1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
|
/** @file
CPU Features Initialize functions.
Copyright (c) 2017 - 2023, Intel Corporation. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "RegisterCpuFeatures.h"
CHAR16 *mDependTypeStr[] = { L"None", L"Thread", L"Core", L"Package", L"Invalid" };
/**
Worker function to save PcdCpuFeaturesCapability.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] BitMaskSize CPU feature bits mask buffer size.
**/
VOID
SetCapabilityPcd (
IN UINT8 *SupportedFeatureMask,
IN UINTN BitMaskSize
)
{
EFI_STATUS Status;
Status = PcdSetPtrS (PcdCpuFeaturesCapability, &BitMaskSize, SupportedFeatureMask);
ASSERT_EFI_ERROR (Status);
}
/**
Worker function to save PcdCpuFeaturesSetting.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] BitMaskSize CPU feature bits mask buffer size.
**/
VOID
SetSettingPcd (
IN UINT8 *SupportedFeatureMask,
IN UINTN BitMaskSize
)
{
EFI_STATUS Status;
Status = PcdSetPtrS (PcdCpuFeaturesSetting, &BitMaskSize, SupportedFeatureMask);
ASSERT_EFI_ERROR (Status);
}
/**
Collects CPU type and feature information.
@param[in, out] CpuInfo The pointer to CPU feature information
**/
VOID
FillProcessorInfo (
IN OUT REGISTER_CPU_FEATURE_INFORMATION *CpuInfo
)
{
CPUID_VERSION_INFO_EAX Eax;
CPUID_VERSION_INFO_ECX Ecx;
CPUID_VERSION_INFO_EDX Edx;
UINT32 DisplayedFamily;
UINT32 DisplayedModel;
AsmCpuid (CPUID_VERSION_INFO, &Eax.Uint32, NULL, &Ecx.Uint32, &Edx.Uint32);
DisplayedFamily = Eax.Bits.FamilyId;
if (Eax.Bits.FamilyId == 0x0F) {
DisplayedFamily += Eax.Bits.ExtendedFamilyId;
}
DisplayedModel = Eax.Bits.Model;
if ((Eax.Bits.FamilyId == 0x06) || (Eax.Bits.FamilyId == 0x0f)) {
DisplayedModel += (Eax.Bits.ExtendedModelId << 4);
}
CpuInfo->DisplayFamily = DisplayedFamily;
CpuInfo->DisplayModel = DisplayedModel;
CpuInfo->SteppingId = Eax.Bits.SteppingId;
CpuInfo->ProcessorType = Eax.Bits.ProcessorType;
CpuInfo->CpuIdVersionInfoEcx.Uint32 = Ecx.Uint32;
CpuInfo->CpuIdVersionInfoEdx.Uint32 = Edx.Uint32;
}
/**
Prepares for private data used for CPU features.
**/
VOID
CpuInitDataInitialize (
VOID
)
{
EFI_STATUS Status;
UINTN ProcessorNumber;
EFI_PROCESSOR_INFORMATION ProcessorInfoBuffer;
CPU_FEATURES_ENTRY *CpuFeature;
CPU_FEATURES_INIT_ORDER *InitOrder;
CPU_FEATURES_DATA *CpuFeaturesData;
LIST_ENTRY *Entry;
UINT32 Core;
UINT32 Package;
UINT32 Thread;
EFI_CPU_PHYSICAL_LOCATION *Location;
UINT32 PackageIndex;
UINT32 CoreIndex;
UINTN Pages;
UINT32 FirstPackage;
UINT32 *FirstCore;
UINT32 *FirstThread;
ACPI_CPU_DATA *AcpiCpuData;
CPU_STATUS_INFORMATION *CpuStatus;
UINT32 *ThreadCountPerPackage;
UINT8 *ThreadCountPerCore;
UINTN NumberOfCpus;
UINTN NumberOfEnabledProcessors;
Core = 0;
Package = 0;
Thread = 0;
CpuFeaturesData = GetCpuFeaturesData ();
//
// Initialize CpuFeaturesData->MpService as early as possile, so later function can use it.
//
CpuFeaturesData->MpService = GetMpService ();
GetNumberOfProcessor (&NumberOfCpus, &NumberOfEnabledProcessors);
CpuFeaturesData->InitOrder = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (CPU_FEATURES_INIT_ORDER) * NumberOfCpus));
ASSERT (CpuFeaturesData->InitOrder != NULL);
ZeroMem (CpuFeaturesData->InitOrder, sizeof (CPU_FEATURES_INIT_ORDER) * NumberOfCpus);
//
// Collect CPU Features information
//
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
ASSERT (CpuFeature->InitializeFunc != NULL);
if (CpuFeature->GetConfigDataFunc != NULL) {
CpuFeature->ConfigData = CpuFeature->GetConfigDataFunc (NumberOfCpus);
}
Entry = Entry->ForwardLink;
}
CpuFeaturesData->NumberOfCpus = (UINT32)NumberOfCpus;
AcpiCpuData = GetAcpiCpuData ();
ASSERT (AcpiCpuData != NULL);
CpuFeaturesData->AcpiCpuData = AcpiCpuData;
CpuStatus = &AcpiCpuData->CpuFeatureInitData.CpuStatus;
Location = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (EFI_CPU_PHYSICAL_LOCATION) * NumberOfCpus));
ASSERT (Location != NULL);
ZeroMem (Location, sizeof (EFI_CPU_PHYSICAL_LOCATION) * NumberOfCpus);
AcpiCpuData->CpuFeatureInitData.ApLocation = (EFI_PHYSICAL_ADDRESS)(UINTN)Location;
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
InitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
InitOrder->FeaturesSupportedMask = AllocateZeroPool (CpuFeaturesData->BitMaskSize);
ASSERT (InitOrder->FeaturesSupportedMask != NULL);
InitializeListHead (&InitOrder->OrderList);
Status = GetProcessorInformation (ProcessorNumber, &ProcessorInfoBuffer);
ASSERT_EFI_ERROR (Status);
CopyMem (
&InitOrder->CpuInfo.ProcessorInfo,
&ProcessorInfoBuffer,
sizeof (EFI_PROCESSOR_INFORMATION)
);
CopyMem (
&Location[ProcessorNumber],
&ProcessorInfoBuffer.Location,
sizeof (EFI_CPU_PHYSICAL_LOCATION)
);
//
// Collect CPU package count info.
//
if (Package < ProcessorInfoBuffer.Location.Package) {
Package = ProcessorInfoBuffer.Location.Package;
}
//
// Collect CPU max core count info.
//
if (Core < ProcessorInfoBuffer.Location.Core) {
Core = ProcessorInfoBuffer.Location.Core;
}
//
// Collect CPU max thread count info.
//
if (Thread < ProcessorInfoBuffer.Location.Thread) {
Thread = ProcessorInfoBuffer.Location.Thread;
}
}
CpuStatus->PackageCount = Package + 1;
CpuStatus->MaxCoreCount = Core + 1;
CpuStatus->MaxThreadCount = Thread + 1;
DEBUG ((
DEBUG_INFO,
"Processor Info: Package: %d, MaxCore : %d, MaxThread: %d\n",
CpuStatus->PackageCount,
CpuStatus->MaxCoreCount,
CpuStatus->MaxThreadCount
));
//
// Collect valid core count in each package because not all cores are valid.
//
ThreadCountPerPackage = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (UINT32) * CpuStatus->PackageCount));
ASSERT (ThreadCountPerPackage != NULL);
ZeroMem (ThreadCountPerPackage, sizeof (UINT32) * CpuStatus->PackageCount);
CpuStatus->ThreadCountPerPackage = (EFI_PHYSICAL_ADDRESS)(UINTN)ThreadCountPerPackage;
ThreadCountPerCore = AllocatePages (EFI_SIZE_TO_PAGES (sizeof (UINT8) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount));
ASSERT (ThreadCountPerCore != NULL);
ZeroMem (ThreadCountPerCore, sizeof (UINT8) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount);
CpuStatus->ThreadCountPerCore = (EFI_PHYSICAL_ADDRESS)(UINTN)ThreadCountPerCore;
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
Location = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.ProcessorInfo.Location;
ThreadCountPerPackage[Location->Package]++;
ThreadCountPerCore[Location->Package * CpuStatus->MaxCoreCount + Location->Core]++;
}
for (PackageIndex = 0; PackageIndex < CpuStatus->PackageCount; PackageIndex++) {
if (ThreadCountPerPackage[PackageIndex] != 0) {
DEBUG ((DEBUG_INFO, "P%02d: Thread Count = %d\n", PackageIndex, ThreadCountPerPackage[PackageIndex]));
for (CoreIndex = 0; CoreIndex < CpuStatus->MaxCoreCount; CoreIndex++) {
if (ThreadCountPerCore[PackageIndex * CpuStatus->MaxCoreCount + CoreIndex] != 0) {
DEBUG ((
DEBUG_INFO,
" P%02d C%04d, Thread Count = %d\n",
PackageIndex,
CoreIndex,
ThreadCountPerCore[PackageIndex * CpuStatus->MaxCoreCount + CoreIndex]
));
}
}
}
}
CpuFeaturesData->CpuFlags.CoreSemaphoreCount = AllocateZeroPool (sizeof (UINT32) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount);
ASSERT (CpuFeaturesData->CpuFlags.CoreSemaphoreCount != NULL);
CpuFeaturesData->CpuFlags.PackageSemaphoreCount = AllocateZeroPool (sizeof (UINT32) * CpuStatus->PackageCount * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount);
ASSERT (CpuFeaturesData->CpuFlags.PackageSemaphoreCount != NULL);
//
// Initialize CpuFeaturesData->InitOrder[].CpuInfo.First
// Use AllocatePages () instead of AllocatePool () because pool cannot be freed in PEI phase but page can.
//
Pages = EFI_SIZE_TO_PAGES (CpuStatus->PackageCount * sizeof (UINT32) + CpuStatus->PackageCount * CpuStatus->MaxCoreCount * sizeof (UINT32));
FirstCore = AllocatePages (Pages);
ASSERT (FirstCore != NULL);
FirstThread = FirstCore + CpuStatus->PackageCount;
//
// Set FirstPackage, FirstCore[], FirstThread[] to maximum package ID, core ID, thread ID.
//
FirstPackage = MAX_UINT32;
SetMem32 (FirstCore, CpuStatus->PackageCount * sizeof (UINT32), MAX_UINT32);
SetMem32 (FirstThread, CpuStatus->PackageCount * CpuStatus->MaxCoreCount * sizeof (UINT32), MAX_UINT32);
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
Location = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.ProcessorInfo.Location;
//
// Save the minimum package ID in the platform.
//
FirstPackage = MIN (Location->Package, FirstPackage);
//
// Save the minimum core ID per package.
//
FirstCore[Location->Package] = MIN (Location->Core, FirstCore[Location->Package]);
//
// Save the minimum thread ID per core.
//
FirstThread[Location->Package * CpuStatus->MaxCoreCount + Location->Core] = MIN (
Location->Thread,
FirstThread[Location->Package * CpuStatus->MaxCoreCount + Location->Core]
);
}
//
// Update the First field.
//
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
Location = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.ProcessorInfo.Location;
if (Location->Package == FirstPackage) {
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Package = 1;
}
//
// Set First.Die/Tile/Module for each thread assuming:
// single Die under each package, single Tile under each Die, single Module under each Tile
//
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Die = 1;
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Tile = 1;
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Module = 1;
if (Location->Core == FirstCore[Location->Package]) {
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Core = 1;
}
if (Location->Thread == FirstThread[Location->Package * CpuStatus->MaxCoreCount + Location->Core]) {
CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo.First.Thread = 1;
}
}
FreePages (FirstCore, Pages);
}
/**
Worker function to do OR operation on CPU feature supported bits mask buffer.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] OrFeatureBitMask The feature bit mask to do OR operation
@param[in] BitMaskSize The CPU feature bits mask buffer size.
**/
VOID
SupportedMaskOr (
IN UINT8 *SupportedFeatureMask,
IN UINT8 *OrFeatureBitMask,
IN UINT32 BitMaskSize
)
{
UINTN Index;
UINT8 *Data1;
UINT8 *Data2;
Data1 = SupportedFeatureMask;
Data2 = OrFeatureBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
*(Data1++) |= *(Data2++);
}
}
/**
Worker function to do AND operation on CPU feature supported bits mask buffer.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] AndFeatureBitMask The feature bit mask to do AND operation
@param[in] BitMaskSize CPU feature bits mask buffer size.
**/
VOID
SupportedMaskAnd (
IN UINT8 *SupportedFeatureMask,
IN CONST UINT8 *AndFeatureBitMask,
IN UINT32 BitMaskSize
)
{
UINTN Index;
UINT8 *Data1;
CONST UINT8 *Data2;
Data1 = SupportedFeatureMask;
Data2 = AndFeatureBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
*(Data1++) &= *(Data2++);
}
}
/**
Worker function to clean bit operation on CPU feature supported bits mask buffer.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] AndFeatureBitMask The feature bit mask to do XOR operation
@param[in] BitMaskSize CPU feature bits mask buffer size.
**/
VOID
SupportedMaskCleanBit (
IN UINT8 *SupportedFeatureMask,
IN UINT8 *AndFeatureBitMask,
IN UINT32 BitMaskSize
)
{
UINTN Index;
UINT8 *Data1;
UINT8 *Data2;
Data1 = SupportedFeatureMask;
Data2 = AndFeatureBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
*(Data1++) &= ~(*(Data2++));
}
}
/**
Worker function to check if the compared CPU feature set in the CPU feature
supported bits mask buffer.
@param[in] SupportedFeatureMask The pointer to CPU feature bits mask buffer
@param[in] ComparedFeatureBitMask The feature bit mask to be compared
@param[in] BitMaskSize CPU feature bits mask buffer size.
@retval TRUE The ComparedFeatureBitMask is set in CPU feature supported bits
mask buffer.
@retval FALSE The ComparedFeatureBitMask is not set in CPU feature supported bits
mask buffer.
**/
BOOLEAN
IsBitMaskMatch (
IN UINT8 *SupportedFeatureMask,
IN UINT8 *ComparedFeatureBitMask,
IN UINT32 BitMaskSize
)
{
UINTN Index;
UINT8 *Data1;
UINT8 *Data2;
Data1 = SupportedFeatureMask;
Data2 = ComparedFeatureBitMask;
for (Index = 0; Index < BitMaskSize; Index++) {
if (((*(Data1++)) & (*(Data2++))) != 0) {
return TRUE;
}
}
return FALSE;
}
/**
Collects processor data for calling processor.
@param[in,out] Buffer The pointer to private data buffer.
**/
VOID
EFIAPI
CollectProcessorData (
IN OUT VOID *Buffer
)
{
UINTN ProcessorNumber;
CPU_FEATURES_ENTRY *CpuFeature;
REGISTER_CPU_FEATURE_INFORMATION *CpuInfo;
LIST_ENTRY *Entry;
CPU_FEATURES_DATA *CpuFeaturesData;
CpuFeaturesData = (CPU_FEATURES_DATA *)Buffer;
ProcessorNumber = GetProcessorIndex (CpuFeaturesData);
CpuInfo = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo;
//
// collect processor information
//
FillProcessorInfo (CpuInfo);
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (CpuFeature->SupportFunc == NULL) {
//
// If SupportFunc is NULL, then the feature is supported.
//
SupportedMaskOr (
CpuFeaturesData->InitOrder[ProcessorNumber].FeaturesSupportedMask,
CpuFeature->FeatureMask,
CpuFeaturesData->BitMaskSize
);
} else if (CpuFeature->SupportFunc (ProcessorNumber, CpuInfo, CpuFeature->ConfigData)) {
SupportedMaskOr (
CpuFeaturesData->InitOrder[ProcessorNumber].FeaturesSupportedMask,
CpuFeature->FeatureMask,
CpuFeaturesData->BitMaskSize
);
}
Entry = Entry->ForwardLink;
}
}
/**
Dump the contents of a CPU register table.
@param[in] ProcessorNumber The index of the CPU to show the register table contents
@note This service could be called by BSP only.
**/
VOID
DumpRegisterTableOnProcessor (
IN UINTN ProcessorNumber
)
{
CPU_FEATURES_DATA *CpuFeaturesData;
UINTN FeatureIndex;
CPU_REGISTER_TABLE *RegisterTable;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
UINT32 DebugPrintErrorLevel;
DebugPrintErrorLevel = (ProcessorNumber == 0) ? DEBUG_INFO : DEBUG_VERBOSE;
CpuFeaturesData = GetCpuFeaturesData ();
//
// Debug information
//
RegisterTable = &CpuFeaturesData->RegisterTable[ProcessorNumber];
DEBUG ((DebugPrintErrorLevel, "RegisterTable->TableLength = %d\n", RegisterTable->TableLength));
RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *)(UINTN)RegisterTable->RegisterTableEntry;
for (FeatureIndex = 0; FeatureIndex < RegisterTable->TableLength; FeatureIndex++) {
RegisterTableEntry = &RegisterTableEntryHead[FeatureIndex];
switch (RegisterTableEntry->RegisterType) {
case Msr:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %04d: Index %04d, MSR : %08x, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
(UINT32)ProcessorNumber,
(UINT32)FeatureIndex,
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
case ControlRegister:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %04d: Index %04d, CR : %08x, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
(UINT32)ProcessorNumber,
(UINT32)FeatureIndex,
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
case MemoryMapped:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %04d: Index %04d, MMIO : %016lx, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
(UINT32)ProcessorNumber,
(UINT32)FeatureIndex,
RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32),
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
case CacheControl:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %04d: Index %04d, CACHE: %08x, Bit Start: %02d, Bit Length: %02d, Value: %016lx\r\n",
(UINT32)ProcessorNumber,
(UINT32)FeatureIndex,
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitLength,
RegisterTableEntry->Value
));
break;
case Semaphore:
DEBUG ((
DebugPrintErrorLevel,
"Processor: %04d: Index %04d, SEMAP: %s\r\n",
(UINT32)ProcessorNumber,
(UINT32)FeatureIndex,
mDependTypeStr[MIN ((UINT32)RegisterTableEntry->Value, InvalidDepType)]
));
break;
default:
break;
}
}
}
/**
Get the biggest dependence type.
PackageDepType > CoreDepType > ThreadDepType > NoneDepType.
@param[in] BeforeDep Before dependence type.
@param[in] AfterDep After dependence type.
@param[in] NoneNeibBeforeDep Before dependence type for not neighborhood features.
@param[in] NoneNeibAfterDep After dependence type for not neighborhood features.
@retval Return the biggest dependence type.
**/
CPU_FEATURE_DEPENDENCE_TYPE
BiggestDep (
IN CPU_FEATURE_DEPENDENCE_TYPE BeforeDep,
IN CPU_FEATURE_DEPENDENCE_TYPE AfterDep,
IN CPU_FEATURE_DEPENDENCE_TYPE NoneNeibBeforeDep,
IN CPU_FEATURE_DEPENDENCE_TYPE NoneNeibAfterDep
)
{
CPU_FEATURE_DEPENDENCE_TYPE Bigger;
Bigger = MAX (BeforeDep, AfterDep);
Bigger = MAX (Bigger, NoneNeibBeforeDep);
return MAX (Bigger, NoneNeibAfterDep);
}
/**
Analysis register CPU features on each processor and save CPU setting in CPU register table.
@param[in] NumberOfCpus Number of processor in system
**/
VOID
AnalysisProcessorFeatures (
IN UINTN NumberOfCpus
)
{
EFI_STATUS Status;
UINTN ProcessorNumber;
CPU_FEATURES_ENTRY *CpuFeature;
CPU_FEATURES_ENTRY *CpuFeatureInOrder;
CPU_FEATURES_INIT_ORDER *CpuInitOrder;
REGISTER_CPU_FEATURE_INFORMATION *CpuInfo;
LIST_ENTRY *Entry;
CPU_FEATURES_DATA *CpuFeaturesData;
LIST_ENTRY *NextEntry;
CPU_FEATURES_ENTRY *NextCpuFeatureInOrder;
BOOLEAN Success;
CPU_FEATURE_DEPENDENCE_TYPE BeforeDep;
CPU_FEATURE_DEPENDENCE_TYPE AfterDep;
CPU_FEATURE_DEPENDENCE_TYPE NoneNeibBeforeDep;
CPU_FEATURE_DEPENDENCE_TYPE NoneNeibAfterDep;
CpuFeaturesData = GetCpuFeaturesData ();
CpuFeaturesData->CapabilityPcd = AllocatePool (CpuFeaturesData->BitMaskSize);
ASSERT (CpuFeaturesData->CapabilityPcd != NULL);
SetMem (CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize, 0xFF);
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
CpuInitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
//
// Calculate the last capability on all processors
//
SupportedMaskAnd (CpuFeaturesData->CapabilityPcd, CpuInitOrder->FeaturesSupportedMask, CpuFeaturesData->BitMaskSize);
}
//
// Calculate the last setting
//
CpuFeaturesData->SettingPcd = AllocateCopyPool (CpuFeaturesData->BitMaskSize, CpuFeaturesData->CapabilityPcd);
ASSERT (CpuFeaturesData->SettingPcd != NULL);
SupportedMaskAnd (CpuFeaturesData->SettingPcd, PcdGetPtr (PcdCpuFeaturesSetting), CpuFeaturesData->BitMaskSize);
//
// Dump the last CPU feature list
//
DEBUG_CODE_BEGIN ();
DEBUG ((DEBUG_INFO, "Last CPU features list...\n"));
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize)) {
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize)) {
DEBUG ((DEBUG_INFO, "[Enable ] "));
} else {
DEBUG ((DEBUG_INFO, "[Disable ] "));
}
} else {
DEBUG ((DEBUG_INFO, "[Unsupport] "));
}
DumpCpuFeature (CpuFeature, CpuFeaturesData->BitMaskSize);
Entry = Entry->ForwardLink;
}
DEBUG ((DEBUG_INFO, "PcdCpuFeaturesCapability:\n"));
DumpCpuFeatureMask (CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize);
DEBUG ((DEBUG_INFO, "Origin PcdCpuFeaturesSetting:\n"));
DumpCpuFeatureMask (PcdGetPtr (PcdCpuFeaturesSetting), CpuFeaturesData->BitMaskSize);
DEBUG ((DEBUG_INFO, "Final PcdCpuFeaturesSetting:\n"));
DumpCpuFeatureMask (CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize);
DEBUG_CODE_END ();
//
// Save PCDs and display CPU PCDs
//
SetCapabilityPcd (CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize);
SetSettingPcd (CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize);
for (ProcessorNumber = 0; ProcessorNumber < NumberOfCpus; ProcessorNumber++) {
CpuInitOrder = &CpuFeaturesData->InitOrder[ProcessorNumber];
Entry = GetFirstNode (&CpuFeaturesData->FeatureList);
while (!IsNull (&CpuFeaturesData->FeatureList, Entry)) {
//
// Insert each feature into processor's order list
//
CpuFeature = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
if (IsBitMaskMatch (CpuFeature->FeatureMask, CpuFeaturesData->CapabilityPcd, CpuFeaturesData->BitMaskSize)) {
CpuFeatureInOrder = AllocateCopyPool (sizeof (CPU_FEATURES_ENTRY), CpuFeature);
ASSERT (CpuFeatureInOrder != NULL);
InsertTailList (&CpuInitOrder->OrderList, &CpuFeatureInOrder->Link);
}
Entry = Entry->ForwardLink;
}
//
// Go through ordered feature list to initialize CPU features
//
CpuInfo = &CpuFeaturesData->InitOrder[ProcessorNumber].CpuInfo;
Entry = GetFirstNode (&CpuInitOrder->OrderList);
while (!IsNull (&CpuInitOrder->OrderList, Entry)) {
CpuFeatureInOrder = CPU_FEATURE_ENTRY_FROM_LINK (Entry);
Success = FALSE;
if (IsBitMaskMatch (CpuFeatureInOrder->FeatureMask, CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize)) {
Status = CpuFeatureInOrder->InitializeFunc (ProcessorNumber, CpuInfo, CpuFeatureInOrder->ConfigData, TRUE);
if (EFI_ERROR (Status)) {
//
// Clean the CpuFeatureInOrder->FeatureMask in setting PCD.
//
SupportedMaskCleanBit (CpuFeaturesData->SettingPcd, CpuFeatureInOrder->FeatureMask, CpuFeaturesData->BitMaskSize);
if (CpuFeatureInOrder->FeatureName != NULL) {
DEBUG ((DEBUG_WARN, "Warning :: Failed to enable Feature: Name = %a.\n", CpuFeatureInOrder->FeatureName));
} else {
DEBUG ((DEBUG_WARN, "Warning :: Failed to enable Feature: Mask = "));
DumpCpuFeatureMask (CpuFeatureInOrder->FeatureMask, CpuFeaturesData->BitMaskSize);
}
} else {
Success = TRUE;
}
} else {
Status = CpuFeatureInOrder->InitializeFunc (ProcessorNumber, CpuInfo, CpuFeatureInOrder->ConfigData, FALSE);
if (EFI_ERROR (Status)) {
if (CpuFeatureInOrder->FeatureName != NULL) {
DEBUG ((DEBUG_WARN, "Warning :: Failed to disable Feature: Name = %a.\n", CpuFeatureInOrder->FeatureName));
} else {
DEBUG ((DEBUG_WARN, "Warning :: Failed to disable Feature: Mask = "));
DumpCpuFeatureMask (CpuFeatureInOrder->FeatureMask, CpuFeaturesData->BitMaskSize);
}
} else {
Success = TRUE;
}
}
if (Success) {
NextEntry = Entry->ForwardLink;
if (!IsNull (&CpuInitOrder->OrderList, NextEntry)) {
NextCpuFeatureInOrder = CPU_FEATURE_ENTRY_FROM_LINK (NextEntry);
//
// If feature has dependence with the next feature (ONLY care core/package dependency).
// and feature initialize succeed, add sync semaphere here.
//
BeforeDep = DetectFeatureScope (CpuFeatureInOrder, TRUE, NextCpuFeatureInOrder->FeatureMask);
AfterDep = DetectFeatureScope (NextCpuFeatureInOrder, FALSE, CpuFeatureInOrder->FeatureMask);
//
// Check whether next feature has After type dependence with not neighborhood CPU
// Features in former CPU features.
//
NoneNeibAfterDep = DetectNoneNeighborhoodFeatureScope (NextCpuFeatureInOrder, FALSE, &CpuInitOrder->OrderList);
} else {
BeforeDep = NoneDepType;
AfterDep = NoneDepType;
NoneNeibAfterDep = NoneDepType;
}
//
// Check whether current feature has Before type dependence with none neighborhood
// CPU features in after Cpu features.
//
NoneNeibBeforeDep = DetectNoneNeighborhoodFeatureScope (CpuFeatureInOrder, TRUE, &CpuInitOrder->OrderList);
//
// Get the biggest dependence and add semaphore for it.
// PackageDepType > CoreDepType > ThreadDepType > NoneDepType.
//
BeforeDep = BiggestDep (BeforeDep, AfterDep, NoneNeibBeforeDep, NoneNeibAfterDep);
if (BeforeDep > ThreadDepType) {
CPU_REGISTER_TABLE_WRITE32 (ProcessorNumber, Semaphore, 0, BeforeDep);
}
}
Entry = Entry->ForwardLink;
}
//
// Dump PcdCpuFeaturesSetting again because this value maybe updated
// again during initialize the features.
//
DEBUG ((DEBUG_INFO, "Dump final value for PcdCpuFeaturesSetting:\n"));
DumpCpuFeatureMask (CpuFeaturesData->SettingPcd, CpuFeaturesData->BitMaskSize);
//
// Dump the RegisterTable
//
DumpRegisterTableOnProcessor (ProcessorNumber);
}
}
/**
Increment semaphore by 1.
@param Sem IN: 32-bit unsigned integer
**/
VOID
LibReleaseSemaphore (
IN OUT volatile UINT32 *Sem
)
{
InterlockedIncrement (Sem);
}
/**
Decrement the semaphore by 1 if it is not zero.
Performs an atomic decrement operation for semaphore.
The compare exchange operation must be performed using
MP safe mechanisms.
@param Sem IN: 32-bit unsigned integer
**/
VOID
LibWaitForSemaphore (
IN OUT volatile UINT32 *Sem
)
{
UINT32 Value;
do {
Value = *Sem;
} while (Value == 0 ||
InterlockedCompareExchange32 (
Sem,
Value,
Value - 1
) != Value);
}
/**
Read / write CR value.
@param[in] CrIndex The CR index which need to read/write.
@param[in] Read Read or write. TRUE is read.
@param[in,out] CrValue CR value.
@retval EFI_SUCCESS means read/write success, else return EFI_UNSUPPORTED.
**/
UINTN
ReadWriteCr (
IN UINT32 CrIndex,
IN BOOLEAN Read,
IN OUT UINTN *CrValue
)
{
switch (CrIndex) {
case 0:
if (Read) {
*CrValue = AsmReadCr0 ();
} else {
AsmWriteCr0 (*CrValue);
}
break;
case 2:
if (Read) {
*CrValue = AsmReadCr2 ();
} else {
AsmWriteCr2 (*CrValue);
}
break;
case 3:
if (Read) {
*CrValue = AsmReadCr3 ();
} else {
AsmWriteCr3 (*CrValue);
}
break;
case 4:
if (Read) {
*CrValue = AsmReadCr4 ();
} else {
AsmWriteCr4 (*CrValue);
}
break;
default:
return EFI_UNSUPPORTED;
}
return EFI_SUCCESS;
}
/**
Initialize the CPU registers from a register table.
@param[in] RegisterTable The register table for this AP.
@param[in] ApLocation AP location info for this ap.
@param[in] CpuStatus CPU status info for this CPU.
@param[in] CpuFlags Flags data structure used when program the register.
@note This service could be called by BSP/APs.
**/
VOID
ProgramProcessorRegister (
IN CPU_REGISTER_TABLE *RegisterTable,
IN EFI_CPU_PHYSICAL_LOCATION *ApLocation,
IN CPU_STATUS_INFORMATION *CpuStatus,
IN PROGRAM_CPU_REGISTER_FLAGS *CpuFlags
)
{
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntry;
UINTN Index;
UINTN Value;
CPU_REGISTER_TABLE_ENTRY *RegisterTableEntryHead;
volatile UINT32 *SemaphorePtr;
UINT32 FirstThread;
UINT32 CurrentThread;
UINT32 CurrentCore;
UINTN ProcessorIndex;
UINT32 *ThreadCountPerPackage;
UINT8 *ThreadCountPerCore;
EFI_STATUS Status;
UINT64 CurrentValue;
//
// Traverse Register Table of this logical processor
//
RegisterTableEntryHead = (CPU_REGISTER_TABLE_ENTRY *)(UINTN)RegisterTable->RegisterTableEntry;
for (Index = 0; Index < RegisterTable->TableLength; Index++) {
RegisterTableEntry = &RegisterTableEntryHead[Index];
//
// Check the type of specified register
//
switch (RegisterTableEntry->RegisterType) {
//
// The specified register is Control Register
//
case ControlRegister:
Status = ReadWriteCr (RegisterTableEntry->Index, TRUE, &Value);
if (EFI_ERROR (Status)) {
break;
}
if (RegisterTableEntry->TestThenWrite) {
CurrentValue = BitFieldRead64 (
Value,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
);
if (CurrentValue == RegisterTableEntry->Value) {
break;
}
}
Value = (UINTN)BitFieldWrite64 (
Value,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value
);
ReadWriteCr (RegisterTableEntry->Index, FALSE, &Value);
break;
//
// The specified register is Model Specific Register
//
case Msr:
if (RegisterTableEntry->TestThenWrite) {
Value = (UINTN)AsmReadMsr64 (RegisterTableEntry->Index);
if (RegisterTableEntry->ValidBitLength >= 64) {
if (Value == RegisterTableEntry->Value) {
break;
}
} else {
CurrentValue = BitFieldRead64 (
Value,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1
);
if (CurrentValue == RegisterTableEntry->Value) {
break;
}
}
}
if (RegisterTableEntry->ValidBitLength >= 64) {
//
// If length is not less than 64 bits, then directly write without reading
//
AsmWriteMsr64 (
RegisterTableEntry->Index,
RegisterTableEntry->Value
);
} else {
//
// Set the bit section according to bit start and length
//
AsmMsrBitFieldWrite64 (
RegisterTableEntry->Index,
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
RegisterTableEntry->Value
);
}
break;
//
// MemoryMapped operations
//
case MemoryMapped:
AcquireSpinLock (&CpuFlags->MemoryMappedLock);
MmioBitFieldWrite32 (
(UINTN)(RegisterTableEntry->Index | LShiftU64 (RegisterTableEntry->HighIndex, 32)),
RegisterTableEntry->ValidBitStart,
RegisterTableEntry->ValidBitStart + RegisterTableEntry->ValidBitLength - 1,
(UINT32)RegisterTableEntry->Value
);
ReleaseSpinLock (&CpuFlags->MemoryMappedLock);
break;
//
// Enable or disable cache
//
case CacheControl:
//
// If value of the entry is 0, then disable cache. Otherwise, enable cache.
//
if (RegisterTableEntry->Value == 0) {
AsmDisableCache ();
} else {
AsmEnableCache ();
}
break;
case Semaphore:
// Semaphore works logic like below:
//
// V(x) = LibReleaseSemaphore (Semaphore[FirstThread + x]);
// P(x) = LibWaitForSemaphore (Semaphore[FirstThread + x]);
//
// All threads (T0...Tn) waits in P() line and continues running
// together.
//
//
// T0 T1 ... Tn
//
// V(0...n) V(0...n) ... V(0...n)
// n * P(0) n * P(1) ... n * P(n)
//
switch (RegisterTableEntry->Value) {
case CoreDepType:
SemaphorePtr = CpuFlags->CoreSemaphoreCount;
ThreadCountPerCore = (UINT8 *)(UINTN)CpuStatus->ThreadCountPerCore;
CurrentCore = ApLocation->Package * CpuStatus->MaxCoreCount + ApLocation->Core;
//
// Get Offset info for the first thread in the core which current thread belongs to.
//
FirstThread = CurrentCore * CpuStatus->MaxThreadCount;
CurrentThread = FirstThread + ApLocation->Thread;
//
// Different cores may have different valid threads in them. If driver maintail clearly
// thread index in different cores, the logic will be much complicated.
// Here driver just simply records the max thread number in all cores and use it as expect
// thread number for all cores.
// In below two steps logic, first current thread will Release semaphore for each thread
// in current core. Maybe some threads are not valid in this core, but driver don't
// care. Second, driver will let current thread wait semaphore for all valid threads in
// current core. Because only the valid threads will do release semaphore for this
// thread, driver here only need to wait the valid thread count.
//
//
// First Notify ALL THREADs in current Core that this thread is ready.
//
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount; ProcessorIndex++) {
LibReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
}
//
// Second, check whether all VALID THREADs (not all threads) in current core are ready.
//
for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerCore[CurrentCore]; ProcessorIndex++) {
LibWaitForSemaphore (&SemaphorePtr[CurrentThread]);
}
break;
case PackageDepType:
SemaphorePtr = CpuFlags->PackageSemaphoreCount;
ThreadCountPerPackage = (UINT32 *)(UINTN)CpuStatus->ThreadCountPerPackage;
//
// Get Offset info for the first thread in the package which current thread belongs to.
//
FirstThread = ApLocation->Package * CpuStatus->MaxCoreCount * CpuStatus->MaxThreadCount;
//
// Get the possible threads count for current package.
//
CurrentThread = FirstThread + CpuStatus->MaxThreadCount * ApLocation->Core + ApLocation->Thread;
//
// Different packages may have different valid threads in them. If driver maintail clearly
// thread index in different packages, the logic will be much complicated.
// Here driver just simply records the max thread number in all packages and use it as expect
// thread number for all packages.
// In below two steps logic, first current thread will Release semaphore for each thread
// in current package. Maybe some threads are not valid in this package, but driver don't
// care. Second, driver will let current thread wait semaphore for all valid threads in
// current package. Because only the valid threads will do release semaphore for this
// thread, driver here only need to wait the valid thread count.
//
//
// First Notify ALL THREADS in current package that this thread is ready.
//
for (ProcessorIndex = 0; ProcessorIndex < CpuStatus->MaxThreadCount * CpuStatus->MaxCoreCount; ProcessorIndex++) {
LibReleaseSemaphore (&SemaphorePtr[FirstThread + ProcessorIndex]);
}
//
// Second, check whether VALID THREADS (not all threads) in current package are ready.
//
for (ProcessorIndex = 0; ProcessorIndex < ThreadCountPerPackage[ApLocation->Package]; ProcessorIndex++) {
LibWaitForSemaphore (&SemaphorePtr[CurrentThread]);
}
break;
default:
break;
}
break;
default:
break;
}
}
}
/**
Programs registers for the calling processor.
@param[in,out] Buffer The pointer to private data buffer.
**/
VOID
EFIAPI
SetProcessorRegister (
IN OUT VOID *Buffer
)
{
CPU_FEATURES_DATA *CpuFeaturesData;
CPU_REGISTER_TABLE *RegisterTable;
CPU_REGISTER_TABLE *RegisterTables;
UINT32 InitApicId;
UINTN ProcIndex;
UINTN Index;
ACPI_CPU_DATA *AcpiCpuData;
CpuFeaturesData = (CPU_FEATURES_DATA *)Buffer;
AcpiCpuData = CpuFeaturesData->AcpiCpuData;
RegisterTables = (CPU_REGISTER_TABLE *)(UINTN)AcpiCpuData->CpuFeatureInitData.RegisterTable;
InitApicId = GetInitialApicId ();
RegisterTable = NULL;
ProcIndex = (UINTN)-1;
for (Index = 0; Index < AcpiCpuData->NumberOfCpus; Index++) {
if (RegisterTables[Index].InitialApicId == InitApicId) {
RegisterTable = &RegisterTables[Index];
ProcIndex = Index;
break;
}
}
ASSERT (RegisterTable != NULL);
ProgramProcessorRegister (
RegisterTable,
(EFI_CPU_PHYSICAL_LOCATION *)(UINTN)AcpiCpuData->CpuFeatureInitData.ApLocation + ProcIndex,
&AcpiCpuData->CpuFeatureInitData.CpuStatus,
&CpuFeaturesData->CpuFlags
);
}
/**
Performs CPU features detection.
This service will invoke MP service to check CPU features'
capabilities on BSP/APs.
@note This service could be called by BSP only.
**/
VOID
EFIAPI
CpuFeaturesDetect (
VOID
)
{
CPU_FEATURES_DATA *CpuFeaturesData;
CpuFeaturesData = GetCpuFeaturesData ();
CpuInitDataInitialize ();
if (CpuFeaturesData->NumberOfCpus > 1) {
//
// Wakeup all APs for data collection.
//
StartupAllAPsWorker (CollectProcessorData, NULL);
}
//
// Collect data on BSP
//
CollectProcessorData (CpuFeaturesData);
AnalysisProcessorFeatures (CpuFeaturesData->NumberOfCpus);
}
|