summaryrefslogtreecommitdiff
path: root/UefiCpuPkg/Include
diff options
context:
space:
mode:
authorJiaxin Wu <jiaxin.wu@intel.com>2023-11-03 21:53:19 +0800
committermergify[bot] <37929162+mergify[bot]@users.noreply.github.com>2023-12-20 02:30:56 +0000
commitba822d28516a231ff8780910cc3164bcce8b4969 (patch)
treec6f5afbc9cb210628295762a825b2be2d8f2edd2 /UefiCpuPkg/Include
parente14a022246f056847108e9e7882366fee4fece91 (diff)
downloadedk2-ba822d28516a231ff8780910cc3164bcce8b4969.zip
edk2-ba822d28516a231ff8780910cc3164bcce8b4969.tar.gz
edk2-ba822d28516a231ff8780910cc3164bcce8b4969.tar.bz2
UefiCpuPkg: Adds SmmCpuSyncLib library class
Intel is planning to provide different SMM CPU Sync implementation along with some specific registers to improve the SMI performance, hence need SmmCpuSyncLib Library for Intel. This patch is to: 1.Adds SmmCpuSyncLib Library class in UefiCpuPkg.dec. 2.Adds SmmCpuSyncLib.h function declaration header file. For the new SmmCpuSyncLib, it provides 3 sets of APIs: 1. ContextInit/ContextDeinit/ContextReset: ContextInit() is called in driver's entrypoint to allocate and initialize the SMM CPU Sync context. ContextDeinit() is called in driver's unload function to deinitialize SMM CPU Sync context. ContextReset() is called before CPU exist SMI, which allows CPU to check into the next SMI from this point. 2. GetArrivedCpuCount/CheckInCpu/CheckOutCpu/LockDoor: When SMI happens, all processors including BSP enter to SMM mode by calling CheckInCpu(). The elected BSP calls LockDoor() so that CheckInCpu() will return the error code after that. CheckOutCpu() can be called in error handling flow for the CPU who calls CheckInCpu() earlier. GetArrivedCpuCount() returns the number of checked-in CPUs. 3. WaitForAPs/ReleaseOneAp/WaitForBsp/ReleaseBsp WaitForAPs() & ReleaseOneAp() are called from BSP to wait the number of APs and release one specific AP. WaitForBsp() & ReleaseBsp() are called from APs to wait and release BSP. The 4 APIs are used to synchronize the running flow among BSP and APs. BSP and AP Sync flow can be easy understand as below: BSP: ReleaseOneAp --> AP: WaitForBsp BSP: WaitForAPs <-- AP: ReleaseBsp Cc: Laszlo Ersek <lersek@redhat.com> Cc: Eric Dong <eric.dong@intel.com> Cc: Ray Ni <ray.ni@intel.com> Cc: Zeng Star <star.zeng@intel.com> Cc: Gerd Hoffmann <kraxel@redhat.com> Cc: Rahul Kumar <rahul1.kumar@intel.com> Signed-off-by: Jiaxin Wu <jiaxin.wu@intel.com> Reviewed-by: Ray Ni <ray.ni@intel.com>
Diffstat (limited to 'UefiCpuPkg/Include')
-rw-r--r--UefiCpuPkg/Include/Library/SmmCpuSyncLib.h290
1 files changed, 290 insertions, 0 deletions
diff --git a/UefiCpuPkg/Include/Library/SmmCpuSyncLib.h b/UefiCpuPkg/Include/Library/SmmCpuSyncLib.h
new file mode 100644
index 0000000..4d27309
--- /dev/null
+++ b/UefiCpuPkg/Include/Library/SmmCpuSyncLib.h
@@ -0,0 +1,290 @@
+/** @file
+ Library that provides SMM CPU Sync related operations.
+
+ The lib provides 3 sets of APIs:
+ 1. ContextInit/ContextDeinit/ContextReset:
+
+ ContextInit() is called in driver's entrypoint to allocate and initialize the SMM CPU Sync context.
+ ContextDeinit() is called in driver's unload function to deinitialize the SMM CPU Sync context.
+ ContextReset() is called by one of CPUs after all CPUs are ready to exit SMI, which allows CPU to
+ check into the next SMI from this point.
+
+ 2. GetArrivedCpuCount/CheckInCpu/CheckOutCpu/LockDoor:
+ When SMI happens, all processors including BSP enter to SMM mode by calling CheckInCpu().
+ CheckOutCpu() can be called in error handling flow for the CPU who calls CheckInCpu() earlier.
+ The elected BSP calls LockDoor() so that CheckInCpu() and CheckOutCpu() will return the error code after that.
+ GetArrivedCpuCount() returns the number of checked-in CPUs.
+
+ 3. WaitForAPs/ReleaseOneAp/WaitForBsp/ReleaseBsp
+ WaitForAPs() & ReleaseOneAp() are called from BSP to wait the number of APs and release one specific AP.
+ WaitForBsp() & ReleaseBsp() are called from APs to wait and release BSP.
+ The 4 APIs are used to synchronize the running flow among BSP and APs.
+ BSP and AP Sync flow can be easy understand as below:
+ BSP: ReleaseOneAp --> AP: WaitForBsp
+ BSP: WaitForAPs <-- AP: ReleaseBsp
+
+ Copyright (c) 2023, Intel Corporation. All rights reserved.<BR>
+ SPDX-License-Identifier: BSD-2-Clause-Patent
+
+**/
+
+#ifndef SMM_CPU_SYNC_LIB_H_
+#define SMM_CPU_SYNC_LIB_H_
+
+#include <Uefi/UefiBaseType.h>
+
+//
+// Opaque structure for SMM CPU Sync context.
+//
+typedef struct SMM_CPU_SYNC_CONTEXT SMM_CPU_SYNC_CONTEXT;
+
+/**
+ Create and initialize the SMM CPU Sync context. It is to allocate and initialize the
+ SMM CPU Sync context.
+
+ If Context is NULL, then ASSERT().
+
+ @param[in] NumberOfCpus The number of Logical Processors in the system.
+ @param[out] Context Pointer to the new created and initialized SMM CPU Sync context object.
+ NULL will be returned if any error happen during init.
+
+ @retval RETURN_SUCCESS The SMM CPU Sync context was successful created and initialized.
+ @retval RETURN_OUT_OF_RESOURCES There are not enough resources available to create and initialize SMM CPU Sync context.
+ @retval RETURN_BUFFER_TOO_SMALL Overflow happen
+
+**/
+RETURN_STATUS
+EFIAPI
+SmmCpuSyncContextInit (
+ IN UINTN NumberOfCpus,
+ OUT SMM_CPU_SYNC_CONTEXT **Context
+ );
+
+/**
+ Deinit an allocated SMM CPU Sync context. The resources allocated in SmmCpuSyncContextInit() will
+ be freed.
+
+ If Context is NULL, then ASSERT().
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object to be deinitialized.
+
+**/
+VOID
+EFIAPI
+SmmCpuSyncContextDeinit (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context
+ );
+
+/**
+ Reset SMM CPU Sync context. SMM CPU Sync context will be reset to the initialized state.
+
+ This function is called by one of CPUs after all CPUs are ready to exit SMI, which allows CPU to
+ check into the next SMI from this point.
+
+ If Context is NULL, then ASSERT().
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object to be reset.
+
+**/
+VOID
+EFIAPI
+SmmCpuSyncContextReset (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context
+ );
+
+/**
+ Get current number of arrived CPU in SMI.
+
+ BSP might need to know the current number of arrived CPU in SMI to make sure all APs
+ in SMI. This API can be for that purpose.
+
+ If Context is NULL, then ASSERT().
+
+ @param[in] Context Pointer to the SMM CPU Sync context object.
+
+ @retval Current number of arrived CPU in SMI.
+
+**/
+UINTN
+EFIAPI
+SmmCpuSyncGetArrivedCpuCount (
+ IN SMM_CPU_SYNC_CONTEXT *Context
+ );
+
+/**
+ Performs an atomic operation to check in CPU.
+
+ When SMI happens, all processors including BSP enter to SMM mode by calling SmmCpuSyncCheckInCpu().
+
+ If Context is NULL, then ASSERT().
+ If CpuIndex exceeds the range of all CPUs in the system, then ASSERT().
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object.
+ @param[in] CpuIndex Check in CPU index.
+
+ @retval RETURN_SUCCESS Check in CPU (CpuIndex) successfully.
+ @retval RETURN_ABORTED Check in CPU failed due to SmmCpuSyncLockDoor() has been called by one elected CPU.
+
+**/
+RETURN_STATUS
+EFIAPI
+SmmCpuSyncCheckInCpu (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context,
+ IN UINTN CpuIndex
+ );
+
+/**
+ Performs an atomic operation to check out CPU.
+
+ This function can be called in error handling flow for the CPU who calls CheckInCpu() earlier.
+ The caller shall make sure the CPU specified by CpuIndex has already checked-in.
+
+ If Context is NULL, then ASSERT().
+ If CpuIndex exceeds the range of all CPUs in the system, then ASSERT().
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object.
+ @param[in] CpuIndex Check out CPU index.
+
+ @retval RETURN_SUCCESS Check out CPU (CpuIndex) successfully.
+ @retval RETURN_ABORTED Check out CPU failed due to SmmCpuSyncLockDoor() has been called by one elected CPU.
+
+**/
+RETURN_STATUS
+EFIAPI
+SmmCpuSyncCheckOutCpu (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context,
+ IN UINTN CpuIndex
+ );
+
+/**
+ Performs an atomic operation lock door for CPU checkin and checkout. After this function:
+ CPU can not check in via SmmCpuSyncCheckInCpu().
+ CPU can not check out via SmmCpuSyncCheckOutCpu().
+
+ The CPU specified by CpuIndex is elected to lock door. The caller shall make sure the CpuIndex
+ is the actual CPU calling this function to avoid the undefined behavior.
+
+ If Context is NULL, then ASSERT().
+ If CpuCount is NULL, then ASSERT().
+ If CpuIndex exceeds the range of all CPUs in the system, then ASSERT().
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object.
+ @param[in] CpuIndex Indicate which CPU to lock door.
+ @param[out] CpuCount Number of arrived CPU in SMI after look door.
+
+**/
+VOID
+EFIAPI
+SmmCpuSyncLockDoor (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context,
+ IN UINTN CpuIndex,
+ OUT UINTN *CpuCount
+ );
+
+/**
+ Used by the BSP to wait for APs.
+
+ The number of APs need to be waited is specified by NumberOfAPs. The BSP is specified by BspIndex.
+ The caller shall make sure the BspIndex is the actual CPU calling this function to avoid the undefined behavior.
+ The caller shall make sure the NumberOfAPs have already checked-in to avoid the undefined behavior.
+
+ If Context is NULL, then ASSERT().
+ If NumberOfAPs >= All CPUs in system, then ASSERT().
+ If BspIndex exceeds the range of all CPUs in the system, then ASSERT().
+
+ Note:
+ This function is blocking mode, and it will return only after the number of APs released by
+ calling SmmCpuSyncReleaseBsp():
+ BSP: WaitForAPs <-- AP: ReleaseBsp
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object.
+ @param[in] NumberOfAPs Number of APs need to be waited by BSP.
+ @param[in] BspIndex The BSP Index to wait for APs.
+
+**/
+VOID
+EFIAPI
+SmmCpuSyncWaitForAPs (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context,
+ IN UINTN NumberOfAPs,
+ IN UINTN BspIndex
+ );
+
+/**
+ Used by the BSP to release one AP.
+
+ The AP is specified by CpuIndex. The BSP is specified by BspIndex.
+ The caller shall make sure the BspIndex is the actual CPU calling this function to avoid the undefined behavior.
+ The caller shall make sure the CpuIndex has already checked-in to avoid the undefined behavior.
+
+ If Context is NULL, then ASSERT().
+ If CpuIndex == BspIndex, then ASSERT().
+ If BspIndex or CpuIndex exceed the range of all CPUs in the system, then ASSERT().
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object.
+ @param[in] CpuIndex Indicate which AP need to be released.
+ @param[in] BspIndex The BSP Index to release AP.
+
+**/
+VOID
+EFIAPI
+SmmCpuSyncReleaseOneAp (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context,
+ IN UINTN CpuIndex,
+ IN UINTN BspIndex
+ );
+
+/**
+ Used by the AP to wait BSP.
+
+ The AP is specified by CpuIndex.
+ The caller shall make sure the CpuIndex is the actual CPU calling this function to avoid the undefined behavior.
+ The BSP is specified by BspIndex.
+
+ If Context is NULL, then ASSERT().
+ If CpuIndex == BspIndex, then ASSERT().
+ If BspIndex or CpuIndex exceed the range of all CPUs in the system, then ASSERT().
+
+ Note:
+ This function is blocking mode, and it will return only after the AP released by
+ calling SmmCpuSyncReleaseOneAp():
+ BSP: ReleaseOneAp --> AP: WaitForBsp
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object.
+ @param[in] CpuIndex Indicate which AP wait BSP.
+ @param[in] BspIndex The BSP Index to be waited.
+
+**/
+VOID
+EFIAPI
+SmmCpuSyncWaitForBsp (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context,
+ IN UINTN CpuIndex,
+ IN UINTN BspIndex
+ );
+
+/**
+ Used by the AP to release BSP.
+
+ The AP is specified by CpuIndex.
+ The caller shall make sure the CpuIndex is the actual CPU calling this function to avoid the undefined behavior.
+ The BSP is specified by BspIndex.
+
+ If Context is NULL, then ASSERT().
+ If CpuIndex == BspIndex, then ASSERT().
+ If BspIndex or CpuIndex exceed the range of all CPUs in the system, then ASSERT().
+
+ @param[in,out] Context Pointer to the SMM CPU Sync context object.
+ @param[in] CpuIndex Indicate which AP release BSP.
+ @param[in] BspIndex The BSP Index to be released.
+
+**/
+VOID
+EFIAPI
+SmmCpuSyncReleaseBsp (
+ IN OUT SMM_CPU_SYNC_CONTEXT *Context,
+ IN UINTN CpuIndex,
+ IN UINTN BspIndex
+ );
+
+#endif