1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
/** @file
Functions for accessing I2C registers.
Copyright (c) 2004 - 2015, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
--*/
#include <Library/DebugLib.h>
#include <Library/TimerLib.h>
#include <PchRegs/PchRegsPcu.h>
#include <PchRegs.h>
#include <PlatformBaseAddresses.h>
#include <PchRegs/PchRegsLpss.h>
#include <Library/I2CLib.h>
#include <Protocol/GlobalNvsArea.h>
#include <Library/UefiBootServicesTableLib.h>
#include <I2CRegs.h>
#define GLOBAL_NVS_OFFSET(Field) (UINTN)((CHAR8*)&((EFI_GLOBAL_NVS_AREA*)0)->Field - (CHAR8*)0)
#define PCIEX_BASE_ADDRESS 0xE0000000
#define PCI_EXPRESS_BASE_ADDRESS ((VOID *) (UINTN) PCIEX_BASE_ADDRESS)
#define MmPciAddress( Segment, Bus, Device, Function, Register ) \
((UINTN)PCI_EXPRESS_BASE_ADDRESS + \
(UINTN)(Bus << 20) + \
(UINTN)(Device << 15) + \
(UINTN)(Function << 12) + \
(UINTN)(Register) \
)
#define PCI_D31F0_REG_BASE PCIEX_BASE_ADDRESS + (UINT32) (31 << 15)
typedef struct _LPSS_PCI_DEVICE_INFO {
UINTN Segment;
UINTN BusNum;
UINTN DeviceNum;
UINTN FunctionNum;
UINTN Bar0;
UINTN Bar1;
} LPSS_PCI_DEVICE_INFO;
LPSS_PCI_DEVICE_INFO mLpssPciDeviceList[] = {
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_DMAC1, PCI_FUNCTION_NUMBER_PCH_LPSS_DMAC, 0xFE900000, 0xFE908000},
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_I2C, PCI_FUNCTION_NUMBER_PCH_LPSS_I2C0, 0xFE910000, 0xFE918000},
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_I2C, PCI_FUNCTION_NUMBER_PCH_LPSS_I2C1, 0xFE920000, 0xFE928000},
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_I2C, PCI_FUNCTION_NUMBER_PCH_LPSS_I2C2, 0xFE930000, 0xFE938000},
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_I2C, PCI_FUNCTION_NUMBER_PCH_LPSS_I2C3, 0xFE940000, 0xFE948000},
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_I2C, PCI_FUNCTION_NUMBER_PCH_LPSS_I2C4, 0xFE950000, 0xFE958000},
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_I2C, PCI_FUNCTION_NUMBER_PCH_LPSS_I2C5, 0xFE960000, 0xFE968000},
{0, DEFAULT_PCI_BUS_NUMBER_PCH, PCI_DEVICE_NUMBER_PCH_LPSS_I2C, PCI_FUNCTION_NUMBER_PCH_LPSS_I2C6, 0xFE970000, 0xFE978000}
};
#define LPSS_PCI_DEVICE_NUMBER sizeof(mLpssPciDeviceList)/sizeof(LPSS_PCI_DEVICE_INFO)
STATIC UINTN mI2CBaseAddress = 0;
STATIC UINT16 mI2CSlaveAddress = 0;
UINT16 mI2cMode=B_IC_RESTART_EN | B_IC_SLAVE_DISABLE | B_MASTER_MODE ;
UINTN mI2cNvsBaseAddress[] = {
GLOBAL_NVS_OFFSET(LDMA2Addr),
GLOBAL_NVS_OFFSET(I2C1Addr),
GLOBAL_NVS_OFFSET(I2C2Addr),
GLOBAL_NVS_OFFSET(I2C3Addr),
GLOBAL_NVS_OFFSET(I2C4Addr),
GLOBAL_NVS_OFFSET(I2C5Addr),
GLOBAL_NVS_OFFSET(I2C6Addr),
GLOBAL_NVS_OFFSET(I2C7Addr)
};
/**
This function get I2Cx controller base address (BAR0).
@param I2cControllerIndex Bus Number of I2C controller.
@return I2C BAR.
**/
UINTN
GetI2cBarAddr(
IN UINT8 I2cControllerIndex
)
{
EFI_STATUS Status;
EFI_GLOBAL_NVS_AREA_PROTOCOL *GlobalNvsArea;
UINTN AcpiBaseAddr;
UINTN PciMmBase=0;
ASSERT(gBS!=NULL);
Status = gBS->LocateProtocol (
&gEfiGlobalNvsAreaProtocolGuid,
NULL,
&GlobalNvsArea
);
//
// PCI mode from PEI ( Global NVS is not ready).
//
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_INFO, "GetI2cBarAddr() gEfiGlobalNvsAreaProtocolGuid:%r\n", Status));
//
// Global NVS is not ready.
//
return 0;
}
AcpiBaseAddr = *(UINTN*)((CHAR8*)GlobalNvsArea->Area + mI2cNvsBaseAddress[I2cControllerIndex + 1]);
//
//PCI mode from DXE (global NVS protocal) to LPSS OnReadytoBoot(swith to ACPI).
//
if(AcpiBaseAddr==0) {
PciMmBase = MmPciAddress (
mLpssPciDeviceList[I2cControllerIndex + 1].Segment,
mLpssPciDeviceList[I2cControllerIndex + 1].BusNum,
mLpssPciDeviceList[I2cControllerIndex + 1].DeviceNum,
mLpssPciDeviceList[I2cControllerIndex + 1].FunctionNum,
0
);
DEBUG((EFI_D_ERROR, "\nGetI2cBarAddr() I2C Device %x %x %x PciMmBase:%x\n", \
mLpssPciDeviceList[I2cControllerIndex + 1].BusNum, \
mLpssPciDeviceList[I2cControllerIndex + 1].DeviceNum, \
mLpssPciDeviceList[I2cControllerIndex + 1].FunctionNum, PciMmBase));
if (MmioRead32 (PciMmBase) != 0xFFFFFFFF) {
if((MmioRead32 (PciMmBase+R_PCH_LPSS_I2C_STSCMD)& B_PCH_LPSS_I2C_STSCMD_MSE)) {
//
// Get the address allocted.
//
mLpssPciDeviceList[I2cControllerIndex + 1].Bar0=MmioRead32 (PciMmBase+R_PCH_LPSS_I2C_BAR);
mLpssPciDeviceList[I2cControllerIndex + 1].Bar1=MmioRead32 (PciMmBase+R_PCH_LPSS_I2C_BAR1);
}
}
AcpiBaseAddr =mLpssPciDeviceList[I2cControllerIndex+1].Bar0;
}
//
// ACPI mode from BDS: LPSS OnReadytoBoot
//
else {
DEBUG ((EFI_D_INFO, "GetI2cBarAddr() NVS Varialable is updated by this LIB or LPSS \n"));
}
DEBUG ((EFI_D_INFO, "GetI2cBarAddr() I2cControllerIndex+1 0x%x AcpiBaseAddr:0x%x \n", (I2cControllerIndex + 1), AcpiBaseAddr));
return AcpiBaseAddr;
}
/**
This function enables I2C controllers.
@param I2cControllerIndex Bus Number of I2C controllers.
@return Result of the I2C initialization.
**/
EFI_STATUS
ProgramPciLpssI2C (
IN UINT8 I2cControllerIndex
)
{
UINT32 PmcBase;
UINTN PciMmBase=0;
EFI_STATUS Status;
EFI_GLOBAL_NVS_AREA_PROTOCOL *GlobalNvsArea;
UINT32 PmcFunctionDsiable[]= {
B_PCH_PMC_FUNC_DIS_LPSS2_FUNC1,
B_PCH_PMC_FUNC_DIS_LPSS2_FUNC2,
B_PCH_PMC_FUNC_DIS_LPSS2_FUNC3,
B_PCH_PMC_FUNC_DIS_LPSS2_FUNC4,
B_PCH_PMC_FUNC_DIS_LPSS2_FUNC5,
B_PCH_PMC_FUNC_DIS_LPSS2_FUNC6,
B_PCH_PMC_FUNC_DIS_LPSS2_FUNC7
};
DEBUG ((EFI_D_INFO, "ProgramPciLpssI2C() Start\n"));
//
// Set the VLV Function Disable Register to ZERO
//
PmcBase = MmioRead32 (PCI_D31F0_REG_BASE + R_PCH_LPC_PMC_BASE) & B_PCH_LPC_PMC_BASE_BAR;
if(MmioRead32(PmcBase+R_PCH_PMC_FUNC_DIS)&PmcFunctionDsiable[I2cControllerIndex]) {
DEBUG ((EFI_D_INFO, "ProgramPciLpssI2C() End:I2C[%x] is disabled\n",I2cControllerIndex));
return EFI_NOT_READY;
}
DEBUG ((EFI_D_INFO, "ProgramPciLpssI2C()------------I2cControllerIndex=%x,PMC=%x\n",I2cControllerIndex,MmioRead32(PmcBase+R_PCH_PMC_FUNC_DIS)));
{
PciMmBase = MmPciAddress (
mLpssPciDeviceList[I2cControllerIndex+1].Segment,
mLpssPciDeviceList[I2cControllerIndex+1].BusNum,
mLpssPciDeviceList[I2cControllerIndex+1].DeviceNum,
mLpssPciDeviceList[I2cControllerIndex+1].FunctionNum,
0
);
DEBUG((EFI_D_ERROR, "Program Pci Lpss I2C Device %x %x %x PciMmBase:%x\n", \
mLpssPciDeviceList[I2cControllerIndex+1].BusNum, \
mLpssPciDeviceList[I2cControllerIndex+1].DeviceNum, \
mLpssPciDeviceList[I2cControllerIndex+1].FunctionNum, PciMmBase));
if (MmioRead32 (PciMmBase) != 0xFFFFFFFF) {
if((MmioRead32 (PciMmBase+R_PCH_LPSS_I2C_STSCMD)& B_PCH_LPSS_I2C_STSCMD_MSE)) {
//
// Get the address allocted.
//
mLpssPciDeviceList[I2cControllerIndex+1].Bar0=MmioRead32 (PciMmBase+R_PCH_LPSS_I2C_BAR);
mLpssPciDeviceList[I2cControllerIndex+1].Bar1=MmioRead32 (PciMmBase+R_PCH_LPSS_I2C_BAR1);
DEBUG((EFI_D_ERROR, "ProgramPciLpssI2C() bar0:0x%x bar1:0x%x\n",mLpssPciDeviceList[I2cControllerIndex+1].Bar0, mLpssPciDeviceList[I2cControllerIndex+1].Bar1));
} else {
//
// Program BAR 0
//
ASSERT (((mLpssPciDeviceList[I2cControllerIndex+1].Bar0 & B_PCH_LPSS_I2C_BAR_BA) == mLpssPciDeviceList[I2cControllerIndex+1].Bar0) && (mLpssPciDeviceList[I2cControllerIndex+1].Bar0 != 0));
MmioWrite32 ((UINTN) (PciMmBase + R_PCH_LPSS_I2C_BAR), (UINT32) (mLpssPciDeviceList[I2cControllerIndex+1].Bar0 & B_PCH_LPSS_I2C_BAR_BA));
//
// Program BAR 1
//
ASSERT (((mLpssPciDeviceList[I2cControllerIndex+1].Bar1 & B_PCH_LPSS_I2C_BAR1_BA) == mLpssPciDeviceList[I2cControllerIndex+1].Bar1) && (mLpssPciDeviceList[I2cControllerIndex+1].Bar1 != 0));
MmioWrite32 ((UINTN) (PciMmBase + R_PCH_LPSS_I2C_BAR1), (UINT32) (mLpssPciDeviceList[I2cControllerIndex+1].Bar1 & B_PCH_LPSS_I2C_BAR1_BA));
//
// Bus Master Enable & Memory Space Enable
//
MmioOr32 ((UINTN) (PciMmBase + R_PCH_LPSS_I2C_STSCMD), (UINT32) (B_PCH_LPSS_I2C_STSCMD_BME | B_PCH_LPSS_I2C_STSCMD_MSE));
ASSERT (MmioRead32 (mLpssPciDeviceList[I2cControllerIndex+1].Bar0) != 0xFFFFFFFF);
}
//
// Release Resets
//
MmioWrite32 (mLpssPciDeviceList[I2cControllerIndex+1].Bar0 + R_PCH_LPIO_I2C_MEM_RESETS,(B_PCH_LPIO_I2C_MEM_RESETS_FUNC | B_PCH_LPIO_I2C_MEM_RESETS_APB));
//
// Activate Clocks
//
MmioWrite32 (mLpssPciDeviceList[I2cControllerIndex+1].Bar0 + R_PCH_LPSS_I2C_MEM_PCP,0x80020003);//No use for A0
DEBUG ((EFI_D_INFO, "ProgramPciLpssI2C() Programmed()\n"));
}
//
// BDS: already switched to ACPI mode
//
else {
ASSERT(gBS!=NULL);
Status = gBS->LocateProtocol (
&gEfiGlobalNvsAreaProtocolGuid,
NULL,
&GlobalNvsArea
);
if (EFI_ERROR(Status)) {
DEBUG ((EFI_D_INFO, "GetI2cBarAddr() gEfiGlobalNvsAreaProtocolGuid:%r\n", Status));
//
// gEfiGlobalNvsAreaProtocolGuid is not ready.
//
return 0;
}
mLpssPciDeviceList[I2cControllerIndex + 1].Bar0 = *(UINTN*)((CHAR8*)GlobalNvsArea->Area + mI2cNvsBaseAddress[I2cControllerIndex + 1]);
DEBUG ((EFI_D_INFO, "ProgramPciLpssI2C(): is switched to ACPI 0x:%x \n",mLpssPciDeviceList[I2cControllerIndex + 1].Bar0));
}
}
DEBUG ((EFI_D_INFO, "ProgramPciLpssI2C() End\n"));
return EFI_SUCCESS;
}
/**
Disable I2C Bus.
@param VOID.
@return Result of the I2C disabling.
**/
RETURN_STATUS
I2cDisable (
VOID
)
{
//
// 0.1 seconds
//
UINT32 NumTries = 10000;
MmioWrite32 ( mI2CBaseAddress + R_IC_ENABLE, 0 );
while ( 0 != ( MmioRead32 ( mI2CBaseAddress + R_IC_ENABLE_STATUS) & 1)) {
MicroSecondDelay (10);
NumTries --;
if(0 == NumTries) {
return RETURN_NOT_READY;
}
}
return RETURN_SUCCESS;
}
/**
Enable I2C Bus.
@param VOID.
@return Result of the I2C disabling.
**/
RETURN_STATUS
I2cEnable (
VOID
)
{
//
// 0.1 seconds
//
UINT32 NumTries = 10000;
MmioWrite32 (mI2CBaseAddress + R_IC_ENABLE, 1);
while (0 == (MmioRead32 (mI2CBaseAddress + R_IC_ENABLE_STATUS) & 1)) {
MicroSecondDelay (10);
NumTries --;
if(0 == NumTries){
return RETURN_NOT_READY;
}
}
return RETURN_SUCCESS;
}
/**
Enable I2C Bus.
@param VOID.
@return Result of the I2C enabling.
**/
RETURN_STATUS
I2cBusFrequencySet (
IN UINTN BusClockHertz
)
{
DEBUG((EFI_D_INFO,"InputFreq BusClockHertz: %d\r\n",BusClockHertz));
//
// Set the 100 KHz clock divider according to SV result and I2C spec
//
MmioWrite32 ( mI2CBaseAddress + R_IC_SS_SCL_HCNT, (UINT16)0x214 );
MmioWrite32 ( mI2CBaseAddress + R_IC_SS_SCL_LCNT, (UINT16)0x272 );
//
// Set the 400 KHz clock divider according to SV result and I2C spec
//
MmioWrite32 ( mI2CBaseAddress + R_IC_FS_SCL_HCNT, (UINT16)0x50 );
MmioWrite32 ( mI2CBaseAddress + R_IC_FS_SCL_LCNT, (UINT16)0xAD );
switch ( BusClockHertz ) {
case 100 * 1000:
MmioWrite32 ( mI2CBaseAddress + R_IC_SDA_HOLD, (UINT16)0x40);//100K
mI2cMode = V_SPEED_STANDARD;
break;
case 400 * 1000:
MmioWrite32 ( mI2CBaseAddress + R_IC_SDA_HOLD, (UINT16)0x32);//400K
mI2cMode = V_SPEED_FAST;
break;
default:
MmioWrite32 ( mI2CBaseAddress + R_IC_SDA_HOLD, (UINT16)0x09);//3.4M
mI2cMode = V_SPEED_HIGH;
}
//
// Select the frequency counter,
// Enable restart condition,
// Enable master FSM, disable slave FSM.
//
mI2cMode |= B_IC_RESTART_EN | B_IC_SLAVE_DISABLE | B_MASTER_MODE;
return EFI_SUCCESS;
}
/**
Initializes the host controller to execute I2C commands.
@param I2cControllerIndex Index of I2C controller in LPSS device. 0 represents I2C0, which is PCI function 1 of LPSS device.
@return EFI_SUCCESS Opcode initialization on the I2C host controller completed.
@return EFI_DEVICE_ERROR Device error, operation failed.
**/
EFI_STATUS
I2CInit (
IN UINT8 I2cControllerIndex,
IN UINT16 SlaveAddress
)
{
EFI_STATUS Status=RETURN_SUCCESS;
UINT32 NumTries = 0;
UINTN GnvsI2cBarAddr=0;
//
// Verify the parameters
//
if ((1023 < SlaveAddress) || (6 < I2cControllerIndex)) {
Status = RETURN_INVALID_PARAMETER;
DEBUG((EFI_D_INFO,"I2CInit Exit with RETURN_INVALID_PARAMETER\r\n"));
return Status;
}
MmioWrite32 ( mI2CBaseAddress + R_IC_TAR, (UINT16)SlaveAddress );
mI2CSlaveAddress = SlaveAddress;
//
// 1.PEI: program and init ( before pci enumeration).
// 2.DXE:update address and re-init ( after pci enumeration).
// 3.BDS:update ACPI address and re-init ( after acpi mode is enabled).
//
if(mI2CBaseAddress == mLpssPciDeviceList[I2cControllerIndex + 1].Bar0) {
//
// I2CInit is already called.
//
GnvsI2cBarAddr=GetI2cBarAddr(I2cControllerIndex);
if((GnvsI2cBarAddr == 0)||(GnvsI2cBarAddr == mI2CBaseAddress)) {
DEBUG((EFI_D_INFO,"I2CInit Exit with mI2CBaseAddress:%x == [%x].Bar0\r\n",mI2CBaseAddress,I2cControllerIndex+1));
return RETURN_SUCCESS;
}
}
Status=ProgramPciLpssI2C(I2cControllerIndex);
if(Status!=EFI_SUCCESS) {
return Status;
}
mI2CBaseAddress = (UINT32) mLpssPciDeviceList[I2cControllerIndex + 1].Bar0;
DEBUG ((EFI_D_ERROR, "mI2CBaseAddress = 0x%x \n",mI2CBaseAddress));
//
// 1 seconds.
//
NumTries = 10000;
while ((1 == ( MmioRead32 ( mI2CBaseAddress + R_IC_STATUS) & STAT_MST_ACTIVITY ))) {
MicroSecondDelay(10);
NumTries --;
if(0 == NumTries) {
DEBUG((EFI_D_INFO, "Try timeout\r\n"));
return RETURN_DEVICE_ERROR;
}
}
Status = I2cDisable();
DEBUG((EFI_D_INFO, "I2cDisable Status = %r\r\n", Status));
I2cBusFrequencySet(400 * 1000);
MmioWrite32(mI2CBaseAddress + R_IC_INTR_MASK, 0x0);
if (0x7f < SlaveAddress )
SlaveAddress = ( SlaveAddress & 0x3ff ) | IC_TAR_10BITADDR_MASTER;
MmioWrite32 ( mI2CBaseAddress + R_IC_TAR, (UINT16)SlaveAddress );
MmioWrite32 ( mI2CBaseAddress + R_IC_RX_TL, 0);
MmioWrite32 ( mI2CBaseAddress + R_IC_TX_TL, 0 );
MmioWrite32 ( mI2CBaseAddress + R_IC_CON, mI2cMode);
Status = I2cEnable();
DEBUG((EFI_D_INFO, "I2cEnable Status = %r\r\n", Status));
MmioRead32 ( mI2CBaseAddress + R_IC_CLR_TX_ABRT );
return EFI_SUCCESS;
}
/**
Reads a Byte from I2C Device.
@param I2cControllerIndex I2C Bus no to which the I2C device has been connected
@param SlaveAddress Device Address from which the byte value has to be read
@param Offset Offset from which the data has to be read
@param *Byte Address to which the value read has to be stored
@param Start Whether a RESTART is issued before the byte is sent or received
@param End Whether STOP is generated after a data byte is sent or received
@return EFI_SUCCESS IF the byte value has been successfully read
@return EFI_DEVICE_ERROR Operation Failed, Device Error
**/
EFI_STATUS
ByteReadI2CBasic(
IN UINT8 I2cControllerIndex,
IN UINT8 SlaveAddress,
IN UINTN ReadBytes,
OUT UINT8 *ReadBuffer,
IN UINT8 Start,
IN UINT8 End
)
{
EFI_STATUS Status;
UINT32 I2cStatus;
UINT16 ReceiveData;
UINT8 *ReceiveDataEnd;
UINT8 *ReceiveRequest;
UINT16 RawIntrStat;
UINT32 Count=0;
Status = EFI_SUCCESS;
ReceiveDataEnd = &ReadBuffer [ReadBytes];
if( ReadBytes ) {
ReceiveRequest = ReadBuffer;
DEBUG((EFI_D_INFO,"Read: ---------------%d bytes to RX\r\n",ReceiveDataEnd - ReceiveRequest));
while ((ReceiveDataEnd > ReceiveRequest) || (ReceiveDataEnd > ReadBuffer)) {
//
// Check for NACK
//
RawIntrStat = (UINT16)MmioRead32 (mI2CBaseAddress + R_IC_RawIntrStat);
if ( 0 != ( RawIntrStat & I2C_INTR_TX_ABRT )) {
MmioRead32 ( mI2CBaseAddress + R_IC_CLR_TX_ABRT );
Status = RETURN_DEVICE_ERROR;
DEBUG((EFI_D_INFO,"TX ABRT ,%d bytes hasn't been transferred\r\n",ReceiveDataEnd - ReceiveRequest));
break;
}
//
// Determine if another byte was received
//
I2cStatus = (UINT16)MmioRead32 (mI2CBaseAddress + R_IC_STATUS);
if (0 != ( I2cStatus & STAT_RFNE )) {
ReceiveData = (UINT16)MmioRead32 ( mI2CBaseAddress + R_IC_DATA_CMD );
*ReadBuffer++ = (UINT8)ReceiveData;
DEBUG((EFI_D_INFO,"MmioRead32 ,1 byte 0x:%x is received\r\n",ReceiveData));
}
if(ReceiveDataEnd == ReceiveRequest) {
MicroSecondDelay ( FIFO_WRITE_DELAY );
DEBUG((EFI_D_INFO,"ReceiveDataEnd==ReceiveRequest------------%x\r\n",I2cStatus & STAT_RFNE));
Count++;
if(Count<1024) {
//
// To avoid sys hung without ul-pmc device on RVP,
// waiting the last request to get data and make (ReceiveDataEnd > ReadBuffer) =TRUE.
//
continue;
} else {
break;
}
}
//
// Wait until a read request will fit.
//
if (0 == (I2cStatus & STAT_TFNF)) {
DEBUG((EFI_D_INFO,"Wait until a read request will fit\r\n"));
MicroSecondDelay (10);
continue;
}
//
// Issue the next read request.
//
if(End && Start) {
MmioWrite32 ( mI2CBaseAddress + R_IC_DATA_CMD, B_READ_CMD|B_CMD_RESTART|B_CMD_STOP);
} else if (!End && Start) {
MmioWrite32 ( mI2CBaseAddress + R_IC_DATA_CMD, B_READ_CMD|B_CMD_RESTART);
} else if (End && !Start) {
MmioWrite32 ( mI2CBaseAddress + R_IC_DATA_CMD, B_READ_CMD|B_CMD_STOP);
} else if (!End && !Start) {
MmioWrite32 ( mI2CBaseAddress + R_IC_DATA_CMD, B_READ_CMD);
}
MicroSecondDelay (FIFO_WRITE_DELAY);
ReceiveRequest += 1;
}
}
return Status;
}
/**
Writes a Byte to I2C Device.
@param I2cControllerIndex I2C Bus no to which the I2C device has been connected
@param SlaveAddress Device Address from which the byte value has to be written
@param Offset Offset from which the data has to be read
@param *Byte Address to which the value written is stored
@param Start Whether a RESTART is issued before the byte is sent or received
@param End Whether STOP is generated after a data byte is sent or received
@return EFI_SUCCESS IF the byte value has been successfully written
@return EFI_DEVICE_ERROR Operation Failed, Device Error
**/
EFI_STATUS ByteWriteI2CBasic(
IN UINT8 I2cControllerIndex,
IN UINT8 SlaveAddress,
IN UINTN WriteBytes,
IN UINT8 *WriteBuffer,
IN UINT8 Start,
IN UINT8 End
)
{
EFI_STATUS Status;
UINT32 I2cStatus;
UINT8 *TransmitEnd;
UINT16 RawIntrStat;
UINT32 Count=0;
Status = EFI_SUCCESS;
Status=I2CInit(I2cControllerIndex, SlaveAddress);
if(Status!=EFI_SUCCESS)
return Status;
TransmitEnd = &WriteBuffer[WriteBytes];
if( WriteBytes ) {
DEBUG((EFI_D_INFO,"Write: --------------%d bytes to TX\r\n",TransmitEnd - WriteBuffer));
while (TransmitEnd > WriteBuffer) {
I2cStatus = MmioRead32 (mI2CBaseAddress + R_IC_STATUS);
RawIntrStat = (UINT16)MmioRead32 (mI2CBaseAddress + R_IC_RawIntrStat);
if (0 != ( RawIntrStat & I2C_INTR_TX_ABRT)) {
MmioRead32 ( mI2CBaseAddress + R_IC_CLR_TX_ABRT);
Status = RETURN_DEVICE_ERROR;
DEBUG((EFI_D_ERROR,"TX ABRT TransmitEnd:0x%x WriteBuffer:0x%x\r\n", TransmitEnd, WriteBuffer));
break;
}
if (0 == (I2cStatus & STAT_TFNF)) {
//
// If TX not full , will send cmd or continue to wait
//
MicroSecondDelay (FIFO_WRITE_DELAY);
continue;
}
if(End && Start) {
MmioWrite32 (mI2CBaseAddress + R_IC_DATA_CMD, (*WriteBuffer++)|B_CMD_RESTART|B_CMD_STOP);
} else if (!End && Start) {
MmioWrite32 (mI2CBaseAddress + R_IC_DATA_CMD, (*WriteBuffer++)|B_CMD_RESTART);
} else if (End && !Start) {
MmioWrite32 (mI2CBaseAddress + R_IC_DATA_CMD, (*WriteBuffer++)|B_CMD_STOP);
} else if (!End && !Start ) {
MmioWrite32 (mI2CBaseAddress + R_IC_DATA_CMD, (*WriteBuffer++));
}
//
// Add a small delay to work around some odd behavior being seen. Without this delay bytes get dropped.
//
MicroSecondDelay ( FIFO_WRITE_DELAY );//wait after send cmd
//
// Time out
//
while(1) {
RawIntrStat = MmioRead16 ( mI2CBaseAddress + R_IC_RawIntrStat );
if (0 != ( RawIntrStat & I2C_INTR_TX_ABRT)) {
MmioRead16 (mI2CBaseAddress + R_IC_CLR_TX_ABRT);
Status = RETURN_DEVICE_ERROR;
DEBUG((EFI_D_ERROR,"TX ABRT TransmitEnd:0x%x WriteBuffer:0x%x\r\n", TransmitEnd, WriteBuffer));
}
if(0 == MmioRead16(mI2CBaseAddress + R_IC_TXFLR)) break;
MicroSecondDelay (FIFO_WRITE_DELAY);
Count++;
if(Count<1024) {
//
// to avoid sys hung without ul-pmc device on RVP.
// Waiting the last request to get data and make (ReceiveDataEnd > ReadBuffer) =TRUE.
//
continue;
} else {
break;
}
}//while( 1 )
}
}
return Status;
}
/**
Reads a Byte from I2C Device.
@param I2cControllerIndex I2C Bus no to which the I2C device has been connected
@param SlaveAddress Device Address from which the byte value has to be read
@param Offset Offset from which the data has to be read
@param ReadBytes Number of bytes to be read
@param *ReadBuffer Address to which the value read has to be stored
@return EFI_SUCCESS IF the byte value has been successfully read
@return EFI_DEVICE_ERROR Operation Failed, Device Error
**/
EFI_STATUS ByteReadI2C(
IN UINT8 I2cControllerIndex,
IN UINT8 SlaveAddress,
IN UINT8 Offset,
IN UINTN ReadBytes,
OUT UINT8 *ReadBuffer
)
{
EFI_STATUS Status;
DEBUG ((EFI_D_INFO, "ByteReadI2C:---offset:0x%x\n",Offset));
Status = ByteWriteI2CBasic(I2cControllerIndex, SlaveAddress,1,&Offset,TRUE,FALSE);
Status = ByteReadI2CBasic(I2cControllerIndex, SlaveAddress,ReadBytes,ReadBuffer,TRUE,TRUE);
return Status;
}
/**
Writes a Byte to I2C Device.
@param I2cControllerIndex I2C Bus no to which the I2C device has been connected
@param SlaveAddress Device Address from which the byte value has to be written
@param Offset Offset from which the data has to be written
@param WriteBytes Number of bytes to be written
@param *Byte Address to which the value written is stored
@return EFI_SUCCESS IF the byte value has been successfully read
@return EFI_DEVICE_ERROR Operation Failed, Device Error
**/
EFI_STATUS ByteWriteI2C(
IN UINT8 I2cControllerIndex,
IN UINT8 SlaveAddress,
IN UINT8 Offset,
IN UINTN WriteBytes,
IN UINT8 *WriteBuffer
)
{
EFI_STATUS Status;
DEBUG ((EFI_D_INFO, "ByteWriteI2C:---offset/bytes/buf:0x%x,0x%x,0x%x,0x%x\n",Offset,WriteBytes,WriteBuffer,*WriteBuffer));
Status = ByteWriteI2CBasic(I2cControllerIndex, SlaveAddress,1,&Offset,TRUE,FALSE);
Status = ByteWriteI2CBasic(I2cControllerIndex, SlaveAddress,WriteBytes,WriteBuffer,FALSE,TRUE);
return Status;
}
|