summaryrefslogtreecommitdiff
path: root/UefiCpuPkg/PiSmmCpuDxeSmm/MpService.c
blob: 8c61d68afd0a2d9b7748612fd1caf24bd31beb52 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
/** @file
SMM MP service implementation

Copyright (c) 2009 - 2023, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2017, AMD Incorporated. All rights reserved.<BR>

SPDX-License-Identifier: BSD-2-Clause-Patent

**/

#include "PiSmmCpuDxeSmm.h"

//
// Slots for all MTRR( FIXED MTRR + VARIABLE MTRR + MTRR_LIB_IA32_MTRR_DEF_TYPE)
//
MTRR_SETTINGS                gSmiMtrrs;
UINT64                       gPhyMask;
SMM_DISPATCHER_MP_SYNC_DATA  *mSmmMpSyncData = NULL;
UINTN                        mSmmMpSyncDataSize;
SMM_CPU_SEMAPHORES           mSmmCpuSemaphores;
UINTN                        mSemaphoreSize;
SPIN_LOCK                    *mPFLock = NULL;
SMM_CPU_SYNC_MODE            mCpuSmmSyncMode;
BOOLEAN                      mMachineCheckSupported = FALSE;
MM_COMPLETION                mSmmStartupThisApToken;

//
// Processor specified by mPackageFirstThreadIndex[PackageIndex] will do the package-scope register check.
//
UINT32  *mPackageFirstThreadIndex = NULL;

/**
  Performs an atomic compare exchange operation to get semaphore.
  The compare exchange operation must be performed using
  MP safe mechanisms.

  @param      Sem        IN:  32-bit unsigned integer
                         OUT: original integer - 1
  @return     Original integer - 1

**/
UINT32
WaitForSemaphore (
  IN OUT  volatile UINT32  *Sem
  )
{
  UINT32  Value;

  for ( ; ;) {
    Value = *Sem;
    if ((Value != 0) &&
        (InterlockedCompareExchange32 (
           (UINT32 *)Sem,
           Value,
           Value - 1
           ) == Value))
    {
      break;
    }

    CpuPause ();
  }

  return Value - 1;
}

/**
  Performs an atomic compare exchange operation to release semaphore.
  The compare exchange operation must be performed using
  MP safe mechanisms.

  @param      Sem        IN:  32-bit unsigned integer
                         OUT: original integer + 1
  @return     Original integer + 1

**/
UINT32
ReleaseSemaphore (
  IN OUT  volatile UINT32  *Sem
  )
{
  UINT32  Value;

  do {
    Value = *Sem;
  } while (Value + 1 != 0 &&
           InterlockedCompareExchange32 (
             (UINT32 *)Sem,
             Value,
             Value + 1
             ) != Value);

  return Value + 1;
}

/**
  Performs an atomic compare exchange operation to lock semaphore.
  The compare exchange operation must be performed using
  MP safe mechanisms.

  @param      Sem        IN:  32-bit unsigned integer
                         OUT: -1
  @return     Original integer

**/
UINT32
LockdownSemaphore (
  IN OUT  volatile UINT32  *Sem
  )
{
  UINT32  Value;

  do {
    Value = *Sem;
  } while (InterlockedCompareExchange32 (
             (UINT32 *)Sem,
             Value,
             (UINT32)-1
             ) != Value);

  return Value;
}

/**
  Wait all APs to performs an atomic compare exchange operation to release semaphore.

  @param   NumberOfAPs      AP number

**/
VOID
WaitForAllAPs (
  IN      UINTN  NumberOfAPs
  )
{
  UINTN  BspIndex;

  BspIndex = mSmmMpSyncData->BspIndex;
  while (NumberOfAPs-- > 0) {
    WaitForSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
  }
}

/**
  Performs an atomic compare exchange operation to release semaphore
  for each AP.

**/
VOID
ReleaseAllAPs (
  VOID
  )
{
  UINTN  Index;

  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    if (IsPresentAp (Index)) {
      ReleaseSemaphore (mSmmMpSyncData->CpuData[Index].Run);
    }
  }
}

/**
  Check whether the index of CPU perform the package level register
  programming during System Management Mode initialization.

  The index of Processor specified by mPackageFirstThreadIndex[PackageIndex]
  will do the package-scope register programming.

  @param[in] CpuIndex   Processor Index.

  @retval TRUE  Perform the package level register programming.
  @retval FALSE Don't perform the package level register programming.

**/
BOOLEAN
IsPackageFirstThread (
  IN UINTN  CpuIndex
  )
{
  UINT32  PackageIndex;

  PackageIndex =  gSmmCpuPrivate->ProcessorInfo[CpuIndex].Location.Package;

  ASSERT (mPackageFirstThreadIndex != NULL);

  //
  // Set the value of mPackageFirstThreadIndex[PackageIndex].
  // The package-scope register are checked by the first processor (CpuIndex) in Package.
  //
  // If mPackageFirstThreadIndex[PackageIndex] equals to (UINT32)-1, then update
  // to current CpuIndex. If it doesn't equal to (UINT32)-1, don't change it.
  //
  if (mPackageFirstThreadIndex[PackageIndex] == (UINT32)-1) {
    mPackageFirstThreadIndex[PackageIndex] = (UINT32)CpuIndex;
  }

  return (BOOLEAN)(mPackageFirstThreadIndex[PackageIndex] == CpuIndex);
}

/**
  Returns the Number of SMM Delayed & Blocked & Disabled Thread Count.

  @param[in,out] DelayedCount  The Number of SMM Delayed Thread Count.
  @param[in,out] BlockedCount  The Number of SMM Blocked Thread Count.
  @param[in,out] DisabledCount The Number of SMM Disabled Thread Count.

**/
VOID
GetSmmDelayedBlockedDisabledCount (
  IN OUT UINT32  *DelayedCount,
  IN OUT UINT32  *BlockedCount,
  IN OUT UINT32  *DisabledCount
  )
{
  UINTN  Index;

  for (Index = 0; Index < mNumberOfCpus; Index++) {
    if (IsPackageFirstThread (Index)) {
      if (DelayedCount != NULL) {
        *DelayedCount += (UINT32)SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmDelayed);
      }

      if (BlockedCount != NULL) {
        *BlockedCount += (UINT32)SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmBlocked);
      }

      if (DisabledCount != NULL) {
        *DisabledCount += (UINT32)SmmCpuFeaturesGetSmmRegister (Index, SmmRegSmmEnable);
      }
    }
  }
}

/**
  Checks if all CPUs (except Blocked & Disabled) have checked in for this SMI run

  @retval   TRUE  if all CPUs the have checked in.
  @retval   FALSE  if at least one Normal AP hasn't checked in.

**/
BOOLEAN
AllCpusInSmmExceptBlockedDisabled (
  VOID
  )
{
  UINT32  BlockedCount;
  UINT32  DisabledCount;

  BlockedCount  = 0;
  DisabledCount = 0;

  //
  // Check to make sure mSmmMpSyncData->Counter is valid and not locked.
  //
  ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);

  //
  // Check whether all CPUs in SMM.
  //
  if (*mSmmMpSyncData->Counter == mNumberOfCpus) {
    return TRUE;
  }

  //
  // Check for the Blocked & Disabled Exceptions Case.
  //
  GetSmmDelayedBlockedDisabledCount (NULL, &BlockedCount, &DisabledCount);

  //
  // *mSmmMpSyncData->Counter might be updated by all APs concurrently. The value
  // can be dynamic changed. If some Aps enter the SMI after the BlockedCount &
  // DisabledCount check, then the *mSmmMpSyncData->Counter will be increased, thus
  // leading the *mSmmMpSyncData->Counter + BlockedCount + DisabledCount > mNumberOfCpus.
  // since the BlockedCount & DisabledCount are local variable, it's ok here only for
  // the checking of all CPUs In Smm.
  //
  if (*mSmmMpSyncData->Counter + BlockedCount + DisabledCount >= mNumberOfCpus) {
    return TRUE;
  }

  return FALSE;
}

/**
  Has OS enabled Lmce in the MSR_IA32_MCG_EXT_CTL

  @retval TRUE     Os enable lmce.
  @retval FALSE    Os not enable lmce.

**/
BOOLEAN
IsLmceOsEnabled (
  VOID
  )
{
  MSR_IA32_MCG_CAP_REGISTER          McgCap;
  MSR_IA32_FEATURE_CONTROL_REGISTER  FeatureCtrl;
  MSR_IA32_MCG_EXT_CTL_REGISTER      McgExtCtrl;

  McgCap.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_CAP);
  if (McgCap.Bits.MCG_LMCE_P == 0) {
    return FALSE;
  }

  FeatureCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_FEATURE_CONTROL);
  if (FeatureCtrl.Bits.LmceOn == 0) {
    return FALSE;
  }

  McgExtCtrl.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_EXT_CTL);
  return (BOOLEAN)(McgExtCtrl.Bits.LMCE_EN == 1);
}

/**
  Return if Local machine check exception signaled.

  Indicates (when set) that a local machine check exception was generated. This indicates that the current machine-check event was
  delivered to only the logical processor.

  @retval TRUE    LMCE was signaled.
  @retval FALSE   LMCE was not signaled.

**/
BOOLEAN
IsLmceSignaled (
  VOID
  )
{
  MSR_IA32_MCG_STATUS_REGISTER  McgStatus;

  McgStatus.Uint64 = AsmReadMsr64 (MSR_IA32_MCG_STATUS);
  return (BOOLEAN)(McgStatus.Bits.LMCE_S == 1);
}

/**
  Given timeout constraint, wait for all APs to arrive, and insure when this function returns, no AP will execute normal mode code before
  entering SMM, except SMI disabled APs.

**/
VOID
SmmWaitForApArrival (
  VOID
  )
{
  UINT64   Timer;
  UINTN    Index;
  BOOLEAN  LmceEn;
  BOOLEAN  LmceSignal;
  UINT32   DelayedCount;
  UINT32   BlockedCount;

  PERF_FUNCTION_BEGIN ();

  DelayedCount = 0;
  BlockedCount = 0;

  ASSERT (*mSmmMpSyncData->Counter <= mNumberOfCpus);

  LmceEn     = FALSE;
  LmceSignal = FALSE;
  if (mMachineCheckSupported) {
    LmceEn     = IsLmceOsEnabled ();
    LmceSignal = IsLmceSignaled ();
  }

  //
  // Platform implementor should choose a timeout value appropriately:
  // - The timeout value should balance the SMM time constrains and the likelihood that delayed CPUs are excluded in the SMM run. Note
  //   the SMI Handlers must ALWAYS take into account the cases that not all APs are available in an SMI run.
  // - The timeout value must, in the case of 2nd timeout, be at least long enough to give time for all APs to receive the SMI IPI
  //   and either enter SMM or buffer the SMI, to insure there is no CPU running normal mode code when SMI handling starts. This will
  //   be TRUE even if a blocked CPU is brought out of the blocked state by a normal mode CPU (before the normal mode CPU received the
  //   SMI IPI), because with a buffered SMI, and CPU will enter SMM immediately after it is brought out of the blocked state.
  // - The timeout value must be longer than longest possible IO operation in the system
  //

  //
  // Sync with APs 1st timeout
  //
  for (Timer = StartSyncTimer ();
       !IsSyncTimerTimeout (Timer) && !(LmceEn && LmceSignal);
       )
  {
    mSmmMpSyncData->AllApArrivedWithException = AllCpusInSmmExceptBlockedDisabled ();
    if (mSmmMpSyncData->AllApArrivedWithException) {
      break;
    }

    CpuPause ();
  }

  //
  // Not all APs have arrived, so we need 2nd round of timeout. IPIs should be sent to ALL none present APs,
  // because:
  // a) Delayed AP may have just come out of the delayed state. Blocked AP may have just been brought out of blocked state by some AP running
  //    normal mode code. These APs need to be guaranteed to have an SMI pending to insure that once they are out of delayed / blocked state, they
  //    enter SMI immediately without executing instructions in normal mode. Note traditional flow requires there are no APs doing normal mode
  //    work while SMI handling is on-going.
  // b) As a consequence of SMI IPI sending, (spurious) SMI may occur after this SMM run.
  // c) ** NOTE **: Use SMI disabling feature VERY CAREFULLY (if at all) for traditional flow, because a processor in SMI-disabled state
  //    will execute normal mode code, which breaks the traditional SMI handlers' assumption that no APs are doing normal
  //    mode work while SMI handling is on-going.
  // d) We don't add code to check SMI disabling status to skip sending IPI to SMI disabled APs, because:
  //    - In traditional flow, SMI disabling is discouraged.
  //    - In relaxed flow, CheckApArrival() will check SMI disabling status before calling this function.
  //    In both cases, adding SMI-disabling checking code increases overhead.
  //
  if (*mSmmMpSyncData->Counter < mNumberOfCpus) {
    //
    // Send SMI IPIs to bring outside processors in
    //
    for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
      if (!(*(mSmmMpSyncData->CpuData[Index].Present)) && (gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId != INVALID_APIC_ID)) {
        SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[Index].ProcessorId);
      }
    }

    //
    // Sync with APs 2nd timeout.
    //
    for (Timer = StartSyncTimer ();
         !IsSyncTimerTimeout (Timer);
         )
    {
      mSmmMpSyncData->AllApArrivedWithException = AllCpusInSmmExceptBlockedDisabled ();
      if (mSmmMpSyncData->AllApArrivedWithException) {
        break;
      }

      CpuPause ();
    }
  }

  if (!mSmmMpSyncData->AllApArrivedWithException) {
    //
    // Check for the Blocked & Delayed Case.
    //
    GetSmmDelayedBlockedDisabledCount (&DelayedCount, &BlockedCount, NULL);
    DEBUG ((DEBUG_INFO, "SmmWaitForApArrival: Delayed AP Count = %d, Blocked AP Count = %d\n", DelayedCount, BlockedCount));
  }

  PERF_FUNCTION_END ();
}

/**
  Replace OS MTRR's with SMI MTRR's.

  @param    CpuIndex             Processor Index

**/
VOID
ReplaceOSMtrrs (
  IN      UINTN  CpuIndex
  )
{
  SmmCpuFeaturesDisableSmrr ();

  //
  // Replace all MTRRs registers
  //
  MtrrSetAllMtrrs (&gSmiMtrrs);
}

/**
  Wheck whether task has been finished by all APs.

  @param       BlockMode   Whether did it in block mode or non-block mode.

  @retval      TRUE        Task has been finished by all APs.
  @retval      FALSE       Task not has been finished by all APs.

**/
BOOLEAN
WaitForAllAPsNotBusy (
  IN BOOLEAN  BlockMode
  )
{
  UINTN  Index;

  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    //
    // Ignore BSP and APs which not call in SMM.
    //
    if (!IsPresentAp (Index)) {
      continue;
    }

    if (BlockMode) {
      AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
      ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
    } else {
      if (AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[Index].Busy)) {
        ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
      } else {
        return FALSE;
      }
    }
  }

  return TRUE;
}

/**
  Check whether it is an present AP.

  @param   CpuIndex      The AP index which calls this function.

  @retval  TRUE           It's a present AP.
  @retval  TRUE           This is not an AP or it is not present.

**/
BOOLEAN
IsPresentAp (
  IN UINTN  CpuIndex
  )
{
  return ((CpuIndex != gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) &&
          *(mSmmMpSyncData->CpuData[CpuIndex].Present));
}

/**
  Clean up the status flags used during executing the procedure.

  @param   CpuIndex      The AP index which calls this function.

**/
VOID
ReleaseToken (
  IN UINTN  CpuIndex
  )
{
  PROCEDURE_TOKEN  *Token;

  Token = mSmmMpSyncData->CpuData[CpuIndex].Token;

  if (InterlockedDecrement (&Token->RunningApCount) == 0) {
    ReleaseSpinLock (Token->SpinLock);
  }

  mSmmMpSyncData->CpuData[CpuIndex].Token = NULL;
}

/**
  Free the tokens in the maintained list.

**/
VOID
ResetTokens (
  VOID
  )
{
  //
  // Reset the FirstFreeToken to the beginning of token list upon exiting SMI.
  //
  gSmmCpuPrivate->FirstFreeToken = GetFirstNode (&gSmmCpuPrivate->TokenList);
}

/**
  SMI handler for BSP.

  @param     CpuIndex         BSP processor Index
  @param     SyncMode         SMM MP sync mode

**/
VOID
BSPHandler (
  IN      UINTN              CpuIndex,
  IN      SMM_CPU_SYNC_MODE  SyncMode
  )
{
  UINTN          Index;
  MTRR_SETTINGS  Mtrrs;
  UINTN          ApCount;
  BOOLEAN        ClearTopLevelSmiResult;
  UINTN          PresentCount;

  ASSERT (CpuIndex == mSmmMpSyncData->BspIndex);
  ApCount = 0;

  PERF_FUNCTION_BEGIN ();

  //
  // Flag BSP's presence
  //
  *mSmmMpSyncData->InsideSmm = TRUE;

  //
  // Initialize Debug Agent to start source level debug in BSP handler
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_ENTER_SMI, NULL, NULL);

  //
  // Mark this processor's presence
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;

  //
  // Clear platform top level SMI status bit before calling SMI handlers. If
  // we cleared it after SMI handlers are run, we would miss the SMI that
  // occurs after SMI handlers are done and before SMI status bit is cleared.
  //
  ClearTopLevelSmiResult = ClearTopLevelSmiStatus ();
  ASSERT (ClearTopLevelSmiResult == TRUE);

  //
  // Set running processor index
  //
  gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu = CpuIndex;

  //
  // If Traditional Sync Mode or need to configure MTRRs: gather all available APs.
  //
  if ((SyncMode == SmmCpuSyncModeTradition) || SmmCpuFeaturesNeedConfigureMtrrs ()) {
    //
    // Wait for APs to arrive
    //
    SmmWaitForApArrival ();

    //
    // Lock the counter down and retrieve the number of APs
    //
    *mSmmMpSyncData->AllCpusInSync = TRUE;
    ApCount                        = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;

    //
    // Wait for all APs to get ready for programming MTRRs
    //
    WaitForAllAPs (ApCount);

    if (SmmCpuFeaturesNeedConfigureMtrrs ()) {
      //
      // Signal all APs it's time for backup MTRRs
      //
      ReleaseAllAPs ();

      //
      // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
      // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
      // to a large enough value to avoid this situation.
      // Note: For HT capable CPUs, threads within a core share the same set of MTRRs.
      // We do the backup first and then set MTRR to avoid race condition for threads
      // in the same core.
      //
      MtrrGetAllMtrrs (&Mtrrs);

      //
      // Wait for all APs to complete their MTRR saving
      //
      WaitForAllAPs (ApCount);

      //
      // Let all processors program SMM MTRRs together
      //
      ReleaseAllAPs ();

      //
      // WaitForSemaphore() may wait for ever if an AP happens to enter SMM at
      // exactly this point. Please make sure PcdCpuSmmMaxSyncLoops has been set
      // to a large enough value to avoid this situation.
      //
      ReplaceOSMtrrs (CpuIndex);

      //
      // Wait for all APs to complete their MTRR programming
      //
      WaitForAllAPs (ApCount);
    }
  }

  //
  // The BUSY lock is initialized to Acquired state
  //
  AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);

  //
  // Perform the pre tasks
  //
  PerformPreTasks ();

  //
  // Invoke SMM Foundation EntryPoint with the processor information context.
  //
  gSmmCpuPrivate->SmmCoreEntry (&gSmmCpuPrivate->SmmCoreEntryContext);

  //
  // Make sure all APs have completed their pending none-block tasks
  //
  WaitForAllAPsNotBusy (TRUE);

  //
  // Perform the remaining tasks
  //
  PerformRemainingTasks ();

  //
  // If Relaxed-AP Sync Mode: gather all available APs after BSP SMM handlers are done, and
  // make those APs to exit SMI synchronously. APs which arrive later will be excluded and
  // will run through freely.
  //
  if ((SyncMode != SmmCpuSyncModeTradition) && !SmmCpuFeaturesNeedConfigureMtrrs ()) {
    //
    // Lock the counter down and retrieve the number of APs
    //
    *mSmmMpSyncData->AllCpusInSync = TRUE;
    ApCount                        = LockdownSemaphore (mSmmMpSyncData->Counter) - 1;
    //
    // Make sure all APs have their Present flag set
    //
    while (TRUE) {
      PresentCount = 0;
      for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
        if (*(mSmmMpSyncData->CpuData[Index].Present)) {
          PresentCount++;
        }
      }

      if (PresentCount > ApCount) {
        break;
      }
    }
  }

  //
  // Notify all APs to exit
  //
  *mSmmMpSyncData->InsideSmm = FALSE;
  ReleaseAllAPs ();

  //
  // Wait for all APs to complete their pending tasks
  //
  WaitForAllAPs (ApCount);

  if (SmmCpuFeaturesNeedConfigureMtrrs ()) {
    //
    // Signal APs to restore MTRRs
    //
    ReleaseAllAPs ();

    //
    // Restore OS MTRRs
    //
    SmmCpuFeaturesReenableSmrr ();
    MtrrSetAllMtrrs (&Mtrrs);

    //
    // Wait for all APs to complete MTRR programming
    //
    WaitForAllAPs (ApCount);
  }

  //
  // Stop source level debug in BSP handler, the code below will not be
  // debugged.
  //
  InitializeDebugAgent (DEBUG_AGENT_INIT_EXIT_SMI, NULL, NULL);

  //
  // Signal APs to Reset states/semaphore for this processor
  //
  ReleaseAllAPs ();

  //
  // Perform pending operations for hot-plug
  //
  SmmCpuUpdate ();

  //
  // Clear the Present flag of BSP
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;

  //
  // Gather APs to exit SMM synchronously. Note the Present flag is cleared by now but
  // WaitForAllAps does not depend on the Present flag.
  //
  WaitForAllAPs (ApCount);

  //
  // At this point, all APs should have exited from APHandler().
  // Migrate the SMM MP performance logging to standard SMM performance logging.
  // Any SMM MP performance logging after this point will be migrated in next SMI.
  //
  PERF_CODE (
    MigrateMpPerf (gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus, CpuIndex);
    );

  //
  // Reset the tokens buffer.
  //
  ResetTokens ();

  //
  // Reset BspIndex to -1, meaning BSP has not been elected.
  //
  if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
    mSmmMpSyncData->BspIndex = (UINT32)-1;
  }

  //
  // Allow APs to check in from this point on
  //
  *mSmmMpSyncData->Counter                  = 0;
  *mSmmMpSyncData->AllCpusInSync            = FALSE;
  mSmmMpSyncData->AllApArrivedWithException = FALSE;

  PERF_FUNCTION_END ();
}

/**
  SMI handler for AP.

  @param     CpuIndex         AP processor Index.
  @param     ValidSmi         Indicates that current SMI is a valid SMI or not.
  @param     SyncMode         SMM MP sync mode.

**/
VOID
APHandler (
  IN      UINTN              CpuIndex,
  IN      BOOLEAN            ValidSmi,
  IN      SMM_CPU_SYNC_MODE  SyncMode
  )
{
  UINT64         Timer;
  UINTN          BspIndex;
  MTRR_SETTINGS  Mtrrs;
  EFI_STATUS     ProcedureStatus;

  //
  // Timeout BSP
  //
  for (Timer = StartSyncTimer ();
       !IsSyncTimerTimeout (Timer) &&
       !(*mSmmMpSyncData->InsideSmm);
       )
  {
    CpuPause ();
  }

  if (!(*mSmmMpSyncData->InsideSmm)) {
    //
    // BSP timeout in the first round
    //
    if (mSmmMpSyncData->BspIndex != -1) {
      //
      // BSP Index is known
      // Existing AP is in SMI now but BSP not in, so, try bring BSP in SMM.
      //
      BspIndex = mSmmMpSyncData->BspIndex;
      ASSERT (CpuIndex != BspIndex);

      //
      // Send SMI IPI to bring BSP in
      //
      SendSmiIpi ((UINT32)gSmmCpuPrivate->ProcessorInfo[BspIndex].ProcessorId);

      //
      // Now clock BSP for the 2nd time
      //
      for (Timer = StartSyncTimer ();
           !IsSyncTimerTimeout (Timer) &&
           !(*mSmmMpSyncData->InsideSmm);
           )
      {
        CpuPause ();
      }

      if (!(*mSmmMpSyncData->InsideSmm)) {
        //
        // Give up since BSP is unable to enter SMM
        // and signal the completion of this AP
        // Reduce the mSmmMpSyncData->Counter!
        //
        WaitForSemaphore (mSmmMpSyncData->Counter);
        return;
      }
    } else {
      //
      // Don't know BSP index. Give up without sending IPI to BSP.
      // Reduce the mSmmMpSyncData->Counter!
      //
      WaitForSemaphore (mSmmMpSyncData->Counter);
      return;
    }
  }

  //
  // BSP is available
  //
  BspIndex = mSmmMpSyncData->BspIndex;
  ASSERT (CpuIndex != BspIndex);

  //
  // Mark this processor's presence
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = TRUE;

  if ((SyncMode == SmmCpuSyncModeTradition) || SmmCpuFeaturesNeedConfigureMtrrs ()) {
    //
    // Notify BSP of arrival at this point
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
  }

  if (SmmCpuFeaturesNeedConfigureMtrrs ()) {
    //
    // Wait for the signal from BSP to backup MTRRs
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Backup OS MTRRs
    //
    MtrrGetAllMtrrs (&Mtrrs);

    //
    // Signal BSP the completion of this AP
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);

    //
    // Wait for BSP's signal to program MTRRs
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Replace OS MTRRs with SMI MTRRs
    //
    ReplaceOSMtrrs (CpuIndex);

    //
    // Signal BSP the completion of this AP
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
  }

  while (TRUE) {
    //
    // Wait for something to happen
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Check if BSP wants to exit SMM
    //
    if (!(*mSmmMpSyncData->InsideSmm)) {
      break;
    }

    //
    // BUSY should be acquired by SmmStartupThisAp()
    //
    ASSERT (
      !AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[CpuIndex].Busy)
      );

    //
    // Invoke the scheduled procedure
    //
    ProcedureStatus = (*mSmmMpSyncData->CpuData[CpuIndex].Procedure)(
         (VOID *)mSmmMpSyncData->CpuData[CpuIndex].Parameter
  );
    if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) {
      *mSmmMpSyncData->CpuData[CpuIndex].Status = ProcedureStatus;
    }

    if (mSmmMpSyncData->CpuData[CpuIndex].Token != NULL) {
      ReleaseToken (CpuIndex);
    }

    //
    // Release BUSY
    //
    ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
  }

  if (SmmCpuFeaturesNeedConfigureMtrrs ()) {
    //
    // Notify BSP the readiness of this AP to program MTRRs
    //
    ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);

    //
    // Wait for the signal from BSP to program MTRRs
    //
    WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

    //
    // Restore OS MTRRs
    //
    SmmCpuFeaturesReenableSmrr ();
    MtrrSetAllMtrrs (&Mtrrs);
  }

  //
  // Notify BSP the readiness of this AP to Reset states/semaphore for this processor
  //
  ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);

  //
  // Wait for the signal from BSP to Reset states/semaphore for this processor
  //
  WaitForSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

  //
  // Reset states/semaphore for this processor
  //
  *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;

  //
  // Notify BSP the readiness of this AP to exit SMM
  //
  ReleaseSemaphore (mSmmMpSyncData->CpuData[BspIndex].Run);
}

/**
  Create 4G PageTable in SMRAM.

  @param[in]      Is32BitPageTable Whether the page table is 32-bit PAE
  @return         PageTable Address

**/
UINT32
Gen4GPageTable (
  IN      BOOLEAN  Is32BitPageTable
  )
{
  VOID    *PageTable;
  UINTN   Index;
  UINT64  *Pte;
  UINTN   PagesNeeded;
  UINTN   Low2MBoundary;
  UINTN   High2MBoundary;
  UINTN   Pages;
  UINTN   GuardPage;
  UINT64  *Pdpte;
  UINTN   PageIndex;
  UINTN   PageAddress;

  Low2MBoundary  = 0;
  High2MBoundary = 0;
  PagesNeeded    = 0;
  if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
    //
    // Add one more page for known good stack, then find the lower 2MB aligned address.
    //
    Low2MBoundary = (mSmmStackArrayBase + EFI_PAGE_SIZE) & ~(SIZE_2MB-1);
    //
    // Add two more pages for known good stack and stack guard page,
    // then find the lower 2MB aligned address.
    //
    High2MBoundary = (mSmmStackArrayEnd - mSmmStackSize - mSmmShadowStackSize + EFI_PAGE_SIZE * 2) & ~(SIZE_2MB-1);
    PagesNeeded    = ((High2MBoundary - Low2MBoundary) / SIZE_2MB) + 1;
  }

  //
  // Allocate the page table
  //
  PageTable = AllocatePageTableMemory (5 + PagesNeeded);
  ASSERT (PageTable != NULL);

  PageTable = (VOID *)((UINTN)PageTable);
  Pte       = (UINT64 *)PageTable;

  //
  // Zero out all page table entries first
  //
  ZeroMem (Pte, EFI_PAGES_TO_SIZE (1));

  //
  // Set Page Directory Pointers
  //
  for (Index = 0; Index < 4; Index++) {
    Pte[Index] = ((UINTN)PageTable + EFI_PAGE_SIZE * (Index + 1)) | mAddressEncMask |
                 (Is32BitPageTable ? IA32_PAE_PDPTE_ATTRIBUTE_BITS : PAGE_ATTRIBUTE_BITS);
  }

  Pte += EFI_PAGE_SIZE / sizeof (*Pte);

  //
  // Fill in Page Directory Entries
  //
  for (Index = 0; Index < EFI_PAGE_SIZE * 4 / sizeof (*Pte); Index++) {
    Pte[Index] = (Index << 21) | mAddressEncMask | IA32_PG_PS | PAGE_ATTRIBUTE_BITS;
  }

  Pdpte = (UINT64 *)PageTable;
  if (FeaturePcdGet (PcdCpuSmmStackGuard)) {
    Pages     = (UINTN)PageTable + EFI_PAGES_TO_SIZE (5);
    GuardPage = mSmmStackArrayBase + EFI_PAGE_SIZE;
    for (PageIndex = Low2MBoundary; PageIndex <= High2MBoundary; PageIndex += SIZE_2MB) {
      Pte                                             = (UINT64 *)(UINTN)(Pdpte[BitFieldRead32 ((UINT32)PageIndex, 30, 31)] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
      Pte[BitFieldRead32 ((UINT32)PageIndex, 21, 29)] = (UINT64)Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
      //
      // Fill in Page Table Entries
      //
      Pte         = (UINT64 *)Pages;
      PageAddress = PageIndex;
      for (Index = 0; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
        if (PageAddress == GuardPage) {
          //
          // Mark the guard page as non-present
          //
          Pte[Index] = PageAddress | mAddressEncMask;
          GuardPage += (mSmmStackSize + mSmmShadowStackSize);
          if (GuardPage > mSmmStackArrayEnd) {
            GuardPage = 0;
          }
        } else {
          Pte[Index] = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
        }

        PageAddress += EFI_PAGE_SIZE;
      }

      Pages += EFI_PAGE_SIZE;
    }
  }

  if ((PcdGet8 (PcdNullPointerDetectionPropertyMask) & BIT1) != 0) {
    Pte = (UINT64 *)(UINTN)(Pdpte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
    if ((Pte[0] & IA32_PG_PS) == 0) {
      // 4K-page entries are already mapped. Just hide the first one anyway.
      Pte     = (UINT64 *)(UINTN)(Pte[0] & ~mAddressEncMask & ~(EFI_PAGE_SIZE - 1));
      Pte[0] &= ~(UINT64)IA32_PG_P; // Hide page 0
    } else {
      // Create 4K-page entries
      Pages = (UINTN)AllocatePageTableMemory (1);
      ASSERT (Pages != 0);

      Pte[0] = (UINT64)(Pages | mAddressEncMask | PAGE_ATTRIBUTE_BITS);

      Pte         = (UINT64 *)Pages;
      PageAddress = 0;
      Pte[0]      = PageAddress | mAddressEncMask; // Hide page 0 but present left
      for (Index = 1; Index < EFI_PAGE_SIZE / sizeof (*Pte); Index++) {
        PageAddress += EFI_PAGE_SIZE;
        Pte[Index]   = PageAddress | mAddressEncMask | PAGE_ATTRIBUTE_BITS;
      }
    }
  }

  return (UINT32)(UINTN)PageTable;
}

/**
  Checks whether the input token is the current used token.

  @param[in]  Token      This parameter describes the token that was passed into DispatchProcedure or
                         BroadcastProcedure.

  @retval TRUE           The input token is the current used token.
  @retval FALSE          The input token is not the current used token.
**/
BOOLEAN
IsTokenInUse (
  IN SPIN_LOCK  *Token
  )
{
  LIST_ENTRY       *Link;
  PROCEDURE_TOKEN  *ProcToken;

  if (Token == NULL) {
    return FALSE;
  }

  Link = GetFirstNode (&gSmmCpuPrivate->TokenList);
  //
  // Only search used tokens.
  //
  while (Link != gSmmCpuPrivate->FirstFreeToken) {
    ProcToken = PROCEDURE_TOKEN_FROM_LINK (Link);

    if (ProcToken->SpinLock == Token) {
      return TRUE;
    }

    Link = GetNextNode (&gSmmCpuPrivate->TokenList, Link);
  }

  return FALSE;
}

/**
  Allocate buffer for the SPIN_LOCK and PROCEDURE_TOKEN.

  @return First token of the token buffer.
**/
LIST_ENTRY *
AllocateTokenBuffer (
  VOID
  )
{
  UINTN            SpinLockSize;
  UINT32           TokenCountPerChunk;
  UINTN            Index;
  SPIN_LOCK        *SpinLock;
  UINT8            *SpinLockBuffer;
  PROCEDURE_TOKEN  *ProcTokens;

  SpinLockSize = GetSpinLockProperties ();

  TokenCountPerChunk = FixedPcdGet32 (PcdCpuSmmMpTokenCountPerChunk);
  ASSERT (TokenCountPerChunk != 0);
  if (TokenCountPerChunk == 0) {
    DEBUG ((DEBUG_ERROR, "PcdCpuSmmMpTokenCountPerChunk should not be Zero!\n"));
    CpuDeadLoop ();
  }

  DEBUG ((DEBUG_INFO, "CpuSmm: SpinLock Size = 0x%x, PcdCpuSmmMpTokenCountPerChunk = 0x%x\n", SpinLockSize, TokenCountPerChunk));

  //
  // Separate the Spin_lock and Proc_token because the alignment requires by Spin_Lock.
  //
  SpinLockBuffer = AllocatePool (SpinLockSize * TokenCountPerChunk);
  ASSERT (SpinLockBuffer != NULL);

  ProcTokens = AllocatePool (sizeof (PROCEDURE_TOKEN) * TokenCountPerChunk);
  ASSERT (ProcTokens != NULL);

  for (Index = 0; Index < TokenCountPerChunk; Index++) {
    SpinLock = (SPIN_LOCK *)(SpinLockBuffer + SpinLockSize * Index);
    InitializeSpinLock (SpinLock);

    ProcTokens[Index].Signature      = PROCEDURE_TOKEN_SIGNATURE;
    ProcTokens[Index].SpinLock       = SpinLock;
    ProcTokens[Index].RunningApCount = 0;

    InsertTailList (&gSmmCpuPrivate->TokenList, &ProcTokens[Index].Link);
  }

  return &ProcTokens[0].Link;
}

/**
  Get the free token.

  If no free token, allocate new tokens then return the free one.

  @param RunningApsCount    The Running Aps count for this token.

  @retval    return the first free PROCEDURE_TOKEN.

**/
PROCEDURE_TOKEN *
GetFreeToken (
  IN UINT32  RunningApsCount
  )
{
  PROCEDURE_TOKEN  *NewToken;

  //
  // If FirstFreeToken meets the end of token list, enlarge the token list.
  // Set FirstFreeToken to the first free token.
  //
  if (gSmmCpuPrivate->FirstFreeToken == &gSmmCpuPrivate->TokenList) {
    gSmmCpuPrivate->FirstFreeToken = AllocateTokenBuffer ();
  }

  NewToken                       = PROCEDURE_TOKEN_FROM_LINK (gSmmCpuPrivate->FirstFreeToken);
  gSmmCpuPrivate->FirstFreeToken = GetNextNode (&gSmmCpuPrivate->TokenList, gSmmCpuPrivate->FirstFreeToken);

  NewToken->RunningApCount = RunningApsCount;
  AcquireSpinLock (NewToken->SpinLock);

  return NewToken;
}

/**
  Checks status of specified AP.

  This function checks whether the specified AP has finished the task assigned
  by StartupThisAP(), and whether timeout expires.

  @param[in]  Token             This parameter describes the token that was passed into DispatchProcedure or
                                BroadcastProcedure.

  @retval EFI_SUCCESS           Specified AP has finished task assigned by StartupThisAPs().
  @retval EFI_NOT_READY         Specified AP has not finished task and timeout has not expired.
**/
EFI_STATUS
IsApReady (
  IN SPIN_LOCK  *Token
  )
{
  if (AcquireSpinLockOrFail (Token)) {
    ReleaseSpinLock (Token);
    return EFI_SUCCESS;
  }

  return EFI_NOT_READY;
}

/**
  Schedule a procedure to run on the specified CPU.

  @param[in]       Procedure                The address of the procedure to run
  @param[in]       CpuIndex                 Target CPU Index
  @param[in,out]   ProcArguments            The parameter to pass to the procedure
  @param[in]       Token                    This is an optional parameter that allows the caller to execute the
                                            procedure in a blocking or non-blocking fashion. If it is NULL the
                                            call is blocking, and the call will not return until the AP has
                                            completed the procedure. If the token is not NULL, the call will
                                            return immediately. The caller can check whether the procedure has
                                            completed with CheckOnProcedure or WaitForProcedure.
  @param[in]       TimeoutInMicroseconds    Indicates the time limit in microseconds for the APs to finish
                                            execution of Procedure, either for blocking or non-blocking mode.
                                            Zero means infinity. If the timeout expires before all APs return
                                            from Procedure, then Procedure on the failed APs is terminated. If
                                            the timeout expires in blocking mode, the call returns EFI_TIMEOUT.
                                            If the timeout expires in non-blocking mode, the timeout determined
                                            can be through CheckOnProcedure or WaitForProcedure.
                                            Note that timeout support is optional. Whether an implementation
                                            supports this feature can be determined via the Attributes data
                                            member.
  @param[in,out]   CpuStatus                This optional pointer may be used to get the status code returned
                                            by Procedure when it completes execution on the target AP, or with
                                            EFI_TIMEOUT if the Procedure fails to complete within the optional
                                            timeout. The implementation will update this variable with
                                            EFI_NOT_READY prior to starting Procedure on the target AP.

  @retval EFI_INVALID_PARAMETER    CpuNumber not valid
  @retval EFI_INVALID_PARAMETER    CpuNumber specifying BSP
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber did not enter SMM
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber is busy
  @retval EFI_SUCCESS              The procedure has been successfully scheduled

**/
EFI_STATUS
InternalSmmStartupThisAp (
  IN      EFI_AP_PROCEDURE2  Procedure,
  IN      UINTN              CpuIndex,
  IN OUT  VOID               *ProcArguments OPTIONAL,
  IN      MM_COMPLETION      *Token,
  IN      UINTN              TimeoutInMicroseconds,
  IN OUT  EFI_STATUS         *CpuStatus
  )
{
  PROCEDURE_TOKEN  *ProcToken;

  if (CpuIndex >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus) {
    DEBUG ((DEBUG_ERROR, "CpuIndex(%d) >= gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus(%d)\n", CpuIndex, gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus));
    return EFI_INVALID_PARAMETER;
  }

  if (CpuIndex == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu) {
    DEBUG ((DEBUG_ERROR, "CpuIndex(%d) == gSmmCpuPrivate->SmmCoreEntryContext.CurrentlyExecutingCpu\n", CpuIndex));
    return EFI_INVALID_PARAMETER;
  }

  if (gSmmCpuPrivate->ProcessorInfo[CpuIndex].ProcessorId == INVALID_APIC_ID) {
    return EFI_INVALID_PARAMETER;
  }

  if (!(*(mSmmMpSyncData->CpuData[CpuIndex].Present))) {
    if (mSmmMpSyncData->EffectiveSyncMode == SmmCpuSyncModeTradition) {
      DEBUG ((DEBUG_ERROR, "!mSmmMpSyncData->CpuData[%d].Present\n", CpuIndex));
    }

    return EFI_INVALID_PARAMETER;
  }

  if (gSmmCpuPrivate->Operation[CpuIndex] == SmmCpuRemove) {
    if (!FeaturePcdGet (PcdCpuHotPlugSupport)) {
      DEBUG ((DEBUG_ERROR, "gSmmCpuPrivate->Operation[%d] == SmmCpuRemove\n", CpuIndex));
    }

    return EFI_INVALID_PARAMETER;
  }

  if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) {
    return EFI_INVALID_PARAMETER;
  }

  if (Procedure == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);

  mSmmMpSyncData->CpuData[CpuIndex].Procedure = Procedure;
  mSmmMpSyncData->CpuData[CpuIndex].Parameter = ProcArguments;
  if (Token != NULL) {
    if (Token != &mSmmStartupThisApToken) {
      //
      // When Token points to mSmmStartupThisApToken, this routine is called
      // from SmmStartupThisAp() in non-blocking mode (PcdCpuSmmBlockStartupThisAp == FALSE).
      //
      // In this case, caller wants to startup AP procedure in non-blocking
      // mode and cannot get the completion status from the Token because there
      // is no way to return the Token to caller from SmmStartupThisAp().
      // Caller needs to use its implementation specific way to query the completion status.
      //
      // There is no need to allocate a token for such case so the 3 overheads
      // can be avoided:
      // 1. Call AllocateTokenBuffer() when there is no free token.
      // 2. Get a free token from the token buffer.
      // 3. Call ReleaseToken() in APHandler().
      //
      ProcToken                               = GetFreeToken (1);
      mSmmMpSyncData->CpuData[CpuIndex].Token = ProcToken;
      *Token                                  = (MM_COMPLETION)ProcToken->SpinLock;
    }
  }

  mSmmMpSyncData->CpuData[CpuIndex].Status = CpuStatus;
  if (mSmmMpSyncData->CpuData[CpuIndex].Status != NULL) {
    *mSmmMpSyncData->CpuData[CpuIndex].Status = EFI_NOT_READY;
  }

  ReleaseSemaphore (mSmmMpSyncData->CpuData[CpuIndex].Run);

  if (Token == NULL) {
    AcquireSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
    ReleaseSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
  }

  return EFI_SUCCESS;
}

/**
  Worker function to execute a caller provided function on all enabled APs.

  @param[in]     Procedure               A pointer to the function to be run on
                                         enabled APs of the system.
  @param[in]     TimeoutInMicroseconds   Indicates the time limit in microseconds for
                                         APs to return from Procedure, either for
                                         blocking or non-blocking mode.
  @param[in,out] ProcedureArguments      The parameter passed into Procedure for
                                         all APs.
  @param[in,out] Token                   This is an optional parameter that allows the caller to execute the
                                         procedure in a blocking or non-blocking fashion. If it is NULL the
                                         call is blocking, and the call will not return until the AP has
                                         completed the procedure. If the token is not NULL, the call will
                                         return immediately. The caller can check whether the procedure has
                                         completed with CheckOnProcedure or WaitForProcedure.
  @param[in,out] CPUStatus               This optional pointer may be used to get the status code returned
                                         by Procedure when it completes execution on the target AP, or with
                                         EFI_TIMEOUT if the Procedure fails to complete within the optional
                                         timeout. The implementation will update this variable with
                                         EFI_NOT_READY prior to starting Procedure on the target AP.


  @retval EFI_SUCCESS             In blocking mode, all APs have finished before
                                  the timeout expired.
  @retval EFI_SUCCESS             In non-blocking mode, function has been dispatched
                                  to all enabled APs.
  @retval others                  Failed to Startup all APs.

**/
EFI_STATUS
InternalSmmStartupAllAPs (
  IN       EFI_AP_PROCEDURE2  Procedure,
  IN       UINTN              TimeoutInMicroseconds,
  IN OUT   VOID               *ProcedureArguments OPTIONAL,
  IN OUT   MM_COMPLETION      *Token,
  IN OUT   EFI_STATUS         *CPUStatus
  )
{
  UINTN            Index;
  UINTN            CpuCount;
  PROCEDURE_TOKEN  *ProcToken;

  if ((TimeoutInMicroseconds != 0) && ((mSmmMp.Attributes & EFI_MM_MP_TIMEOUT_SUPPORTED) == 0)) {
    return EFI_INVALID_PARAMETER;
  }

  if (Procedure == NULL) {
    return EFI_INVALID_PARAMETER;
  }

  CpuCount = 0;
  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    if (IsPresentAp (Index)) {
      CpuCount++;

      if (gSmmCpuPrivate->Operation[Index] == SmmCpuRemove) {
        return EFI_INVALID_PARAMETER;
      }

      if (!AcquireSpinLockOrFail (mSmmMpSyncData->CpuData[Index].Busy)) {
        return EFI_NOT_READY;
      }

      ReleaseSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
    }
  }

  if (CpuCount == 0) {
    return EFI_NOT_STARTED;
  }

  if (Token != NULL) {
    ProcToken = GetFreeToken ((UINT32)mMaxNumberOfCpus);
    *Token    = (MM_COMPLETION)ProcToken->SpinLock;
  } else {
    ProcToken = NULL;
  }

  //
  // Make sure all BUSY should be acquired.
  //
  // Because former code already check mSmmMpSyncData->CpuData[***].Busy for each AP.
  // Here code always use AcquireSpinLock instead of AcquireSpinLockOrFail for not
  // block mode.
  //
  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    if (IsPresentAp (Index)) {
      AcquireSpinLock (mSmmMpSyncData->CpuData[Index].Busy);
    }
  }

  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    if (IsPresentAp (Index)) {
      mSmmMpSyncData->CpuData[Index].Procedure = (EFI_AP_PROCEDURE2)Procedure;
      mSmmMpSyncData->CpuData[Index].Parameter = ProcedureArguments;
      if (ProcToken != NULL) {
        mSmmMpSyncData->CpuData[Index].Token = ProcToken;
      }

      if (CPUStatus != NULL) {
        mSmmMpSyncData->CpuData[Index].Status = &CPUStatus[Index];
        if (mSmmMpSyncData->CpuData[Index].Status != NULL) {
          *mSmmMpSyncData->CpuData[Index].Status = EFI_NOT_READY;
        }
      }
    } else {
      //
      // PI spec requirement:
      // For every excluded processor, the array entry must contain a value of EFI_NOT_STARTED.
      //
      if (CPUStatus != NULL) {
        CPUStatus[Index] = EFI_NOT_STARTED;
      }

      //
      // Decrease the count to mark this processor(AP or BSP) as finished.
      //
      if (ProcToken != NULL) {
        WaitForSemaphore (&ProcToken->RunningApCount);
      }
    }
  }

  ReleaseAllAPs ();

  if (Token == NULL) {
    //
    // Make sure all APs have completed their tasks.
    //
    WaitForAllAPsNotBusy (TRUE);
  }

  return EFI_SUCCESS;
}

/**
  ISO C99 6.5.2.2 "Function calls", paragraph 9:
  If the function is defined with a type that is not compatible with
  the type (of the expression) pointed to by the expression that
  denotes the called function, the behavior is undefined.

  So add below wrapper function to convert between EFI_AP_PROCEDURE
  and EFI_AP_PROCEDURE2.

  Wrapper for Procedures.

  @param[in]  Buffer              Pointer to PROCEDURE_WRAPPER buffer.

**/
EFI_STATUS
EFIAPI
ProcedureWrapper (
  IN     VOID  *Buffer
  )
{
  PROCEDURE_WRAPPER  *Wrapper;

  Wrapper = Buffer;
  Wrapper->Procedure (Wrapper->ProcedureArgument);

  return EFI_SUCCESS;
}

/**
  Schedule a procedure to run on the specified CPU in blocking mode.

  @param[in]       Procedure                The address of the procedure to run
  @param[in]       CpuIndex                 Target CPU Index
  @param[in, out]  ProcArguments            The parameter to pass to the procedure

  @retval EFI_INVALID_PARAMETER    CpuNumber not valid
  @retval EFI_INVALID_PARAMETER    CpuNumber specifying BSP
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber did not enter SMM
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber is busy
  @retval EFI_SUCCESS              The procedure has been successfully scheduled

**/
EFI_STATUS
EFIAPI
SmmBlockingStartupThisAp (
  IN      EFI_AP_PROCEDURE  Procedure,
  IN      UINTN             CpuIndex,
  IN OUT  VOID              *ProcArguments OPTIONAL
  )
{
  PROCEDURE_WRAPPER  Wrapper;

  Wrapper.Procedure         = Procedure;
  Wrapper.ProcedureArgument = ProcArguments;

  //
  // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2.
  //
  return InternalSmmStartupThisAp (ProcedureWrapper, CpuIndex, &Wrapper, NULL, 0, NULL);
}

/**
  Schedule a procedure to run on the specified CPU.

  @param  Procedure                The address of the procedure to run
  @param  CpuIndex                 Target CPU Index
  @param  ProcArguments            The parameter to pass to the procedure

  @retval EFI_INVALID_PARAMETER    CpuNumber not valid
  @retval EFI_INVALID_PARAMETER    CpuNumber specifying BSP
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber did not enter SMM
  @retval EFI_INVALID_PARAMETER    The AP specified by CpuNumber is busy
  @retval EFI_SUCCESS              The procedure has been successfully scheduled

**/
EFI_STATUS
EFIAPI
SmmStartupThisAp (
  IN      EFI_AP_PROCEDURE  Procedure,
  IN      UINTN             CpuIndex,
  IN OUT  VOID              *ProcArguments OPTIONAL
  )
{
  gSmmCpuPrivate->ApWrapperFunc[CpuIndex].Procedure         = Procedure;
  gSmmCpuPrivate->ApWrapperFunc[CpuIndex].ProcedureArgument = ProcArguments;

  //
  // Use wrapper function to convert EFI_AP_PROCEDURE to EFI_AP_PROCEDURE2.
  //
  return InternalSmmStartupThisAp (
           ProcedureWrapper,
           CpuIndex,
           &gSmmCpuPrivate->ApWrapperFunc[CpuIndex],
           FeaturePcdGet (PcdCpuSmmBlockStartupThisAp) ? NULL : &mSmmStartupThisApToken,
           0,
           NULL
           );
}

/**
  This function sets DR6 & DR7 according to SMM save state, before running SMM C code.
  They are useful when you want to enable hardware breakpoints in SMM without entry SMM mode.

  NOTE: It might not be appreciated in runtime since it might
        conflict with OS debugging facilities. Turn them off in RELEASE.

  @param    CpuIndex              CPU Index

**/
VOID
EFIAPI
CpuSmmDebugEntry (
  IN UINTN  CpuIndex
  )
{
  SMRAM_SAVE_STATE_MAP  *CpuSaveState;

  if (FeaturePcdGet (PcdCpuSmmDebug)) {
    ASSERT (CpuIndex < mMaxNumberOfCpus);
    CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
    if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
      AsmWriteDr6 (CpuSaveState->x86._DR6);
      AsmWriteDr7 (CpuSaveState->x86._DR7);
    } else {
      AsmWriteDr6 ((UINTN)CpuSaveState->x64._DR6);
      AsmWriteDr7 ((UINTN)CpuSaveState->x64._DR7);
    }
  }
}

/**
  This function restores DR6 & DR7 to SMM save state.

  NOTE: It might not be appreciated in runtime since it might
        conflict with OS debugging facilities. Turn them off in RELEASE.

  @param    CpuIndex              CPU Index

**/
VOID
EFIAPI
CpuSmmDebugExit (
  IN UINTN  CpuIndex
  )
{
  SMRAM_SAVE_STATE_MAP  *CpuSaveState;

  if (FeaturePcdGet (PcdCpuSmmDebug)) {
    ASSERT (CpuIndex < mMaxNumberOfCpus);
    CpuSaveState = (SMRAM_SAVE_STATE_MAP *)gSmmCpuPrivate->CpuSaveState[CpuIndex];
    if (mSmmSaveStateRegisterLma == EFI_SMM_SAVE_STATE_REGISTER_LMA_32BIT) {
      CpuSaveState->x86._DR7 = (UINT32)AsmReadDr7 ();
      CpuSaveState->x86._DR6 = (UINT32)AsmReadDr6 ();
    } else {
      CpuSaveState->x64._DR7 = AsmReadDr7 ();
      CpuSaveState->x64._DR6 = AsmReadDr6 ();
    }
  }
}

/**
  C function for SMI entry, each processor comes here upon SMI trigger.

  @param    CpuIndex              CPU Index

**/
VOID
EFIAPI
SmiRendezvous (
  IN      UINTN  CpuIndex
  )
{
  EFI_STATUS  Status;
  BOOLEAN     ValidSmi;
  BOOLEAN     IsBsp;
  BOOLEAN     BspInProgress;
  UINTN       Index;
  UINTN       Cr2;

  ASSERT (CpuIndex < mMaxNumberOfCpus);

  if (mSmmRelocated) {
    ASSERT (mSmmInitialized != NULL);
  }

  //
  // Save Cr2 because Page Fault exception in SMM may override its value,
  // when using on-demand paging for above 4G memory.
  //
  Cr2 = 0;
  SaveCr2 (&Cr2);

  if (mSmmRelocated && !mSmmInitialized[CpuIndex]) {
    //
    // Perform SmmInitHandler for CpuIndex
    //
    SmmInitHandler ();

    //
    // Restore Cr2
    //
    RestoreCr2 (Cr2);

    //
    // Mark the first SMI init for CpuIndex has been done so as to avoid the reentry.
    //
    mSmmInitialized[CpuIndex] = TRUE;

    return;
  }

  //
  // Call the user register Startup function first.
  //
  if (mSmmMpSyncData->StartupProcedure != NULL) {
    mSmmMpSyncData->StartupProcedure (mSmmMpSyncData->StartupProcArgs);
  }

  //
  // Perform CPU specific entry hooks
  //
  PERF_CODE (
    MpPerfBegin (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousEntry));
    );
  SmmCpuFeaturesRendezvousEntry (CpuIndex);
  PERF_CODE (
    MpPerfEnd (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousEntry));
    );

  //
  // Determine if this is a valid SMI
  //
  PERF_CODE (
    MpPerfBegin (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (PlatformValidSmi));
    );
  ValidSmi = PlatformValidSmi ();
  PERF_CODE (
    MpPerfEnd (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (PlatformValidSmi));
    );

  //
  // Determine if BSP has been already in progress. Note this must be checked after
  // ValidSmi because BSP may clear a valid SMI source after checking in.
  //
  BspInProgress = *mSmmMpSyncData->InsideSmm;

  if (!BspInProgress && !ValidSmi) {
    //
    // If we reach here, it means when we sampled the ValidSmi flag, SMI status had not
    // been cleared by BSP in a new SMI run (so we have a truly invalid SMI), or SMI
    // status had been cleared by BSP and an existing SMI run has almost ended. (Note
    // we sampled ValidSmi flag BEFORE judging BSP-in-progress status.) In both cases, there
    // is nothing we need to do.
    //
    goto Exit;
  } else {
    //
    // Signal presence of this processor
    // mSmmMpSyncData->Counter is increased here!
    // "ReleaseSemaphore (mSmmMpSyncData->Counter) == 0" means BSP has already ended the synchronization.
    //
    if (ReleaseSemaphore (mSmmMpSyncData->Counter) == 0) {
      //
      // BSP has already ended the synchronization, so QUIT!!!
      // Existing AP is too late now to enter SMI since BSP has already ended the synchronization!!!
      //

      //
      // Wait for BSP's signal to finish SMI
      //
      while (*mSmmMpSyncData->AllCpusInSync) {
        CpuPause ();
      }

      goto Exit;
    } else {
      //
      // The BUSY lock is initialized to Released state.
      // This needs to be done early enough to be ready for BSP's SmmStartupThisAp() call.
      // E.g., with Relaxed AP flow, SmmStartupThisAp() may be called immediately
      // after AP's present flag is detected.
      //
      InitializeSpinLock (mSmmMpSyncData->CpuData[CpuIndex].Busy);
    }

    if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
      ActivateSmmProfile (CpuIndex);
    }

    if (BspInProgress) {
      //
      // BSP has been elected. Follow AP path, regardless of ValidSmi flag
      // as BSP may have cleared the SMI status
      //
      APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
    } else {
      //
      // We have a valid SMI
      //

      //
      // Elect BSP
      //
      IsBsp = FALSE;
      if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
        if (!mSmmMpSyncData->SwitchBsp || mSmmMpSyncData->CandidateBsp[CpuIndex]) {
          //
          // Call platform hook to do BSP election
          //
          Status = PlatformSmmBspElection (&IsBsp);
          if (EFI_SUCCESS == Status) {
            //
            // Platform hook determines successfully
            //
            if (IsBsp) {
              mSmmMpSyncData->BspIndex = (UINT32)CpuIndex;
            }
          } else {
            //
            // Platform hook fails to determine, use default BSP election method
            //
            InterlockedCompareExchange32 (
              (UINT32 *)&mSmmMpSyncData->BspIndex,
              (UINT32)-1,
              (UINT32)CpuIndex
              );
          }
        }
      }

      //
      // "mSmmMpSyncData->BspIndex == CpuIndex" means this is the BSP
      //
      if (mSmmMpSyncData->BspIndex == CpuIndex) {
        //
        // Clear last request for SwitchBsp.
        //
        if (mSmmMpSyncData->SwitchBsp) {
          mSmmMpSyncData->SwitchBsp = FALSE;
          for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
            mSmmMpSyncData->CandidateBsp[Index] = FALSE;
          }
        }

        if (FeaturePcdGet (PcdCpuSmmProfileEnable)) {
          SmmProfileRecordSmiNum ();
        }

        //
        // BSP Handler is always called with a ValidSmi == TRUE
        //
        BSPHandler (CpuIndex, mSmmMpSyncData->EffectiveSyncMode);
      } else {
        APHandler (CpuIndex, ValidSmi, mSmmMpSyncData->EffectiveSyncMode);
      }
    }

    ASSERT (*mSmmMpSyncData->CpuData[CpuIndex].Run == 0);

    //
    // Wait for BSP's signal to exit SMI
    //
    while (*mSmmMpSyncData->AllCpusInSync) {
      CpuPause ();
    }
  }

Exit:
  //
  // Note: SmmRendezvousExit perf-logging entry is the only one that will be
  //       migrated to standard perf-logging database in next SMI by BSPHandler().
  //       Hence, the number of SmmRendezvousEntry entries will be larger than
  //       the number of SmmRendezvousExit entries. Delta equals to the number
  //       of CPU threads.
  //
  PERF_CODE (
    MpPerfBegin (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousExit));
    );
  SmmCpuFeaturesRendezvousExit (CpuIndex);
  PERF_CODE (
    MpPerfEnd (CpuIndex, SMM_MP_PERF_PROCEDURE_ID (SmmRendezvousExit));
    );

  //
  // Restore Cr2
  //
  RestoreCr2 (Cr2);
}

/**
  Initialize PackageBsp Info. Processor specified by mPackageFirstThreadIndex[PackageIndex]
  will do the package-scope register programming. Set default CpuIndex to (UINT32)-1, which
  means not specified yet.

**/
VOID
InitPackageFirstThreadIndexInfo (
  VOID
  )
{
  UINT32  Index;
  UINT32  PackageId;
  UINT32  PackageCount;

  PackageId    = 0;
  PackageCount = 0;

  //
  // Count the number of package, set to max PackageId + 1
  //
  for (Index = 0; Index < mNumberOfCpus; Index++) {
    if (PackageId < gSmmCpuPrivate->ProcessorInfo[Index].Location.Package) {
      PackageId = gSmmCpuPrivate->ProcessorInfo[Index].Location.Package;
    }
  }

  PackageCount = PackageId + 1;

  mPackageFirstThreadIndex = (UINT32 *)AllocatePool (sizeof (UINT32) * PackageCount);
  ASSERT (mPackageFirstThreadIndex != NULL);
  if (mPackageFirstThreadIndex == NULL) {
    return;
  }

  //
  // Set default CpuIndex to (UINT32)-1, which means not specified yet.
  //
  SetMem32 (mPackageFirstThreadIndex, sizeof (UINT32) * PackageCount, (UINT32)-1);
}

/**
  Allocate buffer for SpinLock and Wrapper function buffer.

**/
VOID
InitializeDataForMmMp (
  VOID
  )
{
  gSmmCpuPrivate->ApWrapperFunc = AllocatePool (sizeof (PROCEDURE_WRAPPER) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
  ASSERT (gSmmCpuPrivate->ApWrapperFunc != NULL);

  InitializeListHead (&gSmmCpuPrivate->TokenList);

  gSmmCpuPrivate->FirstFreeToken = AllocateTokenBuffer ();
}

/**
  Allocate buffer for all semaphores and spin locks.

**/
VOID
InitializeSmmCpuSemaphores (
  VOID
  )
{
  UINTN  ProcessorCount;
  UINTN  TotalSize;
  UINTN  GlobalSemaphoresSize;
  UINTN  CpuSemaphoresSize;
  UINTN  SemaphoreSize;
  UINTN  Pages;
  UINTN  *SemaphoreBlock;
  UINTN  SemaphoreAddr;

  SemaphoreSize        = GetSpinLockProperties ();
  ProcessorCount       = gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
  GlobalSemaphoresSize = (sizeof (SMM_CPU_SEMAPHORE_GLOBAL) / sizeof (VOID *)) * SemaphoreSize;
  CpuSemaphoresSize    = (sizeof (SMM_CPU_SEMAPHORE_CPU) / sizeof (VOID *)) * ProcessorCount * SemaphoreSize;
  TotalSize            = GlobalSemaphoresSize + CpuSemaphoresSize;
  DEBUG ((DEBUG_INFO, "One Semaphore Size    = 0x%x\n", SemaphoreSize));
  DEBUG ((DEBUG_INFO, "Total Semaphores Size = 0x%x\n", TotalSize));
  Pages          = EFI_SIZE_TO_PAGES (TotalSize);
  SemaphoreBlock = AllocatePages (Pages);
  ASSERT (SemaphoreBlock != NULL);
  ZeroMem (SemaphoreBlock, TotalSize);

  SemaphoreAddr                                   = (UINTN)SemaphoreBlock;
  mSmmCpuSemaphores.SemaphoreGlobal.Counter       = (UINT32 *)SemaphoreAddr;
  SemaphoreAddr                                  += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm     = (BOOLEAN *)SemaphoreAddr;
  SemaphoreAddr                                  += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync = (BOOLEAN *)SemaphoreAddr;
  SemaphoreAddr                                  += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.PFLock        = (SPIN_LOCK *)SemaphoreAddr;
  SemaphoreAddr                                  += SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock
                 = (SPIN_LOCK *)SemaphoreAddr;
  SemaphoreAddr += SemaphoreSize;

  SemaphoreAddr                          = (UINTN)SemaphoreBlock + GlobalSemaphoresSize;
  mSmmCpuSemaphores.SemaphoreCpu.Busy    = (SPIN_LOCK *)SemaphoreAddr;
  SemaphoreAddr                         += ProcessorCount * SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreCpu.Run     = (UINT32 *)SemaphoreAddr;
  SemaphoreAddr                         += ProcessorCount * SemaphoreSize;
  mSmmCpuSemaphores.SemaphoreCpu.Present = (BOOLEAN *)SemaphoreAddr;

  mPFLock                       = mSmmCpuSemaphores.SemaphoreGlobal.PFLock;
  mConfigSmmCodeAccessCheckLock = mSmmCpuSemaphores.SemaphoreGlobal.CodeAccessCheckLock;

  mSemaphoreSize = SemaphoreSize;
}

/**
  Initialize un-cacheable data.

**/
VOID
EFIAPI
InitializeMpSyncData (
  VOID
  )
{
  UINTN  CpuIndex;

  if (mSmmMpSyncData != NULL) {
    //
    // mSmmMpSyncDataSize includes one structure of SMM_DISPATCHER_MP_SYNC_DATA, one
    // CpuData array of SMM_CPU_DATA_BLOCK and one CandidateBsp array of BOOLEAN.
    //
    ZeroMem (mSmmMpSyncData, mSmmMpSyncDataSize);
    mSmmMpSyncData->CpuData      = (SMM_CPU_DATA_BLOCK *)((UINT8 *)mSmmMpSyncData + sizeof (SMM_DISPATCHER_MP_SYNC_DATA));
    mSmmMpSyncData->CandidateBsp = (BOOLEAN *)(mSmmMpSyncData->CpuData + gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus);
    if (FeaturePcdGet (PcdCpuSmmEnableBspElection)) {
      //
      // Enable BSP election by setting BspIndex to -1
      //
      mSmmMpSyncData->BspIndex = (UINT32)-1;
    }

    mSmmMpSyncData->EffectiveSyncMode = mCpuSmmSyncMode;

    mSmmMpSyncData->Counter       = mSmmCpuSemaphores.SemaphoreGlobal.Counter;
    mSmmMpSyncData->InsideSmm     = mSmmCpuSemaphores.SemaphoreGlobal.InsideSmm;
    mSmmMpSyncData->AllCpusInSync = mSmmCpuSemaphores.SemaphoreGlobal.AllCpusInSync;
    ASSERT (
      mSmmMpSyncData->Counter != NULL && mSmmMpSyncData->InsideSmm != NULL &&
      mSmmMpSyncData->AllCpusInSync != NULL
      );
    *mSmmMpSyncData->Counter       = 0;
    *mSmmMpSyncData->InsideSmm     = FALSE;
    *mSmmMpSyncData->AllCpusInSync = FALSE;

    mSmmMpSyncData->AllApArrivedWithException = FALSE;

    for (CpuIndex = 0; CpuIndex < gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus; CpuIndex++) {
      mSmmMpSyncData->CpuData[CpuIndex].Busy =
        (SPIN_LOCK *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Busy + mSemaphoreSize * CpuIndex);
      mSmmMpSyncData->CpuData[CpuIndex].Run =
        (UINT32 *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Run + mSemaphoreSize * CpuIndex);
      mSmmMpSyncData->CpuData[CpuIndex].Present =
        (BOOLEAN *)((UINTN)mSmmCpuSemaphores.SemaphoreCpu.Present + mSemaphoreSize * CpuIndex);
      *(mSmmMpSyncData->CpuData[CpuIndex].Busy)    = 0;
      *(mSmmMpSyncData->CpuData[CpuIndex].Run)     = 0;
      *(mSmmMpSyncData->CpuData[CpuIndex].Present) = FALSE;
    }
  }
}

/**
  Initialize global data for MP synchronization.

  @param Stacks             Base address of SMI stack buffer for all processors.
  @param StackSize          Stack size for each processor in SMM.
  @param ShadowStackSize    Shadow Stack size for each processor in SMM.

**/
UINT32
InitializeMpServiceData (
  IN VOID   *Stacks,
  IN UINTN  StackSize,
  IN UINTN  ShadowStackSize
  )
{
  UINT32                          Cr3;
  UINTN                           Index;
  UINT8                           *GdtTssTables;
  UINTN                           GdtTableStepSize;
  CPUID_VERSION_INFO_EDX          RegEdx;
  UINT32                          MaxExtendedFunction;
  CPUID_VIR_PHY_ADDRESS_SIZE_EAX  VirPhyAddressSize;

  //
  // Determine if this CPU supports machine check
  //
  AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &RegEdx.Uint32);
  mMachineCheckSupported = (BOOLEAN)(RegEdx.Bits.MCA == 1);

  //
  // Allocate memory for all locks and semaphores
  //
  InitializeSmmCpuSemaphores ();

  //
  // Initialize mSmmMpSyncData
  //
  mSmmMpSyncDataSize = sizeof (SMM_DISPATCHER_MP_SYNC_DATA) +
                       (sizeof (SMM_CPU_DATA_BLOCK) + sizeof (BOOLEAN)) * gSmmCpuPrivate->SmmCoreEntryContext.NumberOfCpus;
  mSmmMpSyncData = (SMM_DISPATCHER_MP_SYNC_DATA *)AllocatePages (EFI_SIZE_TO_PAGES (mSmmMpSyncDataSize));
  ASSERT (mSmmMpSyncData != NULL);
  mCpuSmmSyncMode = (SMM_CPU_SYNC_MODE)PcdGet8 (PcdCpuSmmSyncMode);
  InitializeMpSyncData ();

  //
  // Initialize physical address mask
  // NOTE: Physical memory above virtual address limit is not supported !!!
  //
  AsmCpuid (CPUID_EXTENDED_FUNCTION, &MaxExtendedFunction, NULL, NULL, NULL);
  if (MaxExtendedFunction >= CPUID_VIR_PHY_ADDRESS_SIZE) {
    AsmCpuid (CPUID_VIR_PHY_ADDRESS_SIZE, &VirPhyAddressSize.Uint32, NULL, NULL, NULL);
  } else {
    VirPhyAddressSize.Bits.PhysicalAddressBits = 36;
  }

  gPhyMask = LShiftU64 (1, VirPhyAddressSize.Bits.PhysicalAddressBits) - 1;
  //
  // Clear the low 12 bits
  //
  gPhyMask &= 0xfffffffffffff000ULL;

  //
  // Create page tables
  //
  Cr3 = SmmInitPageTable ();

  GdtTssTables = InitGdt (Cr3, &GdtTableStepSize);

  //
  // Install SMI handler for each CPU
  //
  for (Index = 0; Index < mMaxNumberOfCpus; Index++) {
    InstallSmiHandler (
      Index,
      (UINT32)mCpuHotPlugData.SmBase[Index],
      (VOID *)((UINTN)Stacks + (StackSize + ShadowStackSize) * Index),
      StackSize,
      (UINTN)(GdtTssTables + GdtTableStepSize * Index),
      gcSmiGdtr.Limit + 1,
      gcSmiIdtr.Base,
      gcSmiIdtr.Limit + 1,
      Cr3
      );
  }

  //
  // Record current MTRR settings
  //
  ZeroMem (&gSmiMtrrs, sizeof (gSmiMtrrs));
  MtrrGetAllMtrrs (&gSmiMtrrs);

  return Cr3;
}

/**

  Register the SMM Foundation entry point.

  @param          This              Pointer to EFI_SMM_CONFIGURATION_PROTOCOL instance
  @param          SmmEntryPoint     SMM Foundation EntryPoint

  @retval         EFI_SUCCESS       Successfully to register SMM foundation entry point

**/
EFI_STATUS
EFIAPI
RegisterSmmEntry (
  IN CONST EFI_SMM_CONFIGURATION_PROTOCOL  *This,
  IN EFI_SMM_ENTRY_POINT                   SmmEntryPoint
  )
{
  //
  // Record SMM Foundation EntryPoint, later invoke it on SMI entry vector.
  //
  gSmmCpuPrivate->SmmCoreEntry = SmmEntryPoint;
  return EFI_SUCCESS;
}

/**

  Register the SMM Foundation entry point.

  @param[in]      Procedure            A pointer to the code stream to be run on the designated target AP
                                       of the system. Type EFI_AP_PROCEDURE is defined below in Volume 2
                                       with the related definitions of
                                       EFI_MP_SERVICES_PROTOCOL.StartupAllAPs.
                                       If caller may pass a value of NULL to deregister any existing
                                       startup procedure.
  @param[in,out]  ProcedureArguments   Allows the caller to pass a list of parameters to the code that is
                                       run by the AP. It is an optional common mailbox between APs and
                                       the caller to share information

  @retval EFI_SUCCESS                  The Procedure has been set successfully.
  @retval EFI_INVALID_PARAMETER        The Procedure is NULL but ProcedureArguments not NULL.

**/
EFI_STATUS
RegisterStartupProcedure (
  IN     EFI_AP_PROCEDURE  Procedure,
  IN OUT VOID              *ProcedureArguments OPTIONAL
  )
{
  if ((Procedure == NULL) && (ProcedureArguments != NULL)) {
    return EFI_INVALID_PARAMETER;
  }

  if (mSmmMpSyncData == NULL) {
    return EFI_NOT_READY;
  }

  mSmmMpSyncData->StartupProcedure = Procedure;
  mSmmMpSyncData->StartupProcArgs  = ProcedureArguments;

  return EFI_SUCCESS;
}