summaryrefslogtreecommitdiff
path: root/UefiCpuPkg/PiSmmCpuDxeSmm/SmmProfile.c
blob: 164af20a4cd7731afefaf724b14cef7d2e40995b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
/** @file
Enable SMM profile.

Copyright (c) 2012 - 2024, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017 - 2020, AMD Incorporated. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "PiSmmCpuCommon.h"
#include "SmmProfileInternal.h"

UINT32  mSmmProfileCr3;

SMM_PROFILE_HEADER  *mSmmProfileBase;
MSR_DS_AREA_STRUCT  *mMsrDsAreaBase;
//
// The buffer to store SMM profile data.
//
UINTN  mSmmProfileSize;

//
// The buffer to enable branch trace store.
//
UINTN  mMsrDsAreaSize = SMM_PROFILE_DTS_SIZE;

//
// The flag indicates if execute-disable is supported by processor.
//
BOOLEAN  mXdSupported = TRUE;

//
// The flag indicates if execute-disable is enabled on processor.
//
BOOLEAN  mXdEnabled = FALSE;

//
// The flag indicates if BTS is supported by processor.
//
BOOLEAN  mBtsSupported = TRUE;

//
// The flag indicates if SMM profile is enabled.
//
BOOLEAN  mSmmProfileEnabled = FALSE;

//
// The flag indicates if SMM profile starts to record data.
//
BOOLEAN  mSmmProfileStart = FALSE;

//
// The flag indicates if #DB will be setup in #PF handler.
//
BOOLEAN  mSetupDebugTrap = FALSE;

//
// Record the page fault exception count for one instruction execution.
//
UINTN  *mPFEntryCount;

UINT64 (*mLastPFEntryValue)[MAX_PF_ENTRY_COUNT];
UINT64                    *(*mLastPFEntryPointer)[MAX_PF_ENTRY_COUNT];

MSR_DS_AREA_STRUCT   **mMsrDsArea;
BRANCH_TRACE_RECORD  **mMsrBTSRecord;
UINTN                mBTSRecordNumber;
PEBS_RECORD          **mMsrPEBSRecord;

//
// These memory ranges are always present, they does not generate the access type of page fault exception,
// but they possibly generate instruction fetch type of page fault exception.
//
MEMORY_PROTECTION_RANGE  *mProtectionMemRange     = NULL;
UINTN                    mProtectionMemRangeCount = 0;

//
// Some predefined memory ranges.
//
MEMORY_PROTECTION_RANGE  mProtectionMemRangeTemplate[] = {
  //
  // SMRAM range (to be fixed in runtime).
  // It is always present and instruction fetches are allowed.
  //
  {
    { 0x00000000, 0x00000000 }, TRUE, FALSE
  },

  //
  // SMM profile data range( to be fixed in runtime).
  // It is always present and instruction fetches are not allowed.
  //
  {
    { 0x00000000, 0x00000000 }, TRUE, TRUE
  },

  //
  // SMRAM ranges not covered by mCpuHotPlugData.SmrrBase/mCpuHotPlugData.SmrrSiz (to be fixed in runtime).
  // It is always present and instruction fetches are allowed.
  // {{0x00000000, 0x00000000},TRUE,FALSE},
  //

  //
  // Future extended range could be added here.
  //

  //
  // PCI MMIO ranges (to be added in runtime).
  // They are always present and instruction fetches are not allowed.
  //
};

//
// These memory ranges are mapped by 4KB-page instead of 2MB-page.
//
MEMORY_RANGE  *mSplitMemRange     = NULL;
UINTN         mSplitMemRangeCount = 0;

//
// SMI command port.
//
UINT32  mSmiCommandPort;

/**
  Disable branch trace store.

**/
VOID
DisableBTS (
  VOID
  )
{
  AsmMsrAnd64 (MSR_DEBUG_CTL, ~((UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR)));
}

/**
  Enable branch trace store.

**/
VOID
EnableBTS (
  VOID
  )
{
  AsmMsrOr64 (MSR_DEBUG_CTL, (MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR));
}

/**
  Get CPU Index from APIC ID.

**/
UINTN
GetCpuIndex (
  VOID
  )
{
  UINTN   Index;
  UINT32  ApicId;

  ApicId = GetApicId ();

  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    if (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId == ApicId) {
      return Index;
    }
  }

  ASSERT (FALSE);
  return 0;
}

/**
  Get the source of IP after execute-disable exception is triggered.

  @param  CpuIndex        The index of CPU.
  @param  DestinationIP   The destination address.

**/
UINT64
GetSourceFromDestinationOnBts (
  UINTN   CpuIndex,
  UINT64  DestinationIP
  )
{
  BRANCH_TRACE_RECORD  *CurrentBTSRecord;
  UINTN                Index;
  BOOLEAN              FirstMatch;

  FirstMatch = FALSE;

  CurrentBTSRecord = (BRANCH_TRACE_RECORD *)mMsrDsArea[CpuIndex]->BTSIndex;
  for (Index = 0; Index < mBTSRecordNumber; Index++) {
    if ((UINTN)CurrentBTSRecord < (UINTN)mMsrBTSRecord[CpuIndex]) {
      //
      // Underflow
      //
      CurrentBTSRecord = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[CpuIndex]->BTSAbsoluteMaximum - 1);
      CurrentBTSRecord--;
    }

    if (CurrentBTSRecord->LastBranchTo == DestinationIP) {
      //
      // Good! find 1st one, then find 2nd one.
      //
      if (!FirstMatch) {
        //
        // The first one is DEBUG exception
        //
        FirstMatch = TRUE;
      } else {
        //
        // Good find proper one.
        //
        return CurrentBTSRecord->LastBranchFrom;
      }
    }

    CurrentBTSRecord--;
  }

  return 0;
}

/**
  SMM profile specific INT 1 (single-step) exception handler.

  @param  InterruptType    Defines the type of interrupt or exception that
                           occurred on the processor.This parameter is processor architecture specific.
  @param  SystemContext    A pointer to the processor context when
                           the interrupt occurred on the processor.
**/
VOID
EFIAPI
DebugExceptionHandler (
  IN EFI_EXCEPTION_TYPE  InterruptType,
  IN EFI_SYSTEM_CONTEXT  SystemContext
  )
{
  UINTN  CpuIndex;
  UINTN  PFEntry;

  if (!mSmmProfileStart &&
      !HEAP_GUARD_NONSTOP_MODE &&
      !NULL_DETECTION_NONSTOP_MODE)
  {
    return;
  }

  CpuIndex = GetCpuIndex ();

  //
  // Clear last PF entries
  //
  for (PFEntry = 0; PFEntry < mPFEntryCount[CpuIndex]; PFEntry++) {
    *mLastPFEntryPointer[CpuIndex][PFEntry] = mLastPFEntryValue[CpuIndex][PFEntry];
  }

  //
  // Reset page fault exception count for next page fault.
  //
  mPFEntryCount[CpuIndex] = 0;

  //
  // Flush TLB
  //
  CpuFlushTlb ();

  //
  // Clear TF in EFLAGS
  //
  ClearTrapFlag (SystemContext);
}

/**
  Check if the input address is in SMM ranges.

  @param[in]  Address       The input address.

  @retval TRUE     The input address is in SMM.
  @retval FALSE    The input address is not in SMM.
**/
BOOLEAN
IsInSmmRanges (
  IN EFI_PHYSICAL_ADDRESS  Address
  )
{
  UINTN  Index;

  if ((Address >= mCpuHotPlugData.SmrrBase) && (Address < mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize)) {
    return TRUE;
  }

  for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {
    if ((Address >= mSmmCpuSmramRanges[Index].CpuStart) &&
        (Address < mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize))
    {
      return TRUE;
    }
  }

  return FALSE;
}

/**
  Check if the SMM profile page fault address above 4GB is in protected range or not.

  @param[in]   Address  The address of Memory.
  @param[out]  Nx       The flag indicates if the memory is execute-disable.

  @retval TRUE     The input address is in protected range.
  @retval FALSE    The input address is not in protected range.

**/
BOOLEAN
IsSmmProfilePFAddressAbove4GValid (
  IN  EFI_PHYSICAL_ADDRESS  Address,
  OUT BOOLEAN               *Nx
  )
{
  UINTN  Index;

  //
  // Check configuration
  //
  for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
    if ((Address >= mProtectionMemRange[Index].Range.Base) && (Address < mProtectionMemRange[Index].Range.Top)) {
      *Nx = mProtectionMemRange[Index].Nx;
      return mProtectionMemRange[Index].Present;
    }
  }

  *Nx = TRUE;
  return FALSE;
}

/**
  Check if the memory address will be mapped by 4KB-page.

  @param  Address  The address of Memory.

**/
BOOLEAN
IsAddressSplit (
  IN EFI_PHYSICAL_ADDRESS  Address
  )
{
  UINTN  Index;

  if (mSmmProfileEnabled) {
    //
    // Check configuration
    //
    for (Index = 0; Index < mSplitMemRangeCount; Index++) {
      if ((Address >= mSplitMemRange[Index].Base) && (Address < mSplitMemRange[Index].Top)) {
        return TRUE;
      }
    }
  } else {
    if (Address < mCpuHotPlugData.SmrrBase) {
      if ((mCpuHotPlugData.SmrrBase - Address) < BASE_2MB) {
        return TRUE;
      }
    } else if (Address > (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) {
      if ((Address - (mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize - BASE_2MB)) < BASE_2MB) {
        return TRUE;
      }
    }
  }

  //
  // Return default
  //
  return FALSE;
}

/**
  Function to compare 2 MEMORY_PROTECTION_RANGE based on range base.

  @param[in] Buffer1            pointer to Device Path poiner to compare
  @param[in] Buffer2            pointer to second DevicePath pointer to compare

  @retval 0                     Buffer1 equal to Buffer2
  @retval <0                    Buffer1 is less than Buffer2
  @retval >0                    Buffer1 is greater than Buffer2
**/
INTN
EFIAPI
ProtectionRangeCompare (
  IN  CONST VOID  *Buffer1,
  IN  CONST VOID  *Buffer2
  )
{
  if (((MEMORY_PROTECTION_RANGE *)Buffer1)->Range.Base > ((MEMORY_PROTECTION_RANGE *)Buffer2)->Range.Base) {
    return 1;
  } else if (((MEMORY_PROTECTION_RANGE *)Buffer1)->Range.Base < ((MEMORY_PROTECTION_RANGE *)Buffer2)->Range.Base) {
    return -1;
  }

  return 0;
}

/**
  Initialize the protected memory ranges and the 4KB-page mapped memory ranges.

**/
VOID
InitProtectedMemRange (
  VOID
  )
{
  UINTN                    Index;
  MM_CPU_MEMORY_REGION     *MemoryRegion;
  UINTN                    MemoryRegionCount;
  UINTN                    NumberOfAddedDescriptors;
  UINTN                    NumberOfProtectRange;
  UINTN                    NumberOfSpliteRange;
  UINTN                    TotalSize;
  EFI_PHYSICAL_ADDRESS     ProtectBaseAddress;
  EFI_PHYSICAL_ADDRESS     ProtectEndAddress;
  EFI_PHYSICAL_ADDRESS     Top2MBAlignedAddress;
  EFI_PHYSICAL_ADDRESS     Base2MBAlignedAddress;
  UINT64                   High4KBPageSize;
  UINT64                   Low4KBPageSize;
  MEMORY_PROTECTION_RANGE  MemProtectionRange;

  MemoryRegion             = NULL;
  MemoryRegionCount        = 0;
  NumberOfAddedDescriptors = mSmmCpuSmramRangeCount;
  NumberOfSpliteRange      = 0;

  //
  // Create extended protection MemoryRegion and add them into protected memory ranges.
  // Retrieve the accessible regions when SMM profile is enabled.
  // In SMM: only MMIO is accessible.
  // In MM: all regions described by resource HOBs are accessible.
  //
  CreateExtendedProtectionRange (&MemoryRegion, &MemoryRegionCount);
  ASSERT (MemoryRegion != NULL);

  NumberOfAddedDescriptors += MemoryRegionCount;

  ASSERT (NumberOfAddedDescriptors != 0);

  TotalSize           = NumberOfAddedDescriptors * sizeof (MEMORY_PROTECTION_RANGE) + sizeof (mProtectionMemRangeTemplate);
  mProtectionMemRange = (MEMORY_PROTECTION_RANGE *)AllocateZeroPool (TotalSize);
  ASSERT (mProtectionMemRange != NULL);
  mProtectionMemRangeCount = TotalSize / sizeof (MEMORY_PROTECTION_RANGE);

  //
  // Copy existing ranges.
  //
  CopyMem (mProtectionMemRange, mProtectionMemRangeTemplate, sizeof (mProtectionMemRangeTemplate));

  //
  // Create split ranges which come from protected ranges.
  //
  TotalSize      = (TotalSize / sizeof (MEMORY_PROTECTION_RANGE)) * sizeof (MEMORY_RANGE);
  mSplitMemRange = (MEMORY_RANGE *)AllocateZeroPool (TotalSize);
  ASSERT (mSplitMemRange != NULL);

  //
  // Create SMM ranges which are set to present and execution-enable.
  //
  NumberOfProtectRange = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);
  for (Index = 0; Index < mSmmCpuSmramRangeCount; Index++) {
    if ((mSmmCpuSmramRanges[Index].CpuStart >= mProtectionMemRange[0].Range.Base) &&
        (mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize < mProtectionMemRange[0].Range.Top))
    {
      //
      // If the address have been already covered by mCpuHotPlugData.SmrrBase/mCpuHotPlugData.SmrrSiz
      //
      break;
    }

    mProtectionMemRange[NumberOfProtectRange].Range.Base = mSmmCpuSmramRanges[Index].CpuStart;
    mProtectionMemRange[NumberOfProtectRange].Range.Top  = mSmmCpuSmramRanges[Index].CpuStart + mSmmCpuSmramRanges[Index].PhysicalSize;
    mProtectionMemRange[NumberOfProtectRange].Present    = TRUE;
    mProtectionMemRange[NumberOfProtectRange].Nx         = FALSE;
    NumberOfProtectRange++;
  }

  //
  // Create protection ranges which are set to present and execution-disable.
  //
  for (Index = 0; Index < MemoryRegionCount; Index++) {
    mProtectionMemRange[NumberOfProtectRange].Range.Base = MemoryRegion[Index].Base;
    mProtectionMemRange[NumberOfProtectRange].Range.Top  = MemoryRegion[Index].Base +  MemoryRegion[Index].Length;
    mProtectionMemRange[NumberOfProtectRange].Present    = TRUE;
    mProtectionMemRange[NumberOfProtectRange].Nx         = TRUE;
    NumberOfProtectRange++;
  }

  //
  // Free the MemoryRegion
  //
  if (MemoryRegion != NULL) {
    FreePool (MemoryRegion);
  }

  //
  // Check and updated actual protected memory ranges count
  //
  ASSERT (NumberOfProtectRange <= mProtectionMemRangeCount);
  mProtectionMemRangeCount = NumberOfProtectRange;

  //
  // According to protected ranges, create the ranges which will be mapped by 2KB page.
  //
  NumberOfSpliteRange  = 0;
  NumberOfProtectRange = mProtectionMemRangeCount;
  for (Index = 0; Index < NumberOfProtectRange; Index++) {
    //
    // If base address is not 2MB alignment, make 2MB alignment for create 4KB page in page table.
    //
    ProtectBaseAddress = mProtectionMemRange[Index].Range.Base;
    ProtectEndAddress  = mProtectionMemRange[Index].Range.Top;
    if (((ProtectBaseAddress & (SIZE_2MB - 1)) != 0) || ((ProtectEndAddress  & (SIZE_2MB - 1)) != 0)) {
      //
      // Check if it is possible to create 4KB-page for not 2MB-aligned range and to create 2MB-page for 2MB-aligned range.
      // A mix of 4KB and 2MB page could save SMRAM space.
      //
      Top2MBAlignedAddress  = ProtectEndAddress & ~(SIZE_2MB - 1);
      Base2MBAlignedAddress = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
      if ((Top2MBAlignedAddress > Base2MBAlignedAddress) &&
          ((Top2MBAlignedAddress - Base2MBAlignedAddress) >= SIZE_2MB))
      {
        //
        // There is an range which could be mapped by 2MB-page.
        //
        High4KBPageSize = ((ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectEndAddress & ~(SIZE_2MB - 1));
        Low4KBPageSize  = ((ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1)) - (ProtectBaseAddress & ~(SIZE_2MB - 1));
        if (High4KBPageSize != 0) {
          //
          // Add not 2MB-aligned range to be mapped by 4KB-page.
          //
          mSplitMemRange[NumberOfSpliteRange].Base = ProtectEndAddress & ~(SIZE_2MB - 1);
          mSplitMemRange[NumberOfSpliteRange].Top  = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
          NumberOfSpliteRange++;
        }

        if (Low4KBPageSize != 0) {
          //
          // Add not 2MB-aligned range to be mapped by 4KB-page.
          //
          mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
          mSplitMemRange[NumberOfSpliteRange].Top  = (ProtectBaseAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
          NumberOfSpliteRange++;
        }
      } else {
        //
        // The range could only be mapped by 4KB-page.
        //
        mSplitMemRange[NumberOfSpliteRange].Base = ProtectBaseAddress & ~(SIZE_2MB - 1);
        mSplitMemRange[NumberOfSpliteRange].Top  = (ProtectEndAddress + SIZE_2MB - 1) & ~(SIZE_2MB - 1);
        NumberOfSpliteRange++;
      }
    }
  }

  mSplitMemRangeCount = NumberOfSpliteRange;

  //
  // Sort the mProtectionMemRange
  //
  QuickSort (mProtectionMemRange, mProtectionMemRangeCount, sizeof (MEMORY_PROTECTION_RANGE), (BASE_SORT_COMPARE)ProtectionRangeCompare, &MemProtectionRange);

  DEBUG ((DEBUG_INFO, "SMM Profile Memory Ranges:\n"));
  for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
    DEBUG ((DEBUG_INFO, "mProtectionMemRange[%d].Base = %lx\n", Index, mProtectionMemRange[Index].Range.Base));
    DEBUG ((DEBUG_INFO, "mProtectionMemRange[%d].Top  = %lx\n", Index, mProtectionMemRange[Index].Range.Top));
  }

  for (Index = 0; Index < mSplitMemRangeCount; Index++) {
    DEBUG ((DEBUG_INFO, "mSplitMemRange[%d].Base = %lx\n", Index, mSplitMemRange[Index].Base));
    DEBUG ((DEBUG_INFO, "mSplitMemRange[%d].Top  = %lx\n", Index, mSplitMemRange[Index].Top));
  }
}

/**
  This function updates memory attribute according to mProtectionMemRangeCount.

**/
VOID
SmmProfileUpdateMemoryAttributes (
  VOID
  )
{
  RETURN_STATUS  Status;
  UINTN          Index;
  UINTN          PageTable;
  UINT64         Base;
  UINT64         Length;
  UINT64         Limit;
  UINT64         PreviousAddress;
  UINT64         MemoryAttrMask;
  BOOLEAN        WriteProtect;
  BOOLEAN        CetEnabled;

  DEBUG ((DEBUG_INFO, "SmmProfileUpdateMemoryAttributes Start...\n"));

  WRITE_UNPROTECT_RO_PAGES (WriteProtect, CetEnabled);

  PageTable = AsmReadCr3 ();
  Limit     = LShiftU64 (1, mPhysicalAddressBits);

  //
  // [0, 4k] may be non-present.
  //
  PreviousAddress = ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT1) != 0) ? BASE_4KB : 0;

  for (Index = 0; Index < mProtectionMemRangeCount; Index++) {
    MemoryAttrMask = 0;
    if (mProtectionMemRange[Index].Nx == TRUE) {
      MemoryAttrMask = EFI_MEMORY_XP;
    }

    if (mProtectionMemRange[Index].Present == FALSE) {
      MemoryAttrMask = EFI_MEMORY_RP;
    }

    Base   = mProtectionMemRange[Index].Range.Base;
    Length = mProtectionMemRange[Index].Range.Top - Base;
    if (MemoryAttrMask != 0) {
      Status = ConvertMemoryPageAttributes (PageTable, mPagingMode, Base, Length, MemoryAttrMask, TRUE, NULL);
      ASSERT_RETURN_ERROR (Status);
    }

    if (Base > PreviousAddress) {
      //
      // Mark the ranges not in mProtectionMemRange as non-present.
      //
      Status = ConvertMemoryPageAttributes (PageTable, mPagingMode, PreviousAddress, Base - PreviousAddress, EFI_MEMORY_RP, TRUE, NULL);
      ASSERT_RETURN_ERROR (Status);
    }

    PreviousAddress = Base + Length;
  }

  //
  // Set the last remaining range
  //
  if (PreviousAddress < Limit) {
    Status = ConvertMemoryPageAttributes (PageTable, mPagingMode, PreviousAddress, Limit - PreviousAddress, EFI_MEMORY_RP, TRUE, NULL);
    ASSERT_RETURN_ERROR (Status);
  }

  //
  // Flush TLB
  //
  CpuFlushTlb ();

  //
  // Set execute-disable flag
  //
  mXdEnabled = TRUE;

  WRITE_PROTECT_RO_PAGES (WriteProtect, CetEnabled);

  DEBUG ((DEBUG_INFO, "SmmProfileUpdateMemoryAttributes Done.\n"));
}

/**
  Updates page table to make some memory ranges (like system memory) absent
  and make some memory ranges (like MMIO) present and execute disable. It also
  update 2MB-page to 4KB-page for some memory ranges.

**/
VOID
SmmProfileStart (
  VOID
  )
{
  //
  // The flag indicates SMM profile starts to work.
  //
  mSmmProfileStart = TRUE;

  //
  // Tell #PF handler to prepare a #DB subsequently.
  //
  mSetupDebugTrap = TRUE;
}

/**
  Initialize SMM profile in SmmReadyToLock protocol callback function.

  @param  Protocol   Points to the protocol's unique identifier.
  @param  Interface  Points to the interface instance.
  @param  Handle     The handle on which the interface was installed.

  @retval EFI_SUCCESS SmmReadyToLock protocol callback runs successfully.
**/
EFI_STATUS
EFIAPI
InitSmmProfileCallBack (
  IN CONST EFI_GUID  *Protocol,
  IN VOID            *Interface,
  IN EFI_HANDLE      Handle
  )
{
  EFI_STATUS                 Status;
  EFI_SMM_VARIABLE_PROTOCOL  *SmmProfileVariable;

  //
  // Locate SmmVariableProtocol.
  //
  Status = gMmst->MmLocateProtocol (&gEfiSmmVariableProtocolGuid, NULL, (VOID **)&SmmProfileVariable);
  ASSERT_EFI_ERROR (Status);

  //
  // Save to variable so that SMM profile data can be found.
  //
  SmmProfileVariable->SmmSetVariable (
                        SMM_PROFILE_NAME,
                        &gEfiCallerIdGuid,
                        EFI_VARIABLE_BOOTSERVICE_ACCESS | EFI_VARIABLE_RUNTIME_ACCESS,
                        sizeof (mSmmProfileBase),
                        &mSmmProfileBase
                        );

  return EFI_SUCCESS;
}

/**
  Initialize SMM profile data structures.

**/
VOID
InitSmmProfileInternal (
  VOID
  )
{
  EFI_STATUS  Status;
  VOID        *Registration;
  UINTN       Index;
  UINTN       MsrDsAreaSizePerCpu;
  UINT64      SmmProfileSize;

  mPFEntryCount = (UINTN *)AllocateZeroPool (sizeof (UINTN) * mMaxNumberOfCpus);
  ASSERT (mPFEntryCount != NULL);
  mLastPFEntryValue = (UINT64 (*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
                                                        sizeof (mLastPFEntryValue[0]) * mMaxNumberOfCpus
                                                        );
  ASSERT (mLastPFEntryValue != NULL);
  mLastPFEntryPointer = (UINT64 *(*)[MAX_PF_ENTRY_COUNT])AllocateZeroPool (
                                                           sizeof (mLastPFEntryPointer[0]) * mMaxNumberOfCpus
                                                           );
  ASSERT (mLastPFEntryPointer != NULL);

  mSmmProfileSize = FixedPcdGet32 (PcdCpuSmmProfileSize);
  ASSERT ((mSmmProfileSize & 0xFFF) == 0);

  //
  // Get Smm Profile Base
  //
  mSmmProfileBase = (SMM_PROFILE_HEADER *)(UINTN)GetSmmProfileData (&SmmProfileSize);
  DEBUG ((DEBUG_ERROR, "SmmProfileBase = 0x%016x.\n", (UINTN)mSmmProfileBase));
  DEBUG ((DEBUG_ERROR, "SmmProfileSize = 0x%016x.\n", (UINTN)SmmProfileSize));

  //
  // Initialize SMM profile data header.
  //
  mSmmProfileBase->HeaderSize     = sizeof (SMM_PROFILE_HEADER);
  mSmmProfileBase->MaxDataEntries = (UINT64)((mSmmProfileSize - sizeof (SMM_PROFILE_HEADER)) / sizeof (SMM_PROFILE_ENTRY));
  mSmmProfileBase->MaxDataSize    = MultU64x64 (mSmmProfileBase->MaxDataEntries, sizeof (SMM_PROFILE_ENTRY));
  mSmmProfileBase->CurDataEntries = 0;
  mSmmProfileBase->CurDataSize    = 0;
  mSmmProfileBase->TsegStart      = mCpuHotPlugData.SmrrBase;
  mSmmProfileBase->TsegSize       = mCpuHotPlugData.SmrrSize;
  mSmmProfileBase->NumSmis        = 0;
  mSmmProfileBase->NumCpus        = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;

  if (mBtsSupported) {
    mMsrDsArea = (MSR_DS_AREA_STRUCT **)AllocateZeroPool (sizeof (MSR_DS_AREA_STRUCT *) * mMaxNumberOfCpus);
    ASSERT (mMsrDsArea != NULL);
    mMsrBTSRecord = (BRANCH_TRACE_RECORD **)AllocateZeroPool (sizeof (BRANCH_TRACE_RECORD *) * mMaxNumberOfCpus);
    ASSERT (mMsrBTSRecord != NULL);
    mMsrPEBSRecord = (PEBS_RECORD **)AllocateZeroPool (sizeof (PEBS_RECORD *) * mMaxNumberOfCpus);
    ASSERT (mMsrPEBSRecord != NULL);

    mMsrDsAreaBase      = (MSR_DS_AREA_STRUCT *)((UINTN)mSmmProfileBase + mSmmProfileSize);
    MsrDsAreaSizePerCpu = mMsrDsAreaSize / mMaxNumberOfCpus;
    mBTSRecordNumber    = (MsrDsAreaSizePerCpu - sizeof (PEBS_RECORD) * PEBS_RECORD_NUMBER - sizeof (MSR_DS_AREA_STRUCT)) / sizeof (BRANCH_TRACE_RECORD);
    for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
      mMsrDsArea[Index]     = (MSR_DS_AREA_STRUCT *)((UINTN)mMsrDsAreaBase + MsrDsAreaSizePerCpu * Index);
      mMsrBTSRecord[Index]  = (BRANCH_TRACE_RECORD *)((UINTN)mMsrDsArea[Index] + sizeof (MSR_DS_AREA_STRUCT));
      mMsrPEBSRecord[Index] = (PEBS_RECORD *)((UINTN)mMsrDsArea[Index] + MsrDsAreaSizePerCpu - sizeof (PEBS_RECORD) * PEBS_RECORD_NUMBER);

      mMsrDsArea[Index]->BTSBufferBase         = (UINTN)mMsrBTSRecord[Index];
      mMsrDsArea[Index]->BTSIndex              = mMsrDsArea[Index]->BTSBufferBase;
      mMsrDsArea[Index]->BTSAbsoluteMaximum    = mMsrDsArea[Index]->BTSBufferBase + mBTSRecordNumber * sizeof (BRANCH_TRACE_RECORD) + 1;
      mMsrDsArea[Index]->BTSInterruptThreshold = mMsrDsArea[Index]->BTSAbsoluteMaximum + 1;

      mMsrDsArea[Index]->PEBSBufferBase         = (UINTN)mMsrPEBSRecord[Index];
      mMsrDsArea[Index]->PEBSIndex              = mMsrDsArea[Index]->PEBSBufferBase;
      mMsrDsArea[Index]->PEBSAbsoluteMaximum    = mMsrDsArea[Index]->PEBSBufferBase + PEBS_RECORD_NUMBER * sizeof (PEBS_RECORD) + 1;
      mMsrDsArea[Index]->PEBSInterruptThreshold = mMsrDsArea[Index]->PEBSAbsoluteMaximum + 1;
    }
  }

  mProtectionMemRange      = mProtectionMemRangeTemplate;
  mProtectionMemRangeCount = sizeof (mProtectionMemRangeTemplate) / sizeof (MEMORY_PROTECTION_RANGE);

  //
  // Update TSeg entry.
  //
  mProtectionMemRange[0].Range.Base = mCpuHotPlugData.SmrrBase;
  mProtectionMemRange[0].Range.Top  = mCpuHotPlugData.SmrrBase + mCpuHotPlugData.SmrrSize;

  //
  // Update SMM profile entry.
  //
  mProtectionMemRange[1].Range.Base = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase;
  mProtectionMemRange[1].Range.Top  = (EFI_PHYSICAL_ADDRESS)(UINTN)mSmmProfileBase + SmmProfileSize;

  //
  // Allocate memory reserved for creating 4KB pages.
  //
  InitPagesForPFHandler ();

  //
  // Start SMM profile when SmmReadyToLock protocol is installed.
  //
  Status = gMmst->MmRegisterProtocolNotify (
                    &gEfiSmmReadyToLockProtocolGuid,
                    InitSmmProfileCallBack,
                    &Registration
                    );
  ASSERT_EFI_ERROR (Status);

  return;
}

/**
  Check if feature is supported by a processor.

  @param CpuIndex        The index of the CPU.
**/
VOID
CheckFeatureSupported (
  IN UINTN  CpuIndex
  )
{
  UINT32                         RegEax;
  UINT32                         RegEcx;
  UINT32                         RegEdx;
  MSR_IA32_MISC_ENABLE_REGISTER  MiscEnableMsr;

  if ((PcdGet32 (PcdControlFlowEnforcementPropertyMask) != 0) && mCetSupported) {
    AsmCpuid (CPUID_SIGNATURE, &RegEax, NULL, NULL, NULL);
    if (RegEax >= CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS) {
      AsmCpuidEx (CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS, CPUID_STRUCTURED_EXTENDED_FEATURE_FLAGS_SUB_LEAF_INFO, NULL, NULL, &RegEcx, NULL);
      if ((RegEcx & CPUID_CET_SS) == 0) {
        mCetSupported = FALSE;
        PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);
      }
    } else {
      mCetSupported = FALSE;
      PatchInstructionX86 (mPatchCetSupported, mCetSupported, 1);
    }
  }

  if (mBtsSupported) {
    AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx);
    if ((RegEdx & CPUID1_EDX_BTS_AVAILABLE) != 0) {
      //
      // Per IA32 manuals:
      // When CPUID.1:EDX[21] is set, the following BTS facilities are available:
      // 1. The BTS_UNAVAILABLE flag in the IA32_MISC_ENABLE MSR indicates the
      //    availability of the BTS facilities, including the ability to set the BTS and
      //    BTINT bits in the MSR_DEBUGCTLA MSR.
      // 2. The IA32_DS_AREA MSR can be programmed to point to the DS save area.
      //
      MiscEnableMsr.Uint64 = AsmReadMsr64 (MSR_IA32_MISC_ENABLE);
      if (MiscEnableMsr.Bits.BTS == 1) {
        //
        // BTS facilities is not supported if MSR_IA32_MISC_ENABLE.BTS bit is set.
        //
        mBtsSupported = FALSE;
      }
    }
  }

  if (mSmmCodeAccessCheckEnable) {
    if (!SmmCpuFeaturesIsSmmRegisterSupported (CpuIndex, SmmRegFeatureControl)) {
      mSmmCodeAccessCheckEnable = FALSE;
    }

    //
    // Check to see if the CPU supports the SMM Code Access Check feature
    // Do not access this MSR unless the CPU supports the SmmRegFeatureControl
    //
    if ((AsmReadMsr64 (EFI_MSR_SMM_MCA_CAP) & SMM_CODE_ACCESS_CHK_BIT) == 0) {
      mSmmCodeAccessCheckEnable = FALSE;
    }
  }
}

/**
  Enable single step.

**/
VOID
ActivateSingleStepDB (
  VOID
  )
{
  UINTN  Dr6;

  Dr6 = AsmReadDr6 ();
  if ((Dr6 & DR6_SINGLE_STEP) != 0) {
    return;
  }

  Dr6 |= DR6_SINGLE_STEP;
  AsmWriteDr6 (Dr6);
}

/**
  Enable last branch.

**/
VOID
ActivateLBR (
  VOID
  )
{
  UINT64  DebugCtl;

  DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
  if ((DebugCtl & MSR_DEBUG_CTL_LBR) != 0) {
    return;
  }

  DebugCtl |= MSR_DEBUG_CTL_LBR;
  AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
}

/**
  Enable branch trace store.

  @param  CpuIndex  The index of the processor.

**/
VOID
ActivateBTS (
  IN      UINTN  CpuIndex
  )
{
  UINT64  DebugCtl;

  DebugCtl = AsmReadMsr64 (MSR_DEBUG_CTL);
  if ((DebugCtl & MSR_DEBUG_CTL_BTS) != 0) {
    return;
  }

  AsmWriteMsr64 (MSR_DS_AREA, (UINT64)(UINTN)mMsrDsArea[CpuIndex]);
  DebugCtl |= (UINT64)(MSR_DEBUG_CTL_BTS | MSR_DEBUG_CTL_TR);
  DebugCtl &= ~((UINT64)MSR_DEBUG_CTL_BTINT);
  AsmWriteMsr64 (MSR_DEBUG_CTL, DebugCtl);
}

/**
  Increase SMI number in each SMI entry.

**/
VOID
SmmProfileRecordSmiNum (
  VOID
  )
{
  if (mSmmProfileStart) {
    mSmmProfileBase->NumSmis++;
  }
}

/**
  Initialize processor environment for SMM profile.

  @param  CpuIndex  The index of the processor.

**/
VOID
ActivateSmmProfile (
  IN UINTN  CpuIndex
  )
{
  //
  // Enable Single Step DB#
  //
  ActivateSingleStepDB ();

  if (mBtsSupported) {
    //
    // We can not get useful information from LER, so we have to use BTS.
    //
    ActivateLBR ();

    //
    // Enable BTS
    //
    ActivateBTS (CpuIndex);
  }
}

/**
  Initialize SMM profile in SMM CPU entry point.

  @param[in] Cr3  The base address of the page tables to use in SMM.

**/
VOID
InitSmmProfile (
  UINT32  Cr3
  )
{
  //
  // Save Cr3
  //
  mSmmProfileCr3 = Cr3;

  //
  // Skip SMM profile initialization if feature is disabled
  //
  if (!mSmmProfileEnabled &&
      !HEAP_GUARD_NONSTOP_MODE &&
      !NULL_DETECTION_NONSTOP_MODE)
  {
    return;
  }

  //
  // Initialize SmmProfile here
  //
  InitSmmProfileInternal ();

  //
  // Initialize profile IDT.
  //
  InitIdtr ();
}

/**
  Update page table to map the memory correctly in order to make the instruction
  which caused page fault execute successfully. And it also save the original page
  table to be restored in single-step exception.

  @param  PageTable           PageTable Address.
  @param  PFAddress           The memory address which caused page fault exception.
  @param  CpuIndex            The index of the processor.
  @param  ErrorCode           The Error code of exception.

**/
VOID
RestorePageTableBelow4G (
  UINT64  *PageTable,
  UINT64  PFAddress,
  UINTN   CpuIndex,
  UINTN   ErrorCode
  )
{
  UINTN     PTIndex;
  UINTN     PFIndex;
  IA32_CR4  Cr4;
  BOOLEAN   Enable5LevelPaging;

  Cr4.UintN          = AsmReadCr4 ();
  Enable5LevelPaging = (BOOLEAN)(Cr4.Bits.LA57 == 1);

  //
  // PML5
  //
  if (Enable5LevelPaging) {
    PTIndex = (UINTN)BitFieldRead64 (PFAddress, 48, 56);
    ASSERT (PageTable[PTIndex] != 0);
    PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
  }

  //
  // PML4
  //
  if (sizeof (UINT64) == sizeof (UINTN)) {
    PTIndex = (UINTN)BitFieldRead64 (PFAddress, 39, 47);
    ASSERT (PageTable[PTIndex] != 0);
    PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);
  }

  //
  // PDPTE
  //
  PTIndex = (UINTN)BitFieldRead64 (PFAddress, 30, 38);

  if ((PageTable[PTIndex] & IA32_PG_P) == 0) {
    //
    // For 32-bit case, because a full map page table for 0-4G is created by default,
    // and since the PDPTE must be one non-leaf entry, the PDPTE must always be present.
    // So, ASSERT it must be the 64-bit case running here.
    //
    ASSERT (sizeof (UINT64) == sizeof (UINTN));

    //
    // If the entry is not present, allocate one page from page pool for it
    //
    PageTable[PTIndex] = AllocPage () | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
  }

  ASSERT (PageTable[PTIndex] != 0);
  PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);

  //
  // PD
  //
  PTIndex = (UINTN)BitFieldRead64 (PFAddress, 21, 29);
  if ((PageTable[PTIndex] & IA32_PG_P) == 0) {
    //
    // A 2M page size will be used directly when the 2M entry is marked as non-present.
    //

    //
    // Record old entries with non-present status
    // Old entries include the memory which instruction is at and the memory which instruction access.
    //
    //
    ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
    if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
      PFIndex                                = mPFEntryCount[CpuIndex];
      mLastPFEntryValue[CpuIndex][PFIndex]   = PageTable[PTIndex];
      mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
      mPFEntryCount[CpuIndex]++;
    }

    //
    // Set new entry
    //
    PageTable[PTIndex]  = (PFAddress & ~((1ull << 21) - 1));
    PageTable[PTIndex] |= (UINT64)IA32_PG_PS;
    PageTable[PTIndex] |= (UINT64)PAGE_ATTRIBUTE_BITS;
    if ((ErrorCode & IA32_PF_EC_ID) != 0) {
      PageTable[PTIndex] &= ~IA32_PG_NX;
    }
  } else {
    //
    // If the 2M entry is marked as present, a 4K page size will be utilized.
    // In this scenario, the 2M entry must be a non-leaf entry.
    //
    ASSERT (PageTable[PTIndex] != 0);
    PageTable = (UINT64 *)(UINTN)(PageTable[PTIndex] & PHYSICAL_ADDRESS_MASK);

    //
    // 4K PTE
    //
    PTIndex = (UINTN)BitFieldRead64 (PFAddress, 12, 20);

    //
    // Record old entries with non-present status
    // Old entries include the memory which instruction is at and the memory which instruction access.
    //
    //
    ASSERT (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT);
    if (mPFEntryCount[CpuIndex] < MAX_PF_ENTRY_COUNT) {
      PFIndex                                = mPFEntryCount[CpuIndex];
      mLastPFEntryValue[CpuIndex][PFIndex]   = PageTable[PTIndex];
      mLastPFEntryPointer[CpuIndex][PFIndex] = &PageTable[PTIndex];
      mPFEntryCount[CpuIndex]++;
    }

    //
    // Set new entry
    //
    PageTable[PTIndex]  = (PFAddress & ~((1ull << 12) - 1));
    PageTable[PTIndex] |= (UINT64)PAGE_ATTRIBUTE_BITS;
    if ((ErrorCode & IA32_PF_EC_ID) != 0) {
      PageTable[PTIndex] &= ~IA32_PG_NX;
    }
  }
}

/**
  Handler for Page Fault triggered by Guard page.

  @param  ErrorCode  The Error code of exception.

**/
VOID
GuardPagePFHandler (
  UINTN  ErrorCode
  )
{
  UINT64  *PageTable;
  UINT64  PFAddress;
  UINT64  RestoreAddress;
  UINTN   RestorePageNumber;
  UINTN   CpuIndex;

  PageTable = (UINT64 *)AsmReadCr3 ();
  PFAddress = AsmReadCr2 ();
  CpuIndex  = GetCpuIndex ();

  //
  // Memory operation cross pages, like "rep mov" instruction, will cause
  // infinite loop between this and Debug Trap handler. We have to make sure
  // that current page and the page followed are both in PRESENT state.
  //
  RestorePageNumber = 2;
  RestoreAddress    = PFAddress;
  while (RestorePageNumber > 0) {
    RestorePageTableBelow4G (PageTable, RestoreAddress, CpuIndex, ErrorCode);
    RestoreAddress += EFI_PAGE_SIZE;
    RestorePageNumber--;
  }

  //
  // Flush TLB
  //
  CpuFlushTlb ();
}

/**
  The Page fault handler to save SMM profile data.

  @param  Rip        The RIP when exception happens.
  @param  ErrorCode  The Error code of exception.

**/
VOID
SmmProfilePFHandler (
  UINTN  Rip,
  UINTN  ErrorCode
  )
{
  UINT64                      *PageTable;
  UINT64                      PFAddress;
  UINT64                      RestoreAddress;
  UINTN                       RestorePageNumber;
  UINTN                       CpuIndex;
  UINTN                       Index;
  UINT64                      InstructionAddress;
  UINTN                       MaxEntryNumber;
  UINTN                       CurrentEntryNumber;
  BOOLEAN                     IsValidPFAddress;
  SMM_PROFILE_ENTRY           *SmmProfileEntry;
  UINT64                      SmiCommand;
  EFI_STATUS                  Status;
  UINT8                       SoftSmiValue;
  EFI_SMM_SAVE_STATE_IO_INFO  IoInfo;

  if (mBtsSupported) {
    DisableBTS ();
  }

  IsValidPFAddress = FALSE;
  PageTable        = (UINT64 *)AsmReadCr3 ();
  PFAddress        = AsmReadCr2 ();
  CpuIndex         = GetCpuIndex ();

  //
  // Memory operation cross pages, like "rep mov" instruction, will cause
  // infinite loop between this and Debug Trap handler. We have to make sure
  // that current page and the page followed are both in PRESENT state.
  //
  RestorePageNumber = 2;
  RestoreAddress    = PFAddress;
  while (RestorePageNumber > 0) {
    if (RestoreAddress <= 0xFFFFFFFF) {
      RestorePageTableBelow4G (PageTable, RestoreAddress, CpuIndex, ErrorCode);
    } else {
      RestorePageTableAbove4G (PageTable, RestoreAddress, CpuIndex, ErrorCode, &IsValidPFAddress);
    }

    RestoreAddress += EFI_PAGE_SIZE;
    RestorePageNumber--;
  }

  if (!IsValidPFAddress) {
    InstructionAddress = Rip;
    if (((ErrorCode & IA32_PF_EC_ID) != 0) && (mBtsSupported)) {
      //
      // If it is instruction fetch failure, get the correct IP from BTS.
      //
      InstructionAddress = GetSourceFromDestinationOnBts (CpuIndex, Rip);
      if (InstructionAddress == 0) {
        //
        // It indicates the instruction which caused page fault is not a jump instruction,
        // set instruction address same as the page fault address.
        //
        InstructionAddress = PFAddress;
      }
    }

    //
    // Indicate it is not software SMI
    //
    SmiCommand = 0xFFFFFFFFFFFFFFFFULL;
    for (Index = 0; Index < gMmst->NumberOfCpus; Index++) {
      Status = SmmReadSaveState (&mSmmCpu, sizeof (IoInfo), EFI_SMM_SAVE_STATE_REGISTER_IO, Index, &IoInfo);
      if (EFI_ERROR (Status)) {
        continue;
      }

      if (IoInfo.IoPort == mSmiCommandPort) {
        //
        // A software SMI triggered by SMI command port has been found, get SmiCommand from SMI command port.
        //
        SoftSmiValue = IoRead8 (mSmiCommandPort);
        SmiCommand   = (UINT64)SoftSmiValue;
        break;
      }
    }

    SmmProfileEntry = (SMM_PROFILE_ENTRY *)(UINTN)(mSmmProfileBase + 1);
    //
    // Check if there is already a same entry in profile data.
    //
    for (Index = 0; Index < (UINTN)mSmmProfileBase->CurDataEntries; Index++) {
      if ((SmmProfileEntry[Index].ErrorCode   == (UINT64)ErrorCode) &&
          (SmmProfileEntry[Index].Address     == PFAddress) &&
          (SmmProfileEntry[Index].CpuNum      == (UINT64)CpuIndex) &&
          (SmmProfileEntry[Index].Instruction == InstructionAddress) &&
          (SmmProfileEntry[Index].SmiCmd      == SmiCommand))
      {
        //
        // Same record exist, need not save again.
        //
        break;
      }
    }

    if (Index == mSmmProfileBase->CurDataEntries) {
      CurrentEntryNumber = (UINTN)mSmmProfileBase->CurDataEntries;
      MaxEntryNumber     = (UINTN)mSmmProfileBase->MaxDataEntries;
      if (FeaturePcdGet (PcdCpuSmmProfileRingBuffer)) {
        CurrentEntryNumber = CurrentEntryNumber % MaxEntryNumber;
      }

      if (CurrentEntryNumber < MaxEntryNumber) {
        //
        // Log the new entry
        //
        SmmProfileEntry[CurrentEntryNumber].SmiNum      = mSmmProfileBase->NumSmis;
        SmmProfileEntry[CurrentEntryNumber].ErrorCode   = (UINT64)ErrorCode;
        SmmProfileEntry[CurrentEntryNumber].ApicId      = (UINT64)GetApicId ();
        SmmProfileEntry[CurrentEntryNumber].CpuNum      = (UINT64)CpuIndex;
        SmmProfileEntry[CurrentEntryNumber].Address     = PFAddress;
        SmmProfileEntry[CurrentEntryNumber].Instruction = InstructionAddress;
        SmmProfileEntry[CurrentEntryNumber].SmiCmd      = SmiCommand;
        //
        // Update current entry index and data size in the header.
        //
        mSmmProfileBase->CurDataEntries++;
        mSmmProfileBase->CurDataSize = MultU64x64 (mSmmProfileBase->CurDataEntries, sizeof (SMM_PROFILE_ENTRY));
      }
    }
  }

  //
  // Flush TLB
  //
  CpuFlushTlb ();

  if (mBtsSupported) {
    EnableBTS ();
  }
}

/**
  Replace INT1 exception handler to restore page table to absent/execute-disable state
  in order to trigger page fault again to save SMM profile data..

**/
VOID
InitIdtr (
  VOID
  )
{
  EFI_STATUS  Status;

  Status = SmmRegisterExceptionHandler (&mSmmCpuService, EXCEPT_IA32_DEBUG, DebugExceptionHandler);
  ASSERT_EFI_ERROR (Status);
}