aboutsummaryrefslogtreecommitdiff
path: root/enc/entropy_encode.cc
blob: 787f988a5e5d3dbf8e29ee677fc2606ed70ed6c2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
// Copyright 2010 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Entropy encoding (Huffman) utilities.

#include "./entropy_encode.h"

#include <stdint.h>
#include <algorithm>
#include <limits>
#include <vector>
#include <cstdlib>

#include "./histogram.h"

namespace brotli {

namespace {

struct HuffmanTree {
  HuffmanTree();
  HuffmanTree(int count, int16_t left, int16_t right)
      : total_count_(count),
        index_left_(left),
        index_right_or_value_(right) {
  }
  int total_count_;
  int16_t index_left_;
  int16_t index_right_or_value_;
};

HuffmanTree::HuffmanTree() {}

// Sort the root nodes, least popular first, break ties by value.
bool SortHuffmanTree(const HuffmanTree &v0, const HuffmanTree &v1) {
  if (v0.total_count_ == v1.total_count_) {
    return v0.index_right_or_value_ > v1.index_right_or_value_;
  }
  return v0.total_count_ < v1.total_count_;
}

// Sort the root nodes, least popular first.
bool SortHuffmanTreeFast(const HuffmanTree &v0, const HuffmanTree &v1) {
  return v0.total_count_ < v1.total_count_;
}

void SetDepth(const HuffmanTree &p,
              HuffmanTree *pool,
              uint8_t *depth,
              int level) {
  if (p.index_left_ >= 0) {
    ++level;
    SetDepth(pool[p.index_left_], pool, depth, level);
    SetDepth(pool[p.index_right_or_value_], pool, depth, level);
  } else {
    depth[p.index_right_or_value_] = level;
  }
}

}  // namespace

// This function will create a Huffman tree.
//
// The catch here is that the tree cannot be arbitrarily deep.
// Brotli specifies a maximum depth of 15 bits for "code trees"
// and 7 bits for "code length code trees."
//
// count_limit is the value that is to be faked as the minimum value
// and this minimum value is raised until the tree matches the
// maximum length requirement.
//
// This algorithm is not of excellent performance for very long data blocks,
// especially when population counts are longer than 2**tree_limit, but
// we are not planning to use this with extremely long blocks.
//
// See http://en.wikipedia.org/wiki/Huffman_coding
void CreateHuffmanTree(const int *data,
                       const int length,
                       const int tree_limit,
                       const int quality,
                       uint8_t *depth) {
  // For block sizes below 64 kB, we never need to do a second iteration
  // of this loop. Probably all of our block sizes will be smaller than
  // that, so this loop is mostly of academic interest. If we actually
  // would need this, we would be better off with the Katajainen algorithm.
  for (int count_limit = 1; ; count_limit *= 2) {
    std::vector<HuffmanTree> tree;
    tree.reserve(2 * length + 1);

    for (int i = 0; i < length; ++i) {
      if (data[i]) {
        const int count = std::max(data[i], count_limit);
        tree.push_back(HuffmanTree(count, -1, i));
      }
    }

    const int n = tree.size();
    if (n == 1) {
      depth[tree[0].index_right_or_value_] = 1;      // Only one element.
      break;
    }

    if (quality > 1) {
      std::sort(tree.begin(), tree.end(), SortHuffmanTree);
    } else {
      std::sort(tree.begin(), tree.end(), SortHuffmanTreeFast);
    }
    // The nodes are:
    // [0, n): the sorted leaf nodes that we start with.
    // [n]: we add a sentinel here.
    // [n + 1, 2n): new parent nodes are added here, starting from
    //              (n+1). These are naturally in ascending order.
    // [2n]: we add a sentinel at the end as well.
    // There will be (2n+1) elements at the end.
    const HuffmanTree sentinel(std::numeric_limits<int>::max(), -1, -1);
    tree.push_back(sentinel);
    tree.push_back(sentinel);

    int i = 0;      // Points to the next leaf node.
    int j = n + 1;  // Points to the next non-leaf node.
    for (int k = n - 1; k > 0; --k) {
      int left, right;
      if (tree[i].total_count_ <= tree[j].total_count_) {
        left = i;
        ++i;
      } else {
        left = j;
        ++j;
      }
      if (tree[i].total_count_ <= tree[j].total_count_) {
        right = i;
        ++i;
      } else {
        right = j;
        ++j;
      }

      // The sentinel node becomes the parent node.
      int j_end = tree.size() - 1;
      tree[j_end].total_count_ =
          tree[left].total_count_ + tree[right].total_count_;
      tree[j_end].index_left_ = left;
      tree[j_end].index_right_or_value_ = right;

      // Add back the last sentinel node.
      tree.push_back(sentinel);
    }
    SetDepth(tree[2 * n - 1], &tree[0], depth, 0);

    // We need to pack the Huffman tree in tree_limit bits.
    // If this was not successful, add fake entities to the lowest values
    // and retry.
    if (*std::max_element(&depth[0], &depth[length]) <= tree_limit) {
      break;
    }
  }
}

void Reverse(std::vector<uint8_t>* v, int start, int end) {
  --end;
  while (start < end) {
    int tmp = (*v)[start];
    (*v)[start] = (*v)[end];
    (*v)[end] = tmp;
    ++start;
    --end;
  }
}

void WriteHuffmanTreeRepetitions(
    const int previous_value,
    const int value,
    int repetitions,
    std::vector<uint8_t> *tree,
    std::vector<uint8_t> *extra_bits_data) {
  if (previous_value != value) {
    tree->push_back(value);
    extra_bits_data->push_back(0);
    --repetitions;
  }
  if (repetitions == 7) {
    tree->push_back(value);
    extra_bits_data->push_back(0);
    --repetitions;
  }
  if (repetitions < 3) {
    for (int i = 0; i < repetitions; ++i) {
      tree->push_back(value);
      extra_bits_data->push_back(0);
    }
  } else {
    repetitions -= 3;
    int start = tree->size();
    while (repetitions >= 0) {
      tree->push_back(16);
      extra_bits_data->push_back(repetitions & 0x3);
      repetitions >>= 2;
      --repetitions;
    }
    Reverse(tree, start, tree->size());
    Reverse(extra_bits_data, start, tree->size());
  }
}

void WriteHuffmanTreeRepetitionsZeros(
    int repetitions,
    std::vector<uint8_t> *tree,
    std::vector<uint8_t> *extra_bits_data) {
  if (repetitions == 11) {
    tree->push_back(0);
    extra_bits_data->push_back(0);
    --repetitions;
  }
  if (repetitions < 3) {
    for (int i = 0; i < repetitions; ++i) {
      tree->push_back(0);
      extra_bits_data->push_back(0);
    }
  } else {
    repetitions -= 3;
    int start = tree->size();
    while (repetitions >= 0) {
      tree->push_back(17);
      extra_bits_data->push_back(repetitions & 0x7);
      repetitions >>= 3;
      --repetitions;
    }
    Reverse(tree, start, tree->size());
    Reverse(extra_bits_data, start, tree->size());
  }
}

int OptimizeHuffmanCountsForRle(int length, int* counts) {
  int stride;
  int limit;
  int sum;
  uint8_t* good_for_rle;
  // Let's make the Huffman code more compatible with rle encoding.
  int i;
  for (; length >= 0; --length) {
    if (length == 0) {
      return 1;  // All zeros.
    }
    if (counts[length - 1] != 0) {
      // Now counts[0..length - 1] does not have trailing zeros.
      break;
    }
  }
  {
    int nonzeros = 0;
    int smallest_nonzero = 1 << 30;
    for (i = 0; i < length; ++i) {
      if (counts[i] != 0) {
        ++nonzeros;
        if (smallest_nonzero > counts[i]) {
          smallest_nonzero = counts[i];
        }
      }
    }
    if (nonzeros < 5) {
      // Small histogram will model it well.
      return 1;
    }
    int zeros = length - nonzeros;
    if (smallest_nonzero < 4) {
      if (zeros < 6) {
        for (i = 1; i < length - 1; ++i) {
          if (counts[i - 1] != 0 && counts[i] == 0 && counts[i + 1] != 0) {
            counts[i] = 1;
          }
        }
      }
    }
    if (nonzeros < 28) {
      return 1;
    }
  }
  // 2) Let's mark all population counts that already can be encoded
  // with an rle code.
  good_for_rle = (uint8_t*)calloc(length, 1);
  if (good_for_rle == NULL) {
    return 0;
  }
  {
    // Let's not spoil any of the existing good rle codes.
    // Mark any seq of 0's that is longer as 5 as a good_for_rle.
    // Mark any seq of non-0's that is longer as 7 as a good_for_rle.
    int symbol = counts[0];
    int stride = 0;
    for (i = 0; i < length + 1; ++i) {
      if (i == length || counts[i] != symbol) {
        if ((symbol == 0 && stride >= 5) ||
            (symbol != 0 && stride >= 7)) {
          int k;
          for (k = 0; k < stride; ++k) {
            good_for_rle[i - k - 1] = 1;
          }
        }
        stride = 1;
        if (i != length) {
          symbol = counts[i];
        }
      } else {
        ++stride;
      }
    }
  }
  // 3) Let's replace those population counts that lead to more rle codes.
  // Math here is in 24.8 fixed point representation.
  const int streak_limit = 1240;
  stride = 0;
  limit = 256 * (counts[0] + counts[1] + counts[2]) / 3 + 420;
  sum = 0;
  for (i = 0; i < length + 1; ++i) {
    if (i == length || good_for_rle[i] ||
        (i != 0 && good_for_rle[i - 1]) ||
        abs(256 * counts[i] - limit) >= streak_limit) {
      if (stride >= 4 || (stride >= 3 && sum == 0)) {
        int k;
        // The stride must end, collapse what we have, if we have enough (4).
        int count = (sum + stride / 2) / stride;
        if (count < 1) {
          count = 1;
        }
        if (sum == 0) {
          // Don't make an all zeros stride to be upgraded to ones.
          count = 0;
        }
        for (k = 0; k < stride; ++k) {
          // We don't want to change value at counts[i],
          // that is already belonging to the next stride. Thus - 1.
          counts[i - k - 1] = count;
        }
      }
      stride = 0;
      sum = 0;
      if (i < length - 2) {
        // All interesting strides have a count of at least 4,
        // at least when non-zeros.
        limit = 256 * (counts[i] + counts[i + 1] + counts[i + 2]) / 3 + 420;
      } else if (i < length) {
        limit = 256 * counts[i];
      } else {
        limit = 0;
      }
    }
    ++stride;
    if (i != length) {
      sum += counts[i];
      if (stride >= 4) {
        limit = (256 * sum + stride / 2) / stride;
      }
      if (stride == 4) {
        limit += 120;
      }
    }
  }
  free(good_for_rle);
  return 1;
}

static void DecideOverRleUse(const uint8_t* depth, const int length,
                             bool *use_rle_for_non_zero,
                             bool *use_rle_for_zero) {
  int total_reps_zero = 0;
  int total_reps_non_zero = 0;
  int count_reps_zero = 0;
  int count_reps_non_zero = 0;
  for (uint32_t i = 0; i < length;) {
    const int value = depth[i];
    int reps = 1;
    for (uint32_t k = i + 1; k < length && depth[k] == value; ++k) {
      ++reps;
    }
    if (reps >= 3 && value == 0) {
      total_reps_zero += reps;
      ++count_reps_zero;
    }
    if (reps >= 4 && value != 0) {
      total_reps_non_zero += reps;
      ++count_reps_non_zero;
    }
    i += reps;
  }
  total_reps_non_zero -= count_reps_non_zero * 2;
  total_reps_zero -= count_reps_zero * 2;
  *use_rle_for_non_zero = total_reps_non_zero > 2;
  *use_rle_for_zero = total_reps_zero > 2;
}

void WriteHuffmanTree(const uint8_t* depth,
                      uint32_t length,
                      std::vector<uint8_t> *tree,
                      std::vector<uint8_t> *extra_bits_data) {
  int previous_value = 8;

  // Throw away trailing zeros.
  int new_length = length;
  for (int i = 0; i < length; ++i) {
    if (depth[length - i - 1] == 0) {
      --new_length;
    } else {
      break;
    }
  }

  // First gather statistics on if it is a good idea to do rle.
  bool use_rle_for_non_zero = false;
  bool use_rle_for_zero = false;
  if (length > 50) {
    // Find rle coding for longer codes.
    // Shorter codes seem not to benefit from rle.
    DecideOverRleUse(depth, new_length,
                     &use_rle_for_non_zero, &use_rle_for_zero);
  }

  // Actual rle coding.
  for (uint32_t i = 0; i < new_length;) {
    const int value = depth[i];
    int reps = 1;
    if ((value != 0 && use_rle_for_non_zero) ||
        (value == 0 && use_rle_for_zero)) {
      for (uint32_t k = i + 1; k < new_length && depth[k] == value; ++k) {
        ++reps;
      }
    }
    if (value == 0) {
      WriteHuffmanTreeRepetitionsZeros(reps, tree, extra_bits_data);
    } else {
      WriteHuffmanTreeRepetitions(previous_value,
                                  value, reps, tree, extra_bits_data);
      previous_value = value;
    }
    i += reps;
  }
}

namespace {

uint16_t ReverseBits(int num_bits, uint16_t bits) {
  static const size_t kLut[16] = {  // Pre-reversed 4-bit values.
    0x0, 0x8, 0x4, 0xc, 0x2, 0xa, 0x6, 0xe,
    0x1, 0x9, 0x5, 0xd, 0x3, 0xb, 0x7, 0xf
  };
  size_t retval = kLut[bits & 0xf];
  for (int i = 4; i < num_bits; i += 4) {
    retval <<= 4;
    bits >>= 4;
    retval |= kLut[bits & 0xf];
  }
  retval >>= (-num_bits & 0x3);
  return retval;
}

}  // namespace

void ConvertBitDepthsToSymbols(const uint8_t *depth, int len, uint16_t *bits) {
  // In Brotli, all bit depths are [1..15]
  // 0 bit depth means that the symbol does not exist.
  const int kMaxBits = 16;  // 0..15 are values for bits
  uint16_t bl_count[kMaxBits] = { 0 };
  {
    for (int i = 0; i < len; ++i) {
      ++bl_count[depth[i]];
    }
    bl_count[0] = 0;
  }
  uint16_t next_code[kMaxBits];
  next_code[0] = 0;
  {
    int code = 0;
    for (int bits = 1; bits < kMaxBits; ++bits) {
      code = (code + bl_count[bits - 1]) << 1;
      next_code[bits] = code;
    }
  }
  for (int i = 0; i < len; ++i) {
    if (depth[i]) {
      bits[i] = ReverseBits(depth[i], next_code[depth[i]]++);
    }
  }
}

}  // namespace brotli