1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
/** @file
File managing the MMU for ARMv8 architecture in S-EL0
Copyright (c) 2017 - 2021, Arm Limited. All rights reserved.<BR>
Copyright (c) 2021, Linaro Limited
SPDX-License-Identifier: BSD-2-Clause-Patent
@par Reference(s):
- [1] SPM based on the MM interface.
(https://trustedfirmware-a.readthedocs.io/en/latest/components/
secure-partition-manager-mm.html)
- [2] Arm Firmware Framework for Armv8-A, DEN0077A, version 1.0
(https://developer.arm.com/documentation/den0077/a)
**/
#include <Uefi.h>
#include <IndustryStandard/ArmMmSvc.h>
#include <IndustryStandard/ArmFfaSvc.h>
#include <Library/ArmLib.h>
#include <Library/ArmMmuLib.h>
#include <Library/ArmSvcLib.h>
#include <Library/BaseLib.h>
#include <Library/BaseMemoryLib.h>
#include <Library/DebugLib.h>
#include <Library/PcdLib.h>
/** Send memory permission request to target.
@param [in, out] SvcArgs Pointer to SVC arguments to send. On
return it contains the response parameters.
@param [out] RetVal Pointer to return the response value.
@retval EFI_SUCCESS Request successfull.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_READY Callee is busy or not in a state to handle
this request.
@retval EFI_UNSUPPORTED This function is not implemented by the
callee.
@retval EFI_ABORTED Message target ran into an unexpected error
and has aborted.
@retval EFI_ACCESS_DENIED Access denied.
@retval EFI_OUT_OF_RESOURCES Out of memory to perform operation.
**/
STATIC
EFI_STATUS
SendMemoryPermissionRequest (
IN OUT ARM_SVC_ARGS *SvcArgs,
OUT INT32 *RetVal
)
{
if ((SvcArgs == NULL) || (RetVal == NULL)) {
return EFI_INVALID_PARAMETER;
}
ArmCallSvc (SvcArgs);
if (FeaturePcdGet (PcdFfaEnable)) {
// Get/Set memory attributes is an atomic call, with
// StandaloneMm at S-EL0 being the caller and the SPM
// core being the callee. Thus there won't be a
// FFA_INTERRUPT or FFA_SUCCESS response to the Direct
// Request sent above. This will have to be considered
// for other Direct Request calls which are not atomic
// We therefore check only for Direct Response by the
// callee.
if (SvcArgs->Arg0 == ARM_SVC_ID_FFA_MSG_SEND_DIRECT_RESP) {
// A Direct Response means FF-A success
// Now check the payload for errors
// The callee sends back the return value
// in Arg3
*RetVal = SvcArgs->Arg3;
} else {
// If Arg0 is not a Direct Response, that means we
// have an FF-A error. We need to check Arg2 for the
// FF-A error code.
// See [2], Table 10.8: FFA_ERROR encoding.
*RetVal = SvcArgs->Arg2;
switch (*RetVal) {
case ARM_FFA_SPM_RET_INVALID_PARAMETERS:
return EFI_INVALID_PARAMETER;
case ARM_FFA_SPM_RET_DENIED:
return EFI_ACCESS_DENIED;
case ARM_FFA_SPM_RET_NOT_SUPPORTED:
return EFI_UNSUPPORTED;
case ARM_FFA_SPM_RET_BUSY:
return EFI_NOT_READY;
case ARM_FFA_SPM_RET_ABORTED:
return EFI_ABORTED;
default:
// Undefined error code received.
ASSERT (0);
return EFI_INVALID_PARAMETER;
}
}
} else {
*RetVal = SvcArgs->Arg0;
}
// Check error response from Callee.
if ((*RetVal & BIT31) != 0) {
// Bit 31 set means there is an error returned
// See [1], Section 13.5.5.1 MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64 and
// Section 13.5.5.2 MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64.
switch (*RetVal) {
case ARM_SVC_SPM_RET_NOT_SUPPORTED:
return EFI_UNSUPPORTED;
case ARM_SVC_SPM_RET_INVALID_PARAMS:
return EFI_INVALID_PARAMETER;
case ARM_SVC_SPM_RET_DENIED:
return EFI_ACCESS_DENIED;
case ARM_SVC_SPM_RET_NO_MEMORY:
return EFI_OUT_OF_RESOURCES;
default:
// Undefined error code received.
ASSERT (0);
return EFI_INVALID_PARAMETER;
}
}
return EFI_SUCCESS;
}
/** Request the permission attributes of a memory region from S-EL0.
@param [in] BaseAddress Base address for the memory region.
@param [out] MemoryAttributes Pointer to return the memory attributes.
@retval EFI_SUCCESS Request successfull.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_READY Callee is busy or not in a state to handle
this request.
@retval EFI_UNSUPPORTED This function is not implemented by the
callee.
@retval EFI_ABORTED Message target ran into an unexpected error
and has aborted.
@retval EFI_ACCESS_DENIED Access denied.
@retval EFI_OUT_OF_RESOURCES Out of memory to perform operation.
**/
STATIC
EFI_STATUS
GetMemoryPermissions (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
OUT UINT32 *MemoryAttributes
)
{
EFI_STATUS Status;
INT32 Ret;
ARM_SVC_ARGS SvcArgs;
if (MemoryAttributes == NULL) {
return EFI_INVALID_PARAMETER;
}
// Prepare the message parameters.
// See [1], Section 13.5.5.1 MM_SP_MEMORY_ATTRIBUTES_GET_AARCH64.
ZeroMem (&SvcArgs, sizeof (ARM_SVC_ARGS));
if (FeaturePcdGet (PcdFfaEnable)) {
// See [2], Section 10.2 FFA_MSG_SEND_DIRECT_REQ.
SvcArgs.Arg0 = ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ;
SvcArgs.Arg1 = ARM_FFA_DESTINATION_ENDPOINT_ID;
SvcArgs.Arg2 = 0;
SvcArgs.Arg3 = ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES;
SvcArgs.Arg4 = BaseAddress;
} else {
SvcArgs.Arg0 = ARM_SVC_ID_SP_GET_MEM_ATTRIBUTES;
SvcArgs.Arg1 = BaseAddress;
SvcArgs.Arg2 = 0;
SvcArgs.Arg3 = 0;
}
Status = SendMemoryPermissionRequest (&SvcArgs, &Ret);
if (EFI_ERROR (Status)) {
*MemoryAttributes = 0;
return Status;
}
*MemoryAttributes = Ret;
return Status;
}
/** Set the permission attributes of a memory region from S-EL0.
@param [in] BaseAddress Base address for the memory region.
@param [in] Length Length of the memory region.
@param [in] Permissions Memory access controls attributes.
@retval EFI_SUCCESS Request successfull.
@retval EFI_INVALID_PARAMETER A parameter is invalid.
@retval EFI_NOT_READY Callee is busy or not in a state to handle
this request.
@retval EFI_UNSUPPORTED This function is not implemented by the
callee.
@retval EFI_ABORTED Message target ran into an unexpected error
and has aborted.
@retval EFI_ACCESS_DENIED Access denied.
@retval EFI_OUT_OF_RESOURCES Out of memory to perform operation.
**/
STATIC
EFI_STATUS
RequestMemoryPermissionChange (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length,
IN UINT32 Permissions
)
{
INT32 Ret;
ARM_SVC_ARGS SvcArgs;
// Prepare the message parameters.
// See [1], Section 13.5.5.2 MM_SP_MEMORY_ATTRIBUTES_SET_AARCH64.
ZeroMem (&SvcArgs, sizeof (ARM_SVC_ARGS));
if (FeaturePcdGet (PcdFfaEnable)) {
// See [2], Section 10.2 FFA_MSG_SEND_DIRECT_REQ.
SvcArgs.Arg0 = ARM_SVC_ID_FFA_MSG_SEND_DIRECT_REQ;
SvcArgs.Arg1 = ARM_FFA_DESTINATION_ENDPOINT_ID;
SvcArgs.Arg2 = 0;
SvcArgs.Arg3 = ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES;
SvcArgs.Arg4 = BaseAddress;
SvcArgs.Arg5 = EFI_SIZE_TO_PAGES (Length);
SvcArgs.Arg6 = Permissions;
} else {
SvcArgs.Arg0 = ARM_SVC_ID_SP_SET_MEM_ATTRIBUTES;
SvcArgs.Arg1 = BaseAddress;
SvcArgs.Arg2 = EFI_SIZE_TO_PAGES (Length);
SvcArgs.Arg3 = Permissions;
}
return SendMemoryPermissionRequest (&SvcArgs, &Ret);
}
EFI_STATUS
ArmSetMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_STATUS Status;
UINT32 MemoryAttributes;
UINT32 CodePermission;
Status = GetMemoryPermissions (BaseAddress, &MemoryAttributes);
if (!EFI_ERROR (Status)) {
CodePermission = SET_MEM_ATTR_CODE_PERM_XN << SET_MEM_ATTR_CODE_PERM_SHIFT;
return RequestMemoryPermissionChange (
BaseAddress,
Length,
MemoryAttributes | CodePermission
);
}
return Status;
}
EFI_STATUS
ArmClearMemoryRegionNoExec (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_STATUS Status;
UINT32 MemoryAttributes;
UINT32 CodePermission;
Status = GetMemoryPermissions (BaseAddress, &MemoryAttributes);
if (!EFI_ERROR (Status)) {
CodePermission = SET_MEM_ATTR_CODE_PERM_XN << SET_MEM_ATTR_CODE_PERM_SHIFT;
return RequestMemoryPermissionChange (
BaseAddress,
Length,
MemoryAttributes & ~CodePermission
);
}
return Status;
}
EFI_STATUS
ArmSetMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_STATUS Status;
UINT32 MemoryAttributes;
UINT32 DataPermission;
Status = GetMemoryPermissions (BaseAddress, &MemoryAttributes);
if (!EFI_ERROR (Status)) {
DataPermission = SET_MEM_ATTR_DATA_PERM_RO << SET_MEM_ATTR_DATA_PERM_SHIFT;
return RequestMemoryPermissionChange (
BaseAddress,
Length,
MemoryAttributes | DataPermission
);
}
return Status;
}
EFI_STATUS
ArmClearMemoryRegionReadOnly (
IN EFI_PHYSICAL_ADDRESS BaseAddress,
IN UINT64 Length
)
{
EFI_STATUS Status;
UINT32 MemoryAttributes;
UINT32 PermissionRequest;
Status = GetMemoryPermissions (BaseAddress, &MemoryAttributes);
if (!EFI_ERROR (Status)) {
PermissionRequest = SET_MEM_ATTR_MAKE_PERM_REQUEST (SET_MEM_ATTR_DATA_PERM_RW,
MemoryAttributes);
return RequestMemoryPermissionChange (
BaseAddress,
Length,
PermissionRequest
);
}
return Status;
}
|