mode 100644
index 0000000..6dcea8d
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/sha512.c
@@ -0,0 +1,1112 @@
+/*
+ * FIPS-180-2 compliant SHA-384/512 implementation
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+/*
+ * The SHA-512 Secure Hash Standard was published by NIST in 2002.
+ *
+ * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
+ */
+
+#if defined(__aarch64__) && !defined(__ARM_FEATURE_SHA512) && \
+ defined(__clang__) && __clang_major__ >= 7
+/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
+ *
+ * The intrinsic declaration are guarded by predefined ACLE macros in clang:
+ * these are normally only enabled by the -march option on the command line.
+ * By defining the macros ourselves we gain access to those declarations without
+ * requiring -march on the command line.
+ *
+ * `arm_neon.h` is included by common.h, so we put these defines
+ * at the top of this file, before any includes.
+ */
+#define __ARM_FEATURE_SHA512 1
+#define MBEDTLS_ENABLE_ARM_SHA3_EXTENSIONS_COMPILER_FLAG
+#endif
+
+#include "common.h"
+
+#if defined(MBEDTLS_SHA512_C) || defined(MBEDTLS_SHA384_C)
+
+#include "mbedtls/sha512.h"
+#include "mbedtls/platform_util.h"
+#include "mbedtls/error.h"
+
+#if defined(_MSC_VER) || defined(__WATCOMC__)
+ #define UL64(x) x##ui64
+#else
+ #define UL64(x) x##ULL
+#endif
+
+#include <string.h>
+
+#include "mbedtls/platform.h"
+
+#if defined(__aarch64__)
+# if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT) || \
+ defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+/* *INDENT-OFF* */
+# if !defined(MBEDTLS_HAVE_NEON_INTRINSICS)
+# error "Target does not support NEON instructions"
+# endif
+/*
+ * Best performance comes from most recent compilers, with intrinsics and -O3.
+ * Must compile with -march=armv8.2-a+sha3, but we can't detect armv8.2-a, and
+ * can't always detect __ARM_FEATURE_SHA512 (notably clang 7-12).
+ *
+ * GCC < 8 won't work at all (lacks the sha512 instructions)
+ * GCC >= 8 uses intrinsics, sets __ARM_FEATURE_SHA512
+ *
+ * Clang < 7 won't work at all (lacks the sha512 instructions)
+ * Clang 7-12 don't have intrinsics (but we work around that with inline
+ * assembler) or __ARM_FEATURE_SHA512
+ * Clang == 13.0.0 same as clang 12 (only seen on macOS)
+ * Clang >= 13.0.1 has __ARM_FEATURE_SHA512 and intrinsics
+ */
+# if !defined(__ARM_FEATURE_SHA512) || defined(MBEDTLS_ENABLE_ARM_SHA3_EXTENSIONS_COMPILER_FLAG)
+ /* Test Clang first, as it defines __GNUC__ */
+# if defined(__ARMCOMPILER_VERSION)
+# if __ARMCOMPILER_VERSION < 6090000
+# error "A more recent armclang is required for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+# elif __ARMCOMPILER_VERSION == 6090000
+# error "Must use minimum -march=armv8.2-a+sha3 for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+# else
+# pragma clang attribute push (__attribute__((target("sha3"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# endif
+# elif defined(__clang__)
+# if __clang_major__ < 7
+# error "A more recent Clang is required for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+# else
+# pragma clang attribute push (__attribute__((target("sha3"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# endif
+# elif defined(__GNUC__)
+# if __GNUC__ < 8
+# error "A more recent GCC is required for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+# else
+# pragma GCC push_options
+# pragma GCC target ("arch=armv8.2-a+sha3")
+# define MBEDTLS_POP_TARGET_PRAGMA
+# endif
+# else
+# error "Only GCC and Clang supported for MBEDTLS_SHA512_USE_A64_CRYPTO_*"
+# endif
+# endif
+/* *INDENT-ON* */
+# endif
+# if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+# if defined(__unix__)
+# if defined(__linux__)
+/* Our preferred method of detection is getauxval() */
+# include <sys/auxv.h>
+# if !defined(HWCAP_SHA512)
+/* The same header that declares getauxval() should provide the HWCAP_xxx
+ * constants to analyze its return value. However, the libc may be too
+ * old to have the constant that we need. So if it's missing, assume that
+ * the value is the same one used by the Linux kernel ABI.
+ */
+# define HWCAP_SHA512 (1 << 21)
+# endif
+# endif
+/* Use SIGILL on Unix, and fall back to it on Linux */
+# include <signal.h>
+# endif
+# endif
+#elif !defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+# undef MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY
+# undef MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT
+#endif
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+/*
+ * Capability detection code comes early, so we can disable
+ * MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT if no detection mechanism found
+ */
+#if defined(HWCAP_SHA512)
+static int mbedtls_a64_crypto_sha512_determine_support(void)
+{
+ return (getauxval(AT_HWCAP) & HWCAP_SHA512) ? 1 : 0;
+}
+#elif defined(__APPLE__)
+#include <sys/types.h>
+#include <sys/sysctl.h>
+
+static int mbedtls_a64_crypto_sha512_determine_support(void)
+{
+ int value = 0;
+ size_t value_len = sizeof(value);
+
+ int ret = sysctlbyname("hw.optional.armv8_2_sha512", &value, &value_len,
+ NULL, 0);
+ return ret == 0 && value != 0;
+}
+#elif defined(MBEDTLS_PLATFORM_IS_WINDOWS_ON_ARM64)
+/*
+ * As of March 2022, there don't appear to be any PF_ARM_V8_* flags
+ * available to pass to IsProcessorFeaturePresent() to check for
+ * SHA-512 support. So we fall back to the C code only.
+ */
+#if defined(_MSC_VER)
+#pragma message "No mechanism to detect A64_CRYPTO found, using C code only"
+#else
+#warning "No mechanism to detect A64_CRYPTO found, using C code only"
+#endif
+#elif defined(__unix__) && defined(SIG_SETMASK)
+/* Detection with SIGILL, setjmp() and longjmp() */
+#include <signal.h>
+#include <setjmp.h>
+
+static jmp_buf return_from_sigill;
+
+/*
+ * A64 SHA512 support detection via SIGILL
+ */
+static void sigill_handler(int signal)
+{
+ (void) signal;
+ longjmp(return_from_sigill, 1);
+}
+
+static int mbedtls_a64_crypto_sha512_determine_support(void)
+{
+ struct sigaction old_action, new_action;
+
+ sigset_t old_mask;
+ if (sigprocmask(0, NULL, &old_mask)) {
+ return 0;
+ }
+
+ sigemptyset(&new_action.sa_mask);
+ new_action.sa_flags = 0;
+ new_action.sa_handler = sigill_handler;
+
+ sigaction(SIGILL, &new_action, &old_action);
+
+ static int ret = 0;
+
+ if (setjmp(return_from_sigill) == 0) { /* First return only */
+ /* If this traps, we will return a second time from setjmp() with 1 */
+ asm ("sha512h q0, q0, v0.2d" : : : "v0");
+ ret = 1;
+ }
+
+ sigaction(SIGILL, &old_action, NULL);
+ sigprocmask(SIG_SETMASK, &old_mask, NULL);
+
+ return ret;
+}
+#else
+#warning "No mechanism to detect A64_CRYPTO found, using C code only"
+#undef MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT
+#endif /* HWCAP_SHA512, __APPLE__, __unix__ && SIG_SETMASK */
+
+#endif /* MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT */
+
+#if !defined(MBEDTLS_SHA512_ALT)
+
+#define SHA512_BLOCK_SIZE 128
+
+#if defined(MBEDTLS_SHA512_SMALLER)
+static void sha512_put_uint64_be(uint64_t n, unsigned char *b, uint8_t i)
+{
+ MBEDTLS_PUT_UINT64_BE(n, b, i);
+}
+#else
+#define sha512_put_uint64_be MBEDTLS_PUT_UINT64_BE
+#endif /* MBEDTLS_SHA512_SMALLER */
+
+void mbedtls_sha512_init(mbedtls_sha512_context *ctx)
+{
+ memset(ctx, 0, sizeof(mbedtls_sha512_context));
+}
+
+void mbedtls_sha512_free(mbedtls_sha512_context *ctx)
+{
+ if (ctx == NULL) {
+ return;
+ }
+
+ mbedtls_platform_zeroize(ctx, sizeof(mbedtls_sha512_context));
+}
+
+void mbedtls_sha512_clone(mbedtls_sha512_context *dst,
+ const mbedtls_sha512_context *src)
+{
+ *dst = *src;
+}
+
+/*
+ * SHA-512 context setup
+ */
+int mbedtls_sha512_starts(mbedtls_sha512_context *ctx, int is384)
+{
+#if defined(MBEDTLS_SHA384_C) && defined(MBEDTLS_SHA512_C)
+ if (is384 != 0 && is384 != 1) {
+ return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+ }
+#elif defined(MBEDTLS_SHA512_C)
+ if (is384 != 0) {
+ return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+ }
+#else /* defined MBEDTLS_SHA384_C only */
+ if (is384 == 0) {
+ return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+ }
+#endif
+
+ ctx->total[0] = 0;
+ ctx->total[1] = 0;
+
+ if (is384 == 0) {
+#if defined(MBEDTLS_SHA512_C)
+ ctx->state[0] = UL64(0x6A09E667F3BCC908);
+ ctx->state[1] = UL64(0xBB67AE8584CAA73B);
+ ctx->state[2] = UL64(0x3C6EF372FE94F82B);
+ ctx->state[3] = UL64(0xA54FF53A5F1D36F1);
+ ctx->state[4] = UL64(0x510E527FADE682D1);
+ ctx->state[5] = UL64(0x9B05688C2B3E6C1F);
+ ctx->state[6] = UL64(0x1F83D9ABFB41BD6B);
+ ctx->state[7] = UL64(0x5BE0CD19137E2179);
+#endif /* MBEDTLS_SHA512_C */
+ } else {
+#if defined(MBEDTLS_SHA384_C)
+ ctx->state[0] = UL64(0xCBBB9D5DC1059ED8);
+ ctx->state[1] = UL64(0x629A292A367CD507);
+ ctx->state[2] = UL64(0x9159015A3070DD17);
+ ctx->state[3] = UL64(0x152FECD8F70E5939);
+ ctx->state[4] = UL64(0x67332667FFC00B31);
+ ctx->state[5] = UL64(0x8EB44A8768581511);
+ ctx->state[6] = UL64(0xDB0C2E0D64F98FA7);
+ ctx->state[7] = UL64(0x47B5481DBEFA4FA4);
+#endif /* MBEDTLS_SHA384_C */
+ }
+
+#if defined(MBEDTLS_SHA384_C)
+ ctx->is384 = is384;
+#endif
+
+ return 0;
+}
+
+#if !defined(MBEDTLS_SHA512_PROCESS_ALT)
+
+/*
+ * Round constants
+ */
+static const uint64_t K[80] =
+{
+ UL64(0x428A2F98D728AE22), UL64(0x7137449123EF65CD),
+ UL64(0xB5C0FBCFEC4D3B2F), UL64(0xE9B5DBA58189DBBC),
+ UL64(0x3956C25BF348B538), UL64(0x59F111F1B605D019),
+ UL64(0x923F82A4AF194F9B), UL64(0xAB1C5ED5DA6D8118),
+ UL64(0xD807AA98A3030242), UL64(0x12835B0145706FBE),
+ UL64(0x243185BE4EE4B28C), UL64(0x550C7DC3D5FFB4E2),
+ UL64(0x72BE5D74F27B896F), UL64(0x80DEB1FE3B1696B1),
+ UL64(0x9BDC06A725C71235), UL64(0xC19BF174CF692694),
+ UL64(0xE49B69C19EF14AD2), UL64(0xEFBE4786384F25E3),
+ UL64(0x0FC19DC68B8CD5B5), UL64(0x240CA1CC77AC9C65),
+ UL64(0x2DE92C6F592B0275), UL64(0x4A7484AA6EA6E483),
+ UL64(0x5CB0A9DCBD41FBD4), UL64(0x76F988DA831153B5),
+ UL64(0x983E5152EE66DFAB), UL64(0xA831C66D2DB43210),
+ UL64(0xB00327C898FB213F), UL64(0xBF597FC7BEEF0EE4),
+ UL64(0xC6E00BF33DA88FC2), UL64(0xD5A79147930AA725),
+ UL64(0x06CA6351E003826F), UL64(0x142929670A0E6E70),
+ UL64(0x27B70A8546D22FFC), UL64(0x2E1B21385C26C926),
+ UL64(0x4D2C6DFC5AC42AED), UL64(0x53380D139D95B3DF),
+ UL64(0x650A73548BAF63DE), UL64(0x766A0ABB3C77B2A8),
+ UL64(0x81C2C92E47EDAEE6), UL64(0x92722C851482353B),
+ UL64(0xA2BFE8A14CF10364), UL64(0xA81A664BBC423001),
+ UL64(0xC24B8B70D0F89791), UL64(0xC76C51A30654BE30),
+ UL64(0xD192E819D6EF5218), UL64(0xD69906245565A910),
+ UL64(0xF40E35855771202A), UL64(0x106AA07032BBD1B8),
+ UL64(0x19A4C116B8D2D0C8), UL64(0x1E376C085141AB53),
+ UL64(0x2748774CDF8EEB99), UL64(0x34B0BCB5E19B48A8),
+ UL64(0x391C0CB3C5C95A63), UL64(0x4ED8AA4AE3418ACB),
+ UL64(0x5B9CCA4F7763E373), UL64(0x682E6FF3D6B2B8A3),
+ UL64(0x748F82EE5DEFB2FC), UL64(0x78A5636F43172F60),
+ UL64(0x84C87814A1F0AB72), UL64(0x8CC702081A6439EC),
+ UL64(0x90BEFFFA23631E28), UL64(0xA4506CEBDE82BDE9),
+ UL64(0xBEF9A3F7B2C67915), UL64(0xC67178F2E372532B),
+ UL64(0xCA273ECEEA26619C), UL64(0xD186B8C721C0C207),
+ UL64(0xEADA7DD6CDE0EB1E), UL64(0xF57D4F7FEE6ED178),
+ UL64(0x06F067AA72176FBA), UL64(0x0A637DC5A2C898A6),
+ UL64(0x113F9804BEF90DAE), UL64(0x1B710B35131C471B),
+ UL64(0x28DB77F523047D84), UL64(0x32CAAB7B40C72493),
+ UL64(0x3C9EBE0A15C9BEBC), UL64(0x431D67C49C100D4C),
+ UL64(0x4CC5D4BECB3E42B6), UL64(0x597F299CFC657E2A),
+ UL64(0x5FCB6FAB3AD6FAEC), UL64(0x6C44198C4A475817)
+};
+#endif
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT) || \
+ defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+# define mbedtls_internal_sha512_process_many_a64_crypto mbedtls_internal_sha512_process_many
+# define mbedtls_internal_sha512_process_a64_crypto mbedtls_internal_sha512_process
+#endif
+
+/* Accelerated SHA-512 implementation originally written by Simon Tatham for PuTTY,
+ * under the MIT licence; dual-licensed as Apache 2 with his kind permission.
+ */
+
+#if defined(__clang__) && \
+ (__clang_major__ < 13 || \
+ (__clang_major__ == 13 && __clang_minor__ == 0 && __clang_patchlevel__ == 0))
+static inline uint64x2_t vsha512su0q_u64(uint64x2_t x, uint64x2_t y)
+{
+ asm ("sha512su0 %0.2D,%1.2D" : "+w" (x) : "w" (y));
+ return x;
+}
+static inline uint64x2_t vsha512su1q_u64(uint64x2_t x, uint64x2_t y, uint64x2_t z)
+{
+ asm ("sha512su1 %0.2D,%1.2D,%2.2D" : "+w" (x) : "w" (y), "w" (z));
+ return x;
+}
+static inline uint64x2_t vsha512hq_u64(uint64x2_t x, uint64x2_t y, uint64x2_t z)
+{
+ asm ("sha512h %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
+ return x;
+}
+static inline uint64x2_t vsha512h2q_u64(uint64x2_t x, uint64x2_t y, uint64x2_t z)
+{
+ asm ("sha512h2 %0,%1,%2.2D" : "+w" (x) : "w" (y), "w" (z));
+ return x;
+}
+#endif /* __clang__ etc */
+
+static size_t mbedtls_internal_sha512_process_many_a64_crypto(
+ mbedtls_sha512_context *ctx, const uint8_t *msg, size_t len)
+{
+ uint64x2_t ab = vld1q_u64(&ctx->state[0]);
+ uint64x2_t cd = vld1q_u64(&ctx->state[2]);
+ uint64x2_t ef = vld1q_u64(&ctx->state[4]);
+ uint64x2_t gh = vld1q_u64(&ctx->state[6]);
+
+ size_t processed = 0;
+
+ for (;
+ len >= SHA512_BLOCK_SIZE;
+ processed += SHA512_BLOCK_SIZE,
+ msg += SHA512_BLOCK_SIZE,
+ len -= SHA512_BLOCK_SIZE) {
+ uint64x2_t initial_sum, sum, intermed;
+
+ uint64x2_t ab_orig = ab;
+ uint64x2_t cd_orig = cd;
+ uint64x2_t ef_orig = ef;
+ uint64x2_t gh_orig = gh;
+
+ uint64x2_t s0 = (uint64x2_t) vld1q_u8(msg + 16 * 0);
+ uint64x2_t s1 = (uint64x2_t) vld1q_u8(msg + 16 * 1);
+ uint64x2_t s2 = (uint64x2_t) vld1q_u8(msg + 16 * 2);
+ uint64x2_t s3 = (uint64x2_t) vld1q_u8(msg + 16 * 3);
+ uint64x2_t s4 = (uint64x2_t) vld1q_u8(msg + 16 * 4);
+ uint64x2_t s5 = (uint64x2_t) vld1q_u8(msg + 16 * 5);
+ uint64x2_t s6 = (uint64x2_t) vld1q_u8(msg + 16 * 6);
+ uint64x2_t s7 = (uint64x2_t) vld1q_u8(msg + 16 * 7);
+
+#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ /* assume LE if these not defined; untested on BE */
+ s0 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s0)));
+ s1 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s1)));
+ s2 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s2)));
+ s3 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s3)));
+ s4 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s4)));
+ s5 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s5)));
+ s6 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s6)));
+ s7 = vreinterpretq_u64_u8(vrev64q_u8(vreinterpretq_u8_u64(s7)));
+#endif
+
+ /* Rounds 0 and 1 */
+ initial_sum = vaddq_u64(s0, vld1q_u64(&K[0]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+ intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+ gh = vsha512h2q_u64(intermed, cd, ab);
+ cd = vaddq_u64(cd, intermed);
+
+ /* Rounds 2 and 3 */
+ initial_sum = vaddq_u64(s1, vld1q_u64(&K[2]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+ intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+ ef = vsha512h2q_u64(intermed, ab, gh);
+ ab = vaddq_u64(ab, intermed);
+
+ /* Rounds 4 and 5 */
+ initial_sum = vaddq_u64(s2, vld1q_u64(&K[4]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+ intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+ cd = vsha512h2q_u64(intermed, gh, ef);
+ gh = vaddq_u64(gh, intermed);
+
+ /* Rounds 6 and 7 */
+ initial_sum = vaddq_u64(s3, vld1q_u64(&K[6]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+ intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+ ab = vsha512h2q_u64(intermed, ef, cd);
+ ef = vaddq_u64(ef, intermed);
+
+ /* Rounds 8 and 9 */
+ initial_sum = vaddq_u64(s4, vld1q_u64(&K[8]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+ intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+ gh = vsha512h2q_u64(intermed, cd, ab);
+ cd = vaddq_u64(cd, intermed);
+
+ /* Rounds 10 and 11 */
+ initial_sum = vaddq_u64(s5, vld1q_u64(&K[10]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+ intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+ ef = vsha512h2q_u64(intermed, ab, gh);
+ ab = vaddq_u64(ab, intermed);
+
+ /* Rounds 12 and 13 */
+ initial_sum = vaddq_u64(s6, vld1q_u64(&K[12]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+ intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+ cd = vsha512h2q_u64(intermed, gh, ef);
+ gh = vaddq_u64(gh, intermed);
+
+ /* Rounds 14 and 15 */
+ initial_sum = vaddq_u64(s7, vld1q_u64(&K[14]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+ intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+ ab = vsha512h2q_u64(intermed, ef, cd);
+ ef = vaddq_u64(ef, intermed);
+
+ for (unsigned int t = 16; t < 80; t += 16) {
+ /* Rounds t and t + 1 */
+ s0 = vsha512su1q_u64(vsha512su0q_u64(s0, s1), s7, vextq_u64(s4, s5, 1));
+ initial_sum = vaddq_u64(s0, vld1q_u64(&K[t]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+ intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+ gh = vsha512h2q_u64(intermed, cd, ab);
+ cd = vaddq_u64(cd, intermed);
+
+ /* Rounds t + 2 and t + 3 */
+ s1 = vsha512su1q_u64(vsha512su0q_u64(s1, s2), s0, vextq_u64(s5, s6, 1));
+ initial_sum = vaddq_u64(s1, vld1q_u64(&K[t + 2]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+ intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+ ef = vsha512h2q_u64(intermed, ab, gh);
+ ab = vaddq_u64(ab, intermed);
+
+ /* Rounds t + 4 and t + 5 */
+ s2 = vsha512su1q_u64(vsha512su0q_u64(s2, s3), s1, vextq_u64(s6, s7, 1));
+ initial_sum = vaddq_u64(s2, vld1q_u64(&K[t + 4]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+ intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+ cd = vsha512h2q_u64(intermed, gh, ef);
+ gh = vaddq_u64(gh, intermed);
+
+ /* Rounds t + 6 and t + 7 */
+ s3 = vsha512su1q_u64(vsha512su0q_u64(s3, s4), s2, vextq_u64(s7, s0, 1));
+ initial_sum = vaddq_u64(s3, vld1q_u64(&K[t + 6]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+ intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+ ab = vsha512h2q_u64(intermed, ef, cd);
+ ef = vaddq_u64(ef, intermed);
+
+ /* Rounds t + 8 and t + 9 */
+ s4 = vsha512su1q_u64(vsha512su0q_u64(s4, s5), s3, vextq_u64(s0, s1, 1));
+ initial_sum = vaddq_u64(s4, vld1q_u64(&K[t + 8]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), gh);
+ intermed = vsha512hq_u64(sum, vextq_u64(ef, gh, 1), vextq_u64(cd, ef, 1));
+ gh = vsha512h2q_u64(intermed, cd, ab);
+ cd = vaddq_u64(cd, intermed);
+
+ /* Rounds t + 10 and t + 11 */
+ s5 = vsha512su1q_u64(vsha512su0q_u64(s5, s6), s4, vextq_u64(s1, s2, 1));
+ initial_sum = vaddq_u64(s5, vld1q_u64(&K[t + 10]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ef);
+ intermed = vsha512hq_u64(sum, vextq_u64(cd, ef, 1), vextq_u64(ab, cd, 1));
+ ef = vsha512h2q_u64(intermed, ab, gh);
+ ab = vaddq_u64(ab, intermed);
+
+ /* Rounds t + 12 and t + 13 */
+ s6 = vsha512su1q_u64(vsha512su0q_u64(s6, s7), s5, vextq_u64(s2, s3, 1));
+ initial_sum = vaddq_u64(s6, vld1q_u64(&K[t + 12]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), cd);
+ intermed = vsha512hq_u64(sum, vextq_u64(ab, cd, 1), vextq_u64(gh, ab, 1));
+ cd = vsha512h2q_u64(intermed, gh, ef);
+ gh = vaddq_u64(gh, intermed);
+
+ /* Rounds t + 14 and t + 15 */
+ s7 = vsha512su1q_u64(vsha512su0q_u64(s7, s0), s6, vextq_u64(s3, s4, 1));
+ initial_sum = vaddq_u64(s7, vld1q_u64(&K[t + 14]));
+ sum = vaddq_u64(vextq_u64(initial_sum, initial_sum, 1), ab);
+ intermed = vsha512hq_u64(sum, vextq_u64(gh, ab, 1), vextq_u64(ef, gh, 1));
+ ab = vsha512h2q_u64(intermed, ef, cd);
+ ef = vaddq_u64(ef, intermed);
+ }
+
+ ab = vaddq_u64(ab, ab_orig);
+ cd = vaddq_u64(cd, cd_orig);
+ ef = vaddq_u64(ef, ef_orig);
+ gh = vaddq_u64(gh, gh_orig);
+ }
+
+ vst1q_u64(&ctx->state[0], ab);
+ vst1q_u64(&ctx->state[2], cd);
+ vst1q_u64(&ctx->state[4], ef);
+ vst1q_u64(&ctx->state[6], gh);
+
+ return processed;
+}
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and A64
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha512_process()
+ */
+static
+#endif
+int mbedtls_internal_sha512_process_a64_crypto(mbedtls_sha512_context *ctx,
+ const unsigned char data[SHA512_BLOCK_SIZE])
+{
+ return (mbedtls_internal_sha512_process_many_a64_crypto(ctx, data,
+ SHA512_BLOCK_SIZE) ==
+ SHA512_BLOCK_SIZE) ? 0 : -1;
+}
+
+#endif /* MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT || MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+
+#if !defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+#define mbedtls_internal_sha512_process_many_c mbedtls_internal_sha512_process_many
+#define mbedtls_internal_sha512_process_c mbedtls_internal_sha512_process
+#endif
+
+
+#if !defined(MBEDTLS_SHA512_PROCESS_ALT) && !defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+/*
+ * This function is for internal use only if we are building both C and A64
+ * versions, otherwise it is renamed to be the public mbedtls_internal_sha512_process()
+ */
+static
+#endif
+int mbedtls_internal_sha512_process_c(mbedtls_sha512_context *ctx,
+ const unsigned char data[SHA512_BLOCK_SIZE])
+{
+ int i;
+ struct {
+ uint64_t temp1, temp2, W[80];
+ uint64_t A[8];
+ } local;
+
+#define SHR(x, n) ((x) >> (n))
+#define ROTR(x, n) (SHR((x), (n)) | ((x) << (64 - (n))))
+
+#define S0(x) (ROTR(x, 1) ^ ROTR(x, 8) ^ SHR(x, 7))
+#define S1(x) (ROTR(x, 19) ^ ROTR(x, 61) ^ SHR(x, 6))
+
+#define S2(x) (ROTR(x, 28) ^ ROTR(x, 34) ^ ROTR(x, 39))
+#define S3(x) (ROTR(x, 14) ^ ROTR(x, 18) ^ ROTR(x, 41))
+
+#define F0(x, y, z) (((x) & (y)) | ((z) & ((x) | (y))))
+#define F1(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
+
+#define P(a, b, c, d, e, f, g, h, x, K) \
+ do \
+ { \
+ local.temp1 = (h) + S3(e) + F1((e), (f), (g)) + (K) + (x); \
+ local.temp2 = S2(a) + F0((a), (b), (c)); \
+ (d) += local.temp1; (h) = local.temp1 + local.temp2; \
+ } while (0)
+
+ for (i = 0; i < 8; i++) {
+ local.A[i] = ctx->state[i];
+ }
+
+#if defined(MBEDTLS_SHA512_SMALLER)
+ for (i = 0; i < 80; i++) {
+ if (i < 16) {
+ local.W[i] = MBEDTLS_GET_UINT64_BE(data, i << 3);
+ } else {
+ local.W[i] = S1(local.W[i - 2]) + local.W[i - 7] +
+ S0(local.W[i - 15]) + local.W[i - 16];
+ }
+
+ P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+ local.A[5], local.A[6], local.A[7], local.W[i], K[i]);
+
+ local.temp1 = local.A[7]; local.A[7] = local.A[6];
+ local.A[6] = local.A[5]; local.A[5] = local.A[4];
+ local.A[4] = local.A[3]; local.A[3] = local.A[2];
+ local.A[2] = local.A[1]; local.A[1] = local.A[0];
+ local.A[0] = local.temp1;
+ }
+#else /* MBEDTLS_SHA512_SMALLER */
+ for (i = 0; i < 16; i++) {
+ local.W[i] = MBEDTLS_GET_UINT64_BE(data, i << 3);
+ }
+
+ for (; i < 80; i++) {
+ local.W[i] = S1(local.W[i - 2]) + local.W[i - 7] +
+ S0(local.W[i - 15]) + local.W[i - 16];
+ }
+
+ i = 0;
+ do {
+ P(local.A[0], local.A[1], local.A[2], local.A[3], local.A[4],
+ local.A[5], local.A[6], local.A[7], local.W[i], K[i]); i++;
+ P(local.A[7], local.A[0], local.A[1], local.A[2], local.A[3],
+ local.A[4], local.A[5], local.A[6], local.W[i], K[i]); i++;
+ P(local.A[6], local.A[7], local.A[0], local.A[1], local.A[2],
+ local.A[3], local.A[4], local.A[5], local.W[i], K[i]); i++;
+ P(local.A[5], local.A[6], local.A[7], local.A[0], local.A[1],
+ local.A[2], local.A[3], local.A[4], local.W[i], K[i]); i++;
+ P(local.A[4], local.A[5], local.A[6], local.A[7], local.A[0],
+ local.A[1], local.A[2], local.A[3], local.W[i], K[i]); i++;
+ P(local.A[3], local.A[4], local.A[5], local.A[6], local.A[7],
+ local.A[0], local.A[1], local.A[2], local.W[i], K[i]); i++;
+ P(local.A[2], local.A[3], local.A[4], local.A[5], local.A[6],
+ local.A[7], local.A[0], local.A[1], local.W[i], K[i]); i++;
+ P(local.A[1], local.A[2], local.A[3], local.A[4], local.A[5],
+ local.A[6], local.A[7], local.A[0], local.W[i], K[i]); i++;
+ } while (i < 80);
+#endif /* MBEDTLS_SHA512_SMALLER */
+
+ for (i = 0; i < 8; i++) {
+ ctx->state[i] += local.A[i];
+ }
+
+ /* Zeroise buffers and variables to clear sensitive data from memory. */
+ mbedtls_platform_zeroize(&local, sizeof(local));
+
+ return 0;
+}
+
+#endif /* !MBEDTLS_SHA512_PROCESS_ALT && !MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY */
+
+
+#if !defined(MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY)
+
+static size_t mbedtls_internal_sha512_process_many_c(
+ mbedtls_sha512_context *ctx, const uint8_t *data, size_t len)
+{
+ size_t processed = 0;
+
+ while (len >= SHA512_BLOCK_SIZE) {
+ if (mbedtls_internal_sha512_process_c(ctx, data) != 0) {
+ return 0;
+ }
+
+ data += SHA512_BLOCK_SIZE;
+ len -= SHA512_BLOCK_SIZE;
+
+ processed += SHA512_BLOCK_SIZE;
+ }
+
+ return processed;
+}
+
+#endif /* !MBEDTLS_SHA512_USE_A64_CRYPTO_ONLY */
+
+
+#if defined(MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT)
+
+static int mbedtls_a64_crypto_sha512_has_support(void)
+{
+ static int done = 0;
+ static int supported = 0;
+
+ if (!done) {
+ supported = mbedtls_a64_crypto_sha512_determine_support();
+ done = 1;
+ }
+
+ return supported;
+}
+
+static size_t mbedtls_internal_sha512_process_many(mbedtls_sha512_context *ctx,
+ const uint8_t *msg, size_t len)
+{
+ if (mbedtls_a64_crypto_sha512_has_support()) {
+ return mbedtls_internal_sha512_process_many_a64_crypto(ctx, msg, len);
+ } else {
+ return mbedtls_internal_sha512_process_many_c(ctx, msg, len);
+ }
+}
+
+int mbedtls_internal_sha512_process(mbedtls_sha512_context *ctx,
+ const unsigned char data[SHA512_BLOCK_SIZE])
+{
+ if (mbedtls_a64_crypto_sha512_has_support()) {
+ return mbedtls_internal_sha512_process_a64_crypto(ctx, data);
+ } else {
+ return mbedtls_internal_sha512_process_c(ctx, data);
+ }
+}
+
+#endif /* MBEDTLS_SHA512_USE_A64_CRYPTO_IF_PRESENT */
+
+/*
+ * SHA-512 process buffer
+ */
+int mbedtls_sha512_update(mbedtls_sha512_context *ctx,
+ const unsigned char *input,
+ size_t ilen)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ size_t fill;
+ unsigned int left;
+
+ if (ilen == 0) {
+ return 0;
+ }
+
+ left = (unsigned int) (ctx->total[0] & 0x7F);
+ fill = SHA512_BLOCK_SIZE - left;
+
+ ctx->total[0] += (uint64_t) ilen;
+
+ if (ctx->total[0] < (uint64_t) ilen) {
+ ctx->total[1]++;
+ }
+
+ if (left && ilen >= fill) {
+ memcpy((void *) (ctx->buffer + left), input, fill);
+
+ if ((ret = mbedtls_internal_sha512_process(ctx, ctx->buffer)) != 0) {
+ return ret;
+ }
+
+ input += fill;
+ ilen -= fill;
+ left = 0;
+ }
+
+ while (ilen >= SHA512_BLOCK_SIZE) {
+ size_t processed =
+ mbedtls_internal_sha512_process_many(ctx, input, ilen);
+ if (processed < SHA512_BLOCK_SIZE) {
+ return MBEDTLS_ERR_ERROR_GENERIC_ERROR;
+ }
+
+ input += processed;
+ ilen -= processed;
+ }
+
+ if (ilen > 0) {
+ memcpy((void *) (ctx->buffer + left), input, ilen);
+ }
+
+ return 0;
+}
+
+/*
+ * SHA-512 final digest
+ */
+int mbedtls_sha512_finish(mbedtls_sha512_context *ctx,
+ unsigned char *output)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ unsigned used;
+ uint64_t high, low;
+ int truncated = 0;
+
+ /*
+ * Add padding: 0x80 then 0x00 until 16 bytes remain for the length
+ */
+ used = ctx->total[0] & 0x7F;
+
+ ctx->buffer[used++] = 0x80;
+
+ if (used <= 112) {
+ /* Enough room for padding + length in current block */
+ memset(ctx->buffer + used, 0, 112 - used);
+ } else {
+ /* We'll need an extra block */
+ memset(ctx->buffer + used, 0, SHA512_BLOCK_SIZE - used);
+
+ if ((ret = mbedtls_internal_sha512_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ memset(ctx->buffer, 0, 112);
+ }
+
+ /*
+ * Add message length
+ */
+ high = (ctx->total[0] >> 61)
+ | (ctx->total[1] << 3);
+ low = (ctx->total[0] << 3);
+
+ sha512_put_uint64_be(high, ctx->buffer, 112);
+ sha512_put_uint64_be(low, ctx->buffer, 120);
+
+ if ((ret = mbedtls_internal_sha512_process(ctx, ctx->buffer)) != 0) {
+ goto exit;
+ }
+
+ /*
+ * Output final state
+ */
+ sha512_put_uint64_be(ctx->state[0], output, 0);
+ sha512_put_uint64_be(ctx->state[1], output, 8);
+ sha512_put_uint64_be(ctx->state[2], output, 16);
+ sha512_put_uint64_be(ctx->state[3], output, 24);
+ sha512_put_uint64_be(ctx->state[4], output, 32);
+ sha512_put_uint64_be(ctx->state[5], output, 40);
+
+#if defined(MBEDTLS_SHA384_C)
+ truncated = ctx->is384;
+#endif
+ if (!truncated) {
+ sha512_put_uint64_be(ctx->state[6], output, 48);
+ sha512_put_uint64_be(ctx->state[7], output, 56);
+ }
+
+ ret = 0;
+
+exit:
+ mbedtls_sha512_free(ctx);
+ return ret;
+}
+
+#endif /* !MBEDTLS_SHA512_ALT */
+
+/*
+ * output = SHA-512( input buffer )
+ */
+int mbedtls_sha512(const unsigned char *input,
+ size_t ilen,
+ unsigned char *output,
+ int is384)
+{
+ int ret = MBEDTLS_ERR_ERROR_CORRUPTION_DETECTED;
+ mbedtls_sha512_context ctx;
+
+#if defined(MBEDTLS_SHA384_C) && defined(MBEDTLS_SHA512_C)
+ if (is384 != 0 && is384 != 1) {
+ return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+ }
+#elif defined(MBEDTLS_SHA512_C)
+ if (is384 != 0) {
+ return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+ }
+#else /* defined MBEDTLS_SHA384_C only */
+ if (is384 == 0) {
+ return MBEDTLS_ERR_SHA512_BAD_INPUT_DATA;
+ }
+#endif
+
+ mbedtls_sha512_init(&ctx);
+
+ if ((ret = mbedtls_sha512_starts(&ctx, is384)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha512_update(&ctx, input, ilen)) != 0) {
+ goto exit;
+ }
+
+ if ((ret = mbedtls_sha512_finish(&ctx, output)) != 0) {
+ goto exit;
+ }
+
+exit:
+ mbedtls_sha512_free(&ctx);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_SELF_TEST)
+
+/*
+ * FIPS-180-2 test vectors
+ */
+static const unsigned char sha_test_buf[3][113] =
+{
+ { "abc" },
+ {
+ "abcdefghbcdefghicdefghijdefghijkefghijklfghijklmghijklmnhijklmnoijklmnopjklmnopqklmnopqrlmnopqrsmnopqrstnopqrstu"
+ },
+ { "" }
+};
+
+static const size_t sha_test_buflen[3] =
+{
+ 3, 112, 1000
+};
+
+typedef const unsigned char (sha_test_sum_t)[64];
+
+/*
+ * SHA-384 test vectors
+ */
+#if defined(MBEDTLS_SHA384_C)
+static sha_test_sum_t sha384_test_sum[] =
+{
+ { 0xCB, 0x00, 0x75, 0x3F, 0x45, 0xA3, 0x5E, 0x8B,
+ 0xB5, 0xA0, 0x3D, 0x69, 0x9A, 0xC6, 0x50, 0x07,
+ 0x27, 0x2C, 0x32, 0xAB, 0x0E, 0xDE, 0xD1, 0x63,
+ 0x1A, 0x8B, 0x60, 0x5A, 0x43, 0xFF, 0x5B, 0xED,
+ 0x80, 0x86, 0x07, 0x2B, 0xA1, 0xE7, 0xCC, 0x23,
+ 0x58, 0xBA, 0xEC, 0xA1, 0x34, 0xC8, 0x25, 0xA7 },
+ { 0x09, 0x33, 0x0C, 0x33, 0xF7, 0x11, 0x47, 0xE8,
+ 0x3D, 0x19, 0x2F, 0xC7, 0x82, 0xCD, 0x1B, 0x47,
+ 0x53, 0x11, 0x1B, 0x17, 0x3B, 0x3B, 0x05, 0xD2,
+ 0x2F, 0xA0, 0x80, 0x86, 0xE3, 0xB0, 0xF7, 0x12,
+ 0xFC, 0xC7, 0xC7, 0x1A, 0x55, 0x7E, 0x2D, 0xB9,
+ 0x66, 0xC3, 0xE9, 0xFA, 0x91, 0x74, 0x60, 0x39 },
+ { 0x9D, 0x0E, 0x18, 0x09, 0x71, 0x64, 0x74, 0xCB,
+ 0x08, 0x6E, 0x83, 0x4E, 0x31, 0x0A, 0x4A, 0x1C,
+ 0xED, 0x14, 0x9E, 0x9C, 0x00, 0xF2, 0x48, 0x52,
+ 0x79, 0x72, 0xCE, 0xC5, 0x70, 0x4C, 0x2A, 0x5B,
+ 0x07, 0xB8, 0xB3, 0xDC, 0x38, 0xEC, 0xC4, 0xEB,
+ 0xAE, 0x97, 0xDD, 0xD8, 0x7F, 0x3D, 0x89, 0x85 }
+};
+#endif /* MBEDTLS_SHA384_C */
+
+/*
+ * SHA-512 test vectors
+ */
+#if defined(MBEDTLS_SHA512_C)
+static sha_test_sum_t sha512_test_sum[] =
+{
+ { 0xDD, 0xAF, 0x35, 0xA1, 0x93, 0x61, 0x7A, 0xBA,
+ 0xCC, 0x41, 0x73, 0x49, 0xAE, 0x20, 0x41, 0x31,
+ 0x12, 0xE6, 0xFA, 0x4E, 0x89, 0xA9, 0x7E, 0xA2,
+ 0x0A, 0x9E, 0xEE, 0xE6, 0x4B, 0x55, 0xD3, 0x9A,
+ 0x21, 0x92, 0x99, 0x2A, 0x27, 0x4F, 0xC1, 0xA8,
+ 0x36, 0xBA, 0x3C, 0x23, 0xA3, 0xFE, 0xEB, 0xBD,
+ 0x45, 0x4D, 0x44, 0x23, 0x64, 0x3C, 0xE8, 0x0E,
+ 0x2A, 0x9A, 0xC9, 0x4F, 0xA5, 0x4C, 0xA4, 0x9F },
+ { 0x8E, 0x95, 0x9B, 0x75, 0xDA, 0xE3, 0x13, 0xDA,
+ 0x8C, 0xF4, 0xF7, 0x28, 0x14, 0xFC, 0x14, 0x3F,
+ 0x8F, 0x77, 0x79, 0xC6, 0xEB, 0x9F, 0x7F, 0xA1,
+ 0x72, 0x99, 0xAE, 0xAD, 0xB6, 0x88, 0x90, 0x18,
+ 0x50, 0x1D, 0x28, 0x9E, 0x49, 0x00, 0xF7, 0xE4,
+ 0x33, 0x1B, 0x99, 0xDE, 0xC4, 0xB5, 0x43, 0x3A,
+ 0xC7, 0xD3, 0x29, 0xEE, 0xB6, 0xDD, 0x26, 0x54,
+ 0x5E, 0x96, 0xE5, 0x5B, 0x87, 0x4B, 0xE9, 0x09 },
+ { 0xE7, 0x18, 0x48, 0x3D, 0x0C, 0xE7, 0x69, 0x64,
+ 0x4E, 0x2E, 0x42, 0xC7, 0xBC, 0x15, 0xB4, 0x63,
+ 0x8E, 0x1F, 0x98, 0xB1, 0x3B, 0x20, 0x44, 0x28,
+ 0x56, 0x32, 0xA8, 0x03, 0xAF, 0xA9, 0x73, 0xEB,
+ 0xDE, 0x0F, 0xF2, 0x44, 0x87, 0x7E, 0xA6, 0x0A,
+ 0x4C, 0xB0, 0x43, 0x2C, 0xE5, 0x77, 0xC3, 0x1B,
+ 0xEB, 0x00, 0x9C, 0x5C, 0x2C, 0x49, 0xAA, 0x2E,
+ 0x4E, 0xAD, 0xB2, 0x17, 0xAD, 0x8C, 0xC0, 0x9B }
+};
+#endif /* MBEDTLS_SHA512_C */
+
+static int mbedtls_sha512_common_self_test(int verbose, int is384)
+{
+ int i, buflen, ret = 0;
+ unsigned char *buf;
+ unsigned char sha512sum[64];
+ mbedtls_sha512_context ctx;
+
+#if defined(MBEDTLS_SHA384_C) && defined(MBEDTLS_SHA512_C)
+ sha_test_sum_t *sha_test_sum = (is384) ? sha384_test_sum : sha512_test_sum;
+#elif defined(MBEDTLS_SHA512_C)
+ sha_test_sum_t *sha_test_sum = sha512_test_sum;
+#else
+ sha_test_sum_t *sha_test_sum = sha384_test_sum;
+#endif
+
+ buf = mbedtls_calloc(1024, sizeof(unsigned char));
+ if (NULL == buf) {
+ if (verbose != 0) {
+ mbedtls_printf("Buffer allocation failed\n");
+ }
+
+ return 1;
+ }
+
+ mbedtls_sha512_init(&ctx);
+
+ for (i = 0; i < 3; i++) {
+ if (verbose != 0) {
+ mbedtls_printf(" SHA-%d test #%d: ", 512 - is384 * 128, i + 1);
+ }
+
+ if ((ret = mbedtls_sha512_starts(&ctx, is384)) != 0) {
+ goto fail;
+ }
+
+ if (i == 2) {
+ memset(buf, 'a', buflen = 1000);
+
+ for (int j = 0; j < 1000; j++) {
+ ret = mbedtls_sha512_update(&ctx, buf, buflen);
+ if (ret != 0) {
+ goto fail;
+ }
+ }
+ } else {
+ ret = mbedtls_sha512_update(&ctx, sha_test_buf[i],
+ sha_test_buflen[i]);
+ if (ret != 0) {
+ goto fail;
+ }
+ }
+
+ if ((ret = mbedtls_sha512_finish(&ctx, sha512sum)) != 0) {
+ goto fail;
+ }
+
+ if (memcmp(sha512sum, sha_test_sum[i], 64 - is384 * 16) != 0) {
+ ret = 1;
+ goto fail;
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("passed\n");
+ }
+ }
+
+ if (verbose != 0) {
+ mbedtls_printf("\n");
+ }
+
+ goto exit;
+
+fail:
+ if (verbose != 0) {
+ mbedtls_printf("failed\n");
+ }
+
+exit:
+ mbedtls_sha512_free(&ctx);
+ mbedtls_free(buf);
+
+ return ret;
+}
+
+#if defined(MBEDTLS_SHA512_C)
+int mbedtls_sha512_self_test(int verbose)
+{
+ return mbedtls_sha512_common_self_test(verbose, 0);
+}
+#endif /* MBEDTLS_SHA512_C */
+
+#if defined(MBEDTLS_SHA384_C)
+int mbedtls_sha384_self_test(int verbose)
+{
+ return mbedtls_sha512_common_self_test(verbose, 1);
+}
+#endif /* MBEDTLS_SHA384_C */
+
+#undef ARRAY_LENGTH
+
+#endif /* MBEDTLS_SELF_TEST */
+
+#endif /* MBEDTLS_SHA512_C || MBEDTLS_SHA384_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/threading.c b/tf-psa-crypto/drivers/builtin/src/threading.c
new file mode 100644
index 0000000..85db243
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/threading.c
@@ -0,0 +1,195 @@
+/*
+ * Threading abstraction layer
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+/*
+ * Ensure gmtime_r is available even with -std=c99; must be defined before
+ * mbedtls_config.h, which pulls in glibc's features.h. Harmless on other platforms.
+ */
+#if !defined(_POSIX_C_SOURCE)
+#define _POSIX_C_SOURCE 200112L
+#endif
+
+#include "common.h"
+
+#if defined(MBEDTLS_THREADING_C)
+
+#include "mbedtls/threading.h"
+
+#if defined(MBEDTLS_HAVE_TIME_DATE) && !defined(MBEDTLS_PLATFORM_GMTIME_R_ALT)
+
+#if !defined(_WIN32) && (defined(unix) || \
+ defined(__unix) || defined(__unix__) || (defined(__APPLE__) && \
+ defined(__MACH__)))
+#include <unistd.h>
+#endif /* !_WIN32 && (unix || __unix || __unix__ ||
+ * (__APPLE__ && __MACH__)) */
+
+#if !((defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L) || \
+ (defined(_POSIX_THREAD_SAFE_FUNCTIONS) && \
+ _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L))
+/*
+ * This is a convenience shorthand macro to avoid checking the long
+ * preprocessor conditions above. Ideally, we could expose this macro in
+ * platform_util.h and simply use it in platform_util.c, threading.c and
+ * threading.h. However, this macro is not part of the Mbed TLS public API, so
+ * we keep it private by only defining it in this file
+ */
+
+#if !(defined(_WIN32) && !defined(EFIX64) && !defined(EFI32))
+#define THREADING_USE_GMTIME
+#endif /* ! ( defined(_WIN32) && !defined(EFIX64) && !defined(EFI32) ) */
+
+#endif /* !( ( defined(_POSIX_VERSION) && _POSIX_VERSION >= 200809L ) || \
+ ( defined(_POSIX_THREAD_SAFE_FUNCTIONS ) && \
+ _POSIX_THREAD_SAFE_FUNCTIONS >= 200112L ) ) */
+
+#endif /* MBEDTLS_HAVE_TIME_DATE && !MBEDTLS_PLATFORM_GMTIME_R_ALT */
+
+#if defined(MBEDTLS_THREADING_PTHREAD)
+static void threading_mutex_init_pthread(mbedtls_threading_mutex_t *mutex)
+{
+ if (mutex == NULL) {
+ return;
+ }
+
+ /* One problem here is that calling lock on a pthread mutex without first
+ * having initialised it is undefined behaviour. Obviously we cannot check
+ * this here in a thread safe manner without a significant performance
+ * hit, so state transitions are checked in tests only via the state
+ * variable. Please make sure any new mutex that gets added is exercised in
+ * tests; see tests/src/threading_helpers.c for more details. */
+ (void) pthread_mutex_init(&mutex->mutex, NULL);
+}
+
+static void threading_mutex_free_pthread(mbedtls_threading_mutex_t *mutex)
+{
+ if (mutex == NULL) {
+ return;
+ }
+
+ (void) pthread_mutex_destroy(&mutex->mutex);
+}
+
+static int threading_mutex_lock_pthread(mbedtls_threading_mutex_t *mutex)
+{
+ if (mutex == NULL) {
+ return MBEDTLS_ERR_THREADING_BAD_INPUT_DATA;
+ }
+
+ if (pthread_mutex_lock(&mutex->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+
+ return 0;
+}
+
+static int threading_mutex_unlock_pthread(mbedtls_threading_mutex_t *mutex)
+{
+ if (mutex == NULL) {
+ return MBEDTLS_ERR_THREADING_BAD_INPUT_DATA;
+ }
+
+ if (pthread_mutex_unlock(&mutex->mutex) != 0) {
+ return MBEDTLS_ERR_THREADING_MUTEX_ERROR;
+ }
+
+ return 0;
+}
+
+void (*mbedtls_mutex_init)(mbedtls_threading_mutex_t *) = threading_mutex_init_pthread;
+void (*mbedtls_mutex_free)(mbedtls_threading_mutex_t *) = threading_mutex_free_pthread;
+int (*mbedtls_mutex_lock)(mbedtls_threading_mutex_t *) = threading_mutex_lock_pthread;
+int (*mbedtls_mutex_unlock)(mbedtls_threading_mutex_t *) = threading_mutex_unlock_pthread;
+
+/*
+ * With pthreads we can statically initialize mutexes
+ */
+#define MUTEX_INIT = { PTHREAD_MUTEX_INITIALIZER, 1 }
+
+#endif /* MBEDTLS_THREADING_PTHREAD */
+
+#if defined(MBEDTLS_THREADING_ALT)
+static int threading_mutex_fail(mbedtls_threading_mutex_t *mutex)
+{
+ ((void) mutex);
+ return MBEDTLS_ERR_THREADING_BAD_INPUT_DATA;
+}
+static void threading_mutex_dummy(mbedtls_threading_mutex_t *mutex)
+{
+ ((void) mutex);
+ return;
+}
+
+void (*mbedtls_mutex_init)(mbedtls_threading_mutex_t *) = threading_mutex_dummy;
+void (*mbedtls_mutex_free)(mbedtls_threading_mutex_t *) = threading_mutex_dummy;
+int (*mbedtls_mutex_lock)(mbedtls_threading_mutex_t *) = threading_mutex_fail;
+int (*mbedtls_mutex_unlock)(mbedtls_threading_mutex_t *) = threading_mutex_fail;
+
+/*
+ * Set functions pointers and initialize global mutexes
+ */
+void mbedtls_threading_set_alt(void (*mutex_init)(mbedtls_threading_mutex_t *),
+ void (*mutex_free)(mbedtls_threading_mutex_t *),
+ int (*mutex_lock)(mbedtls_threading_mutex_t *),
+ int (*mutex_unlock)(mbedtls_threading_mutex_t *))
+{
+ mbedtls_mutex_init = mutex_init;
+ mbedtls_mutex_free = mutex_free;
+ mbedtls_mutex_lock = mutex_lock;
+ mbedtls_mutex_unlock = mutex_unlock;
+
+#if defined(MBEDTLS_FS_IO)
+ mbedtls_mutex_init(&mbedtls_threading_readdir_mutex);
+#endif
+#if defined(THREADING_USE_GMTIME)
+ mbedtls_mutex_init(&mbedtls_threading_gmtime_mutex);
+#endif
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+ mbedtls_mutex_init(&mbedtls_threading_key_slot_mutex);
+ mbedtls_mutex_init(&mbedtls_threading_psa_globaldata_mutex);
+ mbedtls_mutex_init(&mbedtls_threading_psa_rngdata_mutex);
+#endif
+}
+
+/*
+ * Free global mutexes
+ */
+void mbedtls_threading_free_alt(void)
+{
+#if defined(MBEDTLS_FS_IO)
+ mbedtls_mutex_free(&mbedtls_threading_readdir_mutex);
+#endif
+#if defined(THREADING_USE_GMTIME)
+ mbedtls_mutex_free(&mbedtls_threading_gmtime_mutex);
+#endif
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+ mbedtls_mutex_free(&mbedtls_threading_key_slot_mutex);
+ mbedtls_mutex_free(&mbedtls_threading_psa_globaldata_mutex);
+ mbedtls_mutex_free(&mbedtls_threading_psa_rngdata_mutex);
+#endif
+}
+#endif /* MBEDTLS_THREADING_ALT */
+
+/*
+ * Define global mutexes
+ */
+#ifndef MUTEX_INIT
+#define MUTEX_INIT
+#endif
+#if defined(MBEDTLS_FS_IO)
+mbedtls_threading_mutex_t mbedtls_threading_readdir_mutex MUTEX_INIT;
+#endif
+#if defined(THREADING_USE_GMTIME)
+mbedtls_threading_mutex_t mbedtls_threading_gmtime_mutex MUTEX_INIT;
+#endif
+#if defined(MBEDTLS_PSA_CRYPTO_C)
+mbedtls_threading_mutex_t mbedtls_threading_key_slot_mutex MUTEX_INIT;
+mbedtls_threading_mutex_t mbedtls_threading_psa_globaldata_mutex MUTEX_INIT;
+mbedtls_threading_mutex_t mbedtls_threading_psa_rngdata_mutex MUTEX_INIT;
+#endif
+
+#endif /* MBEDTLS_THREADING_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/timing.c b/tf-psa-crypto/drivers/builtin/src/timing.c
new file mode 100644
index 0000000..58f1c1e
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/timing.c
@@ -0,0 +1,154 @@
+/*
+ * Portable interface to the CPU cycle counter
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_TIMING_C)
+
+#include "mbedtls/timing.h"
+
+#if !defined(MBEDTLS_TIMING_ALT)
+
+#if !defined(unix) && !defined(__unix__) && !defined(__unix) && \
+ !defined(__APPLE__) && !defined(_WIN32) && !defined(__QNXNTO__) && \
+ !defined(__HAIKU__) && !defined(__midipix__)
+#error "This module only works on Unix and Windows, see MBEDTLS_TIMING_C in mbedtls_config.h"
+#endif
+
+#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
+
+#include <windows.h>
+#include <process.h>
+
+struct _hr_time {
+ LARGE_INTEGER start;
+};
+
+#else
+
+#include <unistd.h>
+#include <sys/types.h>
+#include <signal.h>
+/* time.h should be included independently of MBEDTLS_HAVE_TIME. If the
+ * platform matches the ifdefs above, it will be used. */
+#include <time.h>
+#include <sys/time.h>
+struct _hr_time {
+ struct timeval start;
+};
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+
+/**
+ * \brief Return the elapsed time in milliseconds
+ *
+ * \warning May change without notice
+ *
+ * \param val points to a timer structure
+ * \param reset If 0, query the elapsed time. Otherwise (re)start the timer.
+ *
+ * \return Elapsed time since the previous reset in ms. When
+ * restarting, this is always 0.
+ *
+ * \note To initialize a timer, call this function with reset=1.
+ *
+ * Determining the elapsed time and resetting the timer is not
+ * atomic on all platforms, so after the sequence
+ * `{ get_timer(1); ...; time1 = get_timer(1); ...; time2 =
+ * get_timer(0) }` the value time1+time2 is only approximately
+ * the delay since the first reset.
+ */
+#if defined(_WIN32) && !defined(EFIX64) && !defined(EFI32)
+
+unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
+{
+ struct _hr_time *t = (struct _hr_time *) val;
+
+ if (reset) {
+ QueryPerformanceCounter(&t->start);
+ return 0;
+ } else {
+ unsigned long delta;
+ LARGE_INTEGER now, hfreq;
+ QueryPerformanceCounter(&now);
+ QueryPerformanceFrequency(&hfreq);
+ delta = (unsigned long) ((now.QuadPart - t->start.QuadPart) * 1000ul
+ / hfreq.QuadPart);
+ return delta;
+ }
+}
+
+#else /* _WIN32 && !EFIX64 && !EFI32 */
+
+unsigned long mbedtls_timing_get_timer(struct mbedtls_timing_hr_time *val, int reset)
+{
+ struct _hr_time *t = (struct _hr_time *) val;
+
+ if (reset) {
+ gettimeofday(&t->start, NULL);
+ return 0;
+ } else {
+ unsigned long delta;
+ struct timeval now;
+ gettimeofday(&now, NULL);
+ delta = (now.tv_sec - t->start.tv_sec) * 1000ul
+ + (now.tv_usec - t->start.tv_usec) / 1000;
+ return delta;
+ }
+}
+
+#endif /* _WIN32 && !EFIX64 && !EFI32 */
+
+/*
+ * Set delays to watch
+ */
+void mbedtls_timing_set_delay(void *data, uint32_t int_ms, uint32_t fin_ms)
+{
+ mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
+
+ ctx->int_ms = int_ms;
+ ctx->fin_ms = fin_ms;
+
+ if (fin_ms != 0) {
+ (void) mbedtls_timing_get_timer(&ctx->timer, 1);
+ }
+}
+
+/*
+ * Get number of delays expired
+ */
+int mbedtls_timing_get_delay(void *data)
+{
+ mbedtls_timing_delay_context *ctx = (mbedtls_timing_delay_context *) data;
+ unsigned long elapsed_ms;
+
+ if (ctx->fin_ms == 0) {
+ return -1;
+ }
+
+ elapsed_ms = mbedtls_timing_get_timer(&ctx->timer, 0);
+
+ if (elapsed_ms >= ctx->fin_ms) {
+ return 2;
+ }
+
+ if (elapsed_ms >= ctx->int_ms) {
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Get the final delay.
+ */
+uint32_t mbedtls_timing_get_final_delay(
+ const mbedtls_timing_delay_context *data)
+{
+ return data->fin_ms;
+}
+#endif /* !MBEDTLS_TIMING_ALT */
+#endif /* MBEDTLS_TIMING_C */
diff --git a/tf-psa-crypto/drivers/builtin/src/version.c b/tf-psa-crypto/drivers/builtin/src/version.c
new file mode 100644
index 0000000..0439733
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/version.c
@@ -0,0 +1,32 @@
+/*
+ * Version information
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#include "common.h"
+
+#if defined(MBEDTLS_VERSION_C)
+
+#include "mbedtls/version.h"
+#include <string.h>
+
+unsigned int mbedtls_version_get_number(void)
+{
+ return MBEDTLS_VERSION_NUMBER;
+}
+
+void mbedtls_version_get_string(char *string)
+{
+ memcpy(string, MBEDTLS_VERSION_STRING,
+ sizeof(MBEDTLS_VERSION_STRING));
+}
+
+void mbedtls_version_get_string_full(char *string)
+{
+ memcpy(string, MBEDTLS_VERSION_STRING_FULL,
+ sizeof(MBEDTLS_VERSION_STRING_FULL));
+}
+
+#endif /* MBEDTLS_VERSION_C */