aboutsummaryrefslogtreecommitdiff
path: root/tf-psa-crypto/drivers/builtin/src/aesce.c
diff options
context:
space:
mode:
Diffstat (limited to 'tf-psa-crypto/drivers/builtin/src/aesce.c')
-rw-r--r--tf-psa-crypto/drivers/builtin/src/aesce.c618
1 files changed, 618 insertions, 0 deletions
diff --git a/tf-psa-crypto/drivers/builtin/src/aesce.c b/tf-psa-crypto/drivers/builtin/src/aesce.c
new file mode 100644
index 0000000..6a9e0a1
--- /dev/null
+++ b/tf-psa-crypto/drivers/builtin/src/aesce.c
@@ -0,0 +1,618 @@
+/*
+ * Armv8-A Cryptographic Extension support functions for Aarch64
+ *
+ * Copyright The Mbed TLS Contributors
+ * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
+ */
+
+#if defined(__clang__) && (__clang_major__ >= 4)
+
+/* Ideally, we would simply use MBEDTLS_ARCH_IS_ARMV8_A in the following #if,
+ * but that is defined by build_info.h, and we need this block to happen first. */
+#if defined(__ARM_ARCH)
+#if __ARM_ARCH >= 8
+#define MBEDTLS_AESCE_ARCH_IS_ARMV8_A
+#endif
+#endif
+
+#if defined(MBEDTLS_AESCE_ARCH_IS_ARMV8_A) && !defined(__ARM_FEATURE_CRYPTO)
+/* TODO: Re-consider above after https://reviews.llvm.org/D131064 merged.
+ *
+ * The intrinsic declaration are guarded by predefined ACLE macros in clang:
+ * these are normally only enabled by the -march option on the command line.
+ * By defining the macros ourselves we gain access to those declarations without
+ * requiring -march on the command line.
+ *
+ * `arm_neon.h` is included by common.h, so we put these defines
+ * at the top of this file, before any includes.
+ */
+#define __ARM_FEATURE_CRYPTO 1
+/* See: https://arm-software.github.io/acle/main/acle.html#cryptographic-extensions
+ *
+ * `__ARM_FEATURE_CRYPTO` is deprecated, but we need to continue to specify it
+ * for older compilers.
+ */
+#define __ARM_FEATURE_AES 1
+#define MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG
+#endif
+
+#endif /* defined(__clang__) && (__clang_major__ >= 4) */
+
+#include <string.h>
+#include "common.h"
+
+#if defined(MBEDTLS_AESCE_C)
+
+#include "aesce.h"
+
+#if defined(MBEDTLS_AESCE_HAVE_CODE)
+
+/* Compiler version checks. */
+#if defined(__clang__)
+# if defined(MBEDTLS_ARCH_IS_ARM32) && (__clang_major__ < 11)
+# error "Minimum version of Clang for MBEDTLS_AESCE_C on 32-bit Arm or Thumb is 11.0."
+# elif defined(MBEDTLS_ARCH_IS_ARM64) && (__clang_major__ < 4)
+# error "Minimum version of Clang for MBEDTLS_AESCE_C on aarch64 is 4.0."
+# endif
+#elif defined(__GNUC__)
+# if __GNUC__ < 6
+# error "Minimum version of GCC for MBEDTLS_AESCE_C is 6.0."
+# endif
+#elif defined(_MSC_VER)
+/* TODO: We haven't verified MSVC from 1920 to 1928. If someone verified that,
+ * please update this and document of `MBEDTLS_AESCE_C` in
+ * `mbedtls_config.h`. */
+# if _MSC_VER < 1929
+# error "Minimum version of MSVC for MBEDTLS_AESCE_C is 2019 version 16.11.2."
+# endif
+#elif defined(__ARMCC_VERSION)
+# if defined(MBEDTLS_ARCH_IS_ARM32) && (__ARMCC_VERSION < 6200002)
+/* TODO: We haven't verified armclang for 32-bit Arm/Thumb prior to 6.20.
+ * If someone verified that, please update this and document of
+ * `MBEDTLS_AESCE_C` in `mbedtls_config.h`. */
+# error "Minimum version of armclang for MBEDTLS_AESCE_C on 32-bit Arm is 6.20."
+# elif defined(MBEDTLS_ARCH_IS_ARM64) && (__ARMCC_VERSION < 6060000)
+# error "Minimum version of armclang for MBEDTLS_AESCE_C on aarch64 is 6.6."
+# endif
+#endif
+
+#if !(defined(__ARM_FEATURE_CRYPTO) || defined(__ARM_FEATURE_AES)) || \
+ defined(MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG)
+# if defined(__ARMCOMPILER_VERSION)
+# if __ARMCOMPILER_VERSION <= 6090000
+# error "Must use minimum -march=armv8-a+crypto for MBEDTLS_AESCE_C"
+# else
+# pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# endif
+# elif defined(__clang__)
+# pragma clang attribute push (__attribute__((target("aes"))), apply_to=function)
+# define MBEDTLS_POP_TARGET_PRAGMA
+# elif defined(__GNUC__)
+# pragma GCC push_options
+# pragma GCC target ("+crypto")
+# define MBEDTLS_POP_TARGET_PRAGMA
+# elif defined(_MSC_VER)
+# error "Required feature(__ARM_FEATURE_AES) is not enabled."
+# endif
+#endif /* !(__ARM_FEATURE_CRYPTO || __ARM_FEATURE_AES) ||
+ MBEDTLS_ENABLE_ARM_CRYPTO_EXTENSIONS_COMPILER_FLAG */
+
+#if defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+
+#include <sys/auxv.h>
+#if !defined(HWCAP_NEON)
+#define HWCAP_NEON (1 << 12)
+#endif
+#if !defined(HWCAP2_AES)
+#define HWCAP2_AES (1 << 0)
+#endif
+#if !defined(HWCAP_AES)
+#define HWCAP_AES (1 << 3)
+#endif
+#if !defined(HWCAP_ASIMD)
+#define HWCAP_ASIMD (1 << 1)
+#endif
+
+signed char mbedtls_aesce_has_support_result = -1;
+
+#if !defined(MBEDTLS_AES_USE_HARDWARE_ONLY)
+/*
+ * AES instruction support detection routine
+ */
+int mbedtls_aesce_has_support_impl(void)
+{
+ /* To avoid many calls to getauxval, cache the result. This is
+ * thread-safe, because we store the result in a char so cannot
+ * be vulnerable to non-atomic updates.
+ * It is possible that we could end up setting result more than
+ * once, but that is harmless.
+ */
+ if (mbedtls_aesce_has_support_result == -1) {
+#if defined(MBEDTLS_ARCH_IS_ARM32)
+ unsigned long auxval = getauxval(AT_HWCAP);
+ unsigned long auxval2 = getauxval(AT_HWCAP2);
+ if (((auxval & HWCAP_NEON) == HWCAP_NEON) &&
+ ((auxval2 & HWCAP2_AES) == HWCAP2_AES)) {
+ mbedtls_aesce_has_support_result = 1;
+ } else {
+ mbedtls_aesce_has_support_result = 0;
+ }
+#else
+ unsigned long auxval = getauxval(AT_HWCAP);
+ if ((auxval & (HWCAP_ASIMD | HWCAP_AES)) ==
+ (HWCAP_ASIMD | HWCAP_AES)) {
+ mbedtls_aesce_has_support_result = 1;
+ } else {
+ mbedtls_aesce_has_support_result = 0;
+ }
+#endif
+ }
+ return mbedtls_aesce_has_support_result;
+}
+#endif
+
+#endif /* defined(__linux__) && !defined(MBEDTLS_AES_USE_HARDWARE_ONLY) */
+
+/* Single round of AESCE encryption */
+#define AESCE_ENCRYPT_ROUND \
+ block = vaeseq_u8(block, vld1q_u8(keys)); \
+ block = vaesmcq_u8(block); \
+ keys += 16
+/* Two rounds of AESCE encryption */
+#define AESCE_ENCRYPT_ROUND_X2 AESCE_ENCRYPT_ROUND; AESCE_ENCRYPT_ROUND
+
+MBEDTLS_OPTIMIZE_FOR_PERFORMANCE
+static uint8x16_t aesce_encrypt_block(uint8x16_t block,
+ unsigned char *keys,
+ int rounds)
+{
+ /* 10, 12 or 14 rounds. Unroll loop. */
+ if (rounds == 10) {
+ goto rounds_10;
+ }
+ if (rounds == 12) {
+ goto rounds_12;
+ }
+ AESCE_ENCRYPT_ROUND_X2;
+rounds_12:
+ AESCE_ENCRYPT_ROUND_X2;
+rounds_10:
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND_X2;
+ AESCE_ENCRYPT_ROUND;
+
+ /* AES AddRoundKey for the previous round.
+ * SubBytes, ShiftRows for the final round. */
+ block = vaeseq_u8(block, vld1q_u8(keys));
+ keys += 16;
+
+ /* Final round: no MixColumns */
+
+ /* Final AddRoundKey */
+ block = veorq_u8(block, vld1q_u8(keys));
+
+ return block;
+}
+
+/* Single round of AESCE decryption
+ *
+ * AES AddRoundKey, SubBytes, ShiftRows
+ *
+ * block = vaesdq_u8(block, vld1q_u8(keys));
+ *
+ * AES inverse MixColumns for the next round.
+ *
+ * This means that we switch the order of the inverse AddRoundKey and
+ * inverse MixColumns operations. We have to do this as AddRoundKey is
+ * done in an atomic instruction together with the inverses of SubBytes
+ * and ShiftRows.
+ *
+ * It works because MixColumns is a linear operation over GF(2^8) and
+ * AddRoundKey is an exclusive or, which is equivalent to addition over
+ * GF(2^8). (The inverse of MixColumns needs to be applied to the
+ * affected round keys separately which has been done when the
+ * decryption round keys were calculated.)
+ *
+ * block = vaesimcq_u8(block);
+ */
+#define AESCE_DECRYPT_ROUND \
+ block = vaesdq_u8(block, vld1q_u8(keys)); \
+ block = vaesimcq_u8(block); \
+ keys += 16
+/* Two rounds of AESCE decryption */
+#define AESCE_DECRYPT_ROUND_X2 AESCE_DECRYPT_ROUND; AESCE_DECRYPT_ROUND
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+static uint8x16_t aesce_decrypt_block(uint8x16_t block,
+ unsigned char *keys,
+ int rounds)
+{
+ /* 10, 12 or 14 rounds. Unroll loop. */
+ if (rounds == 10) {
+ goto rounds_10;
+ }
+ if (rounds == 12) {
+ goto rounds_12;
+ }
+ AESCE_DECRYPT_ROUND_X2;
+rounds_12:
+ AESCE_DECRYPT_ROUND_X2;
+rounds_10:
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND_X2;
+ AESCE_DECRYPT_ROUND;
+
+ /* The inverses of AES AddRoundKey, SubBytes, ShiftRows finishing up the
+ * last full round. */
+ block = vaesdq_u8(block, vld1q_u8(keys));
+ keys += 16;
+
+ /* Inverse AddRoundKey for inverting the initial round key addition. */
+ block = veorq_u8(block, vld1q_u8(keys));
+
+ return block;
+}
+#endif
+
+/*
+ * AES-ECB block en(de)cryption
+ */
+int mbedtls_aesce_crypt_ecb(mbedtls_aes_context *ctx,
+ int mode,
+ const unsigned char input[16],
+ unsigned char output[16])
+{
+ uint8x16_t block = vld1q_u8(&input[0]);
+ unsigned char *keys = (unsigned char *) (ctx->buf + ctx->rk_offset);
+
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+ if (mode == MBEDTLS_AES_DECRYPT) {
+ block = aesce_decrypt_block(block, keys, ctx->nr);
+ } else
+#else
+ (void) mode;
+#endif
+ {
+ block = aesce_encrypt_block(block, keys, ctx->nr);
+ }
+ vst1q_u8(&output[0], block);
+
+ return 0;
+}
+
+/*
+ * Compute decryption round keys from encryption round keys
+ */
+#if !defined(MBEDTLS_BLOCK_CIPHER_NO_DECRYPT)
+void mbedtls_aesce_inverse_key(unsigned char *invkey,
+ const unsigned char *fwdkey,
+ int nr)
+{
+ int i, j;
+ j = nr;
+ vst1q_u8(invkey, vld1q_u8(fwdkey + j * 16));
+ for (i = 1, j--; j > 0; i++, j--) {
+ vst1q_u8(invkey + i * 16,
+ vaesimcq_u8(vld1q_u8(fwdkey + j * 16)));
+ }
+ vst1q_u8(invkey + i * 16, vld1q_u8(fwdkey + j * 16));
+
+}
+#endif
+
+static inline uint32_t aes_rot_word(uint32_t word)
+{
+ return (word << (32 - 8)) | (word >> 8);
+}
+
+static inline uint32_t aes_sub_word(uint32_t in)
+{
+ uint8x16_t v = vreinterpretq_u8_u32(vdupq_n_u32(in));
+ uint8x16_t zero = vdupq_n_u8(0);
+
+ /* vaeseq_u8 does both SubBytes and ShiftRows. Taking the first row yields
+ * the correct result as ShiftRows doesn't change the first row. */
+ v = vaeseq_u8(zero, v);
+ return vgetq_lane_u32(vreinterpretq_u32_u8(v), 0);
+}
+
+/*
+ * Key expansion function
+ */
+static void aesce_setkey_enc(unsigned char *rk,
+ const unsigned char *key,
+ const size_t key_bit_length)
+{
+ static uint8_t const rcon[] = { 0x01, 0x02, 0x04, 0x08, 0x10,
+ 0x20, 0x40, 0x80, 0x1b, 0x36 };
+ /* See https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
+ * - Section 5, Nr = Nk + 6
+ * - Section 5.2, the length of round keys is Nb*(Nr+1)
+ */
+ const size_t key_len_in_words = key_bit_length / 32; /* Nk */
+ const size_t round_key_len_in_words = 4; /* Nb */
+ const size_t rounds_needed = key_len_in_words + 6; /* Nr */
+ const size_t round_keys_len_in_words =
+ round_key_len_in_words * (rounds_needed + 1); /* Nb*(Nr+1) */
+ const uint32_t *rko_end = (uint32_t *) rk + round_keys_len_in_words;
+
+ memcpy(rk, key, key_len_in_words * 4);
+
+ for (uint32_t *rki = (uint32_t *) rk;
+ rki + key_len_in_words < rko_end;
+ rki += key_len_in_words) {
+
+ size_t iteration = (size_t) (rki - (uint32_t *) rk) / key_len_in_words;
+ uint32_t *rko;
+ rko = rki + key_len_in_words;
+ rko[0] = aes_rot_word(aes_sub_word(rki[key_len_in_words - 1]));
+ rko[0] ^= rcon[iteration] ^ rki[0];
+ rko[1] = rko[0] ^ rki[1];
+ rko[2] = rko[1] ^ rki[2];
+ rko[3] = rko[2] ^ rki[3];
+ if (rko + key_len_in_words > rko_end) {
+ /* Do not write overflow words.*/
+ continue;
+ }
+#if !defined(MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH)
+ switch (key_bit_length) {
+ case 128:
+ break;
+ case 192:
+ rko[4] = rko[3] ^ rki[4];
+ rko[5] = rko[4] ^ rki[5];
+ break;
+ case 256:
+ rko[4] = aes_sub_word(rko[3]) ^ rki[4];
+ rko[5] = rko[4] ^ rki[5];
+ rko[6] = rko[5] ^ rki[6];
+ rko[7] = rko[6] ^ rki[7];
+ break;
+ }
+#endif /* !MBEDTLS_AES_ONLY_128_BIT_KEY_LENGTH */
+ }
+}
+
+/*
+ * Key expansion, wrapper
+ */
+int mbedtls_aesce_setkey_enc(unsigned char *rk,
+ const unsigned char *key,
+ size_t bits)
+{
+ switch (bits) {
+ case 128:
+ case 192:
+ case 256:
+ aesce_setkey_enc(rk, key, bits);
+ break;
+ default:
+ return MBEDTLS_ERR_AES_INVALID_KEY_LENGTH;
+ }
+
+ return 0;
+}
+
+#if defined(MBEDTLS_GCM_C)
+
+#if defined(MBEDTLS_ARCH_IS_ARM32)
+
+#if defined(__clang__)
+/* On clang for A32/T32, work around some missing intrinsics and types which are listed in
+ * [ACLE](https://arm-software.github.io/acle/neon_intrinsics/advsimd.html#polynomial-1)
+ * These are only required for GCM.
+ */
+#define vreinterpretq_u64_p64(a) ((uint64x2_t) a)
+
+typedef uint8x16_t poly128_t;
+
+static inline poly128_t vmull_p64(poly64_t a, poly64_t b)
+{
+ poly128_t r;
+ asm ("vmull.p64 %[r], %[a], %[b]" : [r] "=w" (r) : [a] "w" (a), [b] "w" (b) :);
+ return r;
+}
+
+/* This is set to cause some more missing intrinsics to be defined below */
+#define COMMON_MISSING_INTRINSICS
+
+static inline poly128_t vmull_high_p64(poly64x2_t a, poly64x2_t b)
+{
+ return vmull_p64((poly64_t) (vget_high_u64((uint64x2_t) a)),
+ (poly64_t) (vget_high_u64((uint64x2_t) b)));
+}
+
+#endif /* defined(__clang__) */
+
+static inline uint8x16_t vrbitq_u8(uint8x16_t x)
+{
+ /* There is no vrbitq_u8 instruction in A32/T32, so provide
+ * an equivalent non-Neon implementation. Reverse bit order in each
+ * byte with 4x rbit, rev. */
+ asm ("ldm %[p], { r2-r5 } \n\t"
+ "rbit r2, r2 \n\t"
+ "rev r2, r2 \n\t"
+ "rbit r3, r3 \n\t"
+ "rev r3, r3 \n\t"
+ "rbit r4, r4 \n\t"
+ "rev r4, r4 \n\t"
+ "rbit r5, r5 \n\t"
+ "rev r5, r5 \n\t"
+ "stm %[p], { r2-r5 } \n\t"
+ :
+ /* Output: 16 bytes of memory pointed to by &x */
+ "+m" (*(uint8_t(*)[16]) &x)
+ :
+ [p] "r" (&x)
+ :
+ "r2", "r3", "r4", "r5"
+ );
+ return x;
+}
+
+#endif /* defined(MBEDTLS_ARCH_IS_ARM32) */
+
+#if defined(MBEDTLS_COMPILER_IS_GCC) && __GNUC__ == 5
+/* Some intrinsics are not available for GCC 5.X. */
+#define COMMON_MISSING_INTRINSICS
+#endif /* MBEDTLS_COMPILER_IS_GCC && __GNUC__ == 5 */
+
+
+#if defined(COMMON_MISSING_INTRINSICS)
+
+/* Missing intrinsics common to both GCC 5, and Clang on 32-bit */
+
+#define vreinterpretq_p64_u8(a) ((poly64x2_t) a)
+#define vreinterpretq_u8_p128(a) ((uint8x16_t) a)
+
+static inline poly64x1_t vget_low_p64(poly64x2_t a)
+{
+ uint64x1_t r = vget_low_u64(vreinterpretq_u64_p64(a));
+ return (poly64x1_t) r;
+
+}
+
+#endif /* COMMON_MISSING_INTRINSICS */
+
+/* vmull_p64/vmull_high_p64 wrappers.
+ *
+ * Older compilers miss some intrinsic functions for `poly*_t`. We use
+ * uint8x16_t and uint8x16x3_t as input/output parameters.
+ */
+#if defined(MBEDTLS_COMPILER_IS_GCC)
+/* GCC reports incompatible type error without cast. GCC think poly64_t and
+ * poly64x1_t are different, that is different with MSVC and Clang. */
+#define MBEDTLS_VMULL_P64(a, b) vmull_p64((poly64_t) a, (poly64_t) b)
+#else
+/* MSVC reports `error C2440: 'type cast'` with cast. Clang does not report
+ * error with/without cast. And I think poly64_t and poly64x1_t are same, no
+ * cast for clang also. */
+#define MBEDTLS_VMULL_P64(a, b) vmull_p64(a, b)
+#endif /* MBEDTLS_COMPILER_IS_GCC */
+
+static inline uint8x16_t pmull_low(uint8x16_t a, uint8x16_t b)
+{
+
+ return vreinterpretq_u8_p128(
+ MBEDTLS_VMULL_P64(
+ (poly64_t) vget_low_p64(vreinterpretq_p64_u8(a)),
+ (poly64_t) vget_low_p64(vreinterpretq_p64_u8(b))
+ ));
+}
+
+static inline uint8x16_t pmull_high(uint8x16_t a, uint8x16_t b)
+{
+ return vreinterpretq_u8_p128(
+ vmull_high_p64(vreinterpretq_p64_u8(a),
+ vreinterpretq_p64_u8(b)));
+}
+
+/* GHASH does 128b polynomial multiplication on block in GF(2^128) defined by
+ * `x^128 + x^7 + x^2 + x + 1`.
+ *
+ * Arm64 only has 64b->128b polynomial multipliers, we need to do 4 64b
+ * multiplies to generate a 128b.
+ *
+ * `poly_mult_128` executes polynomial multiplication and outputs 256b that
+ * represented by 3 128b due to code size optimization.
+ *
+ * Output layout:
+ * | | | |
+ * |------------|-------------|-------------|
+ * | ret.val[0] | h3:h2:00:00 | high 128b |
+ * | ret.val[1] | :m2:m1:00 | middle 128b |
+ * | ret.val[2] | : :l1:l0 | low 128b |
+ */
+static inline uint8x16x3_t poly_mult_128(uint8x16_t a, uint8x16_t b)
+{
+ uint8x16x3_t ret;
+ uint8x16_t h, m, l; /* retval high/middle/low */
+ uint8x16_t c, d, e;
+
+ h = pmull_high(a, b); /* h3:h2:00:00 = a1*b1 */
+ l = pmull_low(a, b); /* : :l1:l0 = a0*b0 */
+ c = vextq_u8(b, b, 8); /* :c1:c0 = b0:b1 */
+ d = pmull_high(a, c); /* :d2:d1:00 = a1*b0 */
+ e = pmull_low(a, c); /* :e2:e1:00 = a0*b1 */
+ m = veorq_u8(d, e); /* :m2:m1:00 = d + e */
+
+ ret.val[0] = h;
+ ret.val[1] = m;
+ ret.val[2] = l;
+ return ret;
+}
+
+/*
+ * Modulo reduction.
+ *
+ * See: https://www.researchgate.net/publication/285612706_Implementing_GCM_on_ARMv8
+ *
+ * Section 4.3
+ *
+ * Modular reduction is slightly more complex. Write the GCM modulus as f(z) =
+ * z^128 +r(z), where r(z) = z^7+z^2+z+ 1. The well known approach is to
+ * consider that z^128 ≡r(z) (mod z^128 +r(z)), allowing us to write the 256-bit
+ * operand to be reduced as a(z) = h(z)z^128 +l(z)≡h(z)r(z) + l(z). That is, we
+ * simply multiply the higher part of the operand by r(z) and add it to l(z). If
+ * the result is still larger than 128 bits, we reduce again.
+ */
+static inline uint8x16_t poly_mult_reduce(uint8x16x3_t input)
+{
+ uint8x16_t const ZERO = vdupq_n_u8(0);
+
+ uint64x2_t r = vreinterpretq_u64_u8(vdupq_n_u8(0x87));
+#if defined(__GNUC__)
+ /* use 'asm' as an optimisation barrier to prevent loading MODULO from
+ * memory. It is for GNUC compatible compilers.
+ */
+ asm volatile ("" : "+w" (r));
+#endif
+ uint8x16_t const MODULO = vreinterpretq_u8_u64(vshrq_n_u64(r, 64 - 8));
+ uint8x16_t h, m, l; /* input high/middle/low 128b */
+ uint8x16_t c, d, e, f, g, n, o;
+ h = input.val[0]; /* h3:h2:00:00 */
+ m = input.val[1]; /* :m2:m1:00 */
+ l = input.val[2]; /* : :l1:l0 */
+ c = pmull_high(h, MODULO); /* :c2:c1:00 = reduction of h3 */
+ d = pmull_low(h, MODULO); /* : :d1:d0 = reduction of h2 */
+ e = veorq_u8(c, m); /* :e2:e1:00 = m2:m1:00 + c2:c1:00 */
+ f = pmull_high(e, MODULO); /* : :f1:f0 = reduction of e2 */
+ g = vextq_u8(ZERO, e, 8); /* : :g1:00 = e1:00 */
+ n = veorq_u8(d, l); /* : :n1:n0 = d1:d0 + l1:l0 */
+ o = veorq_u8(n, f); /* o1:o0 = f1:f0 + n1:n0 */
+ return veorq_u8(o, g); /* = o1:o0 + g1:00 */
+}
+
+/*
+ * GCM multiplication: c = a times b in GF(2^128)
+ */
+void mbedtls_aesce_gcm_mult(unsigned char c[16],
+ const unsigned char a[16],
+ const unsigned char b[16])
+{
+ uint8x16_t va, vb, vc;
+ va = vrbitq_u8(vld1q_u8(&a[0]));
+ vb = vrbitq_u8(vld1q_u8(&b[0]));
+ vc = vrbitq_u8(poly_mult_reduce(poly_mult_128(va, vb)));
+ vst1q_u8(&c[0], vc);
+}
+
+#endif /* MBEDTLS_GCM_C */
+
+#if defined(MBEDTLS_POP_TARGET_PRAGMA)
+#if defined(__clang__)
+#pragma clang attribute pop
+#elif defined(__GNUC__)
+#pragma GCC pop_options
+#endif
+#undef MBEDTLS_POP_TARGET_PRAGMA
+#endif
+
+#endif /* MBEDTLS_AESCE_HAVE_CODE */
+
+#endif /* MBEDTLS_AESCE_C */