1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
|
/** @file
MP initialize support functions for DXE phase.
Copyright (c) 2016 - 2024, Intel Corporation. All rights reserved.<BR>
Copyright (c) 2024, AMD Inc. All rights reserved.<BR>
SPDX-License-Identifier: BSD-2-Clause-Patent
**/
#include "MpLib.h"
#include <Library/UefiLib.h>
#include <Library/UefiBootServicesTableLib.h>
#include <Library/DebugAgentLib.h>
#include <Library/DxeServicesTableLib.h>
#include <Library/CcExitLib.h>
#include <Register/Amd/SevSnpMsr.h>
#include <Register/Amd/Ghcb.h>
#include <Protocol/Timer.h>
#define AP_SAFE_STACK_SIZE 128
CPU_MP_DATA *mCpuMpData = NULL;
EFI_EVENT mCheckAllApsEvent = NULL;
EFI_EVENT mMpInitExitBootServicesEvent = NULL;
EFI_EVENT mLegacyBootEvent = NULL;
volatile BOOLEAN mStopCheckAllApsStatus = TRUE;
//
// Begin wakeup buffer allocation below 0x88000
//
STATIC EFI_PHYSICAL_ADDRESS mSevEsDxeWakeupBuffer = 0x88000;
/**
Enable Debug Agent to support source debugging on AP function.
**/
VOID
EnableDebugAgent (
VOID
)
{
//
// Initialize Debug Agent to support source level debug in DXE phase
//
InitializeDebugAgent (DEBUG_AGENT_INIT_DXE_AP, NULL, NULL);
}
/**
Get the pointer to CPU MP Data structure.
@return The pointer to CPU MP Data structure.
**/
CPU_MP_DATA *
GetCpuMpData (
VOID
)
{
ASSERT (mCpuMpData != NULL);
return mCpuMpData;
}
/**
Save the pointer to CPU MP Data structure.
@param[in] CpuMpData The pointer to CPU MP Data structure will be saved.
**/
VOID
SaveCpuMpData (
IN CPU_MP_DATA *CpuMpData
)
{
mCpuMpData = CpuMpData;
}
/**
Get available system memory below 0x88000 by specified size.
@param[in] WakeupBufferSize Wakeup buffer size required
@retval other Return wakeup buffer address below 1MB.
@retval -1 Cannot find free memory below 1MB.
**/
UINTN
GetWakeupBuffer (
IN UINTN WakeupBufferSize
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS StartAddress;
EFI_MEMORY_TYPE MemoryType;
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs) &&
!ConfidentialComputingGuestHas (CCAttrAmdSevSnp))
{
//
// An SEV-ES-only guest requires the memory to be reserved. SEV-SNP, which
// is also considered SEV-ES, uses a different AP startup method, though,
// which does not have the same requirement.
//
MemoryType = EfiReservedMemoryType;
} else {
MemoryType = EfiBootServicesData;
}
//
// Try to allocate buffer below 1M for waking vector.
// LegacyBios driver only reports warning when page allocation in range
// [0x60000, 0x88000) fails.
// This library is consumed by CpuDxe driver to produce CPU Arch protocol.
// LagacyBios driver depends on CPU Arch protocol which guarantees below
// allocation runs earlier than LegacyBios driver.
//
if (ConfidentialComputingGuestHas (CCAttrAmdSevEs)) {
//
// SEV-ES Wakeup buffer should be under 0x88000 and under any previous one
//
StartAddress = mSevEsDxeWakeupBuffer;
} else {
StartAddress = 0x88000;
}
Status = gBS->AllocatePages (
AllocateMaxAddress,
MemoryType,
EFI_SIZE_TO_PAGES (WakeupBufferSize),
&StartAddress
);
ASSERT_EFI_ERROR (Status);
if (EFI_ERROR (Status)) {
StartAddress = (EFI_PHYSICAL_ADDRESS)-1;
} else if (ConfidentialComputingGuestHas (CCAttrAmdSevEs)) {
//
// Next SEV-ES wakeup buffer allocation must be below this allocation
//
mSevEsDxeWakeupBuffer = StartAddress;
}
DEBUG ((
DEBUG_INFO,
"WakeupBufferStart = %x, WakeupBufferSize = %x\n",
(UINTN)StartAddress,
WakeupBufferSize
));
return (UINTN)StartAddress;
}
/**
Get available EfiBootServicesCode memory below 4GB by specified size.
This buffer is required to safely transfer AP from real address mode to
protected mode or long mode, due to the fact that the buffer returned by
GetWakeupBuffer() may be marked as non-executable.
@param[in] BufferSize Wakeup transition buffer size.
@retval other Return wakeup transition buffer address below 4GB.
@retval 0 Cannot find free memory below 4GB.
**/
UINTN
AllocateCodeBuffer (
IN UINTN BufferSize
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS StartAddress;
StartAddress = BASE_4GB - 1;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiBootServicesCode,
EFI_SIZE_TO_PAGES (BufferSize),
&StartAddress
);
if (EFI_ERROR (Status)) {
StartAddress = 0;
}
return (UINTN)StartAddress;
}
/**
Return the address of the SEV-ES AP jump table.
This buffer is required in order for an SEV-ES guest to transition from
UEFI into an OS.
@return Return SEV-ES AP jump table buffer
**/
UINTN
GetSevEsAPMemory (
VOID
)
{
EFI_STATUS Status;
EFI_PHYSICAL_ADDRESS StartAddress;
MSR_SEV_ES_GHCB_REGISTER Msr;
GHCB *Ghcb;
BOOLEAN InterruptState;
//
// Allocate 1 page for AP jump table page
//
StartAddress = BASE_4GB - 1;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiReservedMemoryType,
1,
&StartAddress
);
ASSERT_EFI_ERROR (Status);
DEBUG ((DEBUG_INFO, "Dxe: SevEsAPMemory = %lx\n", (UINTN)StartAddress));
//
// Save the SevEsAPMemory as the AP jump table.
//
Msr.GhcbPhysicalAddress = AsmReadMsr64 (MSR_SEV_ES_GHCB);
Ghcb = Msr.Ghcb;
CcExitVmgInit (Ghcb, &InterruptState);
CcExitVmgExit (Ghcb, SVM_EXIT_AP_JUMP_TABLE, 0, (UINT64)(UINTN)StartAddress);
CcExitVmgDone (Ghcb, InterruptState);
return (UINTN)StartAddress;
}
/**
Checks APs status and updates APs status if needed.
**/
VOID
CheckAndUpdateApsStatus (
VOID
)
{
UINTN ProcessorNumber;
EFI_STATUS Status;
CPU_MP_DATA *CpuMpData;
CpuMpData = GetCpuMpData ();
//
// First, check whether pending StartupAllAPs() exists.
//
if (CpuMpData->WaitEvent != NULL) {
Status = CheckAllAPs ();
//
// If all APs finish for StartupAllAPs(), signal the WaitEvent for it.
//
if (Status != EFI_NOT_READY) {
Status = gBS->SignalEvent (CpuMpData->WaitEvent);
CpuMpData->WaitEvent = NULL;
}
}
//
// Second, check whether pending StartupThisAPs() callings exist.
//
for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
if (CpuMpData->CpuData[ProcessorNumber].WaitEvent == NULL) {
continue;
}
Status = CheckThisAP (ProcessorNumber);
if (Status != EFI_NOT_READY) {
gBS->SignalEvent (CpuMpData->CpuData[ProcessorNumber].WaitEvent);
CpuMpData->CpuData[ProcessorNumber].WaitEvent = NULL;
}
}
}
/**
Checks APs' status periodically.
This function is triggered by timer periodically to check the
state of APs for StartupAllAPs() and StartupThisAP() executed
in non-blocking mode.
@param[in] Event Event triggered.
@param[in] Context Parameter passed with the event.
**/
VOID
EFIAPI
CheckApsStatus (
IN EFI_EVENT Event,
IN VOID *Context
)
{
//
// If CheckApsStatus() is not stopped, otherwise return immediately.
//
if (!mStopCheckAllApsStatus) {
CheckAndUpdateApsStatus ();
}
}
/**
Get Protected mode code segment with 16-bit default addressing
from current GDT table.
@return Protected mode 16-bit code segment value.
**/
UINT16
GetProtectedMode16CS (
VOID
)
{
IA32_DESCRIPTOR GdtrDesc;
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
UINTN GdtEntryCount;
UINT16 Index;
Index = (UINT16)-1;
AsmReadGdtr (&GdtrDesc);
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *)GdtrDesc.Base;
for (Index = 0; Index < GdtEntryCount; Index++) {
if (GdtEntry->Bits.L == 0) {
if ((GdtEntry->Bits.Type > 8) && (GdtEntry->Bits.DB == 0)) {
break;
}
}
GdtEntry++;
}
ASSERT (Index != GdtEntryCount);
return Index * 8;
}
/**
Get Protected mode code segment from current GDT table.
@return Protected mode code segment value.
**/
UINT16
GetProtectedModeCS (
VOID
)
{
IA32_DESCRIPTOR GdtrDesc;
IA32_SEGMENT_DESCRIPTOR *GdtEntry;
UINTN GdtEntryCount;
UINT16 Index;
AsmReadGdtr (&GdtrDesc);
GdtEntryCount = (GdtrDesc.Limit + 1) / sizeof (IA32_SEGMENT_DESCRIPTOR);
GdtEntry = (IA32_SEGMENT_DESCRIPTOR *)GdtrDesc.Base;
for (Index = 0; Index < GdtEntryCount; Index++) {
if (GdtEntry->Bits.L == 0) {
if ((GdtEntry->Bits.Type > 8) && (GdtEntry->Bits.DB == 1)) {
break;
}
}
GdtEntry++;
}
ASSERT (Index != GdtEntryCount);
return Index * 8;
}
/**
Allocate buffer for ApLoopCode.
@param[in] Pages Number of pages to allocate.
@param[in, out] Address Pointer to the allocated buffer.
**/
VOID
AllocateApLoopCodeBuffer (
IN UINTN Pages,
IN OUT EFI_PHYSICAL_ADDRESS *Address
)
{
EFI_STATUS Status;
Status = gBS->AllocatePages (
AllocateMaxAddress,
EfiReservedMemoryType,
Pages,
Address
);
ASSERT_EFI_ERROR (Status);
}
/**
Remove Nx protection for the range specific by BaseAddress and Length.
The PEI implementation uses CpuPageTableLib to change the attribute.
The DXE implementation uses gDS to change the attribute.
@param[in] BaseAddress BaseAddress of the range.
@param[in] Length Length of the range.
**/
VOID
RemoveNxprotection (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINTN Length
)
{
EFI_STATUS Status;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR MemDesc;
//
// TODO: Check EFI_MEMORY_XP bit set or not once it's available in DXE GCD
// service.
//
Status = gDS->GetMemorySpaceDescriptor (BaseAddress, &MemDesc);
if (!EFI_ERROR (Status)) {
gDS->SetMemorySpaceAttributes (
BaseAddress,
Length,
MemDesc.Attributes & (~EFI_MEMORY_XP)
);
}
}
/**
Callback function for ExitBootServices.
@param[in] Event Event whose notification function is being invoked.
@param[in] Context The pointer to the notification function's context,
which is implementation-dependent.
**/
VOID
EFIAPI
MpInitChangeApLoopCallback (
IN EFI_EVENT Event,
IN VOID *Context
)
{
CPU_MP_DATA *CpuMpData;
CpuMpData = GetCpuMpData ();
CpuMpData->PmCodeSegment = GetProtectedModeCS ();
CpuMpData->Pm16CodeSegment = GetProtectedMode16CS ();
CpuMpData->ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
mNumberToFinish = CpuMpData->CpuCount - 1;
WakeUpAP (CpuMpData, TRUE, 0, RelocateApLoop, NULL, TRUE);
while (mNumberToFinish > 0) {
CpuPause ();
}
if (CpuMpData->UseSevEsAPMethod && (CpuMpData->WakeupBuffer != (UINTN)-1)) {
//
// There are APs present. Re-use reserved memory area below 1MB from
// WakeupBuffer as the area to be used for transitioning to 16-bit mode
// in support of booting of the AP by an OS.
//
CopyMem (
(VOID *)CpuMpData->WakeupBuffer,
(VOID *)(CpuMpData->AddressMap.RendezvousFunnelAddress +
CpuMpData->AddressMap.SwitchToRealPM16ModeOffset),
CpuMpData->AddressMap.SwitchToRealPM16ModeSize
);
}
DEBUG ((DEBUG_INFO, "%a() done!\n", __func__));
}
/**
Initialize global data for MP support.
@param[in] CpuMpData The pointer to CPU MP Data structure.
**/
VOID
InitMpGlobalData (
IN CPU_MP_DATA *CpuMpData
)
{
EFI_STATUS Status;
UINTN Index;
EFI_GCD_MEMORY_SPACE_DESCRIPTOR MemDesc;
UINTN StackBase;
CPU_INFO_IN_HOB *CpuInfoInHob;
SaveCpuMpData (CpuMpData);
if (CpuMpData->CpuCount == 1) {
//
// If only BSP exists, return
//
return;
}
if (PcdGetBool (PcdCpuStackGuard)) {
//
// One extra page at the bottom of the stack is needed for Guard page.
//
if (CpuMpData->CpuApStackSize <= EFI_PAGE_SIZE) {
DEBUG ((DEBUG_ERROR, "PcdCpuApStackSize is not big enough for Stack Guard!\n"));
ASSERT (FALSE);
}
//
// DXE will reuse stack allocated for APs at PEI phase if it's available.
// Let's check it here.
//
// Note: BSP's stack guard is set at DxeIpl phase. But for the sake of
// BSP/AP exchange, stack guard for ApTopOfStack of cpu 0 will still be
// set here.
//
CpuInfoInHob = (CPU_INFO_IN_HOB *)(UINTN)CpuMpData->CpuInfoInHob;
for (Index = 0; Index < CpuMpData->CpuCount; ++Index) {
if ((CpuInfoInHob != NULL) && (CpuInfoInHob[Index].ApTopOfStack != 0)) {
StackBase = (UINTN)CpuInfoInHob[Index].ApTopOfStack - CpuMpData->CpuApStackSize;
} else {
StackBase = CpuMpData->Buffer + Index * CpuMpData->CpuApStackSize;
}
Status = gDS->GetMemorySpaceDescriptor (StackBase, &MemDesc);
ASSERT_EFI_ERROR (Status);
Status = gDS->SetMemorySpaceAttributes (
StackBase,
EFI_PAGES_TO_SIZE (1),
MemDesc.Attributes | EFI_MEMORY_RP
);
ASSERT_EFI_ERROR (Status);
DEBUG ((
DEBUG_INFO,
"Stack Guard set at %lx [cpu%lu]!\n",
(UINT64)StackBase,
(UINT64)Index
));
}
}
PrepareApLoopCode (CpuMpData);
Status = gBS->CreateEvent (
EVT_TIMER | EVT_NOTIFY_SIGNAL,
TPL_NOTIFY,
CheckApsStatus,
NULL,
&mCheckAllApsEvent
);
ASSERT_EFI_ERROR (Status);
//
// Set timer to check all APs status.
//
Status = gBS->SetTimer (
mCheckAllApsEvent,
TimerPeriodic,
EFI_TIMER_PERIOD_MICROSECONDS (
PcdGet32 (PcdCpuApStatusCheckIntervalInMicroSeconds)
)
);
ASSERT_EFI_ERROR (Status);
Status = gBS->CreateEvent (
EVT_SIGNAL_EXIT_BOOT_SERVICES,
TPL_CALLBACK,
MpInitChangeApLoopCallback,
NULL,
&mMpInitExitBootServicesEvent
);
ASSERT_EFI_ERROR (Status);
Status = gBS->CreateEventEx (
EVT_NOTIFY_SIGNAL,
TPL_CALLBACK,
MpInitChangeApLoopCallback,
NULL,
&gEfiEventLegacyBootGuid,
&mLegacyBootEvent
);
ASSERT_EFI_ERROR (Status);
}
/**
This service executes a caller provided function on all enabled APs.
@param[in] Procedure A pointer to the function to be run on
enabled APs of the system. See type
EFI_AP_PROCEDURE.
@param[in] SingleThread If TRUE, then all the enabled APs execute
the function specified by Procedure one by
one, in ascending order of processor handle
number. If FALSE, then all the enabled APs
execute the function specified by Procedure
simultaneously.
@param[in] WaitEvent The event created by the caller with CreateEvent()
service. If it is NULL, then execute in
blocking mode. BSP waits until all APs finish
or TimeoutInMicroSeconds expires. If it's
not NULL, then execute in non-blocking mode.
BSP requests the function specified by
Procedure to be started on all the enabled
APs, and go on executing immediately. If
all return from Procedure, or TimeoutInMicroSeconds
expires, this event is signaled. The BSP
can use the CheckEvent() or WaitForEvent()
services to check the state of event. Type
EFI_EVENT is defined in CreateEvent() in
the Unified Extensible Firmware Interface
Specification.
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
APs to return from Procedure, either for
blocking or non-blocking mode. Zero means
infinity. If the timeout expires before
all APs return from Procedure, then Procedure
on the failed APs is terminated. All enabled
APs are available for next function assigned
by MpInitLibStartupAllAPs() or
MPInitLibStartupThisAP().
If the timeout expires in blocking mode,
BSP returns EFI_TIMEOUT. If the timeout
expires in non-blocking mode, WaitEvent
is signaled with SignalEvent().
@param[in] ProcedureArgument The parameter passed into Procedure for
all APs.
@param[out] FailedCpuList If NULL, this parameter is ignored. Otherwise,
if all APs finish successfully, then its
content is set to NULL. If not all APs
finish before timeout expires, then its
content is set to address of the buffer
holding handle numbers of the failed APs.
The buffer is allocated by MP Initialization
library, and it's the caller's responsibility to
free the buffer with FreePool() service.
In blocking mode, it is ready for consumption
when the call returns. In non-blocking mode,
it is ready when WaitEvent is signaled. The
list of failed CPU is terminated by
END_OF_CPU_LIST.
@retval EFI_SUCCESS In blocking mode, all APs have finished before
the timeout expired.
@retval EFI_SUCCESS In non-blocking mode, function has been dispatched
to all enabled APs.
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
signaled.
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
supported.
@retval EFI_DEVICE_ERROR Caller processor is AP.
@retval EFI_NOT_STARTED No enabled APs exist in the system.
@retval EFI_NOT_READY Any enabled APs are busy.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
all enabled APs have finished.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
MpInitLibStartupAllAPs (
IN EFI_AP_PROCEDURE Procedure,
IN BOOLEAN SingleThread,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT UINTN **FailedCpuList OPTIONAL
)
{
EFI_STATUS Status;
//
// Temporarily stop checkAllApsStatus for avoid resource dead-lock.
//
mStopCheckAllApsStatus = TRUE;
Status = StartupAllCPUsWorker (
Procedure,
SingleThread,
TRUE,
WaitEvent,
TimeoutInMicroseconds,
ProcedureArgument,
FailedCpuList
);
//
// Start checkAllApsStatus
//
mStopCheckAllApsStatus = FALSE;
return Status;
}
/**
This service lets the caller get one enabled AP to execute a caller-provided
function.
@param[in] Procedure A pointer to the function to be run on the
designated AP of the system. See type
EFI_AP_PROCEDURE.
@param[in] ProcessorNumber The handle number of the AP. The range is
from 0 to the total number of logical
processors minus 1. The total number of
logical processors can be retrieved by
MpInitLibGetNumberOfProcessors().
@param[in] WaitEvent The event created by the caller with CreateEvent()
service. If it is NULL, then execute in
blocking mode. BSP waits until this AP finish
or TimeoutInMicroSeconds expires. If it's
not NULL, then execute in non-blocking mode.
BSP requests the function specified by
Procedure to be started on this AP,
and go on executing immediately. If this AP
return from Procedure or TimeoutInMicroSeconds
expires, this event is signaled. The BSP
can use the CheckEvent() or WaitForEvent()
services to check the state of event. Type
EFI_EVENT is defined in CreateEvent() in
the Unified Extensible Firmware Interface
Specification.
@param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
this AP to finish this Procedure, either for
blocking or non-blocking mode. Zero means
infinity. If the timeout expires before
this AP returns from Procedure, then Procedure
on the AP is terminated. The
AP is available for next function assigned
by MpInitLibStartupAllAPs() or
MpInitLibStartupThisAP().
If the timeout expires in blocking mode,
BSP returns EFI_TIMEOUT. If the timeout
expires in non-blocking mode, WaitEvent
is signaled with SignalEvent().
@param[in] ProcedureArgument The parameter passed into Procedure on the
specified AP.
@param[out] Finished If NULL, this parameter is ignored. In
blocking mode, this parameter is ignored.
In non-blocking mode, if AP returns from
Procedure before the timeout expires, its
content is set to TRUE. Otherwise, the
value is set to FALSE. The caller can
determine if the AP returned from Procedure
by evaluating this value.
@retval EFI_SUCCESS In blocking mode, specified AP finished before
the timeout expires.
@retval EFI_SUCCESS In non-blocking mode, the function has been
dispatched to specified AP.
@retval EFI_UNSUPPORTED A non-blocking mode request was made after the
UEFI event EFI_EVENT_GROUP_READY_TO_BOOT was
signaled.
@retval EFI_UNSUPPORTED WaitEvent is not NULL if non-blocking mode is not
supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_TIMEOUT In blocking mode, the timeout expired before
the specified AP has finished.
@retval EFI_NOT_READY The specified AP is busy.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP or disabled AP.
@retval EFI_INVALID_PARAMETER Procedure is NULL.
**/
EFI_STATUS
EFIAPI
MpInitLibStartupThisAP (
IN EFI_AP_PROCEDURE Procedure,
IN UINTN ProcessorNumber,
IN EFI_EVENT WaitEvent OPTIONAL,
IN UINTN TimeoutInMicroseconds,
IN VOID *ProcedureArgument OPTIONAL,
OUT BOOLEAN *Finished OPTIONAL
)
{
EFI_STATUS Status;
//
// temporarily stop checkAllApsStatus for avoid resource dead-lock.
//
mStopCheckAllApsStatus = TRUE;
Status = StartupThisAPWorker (
Procedure,
ProcessorNumber,
WaitEvent,
TimeoutInMicroseconds,
ProcedureArgument,
Finished
);
mStopCheckAllApsStatus = FALSE;
return Status;
}
/**
This service switches the requested AP to be the BSP from that point onward.
This service changes the BSP for all purposes. This call can only be performed
by the current BSP.
@param[in] ProcessorNumber The handle number of AP that is to become the new
BSP. The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
MpInitLibGetNumberOfProcessors().
@param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
enabled AP. Otherwise, it will be disabled.
@retval EFI_SUCCESS BSP successfully switched.
@retval EFI_UNSUPPORTED Switching the BSP cannot be completed prior to
this service returning.
@retval EFI_UNSUPPORTED Switching the BSP is not supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_NOT_FOUND The processor with the handle specified by
ProcessorNumber does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the current BSP or
a disabled AP.
@retval EFI_NOT_READY The specified AP is busy.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
**/
EFI_STATUS
EFIAPI
MpInitLibSwitchBSP (
IN UINTN ProcessorNumber,
IN BOOLEAN EnableOldBSP
)
{
EFI_STATUS Status;
EFI_TIMER_ARCH_PROTOCOL *Timer;
UINT64 TimerPeriod;
TimerPeriod = 0;
//
// Locate Timer Arch Protocol
//
Status = gBS->LocateProtocol (&gEfiTimerArchProtocolGuid, NULL, (VOID **)&Timer);
if (EFI_ERROR (Status)) {
Timer = NULL;
}
if (Timer != NULL) {
//
// Save current rate of DXE Timer
//
Timer->GetTimerPeriod (Timer, &TimerPeriod);
//
// Disable DXE Timer and drain pending interrupts
//
Timer->SetTimerPeriod (Timer, 0);
}
Status = SwitchBSPWorker (ProcessorNumber, EnableOldBSP);
if (Timer != NULL) {
//
// Enable and restore rate of DXE Timer
//
Timer->SetTimerPeriod (Timer, TimerPeriod);
}
return Status;
}
/**
This service lets the caller enable or disable an AP from this point onward.
This service may only be called from the BSP.
@param[in] ProcessorNumber The handle number of AP.
The range is from 0 to the total number of
logical processors minus 1. The total number of
logical processors can be retrieved by
MpInitLibGetNumberOfProcessors().
@param[in] EnableAP Specifies the new state for the processor for
enabled, FALSE for disabled.
@param[in] HealthFlag If not NULL, a pointer to a value that specifies
the new health status of the AP. This flag
corresponds to StatusFlag defined in
EFI_MP_SERVICES_PROTOCOL.GetProcessorInfo(). Only
the PROCESSOR_HEALTH_STATUS_BIT is used. All other
bits are ignored. If it is NULL, this parameter
is ignored.
@retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
@retval EFI_UNSUPPORTED Enabling or disabling an AP cannot be completed
prior to this service returning.
@retval EFI_UNSUPPORTED Enabling or disabling an AP is not supported.
@retval EFI_DEVICE_ERROR The calling processor is an AP.
@retval EFI_NOT_FOUND Processor with the handle specified by ProcessorNumber
does not exist.
@retval EFI_INVALID_PARAMETER ProcessorNumber specifies the BSP.
@retval EFI_NOT_READY MP Initialize Library is not initialized.
**/
EFI_STATUS
EFIAPI
MpInitLibEnableDisableAP (
IN UINTN ProcessorNumber,
IN BOOLEAN EnableAP,
IN UINT32 *HealthFlag OPTIONAL
)
{
EFI_STATUS Status;
BOOLEAN TempStopCheckState;
TempStopCheckState = FALSE;
//
// temporarily stop checkAllAPsStatus for initialize parameters.
//
if (!mStopCheckAllApsStatus) {
mStopCheckAllApsStatus = TRUE;
TempStopCheckState = TRUE;
}
Status = EnableDisableApWorker (ProcessorNumber, EnableAP, HealthFlag);
if (TempStopCheckState) {
mStopCheckAllApsStatus = FALSE;
}
return Status;
}
/**
This funtion will try to invoke platform specific microcode shadow logic to
relocate microcode update patches into memory.
@param[in, out] CpuMpData The pointer to CPU MP Data structure.
@retval EFI_SUCCESS Shadow microcode success.
@retval EFI_OUT_OF_RESOURCES No enough resource to complete the operation.
@retval EFI_UNSUPPORTED Can't find platform specific microcode shadow
PPI/Protocol.
**/
EFI_STATUS
PlatformShadowMicrocode (
IN OUT CPU_MP_DATA *CpuMpData
)
{
//
// There is no DXE version of platform shadow microcode protocol so far.
// A platform which only uses DxeMpInitLib instance could only supports
// the PCD based microcode shadowing.
//
return EFI_UNSUPPORTED;
}
|