summaryrefslogtreecommitdiff
path: root/IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c
diff options
context:
space:
mode:
Diffstat (limited to 'IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c')
-rw-r--r--IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c2032
1 files changed, 2032 insertions, 0 deletions
diff --git a/IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c b/IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c
new file mode 100644
index 0000000..40d027a
--- /dev/null
+++ b/IntelFrameworkModulePkg/Csm/LegacyBiosDxe/LegacyBootSupport.c
@@ -0,0 +1,2032 @@
+/** @file
+
+Copyright (c) 2006 - 2011, Intel Corporation. All rights reserved.<BR>
+
+This program and the accompanying materials
+are licensed and made available under the terms and conditions
+of the BSD License which accompanies this distribution. The
+full text of the license may be found at
+http://opensource.org/licenses/bsd-license.php
+
+THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
+WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
+
+**/
+
+#include "LegacyBiosInterface.h"
+#include <IndustryStandard/Pci.h>
+
+#define BOOT_LEGACY_OS 0
+#define BOOT_EFI_OS 1
+#define BOOT_UNCONVENTIONAL_DEVICE 2
+
+UINT32 mLoadOptionsSize = 0;
+UINTN mBootMode = BOOT_LEGACY_OS;
+VOID *mLoadOptions = NULL;
+BBS_BBS_DEVICE_PATH *mBbsDevicePathPtr = NULL;
+BBS_BBS_DEVICE_PATH mBbsDevicePathNode;
+UDC_ATTRIBUTES mAttributes = { 0, 0, 0, 0 };
+UINTN mBbsEntry = 0;
+VOID *mBeerData = NULL;
+VOID *mServiceAreaData = NULL;
+UINT64 mLowWater = 0xffffffffffffffffULL;
+
+extern BBS_TABLE *mBbsTable;
+
+/**
+ Print the BBS Table.
+
+ @param BbsTable The BBS table.
+
+
+**/
+VOID
+PrintBbsTable (
+ IN BBS_TABLE *BbsTable
+ )
+{
+ UINT16 Index;
+ UINT16 SubIndex;
+ CHAR8 *String;
+
+ DEBUG ((EFI_D_INFO, "\n"));
+ DEBUG ((EFI_D_INFO, " NO Prio bb/dd/ff cl/sc Type Stat segm:offs mfgs:mfgo dess:deso\n"));
+ DEBUG ((EFI_D_INFO, "=================================================================\n"));
+ for (Index = 0; Index < MAX_BBS_ENTRIES; Index++) {
+ //
+ // Filter
+ //
+ if (BbsTable[Index].BootPriority == BBS_IGNORE_ENTRY) {
+ continue;
+ }
+
+ DEBUG ((
+ EFI_D_INFO,
+ " %02x: %04x %02x/%02x/%02x %02x/%02x %04x %04x",
+ (UINTN) Index,
+ (UINTN) BbsTable[Index].BootPriority,
+ (UINTN) BbsTable[Index].Bus,
+ (UINTN) BbsTable[Index].Device,
+ (UINTN) BbsTable[Index].Function,
+ (UINTN) BbsTable[Index].Class,
+ (UINTN) BbsTable[Index].SubClass,
+ (UINTN) BbsTable[Index].DeviceType,
+ (UINTN) * (UINT16 *) &BbsTable[Index].StatusFlags
+ ));
+ DEBUG ((
+ EFI_D_INFO,
+ " %04x:%04x %04x:%04x %04x:%04x",
+ (UINTN) BbsTable[Index].BootHandlerSegment,
+ (UINTN) BbsTable[Index].BootHandlerOffset,
+ (UINTN) BbsTable[Index].MfgStringSegment,
+ (UINTN) BbsTable[Index].MfgStringOffset,
+ (UINTN) BbsTable[Index].DescStringSegment,
+ (UINTN) BbsTable[Index].DescStringOffset
+ ));
+
+ //
+ // Print DescString
+ //
+ String = (CHAR8 *)(UINTN)((BbsTable[Index].DescStringSegment << 4) + BbsTable[Index].DescStringOffset);
+ if (String != NULL) {
+ DEBUG ((EFI_D_INFO," ("));
+ for (SubIndex = 0; String[SubIndex] != 0; SubIndex++) {
+ DEBUG ((EFI_D_INFO, "%c", String[SubIndex]));
+ }
+ DEBUG ((EFI_D_INFO,")"));
+ }
+ DEBUG ((EFI_D_INFO,"\n"));
+ }
+
+ DEBUG ((EFI_D_INFO, "\n"));
+
+ return ;
+}
+
+/**
+ Print the BBS Table.
+
+ @param HddInfo The HddInfo table.
+
+
+**/
+VOID
+PrintHddInfo (
+ IN HDD_INFO *HddInfo
+ )
+{
+ UINTN Index;
+
+ DEBUG ((EFI_D_INFO, "\n"));
+ for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
+ DEBUG ((EFI_D_INFO, "Index - %04x\n", Index));
+ DEBUG ((EFI_D_INFO, " Status - %04x\n", (UINTN)HddInfo[Index].Status));
+ DEBUG ((EFI_D_INFO, " B/D/F - %02x/%02x/%02x\n", (UINTN)HddInfo[Index].Bus, (UINTN)HddInfo[Index].Device, (UINTN)HddInfo[Index].Function));
+ DEBUG ((EFI_D_INFO, " Command - %04x\n", HddInfo[Index].CommandBaseAddress));
+ DEBUG ((EFI_D_INFO, " Control - %04x\n", HddInfo[Index].ControlBaseAddress));
+ DEBUG ((EFI_D_INFO, " BusMaster - %04x\n", HddInfo[Index].BusMasterAddress));
+ DEBUG ((EFI_D_INFO, " HddIrq - %02x\n", HddInfo[Index].HddIrq));
+ DEBUG ((EFI_D_INFO, " IdentifyDrive[0].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[0].Raw[0]));
+ DEBUG ((EFI_D_INFO, " IdentifyDrive[1].Raw[0] - %x\n", HddInfo[Index].IdentifyDrive[1].Raw[0]));
+ }
+
+ DEBUG ((EFI_D_INFO, "\n"));
+
+ return ;
+}
+
+/**
+ Identify drive data must be updated to actual parameters before boot.
+
+ @param IdentifyDriveData ATA Identify Data
+
+**/
+VOID
+UpdateIdentifyDriveData (
+ IN UINT8 *IdentifyDriveData
+ );
+
+/**
+ Update SIO data.
+
+ @param Private Legacy BIOS Instance data
+
+ @retval EFI_SUCCESS Removable media not present
+
+**/
+EFI_STATUS
+UpdateSioData (
+ IN LEGACY_BIOS_INSTANCE *Private
+ )
+{
+ EFI_STATUS Status;
+ UINTN Index;
+ UINTN Index1;
+ UINT8 LegacyInterrupts[16];
+ EFI_LEGACY_IRQ_ROUTING_ENTRY *RoutingTable;
+ UINTN RoutingTableEntries;
+ EFI_LEGACY_IRQ_PRIORITY_TABLE_ENTRY *IrqPriorityTable;
+ UINTN NumberPriorityEntries;
+ EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
+ UINT8 HddIrq;
+ UINT16 LegacyInt;
+ UINT16 LegMask;
+ UINT32 Register;
+ UINTN HandleCount;
+ EFI_HANDLE *HandleBuffer;
+ EFI_ISA_IO_PROTOCOL *IsaIo;
+
+ LegacyInt = 0;
+ HandleBuffer = NULL;
+
+ EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
+ LegacyBiosBuildSioData (Private);
+ SetMem (LegacyInterrupts, sizeof (LegacyInterrupts), 0);
+
+ //
+ // Create list of legacy interrupts.
+ //
+ for (Index = 0; Index < 4; Index++) {
+ LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Serial[Index].Irq;
+ }
+
+ for (Index = 4; Index < 7; Index++) {
+ LegacyInterrupts[Index] = EfiToLegacy16BootTable->SioData.Parallel[Index - 4].Irq;
+ }
+
+ LegacyInterrupts[7] = EfiToLegacy16BootTable->SioData.Floppy.Irq;
+
+ //
+ // Get Legacy Hdd IRQs. If native mode treat as PCI
+ //
+ for (Index = 0; Index < 2; Index++) {
+ HddIrq = EfiToLegacy16BootTable->HddInfo[Index].HddIrq;
+ if ((HddIrq != 0) && ((HddIrq == 15) || (HddIrq == 14))) {
+ LegacyInterrupts[Index + 8] = HddIrq;
+ }
+ }
+
+ Private->LegacyBiosPlatform->GetRoutingTable (
+ Private->LegacyBiosPlatform,
+ (VOID *) &RoutingTable,
+ &RoutingTableEntries,
+ NULL,
+ NULL,
+ (VOID **) &IrqPriorityTable,
+ &NumberPriorityEntries
+ );
+ //
+ // Remove legacy interrupts from the list of PCI interrupts available.
+ //
+ for (Index = 0; Index <= 0x0b; Index++) {
+ for (Index1 = 0; Index1 <= NumberPriorityEntries; Index1++) {
+ if (LegacyInterrupts[Index] != 0) {
+ LegacyInt = (UINT16) (LegacyInt | (1 << LegacyInterrupts[Index]));
+ if (LegacyInterrupts[Index] == IrqPriorityTable[Index1].Irq) {
+ IrqPriorityTable[Index1].Used = LEGACY_USED;
+ }
+ }
+ }
+ }
+
+ Private->Legacy8259->GetMask (
+ Private->Legacy8259,
+ &LegMask,
+ NULL,
+ NULL,
+ NULL
+ );
+
+ //
+ // Set SIO interrupts and disable mouse. Let mouse driver
+ // re-enable it.
+ //
+ LegMask = (UINT16) ((LegMask &~LegacyInt) | 0x1000);
+ Private->Legacy8259->SetMask (
+ Private->Legacy8259,
+ &LegMask,
+ NULL,
+ NULL,
+ NULL
+ );
+
+ //
+ // Disable mouse in keyboard controller
+ //
+ Register = 0xA7;
+ Status = gBS->LocateHandleBuffer (
+ ByProtocol,
+ &gEfiIsaIoProtocolGuid,
+ NULL,
+ &HandleCount,
+ &HandleBuffer
+ );
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+
+ for (Index = 0; Index < HandleCount; Index++) {
+ Status = gBS->HandleProtocol (
+ HandleBuffer[Index],
+ &gEfiIsaIoProtocolGuid,
+ (VOID **) &IsaIo
+ );
+ ASSERT_EFI_ERROR (Status);
+ IsaIo->Io.Write (IsaIo, EfiIsaIoWidthUint8, 0x64, 1, &Register);
+
+ }
+
+ if (HandleBuffer != NULL) {
+ FreePool (HandleBuffer);
+ }
+
+ return EFI_SUCCESS;
+
+}
+
+/**
+ Identify drive data must be updated to actual parameters before boot.
+ This requires updating the checksum, if it exists.
+
+ @param IdentifyDriveData ATA Identify Data
+ @param Checksum checksum of the ATA Identify Data
+
+ @retval EFI_SUCCESS checksum calculated
+ @retval EFI_SECURITY_VIOLATION IdentifyData invalid
+
+**/
+EFI_STATUS
+CalculateIdentifyDriveChecksum (
+ IN UINT8 *IdentifyDriveData,
+ OUT UINT8 *Checksum
+ )
+{
+ UINTN Index;
+ UINT8 LocalChecksum;
+ LocalChecksum = 0;
+ *Checksum = 0;
+ if (IdentifyDriveData[510] != 0xA5) {
+ return EFI_SECURITY_VIOLATION;
+ }
+
+ for (Index = 0; Index < 512; Index++) {
+ LocalChecksum = (UINT8) (LocalChecksum + IdentifyDriveData[Index]);
+ }
+
+ *Checksum = LocalChecksum;
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Identify drive data must be updated to actual parameters before boot.
+
+ @param IdentifyDriveData ATA Identify Data
+
+
+**/
+VOID
+UpdateIdentifyDriveData (
+ IN UINT8 *IdentifyDriveData
+ )
+{
+ UINT16 NumberCylinders;
+ UINT16 NumberHeads;
+ UINT16 NumberSectorsTrack;
+ UINT32 CapacityInSectors;
+ UINT8 OriginalChecksum;
+ UINT8 FinalChecksum;
+ EFI_STATUS Status;
+ ATAPI_IDENTIFY *ReadInfo;
+
+ //
+ // Status indicates if Integrity byte is correct. Checksum should be
+ // 0 if valid.
+ //
+ ReadInfo = (ATAPI_IDENTIFY *) IdentifyDriveData;
+ Status = CalculateIdentifyDriveChecksum (IdentifyDriveData, &OriginalChecksum);
+ if (OriginalChecksum != 0) {
+ Status = EFI_SECURITY_VIOLATION;
+ }
+ //
+ // If NumberCylinders = 0 then do data(Controller present but don drive attached).
+ //
+ NumberCylinders = ReadInfo->Raw[1];
+ if (NumberCylinders != 0) {
+ ReadInfo->Raw[54] = NumberCylinders;
+
+ NumberHeads = ReadInfo->Raw[3];
+ ReadInfo->Raw[55] = NumberHeads;
+
+ NumberSectorsTrack = ReadInfo->Raw[6];
+ ReadInfo->Raw[56] = NumberSectorsTrack;
+
+ //
+ // Copy Multisector info and set valid bit.
+ //
+ ReadInfo->Raw[59] = (UINT16) (ReadInfo->Raw[47] + 0x100);
+ CapacityInSectors = (UINT32) ((UINT32) (NumberCylinders) * (UINT32) (NumberHeads) * (UINT32) (NumberSectorsTrack));
+ ReadInfo->Raw[57] = (UINT16) (CapacityInSectors >> 16);
+ ReadInfo->Raw[58] = (UINT16) (CapacityInSectors & 0xffff);
+ if (Status == EFI_SUCCESS) {
+ //
+ // Forece checksum byte to 0 and get new checksum.
+ //
+ ReadInfo->Raw[255] &= 0xff;
+ CalculateIdentifyDriveChecksum (IdentifyDriveData, &FinalChecksum);
+
+ //
+ // Force new checksum such that sum is 0.
+ //
+ FinalChecksum = (UINT8) ((UINT8)0 - FinalChecksum);
+ ReadInfo->Raw[255] = (UINT16) (ReadInfo->Raw[255] | (FinalChecksum << 8));
+ }
+ }
+}
+
+/**
+ Identify drive data must be updated to actual parameters before boot.
+ Do for all drives.
+
+ @param Private Legacy BIOS Instance data
+
+
+**/
+VOID
+UpdateAllIdentifyDriveData (
+ IN LEGACY_BIOS_INSTANCE *Private
+ )
+{
+ UINTN Index;
+ HDD_INFO *HddInfo;
+
+ HddInfo = &Private->IntThunk->EfiToLegacy16BootTable.HddInfo[0];
+
+ for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
+ //
+ // Each controller can have 2 devices. Update for each device
+ //
+ if ((HddInfo[Index].Status & HDD_MASTER_IDE) != 0) {
+ UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[0].Raw[0]));
+ }
+
+ if ((HddInfo[Index].Status & HDD_SLAVE_IDE) != 0) {
+ UpdateIdentifyDriveData ((UINT8 *) (&HddInfo[Index].IdentifyDrive[1].Raw[0]));
+ }
+ }
+}
+
+/**
+ Enable ide controller. This gets disabled when LegacyBoot.c is about
+ to run the Option ROMs.
+
+ @param Private Legacy BIOS Instance data
+
+
+**/
+VOID
+EnableIdeController (
+ IN LEGACY_BIOS_INSTANCE *Private
+ )
+{
+ EFI_PCI_IO_PROTOCOL *PciIo;
+ EFI_STATUS Status;
+ EFI_HANDLE IdeController;
+ UINT8 ByteBuffer;
+ UINTN HandleCount;
+ EFI_HANDLE *HandleBuffer;
+
+ Status = Private->LegacyBiosPlatform->GetPlatformHandle (
+ Private->LegacyBiosPlatform,
+ EfiGetPlatformIdeHandle,
+ 0,
+ &HandleBuffer,
+ &HandleCount,
+ NULL
+ );
+ if (!EFI_ERROR (Status)) {
+ IdeController = HandleBuffer[0];
+ Status = gBS->HandleProtocol (
+ IdeController,
+ &gEfiPciIoProtocolGuid,
+ (VOID **) &PciIo
+ );
+ ByteBuffer = 0x1f;
+ if (!EFI_ERROR (Status)) {
+ PciIo->Pci.Write (PciIo, EfiPciIoWidthUint8, 0x04, 1, &ByteBuffer);
+ }
+ }
+}
+
+
+/**
+ Enable ide controller. This gets disabled when LegacyBoot.c is about
+ to run the Option ROMs.
+
+ @param Private Legacy BIOS Instance data
+
+
+**/
+VOID
+EnableAllControllers (
+ IN LEGACY_BIOS_INSTANCE *Private
+ )
+{
+ UINTN HandleCount;
+ EFI_HANDLE *HandleBuffer;
+ UINTN Index;
+ EFI_PCI_IO_PROTOCOL *PciIo;
+ PCI_TYPE01 PciConfigHeader;
+ EFI_STATUS Status;
+
+ //
+ //
+ //
+ EnableIdeController (Private);
+
+ //
+ // Assumption is table is built from low bus to high bus numbers.
+ //
+ Status = gBS->LocateHandleBuffer (
+ ByProtocol,
+ &gEfiPciIoProtocolGuid,
+ NULL,
+ &HandleCount,
+ &HandleBuffer
+ );
+ ASSERT_EFI_ERROR (Status);
+
+ for (Index = 0; Index < HandleCount; Index++) {
+ Status = gBS->HandleProtocol (
+ HandleBuffer[Index],
+ &gEfiPciIoProtocolGuid,
+ (VOID **) &PciIo
+ );
+ ASSERT_EFI_ERROR (Status);
+
+ PciIo->Pci.Read (
+ PciIo,
+ EfiPciIoWidthUint32,
+ 0,
+ sizeof (PciConfigHeader) / sizeof (UINT32),
+ &PciConfigHeader
+ );
+
+ //
+ // We do not enable PPB here. This is for HotPlug Consideration.
+ // The Platform HotPlug Driver is responsible for Padding enough hot plug
+ // resources. It is also responsible for enable this bridge. If it
+ // does not pad it. It will cause some early Windows fail to installation.
+ // If the platform driver does not pad resource for PPB, PPB should be in
+ // un-enabled state to let Windows know that this PPB is not configured by
+ // BIOS. So Windows will allocate default resource for PPB.
+ //
+ // The reason for why we enable the command register is:
+ // The CSM will use the IO bar to detect some IRQ status, if the command
+ // is disabled, the IO resource will be out of scope.
+ // For example:
+ // We installed a legacy IRQ handle for a PCI IDE controller. When IRQ
+ // comes up, the handle will check the IO space to identify is the
+ // controller generated the IRQ source.
+ // If the IO command is not enabled, the IRQ handler will has wrong
+ // information. It will cause IRQ storm when the correctly IRQ handler fails
+ // to run.
+ //
+ if (!(IS_PCI_VGA (&PciConfigHeader) ||
+ IS_PCI_OLD_VGA (&PciConfigHeader) ||
+ IS_PCI_IDE (&PciConfigHeader) ||
+ IS_PCI_P2P (&PciConfigHeader) ||
+ IS_PCI_P2P_SUB (&PciConfigHeader) ||
+ IS_PCI_LPC (&PciConfigHeader) )) {
+
+ PciConfigHeader.Hdr.Command |= 0x1f;
+
+ PciIo->Pci.Write (PciIo, EfiPciIoWidthUint32, 4, 1, &PciConfigHeader.Hdr.Command);
+ }
+ }
+}
+
+/**
+ The following routines are identical in operation, so combine
+ for code compaction:
+ EfiGetPlatformBinaryGetMpTable
+ EfiGetPlatformBinaryGetOemIntData
+ EfiGetPlatformBinaryGetOem32Data
+ EfiGetPlatformBinaryGetOem16Data
+
+ @param This Protocol instance pointer.
+ @param Id Table/Data identifier
+
+ @retval EFI_SUCCESS Success
+ @retval EFI_INVALID_PARAMETER Invalid ID
+ @retval EFI_OUT_OF_RESOURCES no resource to get data or table
+
+**/
+EFI_STATUS
+LegacyGetDataOrTable (
+ IN EFI_LEGACY_BIOS_PROTOCOL *This,
+ IN EFI_GET_PLATFORM_INFO_MODE Id
+ )
+{
+ VOID *Table;
+ UINT32 TablePtr;
+ UINTN TableSize;
+ UINTN Alignment;
+ UINTN Location;
+ EFI_STATUS Status;
+ EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
+ EFI_COMPATIBILITY16_TABLE *Legacy16Table;
+ EFI_IA32_REGISTER_SET Regs;
+ LEGACY_BIOS_INSTANCE *Private;
+
+ Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
+
+ LegacyBiosPlatform = Private->LegacyBiosPlatform;
+ Legacy16Table = Private->Legacy16Table;
+
+ //
+ // Phase 1 - get an address allocated in 16-bit code
+ //
+ while (TRUE) {
+ switch (Id) {
+ case EfiGetPlatformBinaryMpTable:
+ case EfiGetPlatformBinaryOemIntData:
+ case EfiGetPlatformBinaryOem32Data:
+ case EfiGetPlatformBinaryOem16Data:
+ {
+ Status = LegacyBiosPlatform->GetPlatformInfo (
+ LegacyBiosPlatform,
+ Id,
+ (VOID *) &Table,
+ &TableSize,
+ &Location,
+ &Alignment,
+ 0,
+ 0
+ );
+ DEBUG ((EFI_D_INFO, "LegacyGetDataOrTable - ID: %x, %r\n", (UINTN)Id, Status));
+ DEBUG ((EFI_D_INFO, " Table - %x, Size - %x, Location - %x, Alignment - %x\n", (UINTN)Table, (UINTN)TableSize, (UINTN)Location, (UINTN)Alignment));
+ break;
+ }
+
+ default:
+ {
+ return EFI_INVALID_PARAMETER;
+ }
+ }
+
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+
+ ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
+ Regs.X.AX = Legacy16GetTableAddress;
+ Regs.X.CX = (UINT16) TableSize;
+ Regs.X.BX = (UINT16) Location;
+ Regs.X.DX = (UINT16) Alignment;
+ Private->LegacyBios.FarCall86 (
+ This,
+ Private->Legacy16CallSegment,
+ Private->Legacy16CallOffset,
+ &Regs,
+ NULL,
+ 0
+ );
+
+ if (Regs.X.AX != 0) {
+ DEBUG ((EFI_D_ERROR, "Table ID %x length insufficient\n", Id));
+ return EFI_OUT_OF_RESOURCES;
+ } else {
+ break;
+ }
+ }
+ //
+ // Phase 2 Call routine second time with address to allow address adjustment
+ //
+ Status = LegacyBiosPlatform->GetPlatformInfo (
+ LegacyBiosPlatform,
+ Id,
+ (VOID *) &Table,
+ &TableSize,
+ &Location,
+ &Alignment,
+ Regs.X.DS,
+ Regs.X.BX
+ );
+ switch (Id) {
+ case EfiGetPlatformBinaryMpTable:
+ {
+ Legacy16Table->MpTablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
+ Legacy16Table->MpTableLength = (UINT32)TableSize;
+ DEBUG ((EFI_D_INFO, "MP table in legacy region - %x\n", (UINTN)Legacy16Table->MpTablePtr));
+ break;
+ }
+
+ case EfiGetPlatformBinaryOemIntData:
+ {
+
+ Legacy16Table->OemIntSegment = Regs.X.DS;
+ Legacy16Table->OemIntOffset = Regs.X.BX;
+ DEBUG ((EFI_D_INFO, "OemInt table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->OemIntSegment, (UINTN)Legacy16Table->OemIntOffset));
+ break;
+ }
+
+ case EfiGetPlatformBinaryOem32Data:
+ {
+ Legacy16Table->Oem32Segment = Regs.X.DS;
+ Legacy16Table->Oem32Offset = Regs.X.BX;
+ DEBUG ((EFI_D_INFO, "Oem32 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem32Segment, (UINTN)Legacy16Table->Oem32Offset));
+ break;
+ }
+
+ case EfiGetPlatformBinaryOem16Data:
+ {
+ //
+ // Legacy16Table->Oem16Segment = Regs.X.DS;
+ // Legacy16Table->Oem16Offset = Regs.X.BX;
+ DEBUG ((EFI_D_INFO, "Oem16 table in legacy region - %04x:%04x\n", (UINTN)Legacy16Table->Oem16Segment, (UINTN)Legacy16Table->Oem16Offset));
+ break;
+ }
+
+ default:
+ {
+ return EFI_INVALID_PARAMETER;
+ }
+ }
+
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+ //
+ // Phase 3 Copy table to final location
+ //
+ TablePtr = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
+
+ CopyMem (
+ (VOID *) (UINTN)TablePtr,
+ Table,
+ TableSize
+ );
+
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Assign drive number to legacy HDD drives prior to booting an EFI
+ aware OS so the OS can access drives without an EFI driver.
+ Note: BBS compliant drives ARE NOT available until this call by
+ either shell or EFI.
+
+ @param This Protocol instance pointer.
+
+ @retval EFI_SUCCESS Drive numbers assigned
+
+**/
+EFI_STATUS
+GenericLegacyBoot (
+ IN EFI_LEGACY_BIOS_PROTOCOL *This
+ )
+{
+ EFI_STATUS Status;
+ LEGACY_BIOS_INSTANCE *Private;
+ EFI_IA32_REGISTER_SET Regs;
+ EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
+ EFI_LEGACY_BIOS_PLATFORM_PROTOCOL *LegacyBiosPlatform;
+ UINTN CopySize;
+ VOID *AcpiPtr;
+ HDD_INFO *HddInfo;
+ HDD_INFO *LocalHddInfo;
+ UINTN Index;
+ EFI_COMPATIBILITY16_TABLE *Legacy16Table;
+ UINT32 *BdaPtr;
+ UINT16 HddCount;
+ UINT16 BbsCount;
+ BBS_TABLE *LocalBbsTable;
+ UINT32 *BaseVectorMaster;
+ EFI_TIME BootTime;
+ UINT32 LocalTime;
+ EFI_HANDLE IdeController;
+ UINTN HandleCount;
+ EFI_HANDLE *HandleBuffer;
+ VOID *SmbiosTable;
+ VOID *AcpiTable;
+ UINTN ShadowAddress;
+ UINT32 Granularity;
+ EFI_TIMER_ARCH_PROTOCOL *Timer;
+ UINT64 TimerPeriod;
+
+ LocalHddInfo = NULL;
+ HddCount = 0;
+ BbsCount = 0;
+ LocalBbsTable = NULL;
+ TimerPeriod = 0;
+
+ Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
+ DEBUG_CODE (
+ DEBUG ((EFI_D_ERROR, "Start of legacy boot\n"));
+ );
+
+ Legacy16Table = Private->Legacy16Table;
+ EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
+ HddInfo = &EfiToLegacy16BootTable->HddInfo[0];
+
+ LegacyBiosPlatform = Private->LegacyBiosPlatform;
+
+ EfiToLegacy16BootTable->MajorVersion = EFI_TO_LEGACY_MAJOR_VERSION;
+ EfiToLegacy16BootTable->MinorVersion = EFI_TO_LEGACY_MINOR_VERSION;
+
+ //
+ // Before starting the Legacy boot check the system ticker.
+ //
+ Status = gBS->LocateProtocol (
+ &gEfiTimerArchProtocolGuid,
+ NULL,
+ (VOID **) &Timer
+ );
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+
+ Status = Timer->GetTimerPeriod (
+ Timer,
+ &TimerPeriod
+ );
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+
+ if (TimerPeriod != DEFAULT_LAGACY_TIMER_TICK_DURATION) {
+ Status = Timer->SetTimerPeriod (
+ Timer,
+ DEFAULT_LAGACY_TIMER_TICK_DURATION
+ );
+ if (EFI_ERROR (Status)) {
+ return Status;
+ }
+ }
+
+ //
+ // If booting to a legacy OS then force HDD drives to the appropriate
+ // boot mode by calling GetIdeHandle.
+ // A reconnect -r can force all HDDs back to native mode.
+ //
+ IdeController = NULL;
+ if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
+ Status = LegacyBiosPlatform->GetPlatformHandle (
+ Private->LegacyBiosPlatform,
+ EfiGetPlatformIdeHandle,
+ 0,
+ &HandleBuffer,
+ &HandleCount,
+ NULL
+ );
+ if (!EFI_ERROR (Status)) {
+ IdeController = HandleBuffer[0];
+ }
+ }
+ //
+ // Unlock the Legacy BIOS region
+ //
+ Private->LegacyRegion->UnLock (
+ Private->LegacyRegion,
+ 0xE0000,
+ 0x20000,
+ &Granularity
+ );
+
+ //
+ // Reconstruct the Legacy16 boot memory map
+ //
+ LegacyBiosBuildE820 (Private, &CopySize);
+ if (CopySize > Private->Legacy16Table->E820Length) {
+ ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
+ Regs.X.AX = Legacy16GetTableAddress;
+ Regs.X.CX = (UINT16) CopySize;
+ Private->LegacyBios.FarCall86 (
+ &Private->LegacyBios,
+ Private->Legacy16Table->Compatibility16CallSegment,
+ Private->Legacy16Table->Compatibility16CallOffset,
+ &Regs,
+ NULL,
+ 0
+ );
+
+ Private->Legacy16Table->E820Pointer = (UINT32) (Regs.X.DS * 16 + Regs.X.BX);
+ Private->Legacy16Table->E820Length = (UINT32) CopySize;
+ if (Regs.X.AX != 0) {
+ DEBUG ((EFI_D_ERROR, "Legacy16 E820 length insufficient\n"));
+ } else {
+ CopyMem (
+ (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
+ Private->E820Table,
+ CopySize
+ );
+ }
+ } else {
+ CopyMem (
+ (VOID *)(UINTN) Private->Legacy16Table->E820Pointer,
+ Private->E820Table,
+ CopySize
+ );
+ Private->Legacy16Table->E820Length = (UINT32) CopySize;
+ }
+ //
+ // Get SMBIOS and ACPI table pointers
+ //
+ SmbiosTable = NULL;
+ EfiGetSystemConfigurationTable (
+ &gEfiSmbiosTableGuid,
+ &SmbiosTable
+ );
+ //
+ // We do not ASSERT if SmbiosTable not found. It is possbile that a platform does not produce SmbiosTable.
+ //
+ if (SmbiosTable == NULL) {
+ DEBUG ((EFI_D_INFO, "Smbios table is not found!\n"));
+ }
+ EfiToLegacy16BootTable->SmbiosTable = (UINT32)(UINTN)SmbiosTable;
+
+ AcpiTable = NULL;
+ Status = EfiGetSystemConfigurationTable (
+ &gEfiAcpi20TableGuid,
+ &AcpiTable
+ );
+ if (EFI_ERROR (Status)) {
+ Status = EfiGetSystemConfigurationTable (
+ &gEfiAcpi10TableGuid,
+ &AcpiTable
+ );
+ }
+ //
+ // We do not ASSERT if AcpiTable not found. It is possbile that a platform does not produce AcpiTable.
+ //
+ if (AcpiTable == NULL) {
+ DEBUG ((EFI_D_INFO, "ACPI table is not found!\n"));
+ }
+ EfiToLegacy16BootTable->AcpiTable = (UINT32)(UINTN)AcpiTable;
+
+ //
+ // Get RSD Ptr table rev at offset 15 decimal
+ // Rev = 0 Length is 20 decimal
+ // Rev != 0 Length is UINT32 at offset 20 decimal
+ //
+ if (AcpiTable != NULL) {
+
+ AcpiPtr = AcpiTable;
+ if (*((UINT8 *) AcpiPtr + 15) == 0) {
+ CopySize = 20;
+ } else {
+ AcpiPtr = ((UINT8 *) AcpiPtr + 20);
+ CopySize = (*(UINT32 *) AcpiPtr);
+ }
+
+ CopyMem (
+ (VOID *)(UINTN) Private->Legacy16Table->AcpiRsdPtrPointer,
+ AcpiTable,
+ CopySize
+ );
+ }
+ //
+ // Make sure all PCI Interrupt Line register are programmed to match 8259
+ //
+ PciProgramAllInterruptLineRegisters (Private);
+
+ //
+ // Unlock the Legacy BIOS region as PciProgramAllInterruptLineRegisters
+ // can lock it.
+ //
+ Private->LegacyRegion->UnLock (
+ Private->LegacyRegion,
+ Private->BiosStart,
+ Private->LegacyBiosImageSize,
+ &Granularity
+ );
+
+ //
+ // Configure Legacy Device Magic
+ //
+ // Only do this code if booting legacy OS
+ //
+ if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
+ UpdateSioData (Private);
+ }
+ //
+ // Setup BDA and EBDA standard areas before Legacy Boot
+ //
+ LegacyBiosCompleteBdaBeforeBoot (Private);
+ LegacyBiosCompleteStandardCmosBeforeBoot (Private);
+
+ //
+ // We must build IDE data, if it hasn't been done, before PciShadowRoms
+ // to insure EFI drivers are connected.
+ //
+ LegacyBiosBuildIdeData (Private, &HddInfo, 1);
+ UpdateAllIdentifyDriveData (Private);
+
+ //
+ // Clear IO BAR, if IDE controller in legacy mode.
+ //
+ InitLegacyIdeController (IdeController);
+
+ //
+ // Generate number of ticks since midnight for BDA. DOS requires this
+ // for its time. We have to make assumptions as to how long following
+ // code takes since after PciShadowRoms PciIo is gone. Place result in
+ // 40:6C-6F
+ //
+ // Adjust value by 1 second.
+ //
+ gRT->GetTime (&BootTime, NULL);
+ LocalTime = BootTime.Hour * 3600 + BootTime.Minute * 60 + BootTime.Second;
+ LocalTime += 1;
+
+ //
+ // Multiply result by 18.2 for number of ticks since midnight.
+ // Use 182/10 to avoid floating point math.
+ //
+ LocalTime = (LocalTime * 182) / 10;
+ BdaPtr = (UINT32 *) (UINTN)0x46C;
+ *BdaPtr = LocalTime;
+
+ //
+ // Shadow PCI ROMs. We must do this near the end since this will kick
+ // of Native EFI drivers that may be needed to collect info for Legacy16
+ //
+ // WARNING: PciIo is gone after this call.
+ //
+ PciShadowRoms (Private);
+
+ //
+ // Shadow PXE base code, BIS etc.
+ //
+ Private->LegacyRegion->UnLock (Private->LegacyRegion, 0xc0000, 0x40000, &Granularity);
+ ShadowAddress = Private->OptionRom;
+ Private->LegacyBiosPlatform->PlatformHooks (
+ Private->LegacyBiosPlatform,
+ EfiPlatformHookShadowServiceRoms,
+ 0,
+ 0,
+ &ShadowAddress,
+ Legacy16Table,
+ NULL
+ );
+ Private->OptionRom = (UINT32)ShadowAddress;
+ //
+ // Register Legacy SMI Handler
+ //
+ LegacyBiosPlatform->SmmInit (
+ LegacyBiosPlatform,
+ EfiToLegacy16BootTable
+ );
+
+ //
+ // Let platform code know the boot options
+ //
+ LegacyBiosGetBbsInfo (
+ This,
+ &HddCount,
+ &LocalHddInfo,
+ &BbsCount,
+ &LocalBbsTable
+ );
+
+ PrintBbsTable (LocalBbsTable);
+ PrintHddInfo (LocalHddInfo);
+
+ //
+ // If drive wasn't spun up then BuildIdeData may have found new drives.
+ // Need to update BBS boot priority.
+ //
+ for (Index = 0; Index < MAX_IDE_CONTROLLER; Index++) {
+ if ((LocalHddInfo[Index].IdentifyDrive[0].Raw[0] != 0) &&
+ (LocalBbsTable[2 * Index + 1].BootPriority == BBS_IGNORE_ENTRY)
+ ) {
+ LocalBbsTable[2 * Index + 1].BootPriority = BBS_UNPRIORITIZED_ENTRY;
+ }
+
+ if ((LocalHddInfo[Index].IdentifyDrive[1].Raw[0] != 0) &&
+ (LocalBbsTable[2 * Index + 2].BootPriority == BBS_IGNORE_ENTRY)
+ ) {
+ LocalBbsTable[2 * Index + 2].BootPriority = BBS_UNPRIORITIZED_ENTRY;
+ }
+ }
+
+ Private->LegacyRegion->UnLock (
+ Private->LegacyRegion,
+ 0xc0000,
+ 0x40000,
+ &Granularity
+ );
+
+ LegacyBiosPlatform->PrepareToBoot (
+ LegacyBiosPlatform,
+ mBbsDevicePathPtr,
+ mBbsTable,
+ mLoadOptionsSize,
+ mLoadOptions,
+ (VOID *) &Private->IntThunk->EfiToLegacy16BootTable
+ );
+
+ //
+ // If no boot device return to BDS
+ //
+ if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
+ for (Index = 0; Index < BbsCount; Index++){
+ if ((LocalBbsTable[Index].BootPriority != BBS_DO_NOT_BOOT_FROM) &&
+ (LocalBbsTable[Index].BootPriority != BBS_UNPRIORITIZED_ENTRY) &&
+ (LocalBbsTable[Index].BootPriority != BBS_IGNORE_ENTRY)) {
+ break;
+ }
+ }
+ if (Index == BbsCount) {
+ return EFI_DEVICE_ERROR;
+ }
+ }
+ //
+ // Let the Legacy16 code know the device path type for legacy boot
+ //
+ EfiToLegacy16BootTable->DevicePathType = mBbsDevicePathPtr->DeviceType;
+
+ //
+ // Copy MP table, if it exists.
+ //
+ LegacyGetDataOrTable (This, EfiGetPlatformBinaryMpTable);
+
+ if (!Private->LegacyBootEntered) {
+ //
+ // Copy OEM INT Data, if it exists. Note: This code treats any data
+ // as a bag of bits and knows nothing of the contents nor cares.
+ // Contents are IBV specific.
+ //
+ LegacyGetDataOrTable (This, EfiGetPlatformBinaryOemIntData);
+
+ //
+ // Copy OEM16 Data, if it exists.Note: This code treats any data
+ // as a bag of bits and knows nothing of the contents nor cares.
+ // Contents are IBV specific.
+ //
+ LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem16Data);
+
+ //
+ // Copy OEM32 Data, if it exists.Note: This code treats any data
+ // as a bag of bits and knows nothing of the contents nor cares.
+ // Contents are IBV specific.
+ //
+ LegacyGetDataOrTable (This, EfiGetPlatformBinaryOem32Data);
+ }
+
+ //
+ // Call into Legacy16 code to prepare for INT 19h
+ //
+ ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
+ Regs.X.AX = Legacy16PrepareToBoot;
+
+ //
+ // Pass in handoff data
+ //
+ Regs.X.ES = EFI_SEGMENT ((UINTN)EfiToLegacy16BootTable);
+ Regs.X.BX = EFI_OFFSET ((UINTN)EfiToLegacy16BootTable);
+
+ Private->LegacyBios.FarCall86 (
+ This,
+ Private->Legacy16CallSegment,
+ Private->Legacy16CallOffset,
+ &Regs,
+ NULL,
+ 0
+ );
+
+ if (Regs.X.AX != 0) {
+ return EFI_DEVICE_ERROR;
+ }
+ //
+ // Lock the Legacy BIOS region
+ //
+ Private->LegacyRegion->Lock (
+ Private->LegacyRegion,
+ 0xc0000,
+ 0x40000,
+ &Granularity
+ );
+ //
+ // Lock attributes of the Legacy Region if chipset supports
+ //
+ Private->LegacyRegion->BootLock (
+ Private->LegacyRegion,
+ 0xc0000,
+ 0x40000,
+ &Granularity
+ );
+
+ //
+ // Call into Legacy16 code to do the INT 19h
+ //
+ EnableAllControllers (Private);
+ if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
+ //
+ // Signal all the events that are waiting on EVT_SIGNAL_LEGACY_BOOT
+ //
+ EfiSignalEventLegacyBoot ();
+ DEBUG ((EFI_D_INFO, "Legacy INT19 Boot...\n"));
+ //
+ // Raise TPL to high level to disable CPU interrupts
+ //
+ gBS->RaiseTPL (TPL_HIGH_LEVEL);
+
+ //
+ // Put the 8259 into its legacy mode by reprogramming the vector bases
+ //
+ Private->Legacy8259->SetVectorBase (Private->Legacy8259, LEGACY_MODE_BASE_VECTOR_MASTER, LEGACY_MODE_BASE_VECTOR_SLAVE);
+ //
+ // PC History
+ // The original PC used INT8-F for master PIC. Since these mapped over
+ // processor exceptions TIANO moved the master PIC to INT68-6F.
+ // We need to set these back to the Legacy16 unexpected interrupt(saved
+ // in LegacyBios.c) since some OS see that these have values different from
+ // what is expected and invoke them. Since the legacy OS corrupts EFI
+ // memory, there is no handler for these interrupts and OS blows up.
+ //
+ // We need to save the TIANO values for the rare case that the Legacy16
+ // code cannot boot but knows memory hasn't been destroyed.
+ //
+ // To compound the problem, video takes over one of these INTS and must be
+ // be left.
+ // @bug - determine if video hooks INT(in which case we must find new
+ // set of TIANO vectors) or takes it over.
+ //
+ //
+ BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
+ for (Index = 0; Index < 8; Index++) {
+ Private->ThunkSavedInt[Index] = BaseVectorMaster[Index];
+ if (Private->ThunkSeg == (UINT16) (BaseVectorMaster[Index] >> 16)) {
+ BaseVectorMaster[Index] = (UINT32) (Private->BiosUnexpectedInt);
+ }
+ }
+
+ ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
+ Regs.X.AX = Legacy16Boot;
+
+ Private->LegacyBios.FarCall86 (
+ This,
+ Private->Legacy16CallSegment,
+ Private->Legacy16CallOffset,
+ &Regs,
+ NULL,
+ 0
+ );
+
+ BaseVectorMaster = (UINT32 *) (sizeof (UINT32) * PROTECTED_MODE_BASE_VECTOR_MASTER);
+ for (Index = 0; Index < 8; Index++) {
+ BaseVectorMaster[Index] = Private->ThunkSavedInt[Index];
+ }
+ }
+ Private->LegacyBootEntered = TRUE;
+ if ((mBootMode == BOOT_LEGACY_OS) || (mBootMode == BOOT_UNCONVENTIONAL_DEVICE)) {
+ //
+ // Should never return unless never passed control to 0:7c00(first stage
+ // OS loader) and only then if no bootable device found.
+ //
+ return EFI_DEVICE_ERROR;
+ } else {
+ //
+ // If boot to EFI then expect to return to caller
+ //
+ return EFI_SUCCESS;
+ }
+}
+
+
+/**
+ Assign drive number to legacy HDD drives prior to booting an EFI
+ aware OS so the OS can access drives without an EFI driver.
+ Note: BBS compliant drives ARE NOT available until this call by
+ either shell or EFI.
+
+ @param This Protocol instance pointer.
+ @param BbsCount Number of BBS_TABLE structures
+ @param BbsTable List BBS entries
+
+ @retval EFI_SUCCESS Drive numbers assigned
+
+**/
+EFI_STATUS
+EFIAPI
+LegacyBiosPrepareToBootEfi (
+ IN EFI_LEGACY_BIOS_PROTOCOL *This,
+ OUT UINT16 *BbsCount,
+ OUT BBS_TABLE **BbsTable
+ )
+{
+ EFI_STATUS Status;
+ EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
+ LEGACY_BIOS_INSTANCE *Private;
+
+ Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
+ EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
+ mBootMode = BOOT_EFI_OS;
+ mBbsDevicePathPtr = NULL;
+ Status = GenericLegacyBoot (This);
+ *BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
+ *BbsCount = (UINT16) (sizeof (Private->IntThunk->BbsTable) / sizeof (BBS_TABLE));
+ return Status;
+}
+
+/**
+ To boot from an unconventional device like parties and/or execute HDD diagnostics.
+
+ @param This Protocol instance pointer.
+ @param Attributes How to interpret the other input parameters
+ @param BbsEntry The 0-based index into the BbsTable for the parent
+ device.
+ @param BeerData Pointer to the 128 bytes of ram BEER data.
+ @param ServiceAreaData Pointer to the 64 bytes of raw Service Area data. The
+ caller must provide a pointer to the specific Service
+ Area and not the start all Service Areas.
+
+ @retval EFI_INVALID_PARAMETER if error. Does NOT return if no error.
+
+***/
+EFI_STATUS
+EFIAPI
+LegacyBiosBootUnconventionalDevice (
+ IN EFI_LEGACY_BIOS_PROTOCOL *This,
+ IN UDC_ATTRIBUTES Attributes,
+ IN UINTN BbsEntry,
+ IN VOID *BeerData,
+ IN VOID *ServiceAreaData
+ )
+{
+ EFI_STATUS Status;
+ EFI_TO_COMPATIBILITY16_BOOT_TABLE *EfiToLegacy16BootTable;
+ LEGACY_BIOS_INSTANCE *Private;
+ UD_TABLE *UcdTable;
+ UINTN Index;
+ UINT16 BootPriority;
+ BBS_TABLE *BbsTable;
+
+ BootPriority = 0;
+ Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
+ mBootMode = BOOT_UNCONVENTIONAL_DEVICE;
+ mBbsDevicePathPtr = &mBbsDevicePathNode;
+ mAttributes = Attributes;
+ mBbsEntry = BbsEntry;
+ mBeerData = BeerData, mServiceAreaData = ServiceAreaData;
+
+ EfiToLegacy16BootTable = &Private->IntThunk->EfiToLegacy16BootTable;
+
+ //
+ // Do input parameter checking
+ //
+ if ((Attributes.DirectoryServiceValidity == 0) &&
+ (Attributes.RabcaUsedFlag == 0) &&
+ (Attributes.ExecuteHddDiagnosticsFlag == 0)
+ ) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ if (((Attributes.DirectoryServiceValidity != 0) && (ServiceAreaData == NULL)) ||
+ (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag) != 0) && (BeerData == NULL))
+ ) {
+ return EFI_INVALID_PARAMETER;
+ }
+
+ UcdTable = (UD_TABLE *) AllocatePool (
+ sizeof (UD_TABLE)
+ );
+ if (NULL == UcdTable) {
+ return EFI_OUT_OF_RESOURCES;
+ }
+
+ EfiToLegacy16BootTable->UnconventionalDeviceTable = (UINT32)(UINTN)UcdTable;
+ UcdTable->Attributes = Attributes;
+ UcdTable->BbsTableEntryNumberForParentDevice = (UINT8) BbsEntry;
+ //
+ // Force all existing BBS entries to DoNotBoot. This allows 16-bit CSM
+ // to assign drive numbers but bot boot from. Only newly created entries
+ // will be valid.
+ //
+ BbsTable = (BBS_TABLE*)(UINTN)EfiToLegacy16BootTable->BbsTable;
+ for (Index = 0; Index < EfiToLegacy16BootTable->NumberBbsEntries; Index++) {
+ BbsTable[Index].BootPriority = BBS_DO_NOT_BOOT_FROM;
+ }
+ //
+ // If parent is onboard IDE then assign controller & device number
+ // else they are 0.
+ //
+ if (BbsEntry < MAX_IDE_CONTROLLER * 2) {
+ UcdTable->DeviceNumber = (UINT8) ((BbsEntry - 1) % 2);
+ }
+
+ if (BeerData != NULL) {
+ CopyMem (
+ (VOID *) UcdTable->BeerData,
+ BeerData,
+ (UINTN) 128
+ );
+ }
+
+ if (ServiceAreaData != NULL) {
+ CopyMem (
+ (VOID *) UcdTable->ServiceAreaData,
+ ServiceAreaData,
+ (UINTN) 64
+ );
+ }
+ //
+ // For each new entry do the following:
+ // 1. Increment current number of BBS entries
+ // 2. Copy parent entry to new entry.
+ // 3. Zero out BootHandler Offset & segment
+ // 4. Set appropriate device type. BEV(0x80) for HDD diagnostics
+ // and Floppy(0x01) for PARTIES boot.
+ // 5. Assign new priority.
+ //
+ if ((Attributes.ExecuteHddDiagnosticsFlag) != 0) {
+ EfiToLegacy16BootTable->NumberBbsEntries += 1;
+
+ CopyMem (
+ (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
+ (VOID *) &BbsTable[BbsEntry].BootPriority,
+ sizeof (BBS_TABLE)
+ );
+
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x80;
+
+ UcdTable->BbsTableEntryNumberForHddDiag = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
+
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
+ BootPriority += 1;
+
+ //
+ // Set device type as BBS_TYPE_DEV for PARTIES diagnostic
+ //
+ mBbsDevicePathNode.DeviceType = BBS_TYPE_BEV;
+ }
+
+ if (((Attributes.DirectoryServiceValidity | Attributes.RabcaUsedFlag)) != 0) {
+ EfiToLegacy16BootTable->NumberBbsEntries += 1;
+ CopyMem (
+ (VOID *) &BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority,
+ (VOID *) &BbsTable[BbsEntry].BootPriority,
+ sizeof (BBS_TABLE)
+ );
+
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerOffset = 0;
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootHandlerSegment = 0;
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].DeviceType = 0x01;
+ UcdTable->BbsTableEntryNumberForBoot = (UINT8) (EfiToLegacy16BootTable->NumberBbsEntries - 1);
+ BbsTable[EfiToLegacy16BootTable->NumberBbsEntries].BootPriority = BootPriority;
+
+ //
+ // Set device type as BBS_TYPE_FLOPPY for PARTIES boot as floppy
+ //
+ mBbsDevicePathNode.DeviceType = BBS_TYPE_FLOPPY;
+ }
+ //
+ // Build the BBS Device Path for this boot selection
+ //
+ mBbsDevicePathNode.Header.Type = BBS_DEVICE_PATH;
+ mBbsDevicePathNode.Header.SubType = BBS_BBS_DP;
+ SetDevicePathNodeLength (&mBbsDevicePathNode.Header, sizeof (BBS_BBS_DEVICE_PATH));
+ mBbsDevicePathNode.StatusFlag = 0;
+ mBbsDevicePathNode.String[0] = 0;
+
+ Status = GenericLegacyBoot (This);
+ return Status;
+}
+
+/**
+ Attempt to legacy boot the BootOption. If the EFI contexted has been
+ compromised this function will not return.
+
+ @param This Protocol instance pointer.
+ @param BbsDevicePath EFI Device Path from BootXXXX variable.
+ @param LoadOptionsSize Size of LoadOption in size.
+ @param LoadOptions LoadOption from BootXXXX variable
+
+ @retval EFI_SUCCESS Removable media not present
+
+**/
+EFI_STATUS
+EFIAPI
+LegacyBiosLegacyBoot (
+ IN EFI_LEGACY_BIOS_PROTOCOL *This,
+ IN BBS_BBS_DEVICE_PATH *BbsDevicePath,
+ IN UINT32 LoadOptionsSize,
+ IN VOID *LoadOptions
+ )
+{
+ EFI_STATUS Status;
+
+ mBbsDevicePathPtr = BbsDevicePath;
+ mLoadOptionsSize = LoadOptionsSize;
+ mLoadOptions = LoadOptions;
+ mBootMode = BOOT_LEGACY_OS;
+ Status = GenericLegacyBoot (This);
+
+ return Status;
+}
+
+/**
+ Convert EFI Memory Type to E820 Memory Type.
+
+ @param Type EFI Memory Type
+
+ @return ACPI Memory Type for EFI Memory Type
+
+**/
+EFI_ACPI_MEMORY_TYPE
+EfiMemoryTypeToE820Type (
+ IN UINT32 Type
+ )
+{
+ switch (Type) {
+ case EfiLoaderCode:
+ case EfiLoaderData:
+ case EfiBootServicesCode:
+ case EfiBootServicesData:
+ case EfiConventionalMemory:
+ case EfiRuntimeServicesCode:
+ case EfiRuntimeServicesData:
+ return EfiAcpiAddressRangeMemory;
+
+ case EfiACPIReclaimMemory:
+ return EfiAcpiAddressRangeACPI;
+
+ case EfiACPIMemoryNVS:
+ return EfiAcpiAddressRangeNVS;
+
+ //
+ // All other types map to reserved.
+ // Adding the code just waists FLASH space.
+ //
+ // case EfiReservedMemoryType:
+ // case EfiUnusableMemory:
+ // case EfiMemoryMappedIO:
+ // case EfiMemoryMappedIOPortSpace:
+ // case EfiPalCode:
+ //
+ default:
+ return EfiAcpiAddressRangeReserved;
+ }
+}
+
+/**
+ Build the E820 table.
+
+ @param Private Legacy BIOS Instance data
+ @param Size Size of E820 Table
+
+ @retval EFI_SUCCESS It should always work.
+
+**/
+EFI_STATUS
+LegacyBiosBuildE820 (
+ IN LEGACY_BIOS_INSTANCE *Private,
+ OUT UINTN *Size
+ )
+{
+ EFI_STATUS Status;
+ EFI_E820_ENTRY64 *E820Table;
+ EFI_MEMORY_DESCRIPTOR *EfiMemoryMap;
+ EFI_MEMORY_DESCRIPTOR *EfiMemoryMapEnd;
+ EFI_MEMORY_DESCRIPTOR *EfiEntry;
+ EFI_MEMORY_DESCRIPTOR *NextEfiEntry;
+ EFI_MEMORY_DESCRIPTOR TempEfiEntry;
+ UINTN EfiMemoryMapSize;
+ UINTN EfiMapKey;
+ UINTN EfiDescriptorSize;
+ UINT32 EfiDescriptorVersion;
+ UINTN Index;
+ EFI_PEI_HOB_POINTERS Hob;
+ EFI_HOB_RESOURCE_DESCRIPTOR *ResourceHob;
+ UINTN TempIndex;
+ UINTN IndexSort;
+ UINTN TempNextIndex;
+ EFI_E820_ENTRY64 TempE820;
+ EFI_ACPI_MEMORY_TYPE TempType;
+ BOOLEAN ChangedFlag;
+ UINTN Above1MIndex;
+ UINT64 MemoryBlockLength;
+
+ E820Table = (EFI_E820_ENTRY64 *) Private->E820Table;
+
+ //
+ // Get the EFI memory map.
+ //
+ EfiMemoryMapSize = 0;
+ EfiMemoryMap = NULL;
+ Status = gBS->GetMemoryMap (
+ &EfiMemoryMapSize,
+ EfiMemoryMap,
+ &EfiMapKey,
+ &EfiDescriptorSize,
+ &EfiDescriptorVersion
+ );
+ ASSERT (Status == EFI_BUFFER_TOO_SMALL);
+
+ do {
+ //
+ // Use size returned back plus 1 descriptor for the AllocatePool.
+ // We don't just multiply by 2 since the "for" loop below terminates on
+ // EfiMemoryMapEnd which is dependent upon EfiMemoryMapSize. Otherwize
+ // we process bogus entries and create bogus E820 entries.
+ //
+ EfiMemoryMap = (EFI_MEMORY_DESCRIPTOR *) AllocatePool (EfiMemoryMapSize);
+ ASSERT (EfiMemoryMap != NULL);
+ Status = gBS->GetMemoryMap (
+ &EfiMemoryMapSize,
+ EfiMemoryMap,
+ &EfiMapKey,
+ &EfiDescriptorSize,
+ &EfiDescriptorVersion
+ );
+ if (EFI_ERROR (Status)) {
+ FreePool (EfiMemoryMap);
+ }
+ } while (Status == EFI_BUFFER_TOO_SMALL);
+
+ ASSERT_EFI_ERROR (Status);
+
+ //
+ // Punch in the E820 table for memory less than 1 MB.
+ // Assume ZeroMem () has been done on data structure.
+ //
+ //
+ // First entry is 0 to (640k - EBDA)
+ //
+ E820Table[0].BaseAddr = 0;
+ E820Table[0].Length = (UINT64) ((*(UINT16 *) (UINTN)0x40E) << 4);
+ E820Table[0].Type = EfiAcpiAddressRangeMemory;
+
+ //
+ // Second entry is (640k - EBDA) to 640k
+ //
+ E820Table[1].BaseAddr = E820Table[0].Length;
+ E820Table[1].Length = (UINT64) ((640 * 1024) - E820Table[0].Length);
+ E820Table[1].Type = EfiAcpiAddressRangeReserved;
+
+ //
+ // Third Entry is legacy BIOS
+ // DO NOT CLAIM region from 0xA0000-0xDFFFF. OS can use free areas
+ // to page in memory under 1MB.
+ // Omit region from 0xE0000 to start of BIOS, if any. This can be
+ // used for a multiple reasons including OPROMS.
+ //
+
+ //
+ // The CSM binary image size is not the actually size that CSM binary used,
+ // to avoid memory corrupt, we declare the 0E0000 - 0FFFFF is used by CSM binary.
+ //
+ E820Table[2].BaseAddr = 0xE0000;
+ E820Table[2].Length = 0x20000;
+ E820Table[2].Type = EfiAcpiAddressRangeReserved;
+
+ Above1MIndex = 2;
+
+ //
+ // Process the EFI map to produce E820 map;
+ //
+
+ //
+ // Sort memory map from low to high
+ //
+ EfiEntry = EfiMemoryMap;
+ NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
+ EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
+ while (EfiEntry < EfiMemoryMapEnd) {
+ while (NextEfiEntry < EfiMemoryMapEnd) {
+ if (EfiEntry->PhysicalStart > NextEfiEntry->PhysicalStart) {
+ CopyMem (&TempEfiEntry, EfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
+ CopyMem (EfiEntry, NextEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
+ CopyMem (NextEfiEntry, &TempEfiEntry, sizeof (EFI_MEMORY_DESCRIPTOR));
+ }
+
+ NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (NextEfiEntry, EfiDescriptorSize);
+ }
+
+ EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
+ NextEfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
+ }
+
+ EfiEntry = EfiMemoryMap;
+ EfiMemoryMapEnd = (EFI_MEMORY_DESCRIPTOR *) ((UINT8 *) EfiMemoryMap + EfiMemoryMapSize);
+ for (Index = Above1MIndex; (EfiEntry < EfiMemoryMapEnd) && (Index < EFI_MAX_E820_ENTRY - 1); ) {
+ MemoryBlockLength = (UINT64) (LShiftU64 (EfiEntry->NumberOfPages, 12));
+ if ((EfiEntry->PhysicalStart + MemoryBlockLength) < 0x100000) {
+ //
+ // Skip the memory block is under 1MB
+ //
+ } else {
+ if (EfiEntry->PhysicalStart < 0x100000) {
+ //
+ // When the memory block spans below 1MB, ensure the memory block start address is at least 1MB
+ //
+ MemoryBlockLength -= 0x100000 - EfiEntry->PhysicalStart;
+ EfiEntry->PhysicalStart = 0x100000;
+ }
+
+ //
+ // Convert memory type to E820 type
+ //
+ TempType = EfiMemoryTypeToE820Type (EfiEntry->Type);
+
+ if ((E820Table[Index].Type == TempType) && (EfiEntry->PhysicalStart == (E820Table[Index].BaseAddr + E820Table[Index].Length))) {
+ //
+ // Grow an existing entry
+ //
+ E820Table[Index].Length += MemoryBlockLength;
+ } else {
+ //
+ // Make a new entry
+ //
+ ++Index;
+ E820Table[Index].BaseAddr = EfiEntry->PhysicalStart;
+ E820Table[Index].Length = MemoryBlockLength;
+ E820Table[Index].Type = TempType;
+ }
+ }
+ EfiEntry = NEXT_MEMORY_DESCRIPTOR (EfiEntry, EfiDescriptorSize);
+ }
+
+ FreePool (EfiMemoryMap);
+
+ //
+ // Process the reserved memory map to produce E820 map ;
+ //
+ for (Hob.Raw = GetHobList (); !END_OF_HOB_LIST (Hob); Hob.Raw = GET_NEXT_HOB (Hob)) {
+ if (Hob.Raw != NULL && GET_HOB_TYPE (Hob) == EFI_HOB_TYPE_RESOURCE_DESCRIPTOR) {
+ ResourceHob = Hob.ResourceDescriptor;
+ if (((ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_MAPPED_IO) ||
+ (ResourceHob->ResourceType == EFI_RESOURCE_FIRMWARE_DEVICE) ||
+ (ResourceHob->ResourceType == EFI_RESOURCE_MEMORY_RESERVED) ) &&
+ (ResourceHob->PhysicalStart > 0x100000) &&
+ (Index < EFI_MAX_E820_ENTRY - 1)) {
+ ++Index;
+ E820Table[Index].BaseAddr = ResourceHob->PhysicalStart;
+ E820Table[Index].Length = ResourceHob->ResourceLength;
+ E820Table[Index].Type = EfiAcpiAddressRangeReserved;
+ }
+ }
+ }
+
+ Index ++;
+ Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
+ Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
+ Private->NumberE820Entries = (UINT32)Index;
+ *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
+
+ //
+ // Sort E820Table from low to high
+ //
+ for (TempIndex = 0; TempIndex < Index; TempIndex++) {
+ ChangedFlag = FALSE;
+ for (TempNextIndex = 1; TempNextIndex < Index - TempIndex; TempNextIndex++) {
+ if (E820Table[TempNextIndex - 1].BaseAddr > E820Table[TempNextIndex].BaseAddr) {
+ ChangedFlag = TRUE;
+ TempE820.BaseAddr = E820Table[TempNextIndex - 1].BaseAddr;
+ TempE820.Length = E820Table[TempNextIndex - 1].Length;
+ TempE820.Type = E820Table[TempNextIndex - 1].Type;
+
+ E820Table[TempNextIndex - 1].BaseAddr = E820Table[TempNextIndex].BaseAddr;
+ E820Table[TempNextIndex - 1].Length = E820Table[TempNextIndex].Length;
+ E820Table[TempNextIndex - 1].Type = E820Table[TempNextIndex].Type;
+
+ E820Table[TempNextIndex].BaseAddr = TempE820.BaseAddr;
+ E820Table[TempNextIndex].Length = TempE820.Length;
+ E820Table[TempNextIndex].Type = TempE820.Type;
+ }
+ }
+
+ if (!ChangedFlag) {
+ break;
+ }
+ }
+
+ //
+ // Remove the overlap range
+ //
+ for (TempIndex = 1; TempIndex < Index; TempIndex++) {
+ if (E820Table[TempIndex - 1].BaseAddr <= E820Table[TempIndex].BaseAddr &&
+ ((E820Table[TempIndex - 1].BaseAddr + E820Table[TempIndex - 1].Length) >=
+ (E820Table[TempIndex].BaseAddr +E820Table[TempIndex].Length))) {
+ //
+ //Overlap range is found
+ //
+ ASSERT (E820Table[TempIndex - 1].Type == E820Table[TempIndex].Type);
+
+ if (TempIndex == Index - 1) {
+ E820Table[TempIndex].BaseAddr = 0;
+ E820Table[TempIndex].Length = 0;
+ E820Table[TempIndex].Type = (EFI_ACPI_MEMORY_TYPE) 0;
+ Index--;
+ break;
+ } else {
+ for (IndexSort = TempIndex; IndexSort < Index - 1; IndexSort ++) {
+ E820Table[IndexSort].BaseAddr = E820Table[IndexSort + 1].BaseAddr;
+ E820Table[IndexSort].Length = E820Table[IndexSort + 1].Length;
+ E820Table[IndexSort].Type = E820Table[IndexSort + 1].Type;
+ }
+ Index--;
+ }
+ }
+ }
+
+
+
+ Private->IntThunk->EfiToLegacy16InitTable.NumberE820Entries = (UINT32)Index;
+ Private->IntThunk->EfiToLegacy16BootTable.NumberE820Entries = (UINT32)Index;
+ Private->NumberE820Entries = (UINT32)Index;
+ *Size = (UINTN) (Index * sizeof (EFI_E820_ENTRY64));
+
+ //
+ // Determine OS usable memory above 1Mb
+ //
+ Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb = 0x0000;
+ for (TempIndex = Above1MIndex; TempIndex < Index; TempIndex++) {
+ if (E820Table[TempIndex].BaseAddr >= 0x100000 && E820Table[TempIndex].BaseAddr < 0x100000000ULL) { // not include above 4G memory
+ //
+ // ACPIReclaimMemory is also usable memory for ACPI OS, after OS dumps all ACPI tables.
+ //
+ if ((E820Table[TempIndex].Type == EfiAcpiAddressRangeMemory) || (E820Table[TempIndex].Type == EfiAcpiAddressRangeACPI)) {
+ Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb += (UINT32) (E820Table[TempIndex].Length);
+ } else {
+ break; // break at first not normal memory, because SMM may use reserved memory.
+ }
+ }
+ }
+
+ Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb = Private->IntThunk->EfiToLegacy16BootTable.OsMemoryAbove1Mb;
+
+ //
+ // Print DEBUG information
+ //
+ for (TempIndex = 0; TempIndex < Index; TempIndex++) {
+ DEBUG((EFI_D_INFO, "E820[%2d]: 0x%16lx ---- 0x%16lx, Type = 0x%x \n",
+ TempIndex,
+ E820Table[TempIndex].BaseAddr,
+ (E820Table[TempIndex].BaseAddr + E820Table[TempIndex].Length),
+ E820Table[TempIndex].Type
+ ));
+ }
+
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Fill in the standard BDA and EBDA stuff prior to legacy Boot
+
+ @param Private Legacy BIOS Instance data
+
+ @retval EFI_SUCCESS It should always work.
+
+**/
+EFI_STATUS
+LegacyBiosCompleteBdaBeforeBoot (
+ IN LEGACY_BIOS_INSTANCE *Private
+ )
+{
+ BDA_STRUC *Bda;
+ UINT16 MachineConfig;
+ DEVICE_PRODUCER_DATA_HEADER *SioPtr;
+
+ Bda = (BDA_STRUC *) ((UINTN) 0x400);
+ MachineConfig = 0;
+
+ SioPtr = &(Private->IntThunk->EfiToLegacy16BootTable.SioData);
+ Bda->Com1 = SioPtr->Serial[0].Address;
+ Bda->Com2 = SioPtr->Serial[1].Address;
+ Bda->Com3 = SioPtr->Serial[2].Address;
+ Bda->Com4 = SioPtr->Serial[3].Address;
+
+ if (SioPtr->Serial[0].Address != 0x00) {
+ MachineConfig += 0x200;
+ }
+
+ if (SioPtr->Serial[1].Address != 0x00) {
+ MachineConfig += 0x200;
+ }
+
+ if (SioPtr->Serial[2].Address != 0x00) {
+ MachineConfig += 0x200;
+ }
+
+ if (SioPtr->Serial[3].Address != 0x00) {
+ MachineConfig += 0x200;
+ }
+
+ Bda->Lpt1 = SioPtr->Parallel[0].Address;
+ Bda->Lpt2 = SioPtr->Parallel[1].Address;
+ Bda->Lpt3 = SioPtr->Parallel[2].Address;
+
+ if (SioPtr->Parallel[0].Address != 0x00) {
+ MachineConfig += 0x4000;
+ }
+
+ if (SioPtr->Parallel[1].Address != 0x00) {
+ MachineConfig += 0x4000;
+ }
+
+ if (SioPtr->Parallel[2].Address != 0x00) {
+ MachineConfig += 0x4000;
+ }
+
+ Bda->NumberOfDrives = (UINT8) (Bda->NumberOfDrives + Private->IdeDriveCount);
+ if (SioPtr->Floppy.NumberOfFloppy != 0x00) {
+ MachineConfig = (UINT16) (MachineConfig + 0x01 + (SioPtr->Floppy.NumberOfFloppy - 1) * 0x40);
+ Bda->FloppyXRate = 0x07;
+ }
+
+ Bda->Lpt1_2Timeout = 0x1414;
+ Bda->Lpt3_4Timeout = 0x1414;
+ Bda->Com1_2Timeout = 0x0101;
+ Bda->Com3_4Timeout = 0x0101;
+
+ //
+ // Force VGA and Coprocessor, indicate 101/102 keyboard
+ //
+ MachineConfig = (UINT16) (MachineConfig + 0x00 + 0x02 + (SioPtr->MousePresent * 0x04));
+ Bda->MachineConfig = MachineConfig;
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Fill in the standard BDA for Keyboard LEDs
+
+ @param This Protocol instance pointer.
+ @param Leds Current LED status
+
+ @retval EFI_SUCCESS It should always work.
+
+**/
+EFI_STATUS
+EFIAPI
+LegacyBiosUpdateKeyboardLedStatus (
+ IN EFI_LEGACY_BIOS_PROTOCOL *This,
+ IN UINT8 Leds
+ )
+{
+ LEGACY_BIOS_INSTANCE *Private;
+ BDA_STRUC *Bda;
+ UINT8 LocalLeds;
+ EFI_IA32_REGISTER_SET Regs;
+
+ Bda = (BDA_STRUC *) ((UINTN) 0x400);
+
+ Private = LEGACY_BIOS_INSTANCE_FROM_THIS (This);
+ LocalLeds = Leds;
+ Bda->LedStatus = (UINT8) ((Bda->LedStatus &~0x07) | LocalLeds);
+ LocalLeds = (UINT8) (LocalLeds << 4);
+ Bda->ShiftStatus = (UINT8) ((Bda->ShiftStatus &~0x70) | LocalLeds);
+ LocalLeds = (UINT8) (Leds & 0x20);
+ Bda->KeyboardStatus = (UINT8) ((Bda->KeyboardStatus &~0x20) | LocalLeds);
+ //
+ // Call into Legacy16 code to allow it to do any processing
+ //
+ ZeroMem (&Regs, sizeof (EFI_IA32_REGISTER_SET));
+ Regs.X.AX = Legacy16SetKeyboardLeds;
+ Regs.H.CL = Leds;
+
+ Private->LegacyBios.FarCall86 (
+ &Private->LegacyBios,
+ Private->Legacy16Table->Compatibility16CallSegment,
+ Private->Legacy16Table->Compatibility16CallOffset,
+ &Regs,
+ NULL,
+ 0
+ );
+
+ return EFI_SUCCESS;
+}
+
+
+/**
+ Fill in the standard CMOS stuff prior to legacy Boot
+
+ @param Private Legacy BIOS Instance data
+
+ @retval EFI_SUCCESS It should always work.
+
+**/
+EFI_STATUS
+LegacyBiosCompleteStandardCmosBeforeBoot (
+ IN LEGACY_BIOS_INSTANCE *Private
+ )
+{
+ UINT8 Bda;
+ UINT8 Floppy;
+ UINT32 Size;
+
+ //
+ // Update CMOS locations
+ // 10 floppy
+ // 12,19,1A - ignore as OS don't use them and there is no standard due
+ // to large capacity drives
+ // CMOS 14 = BDA 40:10 plus bit 3(display enabled)
+ //
+ Bda = (UINT8)(*((UINT8 *)((UINTN)0x410)) | BIT3);
+
+ //
+ // Force display enabled
+ //
+ Floppy = 0x00;
+ if ((Bda & BIT0) != 0) {
+ Floppy = BIT6;
+ }
+
+ //
+ // Check if 2.88MB floppy set
+ //
+ if ((Bda & (BIT7 | BIT6)) != 0) {
+ Floppy = (UINT8)(Floppy | BIT1);
+ }
+
+ LegacyWriteStandardCmos (CMOS_10, Floppy);
+ LegacyWriteStandardCmos (CMOS_14, Bda);
+
+ //
+ // Force Status Register A to set rate selection bits and divider
+ //
+ LegacyWriteStandardCmos (CMOS_0A, 0x26);
+
+ //
+ // redo memory size since it can change
+ //
+ Size = 15 * SIZE_1MB;
+ if (Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb < (15 * SIZE_1MB)) {
+ Size = Private->IntThunk->EfiToLegacy16InitTable.OsMemoryAbove1Mb >> 10;
+ }
+
+ LegacyWriteStandardCmos (CMOS_17, (UINT8)(Size & 0xFF));
+ LegacyWriteStandardCmos (CMOS_30, (UINT8)(Size & 0xFF));
+ LegacyWriteStandardCmos (CMOS_18, (UINT8)(Size >> 8));
+ LegacyWriteStandardCmos (CMOS_31, (UINT8)(Size >> 8));
+
+ LegacyCalculateWriteStandardCmosChecksum ();
+
+ return EFI_SUCCESS;
+}
+
+/**
+ Relocate this image under 4G memory for IPF.
+
+ @param ImageHandle Handle of driver image.
+ @param SystemTable Pointer to system table.
+
+ @retval EFI_SUCCESS Image successfully relocated.
+ @retval EFI_ABORTED Failed to relocate image.
+
+**/
+EFI_STATUS
+RelocateImageUnder4GIfNeeded (
+ IN EFI_HANDLE ImageHandle,
+ IN EFI_SYSTEM_TABLE *SystemTable
+ )
+{
+ return EFI_SUCCESS;
+}