aboutsummaryrefslogtreecommitdiff
path: root/3rdparty
diff options
context:
space:
mode:
Diffstat (limited to '3rdparty')
-rw-r--r--3rdparty/CMakeLists.txt2
-rw-r--r--3rdparty/Makefile.inc3
-rw-r--r--3rdparty/everest/.gitignore1
-rw-r--r--3rdparty/everest/CMakeLists.txt43
-rw-r--r--3rdparty/everest/Makefile.inc6
-rw-r--r--3rdparty/everest/README.md5
-rw-r--r--3rdparty/everest/include/everest/Hacl_Curve25519.h21
-rw-r--r--3rdparty/everest/include/everest/everest.h234
-rw-r--r--3rdparty/everest/include/everest/kremlib.h29
-rw-r--r--3rdparty/everest/include/everest/kremlib/FStar_UInt128.h124
-rw-r--r--3rdparty/everest/include/everest/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h280
-rw-r--r--3rdparty/everest/include/everest/kremlin/c_endianness.h204
-rw-r--r--3rdparty/everest/include/everest/kremlin/internal/builtin.h16
-rw-r--r--3rdparty/everest/include/everest/kremlin/internal/callconv.h46
-rw-r--r--3rdparty/everest/include/everest/kremlin/internal/compat.h34
-rw-r--r--3rdparty/everest/include/everest/kremlin/internal/debug.h57
-rw-r--r--3rdparty/everest/include/everest/kremlin/internal/target.h102
-rw-r--r--3rdparty/everest/include/everest/kremlin/internal/types.h61
-rw-r--r--3rdparty/everest/include/everest/kremlin/internal/wasmsupport.h5
-rw-r--r--3rdparty/everest/include/everest/vs2013/Hacl_Curve25519.h21
-rw-r--r--3rdparty/everest/include/everest/vs2013/inttypes.h36
-rw-r--r--3rdparty/everest/include/everest/vs2013/stdbool.h31
-rw-r--r--3rdparty/everest/include/everest/x25519.h190
-rw-r--r--3rdparty/everest/library/Hacl_Curve25519.c760
-rw-r--r--3rdparty/everest/library/Hacl_Curve25519_joined.c50
-rw-r--r--3rdparty/everest/library/everest.c102
-rw-r--r--3rdparty/everest/library/kremlib/FStar_UInt128_extracted.c413
-rw-r--r--3rdparty/everest/library/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.c100
-rw-r--r--3rdparty/everest/library/legacy/Hacl_Curve25519.c805
-rw-r--r--3rdparty/everest/library/x25519.c186
-rw-r--r--3rdparty/p256-m/.gitignore1
-rw-r--r--3rdparty/p256-m/CMakeLists.txt41
-rw-r--r--3rdparty/p256-m/Makefile.inc5
-rw-r--r--3rdparty/p256-m/README.md4
-rw-r--r--3rdparty/p256-m/p256-m/README.md544
-rw-r--r--3rdparty/p256-m/p256-m/p256-m.c1514
-rw-r--r--3rdparty/p256-m/p256-m/p256-m.h135
-rw-r--r--3rdparty/p256-m/p256-m_driver_entrypoints.c312
-rw-r--r--3rdparty/p256-m/p256-m_driver_entrypoints.h219
39 files changed, 0 insertions, 6742 deletions
diff --git a/3rdparty/CMakeLists.txt b/3rdparty/CMakeLists.txt
deleted file mode 100644
index fa149bd..0000000
--- a/3rdparty/CMakeLists.txt
+++ /dev/null
@@ -1,2 +0,0 @@
-add_subdirectory(everest)
-add_subdirectory(p256-m)
diff --git a/3rdparty/Makefile.inc b/3rdparty/Makefile.inc
deleted file mode 100644
index 70f316b..0000000
--- a/3rdparty/Makefile.inc
+++ /dev/null
@@ -1,3 +0,0 @@
-THIRDPARTY_DIR := $(dir $(lastword $(MAKEFILE_LIST)))
-include $(THIRDPARTY_DIR)/everest/Makefile.inc
-include $(THIRDPARTY_DIR)/p256-m/Makefile.inc
diff --git a/3rdparty/everest/.gitignore b/3rdparty/everest/.gitignore
deleted file mode 100644
index f3c7a7c..0000000
--- a/3rdparty/everest/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-Makefile
diff --git a/3rdparty/everest/CMakeLists.txt b/3rdparty/everest/CMakeLists.txt
deleted file mode 100644
index 8c8e8db..0000000
--- a/3rdparty/everest/CMakeLists.txt
+++ /dev/null
@@ -1,43 +0,0 @@
-set(everest_target "${MBEDTLS_TARGET_PREFIX}everest")
-
-add_library(${everest_target}
- library/everest.c
- library/x25519.c
- library/Hacl_Curve25519_joined.c)
-
-target_include_directories(${everest_target}
- PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
- $<BUILD_INTERFACE:${MBEDTLS_DIR}/include>
- $<BUILD_INTERFACE:${MBEDTLS_DIR}/tf-psa-crypto/include>
- $<INSTALL_INTERFACE:include>
- PRIVATE include/everest
- include/everest/kremlib
- ${MBEDTLS_DIR}/library/)
-
-# Pass-through MBEDTLS_CONFIG_FILE and MBEDTLS_USER_CONFIG_FILE
-# This must be duplicated from library/CMakeLists.txt because
-# everest is not directly linked against any mbedtls targets
-# so does not inherit the compile definitions.
-if(MBEDTLS_CONFIG_FILE)
- target_compile_definitions(${everest_target}
- PUBLIC MBEDTLS_CONFIG_FILE="${MBEDTLS_CONFIG_FILE}")
-endif()
-if(MBEDTLS_USER_CONFIG_FILE)
- target_compile_definitions(${everest_target}
- PUBLIC MBEDTLS_USER_CONFIG_FILE="${MBEDTLS_USER_CONFIG_FILE}")
-endif()
-
-if(INSTALL_MBEDTLS_HEADERS)
-
- install(DIRECTORY include/everest
- DESTINATION include
- FILE_PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ
- DIRECTORY_PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE GROUP_READ GROUP_EXECUTE WORLD_READ WORLD_EXECUTE
- FILES_MATCHING PATTERN "*.h")
-
-endif(INSTALL_MBEDTLS_HEADERS)
-
-install(TARGETS ${everest_target}
- EXPORT MbedTLSTargets
- DESTINATION ${CMAKE_INSTALL_LIBDIR}
- PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ)
diff --git a/3rdparty/everest/Makefile.inc b/3rdparty/everest/Makefile.inc
deleted file mode 100644
index 8055ce9..0000000
--- a/3rdparty/everest/Makefile.inc
+++ /dev/null
@@ -1,6 +0,0 @@
-THIRDPARTY_INCLUDES+=-I$(THIRDPARTY_DIR)/everest/include -I$(THIRDPARTY_DIR)/everest/include/everest -I$(THIRDPARTY_DIR)/everest/include/everest/kremlib
-
-THIRDPARTY_CRYPTO_OBJECTS+= \
- $(THIRDPARTY_DIR)/everest/library/everest.o \
- $(THIRDPARTY_DIR)/everest/library/x25519.o \
- $(THIRDPARTY_DIR)/everest/library/Hacl_Curve25519_joined.o
diff --git a/3rdparty/everest/README.md b/3rdparty/everest/README.md
deleted file mode 100644
index bcf12c0..0000000
--- a/3rdparty/everest/README.md
+++ /dev/null
@@ -1,5 +0,0 @@
-The files in this directory stem from [Project Everest](https://project-everest.github.io/) and are distributed under the Apache 2.0 license.
-
-This is a formally verified implementation of Curve25519-based handshakes. The C code is automatically derived from the (verified) [original implementation](https://github.com/project-everest/hacl-star/tree/master/code/curve25519) in the [F* language](https://github.com/fstarlang/fstar) by [KreMLin](https://github.com/fstarlang/kremlin). In addition to the improved safety and security of the implementation, it is also significantly faster than the default implementation of Curve25519 in mbedTLS.
-
-The caveat is that not all platforms are supported, although the version in `everest/library/legacy` should work on most systems. The main issue is that some platforms do not provide a 128-bit integer type and KreMLin therefore has to use additional (also verified) code to simulate them, resulting in less of a performance gain overall. Explicitly supported platforms are currently `x86` and `x86_64` using gcc or clang, and Visual C (2010 and later).
diff --git a/3rdparty/everest/include/everest/Hacl_Curve25519.h b/3rdparty/everest/include/everest/Hacl_Curve25519.h
deleted file mode 100644
index e3f5ba4..0000000
--- a/3rdparty/everest/include/everest/Hacl_Curve25519.h
+++ /dev/null
@@ -1,21 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fbuiltin-uint128 -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-
-#ifndef __Hacl_Curve25519_H
-#define __Hacl_Curve25519_H
-
-
-#include "kremlib.h"
-
-void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint);
-
-#define __Hacl_Curve25519_H_DEFINED
-#endif
diff --git a/3rdparty/everest/include/everest/everest.h b/3rdparty/everest/include/everest/everest.h
deleted file mode 100644
index 392e792..0000000
--- a/3rdparty/everest/include/everest/everest.h
+++ /dev/null
@@ -1,234 +0,0 @@
-/*
- * Interface to code from Project Everest
- *
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org).
- */
-
-#ifndef MBEDTLS_EVEREST_H
-#define MBEDTLS_EVEREST_H
-
-#include "everest/x25519.h"
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/**
- * Defines the source of the imported EC key.
- */
-typedef enum
-{
- MBEDTLS_EVEREST_ECDH_OURS, /**< Our key. */
- MBEDTLS_EVEREST_ECDH_THEIRS, /**< The key of the peer. */
-} mbedtls_everest_ecdh_side;
-
-typedef struct {
- mbedtls_x25519_context ctx;
-} mbedtls_ecdh_context_everest;
-
-
-/**
- * \brief This function sets up the ECDH context with the information
- * given.
- *
- * This function should be called after mbedtls_ecdh_init() but
- * before mbedtls_ecdh_make_params(). There is no need to call
- * this function before mbedtls_ecdh_read_params().
- *
- * This is the first function used by a TLS server for ECDHE
- * ciphersuites.
- *
- * \param ctx The ECDH context to set up.
- * \param grp_id The group id of the group to set up the context for.
- *
- * \return \c 0 on success.
- */
-int mbedtls_everest_setup( mbedtls_ecdh_context_everest *ctx, int grp_id );
-
-/**
- * \brief This function frees a context.
- *
- * \param ctx The context to free.
- */
-void mbedtls_everest_free( mbedtls_ecdh_context_everest *ctx );
-
-/**
- * \brief This function generates a public key and a TLS
- * ServerKeyExchange payload.
- *
- * This is the second function used by a TLS server for ECDHE
- * ciphersuites. (It is called after mbedtls_ecdh_setup().)
- *
- * \note This function assumes that the ECP group (grp) of the
- * \p ctx context has already been properly set,
- * for example, using mbedtls_ecp_group_load().
- *
- * \see ecp.h
- *
- * \param ctx The ECDH context.
- * \param olen The number of characters written.
- * \param buf The destination buffer.
- * \param blen The length of the destination buffer.
- * \param f_rng The RNG function.
- * \param p_rng The RNG context.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_everest_make_params( mbedtls_ecdh_context_everest *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )( void *, unsigned char *, size_t ),
- void *p_rng );
-
-/**
- * \brief This function parses and processes a TLS ServerKeyExchange
- * payload.
- *
- * This is the first function used by a TLS client for ECDHE
- * ciphersuites.
- *
- * \see ecp.h
- *
- * \param ctx The ECDH context.
- * \param buf The pointer to the start of the input buffer.
- * \param end The address for one Byte past the end of the buffer.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- *
- */
-int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
- const unsigned char **buf, const unsigned char *end );
-
-/**
- * \brief This function parses and processes a TLS ServerKeyExchange
- * payload.
- *
- * This is the first function used by a TLS client for ECDHE
- * ciphersuites.
- *
- * \see ecp.h
- *
- * \param ctx The ECDH context.
- * \param buf The pointer to the start of the input buffer.
- * \param end The address for one Byte past the end of the buffer.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- *
- */
-int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
- const unsigned char **buf, const unsigned char *end );
-
-/**
- * \brief This function sets up an ECDH context from an EC key.
- *
- * It is used by clients and servers in place of the
- * ServerKeyEchange for static ECDH, and imports ECDH
- * parameters from the EC key information of a certificate.
- *
- * \see ecp.h
- *
- * \param ctx The ECDH context to set up.
- * \param key The EC key to use.
- * \param side Defines the source of the key: 1: Our key, or
- * 0: The key of the peer.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- *
- */
-int mbedtls_everest_get_params( mbedtls_ecdh_context_everest *ctx, const mbedtls_ecp_keypair *key,
- mbedtls_everest_ecdh_side side );
-
-/**
- * \brief This function generates a public key and a TLS
- * ClientKeyExchange payload.
- *
- * This is the second function used by a TLS client for ECDH(E)
- * ciphersuites.
- *
- * \see ecp.h
- *
- * \param ctx The ECDH context.
- * \param olen The number of Bytes written.
- * \param buf The destination buffer.
- * \param blen The size of the destination buffer.
- * \param f_rng The RNG function.
- * \param p_rng The RNG context.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_everest_make_public( mbedtls_ecdh_context_everest *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )( void *, unsigned char *, size_t ),
- void *p_rng );
-
-/**
- * \brief This function parses and processes a TLS ClientKeyExchange
- * payload.
- *
- * This is the third function used by a TLS server for ECDH(E)
- * ciphersuites. (It is called after mbedtls_ecdh_setup() and
- * mbedtls_ecdh_make_params().)
- *
- * \see ecp.h
- *
- * \param ctx The ECDH context.
- * \param buf The start of the input buffer.
- * \param blen The length of the input buffer.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_everest_read_public( mbedtls_ecdh_context_everest *ctx,
- const unsigned char *buf, size_t blen );
-
-/**
- * \brief This function derives and exports the shared secret.
- *
- * This is the last function used by both TLS client
- * and servers.
- *
- * \note If \p f_rng is not NULL, it is used to implement
- * countermeasures against side-channel attacks.
- * For more information, see mbedtls_ecp_mul().
- *
- * \see ecp.h
- *
- * \param ctx The ECDH context.
- * \param olen The number of Bytes written.
- * \param buf The destination buffer.
- * \param blen The length of the destination buffer.
- * \param f_rng The RNG function.
- * \param p_rng The RNG context.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_everest_calc_secret( mbedtls_ecdh_context_everest *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )( void *, unsigned char *, size_t ),
- void *p_rng );
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* MBEDTLS_EVEREST_H */
diff --git a/3rdparty/everest/include/everest/kremlib.h b/3rdparty/everest/include/everest/kremlib.h
deleted file mode 100644
index f06663f..0000000
--- a/3rdparty/everest/include/everest/kremlib.h
+++ /dev/null
@@ -1,29 +0,0 @@
-/*
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- *
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org) and
- * originated from Project Everest (https://project-everest.github.io/)
- */
-
-#ifndef __KREMLIB_H
-#define __KREMLIB_H
-
-#include "kremlin/internal/target.h"
-#include "kremlin/internal/types.h"
-#include "kremlin/c_endianness.h"
-
-#endif /* __KREMLIB_H */
diff --git a/3rdparty/everest/include/everest/kremlib/FStar_UInt128.h b/3rdparty/everest/include/everest/kremlib/FStar_UInt128.h
deleted file mode 100644
index d71c882..0000000
--- a/3rdparty/everest/include/everest/kremlib/FStar_UInt128.h
+++ /dev/null
@@ -1,124 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir dist/uint128 -skip-compilation -extract-uints -add-include <inttypes.h> -add-include <stdbool.h> -add-include "kremlin/internal/types.h" -bundle FStar.UInt128=* extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-
-#ifndef __FStar_UInt128_H
-#define __FStar_UInt128_H
-
-
-#include <inttypes.h>
-#include <stdbool.h>
-#include "kremlin/internal/types.h"
-
-uint64_t FStar_UInt128___proj__Mkuint128__item__low(FStar_UInt128_uint128 projectee);
-
-uint64_t FStar_UInt128___proj__Mkuint128__item__high(FStar_UInt128_uint128 projectee);
-
-typedef FStar_UInt128_uint128 FStar_UInt128_t;
-
-FStar_UInt128_uint128 FStar_UInt128_add(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128
-FStar_UInt128_add_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_add_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_sub(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128
-FStar_UInt128_sub_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_sub_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_logand(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_logxor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_logor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_lognot(FStar_UInt128_uint128 a);
-
-FStar_UInt128_uint128 FStar_UInt128_shift_left(FStar_UInt128_uint128 a, uint32_t s);
-
-FStar_UInt128_uint128 FStar_UInt128_shift_right(FStar_UInt128_uint128 a, uint32_t s);
-
-bool FStar_UInt128_eq(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-bool FStar_UInt128_gt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-bool FStar_UInt128_lt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-bool FStar_UInt128_gte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-bool FStar_UInt128_lte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_eq_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_gte_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b);
-
-FStar_UInt128_uint128 FStar_UInt128_uint64_to_uint128(uint64_t a);
-
-uint64_t FStar_UInt128_uint128_to_uint64(FStar_UInt128_uint128 a);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Plus_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Plus_Question_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Plus_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Subtraction_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Subtraction_Question_Hat)(
- FStar_UInt128_uint128 x0,
- FStar_UInt128_uint128 x1
-);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Subtraction_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Amp_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Hat_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Bar_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Less_Less_Hat)(FStar_UInt128_uint128 x0, uint32_t x1);
-
-extern FStar_UInt128_uint128
-(*FStar_UInt128_op_Greater_Greater_Hat)(FStar_UInt128_uint128 x0, uint32_t x1);
-
-extern bool (*FStar_UInt128_op_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern bool
-(*FStar_UInt128_op_Greater_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern bool (*FStar_UInt128_op_Less_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern bool
-(*FStar_UInt128_op_Greater_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern bool
-(*FStar_UInt128_op_Less_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-FStar_UInt128_uint128 FStar_UInt128_mul32(uint64_t x, uint32_t y);
-
-FStar_UInt128_uint128 FStar_UInt128_mul_wide(uint64_t x, uint64_t y);
-
-#define __FStar_UInt128_H_DEFINED
-#endif
diff --git a/3rdparty/everest/include/everest/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h b/3rdparty/everest/include/everest/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h
deleted file mode 100644
index 21560c4..0000000
--- a/3rdparty/everest/include/everest/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h
+++ /dev/null
@@ -1,280 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir dist/minimal -skip-compilation -extract-uints -add-include <inttypes.h> -add-include <stdbool.h> -add-include "kremlin/internal/compat.h" -add-include "kremlin/internal/types.h" -bundle FStar.UInt64+FStar.UInt32+FStar.UInt16+FStar.UInt8=* extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-
-#ifndef __FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8_H
-#define __FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8_H
-
-
-#include <inttypes.h>
-#include <stdbool.h>
-#include "kremlin/internal/compat.h"
-#include "kremlin/internal/types.h"
-
-extern Prims_int FStar_UInt64_n;
-
-extern Prims_int FStar_UInt64_v(uint64_t x0);
-
-extern uint64_t FStar_UInt64_uint_to_t(Prims_int x0);
-
-extern uint64_t FStar_UInt64_add(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_add_underspec(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_add_mod(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_sub(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_sub_underspec(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_sub_mod(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_mul(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_mul_underspec(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_mul_mod(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_mul_div(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_div(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_rem(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_logand(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_logxor(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_logor(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_lognot(uint64_t x0);
-
-extern uint64_t FStar_UInt64_shift_right(uint64_t x0, uint32_t x1);
-
-extern uint64_t FStar_UInt64_shift_left(uint64_t x0, uint32_t x1);
-
-extern bool FStar_UInt64_eq(uint64_t x0, uint64_t x1);
-
-extern bool FStar_UInt64_gt(uint64_t x0, uint64_t x1);
-
-extern bool FStar_UInt64_gte(uint64_t x0, uint64_t x1);
-
-extern bool FStar_UInt64_lt(uint64_t x0, uint64_t x1);
-
-extern bool FStar_UInt64_lte(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_minus(uint64_t x0);
-
-extern uint32_t FStar_UInt64_n_minus_one;
-
-uint64_t FStar_UInt64_eq_mask(uint64_t a, uint64_t b);
-
-uint64_t FStar_UInt64_gte_mask(uint64_t a, uint64_t b);
-
-extern Prims_string FStar_UInt64_to_string(uint64_t x0);
-
-extern uint64_t FStar_UInt64_of_string(Prims_string x0);
-
-extern Prims_int FStar_UInt32_n;
-
-extern Prims_int FStar_UInt32_v(uint32_t x0);
-
-extern uint32_t FStar_UInt32_uint_to_t(Prims_int x0);
-
-extern uint32_t FStar_UInt32_add(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_add_underspec(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_add_mod(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_sub(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_sub_underspec(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_sub_mod(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_mul(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_mul_underspec(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_mul_mod(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_mul_div(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_div(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_rem(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_logand(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_logxor(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_logor(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_lognot(uint32_t x0);
-
-extern uint32_t FStar_UInt32_shift_right(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_shift_left(uint32_t x0, uint32_t x1);
-
-extern bool FStar_UInt32_eq(uint32_t x0, uint32_t x1);
-
-extern bool FStar_UInt32_gt(uint32_t x0, uint32_t x1);
-
-extern bool FStar_UInt32_gte(uint32_t x0, uint32_t x1);
-
-extern bool FStar_UInt32_lt(uint32_t x0, uint32_t x1);
-
-extern bool FStar_UInt32_lte(uint32_t x0, uint32_t x1);
-
-extern uint32_t FStar_UInt32_minus(uint32_t x0);
-
-extern uint32_t FStar_UInt32_n_minus_one;
-
-uint32_t FStar_UInt32_eq_mask(uint32_t a, uint32_t b);
-
-uint32_t FStar_UInt32_gte_mask(uint32_t a, uint32_t b);
-
-extern Prims_string FStar_UInt32_to_string(uint32_t x0);
-
-extern uint32_t FStar_UInt32_of_string(Prims_string x0);
-
-extern Prims_int FStar_UInt16_n;
-
-extern Prims_int FStar_UInt16_v(uint16_t x0);
-
-extern uint16_t FStar_UInt16_uint_to_t(Prims_int x0);
-
-extern uint16_t FStar_UInt16_add(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_add_underspec(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_add_mod(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_sub(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_sub_underspec(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_sub_mod(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_mul(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_mul_underspec(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_mul_mod(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_mul_div(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_div(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_rem(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_logand(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_logxor(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_logor(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_lognot(uint16_t x0);
-
-extern uint16_t FStar_UInt16_shift_right(uint16_t x0, uint32_t x1);
-
-extern uint16_t FStar_UInt16_shift_left(uint16_t x0, uint32_t x1);
-
-extern bool FStar_UInt16_eq(uint16_t x0, uint16_t x1);
-
-extern bool FStar_UInt16_gt(uint16_t x0, uint16_t x1);
-
-extern bool FStar_UInt16_gte(uint16_t x0, uint16_t x1);
-
-extern bool FStar_UInt16_lt(uint16_t x0, uint16_t x1);
-
-extern bool FStar_UInt16_lte(uint16_t x0, uint16_t x1);
-
-extern uint16_t FStar_UInt16_minus(uint16_t x0);
-
-extern uint32_t FStar_UInt16_n_minus_one;
-
-uint16_t FStar_UInt16_eq_mask(uint16_t a, uint16_t b);
-
-uint16_t FStar_UInt16_gte_mask(uint16_t a, uint16_t b);
-
-extern Prims_string FStar_UInt16_to_string(uint16_t x0);
-
-extern uint16_t FStar_UInt16_of_string(Prims_string x0);
-
-extern Prims_int FStar_UInt8_n;
-
-extern Prims_int FStar_UInt8_v(uint8_t x0);
-
-extern uint8_t FStar_UInt8_uint_to_t(Prims_int x0);
-
-extern uint8_t FStar_UInt8_add(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_add_underspec(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_add_mod(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_sub(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_sub_underspec(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_sub_mod(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_mul(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_mul_underspec(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_mul_mod(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_mul_div(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_div(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_rem(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_logand(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_logxor(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_logor(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_lognot(uint8_t x0);
-
-extern uint8_t FStar_UInt8_shift_right(uint8_t x0, uint32_t x1);
-
-extern uint8_t FStar_UInt8_shift_left(uint8_t x0, uint32_t x1);
-
-extern bool FStar_UInt8_eq(uint8_t x0, uint8_t x1);
-
-extern bool FStar_UInt8_gt(uint8_t x0, uint8_t x1);
-
-extern bool FStar_UInt8_gte(uint8_t x0, uint8_t x1);
-
-extern bool FStar_UInt8_lt(uint8_t x0, uint8_t x1);
-
-extern bool FStar_UInt8_lte(uint8_t x0, uint8_t x1);
-
-extern uint8_t FStar_UInt8_minus(uint8_t x0);
-
-extern uint32_t FStar_UInt8_n_minus_one;
-
-uint8_t FStar_UInt8_eq_mask(uint8_t a, uint8_t b);
-
-uint8_t FStar_UInt8_gte_mask(uint8_t a, uint8_t b);
-
-extern Prims_string FStar_UInt8_to_string(uint8_t x0);
-
-extern uint8_t FStar_UInt8_of_string(Prims_string x0);
-
-typedef uint8_t FStar_UInt8_byte;
-
-#define __FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8_H_DEFINED
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/c_endianness.h b/3rdparty/everest/include/everest/kremlin/c_endianness.h
deleted file mode 100644
index 5cfde5d..0000000
--- a/3rdparty/everest/include/everest/kremlin/c_endianness.h
+++ /dev/null
@@ -1,204 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-#ifndef __KREMLIN_ENDIAN_H
-#define __KREMLIN_ENDIAN_H
-
-#include <string.h>
-#include <inttypes.h>
-
-/******************************************************************************/
-/* Implementing C.fst (part 2: endian-ness macros) */
-/******************************************************************************/
-
-/* ... for Linux */
-#if defined(__linux__) || defined(__CYGWIN__)
-# include <endian.h>
-
-/* ... for OSX */
-#elif defined(__APPLE__)
-# include <libkern/OSByteOrder.h>
-# define htole64(x) OSSwapHostToLittleInt64(x)
-# define le64toh(x) OSSwapLittleToHostInt64(x)
-# define htobe64(x) OSSwapHostToBigInt64(x)
-# define be64toh(x) OSSwapBigToHostInt64(x)
-
-# define htole16(x) OSSwapHostToLittleInt16(x)
-# define le16toh(x) OSSwapLittleToHostInt16(x)
-# define htobe16(x) OSSwapHostToBigInt16(x)
-# define be16toh(x) OSSwapBigToHostInt16(x)
-
-# define htole32(x) OSSwapHostToLittleInt32(x)
-# define le32toh(x) OSSwapLittleToHostInt32(x)
-# define htobe32(x) OSSwapHostToBigInt32(x)
-# define be32toh(x) OSSwapBigToHostInt32(x)
-
-/* ... for Solaris */
-#elif defined(__sun__)
-# include <sys/byteorder.h>
-# define htole64(x) LE_64(x)
-# define le64toh(x) LE_64(x)
-# define htobe64(x) BE_64(x)
-# define be64toh(x) BE_64(x)
-
-# define htole16(x) LE_16(x)
-# define le16toh(x) LE_16(x)
-# define htobe16(x) BE_16(x)
-# define be16toh(x) BE_16(x)
-
-# define htole32(x) LE_32(x)
-# define le32toh(x) LE_32(x)
-# define htobe32(x) BE_32(x)
-# define be32toh(x) BE_32(x)
-
-/* ... for the BSDs */
-#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__DragonFly__)
-# include <sys/endian.h>
-#elif defined(__OpenBSD__)
-# include <endian.h>
-
-/* ... for Windows (MSVC)... not targeting XBOX 360! */
-#elif defined(_MSC_VER)
-
-# include <stdlib.h>
-# define htobe16(x) _byteswap_ushort(x)
-# define htole16(x) (x)
-# define be16toh(x) _byteswap_ushort(x)
-# define le16toh(x) (x)
-
-# define htobe32(x) _byteswap_ulong(x)
-# define htole32(x) (x)
-# define be32toh(x) _byteswap_ulong(x)
-# define le32toh(x) (x)
-
-# define htobe64(x) _byteswap_uint64(x)
-# define htole64(x) (x)
-# define be64toh(x) _byteswap_uint64(x)
-# define le64toh(x) (x)
-
-/* ... for Windows (GCC-like, e.g. mingw or clang) */
-#elif (defined(_WIN32) || defined(_WIN64)) && \
- (defined(__GNUC__) || defined(__clang__))
-
-# define htobe16(x) __builtin_bswap16(x)
-# define htole16(x) (x)
-# define be16toh(x) __builtin_bswap16(x)
-# define le16toh(x) (x)
-
-# define htobe32(x) __builtin_bswap32(x)
-# define htole32(x) (x)
-# define be32toh(x) __builtin_bswap32(x)
-# define le32toh(x) (x)
-
-# define htobe64(x) __builtin_bswap64(x)
-# define htole64(x) (x)
-# define be64toh(x) __builtin_bswap64(x)
-# define le64toh(x) (x)
-
-/* ... generic big-endian fallback code */
-#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
-
-/* byte swapping code inspired by:
- * https://github.com/rweather/arduinolibs/blob/master/libraries/Crypto/utility/EndianUtil.h
- * */
-
-# define htobe32(x) (x)
-# define be32toh(x) (x)
-# define htole32(x) \
- (__extension__({ \
- uint32_t _temp = (x); \
- ((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) | \
- ((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000); \
- }))
-# define le32toh(x) (htole32((x)))
-
-# define htobe64(x) (x)
-# define be64toh(x) (x)
-# define htole64(x) \
- (__extension__({ \
- uint64_t __temp = (x); \
- uint32_t __low = htobe32((uint32_t)__temp); \
- uint32_t __high = htobe32((uint32_t)(__temp >> 32)); \
- (((uint64_t)__low) << 32) | __high; \
- }))
-# define le64toh(x) (htole64((x)))
-
-/* ... generic little-endian fallback code */
-#elif defined(__BYTE_ORDER__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
-
-# define htole32(x) (x)
-# define le32toh(x) (x)
-# define htobe32(x) \
- (__extension__({ \
- uint32_t _temp = (x); \
- ((_temp >> 24) & 0x000000FF) | ((_temp >> 8) & 0x0000FF00) | \
- ((_temp << 8) & 0x00FF0000) | ((_temp << 24) & 0xFF000000); \
- }))
-# define be32toh(x) (htobe32((x)))
-
-# define htole64(x) (x)
-# define le64toh(x) (x)
-# define htobe64(x) \
- (__extension__({ \
- uint64_t __temp = (x); \
- uint32_t __low = htobe32((uint32_t)__temp); \
- uint32_t __high = htobe32((uint32_t)(__temp >> 32)); \
- (((uint64_t)__low) << 32) | __high; \
- }))
-# define be64toh(x) (htobe64((x)))
-
-/* ... couldn't determine endian-ness of the target platform */
-#else
-# error "Please define __BYTE_ORDER__!"
-
-#endif /* defined(__linux__) || ... */
-
-/* Loads and stores. These avoid undefined behavior due to unaligned memory
- * accesses, via memcpy. */
-
-inline static uint16_t load16(uint8_t *b) {
- uint16_t x;
- memcpy(&x, b, 2);
- return x;
-}
-
-inline static uint32_t load32(uint8_t *b) {
- uint32_t x;
- memcpy(&x, b, 4);
- return x;
-}
-
-inline static uint64_t load64(uint8_t *b) {
- uint64_t x;
- memcpy(&x, b, 8);
- return x;
-}
-
-inline static void store16(uint8_t *b, uint16_t i) {
- memcpy(b, &i, 2);
-}
-
-inline static void store32(uint8_t *b, uint32_t i) {
- memcpy(b, &i, 4);
-}
-
-inline static void store64(uint8_t *b, uint64_t i) {
- memcpy(b, &i, 8);
-}
-
-#define load16_le(b) (le16toh(load16(b)))
-#define store16_le(b, i) (store16(b, htole16(i)))
-#define load16_be(b) (be16toh(load16(b)))
-#define store16_be(b, i) (store16(b, htobe16(i)))
-
-#define load32_le(b) (le32toh(load32(b)))
-#define store32_le(b, i) (store32(b, htole32(i)))
-#define load32_be(b) (be32toh(load32(b)))
-#define store32_be(b, i) (store32(b, htobe32(i)))
-
-#define load64_le(b) (le64toh(load64(b)))
-#define store64_le(b, i) (store64(b, htole64(i)))
-#define load64_be(b) (be64toh(load64(b)))
-#define store64_be(b, i) (store64(b, htobe64(i)))
-
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/internal/builtin.h b/3rdparty/everest/include/everest/kremlin/internal/builtin.h
deleted file mode 100644
index 219b266..0000000
--- a/3rdparty/everest/include/everest/kremlin/internal/builtin.h
+++ /dev/null
@@ -1,16 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-#ifndef __KREMLIN_BUILTIN_H
-#define __KREMLIN_BUILTIN_H
-
-/* For alloca, when using KreMLin's -falloca */
-#if (defined(_WIN32) || defined(_WIN64))
-# include <malloc.h>
-#endif
-
-/* If some globals need to be initialized before the main, then kremlin will
- * generate and try to link last a function with this type: */
-void kremlinit_globals(void);
-
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/internal/callconv.h b/3rdparty/everest/include/everest/kremlin/internal/callconv.h
deleted file mode 100644
index bf631ff..0000000
--- a/3rdparty/everest/include/everest/kremlin/internal/callconv.h
+++ /dev/null
@@ -1,46 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-#ifndef __KREMLIN_CALLCONV_H
-#define __KREMLIN_CALLCONV_H
-
-/******************************************************************************/
-/* Some macros to ease compatibility */
-/******************************************************************************/
-
-/* We want to generate __cdecl safely without worrying about it being undefined.
- * When using MSVC, these are always defined. When using MinGW, these are
- * defined too. They have no meaning for other platforms, so we define them to
- * be empty macros in other situations. */
-#ifndef _MSC_VER
-#ifndef __cdecl
-#define __cdecl
-#endif
-#ifndef __stdcall
-#define __stdcall
-#endif
-#ifndef __fastcall
-#define __fastcall
-#endif
-#endif
-
-/* Since KreMLin emits the inline keyword unconditionally, we follow the
- * guidelines at https://gcc.gnu.org/onlinedocs/gcc/Inline.html and make this
- * __inline__ to ensure the code compiles with -std=c90 and earlier. */
-#ifdef __GNUC__
-# define inline __inline__
-#endif
-
-/* GCC-specific attribute syntax; everyone else gets the standard C inline
- * attribute. */
-#ifdef __GNU_C__
-# ifndef __clang__
-# define force_inline inline __attribute__((always_inline))
-# else
-# define force_inline inline
-# endif
-#else
-# define force_inline inline
-#endif
-
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/internal/compat.h b/3rdparty/everest/include/everest/kremlin/internal/compat.h
deleted file mode 100644
index a5b8889..0000000
--- a/3rdparty/everest/include/everest/kremlin/internal/compat.h
+++ /dev/null
@@ -1,34 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-#ifndef KRML_COMPAT_H
-#define KRML_COMPAT_H
-
-#include <inttypes.h>
-
-/* A series of macros that define C implementations of types that are not Low*,
- * to facilitate porting programs to Low*. */
-
-typedef const char *Prims_string;
-
-typedef struct {
- uint32_t length;
- const char *data;
-} FStar_Bytes_bytes;
-
-typedef int32_t Prims_pos, Prims_nat, Prims_nonzero, Prims_int,
- krml_checked_int_t;
-
-#define RETURN_OR(x) \
- do { \
- int64_t __ret = x; \
- if (__ret < INT32_MIN || INT32_MAX < __ret) { \
- KRML_HOST_PRINTF( \
- "Prims.{int,nat,pos} integer overflow at %s:%d\n", __FILE__, \
- __LINE__); \
- KRML_HOST_EXIT(252); \
- } \
- return (int32_t)__ret; \
- } while (0)
-
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/internal/debug.h b/3rdparty/everest/include/everest/kremlin/internal/debug.h
deleted file mode 100644
index 44ac22c..0000000
--- a/3rdparty/everest/include/everest/kremlin/internal/debug.h
+++ /dev/null
@@ -1,57 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-#ifndef __KREMLIN_DEBUG_H
-#define __KREMLIN_DEBUG_H
-
-#include <inttypes.h>
-
-#include "kremlin/internal/target.h"
-
-/******************************************************************************/
-/* Debugging helpers - intended only for KreMLin developers */
-/******************************************************************************/
-
-/* In support of "-wasm -d force-c": we might need this function to be
- * forward-declared, because the dependency on WasmSupport appears very late,
- * after SimplifyWasm, and sadly, after the topological order has been done. */
-void WasmSupport_check_buffer_size(uint32_t s);
-
-/* A series of GCC atrocities to trace function calls (kremlin's [-d c-calls]
- * option). Useful when trying to debug, say, Wasm, to compare traces. */
-/* clang-format off */
-#ifdef __GNUC__
-#define KRML_FORMAT(X) _Generic((X), \
- uint8_t : "0x%08" PRIx8, \
- uint16_t: "0x%08" PRIx16, \
- uint32_t: "0x%08" PRIx32, \
- uint64_t: "0x%08" PRIx64, \
- int8_t : "0x%08" PRIx8, \
- int16_t : "0x%08" PRIx16, \
- int32_t : "0x%08" PRIx32, \
- int64_t : "0x%08" PRIx64, \
- default : "%s")
-
-#define KRML_FORMAT_ARG(X) _Generic((X), \
- uint8_t : X, \
- uint16_t: X, \
- uint32_t: X, \
- uint64_t: X, \
- int8_t : X, \
- int16_t : X, \
- int32_t : X, \
- int64_t : X, \
- default : "unknown")
-/* clang-format on */
-
-# define KRML_DEBUG_RETURN(X) \
- ({ \
- __auto_type _ret = (X); \
- KRML_HOST_PRINTF("returning: "); \
- KRML_HOST_PRINTF(KRML_FORMAT(_ret), KRML_FORMAT_ARG(_ret)); \
- KRML_HOST_PRINTF(" \n"); \
- _ret; \
- })
-#endif
-
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/internal/target.h b/3rdparty/everest/include/everest/kremlin/internal/target.h
deleted file mode 100644
index b552f52..0000000
--- a/3rdparty/everest/include/everest/kremlin/internal/target.h
+++ /dev/null
@@ -1,102 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-#ifndef __KREMLIN_TARGET_H
-#define __KREMLIN_TARGET_H
-
-#include <stdlib.h>
-#include <stdio.h>
-#include <stdbool.h>
-#include <inttypes.h>
-#include <limits.h>
-
-#include "kremlin/internal/callconv.h"
-
-/******************************************************************************/
-/* Macros that KreMLin will generate. */
-/******************************************************************************/
-
-/* For "bare" targets that do not have a C stdlib, the user might want to use
- * [-add-early-include '"mydefinitions.h"'] and override these. */
-#ifndef KRML_HOST_PRINTF
-# define KRML_HOST_PRINTF printf
-#endif
-
-#if ( \
- (defined __STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) && \
- (!(defined KRML_HOST_EPRINTF)))
-# define KRML_HOST_EPRINTF(...) fprintf(stderr, __VA_ARGS__)
-#endif
-
-#ifndef KRML_HOST_EXIT
-# define KRML_HOST_EXIT exit
-#endif
-
-#ifndef KRML_HOST_MALLOC
-# define KRML_HOST_MALLOC malloc
-#endif
-
-#ifndef KRML_HOST_CALLOC
-# define KRML_HOST_CALLOC calloc
-#endif
-
-#ifndef KRML_HOST_FREE
-# define KRML_HOST_FREE free
-#endif
-
-#ifndef KRML_HOST_TIME
-
-# include <time.h>
-
-/* Prims_nat not yet in scope */
-inline static int32_t krml_time() {
- return (int32_t)time(NULL);
-}
-
-# define KRML_HOST_TIME krml_time
-#endif
-
-/* In statement position, exiting is easy. */
-#define KRML_EXIT \
- do { \
- KRML_HOST_PRINTF("Unimplemented function at %s:%d\n", __FILE__, __LINE__); \
- KRML_HOST_EXIT(254); \
- } while (0)
-
-/* In expression position, use the comma-operator and a malloc to return an
- * expression of the right size. KreMLin passes t as the parameter to the macro.
- */
-#define KRML_EABORT(t, msg) \
- (KRML_HOST_PRINTF("KreMLin abort at %s:%d\n%s\n", __FILE__, __LINE__, msg), \
- KRML_HOST_EXIT(255), *((t *)KRML_HOST_MALLOC(sizeof(t))))
-
-/* In FStar.Buffer.fst, the size of arrays is uint32_t, but it's a number of
- * *elements*. Do an ugly, run-time check (some of which KreMLin can eliminate).
- */
-
-#ifdef __GNUC__
-# define _KRML_CHECK_SIZE_PRAGMA \
- _Pragma("GCC diagnostic ignored \"-Wtype-limits\"")
-#else
-# define _KRML_CHECK_SIZE_PRAGMA
-#endif
-
-#define KRML_CHECK_SIZE(size_elt, sz) \
- do { \
- _KRML_CHECK_SIZE_PRAGMA \
- if (((size_t)(sz)) > ((size_t)(SIZE_MAX / (size_elt)))) { \
- KRML_HOST_PRINTF( \
- "Maximum allocatable size exceeded, aborting before overflow at " \
- "%s:%d\n", \
- __FILE__, __LINE__); \
- KRML_HOST_EXIT(253); \
- } \
- } while (0)
-
-#if defined(_MSC_VER) && _MSC_VER < 1900
-# define KRML_HOST_SNPRINTF(buf, sz, fmt, arg) _snprintf_s(buf, sz, _TRUNCATE, fmt, arg)
-#else
-# define KRML_HOST_SNPRINTF(buf, sz, fmt, arg) snprintf(buf, sz, fmt, arg)
-#endif
-
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/internal/types.h b/3rdparty/everest/include/everest/kremlin/internal/types.h
deleted file mode 100644
index b936f00..0000000
--- a/3rdparty/everest/include/everest/kremlin/internal/types.h
+++ /dev/null
@@ -1,61 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-#ifndef KRML_TYPES_H
-#define KRML_TYPES_H
-
-#include <inttypes.h>
-#include <stdio.h>
-#include <stdlib.h>
-
-/* Types which are either abstract, meaning that have to be implemented in C, or
- * which are models, meaning that they are swapped out at compile-time for
- * hand-written C types (in which case they're marked as noextract). */
-
-typedef uint64_t FStar_UInt64_t, FStar_UInt64_t_;
-typedef int64_t FStar_Int64_t, FStar_Int64_t_;
-typedef uint32_t FStar_UInt32_t, FStar_UInt32_t_;
-typedef int32_t FStar_Int32_t, FStar_Int32_t_;
-typedef uint16_t FStar_UInt16_t, FStar_UInt16_t_;
-typedef int16_t FStar_Int16_t, FStar_Int16_t_;
-typedef uint8_t FStar_UInt8_t, FStar_UInt8_t_;
-typedef int8_t FStar_Int8_t, FStar_Int8_t_;
-
-/* Only useful when building Kremlib, because it's in the dependency graph of
- * FStar.Int.Cast. */
-typedef uint64_t FStar_UInt63_t, FStar_UInt63_t_;
-typedef int64_t FStar_Int63_t, FStar_Int63_t_;
-
-typedef double FStar_Float_float;
-typedef uint32_t FStar_Char_char;
-typedef FILE *FStar_IO_fd_read, *FStar_IO_fd_write;
-
-typedef void *FStar_Dyn_dyn;
-
-typedef const char *C_String_t, *C_String_t_;
-
-typedef int exit_code;
-typedef FILE *channel;
-
-typedef unsigned long long TestLib_cycles;
-
-typedef uint64_t FStar_Date_dateTime, FStar_Date_timeSpan;
-
-/* The uint128 type is a special case since we offer several implementations of
- * it, depending on the compiler and whether the user wants the verified
- * implementation or not. */
-#if !defined(KRML_VERIFIED_UINT128) && defined(_MSC_VER) && defined(_M_X64)
-# include <emmintrin.h>
-typedef __m128i FStar_UInt128_uint128;
-#elif !defined(KRML_VERIFIED_UINT128) && !defined(_MSC_VER)
-typedef unsigned __int128 FStar_UInt128_uint128;
-#else
-typedef struct FStar_UInt128_uint128_s {
- uint64_t low;
- uint64_t high;
-} FStar_UInt128_uint128;
-#endif
-
-typedef FStar_UInt128_uint128 FStar_UInt128_t, FStar_UInt128_t_, uint128_t;
-
-#endif
diff --git a/3rdparty/everest/include/everest/kremlin/internal/wasmsupport.h b/3rdparty/everest/include/everest/kremlin/internal/wasmsupport.h
deleted file mode 100644
index b44fa3f..0000000
--- a/3rdparty/everest/include/everest/kremlin/internal/wasmsupport.h
+++ /dev/null
@@ -1,5 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file is automatically included when compiling with -wasm -d force-c */
-#define WasmSupport_check_buffer_size(X)
diff --git a/3rdparty/everest/include/everest/vs2013/Hacl_Curve25519.h b/3rdparty/everest/include/everest/vs2013/Hacl_Curve25519.h
deleted file mode 100644
index 27ebe07..0000000
--- a/3rdparty/everest/include/everest/vs2013/Hacl_Curve25519.h
+++ /dev/null
@@ -1,21 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-
-#ifndef __Hacl_Curve25519_H
-#define __Hacl_Curve25519_H
-
-
-#include "kremlib.h"
-
-void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint);
-
-#define __Hacl_Curve25519_H_DEFINED
-#endif
diff --git a/3rdparty/everest/include/everest/vs2013/inttypes.h b/3rdparty/everest/include/everest/vs2013/inttypes.h
deleted file mode 100644
index 77003be..0000000
--- a/3rdparty/everest/include/everest/vs2013/inttypes.h
+++ /dev/null
@@ -1,36 +0,0 @@
-/*
- * Custom inttypes.h for VS2010 KreMLin requires these definitions,
- * but VS2010 doesn't provide them.
- *
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org)
- */
-
-#ifndef _INTTYPES_H_VS2010
-#define _INTTYPES_H_VS2010
-
-#include <stdint.h>
-
-#ifdef _MSC_VER
-#define inline __inline
-#endif
-
-/* VS2010 unsigned long == 8 bytes */
-
-#define PRIu64 "I64u"
-
-#endif
diff --git a/3rdparty/everest/include/everest/vs2013/stdbool.h b/3rdparty/everest/include/everest/vs2013/stdbool.h
deleted file mode 100644
index dcae6d8..0000000
--- a/3rdparty/everest/include/everest/vs2013/stdbool.h
+++ /dev/null
@@ -1,31 +0,0 @@
-/*
- * Custom stdbool.h for VS2010 KreMLin requires these definitions,
- * but VS2010 doesn't provide them.
- *
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org)
- */
-
-#ifndef _STDBOOL_H_VS2010
-#define _STDBOOL_H_VS2010
-
-typedef int bool;
-
-static bool true = 1;
-static bool false = 0;
-
-#endif
diff --git a/3rdparty/everest/include/everest/x25519.h b/3rdparty/everest/include/everest/x25519.h
deleted file mode 100644
index ef314d2..0000000
--- a/3rdparty/everest/include/everest/x25519.h
+++ /dev/null
@@ -1,190 +0,0 @@
-/*
- * ECDH with curve-optimized implementation multiplexing
- *
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org)
- */
-
-#ifndef MBEDTLS_X25519_H
-#define MBEDTLS_X25519_H
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-#define MBEDTLS_ECP_TLS_CURVE25519 0x1d
-#define MBEDTLS_X25519_KEY_SIZE_BYTES 32
-
-/**
- * Defines the source of the imported EC key.
- */
-typedef enum
-{
- MBEDTLS_X25519_ECDH_OURS, /**< Our key. */
- MBEDTLS_X25519_ECDH_THEIRS, /**< The key of the peer. */
-} mbedtls_x25519_ecdh_side;
-
-/**
- * \brief The x25519 context structure.
- */
-typedef struct
-{
- unsigned char our_secret[MBEDTLS_X25519_KEY_SIZE_BYTES];
- unsigned char peer_point[MBEDTLS_X25519_KEY_SIZE_BYTES];
-} mbedtls_x25519_context;
-
-/**
- * \brief This function initializes an x25519 context.
- *
- * \param ctx The x25519 context to initialize.
- */
-void mbedtls_x25519_init( mbedtls_x25519_context *ctx );
-
-/**
- * \brief This function frees a context.
- *
- * \param ctx The context to free.
- */
-void mbedtls_x25519_free( mbedtls_x25519_context *ctx );
-
-/**
- * \brief This function generates a public key and a TLS
- * ServerKeyExchange payload.
- *
- * This is the first function used by a TLS server for x25519.
- *
- *
- * \param ctx The x25519 context.
- * \param olen The number of characters written.
- * \param buf The destination buffer.
- * \param blen The length of the destination buffer.
- * \param f_rng The RNG function.
- * \param p_rng The RNG context.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_x25519_make_params( mbedtls_x25519_context *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )(void *, unsigned char *, size_t),
- void *p_rng );
-
-/**
- * \brief This function parses and processes a TLS ServerKeyExchange
- * payload.
- *
- *
- * \param ctx The x25519 context.
- * \param buf The pointer to the start of the input buffer.
- * \param end The address for one Byte past the end of the buffer.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- *
- */
-int mbedtls_x25519_read_params( mbedtls_x25519_context *ctx,
- const unsigned char **buf, const unsigned char *end );
-
-/**
- * \brief This function sets up an x25519 context from an EC key.
- *
- * It is used by clients and servers in place of the
- * ServerKeyEchange for static ECDH, and imports ECDH
- * parameters from the EC key information of a certificate.
- *
- * \see ecp.h
- *
- * \param ctx The x25519 context to set up.
- * \param key The EC key to use.
- * \param side Defines the source of the key: 1: Our key, or
- * 0: The key of the peer.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- *
- */
-int mbedtls_x25519_get_params( mbedtls_x25519_context *ctx, const mbedtls_ecp_keypair *key,
- mbedtls_x25519_ecdh_side side );
-
-/**
- * \brief This function derives and exports the shared secret.
- *
- * This is the last function used by both TLS client
- * and servers.
- *
- *
- * \param ctx The x25519 context.
- * \param olen The number of Bytes written.
- * \param buf The destination buffer.
- * \param blen The length of the destination buffer.
- * \param f_rng The RNG function.
- * \param p_rng The RNG context.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_x25519_calc_secret( mbedtls_x25519_context *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )(void *, unsigned char *, size_t),
- void *p_rng );
-
-/**
- * \brief This function generates a public key and a TLS
- * ClientKeyExchange payload.
- *
- * This is the second function used by a TLS client for x25519.
- *
- * \see ecp.h
- *
- * \param ctx The x25519 context.
- * \param olen The number of Bytes written.
- * \param buf The destination buffer.
- * \param blen The size of the destination buffer.
- * \param f_rng The RNG function.
- * \param p_rng The RNG context.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_x25519_make_public( mbedtls_x25519_context *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )(void *, unsigned char *, size_t),
- void *p_rng );
-
-/**
- * \brief This function parses and processes a TLS ClientKeyExchange
- * payload.
- *
- * This is the second function used by a TLS server for x25519.
- *
- * \see ecp.h
- *
- * \param ctx The x25519 context.
- * \param buf The start of the input buffer.
- * \param blen The length of the input buffer.
- *
- * \return \c 0 on success.
- * \return An \c MBEDTLS_ERR_ECP_XXX error code on failure.
- */
-int mbedtls_x25519_read_public( mbedtls_x25519_context *ctx,
- const unsigned char *buf, size_t blen );
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* x25519.h */
diff --git a/3rdparty/everest/library/Hacl_Curve25519.c b/3rdparty/everest/library/Hacl_Curve25519.c
deleted file mode 100644
index 450b9f8..0000000
--- a/3rdparty/everest/library/Hacl_Curve25519.c
+++ /dev/null
@@ -1,760 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fbuiltin-uint128 -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-#include "Hacl_Curve25519.h"
-
-extern uint64_t FStar_UInt64_eq_mask(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_gte_mask(uint64_t x0, uint64_t x1);
-
-extern uint128_t FStar_UInt128_add(uint128_t x0, uint128_t x1);
-
-extern uint128_t FStar_UInt128_add_mod(uint128_t x0, uint128_t x1);
-
-extern uint128_t FStar_UInt128_logand(uint128_t x0, uint128_t x1);
-
-extern uint128_t FStar_UInt128_shift_right(uint128_t x0, uint32_t x1);
-
-extern uint128_t FStar_UInt128_uint64_to_uint128(uint64_t x0);
-
-extern uint64_t FStar_UInt128_uint128_to_uint64(uint128_t x0);
-
-extern uint128_t FStar_UInt128_mul_wide(uint64_t x0, uint64_t x1);
-
-static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
-{
- uint64_t b4 = b[4U];
- uint64_t b0 = b[0U];
- uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
- uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
- b[4U] = b4_;
- b[0U] = b0_;
-}
-
-inline static void Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, uint128_t *input)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint128_t xi = input[i];
- output[i] = (uint64_t)xi;
- }
-}
-
-inline static void
-Hacl_Bignum_Fproduct_sum_scalar_multiplication_(uint128_t *output, uint64_t *input, uint64_t s)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint128_t xi = output[i];
- uint64_t yi = input[i];
- output[i] = xi + (uint128_t)yi * s;
- }
-}
-
-inline static void Hacl_Bignum_Fproduct_carry_wide_(uint128_t *tmp)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
- {
- uint32_t ctr = i;
- uint128_t tctr = tmp[ctr];
- uint128_t tctrp1 = tmp[ctr + (uint32_t)1U];
- uint64_t r0 = (uint64_t)tctr & (uint64_t)0x7ffffffffffffU;
- uint128_t c = tctr >> (uint32_t)51U;
- tmp[ctr] = (uint128_t)r0;
- tmp[ctr + (uint32_t)1U] = tctrp1 + c;
- }
-}
-
-inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
-{
- uint64_t tmp = output[4U];
- uint64_t b0;
- {
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
- {
- uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
- uint64_t z = output[ctr - (uint32_t)1U];
- output[ctr] = z;
- }
- }
- output[0U] = tmp;
- b0 = output[0U];
- output[0U] = (uint64_t)19U * b0;
-}
-
-static void
-Hacl_Bignum_Fmul_mul_shift_reduce_(uint128_t *output, uint64_t *input, uint64_t *input2)
-{
- uint32_t i;
- uint64_t input2i;
- {
- uint32_t i0;
- for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
- {
- uint64_t input2i0 = input2[i0];
- Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
- Hacl_Bignum_Fmul_shift_reduce(input);
- }
- }
- i = (uint32_t)4U;
- input2i = input2[i];
- Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
-}
-
-inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
-{
- uint64_t tmp[5U] = { 0U };
- memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
- KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
- {
- uint128_t t[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- t[_i] = (uint128_t)(uint64_t)0U;
- }
- {
- uint128_t b4;
- uint128_t b0;
- uint128_t b4_;
- uint128_t b0_;
- uint64_t i0;
- uint64_t i1;
- uint64_t i0_;
- uint64_t i1_;
- Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
- Hacl_Bignum_Fproduct_carry_wide_(t);
- b4 = t[4U];
- b0 = t[0U];
- b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
- b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
- t[4U] = b4_;
- t[0U] = b0_;
- Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
- i0 = output[0U];
- i1 = output[1U];
- i0_ = i0 & (uint64_t)0x7ffffffffffffU;
- i1_ = i1 + (i0 >> (uint32_t)51U);
- output[0U] = i0_;
- output[1U] = i1_;
- }
- }
-}
-
-inline static void Hacl_Bignum_Fsquare_fsquare__(uint128_t *tmp, uint64_t *output)
-{
- uint64_t r0 = output[0U];
- uint64_t r1 = output[1U];
- uint64_t r2 = output[2U];
- uint64_t r3 = output[3U];
- uint64_t r4 = output[4U];
- uint64_t d0 = r0 * (uint64_t)2U;
- uint64_t d1 = r1 * (uint64_t)2U;
- uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
- uint64_t d419 = r4 * (uint64_t)19U;
- uint64_t d4 = d419 * (uint64_t)2U;
- uint128_t s0 = (uint128_t)r0 * r0 + (uint128_t)d4 * r1 + (uint128_t)d2 * r3;
- uint128_t s1 = (uint128_t)d0 * r1 + (uint128_t)d4 * r2 + (uint128_t)(r3 * (uint64_t)19U) * r3;
- uint128_t s2 = (uint128_t)d0 * r2 + (uint128_t)r1 * r1 + (uint128_t)d4 * r3;
- uint128_t s3 = (uint128_t)d0 * r3 + (uint128_t)d1 * r2 + (uint128_t)r4 * d419;
- uint128_t s4 = (uint128_t)d0 * r4 + (uint128_t)d1 * r3 + (uint128_t)r2 * r2;
- tmp[0U] = s0;
- tmp[1U] = s1;
- tmp[2U] = s2;
- tmp[3U] = s3;
- tmp[4U] = s4;
-}
-
-inline static void Hacl_Bignum_Fsquare_fsquare_(uint128_t *tmp, uint64_t *output)
-{
- uint128_t b4;
- uint128_t b0;
- uint128_t b4_;
- uint128_t b0_;
- uint64_t i0;
- uint64_t i1;
- uint64_t i0_;
- uint64_t i1_;
- Hacl_Bignum_Fsquare_fsquare__(tmp, output);
- Hacl_Bignum_Fproduct_carry_wide_(tmp);
- b4 = tmp[4U];
- b0 = tmp[0U];
- b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
- b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
- tmp[4U] = b4_;
- tmp[0U] = b0_;
- Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
- i0 = output[0U];
- i1 = output[1U];
- i0_ = i0 & (uint64_t)0x7ffffffffffffU;
- i1_ = i1 + (i0 >> (uint32_t)51U);
- output[0U] = i0_;
- output[1U] = i1_;
-}
-
-static void
-Hacl_Bignum_Fsquare_fsquare_times_(uint64_t *input, uint128_t *tmp, uint32_t count1)
-{
- uint32_t i;
- Hacl_Bignum_Fsquare_fsquare_(tmp, input);
- for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
- Hacl_Bignum_Fsquare_fsquare_(tmp, input);
-}
-
-inline static void
-Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
-{
- KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
- {
- uint128_t t[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- t[_i] = (uint128_t)(uint64_t)0U;
- }
- memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
- Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
- }
-}
-
-inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
-{
- KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
- {
- uint128_t t[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- t[_i] = (uint128_t)(uint64_t)0U;
- }
- Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
- }
-}
-
-inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
-{
- uint64_t buf[20U] = { 0U };
- uint64_t *a0 = buf;
- uint64_t *t00 = buf + (uint32_t)5U;
- uint64_t *b0 = buf + (uint32_t)10U;
- uint64_t *t01;
- uint64_t *b1;
- uint64_t *c0;
- uint64_t *a;
- uint64_t *t0;
- uint64_t *b;
- uint64_t *c;
- Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
- Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
- Hacl_Bignum_Fmul_fmul(b0, t00, z);
- Hacl_Bignum_Fmul_fmul(a0, b0, a0);
- Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
- Hacl_Bignum_Fmul_fmul(b0, t00, b0);
- Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
- t01 = buf + (uint32_t)5U;
- b1 = buf + (uint32_t)10U;
- c0 = buf + (uint32_t)15U;
- Hacl_Bignum_Fmul_fmul(b1, t01, b1);
- Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
- Hacl_Bignum_Fmul_fmul(c0, t01, b1);
- Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
- Hacl_Bignum_Fmul_fmul(t01, t01, c0);
- Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
- Hacl_Bignum_Fmul_fmul(b1, t01, b1);
- Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
- a = buf;
- t0 = buf + (uint32_t)5U;
- b = buf + (uint32_t)10U;
- c = buf + (uint32_t)15U;
- Hacl_Bignum_Fmul_fmul(c, t0, b);
- Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
- Hacl_Bignum_Fmul_fmul(t0, t0, c);
- Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
- Hacl_Bignum_Fmul_fmul(t0, t0, b);
- Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
- Hacl_Bignum_Fmul_fmul(out, t0, a);
-}
-
-inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint64_t xi = a[i];
- uint64_t yi = b[i];
- a[i] = xi + yi;
- }
-}
-
-inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
-{
- uint64_t tmp[5U] = { 0U };
- uint64_t b0;
- uint64_t b1;
- uint64_t b2;
- uint64_t b3;
- uint64_t b4;
- memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
- b0 = tmp[0U];
- b1 = tmp[1U];
- b2 = tmp[2U];
- b3 = tmp[3U];
- b4 = tmp[4U];
- tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
- tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
- tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
- tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
- tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
- {
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint64_t xi = a[i];
- uint64_t yi = tmp[i];
- a[i] = yi - xi;
- }
- }
-}
-
-inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
-{
- KRML_CHECK_SIZE(sizeof (uint128_t), (uint32_t)5U);
- {
- uint128_t tmp[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- tmp[_i] = (uint128_t)(uint64_t)0U;
- }
- {
- uint128_t b4;
- uint128_t b0;
- uint128_t b4_;
- uint128_t b0_;
- {
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint64_t xi = b[i];
- tmp[i] = (uint128_t)xi * s;
- }
- }
- Hacl_Bignum_Fproduct_carry_wide_(tmp);
- b4 = tmp[4U];
- b0 = tmp[0U];
- b4_ = b4 & (uint128_t)(uint64_t)0x7ffffffffffffU;
- b0_ = b0 + (uint128_t)(uint64_t)19U * (uint64_t)(b4 >> (uint32_t)51U);
- tmp[4U] = b4_;
- tmp[0U] = b0_;
- Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
- }
- }
-}
-
-inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
-{
- Hacl_Bignum_Fmul_fmul(output, a, b);
-}
-
-inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
-{
- Hacl_Bignum_Crecip_crecip(output, input);
-}
-
-static void
-Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
-{
- uint32_t i = ctr - (uint32_t)1U;
- uint64_t ai = a[i];
- uint64_t bi = b[i];
- uint64_t x = swap1 & (ai ^ bi);
- uint64_t ai1 = ai ^ x;
- uint64_t bi1 = bi ^ x;
- a[i] = ai1;
- b[i] = bi1;
-}
-
-static void
-Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
-{
- if (!(ctr == (uint32_t)0U))
- {
- uint32_t i;
- Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
- i = ctr - (uint32_t)1U;
- Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
- }
-}
-
-static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
-{
- uint64_t swap1 = (uint64_t)0U - iswap;
- Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
- Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
-}
-
-static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
-{
- memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
- memcpy(output + (uint32_t)5U,
- input + (uint32_t)5U,
- (uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
-}
-
-static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
-{
- uint64_t i0 = load64_le(input);
- uint8_t *x00 = input + (uint32_t)6U;
- uint64_t i1 = load64_le(x00);
- uint8_t *x01 = input + (uint32_t)12U;
- uint64_t i2 = load64_le(x01);
- uint8_t *x02 = input + (uint32_t)19U;
- uint64_t i3 = load64_le(x02);
- uint8_t *x0 = input + (uint32_t)24U;
- uint64_t i4 = load64_le(x0);
- uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
- uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
- uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
- uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
- uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
- output[0U] = output0;
- output[1U] = output1;
- output[2U] = output2;
- output[3U] = output3;
- output[4U] = output4;
-}
-
-static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
-{
- uint64_t t0 = input[0U];
- uint64_t t1 = input[1U];
- uint64_t t2 = input[2U];
- uint64_t t3 = input[3U];
- uint64_t t4 = input[4U];
- uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
- uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
- uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
- uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
- uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
- uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
- input[0U] = t0_;
- input[1U] = t1__;
- input[2U] = t2__;
- input[3U] = t3__;
- input[4U] = t4_;
-}
-
-static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
-{
- Hacl_EC_Format_fcontract_first_carry_pass(input);
- Hacl_Bignum_Modulo_carry_top(input);
-}
-
-static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
-{
- uint64_t t0 = input[0U];
- uint64_t t1 = input[1U];
- uint64_t t2 = input[2U];
- uint64_t t3 = input[3U];
- uint64_t t4 = input[4U];
- uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
- uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
- uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
- uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
- uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
- uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
- input[0U] = t0_;
- input[1U] = t1__;
- input[2U] = t2__;
- input[3U] = t3__;
- input[4U] = t4_;
-}
-
-static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
-{
- uint64_t i0;
- uint64_t i1;
- uint64_t i0_;
- uint64_t i1_;
- Hacl_EC_Format_fcontract_second_carry_pass(input);
- Hacl_Bignum_Modulo_carry_top(input);
- i0 = input[0U];
- i1 = input[1U];
- i0_ = i0 & (uint64_t)0x7ffffffffffffU;
- i1_ = i1 + (i0 >> (uint32_t)51U);
- input[0U] = i0_;
- input[1U] = i1_;
-}
-
-static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
-{
- uint64_t a0 = input[0U];
- uint64_t a1 = input[1U];
- uint64_t a2 = input[2U];
- uint64_t a3 = input[3U];
- uint64_t a4 = input[4U];
- uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
- uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
- uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
- uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
- uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
- uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
- uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
- uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
- uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
- uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
- uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
- input[0U] = a0_;
- input[1U] = a1_;
- input[2U] = a2_;
- input[3U] = a3_;
- input[4U] = a4_;
-}
-
-static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
-{
- uint64_t t0 = input[0U];
- uint64_t t1 = input[1U];
- uint64_t t2 = input[2U];
- uint64_t t3 = input[3U];
- uint64_t t4 = input[4U];
- uint64_t o0 = t1 << (uint32_t)51U | t0;
- uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
- uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
- uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
- uint8_t *b0 = output;
- uint8_t *b1 = output + (uint32_t)8U;
- uint8_t *b2 = output + (uint32_t)16U;
- uint8_t *b3 = output + (uint32_t)24U;
- store64_le(b0, o0);
- store64_le(b1, o1);
- store64_le(b2, o2);
- store64_le(b3, o3);
-}
-
-static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
-{
- Hacl_EC_Format_fcontract_first_carry_full(input);
- Hacl_EC_Format_fcontract_second_carry_full(input);
- Hacl_EC_Format_fcontract_trim(input);
- Hacl_EC_Format_fcontract_store(output, input);
-}
-
-static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
-{
- uint64_t *x = point;
- uint64_t *z = point + (uint32_t)5U;
- uint64_t buf[10U] = { 0U };
- uint64_t *zmone = buf;
- uint64_t *sc = buf + (uint32_t)5U;
- Hacl_Bignum_crecip(zmone, z);
- Hacl_Bignum_fmul(sc, x, zmone);
- Hacl_EC_Format_fcontract(scalar, sc);
-}
-
-static void
-Hacl_EC_AddAndDouble_fmonty(
- uint64_t *pp,
- uint64_t *ppq,
- uint64_t *p,
- uint64_t *pq,
- uint64_t *qmqp
-)
-{
- uint64_t *qx = qmqp;
- uint64_t *x2 = pp;
- uint64_t *z2 = pp + (uint32_t)5U;
- uint64_t *x3 = ppq;
- uint64_t *z3 = ppq + (uint32_t)5U;
- uint64_t *x = p;
- uint64_t *z = p + (uint32_t)5U;
- uint64_t *xprime = pq;
- uint64_t *zprime = pq + (uint32_t)5U;
- uint64_t buf[40U] = { 0U };
- uint64_t *origx = buf;
- uint64_t *origxprime0 = buf + (uint32_t)5U;
- uint64_t *xxprime0 = buf + (uint32_t)25U;
- uint64_t *zzprime0 = buf + (uint32_t)30U;
- uint64_t *origxprime;
- uint64_t *xx0;
- uint64_t *zz0;
- uint64_t *xxprime;
- uint64_t *zzprime;
- uint64_t *zzzprime;
- uint64_t *zzz;
- uint64_t *xx;
- uint64_t *zz;
- uint64_t scalar;
- memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
- Hacl_Bignum_fsum(x, z);
- Hacl_Bignum_fdifference(z, origx);
- memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
- Hacl_Bignum_fsum(xprime, zprime);
- Hacl_Bignum_fdifference(zprime, origxprime0);
- Hacl_Bignum_fmul(xxprime0, xprime, z);
- Hacl_Bignum_fmul(zzprime0, x, zprime);
- origxprime = buf + (uint32_t)5U;
- xx0 = buf + (uint32_t)15U;
- zz0 = buf + (uint32_t)20U;
- xxprime = buf + (uint32_t)25U;
- zzprime = buf + (uint32_t)30U;
- zzzprime = buf + (uint32_t)35U;
- memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
- Hacl_Bignum_fsum(xxprime, zzprime);
- Hacl_Bignum_fdifference(zzprime, origxprime);
- Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
- Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
- Hacl_Bignum_fmul(z3, zzzprime, qx);
- Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
- Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
- zzz = buf + (uint32_t)10U;
- xx = buf + (uint32_t)15U;
- zz = buf + (uint32_t)20U;
- Hacl_Bignum_fmul(x2, xx, zz);
- Hacl_Bignum_fdifference(zz, xx);
- scalar = (uint64_t)121665U;
- Hacl_Bignum_fscalar(zzz, zz, scalar);
- Hacl_Bignum_fsum(zzz, xx);
- Hacl_Bignum_fmul(z2, zzz, zz);
-}
-
-static void
-Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint8_t byt
-)
-{
- uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
- uint64_t bit;
- Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
- Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
- bit = (uint64_t)(byt >> (uint32_t)7U);
- Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
-}
-
-static void
-Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint8_t byt
-)
-{
- uint8_t byt1;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
- byt1 = byt << (uint32_t)1U;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
-}
-
-static void
-Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint8_t byt,
- uint32_t i
-)
-{
- if (!(i == (uint32_t)0U))
- {
- uint32_t i_ = i - (uint32_t)1U;
- uint8_t byt_;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
- byt_ = byt << (uint32_t)2U;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
- }
-}
-
-static void
-Hacl_EC_Ladder_BigLoop_cmult_big_loop(
- uint8_t *n1,
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint32_t i
-)
-{
- if (!(i == (uint32_t)0U))
- {
- uint32_t i1 = i - (uint32_t)1U;
- uint8_t byte = n1[i1];
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
- Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
- }
-}
-
-static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
-{
- uint64_t point_buf[40U] = { 0U };
- uint64_t *nq = point_buf;
- uint64_t *nqpq = point_buf + (uint32_t)10U;
- uint64_t *nq2 = point_buf + (uint32_t)20U;
- uint64_t *nqpq2 = point_buf + (uint32_t)30U;
- Hacl_EC_Point_copy(nqpq, q);
- nq[0U] = (uint64_t)1U;
- Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
- Hacl_EC_Point_copy(result, nq);
-}
-
-void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
-{
- uint64_t buf0[10U] = { 0U };
- uint64_t *x0 = buf0;
- uint64_t *z = buf0 + (uint32_t)5U;
- uint64_t *q;
- Hacl_EC_Format_fexpand(x0, basepoint);
- z[0U] = (uint64_t)1U;
- q = buf0;
- {
- uint8_t e[32U] = { 0U };
- uint8_t e0;
- uint8_t e31;
- uint8_t e01;
- uint8_t e311;
- uint8_t e312;
- uint8_t *scalar;
- memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
- e0 = e[0U];
- e31 = e[31U];
- e01 = e0 & (uint8_t)248U;
- e311 = e31 & (uint8_t)127U;
- e312 = e311 | (uint8_t)64U;
- e[0U] = e01;
- e[31U] = e312;
- scalar = e;
- {
- uint64_t buf[15U] = { 0U };
- uint64_t *nq = buf;
- uint64_t *x = nq;
- x[0U] = (uint64_t)1U;
- Hacl_EC_Ladder_cmult(nq, scalar, q);
- Hacl_EC_Format_scalar_of_point(mypublic, nq);
- }
- }
-}
-
diff --git a/3rdparty/everest/library/Hacl_Curve25519_joined.c b/3rdparty/everest/library/Hacl_Curve25519_joined.c
deleted file mode 100644
index a778160..0000000
--- a/3rdparty/everest/library/Hacl_Curve25519_joined.c
+++ /dev/null
@@ -1,50 +0,0 @@
-/*
- * Interface to code from Project Everest
- *
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org)
- */
-#ifndef _BSD_SOURCE
-/* Required to get htole64() from gcc/glibc's endian.h (older systems)
- * when we compile with -std=c99 */
-#define _BSD_SOURCE
-#endif
-#ifndef _DEFAULT_SOURCE
-/* (modern version of _BSD_SOURCE) */
-#define _DEFAULT_SOURCE
-#endif
-
-#include "common.h"
-
-#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
-
-#if defined(__SIZEOF_INT128__) && (__SIZEOF_INT128__ == 16)
-#define MBEDTLS_HAVE_INT128
-#endif
-
-#if defined(MBEDTLS_HAVE_INT128)
-#include "Hacl_Curve25519.c"
-#else
-#define KRML_VERIFIED_UINT128
-#include "kremlib/FStar_UInt128_extracted.c"
-#include "legacy/Hacl_Curve25519.c"
-#endif
-
-#include "kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.c"
-
-#endif /* defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED) */
-
diff --git a/3rdparty/everest/library/everest.c b/3rdparty/everest/library/everest.c
deleted file mode 100644
index fefc6a2..0000000
--- a/3rdparty/everest/library/everest.c
+++ /dev/null
@@ -1,102 +0,0 @@
-/*
- * Interface to code from Project Everest
- *
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org).
- */
-
-#include "common.h"
-
-#include <string.h>
-
-#include "mbedtls/ecdh.h"
-
-#include "everest/x25519.h"
-#include "everest/everest.h"
-
-#include "mbedtls/platform.h"
-
-#if defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
-
-int mbedtls_everest_setup( mbedtls_ecdh_context_everest *ctx, int grp_id )
-{
- if( grp_id != MBEDTLS_ECP_DP_CURVE25519 )
- return MBEDTLS_ERR_ECP_BAD_INPUT_DATA;
- mbedtls_x25519_init( &ctx->ctx );
- return 0;
-}
-
-void mbedtls_everest_free( mbedtls_ecdh_context_everest *ctx )
-{
- mbedtls_x25519_free( &ctx->ctx );
-}
-
-int mbedtls_everest_make_params( mbedtls_ecdh_context_everest *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )( void *, unsigned char *, size_t ),
- void *p_rng )
-{
- mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
- return mbedtls_x25519_make_params( x25519_ctx, olen, buf, blen, f_rng, p_rng );
-}
-
-int mbedtls_everest_read_params( mbedtls_ecdh_context_everest *ctx,
- const unsigned char **buf,
- const unsigned char *end )
-{
- mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
- return mbedtls_x25519_read_params( x25519_ctx, buf, end );
-}
-
-int mbedtls_everest_get_params( mbedtls_ecdh_context_everest *ctx,
- const mbedtls_ecp_keypair *key,
- mbedtls_everest_ecdh_side side )
-{
- mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
- mbedtls_x25519_ecdh_side s = side == MBEDTLS_EVEREST_ECDH_OURS ?
- MBEDTLS_X25519_ECDH_OURS :
- MBEDTLS_X25519_ECDH_THEIRS;
- return mbedtls_x25519_get_params( x25519_ctx, key, s );
-}
-
-int mbedtls_everest_make_public( mbedtls_ecdh_context_everest *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )( void *, unsigned char *, size_t ),
- void *p_rng )
-{
- mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
- return mbedtls_x25519_make_public( x25519_ctx, olen, buf, blen, f_rng, p_rng );
-}
-
-int mbedtls_everest_read_public( mbedtls_ecdh_context_everest *ctx,
- const unsigned char *buf, size_t blen )
-{
- mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
- return mbedtls_x25519_read_public ( x25519_ctx, buf, blen );
-}
-
-int mbedtls_everest_calc_secret( mbedtls_ecdh_context_everest *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )( void *, unsigned char *, size_t ),
- void *p_rng )
-{
- mbedtls_x25519_context *x25519_ctx = &ctx->ctx;
- return mbedtls_x25519_calc_secret( x25519_ctx, olen, buf, blen, f_rng, p_rng );
-}
-
-#endif /* MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED */
-
diff --git a/3rdparty/everest/library/kremlib/FStar_UInt128_extracted.c b/3rdparty/everest/library/kremlib/FStar_UInt128_extracted.c
deleted file mode 100644
index 1060515..0000000
--- a/3rdparty/everest/library/kremlib/FStar_UInt128_extracted.c
+++ /dev/null
@@ -1,413 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir extracted -warn-error +9+11 -skip-compilation -extract-uints -add-include <inttypes.h> -add-include "kremlib.h" -add-include "kremlin/internal/compat.h" extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-#include "FStar_UInt128.h"
-#include "kremlin/c_endianness.h"
-#include "FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h"
-
-uint64_t FStar_UInt128___proj__Mkuint128__item__low(FStar_UInt128_uint128 projectee)
-{
- return projectee.low;
-}
-
-uint64_t FStar_UInt128___proj__Mkuint128__item__high(FStar_UInt128_uint128 projectee)
-{
- return projectee.high;
-}
-
-static uint64_t FStar_UInt128_constant_time_carry(uint64_t a, uint64_t b)
-{
- return (a ^ ((a ^ b) | ((a - b) ^ b))) >> (uint32_t)63U;
-}
-
-static uint64_t FStar_UInt128_carry(uint64_t a, uint64_t b)
-{
- return FStar_UInt128_constant_time_carry(a, b);
-}
-
-FStar_UInt128_uint128 FStar_UInt128_add(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat = { a.low + b.low, a.high + b.high + FStar_UInt128_carry(a.low + b.low, b.low) };
- return flat;
-}
-
-FStar_UInt128_uint128
-FStar_UInt128_add_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat = { a.low + b.low, a.high + b.high + FStar_UInt128_carry(a.low + b.low, b.low) };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_add_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat = { a.low + b.low, a.high + b.high + FStar_UInt128_carry(a.low + b.low, b.low) };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_sub(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat = { a.low - b.low, a.high - b.high - FStar_UInt128_carry(a.low, a.low - b.low) };
- return flat;
-}
-
-FStar_UInt128_uint128
-FStar_UInt128_sub_underspec(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat = { a.low - b.low, a.high - b.high - FStar_UInt128_carry(a.low, a.low - b.low) };
- return flat;
-}
-
-static FStar_UInt128_uint128
-FStar_UInt128_sub_mod_impl(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat = { a.low - b.low, a.high - b.high - FStar_UInt128_carry(a.low, a.low - b.low) };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_sub_mod(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- return FStar_UInt128_sub_mod_impl(a, b);
-}
-
-FStar_UInt128_uint128 FStar_UInt128_logand(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128 flat = { a.low & b.low, a.high & b.high };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_logxor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128 flat = { a.low ^ b.low, a.high ^ b.high };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_logor(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128 flat = { a.low | b.low, a.high | b.high };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_lognot(FStar_UInt128_uint128 a)
-{
- FStar_UInt128_uint128 flat = { ~a.low, ~a.high };
- return flat;
-}
-
-static uint32_t FStar_UInt128_u32_64 = (uint32_t)64U;
-
-static uint64_t FStar_UInt128_add_u64_shift_left(uint64_t hi, uint64_t lo, uint32_t s)
-{
- return (hi << s) + (lo >> (FStar_UInt128_u32_64 - s));
-}
-
-static uint64_t FStar_UInt128_add_u64_shift_left_respec(uint64_t hi, uint64_t lo, uint32_t s)
-{
- return FStar_UInt128_add_u64_shift_left(hi, lo, s);
-}
-
-static FStar_UInt128_uint128
-FStar_UInt128_shift_left_small(FStar_UInt128_uint128 a, uint32_t s)
-{
- if (s == (uint32_t)0U)
- {
- return a;
- }
- else
- {
- FStar_UInt128_uint128
- flat = { a.low << s, FStar_UInt128_add_u64_shift_left_respec(a.high, a.low, s) };
- return flat;
- }
-}
-
-static FStar_UInt128_uint128
-FStar_UInt128_shift_left_large(FStar_UInt128_uint128 a, uint32_t s)
-{
- FStar_UInt128_uint128 flat = { (uint64_t)0U, a.low << (s - FStar_UInt128_u32_64) };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_shift_left(FStar_UInt128_uint128 a, uint32_t s)
-{
- if (s < FStar_UInt128_u32_64)
- {
- return FStar_UInt128_shift_left_small(a, s);
- }
- else
- {
- return FStar_UInt128_shift_left_large(a, s);
- }
-}
-
-static uint64_t FStar_UInt128_add_u64_shift_right(uint64_t hi, uint64_t lo, uint32_t s)
-{
- return (lo >> s) + (hi << (FStar_UInt128_u32_64 - s));
-}
-
-static uint64_t FStar_UInt128_add_u64_shift_right_respec(uint64_t hi, uint64_t lo, uint32_t s)
-{
- return FStar_UInt128_add_u64_shift_right(hi, lo, s);
-}
-
-static FStar_UInt128_uint128
-FStar_UInt128_shift_right_small(FStar_UInt128_uint128 a, uint32_t s)
-{
- if (s == (uint32_t)0U)
- {
- return a;
- }
- else
- {
- FStar_UInt128_uint128
- flat = { FStar_UInt128_add_u64_shift_right_respec(a.high, a.low, s), a.high >> s };
- return flat;
- }
-}
-
-static FStar_UInt128_uint128
-FStar_UInt128_shift_right_large(FStar_UInt128_uint128 a, uint32_t s)
-{
- FStar_UInt128_uint128 flat = { a.high >> (s - FStar_UInt128_u32_64), (uint64_t)0U };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_shift_right(FStar_UInt128_uint128 a, uint32_t s)
-{
- if (s < FStar_UInt128_u32_64)
- {
- return FStar_UInt128_shift_right_small(a, s);
- }
- else
- {
- return FStar_UInt128_shift_right_large(a, s);
- }
-}
-
-bool FStar_UInt128_eq(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- return a.low == b.low && a.high == b.high;
-}
-
-bool FStar_UInt128_gt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- return a.high > b.high || (a.high == b.high && a.low > b.low);
-}
-
-bool FStar_UInt128_lt(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- return a.high < b.high || (a.high == b.high && a.low < b.low);
-}
-
-bool FStar_UInt128_gte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- return a.high > b.high || (a.high == b.high && a.low >= b.low);
-}
-
-bool FStar_UInt128_lte(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- return a.high < b.high || (a.high == b.high && a.low <= b.low);
-}
-
-FStar_UInt128_uint128 FStar_UInt128_eq_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat =
- {
- FStar_UInt64_eq_mask(a.low,
- b.low)
- & FStar_UInt64_eq_mask(a.high, b.high),
- FStar_UInt64_eq_mask(a.low,
- b.low)
- & FStar_UInt64_eq_mask(a.high, b.high)
- };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_gte_mask(FStar_UInt128_uint128 a, FStar_UInt128_uint128 b)
-{
- FStar_UInt128_uint128
- flat =
- {
- (FStar_UInt64_gte_mask(a.high, b.high) & ~FStar_UInt64_eq_mask(a.high, b.high))
- | (FStar_UInt64_eq_mask(a.high, b.high) & FStar_UInt64_gte_mask(a.low, b.low)),
- (FStar_UInt64_gte_mask(a.high, b.high) & ~FStar_UInt64_eq_mask(a.high, b.high))
- | (FStar_UInt64_eq_mask(a.high, b.high) & FStar_UInt64_gte_mask(a.low, b.low))
- };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_uint64_to_uint128(uint64_t a)
-{
- FStar_UInt128_uint128 flat = { a, (uint64_t)0U };
- return flat;
-}
-
-uint64_t FStar_UInt128_uint128_to_uint64(FStar_UInt128_uint128 a)
-{
- return a.low;
-}
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Plus_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_add;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Plus_Question_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_add_underspec;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Plus_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_add_mod;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Subtraction_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_sub;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Subtraction_Question_Hat)(
- FStar_UInt128_uint128 x0,
- FStar_UInt128_uint128 x1
-) = FStar_UInt128_sub_underspec;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Subtraction_Percent_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_sub_mod;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Amp_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_logand;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Hat_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_logxor;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Bar_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_logor;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Less_Less_Hat)(FStar_UInt128_uint128 x0, uint32_t x1) =
- FStar_UInt128_shift_left;
-
-FStar_UInt128_uint128
-(*FStar_UInt128_op_Greater_Greater_Hat)(FStar_UInt128_uint128 x0, uint32_t x1) =
- FStar_UInt128_shift_right;
-
-bool
-(*FStar_UInt128_op_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_eq;
-
-bool
-(*FStar_UInt128_op_Greater_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_gt;
-
-bool
-(*FStar_UInt128_op_Less_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_lt;
-
-bool
-(*FStar_UInt128_op_Greater_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_gte;
-
-bool
-(*FStar_UInt128_op_Less_Equals_Hat)(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1) =
- FStar_UInt128_lte;
-
-static uint64_t FStar_UInt128_u64_mod_32(uint64_t a)
-{
- return a & (uint64_t)0xffffffffU;
-}
-
-static uint32_t FStar_UInt128_u32_32 = (uint32_t)32U;
-
-static uint64_t FStar_UInt128_u32_combine(uint64_t hi, uint64_t lo)
-{
- return lo + (hi << FStar_UInt128_u32_32);
-}
-
-FStar_UInt128_uint128 FStar_UInt128_mul32(uint64_t x, uint32_t y)
-{
- FStar_UInt128_uint128
- flat =
- {
- FStar_UInt128_u32_combine((x >> FStar_UInt128_u32_32)
- * (uint64_t)y
- + (FStar_UInt128_u64_mod_32(x) * (uint64_t)y >> FStar_UInt128_u32_32),
- FStar_UInt128_u64_mod_32(FStar_UInt128_u64_mod_32(x) * (uint64_t)y)),
- ((x >> FStar_UInt128_u32_32)
- * (uint64_t)y
- + (FStar_UInt128_u64_mod_32(x) * (uint64_t)y >> FStar_UInt128_u32_32))
- >> FStar_UInt128_u32_32
- };
- return flat;
-}
-
-typedef struct K___uint64_t_uint64_t_uint64_t_uint64_t_s
-{
- uint64_t fst;
- uint64_t snd;
- uint64_t thd;
- uint64_t f3;
-}
-K___uint64_t_uint64_t_uint64_t_uint64_t;
-
-static K___uint64_t_uint64_t_uint64_t_uint64_t
-FStar_UInt128_mul_wide_impl_t_(uint64_t x, uint64_t y)
-{
- K___uint64_t_uint64_t_uint64_t_uint64_t
- flat =
- {
- FStar_UInt128_u64_mod_32(x),
- FStar_UInt128_u64_mod_32(FStar_UInt128_u64_mod_32(x) * FStar_UInt128_u64_mod_32(y)),
- x
- >> FStar_UInt128_u32_32,
- (x >> FStar_UInt128_u32_32)
- * FStar_UInt128_u64_mod_32(y)
- + (FStar_UInt128_u64_mod_32(x) * FStar_UInt128_u64_mod_32(y) >> FStar_UInt128_u32_32)
- };
- return flat;
-}
-
-static uint64_t FStar_UInt128_u32_combine_(uint64_t hi, uint64_t lo)
-{
- return lo + (hi << FStar_UInt128_u32_32);
-}
-
-static FStar_UInt128_uint128 FStar_UInt128_mul_wide_impl(uint64_t x, uint64_t y)
-{
- K___uint64_t_uint64_t_uint64_t_uint64_t scrut = FStar_UInt128_mul_wide_impl_t_(x, y);
- uint64_t u1 = scrut.fst;
- uint64_t w3 = scrut.snd;
- uint64_t x_ = scrut.thd;
- uint64_t t_ = scrut.f3;
- FStar_UInt128_uint128
- flat =
- {
- FStar_UInt128_u32_combine_(u1 * (y >> FStar_UInt128_u32_32) + FStar_UInt128_u64_mod_32(t_),
- w3),
- x_
- * (y >> FStar_UInt128_u32_32)
- + (t_ >> FStar_UInt128_u32_32)
- + ((u1 * (y >> FStar_UInt128_u32_32) + FStar_UInt128_u64_mod_32(t_)) >> FStar_UInt128_u32_32)
- };
- return flat;
-}
-
-FStar_UInt128_uint128 FStar_UInt128_mul_wide(uint64_t x, uint64_t y)
-{
- return FStar_UInt128_mul_wide_impl(x, y);
-}
-
diff --git a/3rdparty/everest/library/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.c b/3rdparty/everest/library/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.c
deleted file mode 100644
index 0826524..0000000
--- a/3rdparty/everest/library/kremlib/FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.c
+++ /dev/null
@@ -1,100 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: ../krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrB9w -minimal -fparentheses -fcurly-braces -fno-shadow -header copyright-header.txt -minimal -tmpdir dist/minimal -skip-compilation -extract-uints -add-include <inttypes.h> -add-include <stdbool.h> -add-include "kremlin/internal/compat.h" -add-include "kremlin/internal/types.h" -bundle FStar.UInt64+FStar.UInt32+FStar.UInt16+FStar.UInt8=* extracted/prims.krml extracted/FStar_Pervasives_Native.krml extracted/FStar_Pervasives.krml extracted/FStar_Mul.krml extracted/FStar_Squash.krml extracted/FStar_Classical.krml extracted/FStar_StrongExcludedMiddle.krml extracted/FStar_FunctionalExtensionality.krml extracted/FStar_List_Tot_Base.krml extracted/FStar_List_Tot_Properties.krml extracted/FStar_List_Tot.krml extracted/FStar_Seq_Base.krml extracted/FStar_Seq_Properties.krml extracted/FStar_Seq.krml extracted/FStar_Math_Lib.krml extracted/FStar_Math_Lemmas.krml extracted/FStar_BitVector.krml extracted/FStar_UInt.krml extracted/FStar_UInt32.krml extracted/FStar_Int.krml extracted/FStar_Int16.krml extracted/FStar_Preorder.krml extracted/FStar_Ghost.krml extracted/FStar_ErasedLogic.krml extracted/FStar_UInt64.krml extracted/FStar_Set.krml extracted/FStar_PropositionalExtensionality.krml extracted/FStar_PredicateExtensionality.krml extracted/FStar_TSet.krml extracted/FStar_Monotonic_Heap.krml extracted/FStar_Heap.krml extracted/FStar_Map.krml extracted/FStar_Monotonic_HyperHeap.krml extracted/FStar_Monotonic_HyperStack.krml extracted/FStar_HyperStack.krml extracted/FStar_Monotonic_Witnessed.krml extracted/FStar_HyperStack_ST.krml extracted/FStar_HyperStack_All.krml extracted/FStar_Date.krml extracted/FStar_Universe.krml extracted/FStar_GSet.krml extracted/FStar_ModifiesGen.krml extracted/LowStar_Monotonic_Buffer.krml extracted/LowStar_Buffer.krml extracted/Spec_Loops.krml extracted/LowStar_BufferOps.krml extracted/C_Loops.krml extracted/FStar_UInt8.krml extracted/FStar_Kremlin_Endianness.krml extracted/FStar_UInt63.krml extracted/FStar_Exn.krml extracted/FStar_ST.krml extracted/FStar_All.krml extracted/FStar_Dyn.krml extracted/FStar_Int63.krml extracted/FStar_Int64.krml extracted/FStar_Int32.krml extracted/FStar_Int8.krml extracted/FStar_UInt16.krml extracted/FStar_Int_Cast.krml extracted/FStar_UInt128.krml extracted/C_Endianness.krml extracted/FStar_List.krml extracted/FStar_Float.krml extracted/FStar_IO.krml extracted/C.krml extracted/FStar_Char.krml extracted/FStar_String.krml extracted/LowStar_Modifies.krml extracted/C_String.krml extracted/FStar_Bytes.krml extracted/FStar_HyperStack_IO.krml extracted/C_Failure.krml extracted/TestLib.krml extracted/FStar_Int_Cast_Full.krml
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-#include "FStar_UInt64_FStar_UInt32_FStar_UInt16_FStar_UInt8.h"
-
-uint64_t FStar_UInt64_eq_mask(uint64_t a, uint64_t b)
-{
- uint64_t x = a ^ b;
- uint64_t minus_x = ~x + (uint64_t)1U;
- uint64_t x_or_minus_x = x | minus_x;
- uint64_t xnx = x_or_minus_x >> (uint32_t)63U;
- return xnx - (uint64_t)1U;
-}
-
-uint64_t FStar_UInt64_gte_mask(uint64_t a, uint64_t b)
-{
- uint64_t x = a;
- uint64_t y = b;
- uint64_t x_xor_y = x ^ y;
- uint64_t x_sub_y = x - y;
- uint64_t x_sub_y_xor_y = x_sub_y ^ y;
- uint64_t q = x_xor_y | x_sub_y_xor_y;
- uint64_t x_xor_q = x ^ q;
- uint64_t x_xor_q_ = x_xor_q >> (uint32_t)63U;
- return x_xor_q_ - (uint64_t)1U;
-}
-
-uint32_t FStar_UInt32_eq_mask(uint32_t a, uint32_t b)
-{
- uint32_t x = a ^ b;
- uint32_t minus_x = ~x + (uint32_t)1U;
- uint32_t x_or_minus_x = x | minus_x;
- uint32_t xnx = x_or_minus_x >> (uint32_t)31U;
- return xnx - (uint32_t)1U;
-}
-
-uint32_t FStar_UInt32_gte_mask(uint32_t a, uint32_t b)
-{
- uint32_t x = a;
- uint32_t y = b;
- uint32_t x_xor_y = x ^ y;
- uint32_t x_sub_y = x - y;
- uint32_t x_sub_y_xor_y = x_sub_y ^ y;
- uint32_t q = x_xor_y | x_sub_y_xor_y;
- uint32_t x_xor_q = x ^ q;
- uint32_t x_xor_q_ = x_xor_q >> (uint32_t)31U;
- return x_xor_q_ - (uint32_t)1U;
-}
-
-uint16_t FStar_UInt16_eq_mask(uint16_t a, uint16_t b)
-{
- uint16_t x = a ^ b;
- uint16_t minus_x = ~x + (uint16_t)1U;
- uint16_t x_or_minus_x = x | minus_x;
- uint16_t xnx = x_or_minus_x >> (uint32_t)15U;
- return xnx - (uint16_t)1U;
-}
-
-uint16_t FStar_UInt16_gte_mask(uint16_t a, uint16_t b)
-{
- uint16_t x = a;
- uint16_t y = b;
- uint16_t x_xor_y = x ^ y;
- uint16_t x_sub_y = x - y;
- uint16_t x_sub_y_xor_y = x_sub_y ^ y;
- uint16_t q = x_xor_y | x_sub_y_xor_y;
- uint16_t x_xor_q = x ^ q;
- uint16_t x_xor_q_ = x_xor_q >> (uint32_t)15U;
- return x_xor_q_ - (uint16_t)1U;
-}
-
-uint8_t FStar_UInt8_eq_mask(uint8_t a, uint8_t b)
-{
- uint8_t x = a ^ b;
- uint8_t minus_x = ~x + (uint8_t)1U;
- uint8_t x_or_minus_x = x | minus_x;
- uint8_t xnx = x_or_minus_x >> (uint32_t)7U;
- return xnx - (uint8_t)1U;
-}
-
-uint8_t FStar_UInt8_gte_mask(uint8_t a, uint8_t b)
-{
- uint8_t x = a;
- uint8_t y = b;
- uint8_t x_xor_y = x ^ y;
- uint8_t x_sub_y = x - y;
- uint8_t x_sub_y_xor_y = x_sub_y ^ y;
- uint8_t q = x_xor_y | x_sub_y_xor_y;
- uint8_t x_xor_q = x ^ q;
- uint8_t x_xor_q_ = x_xor_q >> (uint32_t)7U;
- return x_xor_q_ - (uint8_t)1U;
-}
-
diff --git a/3rdparty/everest/library/legacy/Hacl_Curve25519.c b/3rdparty/everest/library/legacy/Hacl_Curve25519.c
deleted file mode 100644
index babebe4..0000000
--- a/3rdparty/everest/library/legacy/Hacl_Curve25519.c
+++ /dev/null
@@ -1,805 +0,0 @@
-/* Copyright (c) INRIA and Microsoft Corporation. All rights reserved.
- Licensed under the Apache 2.0 License. */
-
-/* This file was generated by KreMLin <https://github.com/FStarLang/kremlin>
- * KreMLin invocation: /mnt/e/everest/verify/kremlin/krml -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -fc89 -fparentheses -fno-shadow -header /mnt/e/everest/verify/hdrcLh -minimal -I /mnt/e/everest/verify/hacl-star/code/lib/kremlin -I /mnt/e/everest/verify/kremlin/kremlib/compat -I /mnt/e/everest/verify/hacl-star/specs -I /mnt/e/everest/verify/hacl-star/specs/old -I . -ccopt -march=native -verbose -ldopt -flto -tmpdir x25519-c -I ../bignum -bundle Hacl.Curve25519=* -minimal -add-include "kremlib.h" -skip-compilation x25519-c/out.krml -o x25519-c/Hacl_Curve25519.c
- * F* version: 059db0c8
- * KreMLin version: 916c37ac
- */
-
-
-#include "Hacl_Curve25519.h"
-
-extern uint64_t FStar_UInt64_eq_mask(uint64_t x0, uint64_t x1);
-
-extern uint64_t FStar_UInt64_gte_mask(uint64_t x0, uint64_t x1);
-
-extern FStar_UInt128_uint128
-FStar_UInt128_add(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-FStar_UInt128_add_mod(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128
-FStar_UInt128_logand(FStar_UInt128_uint128 x0, FStar_UInt128_uint128 x1);
-
-extern FStar_UInt128_uint128 FStar_UInt128_shift_right(FStar_UInt128_uint128 x0, uint32_t x1);
-
-extern FStar_UInt128_uint128 FStar_UInt128_uint64_to_uint128(uint64_t x0);
-
-extern uint64_t FStar_UInt128_uint128_to_uint64(FStar_UInt128_uint128 x0);
-
-extern FStar_UInt128_uint128 FStar_UInt128_mul_wide(uint64_t x0, uint64_t x1);
-
-static void Hacl_Bignum_Modulo_carry_top(uint64_t *b)
-{
- uint64_t b4 = b[4U];
- uint64_t b0 = b[0U];
- uint64_t b4_ = b4 & (uint64_t)0x7ffffffffffffU;
- uint64_t b0_ = b0 + (uint64_t)19U * (b4 >> (uint32_t)51U);
- b[4U] = b4_;
- b[0U] = b0_;
-}
-
-inline static void
-Hacl_Bignum_Fproduct_copy_from_wide_(uint64_t *output, FStar_UInt128_uint128 *input)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- FStar_UInt128_uint128 xi = input[i];
- output[i] = FStar_UInt128_uint128_to_uint64(xi);
- }
-}
-
-inline static void
-Hacl_Bignum_Fproduct_sum_scalar_multiplication_(
- FStar_UInt128_uint128 *output,
- uint64_t *input,
- uint64_t s
-)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- FStar_UInt128_uint128 xi = output[i];
- uint64_t yi = input[i];
- output[i] = FStar_UInt128_add_mod(xi, FStar_UInt128_mul_wide(yi, s));
- }
-}
-
-inline static void Hacl_Bignum_Fproduct_carry_wide_(FStar_UInt128_uint128 *tmp)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
- {
- uint32_t ctr = i;
- FStar_UInt128_uint128 tctr = tmp[ctr];
- FStar_UInt128_uint128 tctrp1 = tmp[ctr + (uint32_t)1U];
- uint64_t r0 = FStar_UInt128_uint128_to_uint64(tctr) & (uint64_t)0x7ffffffffffffU;
- FStar_UInt128_uint128 c = FStar_UInt128_shift_right(tctr, (uint32_t)51U);
- tmp[ctr] = FStar_UInt128_uint64_to_uint128(r0);
- tmp[ctr + (uint32_t)1U] = FStar_UInt128_add(tctrp1, c);
- }
-}
-
-inline static void Hacl_Bignum_Fmul_shift_reduce(uint64_t *output)
-{
- uint64_t tmp = output[4U];
- uint64_t b0;
- {
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)4U; i = i + (uint32_t)1U)
- {
- uint32_t ctr = (uint32_t)5U - i - (uint32_t)1U;
- uint64_t z = output[ctr - (uint32_t)1U];
- output[ctr] = z;
- }
- }
- output[0U] = tmp;
- b0 = output[0U];
- output[0U] = (uint64_t)19U * b0;
-}
-
-static void
-Hacl_Bignum_Fmul_mul_shift_reduce_(
- FStar_UInt128_uint128 *output,
- uint64_t *input,
- uint64_t *input2
-)
-{
- uint32_t i;
- uint64_t input2i;
- {
- uint32_t i0;
- for (i0 = (uint32_t)0U; i0 < (uint32_t)4U; i0 = i0 + (uint32_t)1U)
- {
- uint64_t input2i0 = input2[i0];
- Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i0);
- Hacl_Bignum_Fmul_shift_reduce(input);
- }
- }
- i = (uint32_t)4U;
- input2i = input2[i];
- Hacl_Bignum_Fproduct_sum_scalar_multiplication_(output, input, input2i);
-}
-
-inline static void Hacl_Bignum_Fmul_fmul(uint64_t *output, uint64_t *input, uint64_t *input2)
-{
- uint64_t tmp[5U] = { 0U };
- memcpy(tmp, input, (uint32_t)5U * sizeof input[0U]);
- KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
- {
- FStar_UInt128_uint128 t[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
- }
- {
- FStar_UInt128_uint128 b4;
- FStar_UInt128_uint128 b0;
- FStar_UInt128_uint128 b4_;
- FStar_UInt128_uint128 b0_;
- uint64_t i0;
- uint64_t i1;
- uint64_t i0_;
- uint64_t i1_;
- Hacl_Bignum_Fmul_mul_shift_reduce_(t, tmp, input2);
- Hacl_Bignum_Fproduct_carry_wide_(t);
- b4 = t[4U];
- b0 = t[0U];
- b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
- b0_ =
- FStar_UInt128_add(b0,
- FStar_UInt128_mul_wide((uint64_t)19U,
- FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
- t[4U] = b4_;
- t[0U] = b0_;
- Hacl_Bignum_Fproduct_copy_from_wide_(output, t);
- i0 = output[0U];
- i1 = output[1U];
- i0_ = i0 & (uint64_t)0x7ffffffffffffU;
- i1_ = i1 + (i0 >> (uint32_t)51U);
- output[0U] = i0_;
- output[1U] = i1_;
- }
- }
-}
-
-inline static void Hacl_Bignum_Fsquare_fsquare__(FStar_UInt128_uint128 *tmp, uint64_t *output)
-{
- uint64_t r0 = output[0U];
- uint64_t r1 = output[1U];
- uint64_t r2 = output[2U];
- uint64_t r3 = output[3U];
- uint64_t r4 = output[4U];
- uint64_t d0 = r0 * (uint64_t)2U;
- uint64_t d1 = r1 * (uint64_t)2U;
- uint64_t d2 = r2 * (uint64_t)2U * (uint64_t)19U;
- uint64_t d419 = r4 * (uint64_t)19U;
- uint64_t d4 = d419 * (uint64_t)2U;
- FStar_UInt128_uint128
- s0 =
- FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(r0, r0),
- FStar_UInt128_mul_wide(d4, r1)),
- FStar_UInt128_mul_wide(d2, r3));
- FStar_UInt128_uint128
- s1 =
- FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r1),
- FStar_UInt128_mul_wide(d4, r2)),
- FStar_UInt128_mul_wide(r3 * (uint64_t)19U, r3));
- FStar_UInt128_uint128
- s2 =
- FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r2),
- FStar_UInt128_mul_wide(r1, r1)),
- FStar_UInt128_mul_wide(d4, r3));
- FStar_UInt128_uint128
- s3 =
- FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r3),
- FStar_UInt128_mul_wide(d1, r2)),
- FStar_UInt128_mul_wide(r4, d419));
- FStar_UInt128_uint128
- s4 =
- FStar_UInt128_add(FStar_UInt128_add(FStar_UInt128_mul_wide(d0, r4),
- FStar_UInt128_mul_wide(d1, r3)),
- FStar_UInt128_mul_wide(r2, r2));
- tmp[0U] = s0;
- tmp[1U] = s1;
- tmp[2U] = s2;
- tmp[3U] = s3;
- tmp[4U] = s4;
-}
-
-inline static void Hacl_Bignum_Fsquare_fsquare_(FStar_UInt128_uint128 *tmp, uint64_t *output)
-{
- FStar_UInt128_uint128 b4;
- FStar_UInt128_uint128 b0;
- FStar_UInt128_uint128 b4_;
- FStar_UInt128_uint128 b0_;
- uint64_t i0;
- uint64_t i1;
- uint64_t i0_;
- uint64_t i1_;
- Hacl_Bignum_Fsquare_fsquare__(tmp, output);
- Hacl_Bignum_Fproduct_carry_wide_(tmp);
- b4 = tmp[4U];
- b0 = tmp[0U];
- b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
- b0_ =
- FStar_UInt128_add(b0,
- FStar_UInt128_mul_wide((uint64_t)19U,
- FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
- tmp[4U] = b4_;
- tmp[0U] = b0_;
- Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
- i0 = output[0U];
- i1 = output[1U];
- i0_ = i0 & (uint64_t)0x7ffffffffffffU;
- i1_ = i1 + (i0 >> (uint32_t)51U);
- output[0U] = i0_;
- output[1U] = i1_;
-}
-
-static void
-Hacl_Bignum_Fsquare_fsquare_times_(
- uint64_t *input,
- FStar_UInt128_uint128 *tmp,
- uint32_t count1
-)
-{
- uint32_t i;
- Hacl_Bignum_Fsquare_fsquare_(tmp, input);
- for (i = (uint32_t)1U; i < count1; i = i + (uint32_t)1U)
- Hacl_Bignum_Fsquare_fsquare_(tmp, input);
-}
-
-inline static void
-Hacl_Bignum_Fsquare_fsquare_times(uint64_t *output, uint64_t *input, uint32_t count1)
-{
- KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
- {
- FStar_UInt128_uint128 t[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
- }
- memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
- Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
- }
-}
-
-inline static void Hacl_Bignum_Fsquare_fsquare_times_inplace(uint64_t *output, uint32_t count1)
-{
- KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
- {
- FStar_UInt128_uint128 t[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- t[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
- }
- Hacl_Bignum_Fsquare_fsquare_times_(output, t, count1);
- }
-}
-
-inline static void Hacl_Bignum_Crecip_crecip(uint64_t *out, uint64_t *z)
-{
- uint64_t buf[20U] = { 0U };
- uint64_t *a0 = buf;
- uint64_t *t00 = buf + (uint32_t)5U;
- uint64_t *b0 = buf + (uint32_t)10U;
- uint64_t *t01;
- uint64_t *b1;
- uint64_t *c0;
- uint64_t *a;
- uint64_t *t0;
- uint64_t *b;
- uint64_t *c;
- Hacl_Bignum_Fsquare_fsquare_times(a0, z, (uint32_t)1U);
- Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)2U);
- Hacl_Bignum_Fmul_fmul(b0, t00, z);
- Hacl_Bignum_Fmul_fmul(a0, b0, a0);
- Hacl_Bignum_Fsquare_fsquare_times(t00, a0, (uint32_t)1U);
- Hacl_Bignum_Fmul_fmul(b0, t00, b0);
- Hacl_Bignum_Fsquare_fsquare_times(t00, b0, (uint32_t)5U);
- t01 = buf + (uint32_t)5U;
- b1 = buf + (uint32_t)10U;
- c0 = buf + (uint32_t)15U;
- Hacl_Bignum_Fmul_fmul(b1, t01, b1);
- Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)10U);
- Hacl_Bignum_Fmul_fmul(c0, t01, b1);
- Hacl_Bignum_Fsquare_fsquare_times(t01, c0, (uint32_t)20U);
- Hacl_Bignum_Fmul_fmul(t01, t01, c0);
- Hacl_Bignum_Fsquare_fsquare_times_inplace(t01, (uint32_t)10U);
- Hacl_Bignum_Fmul_fmul(b1, t01, b1);
- Hacl_Bignum_Fsquare_fsquare_times(t01, b1, (uint32_t)50U);
- a = buf;
- t0 = buf + (uint32_t)5U;
- b = buf + (uint32_t)10U;
- c = buf + (uint32_t)15U;
- Hacl_Bignum_Fmul_fmul(c, t0, b);
- Hacl_Bignum_Fsquare_fsquare_times(t0, c, (uint32_t)100U);
- Hacl_Bignum_Fmul_fmul(t0, t0, c);
- Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)50U);
- Hacl_Bignum_Fmul_fmul(t0, t0, b);
- Hacl_Bignum_Fsquare_fsquare_times_inplace(t0, (uint32_t)5U);
- Hacl_Bignum_Fmul_fmul(out, t0, a);
-}
-
-inline static void Hacl_Bignum_fsum(uint64_t *a, uint64_t *b)
-{
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint64_t xi = a[i];
- uint64_t yi = b[i];
- a[i] = xi + yi;
- }
-}
-
-inline static void Hacl_Bignum_fdifference(uint64_t *a, uint64_t *b)
-{
- uint64_t tmp[5U] = { 0U };
- uint64_t b0;
- uint64_t b1;
- uint64_t b2;
- uint64_t b3;
- uint64_t b4;
- memcpy(tmp, b, (uint32_t)5U * sizeof b[0U]);
- b0 = tmp[0U];
- b1 = tmp[1U];
- b2 = tmp[2U];
- b3 = tmp[3U];
- b4 = tmp[4U];
- tmp[0U] = b0 + (uint64_t)0x3fffffffffff68U;
- tmp[1U] = b1 + (uint64_t)0x3ffffffffffff8U;
- tmp[2U] = b2 + (uint64_t)0x3ffffffffffff8U;
- tmp[3U] = b3 + (uint64_t)0x3ffffffffffff8U;
- tmp[4U] = b4 + (uint64_t)0x3ffffffffffff8U;
- {
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint64_t xi = a[i];
- uint64_t yi = tmp[i];
- a[i] = yi - xi;
- }
- }
-}
-
-inline static void Hacl_Bignum_fscalar(uint64_t *output, uint64_t *b, uint64_t s)
-{
- KRML_CHECK_SIZE(sizeof (FStar_UInt128_uint128), (uint32_t)5U);
- {
- FStar_UInt128_uint128 tmp[5U];
- {
- uint32_t _i;
- for (_i = 0U; _i < (uint32_t)5U; ++_i)
- tmp[_i] = FStar_UInt128_uint64_to_uint128((uint64_t)0U);
- }
- {
- FStar_UInt128_uint128 b4;
- FStar_UInt128_uint128 b0;
- FStar_UInt128_uint128 b4_;
- FStar_UInt128_uint128 b0_;
- {
- uint32_t i;
- for (i = (uint32_t)0U; i < (uint32_t)5U; i = i + (uint32_t)1U)
- {
- uint64_t xi = b[i];
- tmp[i] = FStar_UInt128_mul_wide(xi, s);
- }
- }
- Hacl_Bignum_Fproduct_carry_wide_(tmp);
- b4 = tmp[4U];
- b0 = tmp[0U];
- b4_ = FStar_UInt128_logand(b4, FStar_UInt128_uint64_to_uint128((uint64_t)0x7ffffffffffffU));
- b0_ =
- FStar_UInt128_add(b0,
- FStar_UInt128_mul_wide((uint64_t)19U,
- FStar_UInt128_uint128_to_uint64(FStar_UInt128_shift_right(b4, (uint32_t)51U))));
- tmp[4U] = b4_;
- tmp[0U] = b0_;
- Hacl_Bignum_Fproduct_copy_from_wide_(output, tmp);
- }
- }
-}
-
-inline static void Hacl_Bignum_fmul(uint64_t *output, uint64_t *a, uint64_t *b)
-{
- Hacl_Bignum_Fmul_fmul(output, a, b);
-}
-
-inline static void Hacl_Bignum_crecip(uint64_t *output, uint64_t *input)
-{
- Hacl_Bignum_Crecip_crecip(output, input);
-}
-
-static void
-Hacl_EC_Point_swap_conditional_step(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
-{
- uint32_t i = ctr - (uint32_t)1U;
- uint64_t ai = a[i];
- uint64_t bi = b[i];
- uint64_t x = swap1 & (ai ^ bi);
- uint64_t ai1 = ai ^ x;
- uint64_t bi1 = bi ^ x;
- a[i] = ai1;
- b[i] = bi1;
-}
-
-static void
-Hacl_EC_Point_swap_conditional_(uint64_t *a, uint64_t *b, uint64_t swap1, uint32_t ctr)
-{
- if (!(ctr == (uint32_t)0U))
- {
- uint32_t i;
- Hacl_EC_Point_swap_conditional_step(a, b, swap1, ctr);
- i = ctr - (uint32_t)1U;
- Hacl_EC_Point_swap_conditional_(a, b, swap1, i);
- }
-}
-
-static void Hacl_EC_Point_swap_conditional(uint64_t *a, uint64_t *b, uint64_t iswap)
-{
- uint64_t swap1 = (uint64_t)0U - iswap;
- Hacl_EC_Point_swap_conditional_(a, b, swap1, (uint32_t)5U);
- Hacl_EC_Point_swap_conditional_(a + (uint32_t)5U, b + (uint32_t)5U, swap1, (uint32_t)5U);
-}
-
-static void Hacl_EC_Point_copy(uint64_t *output, uint64_t *input)
-{
- memcpy(output, input, (uint32_t)5U * sizeof input[0U]);
- memcpy(output + (uint32_t)5U,
- input + (uint32_t)5U,
- (uint32_t)5U * sizeof (input + (uint32_t)5U)[0U]);
-}
-
-static void Hacl_EC_Format_fexpand(uint64_t *output, uint8_t *input)
-{
- uint64_t i0 = load64_le(input);
- uint8_t *x00 = input + (uint32_t)6U;
- uint64_t i1 = load64_le(x00);
- uint8_t *x01 = input + (uint32_t)12U;
- uint64_t i2 = load64_le(x01);
- uint8_t *x02 = input + (uint32_t)19U;
- uint64_t i3 = load64_le(x02);
- uint8_t *x0 = input + (uint32_t)24U;
- uint64_t i4 = load64_le(x0);
- uint64_t output0 = i0 & (uint64_t)0x7ffffffffffffU;
- uint64_t output1 = i1 >> (uint32_t)3U & (uint64_t)0x7ffffffffffffU;
- uint64_t output2 = i2 >> (uint32_t)6U & (uint64_t)0x7ffffffffffffU;
- uint64_t output3 = i3 >> (uint32_t)1U & (uint64_t)0x7ffffffffffffU;
- uint64_t output4 = i4 >> (uint32_t)12U & (uint64_t)0x7ffffffffffffU;
- output[0U] = output0;
- output[1U] = output1;
- output[2U] = output2;
- output[3U] = output3;
- output[4U] = output4;
-}
-
-static void Hacl_EC_Format_fcontract_first_carry_pass(uint64_t *input)
-{
- uint64_t t0 = input[0U];
- uint64_t t1 = input[1U];
- uint64_t t2 = input[2U];
- uint64_t t3 = input[3U];
- uint64_t t4 = input[4U];
- uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
- uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
- uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
- uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
- uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
- uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
- input[0U] = t0_;
- input[1U] = t1__;
- input[2U] = t2__;
- input[3U] = t3__;
- input[4U] = t4_;
-}
-
-static void Hacl_EC_Format_fcontract_first_carry_full(uint64_t *input)
-{
- Hacl_EC_Format_fcontract_first_carry_pass(input);
- Hacl_Bignum_Modulo_carry_top(input);
-}
-
-static void Hacl_EC_Format_fcontract_second_carry_pass(uint64_t *input)
-{
- uint64_t t0 = input[0U];
- uint64_t t1 = input[1U];
- uint64_t t2 = input[2U];
- uint64_t t3 = input[3U];
- uint64_t t4 = input[4U];
- uint64_t t1_ = t1 + (t0 >> (uint32_t)51U);
- uint64_t t0_ = t0 & (uint64_t)0x7ffffffffffffU;
- uint64_t t2_ = t2 + (t1_ >> (uint32_t)51U);
- uint64_t t1__ = t1_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t3_ = t3 + (t2_ >> (uint32_t)51U);
- uint64_t t2__ = t2_ & (uint64_t)0x7ffffffffffffU;
- uint64_t t4_ = t4 + (t3_ >> (uint32_t)51U);
- uint64_t t3__ = t3_ & (uint64_t)0x7ffffffffffffU;
- input[0U] = t0_;
- input[1U] = t1__;
- input[2U] = t2__;
- input[3U] = t3__;
- input[4U] = t4_;
-}
-
-static void Hacl_EC_Format_fcontract_second_carry_full(uint64_t *input)
-{
- uint64_t i0;
- uint64_t i1;
- uint64_t i0_;
- uint64_t i1_;
- Hacl_EC_Format_fcontract_second_carry_pass(input);
- Hacl_Bignum_Modulo_carry_top(input);
- i0 = input[0U];
- i1 = input[1U];
- i0_ = i0 & (uint64_t)0x7ffffffffffffU;
- i1_ = i1 + (i0 >> (uint32_t)51U);
- input[0U] = i0_;
- input[1U] = i1_;
-}
-
-static void Hacl_EC_Format_fcontract_trim(uint64_t *input)
-{
- uint64_t a0 = input[0U];
- uint64_t a1 = input[1U];
- uint64_t a2 = input[2U];
- uint64_t a3 = input[3U];
- uint64_t a4 = input[4U];
- uint64_t mask0 = FStar_UInt64_gte_mask(a0, (uint64_t)0x7ffffffffffedU);
- uint64_t mask1 = FStar_UInt64_eq_mask(a1, (uint64_t)0x7ffffffffffffU);
- uint64_t mask2 = FStar_UInt64_eq_mask(a2, (uint64_t)0x7ffffffffffffU);
- uint64_t mask3 = FStar_UInt64_eq_mask(a3, (uint64_t)0x7ffffffffffffU);
- uint64_t mask4 = FStar_UInt64_eq_mask(a4, (uint64_t)0x7ffffffffffffU);
- uint64_t mask = (((mask0 & mask1) & mask2) & mask3) & mask4;
- uint64_t a0_ = a0 - ((uint64_t)0x7ffffffffffedU & mask);
- uint64_t a1_ = a1 - ((uint64_t)0x7ffffffffffffU & mask);
- uint64_t a2_ = a2 - ((uint64_t)0x7ffffffffffffU & mask);
- uint64_t a3_ = a3 - ((uint64_t)0x7ffffffffffffU & mask);
- uint64_t a4_ = a4 - ((uint64_t)0x7ffffffffffffU & mask);
- input[0U] = a0_;
- input[1U] = a1_;
- input[2U] = a2_;
- input[3U] = a3_;
- input[4U] = a4_;
-}
-
-static void Hacl_EC_Format_fcontract_store(uint8_t *output, uint64_t *input)
-{
- uint64_t t0 = input[0U];
- uint64_t t1 = input[1U];
- uint64_t t2 = input[2U];
- uint64_t t3 = input[3U];
- uint64_t t4 = input[4U];
- uint64_t o0 = t1 << (uint32_t)51U | t0;
- uint64_t o1 = t2 << (uint32_t)38U | t1 >> (uint32_t)13U;
- uint64_t o2 = t3 << (uint32_t)25U | t2 >> (uint32_t)26U;
- uint64_t o3 = t4 << (uint32_t)12U | t3 >> (uint32_t)39U;
- uint8_t *b0 = output;
- uint8_t *b1 = output + (uint32_t)8U;
- uint8_t *b2 = output + (uint32_t)16U;
- uint8_t *b3 = output + (uint32_t)24U;
- store64_le(b0, o0);
- store64_le(b1, o1);
- store64_le(b2, o2);
- store64_le(b3, o3);
-}
-
-static void Hacl_EC_Format_fcontract(uint8_t *output, uint64_t *input)
-{
- Hacl_EC_Format_fcontract_first_carry_full(input);
- Hacl_EC_Format_fcontract_second_carry_full(input);
- Hacl_EC_Format_fcontract_trim(input);
- Hacl_EC_Format_fcontract_store(output, input);
-}
-
-static void Hacl_EC_Format_scalar_of_point(uint8_t *scalar, uint64_t *point)
-{
- uint64_t *x = point;
- uint64_t *z = point + (uint32_t)5U;
- uint64_t buf[10U] = { 0U };
- uint64_t *zmone = buf;
- uint64_t *sc = buf + (uint32_t)5U;
- Hacl_Bignum_crecip(zmone, z);
- Hacl_Bignum_fmul(sc, x, zmone);
- Hacl_EC_Format_fcontract(scalar, sc);
-}
-
-static void
-Hacl_EC_AddAndDouble_fmonty(
- uint64_t *pp,
- uint64_t *ppq,
- uint64_t *p,
- uint64_t *pq,
- uint64_t *qmqp
-)
-{
- uint64_t *qx = qmqp;
- uint64_t *x2 = pp;
- uint64_t *z2 = pp + (uint32_t)5U;
- uint64_t *x3 = ppq;
- uint64_t *z3 = ppq + (uint32_t)5U;
- uint64_t *x = p;
- uint64_t *z = p + (uint32_t)5U;
- uint64_t *xprime = pq;
- uint64_t *zprime = pq + (uint32_t)5U;
- uint64_t buf[40U] = { 0U };
- uint64_t *origx = buf;
- uint64_t *origxprime0 = buf + (uint32_t)5U;
- uint64_t *xxprime0 = buf + (uint32_t)25U;
- uint64_t *zzprime0 = buf + (uint32_t)30U;
- uint64_t *origxprime;
- uint64_t *xx0;
- uint64_t *zz0;
- uint64_t *xxprime;
- uint64_t *zzprime;
- uint64_t *zzzprime;
- uint64_t *zzz;
- uint64_t *xx;
- uint64_t *zz;
- uint64_t scalar;
- memcpy(origx, x, (uint32_t)5U * sizeof x[0U]);
- Hacl_Bignum_fsum(x, z);
- Hacl_Bignum_fdifference(z, origx);
- memcpy(origxprime0, xprime, (uint32_t)5U * sizeof xprime[0U]);
- Hacl_Bignum_fsum(xprime, zprime);
- Hacl_Bignum_fdifference(zprime, origxprime0);
- Hacl_Bignum_fmul(xxprime0, xprime, z);
- Hacl_Bignum_fmul(zzprime0, x, zprime);
- origxprime = buf + (uint32_t)5U;
- xx0 = buf + (uint32_t)15U;
- zz0 = buf + (uint32_t)20U;
- xxprime = buf + (uint32_t)25U;
- zzprime = buf + (uint32_t)30U;
- zzzprime = buf + (uint32_t)35U;
- memcpy(origxprime, xxprime, (uint32_t)5U * sizeof xxprime[0U]);
- Hacl_Bignum_fsum(xxprime, zzprime);
- Hacl_Bignum_fdifference(zzprime, origxprime);
- Hacl_Bignum_Fsquare_fsquare_times(x3, xxprime, (uint32_t)1U);
- Hacl_Bignum_Fsquare_fsquare_times(zzzprime, zzprime, (uint32_t)1U);
- Hacl_Bignum_fmul(z3, zzzprime, qx);
- Hacl_Bignum_Fsquare_fsquare_times(xx0, x, (uint32_t)1U);
- Hacl_Bignum_Fsquare_fsquare_times(zz0, z, (uint32_t)1U);
- zzz = buf + (uint32_t)10U;
- xx = buf + (uint32_t)15U;
- zz = buf + (uint32_t)20U;
- Hacl_Bignum_fmul(x2, xx, zz);
- Hacl_Bignum_fdifference(zz, xx);
- scalar = (uint64_t)121665U;
- Hacl_Bignum_fscalar(zzz, zz, scalar);
- Hacl_Bignum_fsum(zzz, xx);
- Hacl_Bignum_fmul(z2, zzz, zz);
-}
-
-static void
-Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint8_t byt
-)
-{
- uint64_t bit0 = (uint64_t)(byt >> (uint32_t)7U);
- uint64_t bit;
- Hacl_EC_Point_swap_conditional(nq, nqpq, bit0);
- Hacl_EC_AddAndDouble_fmonty(nq2, nqpq2, nq, nqpq, q);
- bit = (uint64_t)(byt >> (uint32_t)7U);
- Hacl_EC_Point_swap_conditional(nq2, nqpq2, bit);
-}
-
-static void
-Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint8_t byt
-)
-{
- uint8_t byt1;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq, nqpq, nq2, nqpq2, q, byt);
- byt1 = byt << (uint32_t)1U;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop_step(nq2, nqpq2, nq, nqpq, q, byt1);
-}
-
-static void
-Hacl_EC_Ladder_SmallLoop_cmult_small_loop(
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint8_t byt,
- uint32_t i
-)
-{
- if (!(i == (uint32_t)0U))
- {
- uint32_t i_ = i - (uint32_t)1U;
- uint8_t byt_;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop_double_step(nq, nqpq, nq2, nqpq2, q, byt);
- byt_ = byt << (uint32_t)2U;
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byt_, i_);
- }
-}
-
-static void
-Hacl_EC_Ladder_BigLoop_cmult_big_loop(
- uint8_t *n1,
- uint64_t *nq,
- uint64_t *nqpq,
- uint64_t *nq2,
- uint64_t *nqpq2,
- uint64_t *q,
- uint32_t i
-)
-{
- if (!(i == (uint32_t)0U))
- {
- uint32_t i1 = i - (uint32_t)1U;
- uint8_t byte = n1[i1];
- Hacl_EC_Ladder_SmallLoop_cmult_small_loop(nq, nqpq, nq2, nqpq2, q, byte, (uint32_t)4U);
- Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, i1);
- }
-}
-
-static void Hacl_EC_Ladder_cmult(uint64_t *result, uint8_t *n1, uint64_t *q)
-{
- uint64_t point_buf[40U] = { 0U };
- uint64_t *nq = point_buf;
- uint64_t *nqpq = point_buf + (uint32_t)10U;
- uint64_t *nq2 = point_buf + (uint32_t)20U;
- uint64_t *nqpq2 = point_buf + (uint32_t)30U;
- Hacl_EC_Point_copy(nqpq, q);
- nq[0U] = (uint64_t)1U;
- Hacl_EC_Ladder_BigLoop_cmult_big_loop(n1, nq, nqpq, nq2, nqpq2, q, (uint32_t)32U);
- Hacl_EC_Point_copy(result, nq);
-}
-
-void Hacl_Curve25519_crypto_scalarmult(uint8_t *mypublic, uint8_t *secret, uint8_t *basepoint)
-{
- uint64_t buf0[10U] = { 0U };
- uint64_t *x0 = buf0;
- uint64_t *z = buf0 + (uint32_t)5U;
- uint64_t *q;
- Hacl_EC_Format_fexpand(x0, basepoint);
- z[0U] = (uint64_t)1U;
- q = buf0;
- {
- uint8_t e[32U] = { 0U };
- uint8_t e0;
- uint8_t e31;
- uint8_t e01;
- uint8_t e311;
- uint8_t e312;
- uint8_t *scalar;
- memcpy(e, secret, (uint32_t)32U * sizeof secret[0U]);
- e0 = e[0U];
- e31 = e[31U];
- e01 = e0 & (uint8_t)248U;
- e311 = e31 & (uint8_t)127U;
- e312 = e311 | (uint8_t)64U;
- e[0U] = e01;
- e[31U] = e312;
- scalar = e;
- {
- uint64_t buf[15U] = { 0U };
- uint64_t *nq = buf;
- uint64_t *x = nq;
- x[0U] = (uint64_t)1U;
- Hacl_EC_Ladder_cmult(nq, scalar, q);
- Hacl_EC_Format_scalar_of_point(mypublic, nq);
- }
- }
-}
-
diff --git a/3rdparty/everest/library/x25519.c b/3rdparty/everest/library/x25519.c
deleted file mode 100644
index 83064dc..0000000
--- a/3rdparty/everest/library/x25519.c
+++ /dev/null
@@ -1,186 +0,0 @@
-/*
- * ECDH with curve-optimized implementation multiplexing
- *
- * Copyright 2016-2018 INRIA and Microsoft Corporation
- * SPDX-License-Identifier: Apache-2.0
- *
- * Licensed under the Apache License, Version 2.0 (the "License"); you may
- * not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- *
- * This file is part of Mbed TLS (https://tls.mbed.org)
- */
-
-#include "common.h"
-
-#if defined(MBEDTLS_ECDH_C) && defined(MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED)
-
-#include <mbedtls/ecdh.h>
-
-#if !(defined(__SIZEOF_INT128__) && (__SIZEOF_INT128__ == 16))
-#define KRML_VERIFIED_UINT128
-#endif
-
-#include <Hacl_Curve25519.h>
-#include <mbedtls/platform_util.h>
-
-#include "x25519.h"
-
-#include <string.h>
-
-/*
- * Initialize context
- */
-void mbedtls_x25519_init( mbedtls_x25519_context *ctx )
-{
- mbedtls_platform_zeroize( ctx, sizeof( mbedtls_x25519_context ) );
-}
-
-/*
- * Free context
- */
-void mbedtls_x25519_free( mbedtls_x25519_context *ctx )
-{
- if( ctx == NULL )
- return;
-
- mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
- mbedtls_platform_zeroize( ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
-}
-
-int mbedtls_x25519_make_params( mbedtls_x25519_context *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )(void *, unsigned char *, size_t),
- void *p_rng )
-{
- int ret = 0;
-
- uint8_t base[MBEDTLS_X25519_KEY_SIZE_BYTES] = {0};
-
- if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
- return ret;
-
- *olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 4;
- if( blen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
-
- *buf++ = MBEDTLS_ECP_TLS_NAMED_CURVE;
- *buf++ = MBEDTLS_ECP_TLS_CURVE25519 >> 8;
- *buf++ = MBEDTLS_ECP_TLS_CURVE25519 & 0xFF;
- *buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
-
- base[0] = 9;
- Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
-
- base[0] = 0;
- if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
- return MBEDTLS_ERR_ECP_RANDOM_FAILED;
-
- return( 0 );
-}
-
-int mbedtls_x25519_read_params( mbedtls_x25519_context *ctx,
- const unsigned char **buf, const unsigned char *end )
-{
- if( end - *buf < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
-
- if( ( *(*buf)++ != MBEDTLS_X25519_KEY_SIZE_BYTES ) )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
-
- memcpy( ctx->peer_point, *buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
- *buf += MBEDTLS_X25519_KEY_SIZE_BYTES;
- return( 0 );
-}
-
-int mbedtls_x25519_get_params( mbedtls_x25519_context *ctx, const mbedtls_ecp_keypair *key,
- mbedtls_x25519_ecdh_side side )
-{
- size_t olen = 0;
-
- switch( side ) {
- case MBEDTLS_X25519_ECDH_THEIRS:
- return mbedtls_ecp_point_write_binary( &key->grp, &key->Q, MBEDTLS_ECP_PF_COMPRESSED, &olen, ctx->peer_point, MBEDTLS_X25519_KEY_SIZE_BYTES );
- case MBEDTLS_X25519_ECDH_OURS:
- return mbedtls_mpi_write_binary_le( &key->d, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
- default:
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
- }
-}
-
-int mbedtls_x25519_calc_secret( mbedtls_x25519_context *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )(void *, unsigned char *, size_t),
- void *p_rng )
-{
- /* f_rng and p_rng are not used here because this implementation does not
- need blinding since it has constant trace. */
- (( void )f_rng);
- (( void )p_rng);
-
- *olen = MBEDTLS_X25519_KEY_SIZE_BYTES;
-
- if( blen < *olen )
- return( MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL );
-
- Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, ctx->peer_point);
-
- /* Wipe the DH secret and don't let the peer chose a small subgroup point */
- mbedtls_platform_zeroize( ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES );
-
- if( memcmp( buf, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES) == 0 )
- return MBEDTLS_ERR_ECP_RANDOM_FAILED;
-
- return( 0 );
-}
-
-int mbedtls_x25519_make_public( mbedtls_x25519_context *ctx, size_t *olen,
- unsigned char *buf, size_t blen,
- int( *f_rng )(void *, unsigned char *, size_t),
- void *p_rng )
-{
- int ret = 0;
- unsigned char base[MBEDTLS_X25519_KEY_SIZE_BYTES] = { 0 };
-
- if( ctx == NULL )
- return( MBEDTLS_ERR_ECP_BAD_INPUT_DATA );
-
- if( ( ret = f_rng( p_rng, ctx->our_secret, MBEDTLS_X25519_KEY_SIZE_BYTES ) ) != 0 )
- return ret;
-
- *olen = MBEDTLS_X25519_KEY_SIZE_BYTES + 1;
- if( blen < *olen )
- return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
- *buf++ = MBEDTLS_X25519_KEY_SIZE_BYTES;
-
- base[0] = 9;
- Hacl_Curve25519_crypto_scalarmult( buf, ctx->our_secret, base );
-
- base[0] = 0;
- if( memcmp( buf, base, MBEDTLS_X25519_KEY_SIZE_BYTES ) == 0 )
- return MBEDTLS_ERR_ECP_RANDOM_FAILED;
-
- return( ret );
-}
-
-int mbedtls_x25519_read_public( mbedtls_x25519_context *ctx,
- const unsigned char *buf, size_t blen )
-{
- if( blen < MBEDTLS_X25519_KEY_SIZE_BYTES + 1 )
- return(MBEDTLS_ERR_ECP_BUFFER_TOO_SMALL);
- if( (*buf++ != MBEDTLS_X25519_KEY_SIZE_BYTES) )
- return(MBEDTLS_ERR_ECP_BAD_INPUT_DATA);
- memcpy( ctx->peer_point, buf, MBEDTLS_X25519_KEY_SIZE_BYTES );
- return( 0 );
-}
-
-
-#endif /* MBEDTLS_ECDH_C && MBEDTLS_ECDH_VARIANT_EVEREST_ENABLED */
diff --git a/3rdparty/p256-m/.gitignore b/3rdparty/p256-m/.gitignore
deleted file mode 100644
index f3c7a7c..0000000
--- a/3rdparty/p256-m/.gitignore
+++ /dev/null
@@ -1 +0,0 @@
-Makefile
diff --git a/3rdparty/p256-m/CMakeLists.txt b/3rdparty/p256-m/CMakeLists.txt
deleted file mode 100644
index bd302a7..0000000
--- a/3rdparty/p256-m/CMakeLists.txt
+++ /dev/null
@@ -1,41 +0,0 @@
-set(p256m_target ${MBEDTLS_TARGET_PREFIX}p256m)
-
-add_library(${p256m_target}
- p256-m_driver_entrypoints.c
- p256-m/p256-m.c)
-
-target_include_directories(${p256m_target}
- PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}>
- $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/p256-m>
- $<BUILD_INTERFACE:${MBEDTLS_DIR}/include>
- $<BUILD_INTERFACE:${MBEDTLS_DIR}/tf-psa-crypto/include>
- $<INSTALL_INTERFACE:include>
- PRIVATE ${MBEDTLS_DIR}/library/)
-
-# Pass-through MBEDTLS_CONFIG_FILE and MBEDTLS_USER_CONFIG_FILE
-# This must be duplicated from library/CMakeLists.txt because
-# p256m is not directly linked against any mbedtls targets
-# so does not inherit the compile definitions.
-if(MBEDTLS_CONFIG_FILE)
- target_compile_definitions(${p256m_target}
- PUBLIC MBEDTLS_CONFIG_FILE="${MBEDTLS_CONFIG_FILE}")
-endif()
-if(MBEDTLS_USER_CONFIG_FILE)
- target_compile_definitions(${p256m_target}
- PUBLIC MBEDTLS_USER_CONFIG_FILE="${MBEDTLS_USER_CONFIG_FILE}")
-endif()
-
-if(INSTALL_MBEDTLS_HEADERS)
-
- install(DIRECTORY :${CMAKE_CURRENT_SOURCE_DIR}
- DESTINATION include
- FILE_PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ
- DIRECTORY_PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE GROUP_READ GROUP_EXECUTE WORLD_READ WORLD_EXECUTE
- FILES_MATCHING PATTERN "*.h")
-
-endif(INSTALL_MBEDTLS_HEADERS)
-
-install(TARGETS ${p256m_target}
-EXPORT MbedTLSTargets
-DESTINATION ${CMAKE_INSTALL_LIBDIR}
-PERMISSIONS OWNER_READ OWNER_WRITE GROUP_READ WORLD_READ)
diff --git a/3rdparty/p256-m/Makefile.inc b/3rdparty/p256-m/Makefile.inc
deleted file mode 100644
index 53bb55b..0000000
--- a/3rdparty/p256-m/Makefile.inc
+++ /dev/null
@@ -1,5 +0,0 @@
-THIRDPARTY_INCLUDES+=-I$(THIRDPARTY_DIR)/p256-m/p256-m/include -I$(THIRDPARTY_DIR)/p256-m/p256-m/include/p256-m -I$(THIRDPARTY_DIR)/p256-m/p256-m_driver_interface
-
-THIRDPARTY_CRYPTO_OBJECTS+= \
- $(THIRDPARTY_DIR)/p256-m//p256-m_driver_entrypoints.o \
- $(THIRDPARTY_DIR)/p256-m//p256-m/p256-m.o
diff --git a/3rdparty/p256-m/README.md b/3rdparty/p256-m/README.md
deleted file mode 100644
index ec90f34..0000000
--- a/3rdparty/p256-m/README.md
+++ /dev/null
@@ -1,4 +0,0 @@
-The files within the `p256-m/` subdirectory originate from the [p256-m GitHub repository](https://github.com/mpg/p256-m). They are distributed here under a dual Apache-2.0 OR GPL-2.0-or-later license. They are authored by Manuel Pégourié-Gonnard. p256-m is a minimalistic implementation of ECDH and ECDSA on NIST P-256, especially suited to constrained 32-bit environments. Mbed TLS documentation for integrating drivers uses p256-m as an example of a software accelerator, and describes how it can be integrated alongside Mbed TLS. It should be noted that p256-m files in the Mbed TLS repo will not be updated regularly, so they may not have fixes and improvements present in the upstream project.
-
-The files `p256-m.c`, `p256-m.h` and `README.md` have been taken from the `p256-m` repository.
-It should be noted that p256-m deliberately does not supply its own cryptographically secure RNG function. As a result, the PSA RNG is used, with `p256_generate_random()` wrapping `psa_generate_random()`.
diff --git a/3rdparty/p256-m/p256-m/README.md b/3rdparty/p256-m/p256-m/README.md
deleted file mode 100644
index 5e88f71..0000000
--- a/3rdparty/p256-m/p256-m/README.md
+++ /dev/null
@@ -1,544 +0,0 @@
-*This is the original README for the p256-m repository. Please note that as
-only a subset of p256-m's files are present in Mbed TLS, this README may refer
-to files that are not present/relevant here.*
-
-p256-m is a minimalistic implementation of ECDH and ECDSA on NIST P-256,
-especially suited to constrained 32-bit environments. It's written in standard
-C, with optional bits of assembly for Arm Cortex-M and Cortex-A CPUs.
-
-Its design is guided by the following goals in this order:
-
-1. correctness & security;
-2. low code size & RAM usage;
-3. runtime performance.
-
-Most cryptographic implementations care more about speed than footprint, and
-some might even risk weakening security for more speed. p256-m was written
-because I wanted to see what happened when reversing the usual emphasis.
-
-The result is a full implementation of ECDH and ECDSA in **less than 3KiB of
-code**, using **less than 768 bytes of RAM**, with comparable performance
-to existing implementations (see below) - in less than 700 LOC.
-
-_Contents of this Readme:_
-
-- [Correctness](#correctness)
-- [Security](#security)
-- [Code size](#code-size)
-- [RAM usage](#ram-usage)
-- [Runtime performance](#runtime-performance)
-- [Comparison with other implementations](#comparison-with-other-implementations)
-- [Design overview](#design-overview)
-- [Notes about other curves](#notes-about-other-curves)
-- [Notes about other platforms](#notes-about-other-platforms)
-
-## Correctness
-
-**API design:**
-
-- The API is minimal: only 4 public functions.
-- Each public function fully validates its inputs and returns specific errors.
-- The API uses arrays of octets for all input and output.
-
-**Testing:**
-
-- p256-m is validated against multiple test vectors from various RFCs and
- NIST.
-- In addition, crafted inputs are used for negative testing and to reach
- corner cases.
-- Two test suites are provided: one for closed-box testing (using only the
- public API), one for open-box testing (for unit-testing internal functions,
-and reaching more error cases by exploiting knowledge of how the RNG is used).
-- The resulting branch coverage is maximal: closed-box testing reaches all
- branches except four; three of them are reached by open-box testing using a
-rigged RNG; the last branch could only be reached by computing a discrete log
-on P-256... See `coverage.sh`.
-- Testing also uses dynamic analysis: valgrind, ASan, MemSan, UBSan.
-
-**Code quality:**
-
-- The code is standard C99; it builds without warnings with `clang
- -Weverything` and `gcc -Wall -Wextra -pedantic`.
-- The code is small and well documented, including internal APIs: with the
- header file, it's less than 700 lines of code, and more lines of comments
-than of code.
-- However it _has not been reviewed_ independently so far, as this is a
- personal project.
-
-**Short Weierstrass pitfalls:**
-
-Its has been [pointed out](https://safecurves.cr.yp.to/) that the NIST curves,
-and indeed all Short Weierstrass curves, have a number of pitfalls including
-risk for the implementation to:
-
-- "produce incorrect results for some rare curve points" - this is avoided by
- carefully checking the validity domain of formulas used throughout the code;
-- "leak secret data when the input isn't a curve point" - this is avoided by
- validating that points lie on the curve every time a point is deserialized.
-
-## Security
-
-In addition to the above correctness claims, p256-m has the following
-properties:
-
-- it has no branch depending (even indirectly) on secret data;
-- it has no memory access depending (even indirectly) on secret data.
-
-These properties are checked using valgrind and MemSan with the ideas
-behind [ctgrind](https://github.com/agl/ctgrind), see `consttime.sh`.
-
-In addition to avoiding branches and memory accesses depending on secret data,
-p256-m also avoid instructions (or library functions) whose execution time
-depends on the value of operands on cores of interest. Namely, it never uses
-integer division, and for multiplication by default it only uses 16x16->32 bit
-unsigned multiplication. On cores which have a constant-time 32x32->64 bit
-unsigned multiplication instruction, the symbol `MUL64_IS_CONSTANT_TIME` can
-be defined by the user at compile-time to take advantage of it in order to
-improve performance and code size. (On Cortex-M and Cortex-A cores wtih GCC or
-Clang this is not necessary, since inline assembly is used instead.)
-
-As a result, p256-m should be secure against the following classes of attackers:
-
-1. attackers who can only manipulate the input and observe the output;
-2. attackers who can also measure the total computation time of the operation;
-3. attackers who can also observe and manipulate micro-architectural features
- such as the cache or branch predictor with arbitrary precision.
-
-However, p256-m makes no attempt to protect against:
-
-4. passive physical attackers who can record traces of physical emissions
- (power, EM, sound) of the CPU while it manipulates secrets;
-5. active physical attackers who can also inject faults in the computation.
-
-(Note: p256-m should actually be secure against SPA, by virtue of being fully
-constant-flow, but is not expected to resist any other physical attack.)
-
-**Warning:** p256-m requires an externally-provided RNG function. If that
-function is not cryptographically secure, then neither is p256-m's key
-generation or ECDSA signature generation.
-
-_Note:_ p256-m also follows best practices such as securely erasing secret
-data on the stack before returning.
-
-## Code size
-
-Compiled with
-[ARM-GCC 9](https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm/downloads),
-with `-mthumb -Os`, here are samples of code sizes reached on selected cores:
-
-- Cortex-M0: 2988 bytes
-- Cortex-M4: 2900 bytes
-- Cortex-A7: 2924 bytes
-
-Clang was also tried but tends to generate larger code (by about 10%). For
-details, see `sizes.sh`.
-
-**What's included:**
-
-- Full input validation and (de)serialisation of input/outputs to/from bytes.
-- Cleaning up secret values from the stack before returning from a function.
-- The code has no dependency on libc functions or the toolchain's runtime
- library (such as helpers for long multiply); this can be checked for the
-Arm-GCC toolchain with the `deps.sh` script.
-
-**What's excluded:**
-
-- A secure RNG function needs to be provided externally, see
- `p256_generate_random()` in `p256-m.h`.
-
-## RAM usage
-
-p256-m doesn't use any dynamic memory (on the heap), only the stack. Here's
-how much stack is used by each of its 4 public functions on selected cores:
-
-| Function | Cortex-M0 | Cortex-M4 | Cortex-A7 |
-| ------------------------- | --------: | --------: | --------: |
-| `p256_gen_keypair` | 608 | 564 | 564 |
-| `p256_ecdh_shared_secret` | 640 | 596 | 596 |
-| `p256_ecdsa_sign` | 664 | 604 | 604 |
-| `p256_ecdsa_verify` | 752 | 700 | 700 |
-
-For details, see `stack.sh`, `wcs.py` and `libc.msu` (the above figures assume
-that the externally-provided RNG function uses at most 384 bytes of stack).
-
-## Runtime performance
-
-Here are the timings of each public function in milliseconds measured on
-platforms based on a selection of cores:
-
-- Cortex-M0 at 48 MHz: STM32F091 board running Mbed OS 6
-- Cortex-M4 at 100 MHz: STM32F411 board running Mbed OS 6
-- Cortex-A7 at 900 MHz: Raspberry Pi 2B running Raspbian Buster
-
-| Function | Cortex-M0 | Cortex-M4 | Cortex-A7 |
-| ------------------------- | --------: | --------: | --------: |
-| `p256_gen_keypair` | 921 | 145 | 11 |
-| `p256_ecdh_shared_secret` | 922 | 144 | 11 |
-| `p256_ecdsa_sign` | 990 | 155 | 12 |
-| `p256_ecdsa_verify` | 1976 | 309 | 24 |
-| Sum of the above | 4809 | 753 | 59 |
-
-The sum of these operations corresponds to a TLS handshake using ECDHE-ECDSA
-with mutual authentication based on raw public keys or directly-trusted
-certificates (otherwise, add one 'verify' for each link in the peer's
-certificate chain).
-
-_Note_: the above figures where obtained by compiling with GCC, which is able
-to use inline assembly. Without that inline assembly (22 lines for Cortex-M0,
-1 line for Cortex-M4), the code would be roughly 2 times slower on those
-platforms. (The effect is much less important on the Cortex-A7 core.)
-
-For details, see `bench.sh`, `benchmark.c` and `on-target-benchmark/`.
-
-## Comparison with other implementations
-
-The most relevant/convenient implementation for comparisons is
-[TinyCrypt](https://github.com/intel/tinycrypt), as it's also a standalone
-implementation of ECDH and ECDSA on P-256 only, that also targets constrained
-devices. Other implementations tend to implement many curves and build on a
-shared bignum/MPI module (possibly also supporting RSA), which makes fair
-comparisons less convenient.
-
-The scripts used for TinyCrypt measurements are available in [this
-branch](https://github.com/mpg/tinycrypt/tree/measurements), based on version
-0.2.8.
-
-**Code size**
-
-| Core | p256-m | TinyCrypt |
-| --------- | -----: | --------: |
-| Cortex-M0 | 2988 | 6134 |
-| Cortex-M4 | 2900 | 5934 |
-| Cortex-A7 | 2924 | 5934 |
-
-**RAM usage**
-
-TinyCrypto also uses no heap, only the stack. Here's the RAM used by each
-operation on a Cortex-M0 core:
-
-| operation | p256-m | TinyCrypt |
-| ------------------ | -----: | --------: |
-| key generation | 608 | 824 |
-| ECDH shared secret | 640 | 728 |
-| ECDSA sign | 664 | 880 |
-| ECDSA verify | 752 | 824 |
-
-On a Cortex-M4 or Cortex-A7 core (identical numbers):
-
-| operation | p256-m | TinyCrypt |
-| ------------------ | -----: | --------: |
-| key generation | 564 | 796 |
-| ECDH shared secret | 596 | 700 |
-| ECDSA sign | 604 | 844 |
-| ECDSA verify | 700 | 808 |
-
-**Runtime performance**
-
-Here are the timings of each operation in milliseconds measured on
-platforms based on a selection of cores:
-
-_Cortex-M0_ at 48 MHz: STM32F091 board running Mbed OS 6
-
-| Operation | p256-m | TinyCrypt |
-| ------------------ | -----: | --------: |
-| Key generation | 921 | 979 |
-| ECDH shared secret | 922 | 975 |
-| ECDSA sign | 990 | 1009 |
-| ECDSA verify | 1976 | 1130 |
-| Sum of those 4 | 4809 | 4093 |
-
-_Cortex-M4_ at 100 MHz: STM32F411 board running Mbed OS 6
-
-| Operation | p256-m | TinyCrypt |
-| ------------------ | -----: | --------: |
-| Key generation | 145 | 178 |
-| ECDH shared secret | 144 | 177 |
-| ECDSA sign | 155 | 188 |
-| ECDSA verify | 309 | 210 |
-| Sum of those 4 | 753 | 753 |
-
-_Cortex-A7_ at 900 MHz: Raspberry Pi 2B running Raspbian Buster
-
-| Operation | p256-m | TinyCrypt |
-| ------------------ | -----: | --------: |
-| Key generation | 11 | 13 |
-| ECDH shared secret | 11 | 13 |
-| ECDSA sign | 12 | 14 |
-| ECDSA verify | 24 | 15 |
-| Sum of those 4 | 59 | 55 |
-
-_64-bit Intel_ (i7-6500U at 2.50GHz) laptop running Ubuntu 20.04
-
-Note: results in microseconds (previous benchmarks in milliseconds)
-
-| Operation | p256-m | TinyCrypt |
-| ------------------ | -----: | --------: |
-| Key generation | 1060 | 1627 |
-| ECDH shared secret | 1060 | 1611 |
-| ECDSA sign | 1136 | 1712 |
-| ECDSA verify | 2279 | 1888 |
-| Sum of those 4 | 5535 | 6838 |
-
-**Other differences**
-
-- While p256-m fully validates all inputs, Tinycrypt's ECDH shared secret
- function doesn't include validation of the peer's public key, which should be
-done separately by the user for static ECDH (there are attacks [when users
-forget](https://link.springer.com/chapter/10.1007/978-3-319-24174-6_21)).
-- The two implementations have slightly different security characteristics:
- p256-m is fully constant-time from the ground up so should be more robust
-than TinyCrypt against powerful local attackers (such as an untrusted OS
-attacking a secure enclave); on the other hand TinyCrypt includes coordinate
-randomisation which protects against some passive physical attacks (such as
-DPA, see Table 3, column C9 of [this
-paper](https://www.esat.kuleuven.be/cosic/publications/article-2293.pdf#page=12)),
-which p256-m completely ignores.
-- TinyCrypt's code looks like it could easily be expanded to support other
- curves, while p256-m has much more hard-coded to minimize code size (see
-"Notes about other curves" below).
-- TinyCrypt uses a specialised routine for reduction modulo the curve prime,
- exploiting its structure as a Solinas prime, which should be faster than the
-generic Montgomery reduction used by p256-m, but other factors appear to
-compensate for that.
-- TinyCrypt uses Co-Z Jacobian formulas for point operation, which should be
- faster (though a bit larger) than the mixed affine-Jacobian formulas
-used by p256-m, but again other factors appear to compensate for that.
-- p256-m uses bits of inline assembly for 64-bit multiplication on the
- platforms used for benchmarking, while TinyCrypt uses only C (and the
-compiler's runtime library).
-- TinyCrypt uses a specialised routine based on Shamir's trick for
- ECDSA verification, which gives much better performance than the generic
-code that p256-m uses in order to minimize code size.
-
-## Design overview
-
-The implementation is contained in a single file to keep most functions static
-and allow for more optimisations. It is organized in multiple layers:
-
-- Fixed-width multi-precision arithmetic
-- Fixed-width modular arithmetic
-- Operations on curve points
-- Operations with scalars
-- The public API
-
-**Multi-precision arithmetic.**
-
-Large integers are represented as arrays of `uint32_t` limbs. When carries may
-occur, casts to `uint64_t` are used to nudge the compiler towards using the
-CPU's carry flag. When overflow may occur, functions return a carry flag.
-
-This layer contains optional assembly for Cortex-M and Cortex-A cores, for the
-internal `u32_muladd64()` function, as well as two pure C versions of this
-function, depending on whether `MUL64_IS_CONSTANT_TIME`.
-
-This layer's API consists of:
-
-- addition, subtraction;
-- multiply-and-add, shift by one limb (for Montgomery multiplication);
-- conditional assignment, assignment of a small value;
-- comparison of two values for equality, comparison to 0 for equality;
-- (de)serialization as big-endian arrays of bytes.
-
-**Modular arithmetic.**
-
-All modular operations are done in the Montgomery domain, that is x is
-represented by `x * 2^256 mod m`; integers need to be converted to that domain
-before computations, and back from it afterwards. Montgomery constants
-associated to the curve's p and n are pre-computed and stored in static
-structures.
-
-Modular inversion is computed using Fermat's little theorem to get
-constant-time behaviour with respect to the value being inverted.
-
-This layer's API consists of:
-
-- the curve's constants p and n (and associated Montgomery constants);
-- modular addition, subtraction, multiplication, and inversion;
-- assignment of a small value;
-- conversion to/from Montgomery domain;
-- (de)serialization to/from bytes with integrated range checking and
- Montgomery domain conversion.
-
-**Operations on curve points.**
-
-Curve points are represented using either affine or Jacobian coordinates;
-affine coordinates are extended to represent 0 as (0,0). Individual
-coordinates are always in the Montgomery domain.
-
-Not all formulas associated with affine or Jacobian coordinates are complete;
-great care is taken to document and satisfy each function's pre-conditions.
-
-This layer's API consists of:
-
-- curve constants: b from the equation, the base point's coordinates;
-- point validity check (on the curve and not 0);
-- Jacobian to affine coordinate conversion;
-- point doubling in Jacobian coordinates (complete formulas);
-- point addition in mixed affine-Jacobian coordinates (P not in {0, Q, -Q});
-- point addition-or-doubling in affine coordinates (leaky version, only used
- for ECDSA verify where all data is public);
-- (de)serialization to/from bytes with integrated validity checking
-
-**Scalar operations.**
-
-The crucial function here is scalar multiplication. It uses a signed binary
-ladder, which is a variant of the good old double-and-add algorithm where an
-addition/subtraction is performed at each step. Again, care is taken to make
-sure the pre-conditions for the addition formulas are always satisfied. The
-signed binary ladder only works if the scalar is odd; this is ensured by
-negating both the scalar (mod n) and the input point if necessary.
-
-This layer's API consists of:
-
-- scalar multiplication
-- de-serialization from bytes with integrated range checking
-- generation of a scalar and its associated public key
-
-**Public API.**
-
-This layer builds on the others, but unlike them, all inputs and outputs are
-byte arrays. Key generation and ECDH shared secret computation are thin
-wrappers around internal functions, just taking care of format conversions and
-errors. The ECDSA functions have more non-trivial logic.
-
-This layer's API consists of:
-
-- key-pair generation
-- ECDH shared secret computation
-- ECDSA signature creation
-- ECDSA signature verification
-
-**Testing.**
-
-A self-contained, straightforward, pure-Python implementation was first
-produced as a warm-up and to help check intermediate values. Test vectors from
-various sources are embedded and used to validate the implementation.
-
-This implementation, `p256.py`, is used by a second Python script,
-`gen-test-data.py`, to generate additional data for both positive and negative
-testing, available from a C header file, that is then used by the closed-box
-and open-box test programs.
-
-p256-m can be compiled with extra instrumentation to mark secret data and
-allow either valgrind or MemSan to check that no branch or memory access
-depends on it (even indirectly). Macros are defined for this purpose near the
-top of the file.
-
-**Tested platforms.**
-
-There are 4 versions of the internal function `u32_muladd64`: two assembly
-versions, for Cortex-M/A cores with or without the DSP extension, and two
-pure-C versions, depending on whether `MUL64_IS_CONSTANT_TIME`.
-
-Tests are run on the following platforms:
-
-- `make` on x64 tests the pure-C version without `MUL64_IS_CONSTANT_TIME`
- (with Clang).
-- `./consttime.sh` on x64 tests both pure-C versions (with Clang).
-- `make` on Arm v7-A (Raspberry Pi 2) tests the Arm-DSP assembly version (with
- Clang).
-- `on-target-*box` on boards based on Cortex-M0 and M4 cores test both
- assembly versions (with GCC).
-
-In addition:
-
-- `sizes.sh` builds the code for three Arm cores with GCC and Clang.
-- `deps.sh` checks for external dependencies with GCC.
-
-## Notes about other curves
-
-It should be clear that minimal code size can only be reached by specializing
-the implementation to the curve at hand. Here's a list of things in the
-implementation that are specific to the NIST P-256 curve, and how the
-implementation could be changed to expand to other curves, layer by layer (see
-"Design Overview" above).
-
-**Fixed-width multi-precision arithmetic:**
-
-- The number of limbs is hard-coded to 8. For other 256-bit curves, nothing to
- change. For a curve of another size, hard-code to another value. For multiple
-curves of various sizes, add a parameter to each function specifying the
-number of limbs; when declaring arrays, always use the maximum number of
-limbs.
-
-**Fixed-width modular arithmetic:**
-
-- The values of the curve's constant p and n, and their associated Montgomery
- constants, are hard-coded. For another curve, just hard-code the new constants.
-For multiple other curves, define all the constants, and from this layer's API
-only keep the functions that already accept a `mod` parameter (that is, remove
-convenience functions `m256_xxx_p()`).
-- The number of limbs is again hard-coded to 8. See above, but it order to
- support multiple sizes there is no need to add a new parameter to functions
-in this layer: the existing `mod` parameter can include the number of limbs as
-well.
-
-**Operations on curve points:**
-
-- The values of the curve's constants b (constant term from the equation) and
- gx, gy (coordinates of the base point) are hard-coded. For another curve,
- hard-code the other values. For multiple curves, define each curve's value and
-add a "curve id" parameter to all functions in this layer.
-- The value of the curve's constant a is implicitly hard-coded to `-3` by using
- a standard optimisation to save one multiplication in the first step of
-`point_double()`. For curves that don't have a == -3, replace that with the
-normal computation.
-- The fact that b != 0 in the curve equation is used indirectly, to ensure
- that (0, 0) is not a point on the curve and re-use that value to represent
-the point 0. As far as I know, all Short Weierstrass curves standardized so
-far have b != 0.
-- The shape of the curve is assumed to be Short Weierstrass. For other curve
- shapes (Montgomery, (twisted) Edwards), this layer would probably look very
-different (both implementation and API).
-
-**Scalar operations:**
-
-- If multiple curves are to be supported, all function in this layer need to
- gain a new "curve id" parameter.
-- This layer assumes that the bit size of the curve's order n is the same as
- that of the modulus p. This is true of most curves standardized so far, the
-only exception being secp224k1. If that curve were to be supported, the
-representation of `n` and scalars would need adapting to allow for an extra
-limb.
-- The bit size of the curve's order is hard-coded in `scalar_mult()`. For
- multiple curves, this should be deduced from the "curve id" parameter.
-- The `scalar_mult()` function exploits the fact that the second least
- significant bit of the curve's order n is set in order to avoid a special
-case. For curve orders that don't meet this criterion, we can just handle that
-special case (multiplication by +-2) separately (always compute that and
-conditionally assign it to the result).
-- The shape of the curve is again assumed to be Short Weierstrass. For other curve
- shapes (Montgomery, (twisted) Edwards), this layer would probably have a
-very different implementation.
-
-**Public API:**
-
-- For multiple curves, all functions in this layer would need to gain a "curve
- id" parameter and handle variable-sized input/output.
-- The shape of the curve is again assumed to be Short Weierstrass. For other curve
- shapes (Montgomery, (twisted) Edwards), the ECDH API would probably look
-quite similar (with differences in the size of public keys), but the ECDSA API
-wouldn't apply and an EdDSA API would look pretty different.
-
-## Notes about other platforms
-
-While p256-m is standard C99, it is written with constrained 32-bit platforms
-in mind and makes a few assumptions about the platform:
-
-- The types `uint8_t`, `uint16_t`, `uint32_t` and `uint64_t` exist.
-- 32-bit unsigned addition and subtraction with carry are constant time.
-- 16x16->32-bit unsigned multiplication is available and constant time.
-
-Also, on platforms on which 64-bit addition and subtraction with carry, or
-even 64x64->128-bit multiplication, are available, p256-m makes no use of
-them, though they could significantly improve performance.
-
-This could be improved by replacing uses of arrays of `uint32_t` with a
-defined type throughout the internal APIs, and then on 64-bit platforms define
-that type to be an array of `uint64_t` instead, and making the obvious
-adaptations in the multi-precision arithmetic layer.
-
-Finally, the optional assembly code (which boosts performance by a factor 2 on
-tested Cortex-M CPUs, while slightly reducing code size and stack usage) is
-currently only available with compilers that support GCC's extended asm
-syntax (which includes GCC and Clang).
diff --git a/3rdparty/p256-m/p256-m/p256-m.c b/3rdparty/p256-m/p256-m/p256-m.c
deleted file mode 100644
index 42c35b5..0000000
--- a/3rdparty/p256-m/p256-m/p256-m.c
+++ /dev/null
@@ -1,1514 +0,0 @@
-/*
- * Implementation of curve P-256 (ECDH and ECDSA)
- *
- * Copyright The Mbed TLS Contributors
- * Author: Manuel Pégourié-Gonnard.
- * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
- */
-
-#include "p256-m.h"
-#include "mbedtls/platform_util.h"
-#include "psa/crypto.h"
-#include <stdio.h>
-#include <stdlib.h>
-#include <string.h>
-
-#if defined (MBEDTLS_PSA_P256M_DRIVER_ENABLED)
-
-/*
- * Zeroize memory - this should not be optimized away
- */
-#define zeroize mbedtls_platform_zeroize
-
-/*
- * Helpers to test constant-time behaviour with valgrind or MemSan.
- *
- * CT_POISON() is used for secret data. It marks the memory area as
- * uninitialised, so that any branch or pointer dereference that depends on it
- * (even indirectly) triggers a warning.
- * CT_UNPOISON() is used for public data; it marks the area as initialised.
- *
- * These are macros in order to avoid interfering with origin tracking.
- */
-#if defined(CT_MEMSAN)
-
-#include <sanitizer/msan_interface.h>
-#define CT_POISON __msan_allocated_memory
-// void __msan_allocated_memory(const volatile void* data, size_t size);
-#define CT_UNPOISON __msan_unpoison
-// void __msan_unpoison(const volatile void *a, size_t size);
-
-#elif defined(CT_VALGRIND)
-
-#include <valgrind/memcheck.h>
-#define CT_POISON VALGRIND_MAKE_MEM_UNDEFINED
-// VALGRIND_MAKE_MEM_UNDEFINED(_qzz_addr,_qzz_len)
-#define CT_UNPOISON VALGRIND_MAKE_MEM_DEFINED
-// VALGRIND_MAKE_MEM_DEFINED(_qzz_addr,_qzz_len)
-
-#else
-#define CT_POISON(p, sz)
-#define CT_UNPOISON(p, sz)
-#endif
-
-/**********************************************************************
- *
- * Operations on fixed-width unsigned integers
- *
- * Represented using 32-bit limbs, least significant limb first.
- * That is: x = x[0] + 2^32 x[1] + ... + 2^224 x[7] for 256-bit.
- *
- **********************************************************************/
-
-/*
- * 256-bit set to 32-bit value
- *
- * in: x in [0, 2^32)
- * out: z = x
- */
-static void u256_set32(uint32_t z[8], uint32_t x)
-{
- z[0] = x;
- for (unsigned i = 1; i < 8; i++) {
- z[i] = 0;
- }
-}
-
-/*
- * 256-bit addition
- *
- * in: x, y in [0, 2^256)
- * out: z = (x + y) mod 2^256
- * c = (x + y) div 2^256
- * That is, z + c * 2^256 = x + y
- *
- * Note: as a memory area, z must be either equal to x or y, or not overlap.
- */
-static uint32_t u256_add(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8])
-{
- uint32_t carry = 0;
-
- for (unsigned i = 0; i < 8; i++) {
- uint64_t sum = (uint64_t) carry + x[i] + y[i];
- z[i] = (uint32_t) sum;
- carry = (uint32_t) (sum >> 32);
- }
-
- return carry;
-}
-
-/*
- * 256-bit subtraction
- *
- * in: x, y in [0, 2^256)
- * out: z = (x - y) mod 2^256
- * c = 0 if x >=y, 1 otherwise
- * That is, z = c * 2^256 + x - y
- *
- * Note: as a memory area, z must be either equal to x or y, or not overlap.
- */
-static uint32_t u256_sub(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8])
-{
- uint32_t carry = 0;
-
- for (unsigned i = 0; i < 8; i++) {
- uint64_t diff = (uint64_t) x[i] - y[i] - carry;
- z[i] = (uint32_t) diff;
- carry = -(uint32_t) (diff >> 32);
- }
-
- return carry;
-}
-
-/*
- * 256-bit conditional assignment
- *
- * in: x in [0, 2^256)
- * c in [0, 1]
- * out: z = x if c == 1, z unchanged otherwise
- *
- * Note: as a memory area, z must be either equal to x, or not overlap.
- */
-static void u256_cmov(uint32_t z[8], const uint32_t x[8], uint32_t c)
-{
- const uint32_t x_mask = -c;
- for (unsigned i = 0; i < 8; i++) {
- z[i] = (z[i] & ~x_mask) | (x[i] & x_mask);
- }
-}
-
-/*
- * 256-bit compare for equality
- *
- * in: x in [0, 2^256)
- * y in [0, 2^256)
- * out: 0 if x == y, unspecified non-zero otherwise
- */
-static uint32_t u256_diff(const uint32_t x[8], const uint32_t y[8])
-{
- uint32_t diff = 0;
- for (unsigned i = 0; i < 8; i++) {
- diff |= x[i] ^ y[i];
- }
- return diff;
-}
-
-/*
- * 256-bit compare to zero
- *
- * in: x in [0, 2^256)
- * out: 0 if x == 0, unspecified non-zero otherwise
- */
-static uint32_t u256_diff0(const uint32_t x[8])
-{
- uint32_t diff = 0;
- for (unsigned i = 0; i < 8; i++) {
- diff |= x[i];
- }
- return diff;
-}
-
-/*
- * 32 x 32 -> 64-bit multiply-and-accumulate
- *
- * in: x, y, z, t in [0, 2^32)
- * out: x * y + z + t in [0, 2^64)
- *
- * Note: this computation cannot overflow.
- *
- * Note: this function has two pure-C implementations (depending on whether
- * MUL64_IS_CONSTANT_TIME), and possibly optimised asm implementations.
- * Start with the potential asm definitions, and use the C definition only if
- * we no have no asm for the current toolchain & CPU.
- */
-static uint64_t u32_muladd64(uint32_t x, uint32_t y, uint32_t z, uint32_t t);
-
-/* This macro is used to mark whether an asm implentation is found */
-#undef MULADD64_ASM
-/* This macro is used to mark whether the implementation has a small
- * code size (ie, it can be inlined even in an unrolled loop) */
-#undef MULADD64_SMALL
-
-/*
- * Currently assembly optimisations are only supported with GCC/Clang for
- * Arm's Cortex-A and Cortex-M lines of CPUs, which start with the v6-M and
- * v7-M architectures. __ARM_ARCH_PROFILE is not defined for v6 and earlier.
- * Thumb and 32-bit assembly is supported; aarch64 is not supported.
- */
-#if defined(__GNUC__) &&\
- defined(__ARM_ARCH) && __ARM_ARCH >= 6 && defined(__ARM_ARCH_PROFILE) && \
- ( __ARM_ARCH_PROFILE == 77 || __ARM_ARCH_PROFILE == 65 ) /* 'M' or 'A' */ && \
- !defined(__aarch64__)
-
-/*
- * This set of CPUs is conveniently partitioned as follows:
- *
- * 1. Cores that have the DSP extension, which includes a 1-cycle UMAAL
- * instruction: M4, M7, M33, all A-class cores.
- * 2. Cores that don't have the DSP extension, and also lack a constant-time
- * 64-bit multiplication instruction:
- * - M0, M0+, M23: 32-bit multiplication only;
- * - M3: 64-bit multiplication is not constant-time.
- */
-#if defined(__ARM_FEATURE_DSP)
-
-static uint64_t u32_muladd64(uint32_t x, uint32_t y, uint32_t z, uint32_t t)
-{
- __asm__(
- /* UMAAL <RdLo>, <RdHi>, <Rn>, <Rm> */
- "umaal %[z], %[t], %[x], %[y]"
- : [z] "+l" (z), [t] "+l" (t)
- : [x] "l" (x), [y] "l" (y)
- );
- return ((uint64_t) t << 32) | z;
-}
-#define MULADD64_ASM
-#define MULADD64_SMALL
-
-#else /* __ARM_FEATURE_DSP */
-
-/*
- * This implementation only uses 16x16->32 bit multiplication.
- *
- * It decomposes the multiplicands as:
- * x = xh:xl = 2^16 * xh + xl
- * y = yh:yl = 2^16 * yh + yl
- * and computes their product as:
- * x*y = xl*yl + 2**16 (xh*yl + yl*yh) + 2**32 xh*yh
- * then adds z and t to the result.
- */
-static uint64_t u32_muladd64(uint32_t x, uint32_t y, uint32_t z, uint32_t t)
-{
- /* First compute x*y, using 3 temporary registers */
- uint32_t tmp1, tmp2, tmp3;
- __asm__(
- ".syntax unified\n\t"
- /* start by splitting the inputs into halves */
- "lsrs %[u], %[x], #16\n\t"
- "lsrs %[v], %[y], #16\n\t"
- "uxth %[x], %[x]\n\t"
- "uxth %[y], %[y]\n\t"
- /* now we have %[x], %[y], %[u], %[v] = xl, yl, xh, yh */
- /* let's compute the 4 products we can form with those */
- "movs %[w], %[v]\n\t"
- "muls %[w], %[u]\n\t"
- "muls %[v], %[x]\n\t"
- "muls %[x], %[y]\n\t"
- "muls %[y], %[u]\n\t"
- /* now we have %[x], %[y], %[v], %[w] = xl*yl, xh*yl, xl*yh, xh*yh */
- /* let's split and add the first middle product */
- "lsls %[u], %[y], #16\n\t"
- "lsrs %[y], %[y], #16\n\t"
- "adds %[x], %[u]\n\t"
- "adcs %[y], %[w]\n\t"
- /* let's finish with the second middle product */
- "lsls %[u], %[v], #16\n\t"
- "lsrs %[v], %[v], #16\n\t"
- "adds %[x], %[u]\n\t"
- "adcs %[y], %[v]\n\t"
- : [x] "+l" (x), [y] "+l" (y),
- [u] "=&l" (tmp1), [v] "=&l" (tmp2), [w] "=&l" (tmp3)
- : /* no read-only inputs */
- : "cc"
- );
- (void) tmp1;
- (void) tmp2;
- (void) tmp3;
-
- /* Add z and t, using one temporary register */
- __asm__(
- ".syntax unified\n\t"
- "movs %[u], #0\n\t"
- "adds %[x], %[z]\n\t"
- "adcs %[y], %[u]\n\t"
- "adds %[x], %[t]\n\t"
- "adcs %[y], %[u]\n\t"
- : [x] "+l" (x), [y] "+l" (y), [u] "=&l" (tmp1)
- : [z] "l" (z), [t] "l" (t)
- : "cc"
- );
- (void) tmp1;
-
- return ((uint64_t) y << 32) | x;
-}
-#define MULADD64_ASM
-
-#endif /* __ARM_FEATURE_DSP */
-
-#endif /* GCC/Clang with Cortex-M/A CPU */
-
-#if !defined(MULADD64_ASM)
-#if defined(MUL64_IS_CONSTANT_TIME)
-static uint64_t u32_muladd64(uint32_t x, uint32_t y, uint32_t z, uint32_t t)
-{
- return (uint64_t) x * y + z + t;
-}
-#define MULADD64_SMALL
-#else
-static uint64_t u32_muladd64(uint32_t x, uint32_t y, uint32_t z, uint32_t t)
-{
- /* x = xl + 2**16 xh, y = yl + 2**16 yh */
- const uint16_t xl = (uint16_t) x;
- const uint16_t yl = (uint16_t) y;
- const uint16_t xh = x >> 16;
- const uint16_t yh = y >> 16;
-
- /* x*y = xl*yl + 2**16 (xh*yl + yl*yh) + 2**32 xh*yh
- * = lo + 2**16 (m1 + m2 ) + 2**32 hi */
- const uint32_t lo = (uint32_t) xl * yl;
- const uint32_t m1 = (uint32_t) xh * yl;
- const uint32_t m2 = (uint32_t) xl * yh;
- const uint32_t hi = (uint32_t) xh * yh;
-
- uint64_t acc = lo + ((uint64_t) (hi + (m1 >> 16) + (m2 >> 16)) << 32);
- acc += m1 << 16;
- acc += m2 << 16;
- acc += z;
- acc += t;
-
- return acc;
-}
-#endif /* MUL64_IS_CONSTANT_TIME */
-#endif /* MULADD64_ASM */
-
-/*
- * 288 + 32 x 256 -> 288-bit multiply and add
- *
- * in: x in [0, 2^32)
- * y in [0, 2^256)
- * z in [0, 2^288)
- * out: z_out = z_in + x * y mod 2^288
- * c = z_in + x * y div 2^288
- * That is, z_out + c * 2^288 = z_in + x * y
- *
- * Note: as a memory area, z must be either equal to y, or not overlap.
- *
- * This is a helper for Montgomery multiplication.
- */
-static uint32_t u288_muladd(uint32_t z[9], uint32_t x, const uint32_t y[8])
-{
- uint32_t carry = 0;
-
-#define U288_MULADD_STEP(i) \
- do { \
- uint64_t prod = u32_muladd64(x, y[i], z[i], carry); \
- z[i] = (uint32_t) prod; \
- carry = (uint32_t) (prod >> 32); \
- } while( 0 )
-
-#if defined(MULADD64_SMALL)
- U288_MULADD_STEP(0);
- U288_MULADD_STEP(1);
- U288_MULADD_STEP(2);
- U288_MULADD_STEP(3);
- U288_MULADD_STEP(4);
- U288_MULADD_STEP(5);
- U288_MULADD_STEP(6);
- U288_MULADD_STEP(7);
-#else
- for (unsigned i = 0; i < 8; i++) {
- U288_MULADD_STEP(i);
- }
-#endif
-
- uint64_t sum = (uint64_t) z[8] + carry;
- z[8] = (uint32_t) sum;
- carry = (uint32_t) (sum >> 32);
-
- return carry;
-}
-
-/*
- * 288-bit in-place right shift by 32 bits
- *
- * in: z in [0, 2^288)
- * c in [0, 2^32)
- * out: z_out = z_in div 2^32 + c * 2^256
- * = (z_in + c * 2^288) div 2^32
- *
- * This is a helper for Montgomery multiplication.
- */
-static void u288_rshift32(uint32_t z[9], uint32_t c)
-{
- for (unsigned i = 0; i < 8; i++) {
- z[i] = z[i + 1];
- }
- z[8] = c;
-}
-
-/*
- * 256-bit import from big-endian bytes
- *
- * in: p = p0, ..., p31
- * out: z = p0 * 2^248 + p1 * 2^240 + ... + p30 * 2^8 + p31
- */
-static void u256_from_bytes(uint32_t z[8], const uint8_t p[32])
-{
- for (unsigned i = 0; i < 8; i++) {
- unsigned j = 4 * (7 - i);
- z[i] = ((uint32_t) p[j + 0] << 24) |
- ((uint32_t) p[j + 1] << 16) |
- ((uint32_t) p[j + 2] << 8) |
- ((uint32_t) p[j + 3] << 0);
- }
-}
-
-/*
- * 256-bit export to big-endian bytes
- *
- * in: z in [0, 2^256)
- * out: p = p0, ..., p31 such that
- * z = p0 * 2^248 + p1 * 2^240 + ... + p30 * 2^8 + p31
- */
-static void u256_to_bytes(uint8_t p[32], const uint32_t z[8])
-{
- for (unsigned i = 0; i < 8; i++) {
- unsigned j = 4 * (7 - i);
- p[j + 0] = (uint8_t) (z[i] >> 24);
- p[j + 1] = (uint8_t) (z[i] >> 16);
- p[j + 2] = (uint8_t) (z[i] >> 8);
- p[j + 3] = (uint8_t) (z[i] >> 0);
- }
-}
-
-/**********************************************************************
- *
- * Operations modulo a 256-bit prime m
- *
- * These are done in the Montgomery domain, that is x is represented by
- * x * 2^256 mod m
- * Numbers need to be converted to that domain before computations,
- * and back from it afterwards.
- *
- * Inversion is computed using Fermat's little theorem.
- *
- * Assumptions on m:
- * - Montgomery operations require that m is odd.
- * - Fermat's little theorem require it to be a prime.
- * - m256_inv() further requires that m % 2^32 >= 2.
- * - m256_inv() also assumes that the value of m is not a secret.
- *
- * In practice operations are done modulo the curve's p and n,
- * both of which satisfy those assumptions.
- *
- **********************************************************************/
-
-/*
- * Data associated to a modulus for Montgomery operations.
- *
- * m in [0, 2^256) - the modulus itself, must be odd
- * R2 = 2^512 mod m
- * ni = -m^-1 mod 2^32
- */
-typedef struct {
- uint32_t m[8];
- uint32_t R2[8];
- uint32_t ni;
-}
-m256_mod;
-
-/*
- * Data for Montgomery operations modulo the curve's p
- */
-static const m256_mod p256_p = {
- { /* the curve's p */
- 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000,
- 0x00000000, 0x00000000, 0x00000001, 0xFFFFFFFF,
- },
- { /* 2^512 mod p */
- 0x00000003, 0x00000000, 0xffffffff, 0xfffffffb,
- 0xfffffffe, 0xffffffff, 0xfffffffd, 0x00000004,
- },
- 0x00000001, /* -p^-1 mod 2^32 */
-};
-
-/*
- * Data for Montgomery operations modulo the curve's n
- */
-static const m256_mod p256_n = {
- { /* the curve's n */
- 0xFC632551, 0xF3B9CAC2, 0xA7179E84, 0xBCE6FAAD,
- 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF,
- },
- { /* 2^512 mod n */
- 0xbe79eea2, 0x83244c95, 0x49bd6fa6, 0x4699799c,
- 0x2b6bec59, 0x2845b239, 0xf3d95620, 0x66e12d94,
- },
- 0xee00bc4f, /* -n^-1 mod 2^32 */
-};
-
-/*
- * Modular addition
- *
- * in: x, y in [0, m)
- * mod must point to a valid m256_mod structure
- * out: z = (x + y) mod m, in [0, m)
- *
- * Note: as a memory area, z must be either equal to x or y, or not overlap.
- */
-static void m256_add(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8],
- const m256_mod *mod)
-{
- uint32_t r[8];
- uint32_t carry_add = u256_add(z, x, y);
- uint32_t carry_sub = u256_sub(r, z, mod->m);
- /* Need to subract m if:
- * x+y >= 2^256 > m (that is, carry_add == 1)
- * OR z >= m (that is, carry_sub == 0) */
- uint32_t use_sub = carry_add | (1 - carry_sub);
- u256_cmov(z, r, use_sub);
-}
-
-/*
- * Modular addition mod p
- *
- * in: x, y in [0, p)
- * out: z = (x + y) mod p, in [0, p)
- *
- * Note: as a memory area, z must be either equal to x or y, or not overlap.
- */
-static void m256_add_p(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8])
-{
- m256_add(z, x, y, &p256_p);
-}
-
-/*
- * Modular subtraction
- *
- * in: x, y in [0, m)
- * mod must point to a valid m256_mod structure
- * out: z = (x - y) mod m, in [0, m)
- *
- * Note: as a memory area, z must be either equal to x or y, or not overlap.
- */
-static void m256_sub(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8],
- const m256_mod *mod)
-{
- uint32_t r[8];
- uint32_t carry = u256_sub(z, x, y);
- (void) u256_add(r, z, mod->m);
- /* Need to add m if and only if x < y, that is carry == 1.
- * In that case z is in [2^256 - m + 1, 2^256 - 1], so the
- * addition will have a carry as well, which cancels out. */
- u256_cmov(z, r, carry);
-}
-
-/*
- * Modular subtraction mod p
- *
- * in: x, y in [0, p)
- * out: z = (x + y) mod p, in [0, p)
- *
- * Note: as a memory area, z must be either equal to x or y, or not overlap.
- */
-static void m256_sub_p(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8])
-{
- m256_sub(z, x, y, &p256_p);
-}
-
-/*
- * Montgomery modular multiplication
- *
- * in: x, y in [0, m)
- * mod must point to a valid m256_mod structure
- * out: z = (x * y) / 2^256 mod m, in [0, m)
- *
- * Note: as a memory area, z may overlap with x or y.
- */
-static void m256_mul(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8],
- const m256_mod *mod)
-{
- /*
- * Algorithm 14.36 in Handbook of Applied Cryptography with:
- * b = 2^32, n = 8, R = 2^256
- */
- uint32_t m_prime = mod->ni;
- uint32_t a[9];
-
- for (unsigned i = 0; i < 9; i++) {
- a[i] = 0;
- }
-
- for (unsigned i = 0; i < 8; i++) {
- /* the "mod 2^32" is implicit from the type */
- uint32_t u = (a[0] + x[i] * y[0]) * m_prime;
-
- /* a = (a + x[i] * y + u * m) div b */
- uint32_t c = u288_muladd(a, x[i], y);
- c += u288_muladd(a, u, mod->m);
- u288_rshift32(a, c);
- }
-
- /* a = a > m ? a - m : a */
- uint32_t carry_add = a[8]; // 0 or 1 since a < 2m, see HAC Note 14.37
- uint32_t carry_sub = u256_sub(z, a, mod->m);
- uint32_t use_sub = carry_add | (1 - carry_sub); // see m256_add()
- u256_cmov(z, a, 1 - use_sub);
-}
-
-/*
- * Montgomery modular multiplication modulo p.
- *
- * in: x, y in [0, p)
- * out: z = (x * y) / 2^256 mod p, in [0, p)
- *
- * Note: as a memory area, z may overlap with x or y.
- */
-static void m256_mul_p(uint32_t z[8],
- const uint32_t x[8], const uint32_t y[8])
-{
- m256_mul(z, x, y, &p256_p);
-}
-
-/*
- * In-place conversion to Montgomery form
- *
- * in: z in [0, m)
- * mod must point to a valid m256_mod structure
- * out: z_out = z_in * 2^256 mod m, in [0, m)
- */
-static void m256_prep(uint32_t z[8], const m256_mod *mod)
-{
- m256_mul(z, z, mod->R2, mod);
-}
-
-/*
- * In-place conversion from Montgomery form
- *
- * in: z in [0, m)
- * mod must point to a valid m256_mod structure
- * out: z_out = z_in / 2^256 mod m, in [0, m)
- * That is, z_in was z_actual * 2^256 mod m, and z_out is z_actual
- */
-static void m256_done(uint32_t z[8], const m256_mod *mod)
-{
- uint32_t one[8];
- u256_set32(one, 1);
- m256_mul(z, z, one, mod);
-}
-
-/*
- * Set to 32-bit value
- *
- * in: x in [0, 2^32)
- * mod must point to a valid m256_mod structure
- * out: z = x * 2^256 mod m, in [0, m)
- * That is, z is set to the image of x in the Montgomery domain.
- */
-static void m256_set32(uint32_t z[8], uint32_t x, const m256_mod *mod)
-{
- u256_set32(z, x);
- m256_prep(z, mod);
-}
-
-/*
- * Modular inversion in Montgomery form
- *
- * in: x in [0, m)
- * mod must point to a valid m256_mod structure
- * such that mod->m % 2^32 >= 2, assumed to be public.
- * out: z = x^-1 * 2^512 mod m if x != 0,
- * z = 0 if x == 0
- * That is, if x = x_actual * 2^256 mod m, then
- * z = x_actual^-1 * 2^256 mod m
- *
- * Note: as a memory area, z may overlap with x.
- */
-static void m256_inv(uint32_t z[8], const uint32_t x[8],
- const m256_mod *mod)
-{
- /*
- * Use Fermat's little theorem to compute x^-1 as x^(m-2).
- *
- * Take advantage of the fact that both p's and n's least significant limb
- * is at least 2 to perform the subtraction on the flight (no carry).
- *
- * Use plain right-to-left binary exponentiation;
- * branches are OK as the exponent is not a secret.
- */
- uint32_t bitval[8];
- u256_cmov(bitval, x, 1); /* copy x before writing to z */
-
- m256_set32(z, 1, mod);
-
- unsigned i = 0;
- uint32_t limb = mod->m[i] - 2;
- while (1) {
- for (unsigned j = 0; j < 32; j++) {
- if ((limb & 1) != 0) {
- m256_mul(z, z, bitval, mod);
- }
- m256_mul(bitval, bitval, bitval, mod);
- limb >>= 1;
- }
-
- if (i == 7)
- break;
-
- i++;
- limb = mod->m[i];
- }
-}
-
-/*
- * Import modular integer from bytes to Montgomery domain
- *
- * in: p = p0, ..., p32
- * mod must point to a valid m256_mod structure
- * out: z = (p0 * 2^248 + ... + p31) * 2^256 mod m, in [0, m)
- * return 0 if the number was already in [0, m), or -1.
- * z may be incorrect and must be discared when -1 is returned.
- */
-static int m256_from_bytes(uint32_t z[8],
- const uint8_t p[32], const m256_mod *mod)
-{
- u256_from_bytes(z, p);
-
- uint32_t t[8];
- uint32_t lt_m = u256_sub(t, z, mod->m);
- if (lt_m != 1)
- return -1;
-
- m256_prep(z, mod);
- return 0;
-}
-
-/*
- * Export modular integer from Montgomery domain to bytes
- *
- * in: z in [0, 2^256)
- * mod must point to a valid m256_mod structure
- * out: p = p0, ..., p31 such that
- * z = (p0 * 2^248 + ... + p31) * 2^256 mod m
- */
-static void m256_to_bytes(uint8_t p[32],
- const uint32_t z[8], const m256_mod *mod)
-{
- uint32_t zi[8];
- u256_cmov(zi, z, 1);
- m256_done(zi, mod);
-
- u256_to_bytes(p, zi);
-}
-
-/**********************************************************************
- *
- * Operations on curve points
- *
- * Points are represented in two coordinates system:
- * - affine (x, y) - extended to represent 0 (see below)
- * - jacobian (x:y:z)
- * In either case, coordinates are integers modulo p256_p and
- * are always represented in the Montgomery domain.
- *
- * For background on jacobian coordinates, see for example [GECC] 3.2.2:
- * - conversions go (x, y) -> (x:y:1) and (x:y:z) -> (x/z^2, y/z^3)
- * - the curve equation becomes y^2 = x^3 - 3 x z^4 + b z^6
- * - 0 (aka the origin aka point at infinity) is (x:y:0) with y^2 = x^3.
- * - point negation goes -(x:y:z) = (x:-y:z)
- *
- * Normally 0 (the point at infinity) can't be represented in affine
- * coordinates. However we extend affine coordinates with the convention that
- * (0, 0) (which is normally not a point on the curve) is interpreted as 0.
- *
- * References:
- * - [GECC]: Guide to Elliptic Curve Cryptography; Hankerson, Menezes,
- * Vanstone; Springer, 2004.
- * - [CMO98]: Efficient Elliptic Curve Exponentiation Using Mixed Coordinates;
- * Cohen, Miyaji, Ono; Springer, ASIACRYPT 1998.
- * https://link.springer.com/content/pdf/10.1007/3-540-49649-1_6.pdf
- * - [RCB15]: Complete addition formulas for prime order elliptic curves;
- * Renes, Costello, Batina; IACR e-print 2015-1060.
- * https://eprint.iacr.org/2015/1060.pdf
- *
- **********************************************************************/
-
-/*
- * The curve's b parameter in the Short Weierstrass equation
- * y^2 = x^3 - 3*x + b
- * Compared to the standard, this is converted to the Montgomery domain.
- */
-static const uint32_t p256_b[8] = { /* b * 2^256 mod p */
- 0x29c4bddf, 0xd89cdf62, 0x78843090, 0xacf005cd,
- 0xf7212ed6, 0xe5a220ab, 0x04874834, 0xdc30061d,
-};
-
-/*
- * The curve's conventional base point G.
- * Compared to the standard, coordinates converted to the Montgomery domain.
- */
-static const uint32_t p256_gx[8] = { /* G_x * 2^256 mod p */
- 0x18a9143c, 0x79e730d4, 0x5fedb601, 0x75ba95fc,
- 0x77622510, 0x79fb732b, 0xa53755c6, 0x18905f76,
-};
-static const uint32_t p256_gy[8] = { /* G_y * 2^256 mod p */
- 0xce95560a, 0xddf25357, 0xba19e45c, 0x8b4ab8e4,
- 0xdd21f325, 0xd2e88688, 0x25885d85, 0x8571ff18,
-};
-
-/*
- * Point-on-curve check - do the coordinates satisfy the curve's equation?
- *
- * in: x, y in [0, p) (Montgomery domain)
- * out: 0 if the point lies on the curve and is not 0,
- * unspecified non-zero otherwise
- */
-static uint32_t point_check(const uint32_t x[8], const uint32_t y[8])
-{
- uint32_t lhs[8], rhs[8];
-
- /* lhs = y^2 */
- m256_mul_p(lhs, y, y);
-
- /* rhs = x^3 - 3x + b */
- m256_mul_p(rhs, x, x); /* x^2 */
- m256_mul_p(rhs, rhs, x); /* x^3 */
- for (unsigned i = 0; i < 3; i++)
- m256_sub_p(rhs, rhs, x); /* x^3 - 3x */
- m256_add_p(rhs, rhs, p256_b); /* x^3 - 3x + b */
-
- return u256_diff(lhs, rhs);
-}
-
-/*
- * In-place jacobian to affine coordinate conversion
- *
- * in: (x:y:z) must be on the curve (coordinates in Montegomery domain)
- * out: x_out = x_in / z_in^2 (Montgomery domain)
- * y_out = y_in / z_in^3 (Montgomery domain)
- * z_out unspecified, must be disregarded
- *
- * Note: if z is 0 (that is, the input point is 0), x_out = y_out = 0.
- */
-static void point_to_affine(uint32_t x[8], uint32_t y[8], uint32_t z[8])
-{
- uint32_t t[8];
-
- m256_inv(z, z, &p256_p); /* z = z^-1 */
-
- m256_mul_p(t, z, z); /* t = z^-2 */
- m256_mul_p(x, x, t); /* x = x * z^-2 */
-
- m256_mul_p(t, t, z); /* t = z^-3 */
- m256_mul_p(y, y, t); /* y = y * z^-3 */
-}
-
-/*
- * In-place point doubling in jacobian coordinates (Montgomery domain)
- *
- * in: P_in = (x:y:z), must be on the curve
- * out: (x:y:z) = P_out = 2 * P_in
- */
-static void point_double(uint32_t x[8], uint32_t y[8], uint32_t z[8])
-{
- /*
- * This is formula 6 from [CMO98], cited as complete in [RCB15] (table 1).
- * Notations as in the paper, except u added and t ommited (it's x3).
- */
- uint32_t m[8], s[8], u[8];
-
- /* m = 3 * x^2 + a * z^4 = 3 * (x + z^2) * (x - z^2) */
- m256_mul_p(s, z, z);
- m256_add_p(m, x, s);
- m256_sub_p(u, x, s);
- m256_mul_p(s, m, u);
- m256_add_p(m, s, s);
- m256_add_p(m, m, s);
-
- /* s = 4 * x * y^2 */
- m256_mul_p(u, y, y);
- m256_add_p(u, u, u); /* u = 2 * y^2 (used below) */
- m256_mul_p(s, x, u);
- m256_add_p(s, s, s);
-
- /* u = 8 * y^4 (not named in the paper, first term of y3) */
- m256_mul_p(u, u, u);
- m256_add_p(u, u, u);
-
- /* x3 = t = m^2 - 2 * s */
- m256_mul_p(x, m, m);
- m256_sub_p(x, x, s);
- m256_sub_p(x, x, s);
-
- /* z3 = 2 * y * z */
- m256_mul_p(z, y, z);
- m256_add_p(z, z, z);
-
- /* y3 = -u + m * (s - t) */
- m256_sub_p(y, s, x);
- m256_mul_p(y, y, m);
- m256_sub_p(y, y, u);
-}
-
-/*
- * In-place point addition in jacobian-affine coordinates (Montgomery domain)
- *
- * in: P_in = (x1:y1:z1), must be on the curve and not 0
- * Q = (x2, y2), must be on the curve and not P_in or -P_in or 0
- * out: P_out = (x1:y1:z1) = P_in + Q
- */
-static void point_add(uint32_t x1[8], uint32_t y1[8], uint32_t z1[8],
- const uint32_t x2[8], const uint32_t y2[8])
-{
- /*
- * This is formula 5 from [CMO98], with z2 == 1 substituted. We use
- * intermediates with neutral names, and names from the paper in comments.
- */
- uint32_t t1[8], t2[8], t3[8];
-
- /* u1 = x1 and s1 = y1 (no computations) */
-
- /* t1 = u2 = x2 z1^2 */
- m256_mul_p(t1, z1, z1);
- m256_mul_p(t2, t1, z1);
- m256_mul_p(t1, t1, x2);
-
- /* t2 = s2 = y2 z1^3 */
- m256_mul_p(t2, t2, y2);
-
- /* t1 = h = u2 - u1 */
- m256_sub_p(t1, t1, x1); /* t1 = x2 * z1^2 - x1 */
-
- /* t2 = r = s2 - s1 */
- m256_sub_p(t2, t2, y1);
-
- /* z3 = z1 * h */
- m256_mul_p(z1, z1, t1);
-
- /* t1 = h^3 */
- m256_mul_p(t3, t1, t1);
- m256_mul_p(t1, t3, t1);
-
- /* t3 = x1 * h^2 */
- m256_mul_p(t3, t3, x1);
-
- /* x3 = r^2 - 2 * x1 * h^2 - h^3 */
- m256_mul_p(x1, t2, t2);
- m256_sub_p(x1, x1, t3);
- m256_sub_p(x1, x1, t3);
- m256_sub_p(x1, x1, t1);
-
- /* y3 = r * (x1 * h^2 - x3) - y1 h^3 */
- m256_sub_p(t3, t3, x1);
- m256_mul_p(t3, t3, t2);
- m256_mul_p(t1, t1, y1);
- m256_sub_p(y1, t3, t1);
-}
-
-/*
- * Point addition or doubling (affine to jacobian, Montgomery domain)
- *
- * in: P = (x1, y1) - must be on the curve and not 0
- * Q = (x2, y2) - must be on the curve and not 0
- * out: (x3, y3) = R = P + Q
- *
- * Note: unlike point_add(), this function works if P = +- Q;
- * however it leaks information on its input through timing,
- * branches taken and memory access patterns (if observable).
- */
-static void point_add_or_double_leaky(
- uint32_t x3[8], uint32_t y3[8],
- const uint32_t x1[8], const uint32_t y1[8],
- const uint32_t x2[8], const uint32_t y2[8])
-{
-
- uint32_t z3[8];
- u256_cmov(x3, x1, 1);
- u256_cmov(y3, y1, 1);
- m256_set32(z3, 1, &p256_p);
-
- if (u256_diff(x1, x2) != 0) {
- // P != +- Q -> generic addition
- point_add(x3, y3, z3, x2, y2);
- point_to_affine(x3, y3, z3);
- }
- else if (u256_diff(y1, y2) == 0) {
- // P == Q -> double
- point_double(x3, y3, z3);
- point_to_affine(x3, y3, z3);
- } else {
- // P == -Q -> zero
- m256_set32(x3, 0, &p256_p);
- m256_set32(y3, 0, &p256_p);
- }
-}
-
-/*
- * Import curve point from bytes
- *
- * in: p = (x, y) concatenated, fixed-width 256-bit big-endian integers
- * out: x, y in Mongomery domain
- * return 0 if x and y are both in [0, p)
- * and (x, y) is on the curve and not 0
- * unspecified non-zero otherwise.
- * x and y are unspecified and must be discarded if returning non-zero.
- */
-static int point_from_bytes(uint32_t x[8], uint32_t y[8], const uint8_t p[64])
-{
- int ret;
-
- ret = m256_from_bytes(x, p, &p256_p);
- if (ret != 0)
- return ret;
-
- ret = m256_from_bytes(y, p + 32, &p256_p);
- if (ret != 0)
- return ret;
-
- return (int) point_check(x, y);
-}
-
-/*
- * Export curve point to bytes
- *
- * in: x, y affine coordinates of a point (Montgomery domain)
- * must be on the curve and not 0
- * out: p = (x, y) concatenated, fixed-width 256-bit big-endian integers
- */
-static void point_to_bytes(uint8_t p[64],
- const uint32_t x[8], const uint32_t y[8])
-{
- m256_to_bytes(p, x, &p256_p);
- m256_to_bytes(p + 32, y, &p256_p);
-}
-
-/**********************************************************************
- *
- * Scalar multiplication and other scalar-related operations
- *
- **********************************************************************/
-
-/*
- * Scalar multiplication
- *
- * in: P = (px, py), affine (Montgomery), must be on the curve and not 0
- * s in [1, n-1]
- * out: R = s * P = (rx, ry), affine coordinates (Montgomery).
- *
- * Note: as memory areas, none of the parameters may overlap.
- */
-static void scalar_mult(uint32_t rx[8], uint32_t ry[8],
- const uint32_t px[8], const uint32_t py[8],
- const uint32_t s[8])
-{
- /*
- * We use a signed binary ladder, see for example slides 10-14 of
- * http://ecc2015.math.u-bordeaux1.fr/documents/hamburg.pdf but with
- * implicit recoding, and a different loop initialisation to avoid feeding
- * 0 to our addition formulas, as they don't support it.
- */
- uint32_t s_odd[8], py_neg[8], py_use[8], rz[8];
-
- /*
- * Make s odd by replacing it with n - s if necessary.
- *
- * If s was odd, we'll have s_odd = s, and define P' = P.
- * Otherwise, we'll have s_odd = n - s and define P' = -P.
- *
- * Either way, we can compute s * P as s_odd * P'.
- */
- u256_sub(s_odd, p256_n.m, s); /* no carry, result still in [1, n-1] */
- uint32_t negate = ~s[0] & 1;
- u256_cmov(s_odd, s, 1 - negate);
-
- /* Compute py_neg = - py mod p (that's the y coordinate of -P) */
- u256_set32(py_use, 0);
- m256_sub_p(py_neg, py_use, py);
-
- /* Initialize R = P' = (x:(-1)^negate * y:1) */
- u256_cmov(rx, px, 1);
- u256_cmov(ry, py, 1);
- m256_set32(rz, 1, &p256_p);
- u256_cmov(ry, py_neg, negate);
-
- /*
- * For any odd number s_odd = b255 ... b1 1, we have
- * s_odd = 2^255 + 2^254 sbit(b255) + ... + 2 sbit(b2) + sbit(b1)
- * writing
- * sbit(b) = 2 * b - 1 = b ? 1 : -1
- *
- * Use that to compute s_odd * P' by repeating R = 2 * R +- P':
- * s_odd * P' = 2 * ( ... (2 * P' + sbit(b255) P') ... ) + sbit(b1) P'
- *
- * The loop invariant is that when beginning an iteration we have
- * R = s_i P'
- * with
- * s_i = 2^(255-i) + 2^(254-i) sbit(b_255) + ...
- * where the sum has 256 - i terms.
- *
- * When updating R we need to make sure the input to point_add() is
- * neither 0 not +-P'. Since that input is 2 s_i P', it is sufficient to
- * see that 1 < 2 s_i < n-1. The lower bound is obvious since s_i is a
- * positive integer, and for the upper bound we distinguish three cases.
- *
- * If i > 1, then s_i < 2^254, so 2 s_i < 2^255 < n-1.
- * Otherwise, i == 1 and we have 2 s_i = s_odd - sbit(b1).
- * If s_odd <= n-4, then 2 s_1 <= n-3.
- * Otherwise, s_odd = n-2, and for this curve's value of n,
- * we have b1 == 1, so sbit(b1) = 1 and 2 s_1 <= n-3.
- */
- for (unsigned i = 255; i > 0; i--) {
- uint32_t bit = (s_odd[i / 32] >> i % 32) & 1;
-
- /* set (px, py_use) = sbit(bit) P' = sbit(bit) * (-1)^negate P */
- u256_cmov(py_use, py, bit ^ negate);
- u256_cmov(py_use, py_neg, (1 - bit) ^ negate);
-
- /* Update R = 2 * R +- P' */
- point_double(rx, ry, rz);
- point_add(rx, ry, rz, px, py_use);
- }
-
- point_to_affine(rx, ry, rz);
-}
-
-/*
- * Scalar import from big-endian bytes
- *
- * in: p = p0, ..., p31
- * out: s = p0 * 2^248 + p1 * 2^240 + ... + p30 * 2^8 + p31
- * return 0 if s in [1, n-1],
- * -1 otherwise.
- */
-static int scalar_from_bytes(uint32_t s[8], const uint8_t p[32])
-{
- u256_from_bytes(s, p);
-
- uint32_t r[8];
- uint32_t lt_n = u256_sub(r, s, p256_n.m);
-
- u256_set32(r, 1);
- uint32_t lt_1 = u256_sub(r, s, r);
-
- if (lt_n && !lt_1)
- return 0;
-
- return -1;
-}
-
-/* Using RNG functions from Mbed TLS as p256-m does not come with a
- * cryptographically secure RNG function.
- */
-int p256_generate_random(uint8_t *output, unsigned output_size)
-{
- int ret;
- ret = psa_generate_random(output, output_size);
-
- if (ret != 0){
- return P256_RANDOM_FAILED;
- }
- return P256_SUCCESS;
-}
-
-/*
- * Scalar generation, with public key
- *
- * out: sbytes the big-endian bytes representation of the scalar
- * s its u256 representation
- * x, y the affine coordinates of s * G (Montgomery domain)
- * return 0 if OK, -1 on failure
- * sbytes, s, x, y must be discarded when returning non-zero.
- */
-static int scalar_gen_with_pub(uint8_t sbytes[32], uint32_t s[8],
- uint32_t x[8], uint32_t y[8])
-{
- /* generate a random valid scalar */
- int ret;
- unsigned nb_tried = 0;
- do {
- if (nb_tried++ >= 4)
- return -1;
-
- ret = p256_generate_random(sbytes, 32);
- CT_POISON(sbytes, 32);
- if (ret != 0)
- return -1;
-
- ret = scalar_from_bytes(s, sbytes);
- CT_UNPOISON(&ret, sizeof ret);
- }
- while (ret != 0);
-
- /* compute and ouput the associated public key */
- scalar_mult(x, y, p256_gx, p256_gy, s);
-
- /* the associated public key is not a secret */
- CT_UNPOISON(x, 32);
- CT_UNPOISON(y, 32);
-
- return 0;
-}
-
-/*
- * ECDH/ECDSA generate pair
- */
-int p256_gen_keypair(uint8_t priv[32], uint8_t pub[64])
-{
- uint32_t s[8], x[8], y[8];
- int ret = scalar_gen_with_pub(priv, s, x, y);
- zeroize(s, sizeof s);
- if (ret != 0)
- return P256_RANDOM_FAILED;
-
- point_to_bytes(pub, x, y);
- return 0;
-}
-
-/**********************************************************************
- *
- * ECDH
- *
- **********************************************************************/
-
-/*
- * ECDH compute shared secret
- */
-int p256_ecdh_shared_secret(uint8_t secret[32],
- const uint8_t priv[32], const uint8_t peer[64])
-{
- CT_POISON(priv, 32);
-
- uint32_t s[8], px[8], py[8], x[8], y[8];
- int ret;
-
- ret = scalar_from_bytes(s, priv);
- CT_UNPOISON(&ret, sizeof ret);
- if (ret != 0) {
- ret = P256_INVALID_PRIVKEY;
- goto cleanup;
- }
-
- ret = point_from_bytes(px, py, peer);
- if (ret != 0) {
- ret = P256_INVALID_PUBKEY;
- goto cleanup;
- }
-
- scalar_mult(x, y, px, py, s);
-
- m256_to_bytes(secret, x, &p256_p);
- CT_UNPOISON(secret, 32);
-
-cleanup:
- zeroize(s, sizeof s);
- return ret;
-}
-
-/**********************************************************************
- *
- * ECDSA
- *
- * Reference:
- * [SEC1] SEC 1: Elliptic Curve Cryptography, Certicom research, 2009.
- * http://www.secg.org/sec1-v2.pdf
- **********************************************************************/
-
-/*
- * Reduction mod n of a small number
- *
- * in: x in [0, 2^256)
- * out: x_out = x_in mod n in [0, n)
- */
-static void ecdsa_m256_mod_n(uint32_t x[8])
-{
- uint32_t t[8];
- uint32_t c = u256_sub(t, x, p256_n.m);
- u256_cmov(x, t, 1 - c);
-}
-
-/*
- * Import integer mod n (Montgomery domain) from hash
- *
- * in: h = h0, ..., h_hlen
- * hlen the length of h in bytes
- * out: z = (h0 * 2^l-8 + ... + h_l) * 2^256 mod n
- * with l = min(32, hlen)
- *
- * Note: in [SEC1] this is step 5 of 4.1.3 (sign) or step 3 or 4.1.4 (verify),
- * with obvious simplications since n's bit-length is a multiple of 8.
- */
-static void ecdsa_m256_from_hash(uint32_t z[8],
- const uint8_t *h, size_t hlen)
-{
- /* convert from h (big-endian) */
- /* hlen is public data so it's OK to branch on it */
- if (hlen < 32) {
- uint8_t p[32];
- for (unsigned i = 0; i < 32; i++)
- p[i] = 0;
- for (unsigned i = 0; i < hlen; i++)
- p[32 - hlen + i] = h[i];
- u256_from_bytes(z, p);
- } else {
- u256_from_bytes(z, h);
- }
-
- /* ensure the result is in [0, n) */
- ecdsa_m256_mod_n(z);
-
- /* map to Montgomery domain */
- m256_prep(z, &p256_n);
-}
-
-/*
- * ECDSA sign
- */
-int p256_ecdsa_sign(uint8_t sig[64], const uint8_t priv[32],
- const uint8_t *hash, size_t hlen)
-{
- CT_POISON(priv, 32);
-
- /*
- * Steps and notations from [SEC1] 4.1.3
- *
- * Instead of retrying on r == 0 or s == 0, just abort,
- * as those events have negligible probability.
- */
- int ret;
-
- /* Temporary buffers - the first two are mostly stable, so have names */
- uint32_t xr[8], k[8], t3[8], t4[8];
-
- /* 1. Set ephemeral keypair */
- uint8_t *kb = (uint8_t *) t4;
- /* kb will be erased by re-using t4 for dU - if we exit before that, we
- * haven't read the private key yet so we kb isn't sensitive yet */
- ret = scalar_gen_with_pub(kb, k, xr, t3); /* xr = x_coord(k * G) */
- if (ret != 0)
- return P256_RANDOM_FAILED;
- m256_prep(k, &p256_n);
-
- /* 2. Convert xr to an integer */
- m256_done(xr, &p256_p);
-
- /* 3. Reduce xr mod n (extra: output it while at it) */
- ecdsa_m256_mod_n(xr); /* xr = int(xr) mod n */
-
- /* xr is public data so it's OK to use a branch */
- if (u256_diff0(xr) == 0)
- return P256_RANDOM_FAILED;
-
- u256_to_bytes(sig, xr);
-
- m256_prep(xr, &p256_n);
-
- /* 4. Skipped - we take the hash as an input, not the message */
-
- /* 5. Derive an integer from the hash */
- ecdsa_m256_from_hash(t3, hash, hlen); /* t3 = e */
-
- /* 6. Compute s = k^-1 * (e + r * dU) */
-
- /* Note: dU will be erased by re-using t4 for the value of s (public) */
- ret = scalar_from_bytes(t4, priv); /* t4 = dU (integer domain) */
- CT_UNPOISON(&ret, sizeof ret); /* Result of input validation */
- if (ret != 0)
- return P256_INVALID_PRIVKEY;
- m256_prep(t4, &p256_n); /* t4 = dU (Montgomery domain) */
-
- m256_inv(k, k, &p256_n); /* k^-1 */
- m256_mul(t4, xr, t4, &p256_n); /* t4 = r * dU */
- m256_add(t4, t3, t4, &p256_n); /* t4 = e + r * dU */
- m256_mul(t4, k, t4, &p256_n); /* t4 = s = k^-1 * (e + r * dU) */
- zeroize(k, sizeof k);
-
- /* 7. Output s (r already outputed at step 3) */
- CT_UNPOISON(t4, 32);
- if (u256_diff0(t4) == 0) {
- /* undo early output of r */
- u256_to_bytes(sig, t4);
- return P256_RANDOM_FAILED;
- }
- m256_to_bytes(sig + 32, t4, &p256_n);
-
- return P256_SUCCESS;
-}
-
-/*
- * ECDSA verify
- */
-int p256_ecdsa_verify(const uint8_t sig[64], const uint8_t pub[64],
- const uint8_t *hash, size_t hlen)
-{
- /*
- * Steps and notations from [SEC1] 4.1.3
- *
- * Note: we're using public data only, so branches are OK
- */
- int ret;
-
- /* 1. Validate range of r and s : [1, n-1] */
- uint32_t r[8], s[8];
- ret = scalar_from_bytes(r, sig);
- if (ret != 0)
- return P256_INVALID_SIGNATURE;
- ret = scalar_from_bytes(s, sig + 32);
- if (ret != 0)
- return P256_INVALID_SIGNATURE;
-
- /* 2. Skipped - we take the hash as an input, not the message */
-
- /* 3. Derive an integer from the hash */
- uint32_t e[8];
- ecdsa_m256_from_hash(e, hash, hlen);
-
- /* 4. Compute u1 = e * s^-1 and u2 = r * s^-1 */
- uint32_t u1[8], u2[8];
- m256_prep(s, &p256_n); /* s in Montgomery domain */
- m256_inv(s, s, &p256_n); /* s = s^-1 mod n */
- m256_mul(u1, e, s, &p256_n); /* u1 = e * s^-1 mod n */
- m256_done(u1, &p256_n); /* u1 out of Montgomery domain */
-
- u256_cmov(u2, r, 1);
- m256_prep(u2, &p256_n); /* r in Montgomery domain */
- m256_mul(u2, u2, s, &p256_n); /* u2 = r * s^-1 mod n */
- m256_done(u2, &p256_n); /* u2 out of Montgomery domain */
-
- /* 5. Compute R (and re-use (u1, u2) to store its coordinates */
- uint32_t px[8], py[8];
- ret = point_from_bytes(px, py, pub);
- if (ret != 0)
- return P256_INVALID_PUBKEY;
-
- scalar_mult(e, s, px, py, u2); /* (e, s) = R2 = u2 * Qu */
-
- if (u256_diff0(u1) == 0) {
- /* u1 out of range for scalar_mult() - just skip it */
- u256_cmov(u1, e, 1);
- /* we don't care about the y coordinate */
- } else {
- scalar_mult(px, py, p256_gx, p256_gy, u1); /* (px, py) = R1 = u1 * G */
-
- /* (u1, u2) = R = R1 + R2 */
- point_add_or_double_leaky(u1, u2, px, py, e, s);
- /* No need to check if R == 0 here: if that's the case, it will be
- * caught when comparating rx (which will be 0) to r (which isn't). */
- }
-
- /* 6. Convert xR to an integer */
- m256_done(u1, &p256_p);
-
- /* 7. Reduce xR mod n */
- ecdsa_m256_mod_n(u1);
-
- /* 8. Compare xR mod n to r */
- uint32_t diff = u256_diff(u1, r);
- if (diff == 0)
- return P256_SUCCESS;
-
- return P256_INVALID_SIGNATURE;
-}
-
-/**********************************************************************
- *
- * Key management utilities
- *
- **********************************************************************/
-
-int p256_validate_pubkey(const uint8_t pub[64])
-{
- uint32_t x[8], y[8];
- int ret = point_from_bytes(x, y, pub);
-
- return ret == 0 ? P256_SUCCESS : P256_INVALID_PUBKEY;
-}
-
-int p256_validate_privkey(const uint8_t priv[32])
-{
- uint32_t s[8];
- int ret = scalar_from_bytes(s, priv);
- zeroize(s, sizeof(s));
-
- return ret == 0 ? P256_SUCCESS : P256_INVALID_PRIVKEY;
-}
-
-int p256_public_from_private(uint8_t pub[64], const uint8_t priv[32])
-{
- int ret;
- uint32_t s[8];
-
- ret = scalar_from_bytes(s, priv);
- if (ret != 0)
- return P256_INVALID_PRIVKEY;
-
- /* compute and ouput the associated public key */
- uint32_t x[8], y[8];
- scalar_mult(x, y, p256_gx, p256_gy, s);
-
- /* the associated public key is not a secret, the scalar was */
- CT_UNPOISON(x, 32);
- CT_UNPOISON(y, 32);
- zeroize(s, sizeof(s));
-
- point_to_bytes(pub, x, y);
- return P256_SUCCESS;
-}
-
-#endif
diff --git a/3rdparty/p256-m/p256-m/p256-m.h b/3rdparty/p256-m/p256-m/p256-m.h
deleted file mode 100644
index c267800..0000000
--- a/3rdparty/p256-m/p256-m/p256-m.h
+++ /dev/null
@@ -1,135 +0,0 @@
-/*
- * Interface of curve P-256 (ECDH and ECDSA)
- *
- * Copyright The Mbed TLS Contributors
- * Author: Manuel Pégourié-Gonnard.
- * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
- */
-#ifndef P256_M_H
-#define P256_M_H
-
-#include <stdint.h>
-#include <stddef.h>
-
-/* Status codes */
-#define P256_SUCCESS 0
-#define P256_RANDOM_FAILED -1
-#define P256_INVALID_PUBKEY -2
-#define P256_INVALID_PRIVKEY -3
-#define P256_INVALID_SIGNATURE -4
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-/*
- * RNG function - must be provided externally and be cryptographically secure.
- *
- * in: output - must point to a writable buffer of at least output_size bytes.
- * output_size - the number of random bytes to write to output.
- * out: output is filled with output_size random bytes.
- * return 0 on success, non-zero on errors.
- */
-extern int p256_generate_random(uint8_t * output, unsigned output_size);
-
-/*
- * ECDH/ECDSA generate key pair
- *
- * [in] draws from p256_generate_random()
- * [out] priv: on success, holds the private key, as a big-endian integer
- * [out] pub: on success, holds the public key, as two big-endian integers
- *
- * return: P256_SUCCESS on success
- * P256_RANDOM_FAILED on failure
- */
-int p256_gen_keypair(uint8_t priv[32], uint8_t pub[64]);
-
-/*
- * ECDH compute shared secret
- *
- * [out] secret: on success, holds the shared secret, as a big-endian integer
- * [in] priv: our private key as a big-endian integer
- * [in] pub: the peer's public key, as two big-endian integers
- *
- * return: P256_SUCCESS on success
- * P256_INVALID_PRIVKEY if priv is invalid
- * P256_INVALID_PUBKEY if pub is invalid
- */
-int p256_ecdh_shared_secret(uint8_t secret[32],
- const uint8_t priv[32], const uint8_t pub[64]);
-
-/*
- * ECDSA sign
- *
- * [in] draws from p256_generate_random()
- * [out] sig: on success, holds the signature, as two big-endian integers
- * [in] priv: our private key as a big-endian integer
- * [in] hash: the hash of the message to be signed
- * [in] hlen: the size of hash in bytes
- *
- * return: P256_SUCCESS on success
- * P256_RANDOM_FAILED on failure
- * P256_INVALID_PRIVKEY if priv is invalid
- */
-int p256_ecdsa_sign(uint8_t sig[64], const uint8_t priv[32],
- const uint8_t *hash, size_t hlen);
-
-/*
- * ECDSA verify
- *
- * [in] sig: the signature to be verified, as two big-endian integers
- * [in] pub: the associated public key, as two big-endian integers
- * [in] hash: the hash of the message that was signed
- * [in] hlen: the size of hash in bytes
- *
- * return: P256_SUCCESS on success - the signature was verified as valid
- * P256_INVALID_PUBKEY if pub is invalid
- * P256_INVALID_SIGNATURE if the signature was found to be invalid
- */
-int p256_ecdsa_verify(const uint8_t sig[64], const uint8_t pub[64],
- const uint8_t *hash, size_t hlen);
-
-/*
- * Public key validation
- *
- * Note: you never need to call this function, as all other functions always
- * validate their input; however it's availabe if you want to validate the key
- * without performing an operation.
- *
- * [in] pub: the public key, as two big-endian integers
- *
- * return: P256_SUCCESS if the key is valid
- * P256_INVALID_PUBKEY if pub is invalid
- */
-int p256_validate_pubkey(const uint8_t pub[64]);
-
-/*
- * Private key validation
- *
- * Note: you never need to call this function, as all other functions always
- * validate their input; however it's availabe if you want to validate the key
- * without performing an operation.
- *
- * [in] priv: the private key, as a big-endian integer
- *
- * return: P256_SUCCESS if the key is valid
- * P256_INVALID_PRIVKEY if priv is invalid
- */
-int p256_validate_privkey(const uint8_t priv[32]);
-
-/*
- * Compute public key from private key
- *
- * [out] pub: the associated public key, as two big-endian integers
- * [in] priv: the private key, as a big-endian integer
- *
- * return: P256_SUCCESS on success
- * P256_INVALID_PRIVKEY if priv is invalid
- */
-int p256_public_from_private(uint8_t pub[64], const uint8_t priv[32]);
-
-#ifdef __cplusplus
-}
-#endif
-
-#endif /* P256_M_H */
diff --git a/3rdparty/p256-m/p256-m_driver_entrypoints.c b/3rdparty/p256-m/p256-m_driver_entrypoints.c
deleted file mode 100644
index d272dcb..0000000
--- a/3rdparty/p256-m/p256-m_driver_entrypoints.c
+++ /dev/null
@@ -1,312 +0,0 @@
-/*
- * Driver entry points for p256-m
- */
-/*
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
- */
-
-#include "mbedtls/platform.h"
-#include "p256-m_driver_entrypoints.h"
-#include "p256-m/p256-m.h"
-#include "psa/crypto.h"
-#include <stddef.h>
-#include <string.h>
-#include "psa_crypto_driver_wrappers_no_static.h"
-
-#if defined(MBEDTLS_PSA_P256M_DRIVER_ENABLED)
-
-/* INFORMATION ON PSA KEY EXPORT FORMATS:
- *
- * PSA exports SECP256R1 keys in two formats:
- * 1. Keypair format: 32 byte string which is just the private key (public key
- * can be calculated from the private key)
- * 2. Public Key format: A leading byte 0x04 (indicating uncompressed format),
- * followed by the 64 byte public key. This results in a
- * total of 65 bytes.
- *
- * p256-m's internal format for private keys matches PSA. Its format for public
- * keys is only 64 bytes: the same as PSA but without the leading byte (0x04).
- * Hence, when passing public keys from PSA to p256-m, the leading byte is
- * removed.
- *
- * Shared secret and signature have the same format between PSA and p256-m.
- */
-#define PSA_PUBKEY_SIZE 65
-#define PSA_PUBKEY_HEADER_BYTE 0x04
-#define P256_PUBKEY_SIZE 64
-#define PRIVKEY_SIZE 32
-#define SHARED_SECRET_SIZE 32
-#define SIGNATURE_SIZE 64
-
-#define CURVE_BITS 256
-
-/* Convert between p256-m and PSA error codes */
-static psa_status_t p256_to_psa_error(int ret)
-{
- switch (ret) {
- case P256_SUCCESS:
- return PSA_SUCCESS;
- case P256_INVALID_PUBKEY:
- case P256_INVALID_PRIVKEY:
- return PSA_ERROR_INVALID_ARGUMENT;
- case P256_INVALID_SIGNATURE:
- return PSA_ERROR_INVALID_SIGNATURE;
- case P256_RANDOM_FAILED:
- default:
- return PSA_ERROR_GENERIC_ERROR;
- }
-}
-
-psa_status_t p256_transparent_import_key(const psa_key_attributes_t *attributes,
- const uint8_t *data,
- size_t data_length,
- uint8_t *key_buffer,
- size_t key_buffer_size,
- size_t *key_buffer_length,
- size_t *bits)
-{
- /* Check the key size */
- if (*bits != 0 && *bits != CURVE_BITS) {
- return PSA_ERROR_NOT_SUPPORTED;
- }
-
- /* Validate the key (and its type and size) */
- psa_key_type_t type = psa_get_key_type(attributes);
- if (type == PSA_KEY_TYPE_ECC_PUBLIC_KEY(PSA_ECC_FAMILY_SECP_R1)) {
- if (data_length != PSA_PUBKEY_SIZE) {
- return *bits == 0 ? PSA_ERROR_NOT_SUPPORTED : PSA_ERROR_INVALID_ARGUMENT;
- }
- /* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
- if (p256_validate_pubkey(data + 1) != P256_SUCCESS) {
- return PSA_ERROR_INVALID_ARGUMENT;
- }
- } else if (type == PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)) {
- if (data_length != PRIVKEY_SIZE) {
- return *bits == 0 ? PSA_ERROR_NOT_SUPPORTED : PSA_ERROR_INVALID_ARGUMENT;
- }
- if (p256_validate_privkey(data) != P256_SUCCESS) {
- return PSA_ERROR_INVALID_ARGUMENT;
- }
- } else {
- return PSA_ERROR_NOT_SUPPORTED;
- }
- *bits = CURVE_BITS;
-
- /* We only support the export format for input, so just copy. */
- if (key_buffer_size < data_length) {
- return PSA_ERROR_BUFFER_TOO_SMALL;
- }
- memcpy(key_buffer, data, data_length);
- *key_buffer_length = data_length;
-
- return PSA_SUCCESS;
-}
-
-psa_status_t p256_transparent_export_public_key(const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- uint8_t *data,
- size_t data_size,
- size_t *data_length)
-{
- /* Is this the right curve? */
- size_t bits = psa_get_key_bits(attributes);
- psa_key_type_t type = psa_get_key_type(attributes);
- if (bits != CURVE_BITS || type != PSA_KEY_TYPE_ECC_KEY_PAIR(PSA_ECC_FAMILY_SECP_R1)) {
- return PSA_ERROR_NOT_SUPPORTED;
- }
-
- /* Validate sizes, as p256-m expects fixed-size buffers */
- if (key_buffer_size != PRIVKEY_SIZE) {
- return PSA_ERROR_INVALID_ARGUMENT;
- }
- if (data_size < PSA_PUBKEY_SIZE) {
- return PSA_ERROR_BUFFER_TOO_SMALL;
- }
-
- /* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
- data[0] = PSA_PUBKEY_HEADER_BYTE;
- int ret = p256_public_from_private(data + 1, key_buffer);
- if (ret == P256_SUCCESS) {
- *data_length = PSA_PUBKEY_SIZE;
- }
-
- return p256_to_psa_error(ret);
-}
-
-psa_status_t p256_transparent_generate_key(
- const psa_key_attributes_t *attributes,
- uint8_t *key_buffer,
- size_t key_buffer_size,
- size_t *key_buffer_length)
-{
- /* We don't use this argument, but the specification mandates the signature
- * of driver entry-points. (void) used to avoid compiler warning. */
- (void) attributes;
-
- /* Validate sizes, as p256-m expects fixed-size buffers */
- if (key_buffer_size != PRIVKEY_SIZE) {
- return PSA_ERROR_BUFFER_TOO_SMALL;
- }
-
- /*
- * p256-m's keypair generation function outputs both public and private
- * keys. Allocate a buffer to which the public key will be written. The
- * private key will be written to key_buffer, which is passed to this
- * function as an argument. */
- uint8_t public_key_buffer[P256_PUBKEY_SIZE];
-
- int ret = p256_gen_keypair(key_buffer, public_key_buffer);
- if (ret == P256_SUCCESS) {
- *key_buffer_length = PRIVKEY_SIZE;
- }
-
- return p256_to_psa_error(ret);
-}
-
-psa_status_t p256_transparent_key_agreement(
- const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- psa_algorithm_t alg,
- const uint8_t *peer_key,
- size_t peer_key_length,
- uint8_t *shared_secret,
- size_t shared_secret_size,
- size_t *shared_secret_length)
-{
- /* We don't use these arguments, but the specification mandates the
- * sginature of driver entry-points. (void) used to avoid compiler
- * warning. */
- (void) attributes;
- (void) alg;
-
- /* Validate sizes, as p256-m expects fixed-size buffers */
- if (key_buffer_size != PRIVKEY_SIZE || peer_key_length != PSA_PUBKEY_SIZE) {
- return PSA_ERROR_INVALID_ARGUMENT;
- }
- if (shared_secret_size < SHARED_SECRET_SIZE) {
- return PSA_ERROR_BUFFER_TOO_SMALL;
- }
-
- /* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
- const uint8_t *peer_key_p256m = peer_key + 1;
- int ret = p256_ecdh_shared_secret(shared_secret, key_buffer, peer_key_p256m);
- if (ret == P256_SUCCESS) {
- *shared_secret_length = SHARED_SECRET_SIZE;
- }
-
- return p256_to_psa_error(ret);
-}
-
-psa_status_t p256_transparent_sign_hash(
- const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- psa_algorithm_t alg,
- const uint8_t *hash,
- size_t hash_length,
- uint8_t *signature,
- size_t signature_size,
- size_t *signature_length)
-{
- /* We don't use these arguments, but the specification mandates the
- * sginature of driver entry-points. (void) used to avoid compiler
- * warning. */
- (void) attributes;
- (void) alg;
-
- /* Validate sizes, as p256-m expects fixed-size buffers */
- if (key_buffer_size != PRIVKEY_SIZE) {
- return PSA_ERROR_INVALID_ARGUMENT;
- }
- if (signature_size < SIGNATURE_SIZE) {
- return PSA_ERROR_BUFFER_TOO_SMALL;
- }
-
- int ret = p256_ecdsa_sign(signature, key_buffer, hash, hash_length);
- if (ret == P256_SUCCESS) {
- *signature_length = SIGNATURE_SIZE;
- }
-
- return p256_to_psa_error(ret);
-}
-
-/* This function expects the key buffer to contain a PSA public key,
- * as exported by psa_export_public_key() */
-static psa_status_t p256_verify_hash_with_public_key(
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- const uint8_t *hash,
- size_t hash_length,
- const uint8_t *signature,
- size_t signature_length)
-{
- /* Validate sizes, as p256-m expects fixed-size buffers */
- if (key_buffer_size != PSA_PUBKEY_SIZE || *key_buffer != PSA_PUBKEY_HEADER_BYTE) {
- return PSA_ERROR_INVALID_ARGUMENT;
- }
- if (signature_length != SIGNATURE_SIZE) {
- return PSA_ERROR_INVALID_SIGNATURE;
- }
-
- /* See INFORMATION ON PSA KEY EXPORT FORMATS near top of file */
- const uint8_t *public_key_p256m = key_buffer + 1;
- int ret = p256_ecdsa_verify(signature, public_key_p256m, hash, hash_length);
-
- return p256_to_psa_error(ret);
-}
-
-psa_status_t p256_transparent_verify_hash(
- const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- psa_algorithm_t alg,
- const uint8_t *hash,
- size_t hash_length,
- const uint8_t *signature,
- size_t signature_length)
-{
- /* We don't use this argument, but the specification mandates the signature
- * of driver entry-points. (void) used to avoid compiler warning. */
- (void) alg;
-
- psa_status_t status;
- uint8_t public_key_buffer[PSA_PUBKEY_SIZE];
- size_t public_key_buffer_size = PSA_PUBKEY_SIZE;
-
- size_t public_key_length = PSA_PUBKEY_SIZE;
- /* As p256-m doesn't require dynamic allocation, we want to avoid it in
- * the entrypoint functions as well. psa_driver_wrapper_export_public_key()
- * requires size_t*, so we use a pointer to a stack variable. */
- size_t *public_key_length_ptr = &public_key_length;
-
- /* The contents of key_buffer may either be the 32 byte private key
- * (keypair format), or 0x04 followed by the 64 byte public key (public
- * key format). To ensure the key is in the latter format, the public key
- * is exported. */
- status = psa_driver_wrapper_export_public_key(
- attributes,
- key_buffer,
- key_buffer_size,
- public_key_buffer,
- public_key_buffer_size,
- public_key_length_ptr);
- if (status != PSA_SUCCESS) {
- goto exit;
- }
-
- status = p256_verify_hash_with_public_key(
- public_key_buffer,
- public_key_buffer_size,
- hash,
- hash_length,
- signature,
- signature_length);
-
-exit:
- return status;
-}
-
-#endif /* MBEDTLS_PSA_P256M_DRIVER_ENABLED */
diff --git a/3rdparty/p256-m/p256-m_driver_entrypoints.h b/3rdparty/p256-m/p256-m_driver_entrypoints.h
deleted file mode 100644
index c740c45..0000000
--- a/3rdparty/p256-m/p256-m_driver_entrypoints.h
+++ /dev/null
@@ -1,219 +0,0 @@
-/*
- * Driver entry points for p256-m
- */
-/*
- * Copyright The Mbed TLS Contributors
- * SPDX-License-Identifier: Apache-2.0 OR GPL-2.0-or-later
- */
-
-#ifndef P256M_DRIVER_ENTRYPOINTS_H
-#define P256M_DRIVER_ENTRYPOINTS_H
-
-#if defined(MBEDTLS_PSA_P256M_DRIVER_ENABLED)
-#ifndef PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT
-#define PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT
-#endif /* PSA_CRYPTO_ACCELERATOR_DRIVER_PRESENT */
-#endif /* MBEDTLS_PSA_P256M_DRIVER_ENABLED */
-
-#include "psa/crypto_types.h"
-
-/** Import SECP256R1 key.
- *
- * \param[in] attributes The attributes of the key to use for the
- * operation.
- * \param[in] data The raw key material. For private keys
- * this must be a big-endian integer of 32
- * bytes; for public key this must be an
- * uncompressed ECPoint (65 bytes).
- * \param[in] data_length The size of the raw key material.
- * \param[out] key_buffer The buffer to contain the key data in
- * output format upon successful return.
- * \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
- * \param[out] key_buffer_length The length of the data written in \p
- * key_buffer in bytes.
- * \param[out] bits The bitsize of the key.
- *
- * \retval #PSA_SUCCESS
- * Success. Keypair generated and stored in buffer.
- * \retval #PSA_ERROR_NOT_SUPPORTED
- * The input is not supported by this driver (not SECP256R1).
- * \retval #PSA_ERROR_INVALID_ARGUMENT
- * The input is invalid.
- * \retval #PSA_ERROR_BUFFER_TOO_SMALL
- * \p key_buffer_size is too small.
- */
-psa_status_t p256_transparent_import_key(const psa_key_attributes_t *attributes,
- const uint8_t *data,
- size_t data_length,
- uint8_t *key_buffer,
- size_t key_buffer_size,
- size_t *key_buffer_length,
- size_t *bits);
-
-/** Export SECP256R1 public key, from the private key.
- *
- * \param[in] attributes The attributes of the key to use for the
- * operation.
- * \param[in] key_buffer The private key in the export format.
- * \param[in] key_buffer_size The size of the private key in bytes.
- * \param[out] data The buffer to contain the public key in
- * the export format upon successful return.
- * \param[in] data_size The size of the \p data buffer in bytes.
- * \param[out] data_length The length written to \p data in bytes.
- *
- * \retval #PSA_SUCCESS
- * Success. Keypair generated and stored in buffer.
- * \retval #PSA_ERROR_NOT_SUPPORTED
- * The input is not supported by this driver (not SECP256R1).
- * \retval #PSA_ERROR_INVALID_ARGUMENT
- * The input is invalid.
- * \retval #PSA_ERROR_BUFFER_TOO_SMALL
- * \p key_buffer_size is too small.
- */
-psa_status_t p256_transparent_export_public_key(const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- uint8_t *data,
- size_t data_size,
- size_t *data_length);
-
-/** Generate SECP256R1 ECC Key Pair.
- * Interface function which calls the p256-m key generation function and
- * places it in the key buffer provided by the caller (Mbed TLS) in the
- * correct format. For a SECP256R1 curve this is the 32 bit private key.
- *
- * \param[in] attributes The attributes of the key to use for the
- * operation.
- * \param[out] key_buffer The buffer to contain the key data in
- * output format upon successful return.
- * \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
- * \param[out] key_buffer_length The length of the data written in \p
- * key_buffer in bytes.
- *
- * \retval #PSA_SUCCESS
- * Success. Keypair generated and stored in buffer.
- * \retval #PSA_ERROR_BUFFER_TOO_SMALL
- * \p key_buffer_size is too small.
- * \retval #PSA_ERROR_GENERIC_ERROR
- * The internal RNG failed.
- */
-psa_status_t p256_transparent_generate_key(
- const psa_key_attributes_t *attributes,
- uint8_t *key_buffer,
- size_t key_buffer_size,
- size_t *key_buffer_length);
-
-/** Perform raw key agreement using p256-m's ECDH implementation
- * \param[in] attributes The attributes of the key to use for the
- * operation.
- * \param[in] key_buffer The buffer containing the private key
- * in the format specified by PSA.
- * \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
- * \param[in] alg A key agreement algorithm that is
- * compatible with the type of the key.
- * \param[in] peer_key The buffer containing the peer's public
- * key in format specified by PSA.
- * \param[in] peer_key_length Size of the \p peer_key buffer in
- * bytes.
- * \param[out] shared_secret The buffer to which the shared secret
- * is to be written.
- * \param[in] shared_secret_size Size of the \p shared_secret buffer in
- * bytes.
- * \param[out] shared_secret_length On success, the number of bytes that
- * make up the returned shared secret.
- * \retval #PSA_SUCCESS
- * Success. Shared secret successfully calculated.
- * \retval #PSA_ERROR_INVALID_ARGUMENT
- * The input is invalid.
- * \retval #PSA_ERROR_BUFFER_TOO_SMALL
- * \p shared_secret_size is too small.
- */
-psa_status_t p256_transparent_key_agreement(
- const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- psa_algorithm_t alg,
- const uint8_t *peer_key,
- size_t peer_key_length,
- uint8_t *shared_secret,
- size_t shared_secret_size,
- size_t *shared_secret_length);
-
-/** Sign an already-calculated hash with a private key using p256-m's ECDSA
- * implementation
- * \param[in] attributes The attributes of the key to use for the
- * operation.
- * \param[in] key_buffer The buffer containing the private key
- * in the format specified by PSA.
- * \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
- * \param[in] alg A signature algorithm that is compatible
- * with the type of the key.
- * \param[in] hash The hash to sign.
- * \param[in] hash_length Size of the \p hash buffer in bytes.
- * \param[out] signature Buffer where signature is to be written.
- * \param[in] signature_size Size of the \p signature buffer in bytes.
- * \param[out] signature_length On success, the number of bytes
- * that make up the returned signature value.
- *
- * \retval #PSA_SUCCESS
- * Success. Hash was signed successfully.
- * \retval #PSA_ERROR_INVALID_ARGUMENT
- * The input is invalid.
- * \retval #PSA_ERROR_BUFFER_TOO_SMALL
- * \p signature_size is too small.
- * \retval #PSA_ERROR_GENERIC_ERROR
- * The internal RNG failed.
- */
-psa_status_t p256_transparent_sign_hash(
- const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- psa_algorithm_t alg,
- const uint8_t *hash,
- size_t hash_length,
- uint8_t *signature,
- size_t signature_size,
- size_t *signature_length);
-
-/** Verify the signature of a hash using a SECP256R1 public key using p256-m's
- * ECDSA implementation.
- *
- * \note p256-m expects a 64 byte public key, but the contents of the key
- buffer may be the 32 byte keypair representation or the 65 byte
- public key representation. As a result, this function calls
- psa_driver_wrapper_export_public_key() to ensure the public key
- can be passed to p256-m.
- *
- * \param[in] attributes The attributes of the key to use for the
- * operation.
- *
- * \param[in] key_buffer The buffer containing the key
- * in the format specified by PSA.
- * \param[in] key_buffer_size Size of the \p key_buffer buffer in bytes.
- * \param[in] alg A signature algorithm that is compatible with
- * the type of the key.
- * \param[in] hash The hash whose signature is to be
- * verified.
- * \param[in] hash_length Size of the \p hash buffer in bytes.
- * \param[in] signature Buffer containing the signature to verify.
- * \param[in] signature_length Size of the \p signature buffer in bytes.
- *
- * \retval #PSA_SUCCESS
- * The signature is valid.
- * \retval #PSA_ERROR_INVALID_SIGNATURE
- * The calculation was performed successfully, but the passed
- * signature is not a valid signature.
- * \retval #PSA_ERROR_INVALID_ARGUMENT
- * The input is invalid.
- */
-psa_status_t p256_transparent_verify_hash(
- const psa_key_attributes_t *attributes,
- const uint8_t *key_buffer,
- size_t key_buffer_size,
- psa_algorithm_t alg,
- const uint8_t *hash,
- size_t hash_length,
- const uint8_t *signature,
- size_t signature_length);
-
-#endif /* P256M_DRIVER_ENTRYPOINTS_H */