summaryrefslogtreecommitdiff
path: root/ArmPlatformPkg/Sec/Sec.c
blob: 1da26356fc9aa332c14c1e3c1b3cb143bfe8efca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
/** @file
*  Main file supporting the SEC Phase on ARM Platforms
*
*  Copyright (c) 2011, ARM Limited. All rights reserved.
*  
*  This program and the accompanying materials                          
*  are licensed and made available under the terms and conditions of the BSD License         
*  which accompanies this distribution.  The full text of the license may be found at        
*  http://opensource.org/licenses/bsd-license.php                                            
*
*  THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,                     
*  WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.             
*
**/

#include <Library/DebugAgentLib.h>
#include <Library/PcdLib.h>
#include <Library/PrintLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/ArmLib.h>
#include <Library/SerialPortLib.h>
#include <Library/ArmPlatformLib.h>
#include <Library/ArmGicLib.h>

#include "SecInternal.h"

#define SerialPrint(txt)  SerialPortWrite ((UINT8*)txt, AsciiStrLen(txt)+1);

extern VOID *monitor_vector_table;

VOID
CEntryPoint (
  IN  UINTN                     MpId
  )
{
  CHAR8           Buffer[100];
  UINTN           CharCount;
  UINTN           JumpAddress;

  // Primary CPU clears out the SCU tag RAMs, secondaries wait
  if (IS_PRIMARY_CORE(MpId)) {
    if (FixedPcdGet32(PcdMPCoreSupport)) {
      ArmInvalidScu ();
    }

    // SEC phase needs to run library constructors by hand. This assumes we are linked against the SerialLib
    // In non SEC modules the init call is in autogenerated code.
    SerialPortInitialize ();

    // Start talking
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"UEFI firmware built at %a on %a\n\r",__TIME__, __DATE__);
    SerialPortWrite ((UINT8 *) Buffer, CharCount);

    // Initialize the Debug Agent for Source Level Debugging
    InitializeDebugAgent (DEBUG_AGENT_INIT_PREMEM_SEC, NULL, NULL);
    SaveAndSetDebugTimerInterrupt (TRUE);

    // Now we've got UART, make the check:
    // - The Vector table must be 32-byte aligned
    ASSERT(((UINT32)SecVectorTable & ((1 << 5)-1)) == 0);
  }

  // Invalidate the data cache. Doesn't have to do the Data cache clean.
  ArmInvalidateDataCache();

  // Invalidate Instruction Cache
  ArmInvalidateInstructionCache();

  // Invalidate I & D TLBs
  ArmInvalidateInstructionAndDataTlb();

  // Enable Full Access to CoProcessors
  ArmWriteCPACR (CPACR_CP_FULL_ACCESS);

  // Enable SWP instructions
  ArmEnableSWPInstruction ();

  // Enable program flow prediction, if supported.
  ArmEnableBranchPrediction ();

  if (FixedPcdGet32(PcdVFPEnabled)) {
    ArmEnableVFP();
  }

  if (IS_PRIMARY_CORE(MpId)) {
    // Initialize peripherals that must be done at the early stage
    // Example: Some L2x0 controllers must be initialized in Secure World
    ArmPlatformSecInitialize ();

    // If we skip the PEI Core we could want to initialize the DRAM in the SEC phase.
    // If we are in standalone, we need the initialization to copy the UEFI firmware into DRAM
    if (FeaturePcdGet(PcdSystemMemoryInitializeInSec)) {
      // Initialize system memory (DRAM)
      ArmPlatformInitializeSystemMemory ();
    }

    // Some platform can change their physical memory mapping
    ArmPlatformBootRemapping ();
  }

  // Test if Trustzone is supported on this platform
  if (ArmPlatformTrustzoneSupported ()) {
    // Ensure the Monitor Stack Base & Size have been set
    ASSERT(PcdGet32(PcdCPUCoresSecMonStackBase) != 0);
    ASSERT(PcdGet32(PcdCPUCoreSecMonStackSize) != 0);

    if (FixedPcdGet32(PcdMPCoreSupport)) {
      // Setup SMP in Non Secure world
      ArmSetupSmpNonSecure (GET_CORE_ID(MpId));
    }

    // Enter Monitor Mode
    enter_monitor_mode ((VOID*)(PcdGet32(PcdCPUCoresSecMonStackBase) + (PcdGet32(PcdCPUCoreSecMonStackSize) * GET_CORE_POS(MpId))));

    //Write the monitor mode vector table address
    ArmWriteVMBar((UINT32) &monitor_vector_table);

    //-------------------- Monitor Mode ---------------------
    // Setup the Trustzone Chipsets
    if (IS_PRIMARY_CORE(MpId)) {
      ArmPlatformTrustzoneInit ();

      // Wake up the secondary cores by sending a interrupt to everyone else
      // NOTE 1: The Software Generated Interrupts are always enabled on Cortex-A9
      //         MPcore test chip on Versatile Express board, So the Software doesn't have to
      //         enable SGI's explicitly.
      //      2: As no other Interrupts are enabled,  doesn't have to worry about the priority.
      //      3: As all the cores are in secure state, use secure SGI's
      //

      ArmGicEnableDistributor (PcdGet32(PcdGicDistributorBase));
      ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));

      // Send SGI to all Secondary core to wake them up from WFI state.
      ArmGicSendSgiTo (PcdGet32(PcdGicDistributorBase), ARM_GIC_ICDSGIR_FILTER_EVERYONEELSE, 0x0E);
    } else {
      // The secondary cores need to wait until the Trustzone chipsets configuration is done
      // before switching to Non Secure World

      // Enabled GIC CPU Interface
      ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));

      // Waiting for the SGI from the primary core
      ArmCallWFI();

      // Acknowledge the interrupt and send End of Interrupt signal.
      ArmGicAcknowledgeSgiFrom (PcdGet32(PcdGicInterruptInterfaceBase), PRIMARY_CORE_ID);
    }

    // Transfer the interrupt to Non-secure World
    ArmGicSetupNonSecure (PcdGet32(PcdGicDistributorBase),PcdGet32(PcdGicInterruptInterfaceBase));

    // Write to CP15 Non-secure Access Control Register :
    //   - Enable CP10 and CP11 accesses in NS World
    //   - Enable Access to Preload Engine in NS World
    //   - Enable lockable TLB entries allocation in NS world
    //   - Enable R/W access to SMP bit of Auxiliary Control Register in NS world
    ArmWriteNsacr (NSACR_NS_SMP | NSACR_TL | NSACR_PLE | NSACR_CP(10) | NSACR_CP(11));

    // CP15 Secure Configuration Register with Non Secure bit (SCR_NS), CPSR.A modified in any
    // security state (SCR_AW), CPSR.F modified in any security state (SCR_FW)
    ArmWriteScr (SCR_NS | SCR_FW | SCR_AW);
  } else {
    if (IS_PRIMARY_CORE(MpId)) {
      SerialPrint ("Trust Zone Configuration is disabled\n\r");
    }

    // Trustzone is not enabled, just enable the Distributor and CPU interface
    if (IS_PRIMARY_CORE(MpId)) {
      ArmGicEnableDistributor (PcdGet32(PcdGicDistributorBase));
    }
    ArmGicEnableInterruptInterface (PcdGet32(PcdGicInterruptInterfaceBase));

    // With Trustzone support the transition from Sec to Normal world is done by return_from_exception().
    // If we want to keep this function call we need to ensure the SVC's SPSR point to the same Program
    // Status Register as the the current one (CPSR).
    copy_cpsr_into_spsr ();
  }

  JumpAddress = PcdGet32 (PcdFvBaseAddress);
  ArmPlatformSecExtraAction (MpId, &JumpAddress);

  return_from_exception (JumpAddress);
  //-------------------- Non Secure Mode ---------------------

  // PEI Core should always load and never return
  ASSERT (FALSE);
}

VOID
SecCommonExceptionEntry (
  IN UINT32 Entry,
  IN UINT32 LR
  )
{
  CHAR8           Buffer[100];
  UINTN           CharCount;

  switch (Entry) {
  case 0:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reset Exception at 0x%X\n\r",LR);
    break;
  case 1:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Undefined Exception at 0x%X\n\r",LR);
    break;
  case 2:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"SWI Exception at 0x%X\n\r",LR);
    break;
  case 3:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"PrefetchAbort Exception at 0x%X\n\r",LR);
    break;
  case 4:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"DataAbort Exception at 0x%X\n\r",LR);
    break;
  case 5:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Reserved Exception at 0x%X\n\r",LR);
    break;
  case 6:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"IRQ Exception at 0x%X\n\r",LR);
    break;
  case 7:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"FIQ Exception at 0x%X\n\r",LR);
    break;
  default:
    CharCount = AsciiSPrint (Buffer,sizeof (Buffer),"Unknown Exception at 0x%X\n\r",LR);
    break;
  }
  SerialPortWrite ((UINT8 *) Buffer, CharCount);
  while(1);
}